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Abstract.

In this work a new statistical method for the determination of the dynamic coefficients
of Tilting Pad Journal Bearings is described. The method is applied to the results obtained
testing a 5 pads tilting pad journal bearing with 280 mm diameter. Tests were performed on
an advanced experimental apparatus specifically realized for investigations on large size high
performance bearings for turbomachinery. The linear coefficient identification procedure is
based on the dynamic measurement of forces, accelerations and relative displacements of rotor
and bearing, as function of excitation frequency for different operating conditions. The post-
processing of the dynamic data is performed in the frequency domain using the Fast Fourier
Transform. Along with a description of the experimental test and identification procedure, this
paper presents a least-square minimization technique for determining the dynamic coefficients
and a bootstrap statistical technique for estimating their confidence intervals.

1. Introduction

The characteristics of bearings strongly influence the rotor dynamic behaviour. Therefore the
determination of the bearing stiffness and damping coefficients is quite important. This is usually
done experimentally, applying dynamic loads to the rotor or to the bearing and measuring
their relative displacement. Identification methods are then used to determine the dynamic
coefficients, mainly in the frequency domain. In a comprehensive review [1] test apparata
and procedures are compared including the methods for evaluating the effects of measurement
uncertainty on overall bearing coefficient confidence levels. Most older papers on experimental
bearing identification did not include a comprehensive uncertainty analysis and only later its
importance was evidenced.

Indeed an uncertainty analysis is needed in order to validate the experimental results, to
increase validity of comparisons of results from different labs or processes, to improve design of
experiments and measurement, to provide a reliable tool for quality assurance of measurements
and research results [2], last but not least to ease the comparison of experimental and numerical
results. In the literature the experimentally determined bearing dynamic coefficients are reported
with their uncertainty interval, usually with 95% confidence, referring to the guidelines of
ANSI/ASME PTC 19.1 [3] and ISO GUM standards [4]. Very cited is also [5] that describes the
sources of errors in engineering measurements, the relationship between error and uncertainty
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and the procedure of an uncertainty analysis from the identification of the intended true
value of a measurement, the estimation of the individual errors, and results interpretation and
reporting. Errors may arise from calibration, data acquisition, and data reduction each with
bias (systematic) and precision (random) components [3]. Errors in measurements of various
parameters are propagated into derived results through the sensitivity factors that express
the relationship between the results and the independent parameters. In the case of journal
bearing dynamic coefficients, they are the derived results of measured parameters such as forces,
displacements, mass and acceleration. The standards suggest to keep bias and precision errors
of the parameters separate until the final result uncertainty computation by two models, sum
or RSS.

Though in more recent years papers on experimental journal bearing dynamic
characterization include an uncertainty analysis as part of the reported results, few papers
give details about the adopted technique to perform such an analysis. Among them, referring
to the standards, there are [6, 7] and [8, 9], the latter focusing on systematic errors. In [10]
measurement uncertainty propagation in parameter identification of mechanical systems in the
frequency domain is dealt with using a multivariate uncertainty analysis.

This paper describes the testing and data processing procedures for the dynamic
characterization of a high performance tilting pad journal bearing on an advanced test bench.
The test article is statically loaded and excited dynamically with a pseudorandom load, as it has
been shown that, due to the short time required to obtain useful data, it reduces the possibility
that changes in test conditions will affect identified coefficients, thus reducing uncertainty. The
post-processing of the dynamic data is performed in the frequency domain using the Fast Fourier
Transform (FFT). The uncertainty associated with random errors in the measurement of relevant
parameters in 30 consecutive tests was analyzed statistically using a least-square minimization
technique for determining the dynamic coefficients and a bootstrap statistical technique for
estimating their confidence intervals.

2. Experimental activity

The experimental apparatus employed in this work was specifically realized for investigations on
large size high performance bearings for turbomachinery. The main characteristics of the test
rig and the procedure normally used for the identification of the dynamic coefficients are briefly
described below.
The test rig, described in more detail in [11, 12, 13], is shown in figure 1. Bearings with diameters
from 150 mm to 300 mm and bearing length to diameter ratio from 0.4 to 1 can be tested. A
configuration with a floating test bearing housing at the centre of a rotor supported by two
rolling bearings is adopted.

The rotor is driven by a 630 kW electric motor connected to a multiplier with a transmission
ratio of 6 so that the shaft maximum rotational speed is 24000 rpm. Static and dynamic loads
are applied to the bearing case by three hydraulic actuators, Figure 2. The static actuator is
able to apply a maximum load of 270 kN upwards, while the dynamic actuators are able to apply
up to 40 kN loads, each one at 45◦ with respect to the vertical direction. The dynamic load
is obtained from the sum of up to five sinusoidal excitations (tones) individually adjustable in
terms of amplitude and frequency up to a maximum dynamic frequency of 350 Hz. The dynamic
actuators can work one at a time or simultaneously, in the latter case producing a vertical force
when operating with equal amplitude in phase, and a horizontal force when in antiphase. A
load cell with 300 kN full-scale is located between the static actuator and the bearing case. Two
instrumented stingers, located between the dynamic actuators and the case, act as triaxial load
cells, with 40 kN full-scale, for measuring dynamically all significant force components.

The bearing oil flow rate can be varied from 125 to 1100 l/min and the oil inlet temperature
from 30 to 120 ◦C. The plant maximum total required power is 1000 kW. Eight proximity sensors,
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Figure 1. Picture of the test rig. Figure 2. Load application systems.

Figure 3. Schematic drawing showing the position of the proximity sensors (red rectangles).
The red dashed lines indicate the sensor planes.

with a sensitivity of about 0.1 µm and a measuring range of 2000 µm, are placed on two parallel
planes perpendicular to the bearing axis for measuring the relative displacements of the bearing
housing and the rotor along the directions of the dynamic actuators (see Fig. 3). Accelerometers
are employed to measure the stator acceleration at the mid-section, in the direction of the
dynamic actuators. Tests are managed by a very complex control and data acquisition system.
About 30 high-frequency signals are usually sampled at 50 kHz while about 60 low-frequency
signals are sampled at 1 Hz.

3. Identification procedure for the dynamic coefficients

The dynamic stiffness and damping coefficients are evaluated from the data recorded during
two tests with linearly independent excitations for each excitation frequency. In-phase and anti-
phase operation modes of the dynamic actuators are used for obtaining the two necessary sets
of data. The FFT of the signals is used for the identification process of the dynamic coefficients.
Single-tone and multi-tone test can be performed. The use of the FFT allows the extraction of
forces, displacements and accelerations components at single frequencies also in the multi-tone
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test. For each excitation frequency the following calculation procedure is followed. First the
net bearing film force is determined by subtracting the stator inertia from the measured forces
applied to the stator:

[

Fb1x Fb2x

Fb1y Fb2y

]

=

[

Fs1x Fs2x

Fs1y Fs2y

]

−M

[

A1x A2x

A1y A2y

]

(1)

where F indicates the amplitude of the force transform, A the amplitude of the acceleration
transform, M the stator mass, while for the subscripts b and s refer to bearing and stator
respectively, x and y refer to the horizontal and vertical direction respectively, 1 and 2 to the
in-phase and anti-phase test respectively.

According to the classical linear model the net bearing film forces can be related to the
corresponding displacements by the so called bearing impedance matrix H.

[

Fb1x Fb2x

Fb1y Fb2y

]

=

[

Hxx Hxy

Hyx Hyy

][

X1 X2

Y1 Y2

]

(2)

where Hij are the (complex) elements of the impedance matrix. Then H is determined, in the
frequency domain, using the classical methodology described in [14], simply by multiplying the
[2×2] force complex matrix by the corresponding inverse displacement complex matrix:

[

Hxx Hxy

Hyx Hyy

]

=

[

Fb1x Fb2x

Fb1y Fb2y

][

X1 X2

Y1 Y2

]−1

(3)

where X, Y indicate the amplitudes of the displacement transform for in-phase (subscript 1) and
anti-phase (subscript 2) tests. The stiffness k and damping c coefficients are finally obtained
as respectively the real and the imaginary parts of the impedance direct and cross-coupled
coefficients.

[

Hxx Hxy

Hyx Hyy

]

=

[

kxx kxy
kyx kyy

]

+iω

[

cxx cxy
cyx cyy

]

(4)

Once the coefficients are calculated at all the excitation frequencies, interpolation at the
rotational frequency yields the synchronous dynamic coefficients. For each operating condition,
30 samples of forces and displacements are available, each obtained by FFT on a 3 s time
window. The dynamic coefficients are usually computed averaging a sample of impedance
matrices obtained in the same operating conditions.

In this work different techniques are proposed for both the determination of the mean
impedance matrix and the evaluation of the random errors on the estimated mean values.
Focusing on random errors, the systematic uncertainty is not considered here, the experimental
apparatus is assumed to be perfectly calibrated and other parameters needed to build the data
set, such as the mass M , are considered to be exactly known.

4. Statistical model

Adopting the linear model of equation (2) the (complex) elements of the impedance matrix
can be computed from the experimental data, assuming that at every variation of the position
matrix corresponds a variation of the force matrix. For computing purposes, eq. (2) is expressed
separating the real and the imaginary part of all the complex quantities, obtaining relationships
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among real quantities:


















































Re(Fb1x)=kxxRe(X1)− ωcxxIm(X1)− ωcxyIm(Y1) + kxyRe(Y1)
Im(Fb1x)=kxxIm(X1) + kxyIm(Y1) + ωcxxRe(X1) + ωcxyRe(Y1)
Re(Fb2x)=kxxRe(X2)− ωcxxIm(X2)− ωcxyIm(Y2) + kxyRe(Y2)
Im(Fb2x)=kxxIm(X2) + kxyIm(Y2) + ωcxxRe(X2) + ωcxyRe(Y2)
Re(Fb1y)=kyxRe(X1)− ωcyxIm(X1)− ωcyyIm(Y1) + kyyRe(Y1)
Im(Fb1y)=kyxIm(X1) + kyyIm(Y1) + ωcyxRe(X1) + ωcyyRe(Y1)
Re(Fb2y)=kyxRe(X2)− ωcyxIm(X2)− ωcyyIm(Y2) + kyyRe(Y2)
Im(Fb2y)=kyxIm(X2) + kyyIm(Y2) + ωcyxRe(X2) + ωcyyRe(Y2)

(5)

In a real experiment, the presence of noise (random error) causes the relationships shown in eq.
5 to be not exactly verified. This model, which describes the mechanical behavior of the system,
does not take into account other factors that will introduce uncertainty in each measured value,
and which cannot be taken into account in such a simple model. Therefore we introduce an
uncertainty (random variable) added to the “true” values of each of the real variables. The
uncertainties are modeled as zero mean Gaussian additive noises. Their standard deviations
depends on the precision of the sensors of displacement and force, and on the short-term stability
of the experimental conditions. Section 5 will show the importance of the estimation of the
standard deviation in the implementation of the statistical technique for the computation of the
dynamic coefficients.

5. Fit technique

It is possible to estimate the “best” values (the best approximations to the “true” values) of
FFT amplitudes of bearing forces and relative displacements together with the estimates of the
elements of the impedance matrix. This is obtained introducing the best estimates of forces,
displacements and impedance matrix elements (indicated with a hat sign) and assuming that
the relationships shown in eq. 5 are exactly verified for the best estimates. In order to obtain
the best estimates of all the quantities, a constrained minimum of the following weighted sum
of squared residuals S as a function of the dynamic coefficients, displacements and forces is
searched:

S =
N
∑

i=1

[∣

∣

∣

∣

X̂1,i−X1,i

σX

∣

∣

∣

∣

2

+

∣

∣

∣

∣

X̂2,i−X2,i

σX

∣

∣

∣

∣

2

+

∣

∣

∣

∣
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∣

∣

2]
(6)

in which the relationships (among the hat variables) shown in equation (5) are the constraints.
Note that the standard deviations are assumed to have the same value for all the displacements
and for all the forces. This is the easiest assumption, and its validity will be shown in section 6
together with the estimation of σX and σF from the available data.

6. Method for the estimate of standard deviations

The starting point for the estimate of the standard deviations σX and σF , that are the weights in
equation (6), is the analysis of the dispersion of the acquired data. As the bench control system
acts for the stabilization of the force intensities (regardless of their phases), the distribution of
the moduli |X1|, |Y1|, |X2|, |Y2|, |Fb1x|, |Fb1y|, |Fb2x|, |Fb2y| has been carried out. The standard
deviations of the empirical distributions of the moduli of the displacements and of the forces
are plotted in Figure 4 (a) and (b) respectively as a function of the ratio between excitation
frequency and shaft rotation frequency, for two different shaft rotational frequencies.

It is possible to notice that the standard deviations strongly depend on both excitation
frequency and shaft rotational frequency. An analysis of equation (6) evidences, however, that
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Figure 4. Standard deviations of the empirical distributions of the moduli of displacements
and forces. (a): displacements, (b): forces (c): ratios between standard deviations.

the values of the hat variables at which the minimum S is obtained remains unchanged if σX
and σF are modified keeping their ratio constant. Therefore, an analysis of the ratios σF /σX
has been carried out in order to estimate the relative precision of the two measurements, and
the results are shown in Figure 4 (c). It seems evident that the large majority of the ratios

lies in the interval between 0.2 and 0.8 kN/µm, therefore a choice of
σF
σX

=0.5
kN

µm
seems to be

reasonable. Considering the sensitivities of the displacement and force sensors, as reported in
the respective data sheets, σ|X| = σ|Y | = 0.1µm was set for all the displacement measurements
and σ|Fx|=σ|Fy |=50N for all the force measurements.

7. Best fit estimation of dynamic coefficients

The reported results were obtained testing a 45 kN load acting on a tilting pad journal bearing
with a diameter of 280 mm with 5 pads in load-between-pad configuration. Two cases at
low (2000 rpm) and high (7500 rpm) rotating speed were analyzed. The experimentally
obtained values of the stiffness and damping coefficients fall within the ranges predicted by
the bearing manufacturer using a proprietary code based on thermo-elastic hydrodynamic
lubrication models, taking into account many factors affecting the bearing performance (e.g.
geometric tolerances, temperature effects, presence of turbulence).

The minimization procedure of quantity S defined in equation (6) was carried out using R
software [16], and taking as starting point the values of dynamic coefficients computed using
equation 3 and of the measured displacements. Usually the relative difference between the results
obtained with best fit technique and the ones obtained by averaging the impedance matrices
computed using equation 3 is lower than 1%. In some cases higher discrepancies are obtained in
the estimation of some of the cross-coupled damping coefficients, and this difference is probably
due to the fact that the estimate of very small damping parameters is very difficult. The results
for 5 different excitation frequencies at two different shaft rotating frequencies (2000 rpm and
7500 rpm) are shown in Figure 5.

A first advantage of this computational method is that it includes the best estimates of
not only the dynamic coefficients but of forces and displacements as well, making it possible
to check if their discrepancies with respect to the measured values are in agreement with the
sensors precision. An example of this result is shown in Figure 6.

A second advantage is that the linear model can be easily extended to more complex ones.
Zero-checking and nonlinearities can be easily added inserting a constant or higher degree terms
in equation 2. It is possible to develop more complex models in which some relationships between
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Figure 5. Dynamic coefficients as a function of the relative excitation frequency.
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Figure 6. An example of measurement of displacements and forces. In the complex plane,
blue circles are measurements and red triangles are the corresponding values estimated with the
fitting procedure. Note that scales on axes are different for each panel.

the elements of the impedance matrix and the dynamic coefficients are hypothesised, and data
acquired in different operating conditions are fitted all together in a single model. The next
section will show that the most important improvement produced by this method consists in
estimating the random uncertainties due to fluctuations in the measurements.

8. Bootstrap random uncertainty estimation

The boostrap is a standard statistical technique [15] used to estimate the distribution of a
random quantity and for the computation of the associated confidence intervals. The main
advantage of this method is that it is not dependent on the distribution of the population
(therefore its knowledge is not necessary, contrary to what happens for Monte Carlo technique).
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Figure 7. Example of bootstrap distribution for the dynamic coefficients obtained for a rotation
speed of 7500 rpm and an excitation frequency of 26 Hz. The superimposed continuous curves
are analytical estimates of the distribution functions obtained using kernel method, reported
only to show that lack of Gaussianity is evident in many cases.

Bootstrapped confidence intervals can be derived for any numerical statistic based on a random
sample. Moreover, it can be used with samples containing only few data. The bootstrap
algorithm works by drawing B independent bootstrap samples extracting them from the original
dataset (drawing with replacement). In this work, B = 1000 is used. For each extraction, the

minimization of S (equation 6) is carried out, therefore obtaining a set H
(k)
ij of parameters of the

linear model, with k = 1, . . . , B. At the end of this procedure, a bootstrap distribution of the
parameters is obtained, that is statistically equivalent to the distribution that would have been
obtained by repeating the experiment B times. An example of this result is shown in Figure 7.

From the boostrap distribution, any empirical quantile can be extracted, if B is big enough.
In order to obtain the extremes of a 95% confidence interval, the results of the B fittings for each
dynamic coefficient are sorted in ascending order, and the values at the 25th and 975th positions
are the lowest and highest estremes respectively. These confidence intervals can be plotted as
error bars for each experimental condition. The results (already shown all together in Figure 5)
are shown in Figure 8 for stiffness coefficients and in Figure 9 for damping coefficients together
with the respective estimated 95% confidence intervals.

A large variety of confidence intervals width is evident. Some values of the dynamic
coefficients have a very high precision, other ones are much more dispersed. In some cases
the dispersion is comparable to the variation with the excitation frequency of the dynamic
coefficient itself. That is the case of cross-coupled stiffness, kyx, and damping coefficients for
some particular frequency and rotational speed. In other cases the precision is sufficient to
highlight a dependence of the dynamic coefficient on the excitation frequency.

9. Conclusions

This paper presented a statistical method for the determination of dynamic coefficients of a
Tilting Pad Journal Bearing. The algorithm computes both the best estimate of their mean value
and of their 95% confidence intervals using least square weighted minimization and bootstrap



RASD

IOP Conf. Series: Journal of Physics: Conf. Series 1264 (2019) 012035

IOP Publishing

doi:10.1088/1742-6596/1264/1/012035

9

0.2 0.4 0.6 0.8 1 1.2

0.85

0.9

0.95

1

0.2 0.4 0.6 0.8 1 1.2

1.05

1.1

1.15

1.2

0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

120

140

0.2 0.4 0.6 0.8 1 1.2
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.39

0.395

0.4

0.405

0.59

0.6

0.61

0.62

0.63

-14

-12

-10

-8

-6

-4

8

10

12

14

16

18
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resampling for the estimate of the probability distributions.
The most significant result of this work is that the random uncertainties associated to each

stiffness or damping coefficient are obtained, without assuming any hypothesis of gaussianity
either on the sample or on the estimated mean values. A large variety of confidence intervals
width was found in the processed results. Some values of the dynamic coefficients have a very
high precision, other ones are much more dispersed at particular frequencies. Such dispersion
will be object of further investigation. In most cases the precision is sufficient to highlight a
dependance of the dynamic coefficient on the excitation frequency. The systematic uncertainty
was not taken into consideration in this work. A future development will include the study the
accuracy of the dynamic coefficients estimates, taking into account the influence of the calibration
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technique and of some other external parameters on the estimate of the mean value, and the
variation caused by them will be compared with the random uncertainty due to fluctuations in
the measurements themselves.
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