
Reinforcement Learning-designed LSTM for
Trajectory and Traffic Flow Prediction

Mostafa Karimzadeh, Ryan Aebi, Allan M. de Souza, Zhongliang Zhao, Torsten Braun,
Susana Sargento, Leandro Villas

Institute of Computer Science, University of Bern, Switzerland
Institute of Computing, University of Campinas, Brazil

Institute de Telecomunicações - Aveiro, Portugal
Email : {mostafa.karimzadeh, zhongliang.zhao, torsten.braun}@inf.unibe.ch, ryan.aebi@students.unibe.ch,

{allanms, leandro}@lrc.ic.unicamp.br, susana@ua.pt

Abstract—Trajectory and traffic flow prediction will play an
essential role in Intelligent Transportation Systems (ITS) to
enable a whole new set of applications ranging from traffic
management to infotainment applications. In this scenario, deep
learning approaches such as Recurrent Neural Networks (RNN)
and its variant Long Short Term Memory (LSTM) are excellent
alternatives due to their ability to learn spatiotemporal depen-
dencies. However, these neural networks tend to be over-complex
and hard to design due to the broad set of hyper-parameters. We
propose an automated framework to predict future trajectories
and traffic flows in urban areas without human interventions.
We employ Reinforcement Learning (RL) and Transfer Learning
(TL) to generate high-performance LSTM predictors, which is
referred as RL-LSTM. In addition, we introduce HERITOR
(High ordEr tRaffIc convoluTiOn Rl-lstm), a novel deep learning
algorithm for traffic flow prediction. Specifically, HERITOR
attempts to capture pure spatiotemporal features of urban traffic.
The extracted features are fed into the RL-LSTM to realize a high
performance LSTM for traffic flow prediction. We examine the
proposed trajectory and traffic flow predictors on two real-world,
large-scale datasets and observe consistent improvements of 15%
- 25% over the state-of-the-art. By using transferred knowledge,
we can accelerate the process of searching an optimal architecture
of an LSTM by up to 70%.

Index Terms—Trajectory prediction, Traffic Flow prediction,
Reinforcement learning, Knowledge transferring, Graph convo-
lution, LSTM.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) will enable more
efficient, safer, and greener traffic mobility, which will pave
the way to a whole new set of services that will change
the way that we live, work, and play [1]. Trajectory and
traffic flow prediction will play an important role to improve
traffic management decisions, communication protocols, and
infotainment applications [1]. A trajectory predictor attempts
to estimate the path that a moving object is going to take to
travel from one location to another one. The goal of traffic
flow predictor is to estimate the number of moving objects in
urban areas given historic mobility trace and the underlying
trajectories in a city. Vehicular networking is one of the
ITS foundations and also will take advantage of trajectory
and traffic flow predictions to improve information retrieval,
data dissemination, and resource allocations. For instance,
knowing in advance the number of vehicles that will be in
a region in the next minutes can not only reduce latency in
infotainment applications (e.g., multimedia applications, video

streaming, etc), but also provide better resource allocation for
multi-access edge computing (MEC) services such as virtual
machines, bandwidth and etc.

However, due to the spatiotemporal dependencies of the ur-
ban environment and the time-varying traffic patterns, predict-
ing the traffic hotspots (e.g., areas with high traffic, congested
areas, etc.), the future trajectory of moving objects, and also
the traffic flow between to predicted locations are challenging
tasks.

Deep learning-based approaches such as Recurrent Neural
Networks (RNN) and its variant Long Short Term Memory
(LSTM) have excellent performance in traffic prediction due
to their ability to learn temporal dependencies [2]. On the
other hand, defining a high-performance architecture for neural
networks still is a hard task due to the broad set of hyper-
parameters [2], [3]. Typically, hyper-parameters are the vari-
ables which determine the structure of neural networks (e.g.,
number of hidden layers).

In this work, we propose an adaptive framework to predict
future trajectories and the urban traffic flow between two
locations based on historical data. To optimally capture the
spatiotemporal dependencies of an urban environment, we
used a graph-structured convolution approach, which can learn
the interactions between locations and also support better
traffic flow forecasting [2]. On the other hand, to remove
the human interventions in the neural network architecture
design we used recently proposed model [3], which employs
a Reinforcement Learning (RL) based method to find the
most suitable architecture for a given dataset. Basically, the
RL provides a self-learning approach by rewarding the high-
performance architectures and punishing the low-performance
ones. In this way, the goal is to change the architecture
of a neural network (e.g., the number of hidden layers, the
number of neurons in each hidden layer) based on its pre-
vious performance (e.g., the reward) towards a most suitable
architecture for a given dataset. Nevertheless, due to the high
number of possible neural network architectures, the time to
find an architecture with the desired performance may be
a concern. Thus, Transfer Learning (TL) is used to reduce
this time, the idea is transferring knowledge from a trained
predictor to a newly suggested predictor. This will help the
new algorithm to pass through training phase faster. Moreover,

s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
3
2
2
4
1

|

d
o
w
n
l
o
a
d
e
d
:

2
7
.
1
2
.
2
0
2
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bern Open Repository and Information System (BORIS)

https://core.ac.uk/display/224832302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to identify the spatiotemporal traffic hotspots named as Zone
of Staying (ZoS), a tuning-free method is also presented. The
main contributions of this work can be stated as follows:
• We study a tuning-free approach for eliciting ZoSs of

moving objects from spatiotemporal trajectories without
any a-priori assumptions.

• We design a trajectory predictor that benefits from Re-
inforcement Learning and transferable knowledge for
searching the best architectural description of an LSTM
predictor.

• We present HERITOR, a deep learning technique to
analyze graph-structured data, to extract and predict com-
plex spatiotemporal dependencies of traffic flows in road
networks of urban areas.

• Quantitative experiments on two real-world datasets
demonstrate that the proposed trajectory and traffic flow
predictors deliver consistently satisfactory results.

The rest of this paper is organized as follows. Section II
reviews related work. Section III discusses the problem state-
ment. Section IV introduces the proposed method to discover
ZoSs. Section V describes the trajectory predictor using Re-
inforcement Learning and LSTM, while Section VI describes
the urban traffic flow predictor. The evaluation methodology
and the performance analysis are presented in Sections VII and
VIII, respectively. Finally, Section IX concludes the paper.

II. RELATED WORK

A. Zone of Staying Discovery

Discovering Zones of Staying (ZoS), is an essential com-
ponent for making cities smart, particularly with regards to
traffic management, early congestion warning, mobile network
resource allocation, etc. A ZoS refers to a city area, where a
moving object (e.g., vehicles, pedestrian) has frequent visits
and stays for a considerable amount of time. The initial study
[4] uses an iterative clustering approach to extract ZoSs.
Clustering is a task in data mining for grouping similar
objects into a set known as a cluster. Other clustering-based
models, including temporal clustering [5], hybrid clustering
[6] [7], k-shape and k-multi-shape clustering [8] have been
attempted to discover ZoSs in urban environments. All of
the introduced techniques critically rely on some spatial (e.g.,
acceleration alteration) and temporal (e.g., distance measure)
parameters to detect hot-spots. Moving objects are specified
by distinct mobility patterns, which leads to having different
optimal values of these parameters. Therefore, in this work, we
define a novel technique by benefiting from signal processing
approaches, which omit the affiliation on the spatial and
temporal parameters to detect ZoSs in urban areas.

B. Trajectory Prediction

Future trajectory prediction helps drivers and pedestrians
to have safe and efficient navigation through complex traffic
scenarios. The pioneering survey on trajectory prediction [9]
classified trajectory predictors into two categories: physics-
based and maneuver-based models. Physics-based prediction
in crowded scenes takes into account the mutual interaction

(e.g., traffic rules, road geometry) between surrounding mov-
ing objects to estimate short term trajectories [10], [11]. [12]
employed Kalman Filter (KF) to estimate future trajectories.
The maneuver-based approach could estimate longer trajec-
tories for the moving objects [13]. Heuristic-based classifiers
[14], Markov models [15] [16] and random forest classifiers
[17] are maneuver- based approaches, which could predict
long trajectories in urban areas. Since future trajectories could
be estimated through time-series mobility data, a number
of Recurrent Neural Networks (RNNs) and their variants
including Gated Recurrent Units (GRU) [18] and Long Short
Term Memory (LSTM) [19] have been proven to be very
effective for trajectory prediction task. [20], [21] use LSTMs
to predict motion of human drivers in a grid map. Authors
in [22] propose a social LSTM, which predicts the trajectory
of pedestrians in crowded spaces through the use of a social
pooling layer. Despite the success of the introduced trajectory
predictors, describing the architecture of neural networks is an
effortful task. We automate the process of developing a high-
performance LSTM based trajectory predictor without human
intervention.

C. Traffic Flow Prediction

Traffic flow prediction is a crucial task in ITS. Investigations
on traffic flow prediction most fall into two main categories
[2]: statistical methods and machine learning methods. Sta-
tistical methods [23], [24] were developed years ago when
traffic systems were less complex in the terms of the number
of moving objects and the rate of mobility. The ability of
such traditional models to accurately estimate future traffic
states is quite limited. In recent years, researchers shifted
their attention to the deep learning models, which are more
robust and accurate in dynamic and complex urban areas.
Deep Belief Networks (DBN) [25], Deep Recurrent Neural
Networks (DRNN) [26] and Convolutional Neural Networks
(CNN) [27] can effectively learn features of time series data
and achieve good prediction performance. [28] introduces
the first Graph Convolutional Neural network (GCN), which
integrates spectral graph theory with deep neural networks.
ChebNet proposed in [29] to improve GCN using fast localized
convolutional filters. Authors in [30] developed the idea of the
graph Laplacian matrix, which operates on the graph spectrum.
[31], [2], [32] propose Diffusion-Convolutional Neural Net-
works (DCNN) to define convolution as a diffusion process in
each vertex of a graph-structured input. The main shortcoming
of the mentioned research works is that they do not investigate
the effect of neighboring base stations (e.g., RSUs and mobile
antennas) and length of trajectories among base stations on the
estimated traffic flow. In this work, we introduced an algorithm
that employs a high-order convolution operator and adaptive
distance adjacency matrix to capture spatiotemporal dependen-
cies of traffic flow in city areas. Besides, we benefit from RL
and TL to generate the best possible LSTM architecture to
make the traffic flow prediction.

III. PROBLEM STATEMENT

Our work addresses problems of future trajectory prediction
and traffic flow prediction in urban areas, which are the core
components of Intelligent Transportation Systems (ITS).
Hereafter, we split the main problem statement into three
sub-problems as described below.

Problem 1: Zone of Staying (ZoS) Discovery
We propose a tuning-free technique for detecting hot-

spots from spatiotemporal trajectories without any a-priori
assumption (e.g., constraints on distance, speed of movement,
duration of staying, number of collected Global Positioning
System (GPS) point, etc.). We eliminate parameter dependence
by treating spatiotemporal trajectories as space-time signals
and apply signal processing algorithms to discover ZoSs for
moving objects (e.g., vehicles and Pedestrians).
• Requirements and Challenges.
(i) extracting a moving object’s trajectory as an

ordered set of visited locations Tr(latn, lonn, tn) =
[(lat1, lon1, t1), . . . , (latn, lonn, tn)], where latn and lonn
are GPS coordinates and tn denotes timestamp of the visited
location point. (ii) transforming extracted trajectory T into a
2D signal S(t). (iii) interpreting the space-time signal S(t)
in time and frequency domain to detect ZoSs.

Problem 2: Trajectory Prediction with LSTM
Recurrent Neural Networks (e.g., LSTM) are powerful and

flexible models that work well for trajectory prediction in city
areas. Despite their success, designing an architecture for the
LSTM based predictors requires both human expertise and
effort. In this research, we study a method to generate a high-
performance LSTM for the given learning task automatically.
• Requirements and Challenges.
(i) defining a learning agent to suggest the architecture

description for the LSTM to have a satisfying accuracy on
a validation dataset. (ii) transferring the knowledge from a
previous model to the new suggested architecture to speed up
the experimentation process.

Problem 3: Traffic Flow Prediction
In this research a traffic flow predictor attempts to estimate

future traffic states, in terms of the number of moving objects
in the trajectories. The trajectories, base stations (e.g., RSUs
and mobile antennas), and the collected traffic flow of a city
can be represented by a directed graph G = (V , E, A, W),
where V is a set of nodes |V | = N (base stations), E
is a set of ordered pairs of edges (trajectories). Directional
adjacency matrix presented by A ∈ RN×N , in which each
element Ai,j = 1 if there is a path connecting base station
i and base station j, otherwise Ai,j = 0. W ∈ RN×N is a
distance adjacency matrix representing base stations mutual
influence as a function of their real road distance. The traffic
flow collected in a city is shown as F =

[
f t . . . f t+T

]
, where

f t ∈ RN×P is a set representing number of connected users
(P) for each base station (N) at time interval t. The traffic

predictor L(.) attempts to learn patterns of traffic flow at time
T and make an estimation for the future time T ′, given a traffic
graph G:

L
[(
f (t), · · · , f (t+T);G = (V,E,A,W)

)]
≡
(
f (t+1+T), · · · , fT

′)
(1)

• Requirements and Challenges.
(i) modeling spatiotemporal dependencies of traffic flow,

indicating explicitly where and when the traffic happens.(ii)
learning the impact of traffic flows among adjacent trajectories
and neighboring base stations.

IV. FROM SPATIOTEMPORAL TRAJECTORIES TO ZOSS

In this section we address Problem 1. The Solution in-
cludes translating spatiotemporal GPS trajectories into two-
dimensional signals and interpreting generated signal in time
and frequency time to detect ZoSs for every single moving
object.

A. Trajectory Extraction

A trajectory is an observed path of a moving object when it
travels from one ZoS to another one. Both pedestrians and ve-
hicles can take multiple routes to move among different loca-
tions. To discover trajectories, we explore two rich real-world
datasets (see Section VII). To extract trajectories for each
moving object, we need the list of sequentially connected base
stations (e.g., RSUs, antennas) and GPS coordinates of each
connected station. We use the Google Maps API Direction Ser-
vice1 to discover all possible routes between two consecutive
base stations. The discovered trajectory per each individual
moving object between ZoSi and ZoSj is stored as a 3D sig-
nal T (latn, lonn, tn) = [(lat1, lon1, t1), . . . , (latn, lonn, tn)].
After discovering the paths the next step is to partition the
trajectories into grid cells, for which we use the Python
Google S2 Geometry Library 2. Each grid cell is a four-
corner cell, which covers a specific region. Each observed
path tk is partitioned into a sub-list of grid cells. In this
work, the coverage area of each grid cell is set to be 300
m2. The resulting partitioned path can be shown as a 2D
signal r(cl, tl) = {(c1, t1), (c2, t2), . . . , (cl, tl)}, where cl is
the grid cell ID and tl is the time stamp of visiting the grid
cell. Figure 1(a) visualizes a moving object’s trajectory as a 3D
trajectory and the transformation to a 2D signal is presented
in Figure 1(b). In the next subsection, we will analyze the 2D
signal in time and frequency domain to extract ZoSs for each
single moving object.

1) Time Domain Analysis: Interprets the signal concerning
time. As shown in Figure 1(b), a 2D signal in time domain
reveals two main features of a moving object’s mobility
pastern: (i) staying at locations, (ii) traveling along paths.
The local maxima/minima of the signal are interpreted as
staying locations of a moving object. A set of distinct staying
locations can be discovered by selecting the maxima/minima
with distinct cell IDs. The staying location areas, where the

1https://cloud.google.com/maps-platform/
2http://s2geometry.io/

(a) Visualizing one day trajectory as
a 3D space-time signal

(b) Visualizing one day trajectory as
a 2D space-time signal

Fig. 1. Visualizing the OBU’s movements as space-time signal.

moving objects spend a long duration of time, can directly
assume to be their ZoSs (e.g., home, workplace and congested
city center, etc.). Moreover, travel paths depict the routes that
moving objects take to travel from one staying location to
another one. The rest of the detected locations have a shorter
staying time duration. Therefore, to be able to transform them
as a ZoS, it is necessary to know how often a user visits
these staying locations. This information can be obtained by
analyzing the signal in the frequency domain, which is the
second step of ZoS detection.

2) Frequency Domain Analysis: A periodic signal S(t)
is typically represented as S(t) = S(t + T) for all time
stamps t, where T is the period of the signal. It represents
the smallest duration of time that the signal needs to repeat
itself. Analyzing a signal in frequency domain reveals visiting
periodicity of each location by a moving object. High period-
icities mean that the user visits the location frequently so that
the location can be assumed as a ZoS. On the other hand, low
periodicity shows that users visit the location infrequently. As
explained in Equation 2, applying Discrete Fourier Transform
(DFT) converts a signal from the space-time domain to a
representation in the frequency domain.

P [l] =

L−1∑
l=0

r(cl, tl)e
−jl2π/L (2)

r(cl, tl) is the 2D trajectory of length L composed of grid
cells (cl). P [l] is the computed visiting periodicity for grid
cell cl. From calculated periodicities for the grid cells, we
select the first four dominant periodicities. To interpret the
selected visiting periodicities, we applied the Inverse Discrete
Fourier Transform (IDFT) to convert the signal back from the
frequency domain to the time domain (see Equation 3).

ZoS(cl) = (1/N)

N−1∑
n=0

P ′[k]ejn2π/N (3)

ZoS(cl) denotes detected ZoSs including grid cell cl and P ′[l]
is the selected dominant periodicity. Figure 2 illustrates an
example of discovered ZoSs for a vehicle in the city of Porto,
which are represented by a set of rectangular grid cells.

V. TRAJECTORY PREDICTOR

In this section, we address Problem 2. We introduce RL-
LSTM, a trajectory predictor based on Reinforcement Learn-
ing (RL) to automatically realize a high-performing LSTM

Fig. 2. Discovered ZoSs for OBU ID = 2599

predictor for a given learning task. Besides, to accelerate the
architecture search process, we benefit from Transfer Learning
(TL). Using TL the knowledge of the pre-trained architecture
(teacher LSTM) to estimate the trajectory of a moving object is
used as the starting point of the newly suggested architecture
(student LSTM) for the same task. The leading search method
that we use in this work is the Neural Architecture Search
(NAS) framework [3]. In NAS, the RL-based controller gen-
erates architectures for the predictor. Basically, architecture
of a neural network refers to the number of hidden layers,
the number of neurons per each layer, and how they are
connected. Then, the predictor is trained to make predictions
on a validation dataset. The outputs of the algorithm are
used to update the controller so that it will generate better
architectures over time. Our proposed RL-LSTM has three
main units: (i) Long Short Term Memory (LSTM) as a student
predictor to grow up to get a satisfying accuracy for the
prediction task (ii) Q-learning as the controller to propose
better architectures for the student LSTM to maximize the
expected prediction results and (iii) the Transfer Learning
(TL) unit to accelerate the architecture search process. Details
of each unit and how they are integrated to predict future
trajectories are explained in the following subsections.

A. Long Short Term Memory (LSTM)

A special kind of Recurrent Neural Network (RNN) that
can be applied to time series forecasting is the popular Long
Short Term Memory (LSTM) [2]. This architecture represents
only the most common implementation of the LSTM as a
predictor. To have a highly accurate LSTM predictor the
learning agent in Section V-B explores a search space, which
includes: (i) Action space refers to a set of constraints that
restrict the learning agent from taking certain actions. First,
we allow the agent to terminate the iterations if the student
LSTM can deliver a satisfying prediction accuracy (e.g., 90%).
Otherwise, the process will terminate when the learning agent
has explored the whole search space. Besides, we force the
learning agent to have a dropout layer [33] after each hidden
layer. (ii) Parameter space is defined as a set of all relevant
layer parameters that the learning agent can take. The number
of hidden layers is an integer value selected from (0, 150].
For each hidden layer, the number of neurons is chosen from
{1, 5, 10, 20, 40, 60, 80, 100, 150, 200} and the dropout ratio
is chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. Additionally, we use
Rectified Linear Unit (ReLU) as non-linearities [34] for each
dense layer. Note that defining the Action and Parameter

spaces must have a faster convergence because of limited
hardware resources, and it is not a limitation of the method
itself.

B. LSTM Architecture Design With Reinforcement Learning

In this subsection, we seek to automate the process of
LSTM architecture selection through a searching procedure
based on RL. We create a controller using Q-learning, that
attempts to define high-performance architectural description
of an LSTM that performs well to predict the future trajectory
of moving objects without human intervention. As explained
in Section V-A, by limiting the layer parameters (e.g., number
of hidden layers, number of neurons in each hidden layer
and dropout ratio) and actions to choose from, the controller
has a finite but large space of possible architectures to search
from. The controller as a learning agent trains through random
exploration and slowly begins to exploit its finding to select
higher-performance architectures employing the ε-greedy strat-
egy [35]. The learning agent receives the computed accuracy
for the estimated future trajectory as the reward. Based on the
reward signal, the learning agent suggests better architectures
over time. The whole procedure is shown on the right side
of Figure 3. As explained, we benefit from the Q-learning
approach as a learning agent to propose architectures for the
student LSTM. We now summarize the theoretical formulation
of Q-learning, as adapted to our problem. We construct an
environment where an agent interacts with a discrete and
finite Parameter space S, which includes a set of all relevant
parameters (see Section V-A) that the learning agent is allowed
to take. Moreover, we define Action space A, which refers to a
set of all possible actions that the agent should consider (see
Section V-A). At each iteration t ∈ {0, 1, 2, . . .}, the agent
in state s ∈ S will take an action a ⊆ A(s) to pass into
next state s′. At each iteration t, computed accuracy is given
to the agent as a reward signal (rt ∈ R), which depends on
the transition from state s to the next state s′. The ultimate
objective of the agent is to maximize the total cumulative
reward over all possible iterations. Although we limit the
agent to a finite search space, there is still a large number
of possible architectures, which motivates the use of RL. We
define the reward maximization problem recursively in terms
of sub-problems as follows; for any state s ∈ S and action
a ∈ A (s), we define the maximum total expected reward over
all possible iterations to be Q′ (s, a). Q′(·) is named as the
action-value function and individual Q′ (s, a) is known as Q-
value. The recursive maximization equation, which is known
as Bellman’s Equation, can be written as:

Q′ (s, a) = Es′|s,a
(
Er|s,a,s′(r|s,a,s′)+γmaxa′∈A(s′) Q

′(s′,a′)

)
(4)

In our problem, the learning agent does not know a priori what
are the effects of each suggested architecture. The agent only
knows what the set of possible parameters and actions are.
In this case, the agent has to learn through the output of the
suggested architectures. Therefore, we can write the Bellman’s
Equation as an iterative formula (see Equation 5):

Qt+1 (s, a) = (1− α)Qt (s, a) + α

(
rt + γ max

a′∈R(s′)
Qt
(
s′, a′

))
(5)

α ∈ (0, 1] is the Q-learning rate, which determines the
weight given to new information over old information and
γ ∈ (0, 1] is the discount factor, which determines the weight
given to immediate rewards over future rewards. Q-learning
is off policy RL, i,e. the learning agent could explore the
environment randomly, and despite of this, it can find the
optimal architecture for the student LSTM. In this research, we
use the ε-greedy exploration/exploitation strategy. The learning
agent begins to suggest a new architecture to the student LSTM
and it tries some random architectures, which refers to the
exploration phase. However, as soon as the agent gets better
and suggests high-performance architectures to the LSTM,
the agent starts to converge, which refers to the exploitation
phase. With ε-greedy [35], the learning agent at each iteration
suggests a random architecture including a set of possible
parameters with probability ε, 0 ≤ ε ≤ 1. At the beginning of
the architecture search, we start with ε = 1.0 to ensure that
the learning agent has enough time for the exploration phase
and we slowly decay ε to 0.01 (and not to ε = 0) to move
toward the exploitation phase.

C. Accelerated Training with Transfer Learning

When training an LSTM, it is not very efficient to train
every suggested architecture from scratch. Transfer Learning
(TL) offers a solution to this, as it offers possibilities on how
to transfer knowledge from a trained predictor (teacher), to a
new predictor (student). Typically, this will help the student
LSTM to pass through the learning phase faster.
If two LSTMs have a similar architecture (in terms of
layers and connectivity) partly, we can call them semi-
homogeneous. Now given that teacher and student LSTMs
are semi-homogeneous, then we can transfer the knowledge
from the teacher to the student. This is achieved by extracting
the learned knowledge, which is saved as weights from the
teacher predictor and initializing the new student predictor
with those weights. Specifically, we use an adaptation of the
Net2Net research [36], where the authors attempt to transfer
knowledge from the pre-trained predictor at iteration t− 1 to
the new one at iteration t. In [36] , for a newly added hidden
layer, it must have more hidden units than the previous hidden
layer, otherwise initializing weights (transferring knowledge)
from the previous hidden layer to the new hidden layer will
not work.
As a solution for this deficiency, we introduce a new tech-
nique to transfer knowledge from the teacher LSTM to the
student LSTM. Let the layers of the pre-trained LSTM be
L = {l1, l2, . . . , ln}, where the layers l1 and ln represent input
and output layers, respectively. Suppose that a new layer l′i is
proposed by the learning agent, and then implanted into the
student LSTM between index n − 1 and n before the output
layer; thus its layers would be L̃ = {l̃1, l̃2, . . . , l̃n−1, l′i, l̃n}.
Then, we define the function υ(lj) ∈ N> 0 to represent the

number of hidden neurons for each layer lj , where 1 ≤ j ≤ n.
Further, we define a weight function ω(lj) ∈ Rn×m, where
n,m ∈ N> 0, to form the weight matrix. Now, we can find
hidden layers with the same number of units in each layer
between L and L̃ by defining L

⋂
L̃ := {li | υ(li) = υ(l̃i) for

i = 1, . . . , n−1. So the first n−1 layers of both networks are
found to be similar; thus we can transfer knowledge from li to
l̃i for i = 1, . . . , n− 1. Further, the transfer learning can then
be defined as applying ω(l̃i) := ω(li),∀i = 1, . . . , n− 1. This
describes copying the first n− 1 weights from the teacher to
the student. With our proposed approach we can choose the
number of hidden units n in l′i freely, so υ(l′i) = n for any
n ∈ N. Therefore, we could effectively add the layer l′i to the
student and then perform transfer knowledge on the layers lj
for j = 1, . . . , n− 1.

VI. URBAN TRAFFIC FLOW PREDICTION

In this Section, we address Problem 3. We introduce HER-
ITOR (High ordEr tRaffIc convoluTiOn Rl-lstm), a novel
deep learning algorithm to estimate future states of urban
traffic flow in terms of the number of moving objects in
the trajectories. HERITOR employs a high order convolution
operator and an adaptive distance adjacency matrix to extract
rich spatiotemporal features of urban traffics. Then, the RL-
LSTM is fed by the extracted features to generate the best
possible LSTM to predict traffic flows. Details of the proposed
urban traffic flow predictor are described in the following
subsections.

A. High Order Traffic Graph Convolution Operator

The convolution operator at a specific node vj in graph G
can be generally expressed as:

Convolution(j) =
∑
i∈Nj

wijf
i (6)

f t ∈ F is the extracted feature for node vj , wi,j is the weight
and Nj is the set of nodes that are adjacent to vj . In this section
we introduce the high order convolution operator in the graph.
The high order (k-th order) neighborhood can be defined
as Nj = {vi ∈ V |d (vi, vj) ≤ k} for node vj . The 1-hop
neighborhood matrix for a graph G is exactly the adjacency
matrix. Then, the k-hop adjacency matrix of n stations can
be obtained by calculating the k-th product of A ∈ RN×N .
Therefore, we can define the k-th order convolution operator
for a specific time interval t of the traffic graph as follows:

L̃
(k,t)
Convolution =

(
Wk � Ãk

)
f t (7)

Here, � refers to element-wise matrix product. Ãk is obtained
by adding identity matrix I to the k-hop directional adjacency
matrix Ak that creates a self-loop for each node to make them
self-accessible in the graph. This means that the moving object
can stay connected to the base stations. Otherwise, they are
forced to make a transition in each time step. f t ∈ F is the
feature matrix, to show the number of connected users to each
station at a specific time interval t. W ∈ RN×N is a directional
distance adjacency matrix computed based on the real distance

among stations in the traffic network. The k-order convolution
operator for the time interval t (L̃(k,t)

Convolution) takes the k-
hop directional adjacency matrix, k-hop directional distance
adjacency matrix, and the feature matrix as the input. Its output
is the weighted average of the feature matrix with the same
dimension as f t.

The introduced k-order convolutional operator in Equation
7 takes into account only the number of hops around each
base station that fails to capture pure spatiotemporal features
of traffic flows. In urban areas, nearby base stations are more
related than distant base stations. Following this idea, we
aim to give large weights to the short trajectories between
nodes. Therefore, we propose the adaptive directional distance
adjacency matrix in Equation 8. More specifically, we use
the real length of trajectories to assign the weight between
two base stations. So, closer nodes will be linked with higher
weights.

W̃k = σ
(
Ãkf t

)
(8)

Ãk and f t are k-hop directional adjacency matrix and feature
matrix, respectively. Sigmoid non-linearity is applied to map
elements of the W̃k into a range between [−1, 1]. By adding
the adaptive directional distance adjacency matrix (Equation
8) into the high order convolution operator, we introduce our
convolution operator in Equation 9.

L̃(k,t) =
(
W̃k ◦ Ãk

)
f t (9)

Extracted information about traffic flow in urban road network
by the graph convolution within k-hops adjacent nodes with
respect to time t are concatenated together as follows:

L̃
(k,t)
Total =

[
L̃(1,t), . . . , L̃(k,t)

]
(10)

L̃
(k,t)
Total is a set of k-order traffic graph convolutional feature,

that can be fed to the predictor described in the following
subsection.

B. High Order Traffic Convolution RL-LSTM (HERITOR)
The proposed traffic flow predictor on a directional graph

is a holistic approach that aims to capture patterns of traffic
dynamics in urban areas by taking both node features and
graph connections into account. The extracted features by
incorporating both k-hop convolution operator and adaptive
directional distance adjacency matrix are fed into the predic-
tor. We leverage the LSTM predictor to estimate the future
spatiotemporal state of urban traffic. In particular, to design
the most efficient architecture for the LSTM, similar to Sec-
tion V-B, we applied Q-learning as a controller to suggest
architectures to the student LSTM. The model architecture
of HERITOR is illustrated in Figure 3. The RL-LSTM as a
component of the model is shown on the right side and the
high order traffic convolution operator is the left side, where k-
hop convolution orders for each time interval t are represented
with respect to a red node. HERITOR can learn and predict
spatiotemporal dependencies in directional graph-structured
data for various forecasting problems (e.g., pedestrians and
vehicles)

Fig. 3. The system architecture of HERITOR designed for spatiotemporal
traffic flow forecasting in urban areas.

VII. EVALUATION

In this section, we present an evaluation methodology to
validate the proposed moving object trajectory predictor and
urban traffic flow estimator.

A. Dataset

We conduct experiments on two rich real-world datasets: (i)
MDC dataset: This dataset includes reach context information
from the smartphones of around 100+ users connected to 500
mobile antennas around the Lake Geneva region in Switzer-
land from October 2009 to March 2011 [37]. (ii) Aveiro
dataset: This dataset includes real vehicle traces collected
from the VANET testbed deployed in the city of Porto in
Portugal from October 2016 until August 2017. This urban-
scale testbed consists of 100+ networked vehicles connected
to the infrastructure through 120 RSUs [38]. In both of these
datasets, we select mobility traces of 100 users, which include
connected base station IDs, GPS coordinates of each base
station, and the time stamps of the connections. Using this
information, the introduced estimators can discover movement
patterns of the users and predict the future behaviors of them.

B. Evaluation Metrics

To interpret the prediction success of the proposed RL-
LSTM algorithm as a trajectory predictor, we use F1-Score
(11), which is the harmonic mean of precision and recall:

F1 =

(
recall−1 + precision −1

2

)−1

(11)

Here, the precision is the part of the predicted trajectory that
genuinely belongs to the observed trajectory. The recall refers
to the part of the observed trajectory that is correctly estimated.
The performance of the introduced traffic flow predictor is
examined by the Mean Absolute Error (MAE) (12):

MAE(p, p̂) =
1

|L|
∑
l∈Ł
|pl − p̂l| (12)

p = p1, · · · , pl represents the number of users connected to
each base station, which is extracted directly from the dataset,
p̂ = p̂1, · · · , p̂l represents the estimated values, and L denotes
the number of base stations in each dataset.

C. Experimental Details

During the exploration phase, which refers to searching the
highly accurate architecture for the student LSTM, we train
each algorithm with 70% of the trace data and 30% of the data
is used for testing each suggested predictor. After convergence
and starting the exploitation phase, the discovered LSTM
predictor was trained for 100 epochs. An epoch represents
one iteration over the entire dataset. To speed up the training
over defined epochs, we use a method called Early Stopping.
Early Stopping monitors the training progress within epochs
by checking the computed accuracy of each training epoch.
If the fluctuation of accuracy over the patience epochs (e.g.,
Pepochs = 10) is less than ∆min = 0.1, we stop the training.
Besides, the batch sizes are set to 200, and the initial learning
rate of the LSTM is set to 0.002. We set the Q-learning rate
(α) and discount factor (γ) to 0.01 and 1, respectively to
prioritize rewards in the distant future. The predictors are
trained and evaluated on a High Performance Computing
Cluster at the University of Bern in Switzerland (HPC Cluster
- UBELIX 3) with Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz.

VIII. PERFORMANCE ANALYSIS

We evaluate the performance of the proposed RL-LSTM and
the advantages provided by the TL to predict the trajectory of
moving objects and also to predict the traffic flow in urban
environments. To evaluate adaptability of the RL-LSTM, we
analyze the prediction in the MDC and Aveiro datasets. The
results of the advantages provided by TL is presented in
Subsection VIII-A. Subsection VIII-B shows the trajectory
prediction results while Subsection VIII-C shows the results
for the traffic flow prediction.

A. Transfer Learning Results

Due to the large number of different architectures suggested
by the RL-LSTM, the convergence time (e.g., reaching to a
highly accurate architecture for the student LSTM) can be an
issue. Therefore, to have a faster convergence, we employed
knowledge transfer between pre-trained LSTM at iteration t−1
and newly suggested LSTM at iteration t by the controller. The
results of such a reduction for trajectory prediction for both
datasets (e.g., MDC and Aveiro) are shown in Figure 4(a). In
particular, Figure 4(a) shows the trajectory accuracy results
in function of the architectures suggested by the RL-LSTM,
while Figure 4(b) shows the accumulated training time of each
architecture comparing the RL-LSTM with knowledge transfer
against RL-LSTM without it.

When using the TL the RL-LSTM can reach the desired
performance (trajectory prediction accuracy of 75% in the
Aveiro dataset and 90% in MDC) earlier than RL-LSTM with-
out knowledge transfer. Therefore, RL-LSTM with knowledge
transfer converges at the 5-th and at the 7-th suggested archi-
tecture considering the Aveiro and MDC datasets, respectively
(see Figure 4(a)). On the other hand, the RL-LSTM without

3https://docs.id.unibe.ch/ubelix

0.4

0.5

0.6

0.7
Ac

cu
ra

cy
 A

ve
iro

 (%
)

RL-LSTM with Knowledge Transfer
RL-LSTM without Knowledge Transfer

0 2 4 6 8 10 12 14 16 18 20 22
Archtectures

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

 M
DC

 (%
)

RL-LSTM with Knowledge Transfer
RL-LSTM without Knowledge Transfer

(a) Convergence time

0

200

400

600

800

Ac
cu

m
ul

at
ed

 ti
m

e
Av

ei
ro

 (m
in

)

RL-LSTM with Knowledge Transfer
RL-LSTM without Knowledge Transfer

0 2 4 6 8 10 12 14 16 18 20 22
Archtectures

0

1000

2000

3000

4000

5000

Ac
cu

m
ul

at
ed

 ti
m

e
M

DC
 (m

in
)

RL-LSTM with Knowledge Transfer
RL-LSTM without Knowledge Transfer

(b) Exploration time

Fig. 4. Reinforcement learning-designed LSTM results

knowledge transfer converges at the 11-th and 13-th suggested
architecture considering the Aveiro and MDC datasets, respec-
tively (see Figure 4(a)). In terms of exploration time (e.g., time
to find the most suitable architecture), the knowledge transfer
provides a reduction of 70% in the accumulated time for both
datasets (see Figures 4(b)).

B. Trajectory Prediction Results

In this analysis, we evaluate the performance of the most
suitable LSTM architecture found in the previous section
to predict the trajectory of moving objects in an urban
environment based on the Aveiro and MDC datasets. We
have compared the RL-LSTM with the following literature
solutions: Hybrid Markov Chain (HMC) [39], Markov Chain
(MC), Random Forest (RF), J48, and the LSTM proposed
in [32]. Figure 5 shows the F1-Score results of each solution.
Figure 5(a) shows the average F1-Score considering business
days and weekends, while Figure 5(b) shows the results for
all predictions as a Cumulative Distribution Function (CDF).

The results show that J48 and RF present the worst results in
both datasets, reaching an average F1-Score of approximately
0.4 during business days and weekend for both datasets (see
Figure 5(a)). Also, for 80% of the predictions, both J48
and RF present an F1-Score lower than 0.6 in both datasets
(see Figure 5(b)). In turn, the performance of MC depends
on the quality of the input data. Therefore, MC presents
better results in the MDC dataset achieving an average F1-
Score of about 0.6 during business days and weekends (see
Figure 5(a)), while in the Aveiro dataset the MC reaches
an average F1-Score of around 0.4 for both business days
and weekends. To improve prediction performance of the MC
predictor, the authors in [39] proposed the HMC, which can
switch dynamically between the first and second order Markov
Chain based on the quality of the input data, consequently
improving the performance of the predictor. The HMC was
specifically designed for performing prediction tasks (e.g.,
mobility and trajectory estimation) for the Aveiro and MDC
datasets. The results show that HMC provides an average
F1-Score of approximately 0.6 in both datasets considering

business days and weekends (see Figure 5(a)). In addition, for
40% of the predictions, HMC provides a F1-Score higher than
0.7 in both datasets (see Figure 5(b)).

The LSTM predictor presented in [32] does not achieve
a satisfying prediction performance in both datasets. This
is the result of the hyper-parameters adjustments that need
to be tuned specifically for each dataset, but the predictor
has not such a capability. In this way, by using the LSTM
present in [32], the average F1-Score decreases by 15% when
compared to the HMC in both datasets. Moreover, only 20%
of the predictions present a F1-Score is greater than 0.6
in both datasets (see Figure 5(b)). Finally, the efficiency of
the architecture suggested by the RL-LSTM can be seen by
analyzing the substantial improvements over the HMC results.
Therefore, by using the most suitable architecture for each
dataset, the RL-LSTM increases the average F1-Score by
33% in the Aveiro dataset and by 50% in the MDC dataset
compared to HMC. Also, for 80% of the predictions, the
F1-Score is higher than 0.7 in both datasets. Therefore, by
employing the RL to realize high-performance architectures
for the LSTM, we overcome the performance of all predictors,
even the HMC, which is a predictor designed explicitly for the
MDC and Aveiro datasets.

C. Density Prediction Results

TABLE I
HIGH ORDER CONVOLUTION RESULTS

Convolution orders
k-order 1-st 2-nd 3-rd 4-th 5-th

MAE-Aveiro 0.3782 0.3280 0.2567 0.3378 0.3976
MAE-MDC 1.7348 1.1203 1.4351 1.5644 1.8421

In this subsection, we evaluate the performance of HER-
ITOR to predict traffic flow dynamics in comparison with
the novel probabilistic model proposed in [39]. In this way,
first, we need to find the most efficient convolution order
(e.g., the k-th order) for HERITOR. Table I shows the MAE
results for 5 different orders in which k ∈ {1, 2, 3, 4, 5}. The
convolution order represents the area (e.g., number of hops)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

F1
 sc

or
e

Av
ei

ro HMC
J48
LSTM

Random forest
RL-LSTM
MC

Business days Weekend
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

F1
 sc

or
e

M
DC

HMC
J48
LSTM

Random forest
RL-LSTM
MC

(a) Average F1 score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Av
ei

ro

HMC
J48
LSTM
Random forest
RL-LSTM
MC

0.0 0.2 0.4 0.6 0.8 1.0
F1 score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

M
DC

HMC
J48
LSTM
Random forest
RL-LSTM
MC

(b) F1 score distribution

Fig. 5. Spatiotemporal trajectory prediction results.

0.0

0.5

1.0

1.5

De
ns

ity

 A
ve

iro

HERITOR
Ground true
Probabilistic [39]

0:00 2:00 4:00 6:00 8:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

Time of the day

0.0

0.1

0.2

0.3

0.4

De
ns

ity

 M
DC

HERITOR
Ground true
Probabilistic [39]

(a) Business days

0.2

0.4

0.6

0.8

1.0

De
ns

ity

 A
ve

iro

HERITOR
Ground true
Probabilistic [39]

0:00 2:00 4:00 6:00 8:00
10:00

12:00
14:00

16:00
18:00

20:00
22:00

Time of the day

0.05

0.10

0.15

0.20

0.25

0.30
De

ns
ity

 M

DC
HERITOR
Ground true
Probabilistic [39]

(b) Weekends

Fig. 6. Traffic flow prediction results.

around each node that will be taken into account during the
convolution task. For the given datasets HERITOR reaches
its best prediction performance with k = 3 and k = 2,
which represents the optimal spatiotemporal structure based
on the road network used. These results are presented in
Table I. Therefore, the HERITOR will be fed using the 3-
rd convolution order in the Aveiro dataset and 2-nd in the
MDC dataset.

Figure 6 shows the urban traffic flow prediction results as
an average density over the city throughout the day comparing
HERITOR and the solution proposed in [39]. Figure 6(a)
represents the predictions and the ground truth for business
days while Figure 6(b) shows the results during weekends.
The results show the efficiency of HERITOR, which provides
a traffic flow prediction very similar to the real traffic flow
during business days and weekends (see Figures 6(a) and 6(b)).
This is due to the high order graph convolution operator
and adaptive distance adjacency matrix that capture the pure
spatiotemporal dependencies and also due to the efficient
LSTM designed using RL. Specifically, in the worst case
scenario HERITOR introduces an average error of 10% when
compared to the real traffic, while the solution proposed in [39]
can introduce an error of approximately 50% in the traffic flow
prediction when compared to the real traffic flow.

With these results, we can conclude that (i) the TL methods

employed by the framework proposed in this work can speed
up the time to find the most efficient LSTM architecture;
(ii) the LSTM designed using Reinforcement Learning is
highly adaptive and outperforms literature solutions for trajec-
tory and traffic flow prediction; and (iii) the graph convolution
methods extract optimal spatiotemporal dependencies of a road
network and provide better support for traffic flow prediction.

IX. CONCLUSIONS

In this work, use LSTM to estimate future trajectories and
traffic flows of moving objects in urban areas. The main
challenges are (i) realizing a high-performance architecture
for the LSTM to have satisfying prediction performance for
the given task (ii) capturing the rich spatiotemporal depen-
dencies of traffic flows over trajectory networks in urban
areas. To address the first challenge, we propose an RL-based
method for training a learning agent as a controller within a
large search space to automatically generate high-performance
LSTMs for the given prediction task. To accelerate this pro-
cess, we introduced a TL approach to transfer knowledge from
a pre-trained LSTM to the new suggested LSTM. Besides,
we represent network traffic as graph-structured data and
introduced a high-order convolution operator and adaptive
directional distance adjacency matrix to learn spatiotemporal
dependencies in the traffic network. Experimental evaluations

on two real-world datasets show that the proposed predictors
provides better prediction performance over state-of-the-art
works. Using transferred knowledge, we speed up the process
of searching an optimal architecture of an LSTM by up to
70%.

REFERENCES

[1] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Vehicular Technology Magazine, vol. 13, no. 2, pp. 94–101, June
2018.

[2] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Graph convolutional
recurrent neural network: Data-driven traffic forecasting,” CoRR, vol.
abs/1707.01926, 2017. [Online]. Available: http://arxiv.org/abs/1707.
01926

[3] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, vol. abs/1611.01578, 2016. [Online]. Available:
http://arxiv.org/abs/1611.01578

[4] D. Ashbrook and T. Starner, “Using gps to learn significant locations
and predict movement across multiple users,” Personal Ubiquitous
Comput., vol. 7, no. 5, pp. 275–286, Oct. 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00779-003-0240-0

[5] B. Chapuis, A. Moro, V. Kulkarni, and B. Garbinato, “Capturing
complex behaviour for predicting distant future trajectories,” in
Proceedings of the 5th ACM SIGSPATIAL International Workshop
on Mobile Geographic Information Systems, ser. MobiGIS ’16.
New York, NY, USA: ACM, 2016, pp. 64–73. [Online]. Available:
http://doi.acm.org/10.1145/3004725.3004730

[6] M. Karimzadeh, Z. Zhao, F. Gerber, and T. Braun, “Pedestrians complex
behavior understanding and prediction with hybrid markov chain,” in
2018 14th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct 2018, pp. 200–207.

[7] ——, “Mobile users location prediction with complex behavior under-
standing,” in 2018 IEEE 43rd Conference on Local Computer Networks
(LCN), Oct 2018, pp. 323–326.

[8] J. Paparrizos and L. Gravano, “Fast and accurate time-series clustering,”
ACM Trans. Database Syst., vol. 42, no. 2, pp. 8:1–8:49, Jun. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3044711

[9] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion
prediction and risk assessment for intelligent vehicles,” ROBOMECH
Journal, vol. 1, no. 1, p. 1, Jul 2014. [Online]. Available:
https://doi.org/10.1186/s40648-014-0001-z

[10] N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 1549–15 498, 2018.

[11] J. Schulz, C. Hubmann, J. Löchner, and D. Burschka, “Interaction-aware
probabilistic behavior prediction in urban environments,” CoRR, vol.
abs/1804.10467, 2018. [Online]. Available: http://arxiv.org/abs/1804.
10467

[12] C. Barrios, Y. Motai, and D. Huston, “Trajectory estimations using
smartphones,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 12, pp. 7901–7910, Dec 2015.

[13] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang, “Vehicle trajec-
tory prediction by integrating physics- and maneuver-based approaches
using interactive multiple models,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 7, pp. 5999–6008, July 2018.

[14] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajectory
prediction based on motion model and maneuver recognition,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Nov 2013, pp. 4363–4369.

[15] N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround vehicles
move? A unified framework for maneuver classification and motion
prediction,” CoRR, vol. abs/1801.06523, 2018. [Online]. Available:
http://arxiv.org/abs/1801.06523

[16] M. Karimzadeh, F. Gerber, Z. Zhao, and T. I. Braun, “Pedestrians
trajectory prediction in urban environments,” in 2019 International
Conference on Networked Systems (NetSys) (NetSys’19), Garching b.
München, Germany, Mar. 2019.

[17] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. Kuhn-
ert, “When will it change the lane? a probabilistic regression approach
for rarely occurring events,” in 2015 IEEE Intelligent Vehicles Sympo-
sium (IV), June 2015, pp. 1373–1379.

[18] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[20] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer, “Generalizable
intention prediction of human drivers at intersections,” in 2017 IEEE
Intelligent Vehicles Symposium (IV), June 2017, pp. 1665–1670.

[21] B. Kim, C. M. Kang, S. Lee, H. Chae, J. Kim, C. C. Chung, and J. W.
Choi, “Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network,” CoRR, vol. abs/1704.07049, 2017.
[Online]. Available: http://arxiv.org/abs/1704.07049

[22] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[23] D. R Drew, “Traffic flow theory and control / donald r. drew,” SERBIULA
(sistema Librum 2.0), 06 2019.

[24] G. E. P. Box and G. Jenkins, Time Series Analysis, Forecasting and
Control. San Francisco, CA, USA: Holden-Day, Inc., 1990.

[25] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for traffic
flow prediction: Deep belief networks with multitask learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp.
2191–2201, Oct 2014.

[26] N. Laptev, J. Yosinski, E. L. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” 2017.

[27] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” CoRR, vol. abs/1610.00081,
2016. [Online]. Available: http://arxiv.org/abs/1610.00081

[28] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and
locally connected networks on graphs,” in International Conference on
Learning Representations (ICLR2014), CBLS, April 2014, 2014.

[29] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” CoRR, vol. abs/1609.02907, 2017.

[30] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 1993–2001. [Online]. Available: http://
papers.nips.cc/paper/6212-diffusion-convolutional-neural-networks.pdf

[31] ——, “Diffusion-convolutional neural networks,” in Proceedings of
the 30th International Conference on Neural Information Processing
Systems, ser. NIPS’16. USA: Curran Associates Inc., 2016, pp. 2001–
2009. [Online]. Available: http://dl.acm.org/citation.cfm?id=3157096.
3157320

[32] D. Andreoletti, S. Troia, F. Musumeci, S. Giordano, G. Maier, and
M. Tornatore, “Network traffic prediction based on diffusion convolu-
tional recurrent neural networks,” 02 2019.

[33] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15,
no. 1, pp. 1929–1958, Jan. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2627435.2670313

[34] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning, ser.
ICML’10. USA: Omnipress, 2010, pp. 807–814. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3104322.3104425

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[36] T. Chen, I. J. Goodfellow, and J. Shlens, “Net2net: Accelerating learning
via knowledge transfer,” CoRR, vol. abs/1511.05641, 2016.

[37] J. K. Laurila, D. Gatica-Perez, I. Aad, B. J., O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “The mobile data challenge:
Big data for mobile computing research,” 2012. [Online]. Available:
http://infoscience.epfl.ch/record/192489

[38] C. Ameixieira, A. Cardote, F. Neves, R. Meireles, S. Sargento,
L. Coelho, J. Afonso, B. Areias, E. Mota, R. Costa, R. Matos, and
J. Barros, “Harbornet: a real-world testbed for vehicular networks,” IEEE
Communications Magazine, vol. 52, no. 9, pp. 108–114, Sep. 2014.

[39] Z. Zhao, L. Guardalben, M. Karimzadeh, J. Silva, T. Braun, and
S. Sargento, “Mobility prediction-assisted over-the-top edge prefetching
for hierarchical vanets,” IEEE Journal on Selected Areas in Communi-
cations, vol. 36, no. 8, pp. 1786–1801, Aug 2018.

