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Abstract:

Most conventional and modern crop improvementhoss exploit natural or
artificially induced genetic variations and requiaborious characterization of
multiple generations of time-consuming genetic sess Genome editing systems,
in contrast, provide the means to rapidly modifyjngeaes in a precise and
predictable way, making it possible to introducepiovements directly into elite
varieties. Here, we describe the range of apptioatiavailable to agricultural
researchers using existing genome editing toolsduiition to providing examples
of genome editing applications in crop breeding,digeuss the technical and social

challenges faced by breeders using genome eddolg tor crop improvement.

Keywords: Genome editing, Crop breeding, Mutations, BasgregliPlants

I ntroduction

Crop breeding programs mainly rely on the introgi@s of existing natural
genetic variation into elite backgrounds, which uiegs substantial germplasm
resources and extensive back-crossing followedelscson of the progeny lines with
the best agronomic traits. The availability of bfemial alleles in nature limits the
effectiveness of conventional crop breeding, algtowmon-naturally occurring new
alleles can be generated by random mutagenesig ydigsical, chemical, and
biological means (C8, EMS, T-DNA, and transposon insertion) (Mba, 2013)
Physical and chemical mutagenesis typically geesrat large number of random
mutations throughout the genome, along with rareordesomal rearrangements
(Oladosu et al., 2016). Mutagenesis-based breetiag produced over 3,000
commercial varieties of food crops (Oladosu et2016), but the initial mutagenesis
must be followed by the screening of large popatetito identify mutants with
desirable properties, such that the process is tiaresuming and labor intensive,
especially for polyploid crops (Phillips et al.,().

As an alternative to the imprecise random mutagemasthods, genome editing

based on sequence-specific engineered endonucl&sis) has recently emerged as
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a powerful tool to rapidly modify plant genomesaiprecise and predictable way (Gaj
et al., 2013). A number of genome editing techne®ghave been developed,
including the mega-nucleases or homing endonude@dEs) (Cohen-Tannoudji et
al., 1998), zinc finger nucleases (ZFNs) (Bibikoea al., 2002), transcription
activator-like effector nucleases (TALENs) (Chastiet al., 2010), and type I
clustered regularly interspaced short palindromic epeat
(CRISPR)/CRISPR-associated protein (Cas) (Cond.e@13; Mali et al., 2013).
These genome editing systems generate targeteddoNBe-strand breaks (DSBSs) in
the genome (Carroll, 2014), which are primarily aepd by either the
non-homologous end-joining (NHEJ) pathway or thenblmgy-directed repair (HDR)
pathway (Wyman and Kanaar, 2006). The NHEJ pathiwayormally exploited to
incorporate frameshift mutations in specific genotoci but is error prone because it
typically introduces small indels at the targetate.sThe HDR pathway is a
template-directed repair process that can be ubkmdyavith an exogenous repair
template to insert a custom sequence into the genomto replace an existing
genomic sequence,

Aside from the direct applications of introducingengtic mutations and
performing gene replacement, genome editing tecigyotan be used to modulate
gene expression levels and modify the epigenomeh{8u2017). When combined
with conventional breeding, genome editing techgglocan accelerate the
introduction of desired traits and greatly reduassts. In addition, the genetic
elements required for genome editing can be remdr@d the genome through
genetic crosses or following segregation in thegeny, which differentiates
genome-edited products from genetically modifiedanisms (GMOs) (Mao et al.,
2019). Since the first reports of successful appilbm of genome editing technology
in plants, research institutions and biotechnologympanies worldwide have focused
on its application for crop genetic improvement. date, genome editing has been
mostly applied to improve crop yield, quality, asttess resistance, but innovative
applications are continually emerging (Zhang et2018b). Here, we highlight recent

progress on the genome editing of crops. We alswige insights into present and
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future applications and discuss the challengesi\agenome editing technologies in

crop breeding.

Genome editing tools and their suitable applications

Genome engineering tools have quickly evolved dutime past decade and are
now routinely used by research groups. Their wickssh application is having an
enormous impact on basic life science researchjainegd and agriculture. Even more
diverse, efficient, and easy-to-perform gene egitools are likely to be developed in
the coming years. Because genome editing techredopave been extensively
reviewed elsewhere (Gaj et al., 2013; Kumor et2017), we will provide a brief
summary of the available tools and focus on thepraepriate use in crop
improvement.
a. Genedisruption

HEs, ZFNs, TALENs, and CRISPR/Cas systems genémageted DSBs in the

genome that, when repaired by the NHEJ pathway,jrdaoduce small insertions or
deletions (indels) (Carroll, 2014). If the targette is located in the coding region,
the introduced indels frequently generate framéshresulting in gene disruption.
The HEs, ZFNs, and TALENS recognize genomic tasyes using protein motifs,
and the molecular cassettes needed for each tey&tchnically difficult to assemble
(Gaj et al., 2013). The CRISPR/Cas system, in esftuses base complementarity
between the single-guide RNA (sgRNA) and the taBRydA for recognition, which
greatly simplifies the cloning process (Jinek et 2012). Because of its simplicity,
the CRISPR/Cas system is easy to adapt to diffetangets and is suitable for
multiplex editing by simultaneously expressing nmiét sgRNAs (Cong et al., 2013);
as a result, it is the preferred choice for plaehame editing (Yin et al., 2017).
Following the isolation fronBtreptococcus pyogenes of the first Cas9 protein used for
genome editing (SpCas9), many homologs with divpreperties have been isolated
from diverse bacteria and used for genome edifligg Cas9 proteins from type I
CRISPR systems can recognize G-rich PAM sequencdsnainly generate DSB
with blunt ends (Cong et al., 2013), whereas thel€a (Cpfl) and Casl12b (C2cl)

proteins from type V CRISPR systems can recognizehl PAM sequences and
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produce DSB with staggered ends (Teng et al., 2Bé&che et al., 2015). In addition,
engineered SpCas9 or Casl2a variants have bedecieaorder to expand target
range and to improve specificity (Chen et al., 2030 et al., 2017; Hu et al., 2018;
Kleinstiver et al., 2016; Kleinstiver et al., 2018ishimasu et al., 2018; Slaymaker et
al., 2016).
b. Genetargeting

Gene targeting (GT) is a strategy to replace enumggegene fragments based on
homologous recombination (HR) (Capecchi, 2005). freguency of HR in plants is
extremely low but can be enhanced by introducingADDISBs at the target site
(Steinert et al., 2016). Simultaneous deliveryref SN editing system and a donor
DNA as repair template into the cell facilitates @Tplants, but despite the increase
in efficiency provided by the DSBs, the overall H#e is still quite low (Li et al.,
2013). In theory, high concentrations of donor DN#n significantly improve GT
efficiency, and thus geminiviral replicons have mesed for this purpose (Baltes et
al., 2014; Wang et al., 2017). Donor DNA conceiratcan also be increased by
adjusting the ratio of CRISPR construct and don®ADwhen using a biolistic
approach (Li et al., 2018a; Sun et al., 2016).rbteoto overcome the low HR rate in
somatic cells (Puchta and Fauser, 2013), driving@Gpression in the egg cell- and
early embryo has significantly improved gene tamggtefficiency in Arabidopsis
(Miki et al., 2018; Wolter et al., 2018).
c. Baseediting

Base editing is a novel tool for precise genoméirgglithat enables irreversible
base conversion at the target site without requiriDSB formation or
homology-directed repair (Rees and Liu, 2018). Thtosine base editor (CBE),
which converts C to T (or G to A), uses deactivaias9 (dCas9) or Cas9 nickase
(nCas9) as a platform that directs a cytidine dease to the target region where it
deaminates cytosines in the exposed non-targetdstcaeating U-G mismatches in a
small base-editing window. The resulting mismatduesthen repaired by the cellular
DNA repair systems, leading to the formation of Up#se pairs and ultimately to T-A

base pairs after replication (Komor et al., 20¥6)ecently developed adenine base
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editor (ABE) uses a deaminase evolved from Eheoli tRNA adenine deaminase
TadA to induce Ato G (or T to C) substitutions (@alli et al., 2017).

ABEs and CBEs have been successfully used for gjlanbme editing (Hua et
al., 2018; Li et al., 2017b; Lu and Zhu, 2017; Yeinal., 2018), but the narrow
base-editing window and the requirement for spedifAM sequences restrict the
number of possible targets. The development of bd#ers with Cas9 variants that
recognize different PAMs can expand the target ec¢bfua et al., 2019), and the use
of newly improved cytidine deaminases will incredse efficiency of the systems
(Ren et al., 2018; Zong et al., 2018). Two recepiorts showed that CBEs could
induce genome wide off-target editing independensgRNA sequences, whereas
ABEs are much more specific (Jin et al., 2019; #&ical., 2019). Moreover, the
deaminases in the ABEs and CBEs also have RNAnegdduictivities, potentially
affecting tens of thousands of off-target RNAshe transcriptome (Griinewald et al.,
2019a; Grunewald et al., 2019b; Rees et al., 2@h6u et al., 2019). Fortunately, the
problem of off-target RNA editing by ABEs and CBEsn be alleviated by
engineering the deaminasesthout affecting the on-target DNA editing (Griuraad/
et al., 2019b; Rees et al., 2019; Zhou et al., 2019
d. Generegulation and epigenome editing

Plants have evolved sophisticated molecular mesh@anito control their
transcriptomes in order to adapt to constantly ghan environments. The
catalytically inactive Cas9/Casl2a mutants (dC&3&d2a) can be used as a
platform to recruit different transcriptional regtors to specific genomic loci in order
to modulate gene expression in plants. dCas9/d@asdr2 be fused to transcriptional
activator domains for transcriptional enhancemesrried CRISPRa) or to repressor
domains for transcriptional repression (termed G (Li et al., 2017d; Tang et al.,
2017b). In these cases, trait maintenance in tkepririg frequently relies on the
expression of CRISPRi or CRISPRa components, wimal limit their widespread
application in crop breeding because the CRISPRtoacts cannot be removed from
future generations. IArabidopsis, epigenetic modifications have been obtained using

a dCas9-Suntag fusion protein; the protein recthigscatalytic domain of the human
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DNA demethylase Tetl or thdlicotiana tabacumDNA methylase DRM2 to
demethylate or methylate, respectively, the tacy&BIA (Gallego-Bartolome et al.,
2018; Papikian et al., 2019)..

Recent progressin genome editing for crop improvement

The ability to introduce targeted genomic modificas makes genome editing
tools very useful for engineering crop traits, ahd advent of CRISPR/Cas9 has
significantly boosted the application of genomdiadifor crop breeding (Chen et al.,
2019). Much progress has been made during thefpasyears, and we highlight
some examples here.

a. Improvingsingle-genetraits

Single-gene traits are those that are mainly cliatrdoy one gene. Mutations in
these genes typically affect the specific traithwitt compromising other agronomic
characteristics, making genome editing tools esfigcsuitable in these cases. For
example, rice quality traits such as amylase can(&&) and fragrance can be
efficiently improved by editing th&#axy and OsBADH2 genes, respectively, without
affecting plant architecture or yield (Shan et 2015; Sun et al., 2017; Zhang et al.,
2017a). Conventional breeding methods have beed tssenanipulate these traits
because natural allelic variants exist Yixy and OsBADH2, but the CRISPR-based
approach is much faster and far less labor intengivcontrast, Cd accumulation in
rice, which can have severe health consequencesdosumers, is difficult to
reduce using traditional breeding approaches. CRIGBs9 has been recently used
to knockout the metal transporter gedaNramp5, which dramatically decreases the
Cd concentration in seeds without greatly affecyiredd (Tang et al., 2017a). Editing
a single geneZmLG1, in maize can produce upright architecture andréseilting
plants can be grown at higher density in the fidld et al., 2017a). Targeted
mutagenesis oFT2a in soybean delayed flowering time under both slaod long
day conditions providing adaptation to wider gepbreal growing regions to the

transgene-free mutant plants (Cai et al., 2018).
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b. Engineering complex traits

Many important agronomic traits in crops are retpdaby complex genetic
networks. Rice grain yield is a relatively well-cheterized complex trait, and many
guantitative trait loci (QTLs) controlling yield ta@ been identified (Xing and Zhang,
2010). Independent or multiplex editing of theseL®Tan result in improved yield
(Li et al., 2016b; Xu et al., 2016), although editiof the same yield-related QTL in
different elite rice varieties can have inconsisi@neven negative effects under field
conditions (Shen et al., 2018). One important athga of genome editing tools is
their ability to incorporate some complex traitsatthcannot be achieved by
conventional breeding technologies. The haploiduatidn (HI) system is a core
technique of doubled haploid (DH) breeding prograRise lacks a naturah vivo
haploid induction system, but genome editing ofutafive orthologue oZmMATL
(OsMATL), encoding a pollen-specific phospholipase has bessd to produce
haploid seeds (Yao et al., 2018). Editl®@gMATL achieved low haploid induction
rate (2-6%) in different rice varieties and redusedd-setting rate (Wang et al., 2019;
Yao et al.,, 2018), making the haploid identificatiprocess a daunting task.
Introducing additional morphologic or more robusibfescence markers can help to
identify haploid seeds, as has been widely usedh& maize double haploid
breeding system (Dong et al., 2018; Li et al, 200%o innovative rapid-breeding
approaches, IMGE and Hi-Edit, which combine haplotlction with CRISPR-Cas9
mediated genome editing, can introduce desirabliestinto elite inbred lines within
two generations, avoiding the time-consuming craggsand backcrossing process
(Killiner et al., 2019; Wang et al., 2019). Thesmtegies will greatly accelerate the
improvement of different varieties from a wide raraf crops, especially for the elite
commercial lines that are recalcitrant to transfaion. Heterosis has long been
exploited by breeders to produce high-yielding crapeties, but the superior traits of
F1 hybrids are lost in subsequent generations. Axgemwhich produces clonal
progeny asexually through seeds without meiosidedilization, is a strategy to
perpetuate the heterozygosity of F1 hybrids in sr@gand and Koltunow, 2014).

Simultaneous mutation of four genes using CRISPBIQeas recently shown to be a
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promising strategy for obtaining synthetic apomittiat enables clonal propagation
of F1 rice hybrids through seeds (Wang et al., 20H@terozygosity of F1 hybrids
was fixed by multiplex editing of thre®liMe (Mitosis instead of Meiosis) genes
(RECS, PAIR1, andOSD1), while mutation of théMTL gene induced formation of
seeds with some genotype as F1 hybrids (Wang,e2Gil9). However, this approach
only produced a low percentage of clonal hybridthaprogenies because of the low
haploid induction and seed-setting rate cause®#ATL mutation (Wang et al.,
2019). Screening other (ATL alleles or exploiting different haploid-inducing
genes may help to improve this technology. An alitve and seemingly more
efficient method to induce haploid seed formatinrrice uses ectopic expression in
the egg cell of the sperm cell-speciBABY BOOM1 (BBM1) gene (Khanday et al.,
2019).BBM1 plays a key role in triggering embryogenesis in2jigote, andctopic
expression oBBML1 in the egg cell can efficiently initiate parthenogsis without
zygote formation (Khanday et al., 2019). Combini@RISPR/Cas9-mediated
mutagenesis of th®iMe genes with egg cell expression BBM1 enabled asexual
propagation of F1 rice hybrids (Khanday et al., D0lnterestingly, theMiMe
phenotype in rice can be reproduced by simultaneditgig ofOsSPO11-1, OsSRECS,
and OsOSD, suggesting that different sets of genes involuedneiosis can be
manipulated to create the sapteenotype (Xie et al., 2019)
c. Molecular domestication

The major crops feeding today’s world populationreaveomesticated from wild
species thousands of years ago (Doebley et al§)20@ring the long domestication
process, farmers selected for beneficial traithsag high yield and easy harvest,
which are also known as domestication traits. Qtaive genetics and genomics
studies have identified a number of genes comigltiomestication traits in different
crops (Meyer and Purugganan, 2013), making it #texily possible to accelerate
domestication of wild species or even distantlyatesd ‘orphan’ crops by multiplex
editing of the orthologs of main domestication gerigsdgon et al.,, 2017). As a
proof-of-concept, wild tomato species wetle novo domesticated by multiplex

editing of genes associated with agronomically rdese traits (Li et al., 2018d;
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Zs0gon et al., 2018). In addition, key domestigatiaits of an orphai®olanaceae
crop, groundcherry, a distant tomato relative, algo be rapidly improved by genome
editing of orthologs of tomato domestication gerfeesmmon et al., 2018). The
cultivated potato is an autotetraploid tuber crbat tis vegetatively propagated and
difficult to improve by conventional breeding metlso Ye et al. (2018) recently used
the CRISPR-Cas9 system to re-domesticate potabosiit-compatible diploid lines
by disrupting the self-incompatibility gen&RNase (Ye et al., 2018). These
re-domesticated diploid lines will be very usefar fbasic research and genetic

improvement.

Genome editing for crop improvement: issuesto be considered

Before attempting to use genome editing toolfop breeding, researchers should

consider a number of important issues, some ofhware discussed below.

a. Selection of target genes
Some quality traits such as grain amylose contente and oil quality in soybean

can be quickly improved by targeting a single génaun et al., 2014; Zhang et al.,
2017a). However, most key agronomic traits suclyialsl and biotic/abiotic stress
resistance are quantitative and are controlled BpymQTLs. In the case of yield,
many yield-related QTLs have been identified, mappend subsequently cloned
(Xing and Zhang, 2010; Zuo and Li, 2014), providiagich resource of potential
targets for genome editing. In contrast, very feWL.Q with strong effects on abiotic
stress resistance have been cloned due to theudliffiin quantitative phenotyping
and to the complexity of the traits (Landi et &017). QTLs identified as negative
regulators of beneficial traits are the easiegjetisrbecause beneficial loss-of-function
alleles can be easily generated by genome editm@ddition, molecular genetic
studies have shown that some QTLs are conservedgamaltiple crops, such that
the knowledge gained from model crops such as cae be applied to other

less-studied crops (Li et al., 2018e). TargetindldiLs must be done with caution,



286

287

288
289
290

201

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

however, because many QTLs are often involved itiphel developmental processes,

and modification of such QTLs can therefore havgatige effects.

b. Choice of an appropriate genome editing approach
Multiple genome editing tools are now availablerntiwoduce diverse modifications

in the genome, providing the opportunity to degilifferent strategies to accomplish
the desired goals.

For genes having a negative effect on the targeadicl a complete loss-of-function
allele can be easily generated by CRISPR/Cas9-teedidisruption of the coding
region (Figure 1A) (Li et al., 2016b). Howevercduld be useful to produce multiple
CRISPR-lines using different sgRNAs before evahgthe resulting phenotypes for
the different mutations.

Population genetic and genomic studies have shdwah & high proportion of
agronomic traits are associated with DNA variatjofiequently single nucleotide
polymorphisms (SNPs), in the promoter regions (Lale 2012b). Variations in the
promoter can affect expression levels, expressatems, and/or tissue specificity of
the genes. Disruption afs regulatory elements in the promoter region carntipety
or negatively affect gene expression levels, makimgn good target sites for genes
that regulate traits in a dose-dependent manngui&i2) (Birchler, 2017; Li et al.,
2017c). Recent work in tomato has shown that intcoty random deletions in the
promoters of several yield-related genes (Figur¢ ®Aough multiplex editing can
generate quantitative variations of target tr@tsdriguez-Leal et al., 2017). Although
the construction of vectors for expression of Casd aultiple sgRNAs can be
cumbersome, the recently developed single-trartsmmjunit strategy can simplify
this process in rice without compromising editiffigceency (Wang et al., 2018).

Some cis regulatory elements for transcription-factor birgli are relatively
conserved and can be predicted by online toolscfitest al., 2002). In this case, base
editing tools may be used to substitute key nuiestin thecis element to decrease
or increase the binding affinity of the transciptifactors and thus to modulate

expression levels (Figure 2B). Compared with tHetireely random indel-mutation
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approach discussed above, this strategy can retheesize of the screening
population. Some pathogen virulence proteins bontghe promoter regions of host
genes and subvert their expression to facilitatdhgegenesis (Cox et al., 2017),
providing an attractive opportunity to increaseigisce by disrupting the binding
sites via indel mutations or base editing (Li et2012a; Peng et al., 2017).

Insertions of some transposon elements (TES) inptioenoter region, or even
upstream of the promoter, can affect the epigerst#ittis, and thereby the expression
level of agronomically important genes (Yang et2013; Zhang et al., 2017b). Large
fragments can be inserted either by the imprecis¢EN or the precise HDR
machineries (Figure 2C) (Li et al., 2016a; Li et 2D18c; Li et al., 2019; Wang et al.,
2017), although the efficiency of the HDR approachplants still requires substantial
improvement (Endo et al., 2016; Sun et al., 2016).

The dCas9-based epigenome editing tools, suchrgetéd DNA methylation and
demethylation systems, can regulate gene expregsiénabidopsis by modulating
DNA methylation levels in the promoter region (Fig2D) (Gallego-Bartolome et al.,
2018; Papikian et al., 2019), but they have ydta@pplied in crop breeding. A major
concern with this approach is whether the epigersttanges induced by epigenomic
modification can be accurately inherited in thédeing generations. Some mutations
controlling agronomically important traits exeretheffects at the post-transcriptional
level. For example, a mismatch in the OsmiR156 ibodaite ofipal, a beneficial
allele of OsSPL14, disrupts OsmiR156-mediated cleavage @SPL14 mRNA,
resulting in ideal plant architecture (Jiao et 2010). MicroRNAs (miRNAs), a class
of short non-coding RNAs, regulate gene expresaiotine post-transcriptional level
by base pairing with mRNA molecules, leading to miR&leavage or translational
inhibition (Rogers and Chen, 2013). Many agronofthicand developmentally
important genes in major crops are directly regaaby miRNAs (Tang and Chu,
2017). Disruption of the miIRNA/mMRNA base pairingncaffect miRNA-mediated
MRNA cleavage and thus can be used to fine-tunexpeession of target genes. For
this purpose, base editing tools are a good choicéentroducing point mutation(s)

into the miRNA binding site of the target geneshwiit changing the amino acid
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sequence of the encoded protein, an approachatked advantage of the degeneration
of the genetic code (Figure 3A) (Hua et al., 20B&cause the position and number
of mismatches in the miRNA binding site greatly eaff the efficiency of
miRNA-mediated mRNA cleavage (Jiao et al., 2010jhtABE and CBE can edit the
MiRNA targets, generating allelic variants in thiRiMA binding sites.

Some agricultural traits are controlled by the getien of alternative mRNA
transcripts. Two well-known examples in rice are Yaxy gene, which controls
amylase content, afdsMADSL, which controls grain size (Isshiki et al., 1998) et
al., 2018). In these cases, base editing tooldeamsed to alter the highly conserved
intron donor (GT) or acceptor (AG) sites and ta¢hy interfere with mRNA splicing
(Figure 3B) (Kang et al., 2018; Li et al., 2018f).

In addition to being regulated at the transcripgioand post-transcriptional levels,
gene expression can be regulated at the transttievel. A considerable proportion
of transcripts in plant cells harbor upstream opeading frames (UORFs), which
can fine-tune the translational levels of the daween primary open reading
frames (von Arnim et al., 2014). This type of trdati®nal control can be easily
disrupted by using the CRISPR/Cas9 system to intednutations in the initiation
codon for the uORFs (Figure 3C) (Zhang et al., 2)1&lthough there are no
available examples, it is not unreasonable to Hwmre that NHEJ- or
HDR-mediated introduction of translational enhascer the 5 UTR can boost the
translation of targeted genes (Figure 3D).

Some agronomic traits are controlled by mutatiorsulting in amino acid
substitutions that affect the biochemical functiefi®ncoded products. For example,
some beneficial alleles sfl1, a rice “Green Revolution” gene involved in gibdélén
biosynthesis, contain amino acid substitutions teatrease the catalytic activity of
the encoded enzyme, leading to the semidwarf plpaobf most modern rice
varieties (Asano et al., 2011). Base editors ctxaldised to introduce changes in key
amino acids in order to affect protein activity déie 1B). However, the molecular
mechanisms controlling the activity of many of fheteins affecting agronomically

important traits are not well understood, espegidthr enzymes involved in
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metabolite and hormone synthesis. Key functiontdssin enzymes involved in
hormone synthesis (e.g., Gnl and SD1) and quahiist(e.g., Waxy and BADH2)
can be identified using CRISPR/Cas9, ABE, and/oEGBrough transformation of
pooled libraries of tiling sgRNA arrays (Figure 1@hich is now feasible in plants
(Butt et al., 2019; Lu et al.,, 2017; Meng et alD12). Pooled screens using base
editors can also generate novel resistance musatiomerbicide targets (e.g., ALS
and EPSPS).

c. Selection of beneficial alleles or allele combinations

Domestication and breeding processes have signifcaeduced the genetic
diversity of crops such that many agronomically amgnt genes show strong
artificial selection and extremely low genetic dsigy. For example, recent haplotype
analysis of 120 key genes controlling yield andligp#raits in rice found haplotype
numbers ranging from 1 to 15 in the 3,000 rice gem@anel, with 28 genes having a
single haplotype (Abbai et al., 2019). It has Idr&en recognized that the narrow
genetic diversity of cultivated crops is a majous&for the yield plateau experienced
in breeding programs. Genome editing tools candeel to rebuild genetic diversity in
individual genes, although identification of bewéfl alleles or allele combinations
can be a complicated task because most agronaoaitis &re polygenic and regulated
by complex genetic networks. As a result, the ohiidion of genomic changes can
create imbalances in the network with unintendedsequences. A well-known
example is the ric®sSPL14 gene. Stron@sSPL14 expression increases rice panicle
size and culm diameter but dramatically decreagks humber. Optimal yield
potential can only be achieved by alleles withahl#OsSPL14 expression levels that
allow the coordination of panicle size and tillarnmber (Zhang et al., 2017b). In
addition, networks controlling a specific trait camary among different genetic
backgrounds such that the editing of the same (arLproduce different outcomes
among several rice varieties (Shen et al., 2018enoBpe—environment
considerations are also important when selectiremeficial’ alleles. For example,
weak alleles otdl conferring semidwarf phenotypes have been extelysselected

in rice breeding (Asano et al., 2011). However, rangcriptionally upregulated
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gain-of-function allele benefits deep-water rice riehes by promoting

submergence-induced internode elongation (Kurolad ,e2018).

d. Transgenic-free genome editing

To date Agrobacterium-mediated transformation and particle bombardmentlze
two major approaches for delivering the genomereglitegents into plant cells. Once
the desired mutations are introduced into the gianbme, the transgenic cassette can
be eliminated from the offspring, as it is no longequired for trait maintenance and
the presence of genome editing tools increasesskef off-target editing (Mao et al.,
2019). This transgene-free feature of genome-editepls increases social acceptance
and facilitates commercialization. Transgene-fréded plants can be easily obtained
by traditional methods such as segregation inrgglir back-crossing populations of
edited lines, although such methods can be timstoumg for some polyploid and
perennial crops. To accelerate the isolation afdgene-free edited lines, researchers
have developed a number of efficient and easy-ttepa methods, including the
fluorescence marker-assisted selection system ahg tuicide gene-based
programmed self-elimination system (Gao et al. &2®e et al., 2018). For perennial,
self-incompatible, or vegetatively propagated crdpswvever, transgene segregation
in the offspring is time-consuming or even impoksitDNA-free genome editing
approaches that do not require integration of exoge nucleic acids into the plant
genome can be used to avoid the need for transglanmation.In vitro transcribed
RNAs for CRISPR components iorvitro assembled Cas9 ribonucleoproteins (RNPS)
have been delivered into protoplasts and immatomergos of several plant species to
perform genome editing (Liang et al., 2017; Svieasht al., 2016; Woo et al., 2015).
Because no selection pressure is applied in thensxgtion process using these
approaches, the DNA-free editing systems have Iditing efficiencies, and large
populations must be screened for the targeted mngaLiang et al., 2017; Zhang et
al., 2016). Moreover, plant regeneration from pptasts has been achieved in only a

few crop species.
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Genome editing for crop improvement: Challenges

Public institutions and biotechnology companiesiavesting considerable human
and financial resources into the development ofogen editing for crop breeding.
However, a number of important technical challengesain to be solved, and social
acceptance and regulatory issues will play an itapbrole in the commercialization
of genome-edited crops.

a. Efficient delivery of genome editing toolsinto plants

Gene editing components have been delivered irgot plells as DNA, RNA, or
RNP using diverse methods such as protoplast @etsh, Agrobacterium
transformation, and particle bombardment (Lianglet 2017; Zhang et al., 2016).
Irrespective of the delivery method, genome edaelts must be regenerated into full
plants using time-consuming and often difficulstis culture methods. While some
crops have well-established tissue culture-basednstormation methods,
transformation for other crops can be very diffictime-consuming, or impossible
(Altpeter et al., 2016). Even for crops with anakdished transformation method,
many elite varieties remain recalcitrant to transfation due to poor regeneration
ability, as is the case for many cereals (Altpeteal., 2016). A recent technological
advance using ectopic expression of the plant nogghic regulator8aby boom and
WUSCHEL during Agrobacterium-mediated transformation greatly improved the
regeneration efficiency of mature seeds and legimsats of recalcitrant maize
varieties, as well as of immature embryos in somghand calli in sugarcane and
indica rice (Lowe et al., 2016).

An important challenge is the application of ged#ieg technologies to species or
varieties without available transformation methads|uding wild relatives of major
crops, orphan crops, and non-crop species with ihightional potential. Delivery of
genome editing components to germline or shoot steeri cells is a promising
strategy to obtain gene-edited offspring in nomdfarmable species. Zhao et al.
(2017) recently used magnetic nanoparticles as DatAers to deliver foreign DNA
into plant pollen; the researchers reported tra@kpwing pollination, the exogenous

DNA in the transfected pollen could integrate itlte genomes of the progeny with a
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low frequency. The validity and utility of this detry strategy, however, have yet to
be confirmed by any follow-up reports. Carbon nabets have shown potential for
delivering biomolecules into tissues and organsntdct plants of several species
(Demirer et al., 2019). Interestingly, DNA carribgl the carbon nanotubes induced
strong protein expression without transgene integrahighlighting the potential of
using this nanomaterial for performing transgeme-fediting in a wide range of plant
species. A crucial question is whether this delivarethod can be successfully
applied to regenerative cells, shoot meristematils,cor other types of plant germline
cells.

b. Improved understanding of genetic networks controlling key agronomic

traitsin crops
Next-generation DNA sequencing technologies haveegged an immense

amount of genomic data including full genome segasrior many species (Bolger et
al., 2014; Ling et al., 2018). Given that the aaaility of genomic sequence is no
longer the limiting factor, the challenge is to amstand the extensive and
complicated genetic networks controlling agronomngts and their interaction with
environmental factors. For some model crops sualicasand maize, much progress
has been made in understanding the genetic bagieldf and quality-related traits
(Ikeda et al., 2013; Li et al., 2018b; Miura et &011), but knowledge about stress
resistance lags behind (Landi et al., 2017). Inyr@her crops, key genes controlling
major agronomic traits remain unknown, making genietprovement by molecular
approaches extremely difficult. In some instandegwledge gained from model
plant species may be transferred to crops, asgisésearchers in the selection of
target genes. Future understanding of agronomidtstravill be aided by
population-level genomic approaches combined wifferént “omics” databases and
the application of gene editing tools (Kujur et 2013).

c. Simultaneous manipulation of multipletraits

Conventional and genome-based breeding methodsiaggaimultiple agronomic
traits during the selection process. As a reslite eommercial lines bred by these

methods pyramid many superior alleles that confgsrovements in yield, quality,
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and resistance to biotic and abiotic stresses (&tng., 2017). However, genome
editing tools are limited in the number of targélat can be simultaneously
manipulated. Although CRISPR/Cas9 and CRISPR/Cas$2&ms show multiplex
editing capabilities, in practice only a small nienbf sgRNAs (fewer than 10) have
been expressed in plants (Miao et al., 2018; Warad. €2018), such that only a few
traits can be simultaneously improved. This lind@at can be alleviated by
pyramiding beneficial alleles created by genomeirggltools through genetic crosses
and marker-assisted selection (Wu et al., 2018lternatively, by sequential editing
(Demorest et al., 2016).

d. Preciseediting

An exciting feature of genome editing technolog®eshe possibility of custom
tailoring non-natural alleles to achieve improvetsethat are not possible with the
available natural genetic variation. For exampl@amping the maizeARGOS3
promoter with theGOS2 promoter can increase yield under drought stresisowi
imposing a yield penalty on crops grown under wellered conditions (Shi et al.,
2017). In rice, resistance against multiple strahXanthomonas sp. can be achieved
by stacking different TAL effectebinding sites in the promoter &genes (Romer et
al., 2009). Finally, replacement of the endogenabscisic acid (ABA) receptor
PYR1 with a variant containing several amino addrges allows activation of the
ABA response in plants treated with the agrochehmt@ndipropamid, such that the
plant drought resistance can be induced by chemsgmby (Park et al.,
2015). Creating such beneficial but complicate@led by genome editing requires
high precision. Although high precision can be of#d with HDR-mediated gene
targeting, the relatively low efficiency of the HD#athway in plant cells and the lack
of efficient delivery methods for DNA repair temfda seriously limit its adoption
(Steinert et al., 2016). A number of improvements being developed including
interference with the NHEJ repair pathway gene$ sascKU70/80 and LIG4 (Endo
et al., 2016) and the use of geminiviral systemsdtoease the levels of donor DNA
(Baltes et al., 2014; Wang et al., 2017). It wasently reported in rice that RNA

transcripts localized in the nucleus can serveepair templates for HDR-mediated,
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precise gene replacement (Li et al., 2019). Conaperehe conventional DNA donor
repair templates, RNA templates can accumulate ighh hevels through active
transcription in the nucleus, providing obvious atkages as repair templates for
HDR in plants. An alternative approach that usee #gg cell- and early
embryo-specificDD45 gene promoter to driv&§pCas9 expression and sequential
transformation inArabidopsis has shown potential for increasing the efficierndy
HDR-mediated gene editing (Miki et al., 2018), hast yet to be applied to crops.
e. Government policy towards genome edited crops

Genome editing is a biological mutagenesis methnd,like chemical and physical
mutagenesis methods, its application in crop bregdi not troubled with ethical and
off-targeting issues. Although there are many tesdirchallenges to overcome, the
biggest potential obstacles for the adoption ofoges editing tools in agriculture are
public acceptance of the technology and governmegalatory policies. In April
2016, the US Department of Agriculture ruled thahg edited mushrooms and corn
did not need to be regulated by traditional geneticlification policies; the ruling
increased the rate at which gene-edited crops arkated and gave US companies a
first-mover advantage (Waltz, 2016). In contrasgneredited crops have been
classified as equivalent to genetically modifiedM)Gorganisms by the Court of
Justice of the European Union (ECJ), and this detieffectively blocks the
development of gene-edited crops in the EU (Caa@18). Most countries still
lack a clear and consistent regulatory policy fengredited plants. Even though
policies can be put in place for strict regulatairgene-edited crops, the enforcement
of those policies will be extremely difficult ornsply impossible because most gene
editing events cannot be differentiated from ‘natumutations.
Concluding Remarks

The new developments in CRISPR/Cas technologies hédened the scope of

genome-editing possibilities to include base stltgdhns and gene targeting and the
regulation of gene expression. These developmeat® lexpanded the array of
crop-improvement tools available to agriculturakstists, but the use of any genetic

technology for crop improvement requires functioaiormation on the genetic
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networks controlling important agricultural traite. many cases, that information is
not yet available. The development of high-throughPNA sequencing technology
and the establishment of a large number of "omuatatabases will facilitate the
identification of useful targets for genome editinglants.

Although impressive progress has been made (Kuméthad., 2018), genome
editing still must overcome important challengessavidespread application in crop
breeding, such as the establishment of efficiemt genotype-independent delivery
methods and the improvement in gene targetingieffoy. At present, genome editing
has been mostly used in species with availablestoamation methods, which
represent a very small fraction of the plant kingdd-or those plant varieties and
genotypes that cannot be transformed, the developaoiesfficient delivery methods
is a priority.

Genome editing provides an invaluable tool for hoghcision molecular
breeding of crops, with the potential to suppoduantum leap in agriculture for a
world in desperate need to produce more food vei$sis Environmental impact. Aside
from its precision, genome editing can lower thetad crop breeding and accelerate
the production of new high-yielding, stress-tolérarutrient-use efficient and more

nutritious varieties.
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Figurelegends

Figure 1. Using genome editing tools to generate mutatiorsg #ffect protein
function. A. ZFNs/TALENs/CRISPR/Cas9 can generate loss-of-fonctlleles by
introducing DSBs in the coding region of targetetes B. Proteins with known key
functional sites can be targeted with base editorproduce specific amino acid
changes, generating partial loss-of-function orngdtfunction alleles.C. For
uncharacterized proteins, key functional residuas be identified by functional
screening through transformation of pooled libmeé tiling array of sgRNAs (using
either ABE, CBE or Cas9). The sgRNA tiling arrayesigned to contain hundreds of
sgRNAs covering the entire coding region of theyeétéed gene. The sgRNA tiling

array can be pooled for vector construction andtglansformation.

Figure 2. Using genome editing tools to regulate gene trgpisan. A. Creating
random deletions in the promoter region can geeeadlelic series with different
expression leveld3. Targeted disruption/creation of transcription ¢adiinding sites
can generate predictable changes in gene expressiaNHEJ- or HDR-mediated
fragment insertion in the promoter region can affigne expression levels/patterns.
D. Alteration of DNA methylation levels in the proneotregion by epigenome editing

tools can activate or repress gene transcription.

Figure 3. Using genome editing tools to modulate gene espas at the
post-transcriptional A and B) or translational level@ and D). A. ABE/CBE can
introduce point mutations in the miRNA-binding sitef targeted genes to perturb
miRNA-mediated mRNA cleavage or translation regatatB. Base editors can
mutate conserved intron donor AG and acceptor @dssinterfering with mRNA
splicing. C. Effect of upstream ORFs can be eliminated by disngpthe start ATG
codon. D. Insertion of translational enhancesis elements by NHEJ- or

HDR-mediated knock-in to enhance translationalleve
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Introduction.of random.deletions.in promoter.region
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Base editing of miRNA binding sites interfere with miRNA-mediated regulation
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