
D I S S E RTAT I O N

M E M O RY M O D E L S
F O R I N C R E M E N TA L
L E A R N I N G
A R C H I T E C T U R E S

V I K T O R L O S I N G

Bielefeld University,
Machine Learning Research Group

supervised by

P R O F. D R . B A R B A R A H A M M E R,
P R O F. D R . H E I K O W E R S I N G

july 16 , 2019

The difference between the almost right word and the right
word is really a large matter. ’tis the difference between the
lightning bug and the lightning.

— mark twain

Copyright c© 2019 Viktor Losing

This LaTeX template is published under the Creative Commons Zero
license. To the extent possible under law, the authors have waived all
copyright and related neighboring rights to Smart Thesis. This work is
published from: Germany.

ii

abstract

Technological advancement leads constantly to an exponen-
tial growth of generated data in basically every domain, dras-
tically increasing the burden of data storage and maintenance.
Most of the data is instantaneously extracted and available in
form of endless streams that contain the most current informa-
tion. Machine learning methods constitute one fundamental way
of processing such data in an automatic way, as they generate
models that capture the processes behind the data. They are om-
nipresent in our everyday life as their applications include per-
sonalized advertising, recommendations, fraud detection, surveil-
lance, credit ratings, high-speed trading and smart-home devices.
Thereby, batch learning, denoting the offline construction of a
static model based on large datasets, is the predominant scheme.
However, it is increasingly unfit to deal with the accumulating
masses of data in given time and in particularly its static nature
cannot handle changing patterns. In contrast, incremental learn-
ing constitutes one attractive alternative that is a very natural fit
for the current demands. Its dynamic adaptation allows continu-
ous processing of data streams, without the necessity to store all
data from the past, and results in always up-to-date models, even
able to perform in non-stationary environments. In this thesis,
we will tackle crucial research questions in the domain of incre-
mental learning by contributing new algorithms or significantly
extending existing ones. Thereby, we consider stationary and
non-stationary environments and present multiple real-world
applications that showcase merits of the methods as well as their
versatility. The main contributions are the following:

• One novel approach that addresses the question of how to
extend a model for prototype-based algorithms based on
cost minimization.

• We propose local split-time prediction for incremental de-
cision trees to mitigate the trade-off between adaptation
speed versus model complexity and run time.

• An extensive survey of the strengths and weaknesses of
state-of-the-art methods that provides guidance for choos-
ing a suitable algorithm for a given task.

• One new approach to extract valuable information about
the type of change in a dataset.

• We contribute a biologically inspired architecture, able to
handle different types of drift using dedicated memories
that are kept consistent.

• Application of the novel methods within three diverse real-
world tasks, highlighting their robustness and versatility.

• Investigation of personalized online models in the context
of two real-world applications.

iii

acknowledgements

I am thankful to my supervisors Barbara Hammer and Heiko Wersing
who guided me throughout the time. Both showed a lot of understand-
ing and patience even in some critical moments. The plenty discussions
we had kept me motivated and largely shaped the outcomes of this
thesis.

Most of the work has been conducted at the Honda Research
Institute Europe (HRI-EU) in Offenbach and the Machine Learning
group of the Bielefeld University. Thanks to all colleagues there for
the pleasant working atmosphere and the memorable social events as
the numerous dinners, beach volleyball games, guitar- and SingStar
sessions, and boulder evenings. In particularly, I am thankful to my
office buddies Benjamin Metka, Dennis Orth and Christian Limberg
for the fun times and countless laughs, but also various discussions
that influenced this work. They also did most of the proof-reading on
a very short notice.

Many thanks to the Honda-Research Institute Europe for the gen-
erous funding of this PhD project that gave me the great opportunity
to present at different international conferences around the world.
Thanks also to Honda-Research Institute Japan, in particular to Taizo
Yoshikawa for the fruitful collaboration during the the PHUME project
and the nice dinners in Offenbach and Tokyo. Furthermore, I want to
thank Albert Bifet and his group for the joint-research we were able to
do in Paris.

Finally, I am grateful to my family for the unconditional love,
support and encouragement I received all my life.

iv

contents

C O N T E N T S

Contents v

1 Introduction 1
1.1 Contributions and Manuscript Structure 5
1.2 Publications in the Context of this Thesis 7

2 Historical Background 9
2.1 Biologically Inspired Learning 9
2.2 Pseudo-Incremental Learning 10
2.3 Early Incremental/Online Learning 11
2.4 Support Vector Machine and Convex Optimization . . 12
2.5 The Rise of Tree Ensembles 13
2.6 Current State . 14

3 Incremental Learning 17
3.1 Overarching Learning Scenario 19

3.1.1 Definition . 19
3.1.2 Challenges . 20

3.2 Incremental Learning Vector Quantization 26
3.2.1 Foundation . 27
3.2.2 Related Work . 27
3.2.3 Learning Architecture 28
3.2.4 Proposed Placement Strategy: COSMOS 29
3.2.5 Experiments . 30
3.2.6 Discussion . 34

3.3 Local Split-Time Prediction 35
3.3.1 Foundation . 36
3.3.2 Related Work . 41
3.3.3 Proposed Method: OSM 43
3.3.4 Experiments . 45
3.3.5 Discussion . 55

3.4 A Practice-Oriented Survey 55
3.4.1 Foundation . 56
3.4.2 Related Work . 59
3.4.3 Datasets and Implementations 61
3.4.4 Hyperparameter Optimization 62
3.4.5 Measure of Model Complexity 64
3.4.6 Evaluation Settings 64
3.4.7 Experiments . 64
3.4.8 Discussion . 75

4 Concept Drift 77
4.1 Foundation . 80

4.1.1 Definition . 80
4.1.2 Types of Concept Drift 80

v

contents

4.1.3 Patterns of Change 82
4.1.4 Model Evaluation 82
4.1.5 Challenges . 84

4.2 Related Work . 87
4.2.1 Drift Detection . 87
4.2.2 Sliding Window 88
4.2.3 Bagging Ensembles 88
4.2.4 State-of-the-art Methods 89
4.2.5 Taxonomy . 91

4.3 Quantifying Concept Drift 94
4.3.1 Prerequisites . 95
4.3.2 Test for Real Drift 96
4.3.3 Test for Virtual Drift 96
4.3.4 Drift Degree . 97
4.3.5 Datasets . 97
4.3.6 Experiments . 99
4.3.7 Discussion . 102

4.4 Self-Adjusting Memory (SAM) 103
4.4.1 Architecture . 104
4.4.2 Time Complexity 110
4.4.3 Speedup via Approximate ITTE 110
4.4.4 Experiments - SAM-kNN 112
4.4.5 Experiments - SAM-NB 121
4.4.6 Discussion . 122

4.5 SAM-Ensemble (SAM-E) 123
4.5.1 Architecture . 124
4.5.2 Parallel Implementation 125
4.5.3 Datasets . 126
4.5.4 Experiments . 127
4.5.5 Discussion . 136

5 Real-World Applications 139
5.1 Interactive Online Learning on a Mobile Robot 142

5.1.1 Application Setup 142
5.1.2 Experiments . 143
5.1.3 Discussion . 146

5.2 Personalized Maneuver Prediction 147
5.2.1 Dataset . 148
5.2.2 Experiments . 152
5.2.3 Discussion . 157

5.3 Personalized Human Action Classification 158
5.3.1 Online Action Classification 160
5.3.2 Dataset . 160
5.3.3 Experiments . 161
5.3.4 Discussion . 167

6 Conclusion 169
6.1 High-Level Insights . 170
6.2 Outlook . 170

vi

contents

A Appendix 173
A.1 Detailed results . 173

A.1.1 Motion Classification 173
A.1.2 Practice-oriented survey 174

A.2 Datasets . 176
A.2.1 Artificial . 176
A.2.2 Real-world . 178

Bibliography 183

vii

1I N T R O D U C T I O N

Rapid technological progress increased mankind’s capacity to store
and compute information (Hilbert & López, 2011) and enabled

the nowadays established practice to collect and store all conceivable
information in digital form. The preserved information accumulates
to enormous amounts and its growth rate increases daily. Every day
Google receives 3.5 billion search queries; YouTube currently has 300
hours of video being uploaded every minute, and it is projected to
grow up to 1,700 hours per minute by 2025; nearly 2 billion active users
of Facebook share 4.5 billion pieces of content; Amazon sells about 13
million items world wide. These pioneering companies demonstrated
that information can be the central pillar of a multi-billion dollar
business. Even small firms adopted this approach and now digitize
every transaction they are involved in, to boost their turnovers.

The type of acquired information ranges from personal information
such as age, gender, place of residence over raw transactional data such
as the purchase history to very specific data such as individual clicking
behavior or average browsing session time. Collected data is mostly
used to provide personalized recommendations, advertising own prod-
ucts to directly increase the turnovers, as done by Amazon for example:
An estimated 35% of its 107 billion dollar net sales are attributed to its
recommendation engine; or to place personalized advertisement for
external products within own services as done by Google: 96% of its
75 billion dollar revenues are based on advertisement.

Data collection is omnipresent in science as well: Astronomical
observatories, earth sensing satellites and climate observation net-
works generate terabytes of data on a daily basis. The Australian
Square Kilometer Array Pathfinder (ASKAP) project acquires 7.5 ter-
abytes/second of sample image data and is expected to increase to 750
terabytes/second by 2025 (Spencer, 2013). The field of genomics is pre-
dicted to be the biggest challenge in Big Data in the future (Stephens
et al., 2015). Meanwhile, the rate at which data arises rapidly increases
further - 90% of all the data in the world has been generated over
the last two years. These masses of data are processed to gain further
insights in various fields of research such as physics, astronomy, and
medicine, enabling future breaktroughs and shape the development of
mankind.

Data is also gathered by mobile devices. Since years, smartphones,
smartwatches and fitness bands have been continuously tracking their
user on basis of call and message logs, GPS positions, heart rates
and acceleration data. In addition, more and more everyday appli-
ances started to collect and exchange data as well, which is mainly
driven by the Internet of Things (IOT) technology (Al-Fuqaha, Guizani,
Mohammadi, Aledhari, & Ayyash, 2015). Its idea is to provide all-time-
connected systems in smart-home or smart-city environments (Zanella,
Bui, Castellani, Vangelista, & Zorzi, 2014). For example, smart speakers

1

introduction

such as Amazon’s Alexa, but also smart TVs, continuously analyze
audio waves for voice commands and simultaneously enrich their user
profiles. Smart fridges monitor contained products to generate shop-
ping lists or to order them directly online. Food monitoring also allows
general health recommendations as well as personalized assistance for
people on specific diets.

Thereby, the wide-spread strategy seems to be the more data is
collected the better can customers be targeted and the more money can
be earned. Obviously, such a strategy is highly questionable in regard
to privacy issues. However, it cannot be denied that it also offers some
benefits. As a company knows its customer better and better, it is able
to provide superior services that satisfy highly individual demands in
an efficient and convenient way. Even the society as a whole benefits:
Extensive data collection is the foundation of smart city concepts that
leverage data to improve various public services such as transport
and parking, lighting, surveillance/maintenance of public areas, and
garbage collection (Zanella et al., 2014).

The majority of the data is available in the form of data streams,
i.e. new data is continuously generated. Efficient real-time processing
and analysis is becoming extremely important not only as a way to
reduce the burden of data storage, but is also crucial for various tasks
that require a quick reaction to current situations. One exemplary ap-
plication are warning systems for natural disasters such as earthquakes
or typhoons, where an immediate reaction to corresponding sensor
signals may save many lives (Alexander, 2017).

Additionally, a rapid adaptation of the models to current trends or
important events can drastically increase the effectiveness. For exam-
ple, dynamic control of the traffic flow by traffic-management systems
can drastically reduce congestion (Nellore & Hancke, 2016). Control
can occur on basis of adjusting traffic-light cycles and speed limits or
may even imply to dynamically release additional lanes for certain
directions. However, an accurate assessment of the current traffic situ-
ation is mandatory for such measures and ideally the position of each
traffic participant is known at any time. Tracking of participants can
be based on different information cues such as GPS or video streams
of surveillance cameras that provide up-to-date signals. Real-time pro-
cessing of information obtained from these sources allow to mitigate
effects of suddenly occurring events such as accidents in a reactive
way. However, in cases of foreseeable disruptions such as construction
sides or public events a quick adaptation of the underlying models
enables even a preventive reaction, which can avoid negative impacts
altogether.

Machine learning methods are employed to mine collected data
for relevant information and / or to predict future developments
by generated models. In this context, batch / offline learning is still
the predominantly applied paradigm, where a model is tediously
constructed from scratch on basis of very large datasets. However, such
a scheme does not meet the requirements to handle the enormous
masses in the given time, leading to more and more unprocessed data.
Furthermore, it is not able to deal with trends and changes over time,

2

as the temporal order of the data is not considered.
There are also scenarios where the data is initially not available,

but is collected little by little during the application. One example is
personalized learning, i.e. an adaptation to individual users. Obviously,
the collection can only be done after the user started to use the product/
service. Ideally, systems noticeably adapt to user’s preferences and
idiosyncrasies on basis of only few interactions on the fly. Even though
batch learning can be “bend” to such a setting by iterative retraining
it is burdensome and inefficient, since the fundamental principles of
batch learning do not apply here.

Overcoming this state of affair requires a paradigm shift to in-
cremental learning from streams of information, allowing to discard
already processed information. It is the natural way of learning as done
by humans and animals (Jarvis, 2012). For example the learning of a
new skill by humans develops gradually with increasing experience
and is often categorized in four different stages from unconscious incom-
petence, the individual does not understand how to do something and
does not recognize the deficit, to unconscious competence, the individual
has had so much practice that it has become "second nature" (Dreyfus
& Dreyfus, 1980). In particular, we learn and develop the skills during
the task as done by incremental models which continuously incorpo-
rate information into their model, enabling up-to-date models. They
are also able to process infinite streams instance-by-instance, making
an permanent data storage unnecessary. At the same time, a minimal
time and space complexity is provided, which is particularly attractive
for Big Data tasks (Chen, Mao, & Liu, 2014).

Incremental algorithms enable devices to adapt to individual habits,
opinions and environments, since learning is not restricted to the pro-
duction phase. Resulting, highly personalized models are appealing
in various applications, e.g. smart-home products, politics or adver-
tisement (Tseng & Piller, 2011; Yang & Newman, 2013; Carolis, Ferilli,
& Redavid, 2015; Bennett, 2012; Aguirre, Mahr, Grewal, de Ruyter, &
Wetzels, 2015). Flexible adaptation of technical systems to user habits
and preferences is very important for their acceptance, as noted for
the learning Nest thermostat in (Yang & Newman, 2013), for example.
Also other fully autonomous devices such as robotic vacuum cleaners
or lawn mowers largely benefit from learning their application envi-
ronment and keeping it up-to-date (Forlizzi & DiSalvo, 2006). Here, the
main challenge is not large-scale processing, but rather continuous and
efficient learning from few data. Incremental learning enables online
adaptation which can be directly performed on the device independent
from any mobile connection and cloud services, which may not be
available in certain environments. Additionally, learning on the device
is an elegant way to ensure privacy, as customers may not be willing
to share data of their daily life.

As already indicated, learning from data streams often implies
learning within changing environments. The capability to deal with
change is essential, considering the fact that the world is constantly
evolving. Algorithms trying to capture developing processes clearly
need to continuously adapt in order to track changes. One example

3

introduction

are financial markets, which are heavily influenced by economical
or political news, and even general public mood (Bikhchandani &
Sharma, 2000). The progress of time is for humans inseparably linked
with aging and new experiences that alter the personality, habits and
preferences. Most humans live through typical life stages, which are
associated with certain behavioral patterns, amount of available fi-
nancial resources, or free time that all greatly influence daily choices
(Helsper, 2010; Higgins, Duxbury, & Lee, 1994). Furthermore, the pro-
cess of aging itself has its effect, for example human taste perception
continuously deteriorate, influencing the dietary preferences (Mojet,
Christ-Hazelhof, & Heidema, 2001).

Changing environments imply that old knowledge may become
obsolete and even wrong, contradicting current beliefs. One common
phenomena are overexposure effects. For example in fashion cycles, it
is quite common that a high popularity of temporary styles or colors
is often followed by an aversion of them (Acerbi, Ghirlanda, & Enquist,
2012). The same applies also for many other things such as popular
songs or movies. Another example are temporary consumer demands,
where interest vanishes after demands have been satisfied, or which
may shift with different seasons (Ma, Li, Ding, & Orlowska, 2007; Feng
& Gallego, 1995). Batch methods are by design unfit as they do not
have any concept of time and consequently no mechanism to resolve
conflicting information. In particular, they lack the ability to forget,
which is mandatory to remove former facts / believes which become
outdated and are in conflict with the current state. In contrast, incre-
mental learning algorithms are dynamically evolving over time and
thus are able to track changing processes. In particular, they can adapt
their memory structure, enabling an explicit incorporation or deletion
of information.

In this thesis, new algorithms are contributed to overcome major
challenges of incremental learning from data streams. In particular,
the work focuses on supervised classification, one specific type of
incremental learning. However, incremental learning can also be ap-
plied in different settings, e.g. scenarios where the supervised signal
is continuous (regression), or not available (unsupervised) (Gu, Sheng,
Tay, Romano, & Li, 2015; Charikar, Chekuri, Feder, & Motwani, 2004).

A great importance is placed on real-world applications, as the
merit of the methods is presented in different scenarios. More precisely,
the overarching goal of this thesis is to improve incremental learning
algorithms in key aspects, making them more viable for real-world
applications. Key challenges are tackled by completely new developed
algorithms or by specific extensions of existing ones. Thereby, we want
to contribute to the understanding of such methods in terms of their
strengths and weaknesses and showcase different application scenarios
in which they provide a clear benefit.

The central challenge of incremental learning algorithms is to han-
dle the stability-plasticity dilemma in an optimal way. The dilemma
describes two desired, but contradicting properties. On the one hand, a
high stability is necessary to preserve information as long as possible,

4

1 .1 contributions and manuscript structure

whereas on the other hand, a high plasticity is crucial for quick learn-
ing of new patterns (Grossberg, 1988). The corresponding research
question is how to adapt to subsequent novel data, whereby the adap-
tation concerns model parameters, model meta-parameters, as well as
model complexity in case of methods which have the ability to grow.
In this thesis, the challenge is tackled from two different perspectives.

First, we shed light from the perspective of stationary environments,
assuming data samples are independently drawn from one static dis-
tribution. Here, we address the challenge of incremental adaptation
of model parameters and meta-parameters in intuitive model archi-
tectures originally proposed for the batch scenario. In the second, we
drop the assumption of data being identical and independently dis-
tributed (i.i.d.), since it is often unrealistic in case of learning from
data streams. Instead, instances are often temporally correlated as
they describe real-world processes. Furthermore, such processes and
therefore also the underlying distribution evolve over time in different
ways. Changes of the underlying distribution are named concept drift.
Hence, incremental learning is drastically more challenging. Changes
of the environments can be completely different, therefore, they are
categorized in various types. Different types are handled by different
mechanisms in an optimal way. Corresponding major challenges are
how to design an architecture which is able to deal with different
types of drift, flexible enough to adapt to diverse tasks on the fly and
what are ways to decide whether past knowledge is still valid.

1 .1 contributions and manuscript structure

After having introduced the general topic as well as the overarching
research questions, we will address the latter by proposing novel
algorithms. In the following, the scientific contributions of this work
are summarized. Concretely, we briefly line out the content of each
chapter, specify single research questions and refer to corresponding
contributions.

Incremental Learning in Stationary Environments The incremental
learning problem is defined in Chapter 3. It elaborates on the appli-
cability of incremental learning algorithms in real-world problems.
In particular, one major obstacle is the acquisition of ground truth
information in an online way. Three different possibilities of ground
truth extraction are proposed and discussed in the context of potential
applications. The focus within this chapter is incremental learning in
stationary environments, where we contribute in three ways.

• Some incremental algorithms are able to match their model com-
plexity according to the task at hand by expanding their model
on the fly. However, one key question is how to expand the
model in an optimal way, as measured by a cost function such
as the classification error. Section 3.2 gives an answer with re-
spect to prototype-based algorithms. Concretely, we propose the

5

introduction

Incremental Learning Vector Quantization (ILVQ), an architec-
ture which dynamically inserts new prototypes based on cost
optimization.

• Growing algorithms have to dynamically decide when to add
new parameters and thereby consider the related trade-off be-
tween fast model adaptation versus a high model complexity. In
Section 3.3, we reduce the burden for incremental decision tree
induction by predicting the split-time of nodes based on local
information.

• Numerous incremental learning algorithms have been published.
Naturally, the question concerning the strengths and weaknesses
of state-of-the-art algorithms arises. One related problem in
practice is to choose a suitable learning algorithm for a given
task at hand. In Section 3.4, insight is provided in form of a
practical survey which identifies key characteristics of incremen-
tal learning problems and accordingly evaluates state-of-the-art
methods in an empirical way.

Incremental Learning in Non-Stationary Environments Changing
environments and their impact on incremental learning are treated in
Chapter 4. Concretely, the common term concept drift is formally intro-
duced as well as its major forms. In relation to incremental learning
under concept drift the following contributions are made.

• Assessing the drift characteristics in a given stream of data pro-
vides insights in the task at hand and facilitates the choice of
suitable methods. However, it is yet unclear how to extract infor-
mation about the drift specifics from data. In Section 4.3, we
fill this gap by a novel approach, able to determine the drift type
and the corresponding degree within a chunk of data.

• Non-stationary environments are very challenging because the
possibly occurring type of changes are fundamentally different.
Most approaches are able to handle some types of drift, thereby
having crucial weak spots for other. Hence, one important re-
search question is how to design an architecture able to deal
with different drift types. An answer is given in form of the
proposed Self-Adjusting Memory (SAM) architecture, described
in Section 4.4.

• Ensemble methods are known to have a higher performance
and robustness in comparison to single classifiers. They are a
popular technique in non-stationary environments, allowing a
quick adaptation by the addition of learners as well as their
deletion. In Section 4.5, SAM is further improved by integration
within a bagging ensemble to increase its diversity even further.

Real-World Applications One major focus of this thesis is the real-
world application of incremental methods, where three main objectives

6

1 .2 publications in the context of this thesis

are targeted. First, we present viable application scenarios where in-
cremental learning provides a concrete gain. Second, novel methods
are transferred into real-world tasks to demonstrate their applicability
and competitiveness in comparison to state-of-the-art approaches. Fur-
thermore, we specifically investigate benefits of personalized online
learning in concrete settings. Concretely, we compare models which
are exclusively adapting to a personalized signal in an incremental
way against those trained for multiple users in batch mode. Concretely,
the following applications are presented in Chapter 5.

• Incremental learning based on visual input is especially chal-
lenging in an outdoor environment because changing lighting
conditions heavily affect the representation, naturally generating
concept drift. In Section 5.1, the proposed ILVQ architecture is
applied within an interactive learning scenario in the domain of
outdoor object recognition on a mobile robot.

• Most traffic accidents occur at intersections (U.S. Department of
Transportation, 2007). In this context, driver-behavior prediction
can be used to issue warnings or prevent risky actions for the
purpose of a higher overall safety. In this context, we analyze
benefits of personalized online models in Section 5.2.

• Personalized online models are also investigated in Section 5.3.
Here, the task is the real-time classification of human motions
based, which can be used to control motion-supportive devices
to assist humans with their intended motion. Recorded motions
are based on multiple Inertial Measurement Units (IMU) that are
covering the whole body.

1 .2 publications in the context of this thesis

Most of the work has been conducted at the Honda Research Institute
Europe (HRI-EU) in Offenbach and the Machine Learning group of
the Bielefeld University. In addition, I had the opportunity to visit
the research group Data, Intelligence and Graphs (DIG) of Albert
Bifet at the University Telecom ParisTech in Paris for one month. The
Personalized Human Estimation (PHUME) project enabled me to
participate in an international collaboration between HRI-EU and the
Honda Research Institute Japan (HRI-JP) for several months. Thereby,
I particularly collaborated with Taizo Yoshikawa from HRI-JP and was
able to visit him and his co-workers at HRI-JP in Tokyo.

During my PhD studies I had the opportunity to present large
parts of the work to an international audience in the form of journal
articles and conference publications as follows:

Journal Articles
• Losing, V., Hammer, B., & Wersing, H. (2018b). Incremental on-

line learning: A review and comparison of state of the art algo-
rithms. Neurocomputing, 275.

7

introduction

• Losing, V., Hammer, B., & Wersing, H. (2018c). Tackling het-
erogeneous concept drift with the self-adjusting memory (sam).
Knowledge and Information Systems, 54(1), 171–201.

Conference Articles
• Losing, V., Hammer, B., & Wersing, H. (2015). Interactive online

learning for obstacle classification on a mobile robot. In 2015
international joint conference on neural networks (ijcnn) (pp. 1–8).
IEEE.
• Losing, V., Hammer, B., & Wersing, H. (2016a). Choosing the best

algorithm for an incremental on-line learning task. In 2016 24th
european symposium on artificial neural networks (esann).
• Losing, V., Hammer, B., & Wersing, H. (2016b). Dedicated mem-

ory models for continual learning in the presence of concept
drift. In Advances in neural information processing systems (nips) 29,
continual learning workshop.
• Losing, V., Hammer, B., & Wersing, H. (2016c). Knn classifier with

self adjusting memory for heterogeneous concept drift. In 2016
ieee 16th international conference on data mining (icdm) (pp. 291–
300).
• Losing, V., Hammer, B., & Wersing, H. (2017a). Personalized ma-

neuver prediction at intersections. In 2017 ieee 20th international
conference on intelligent transportation systems (itsc) (pp. 1–6).
• Losing, V., Hammer, B., & Wersing, H. (2017b). Self-adjusting

memory: How to deal with diverse drift types. In Proceedings of
the twenty-sixth international joint conference on artificial intelligence,
IJCAI-17 (pp. 4899–4903).
• Losing, V., Hammer, B., & Wersing, H. (2018a). Enhancing very

fast decision trees with local split-time predictions. In 2018 ieee
16th international conference on data mining (icdm).
• Losing, V., Hammer, B., & Wersing, H. (2019). Personalized on-

line learning of whole body motions using multiple inertial
measurement units. In Ieee international conference on robotics and
automation (icra) 2019.
• Losing, V., Hammer, B., Wersing, H., & Bifet, A. (2019). Tackling

concept drift with a diverse self-adjusting memory ensemble. In
Submitted to international conference on data engineering (icde) 2019.

8

2H I S T O R I C A L B A C K G R O U N D

This chapter provides a short history of machine learning from the per-
spective of incremental learning. It describes how incremental learning
emerged as an own discipline and lines out the development that lead
to its focus on data streams within non-stationary environments.

2 .1 biologically inspired learning

Initial algorithms in machine learning research were heavily influenced
by insights from the fields of Neurobiology. Since humans constitute
the most impressive incremental learners based on their sensory input
and experiences, research was focused on mirroring these learning
processes. In particularly, algorithms were by design incremental and
had various biological analogies. One prominent example are artifi-
cial Neural Networks (ANN), which constitute a simplified model of
biological neural networks as they consist of interconnected neurons,
where the connections are weighted. Similarly, neurons in the brain are
connected to nearby neurons via different synaptic strengths. The early
stage of machine learning was dominated by different types of ANNs.
Rosenblatt (1958) invented the Perceptron algorithm which was able to
perform binary classification. All input dimensions are connected with
one single neuron and the algorithm learns the connection weights
that represent a linear discrimination function. In other words, each
input is multiplied with the connection weights and the algorithm
outputs a one (the neuron fires) if the sum is above a certain threshold,
otherwise a zero. The Perceptron learns on basis of mistakes, which
also play a crucial role in natural learning. For instance, acethylochine
is released in the brain to enhance learning in case of task failures
(Hasselmo, 2006) and specific neurons are firing when people catch
themselves during a mistake prompting a direct reaction in terms of
corrected behavior (Fu et al., 2019).

The Perceptron algorithm was implemented on custom-built hard-
ware and performed image recognition based on 400 photocells. The
success of the algorithm able to learn by itself on basis of examples,
led quickly to enthusiastic expectations as was highlighted by a report
of the New York Times (1958):

“The Navy revealed the embryo of an electronic computer today that it
expects will be able to walk, talk, see, write, reproduce itself and be con-
scious of its existence. [...] Later Perceptrons will be able to recognize
people and call out their names and instantly translate speech in one
language to speech and writing in another language.”
Even Rosenblatt himself got carried away in a related interview:

“Dr. Frank Rosenblatt, a research psychologist at the Cornell Aeronauti-
cal Laboratory, Buffalo, said Perceptrons might be fired to the planets
as mechanical space explorers”.

9

historical background

Such promises were quickly exposed by Minsky and Papert (1972) as
they showed the limitation of the Perceptron for certain problems, e.g
it could not represent the XOR function. In particular, they demon-
strated that ANNs with multiple linear layers that are sequentially
connected were necessary to solve such problems. However, the Per-
ceptron learning rule was insufficient as it could only train the weights
of the output layer. Minskys criticism was interpreted as general flaw
of neural networks that are ultimately limited in their capability and
initiated the so-called first Artificial Intelligence (AI) winter, a period
of disillusionment characterized by a drop in research funding and
publications.

Eventually, the Backpropagation algorithm provided a way of train-
ing a multi-layer network and revived machine learning research. Er-
rors are propagated backwards from the output layer and distributed
on neurons of the hidden layers. In particular, the learning of ANNS
was formalized as a cost function minimization for which Backpropa-
gation delivered the necessary gradients. The success of the algorithm
commenced a movement away from biologically inspired heuristics
towards a precisely framed mathematical foundation. Backpropaga-
tion was derived by multiple researchers but Paul Werbos was the
first to propose it for ANNs (Werbos, 1974). However, his contribution
remained largely unnoticed and it took until the paper of Rumelhart,
Hinton, and Williams (1985) that Backpropagation became widely
known. The authors presented the key idea in a a concise way and
specifically addressed the problems mentioned by Minsky.

2 .2 pseudo-incremental learning

Early ANNs were incremental algorithms as their weights were consec-
utively adjusted to presented examples. However, the main priority of
machine learning was mostly centered of reaching or even surpassing
human-level capability. Therefore, the question concerning the repre-
sentational power of ANNs, which was basically framed by Minsky’s
criticism, was a central interest, whereas aspects like online learning
or time- and space efficiency were rather secondary. As Hornik, Stinch-
combe, and White (1989) proved that ANNs with only one hidden
layers are universal approximators that could be trained with Back-
propagation, cost-function minimization became the standard way of
learning.

Numerical instabilities such as exploding or vanishing gradients
made Backpropagation impractical for deep architectures and put an
end to incremental learning as the process either converged slowly or
not at all (Bengio, Simard, & Frasconi, 1994). Consequently, techniques
as Conjugate Gradient or Newtons method (Reed & Marks, 1998)
were used to mitigate this issues, leading to batch-wise training as
they require a large number of samples to be accurate. Moreover,
ANNs were trained on basis of multiple iterations over large datasets,
contradicting another principle of incremental learning.

10

2 .3 early incremental/online learning

2 .3 early incremental/online learning

As most research centered around ANNs and batch-wise learning via
Backpropagation, a small community focused on efficient incremental
learning, where the number of stored examples was strictly limited
(often only one example was allowed) and the dataset was processed
only once. The convergence analysis of the Perceptron by Novikoff
(1962) was the first step but it took 30 additional years until the field of
online learning was finally established by Littlestone, Kivinen, Wardon,
Cesa-Bianchi and others (Littlestone, 1988; Cesa-Bianchi et al., 1997;
Kivinen & Warmuth, 1997). Littlestone (1988) presented the WINNOW
algorithm, a linear classifier which explicitly is evaluated in the online
learning setting. The online learning community set a high priority on
learning theory and researchers formally deduced upper-bounds for
the number of mistakes an algorithm makes within certain tasks. Con-
sequently, rather simple and mostly linear algorithms were analyzed,
which delivered inferior classification performance compared to their
non-linear batch counterparts for real-world tasks. Thus, the level of
gained attention was comparatively limited.

Schlimmer and Fisher (1986) introduced Iterative Dichotomiser 4
(ID4), one of the first incremental non-linear models. It is an incremen-
tal decision tree and was derived from the successful batch algorithm
ID3 (Quinlan, 1986). However, it did not produce the same trees in
various cases and moreover was not able to learn certain problem
classes. Such issues were fixed by UTGOFF (1988) with ID5R, a lossless
incremental version of ID3, i.e. it generates the same tree as the batch
version independent from the data order. ID4 was the beginning of a
popular scheme in the research of incremental learning. It aimed for
rephrasing accurate batch algorithms into an incremental prescription
to get the best of both worlds.

Non-stationary environments were early considered within the
Adaptive Resonance Theory (ART) introduced by Grossberg (1976a,
1976b). It is biologically inspired as it analyzes the mechanism in the
brain that enable a stable learning even in rapidly changing envi-
ronments. ART extracts a mathematical model that explicitly tries to
imitate the brains extraordinary capability to balance between stability
and plasticity on basis of a short- and long-term memory. Carpenter
and Grossberg (1987a) developed various neural network architectures
that partly implemented ART (Carpenter & Grossberg, 1987a, 1987b;
Carpenter, Grossberg, & Reynolds, 1991).

The term concept drift can be traced back to Schlimmer and
Granger (1986) who contributed the classification method STAGGER,
which explicitly handles concept drift. STAGGER learned a weighted
set of Boolean functions consisting of attribute-value pairs to describe
concepts. Thereby, the combination of the rules could be based on
conjunction, disjunction or a negation. STAGGER is able to follow
changes in the concepts by adjusting the weights as well as forming
new Boolean functions.

11

historical background

Widmer and Kubat (1996) provided an interesting view of concept
drift, as they framed it as a lack of information, a hidden context that
is missing in the data, which guides the change. They introduced
the algorithm FLORA which was one of the first methods to use a
sliding window in the context of non-stationary environments. The
window is of fixed size and stores the most recent examples in a
first-in-first-out (FIFO) data structure. FLORA stored sets of correct
and incorrect concept descriptions, also based on Boolean functions.
FLORA2 was introduced to adapt the window size dynamically by
using multiple thresholds to increase and decrease the size based on
the recent performance (Widmer & Kubat, 1992). FLORA3 was one of
the first methods particularly tackling reoccurring concepts (Widmer
& Kubat, 1993).

Even though the early concept drift methods were rather simple
and applied only on toy examples, important foundations were es-
tablished as the major types of drift were introduced and separately
addressed by different approaches. Furthermore, important techniques
to handle drift were contributed, for instance dynamic sliding windows
are widely used today.

2 .4 support vector machine and convex optimization

Problems such as the vanishing and exploding gradient, local minima,
and the difficulty of choosing a proper network architecture made
the application of ANNs very challenging, in particular for deep ar-
chitectures with many layers. Cortes and Vapnik (1995) introduced
the Support Vector Machine (SVM), a large margin classifier which
empowered with the kernel trick and soft margins achieved highly
accurate results. The SVM is not prone to numerical issues, since it
solves a convex optimization problem. As it furthermore determines its
own structure in respect to the number of support vectors, researchers
largely perceived this mathematically well-founded method as supe-
rior and abandoned ANNs. Their focus shifted to kernel methods and
convex optimization, where convergence of the methods was guaran-
teed. Even Yann LeCun, a prominent advocate of ANNs, stated:
“The optimal margin classifier has excellent accuracy, which is most
remarkable, because unlike the other high performance classifiers, it
does not include a priori knowledge about the problem. In fact, this
classifier would do just as well if the image pixels were permuted with
a fixed mapping.” - LeCun et al. (1995).

The SVM was another step away from incremental learning as the
algorithm was a purely batch algorithm. At this time, the main am-
bition of incremental learning research became to transfer successful
batch methods to make them viable for very large datasets, where
the batch algorithm could not be applied. Thereby, the aspiration was
also to shift away from heuristics and either to provide lossless al-
gorithms, or at least to proof similarity in the limit. Cauwenberghs
and Poggio (2001) introduced the first lossless incremental SVM, (Oza,

12

2 .5 the rise of tree ensembles

2005) transferred the techniques of Bagging and Boosting (Breiman,
1996; Freund & Schapire, 1997) and Liang, Huang, Saratchandran, and
Sundararajan (2006) introduced the incremental Extreme Learning
Machine. In the same spirit, Domingos and Hulten (2000) proposed
the Very Fast Decision Tree (VFDT), an incremental decision tree that
provably construct trees that are similar to those of batch algorithms.
The VFDT placed a high value on efficiency and included various tech-
niques to speed up the training and to bound the memory demand.
One reason for its popularity was an efficient implementation that was
made public by the authors. Another important algorithm of that time
was Learn++ proposed by Polikar, Upda, Upda, and Honavar (2001). It
was largely inspired by Adaptive Boosting (Freund, Schapire, & Abe,
1999). Learn++ constructs a sequential ensemble of weak classifiers
which are differently weighted for the classification. The weak classi-
fiers consist of batch models, initially ANNs but later also SVMs, and
are trained on disjunct chunks of data.

2 .5 the rise of tree ensembles

The Random Forest (RF) was popularized by Breiman (2001). It is a
Bagging (Breiman, 1996) ensemble of decision trees that uses random-
ization techniques to avoid overfitting. They perform well out-of-the
box and are efficient even for large and high-dimensional datasets.
Whereas, the SVM requires the tuning of the kernel with, has a high
training complexity and thus scales poorly to large datasets. As it
became clear that RFs also deliver similar performances (Fernández-
Delgado, Cernadas, Barro, & Amorim, 2014) people started to apply
them in different areas, which ended the dominance of the SVM. Saf-
fari, Leistner, Santner, Godec, and Bischof (2009) adapted them to the
incremental learning scheme and was able to achieve competitive
results.

The technological progress lead to more and more generated data
in a myriad of domains. In particular, data became real-time available
in forms of streams, generated from sensor networks, mobiles, smart
devices asf. It initiated a diversification of incremental learning away
from batch learning, in terms of a focus on highly efficient models that
continuously learn from data streams. Researchers aimed for linear
or even logarithmic time- and space complexities and approximations
were accepted as long as the approximative error could be bounded.
The VFDT was in line with this scheme and numerous contributions
focused on its improvement. In fact, the VFDT can be seen as the
starting point of the focus to learning from massive data streams
(Domingos & Hulten, 2000).

As data streams are capturing real-world problems they are nat-
urally non-stationary, the assumption of identical and independent
distributed data was mostly abandoned which further increased the
diversification from batch learning. Hulten, Spencer, and Domingos
(2001) published an adaptation of VFDT to non-stationary environ-
ments. Street and Kim (2001) were the first to use ensembles within

13

historical background

non-stationary environments within their Streaming Ensemble Algo-
rithm (SEA). Gama, Medas, Castillo, and Rodrigues (2004) introduced
one of the first drift detection methods with a formal foundation. The
ideas of drift Detectors were later combined with ensembles to trigger
the replacement of outdated learners in case of drift (Bifet, Holmes, &
Pfahringer, 2010; Elwell & Polikar, 2011).

An important contribution was done by Bifet, Holmes, Kirkby, and
Pfahringer (2010) who introduced Massive Online Analysis (MOA),
an open source learning framework which is widely used today. It
contains numerous incremental algorithms and benchmark datasets,
facilitating the comparison of state-of-the-art methods.

2 .6 current state

The unprecedented performance of Deep Learning removed any doubts
about ANNs and lead to their wide renaissance. The success story was
based on large datasets, drastically increased computational capabili-
ties via Graphical Processing Units (GPU) and algorithmic improve-
ments (LeCun, Bengio, & Hinton, 2015). It lead to many breakthroughs
and is omnipresent in many commercial applications such as object-,
face-, and speech recognition, recommender systems and autonomous
driving.

Incremental learning remains a secondary aspect, as the main fo-
cus remains on what is generally possible, and how to move towards
general intelligence. The field of reeinforcement learning is an interest-
ing example. Even though online learning is its core foundation it is
widely applied in batch fashion, trained on large clusters for weeks as
the goal remains to showcase the “final performance”. Even though
remarkable milestones were recently reached in different games (Mnih
et al., 2015; Silver et al., 2016), the incremental learning capabilities are
still limited as millions of learning iterations are required. Obviously,
more efficient learning is essential for further progress.

Relatively little is known of whether incremental supervised learn-
ing is used in commercial applications. Tasks based on non-stationary
data streams that require real-time adaptation seem to be a viable
area in future. Nonetheless, online adaptation is nowadays mostly
handled on basis of repetitive batch learning from scratch. It remains
an open question whether the constantly rising amount of generated
data and the demand for less processing delay will lead to a change in
paradigm. In general, a fusion of incremental and batch approaches
seems a necessary step, as incremental methods are adaptive but less
stable, requiring a fall back solution.

Currently, research of incremental supervised learning on data
streams is mainly focused on developing more efficient and powerful
methods. In regard to non-stationary environments, the goal is to
design robust and efficient algorithms that perform well for various
types of drift.

The huge success of Deep learning showcased that hierarchical
architectures are able to extracted representations that enable a human-

14

2 .6 current state

like discriminative performance. However, as humans have further
remarkable abilities, for instance rapid learning based on few examples,
the transfer of concepts to different domains, and quick adaption to
changing environments, they clearly indicate the great potential of
incremental learning that is yet unmatched.

This thesis contributes at three different frontiers of incremen-
tal learning. First, novel approaches are proposed that improve the
efficiency and performance of incremental learning. Second, a new
architecture is developed that is able to handle different types of drift
out-of-the-box on basis of consistent memories, a novel way to ap-
proach the stability plasticity dilemma. Lastly, it contributes to a wider
application of incremental learning by an overview which assesses the
qualities of current approaches and streamlines the choice of an algo-
rithm for a given task. Moreover, a diverse set of own applications is
presented, where the advantages of incremental learning are explicitly
shown, including a higher classification performance in two different
personalization tasks.

15

3I N C R E M E N TA L L E A R N I N G

Summary This chapter characterizes incremental learning and elaborates
on the different challenges posed by its learning paradigm in stationary
environments. The important aspects of how and when to add model param-
eters are tackled for two different algorithms. The most common evaluation
metrics to assess the classification performance are introduced and applied
in an extensive survey, which empirically compares state-of-the-art methods
and guides the choice of a suitable algorithm for a given task.

Source Code

• Python-based sources of the Incremental Learning Vector Quantization (ILVQ) with
COst MinimizatiOn Sampling (COSMOS) (Losing, Hammer, & Wersing, 2015) are avail-
able at https://github.com/vlosing/ILVQ.

• Source code of the split-time prediction method One-Sided Minimum (OSM) (Losing,
Hammer, & Wersing, 2018a) can be found at
https://github.com/vlosing/splitTimePrediction.

• Links to all algorithms analyzed in the practice-oriented survey are provided at
https://github.com/vlosing/algorithms.

• Links to all datasets used within this thesis can be found at
https://github.com/vlosing/datasets.

Parts of this chapter are based on:

• Losing, V., Hammer, B., & Wersing, H. (2015). Interactive online learning for obstacle
classification on a mobile robot. In 2015 international joint conference on neural networks
(ijcnn) (pp. 1–8). IEEE.

• Losing, V., Hammer, B., & Wersing, H. (2016a). Choosing the best algorithm for an
incremental on-line learning task. In 2016 24th european symposium on artificial neural
networks (esann).

• Losing, V., Hammer, B., & Wersing, H. (2018a). Enhancing very fast decision trees with
local split-time predictions. In 2018 ieee 16th international conference on data mining (icdm).

• Losing, V., Hammer, B., & Wersing, H. (2018b). Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing, 275.

Incremental learning constitutes an attractive alternative to clas-
sical batch learning, offering various advantages which gain more

and more practical relevance. It enables the processing of infinite
datasets at a low time and space complexity, particularly interesting in
the age of Big Data where humanity is generating more data then it
currently can handle. The main difference from batch learning is the
instance-by-instance processing scheme, which results in continuously
evolving models, enabling lifelong-learning in a natural way. Another
difference is that models have not to be pretrained with large training
sets, which try to simulate the actual application environment on the
basis of assumptions that are not always met. Instead, models adapt
during the actual application and thus elegantly avoid a discrepancy
between training and test data.

In this chapter, we will shed some light on learning paradigms
which enable lifelong learning in the presence of streaming data, where
we yet assume that data are emitted from an underlying stationary
distribution of priorly unknown complexity. In this context, quite a
few questions arise, the most prominent ones being the following:

• What are possible application scenarios where incremental learn-
ing provides a strong benefit? Which incremental learning strat-

17

https://github.com/vlosing/ILVQ
https://github.com/vlosing/splitTimePrediction
https://github.com/vlosing/algorithms
https://github.com/vlosing/datasets

incremental learning

egy is best suited for which tasks?

• How can a model incrementally adapt to subsequent novel
data, whereby adaptation concerns model parameters, model
meta-parameters, as well as model complexity? How can this be
achieved with limited memory resources and in real time?

• How can the learning process be evaluated? What is the best
possible convergence speed and how can we avoid spurious
effects and overfitting to the current data points?

In the following, we will center around these questions and provide
answers by investigating and designing incremental learning algo-
rithms in typical model and real-world application scenarios. More
specifically, incremental learning algorithms are formally defined in
Section 3.1.1.

Section 3.1.2 elaborates on the challenges incremental algorithms
face, thereby continuously contrasting them against batch methods.
One practical challenge is to get the ground truth in an online way,
which reduces the range of tasks incremental learning can be applied
at. We discuss necessary conditions for real-world application and
describe exemplary scenarios.

Incremental learning algorithms generate a temporal sequence of
models, which opens various possibilities in terms of performance
evaluation. There are two main metrics that allow not only to measure
the generalization ability but also contain information about the learn-
ing speed. These are formally introduced and analyzed in terms of
their advantages and drawbacks. Both metrics are repetitively applied
within the experiments in Sections 3.2, 3.3, 3.4.

The instance-by-instance processing forces an adaptation based
on a subset of the data. The question of how to optimally adapt
the model-parameters under such circumstances is largely unsolved.
Closely related is the stability-plasticity dilemma, which demands two
contradicting model properties at the same time. We reflect on these
issues in a detailed way.

Similar to the human brain which grows new neurons and con-
nections during learning, various algorithms are able to add model
parameters to match the complexity of the task. We discuss the related
challenge of how to efficiently grow the model, by adding new model
parameters, in respect to the learning performance. Aspects as the
resulting processing time and memory consumption are considered
as well. Another related research question is when to grow the model,
since the a priori unknown amount of data forces algorithms to contin-
uously balance their learning efficiency against the complexity of the
model. Both challenges are separately targeted in terms of algorithmic
contributions. The first (how to grow the model) is addressed by a
new prototype placement strategy for the Incremental Learning Vector
Quantization (ILVQ) in Section 3.2, whereas a split-time prediction,
proposed for the Very Fast Decision Tree (VFDT) in Section 3.3, is

18

3 .1 overarching learning scenario

tackling the latter challenge (when to grow the model).

Taking into consideration that numerous incremental learning al-
gorithms have been published, naturally the question arises regarding
the strengths and weaknesses of state-of-the-art methods. A related
problem in practice is to choose a suitable learning algorithm for a
given task at hand. Unfortunately, there is a lack of research which
could offer some guidance. Section 3.4 provides insights in form of an
extensive survey, which empirically compares state-of-the-art methods
in regard to major aspects. Apart from the classification performance,
we also consider the model complexity and their development during
learning, addressing questions as how much classification performance
can be expected to be lost when simple models are applied instead of
complex ones, or what is the training and evaluation complexity of a
specific algorithm and how does it scale with an increasing amount
of model parameters? Another treated criteria is the learning speed
with associated questions like how much data is required until a
reasonable performance or convergence can be expected and which
methods are the most efficient ones? Tightly connected is the setting
of hyperparameters. We analyze which methods are easy to apply
in practice. Specifically, we tackle concerns such as the sensitivity of
a method regarding different settings of these hyperparameters and
whether they can be robustly estimated based on a small amount of
data. Finally, methods are examined in terms of their suitability for
lifelong-learning scenarios, which presupposes that the time and space
complexity is strictly bounded. In other words, models are not allowed
to grow endlessly, but at the same time are required to learn further
even when these bounds are reached. Hence, a mechanism to compress
the representation or to forget irrelevant information is necessary. The
survey concludes with a table which summarizes the results of the
experiments and provides a quick overview to streamline the choice
of an appropriate algorithm.

3 .1 overarching learning scenario

In the following, incremental learning algorithms are defined in the
context of streaming data, establishing the foundation of this thesis.
Associated challenges are extensively discussed and point to respective
research contributions.

3 .1 .1 Definition

We focus on supervised learning in classification tasks. The aim in
supervised classification is to predict a target variable y ∈ {c1, . . . , cC},
that can be one of C classes, given a feature vector x ∈ X1 × . . .×Xn.
Thereby, the domains are either real-valued Xj = R or consist of

discrete Xj = {aj
1, . . . , aj

vj} with vj ≥ 2 different attribute values aj.

19

incremental learning

A lot of ambiguity is involved regarding the definition of incre-
mental and online learning in the literature. Some authors use them
interchangeably, while others distinguish them in different ways. Ad-
ditional terms such as lifelong- or evolutionary learning are also
used synonymously. In the context of this thesis, an incremental learn-
ing algorithm is defined as one that generates on a given stream of
data s1, s2, ..., st a sequence of models h1, h2, ..., ht. In our case, si is
labeled training data si = (xi, yi) ∈ X1 × . . .×Xn × {c1, . . . , cC} and
hi : X1× . . .×Xn 7→ {c1, . . . , cC} is a model function solely depending
on hi−1 and the recent p examples si, . . . , si−p+1, with p being strictly
limited. In other words, the model has to adapt gradually without a
complete retraining. In particular, learning from a data stream implies
one-pass learning, meaning the data is processed only once. Therefore,
we exclude for example the training of a Deep Neural Network model
based on the Stochastic Gradient Descent (SGD) because the whole
data would have to be stored, since plenty repetitions through the
dataset are required to achieve a reasonable performance.

All incremental learning algorithms are also online learning algo-
rithms because they are able to perform in the online learning setting,
which denotes one typical processing scheme where the model hi−1
first issues a predicted label ŷi for each input xi before the true label
yi gets revealed and a subsequent model hi is constructed. The clas-
sification performance is measured based on the equality between ŷi
and yi. In contrast, classical batch algorithms are applied within the
offline learning setting where they construct one static model on basis of
one large training set. Subsequently, the performance is evaluated on
a separate test set. Incremental algorithms can also be used within the
offline learning setting, which is rarely done in real-world applications,
since batch algorithms usually yield a higher performance (see Section
3.1.2).

Lifelong-learning algorithms are incremental algorithms which are
additionally bounded in model complexity and run time, capable of
endless learning on a device with restricted resources. This chap-
ter focuses solely on independent and identically distributed (i.i.d.)
data, meaning we rely on the assumption that the environment is yet
unknown regarding its complexity, but it essentially is fixed. Non-
stationary environments are discussed in detail in Chapter 4.

3 .1 .2 Challenges

Even though the incremental learning paradigm has various advan-
tages in comparison to classical batch learning, it poses also a number
of different challenges. These are not only concerning the learning
itself, but also imply practical challenges as well. In the following, we
discuss such challenges in detail.

20

3 .1 overarching learning scenario

How to Get Online Ground Truth?

Streaming data can be found in plenty domains such as robotics, man-
ufacturing, health care (Quigley et al., 2009; Chen et al., 2014; Raghu-
pathi & Raghupathi, 2014) and the uprising IOT technology fosters
its prevalence to new areas (Gubbi, Buyya, Marusic, & Palaniswami,
2013).

However, streaming data often lacks supervised information. Get-
ting supervised information is in general challenging, and particularly
large models, e.g. Deep Neural Networks, require huge amount of
labeled data. Still nowadays, the majority of the data is manually
labeled by human annotators and therefore very expensive. In the
case of offline learning, the labels can be collected over a long time
period, whereas online learning requires the ground truth on the fly.
Fortunately, most real-world tasks can tolerate a certain delay in model
adaptation and consequently a delay in accessing the ground truth,
opening up various possible scenarios where online learning can be
applied at. In the following, four conditions are discussed that enable
the extraction of label information on the fly:

1. The ground-truth information can be automatically extracted in retro-
spective.
This is often the case for prediction tasks. One example is the
application described in Section 5.2. Here, we used incremental
learning to predict the course of actions a car driver will take at
an intersection. As soon as the car has passed the corresponding
intersection the recorded data can automatically be labeled and
fed back into the incremental algorithm.

2. The classification is possible by means of machine learning models
starting from a certain point in time, but difficult in advance.
One exemplary application scenario is given in Section 5.3, where
the objective is to classify human motions as quickly as possible.
Even after the motion has been performed, it is still difficult to
classify the motion. Nonetheless, this task is substantially easier
than classifying it on the fly, since the model is allowed to peek
in the future. Hence, one approach in such a scenario is to use
the output of another machine learning model, which classifies
the event after it has occurred, as ground truth. Figure 3.1 shows
the corresponding system architecture. Since the model used
for ground-truth extraction might be faulty, such approaches
induce the requirement that the chosen incremental algorithms
can handle noisy training samples.

3. The feedback is explicitly provided by the user.
This is particularly relevant for product personalization. For
instance, an individual user marks emails as spam for spam
classification, but also in human-robot interactions the labels may
be explicitly demanded. An interactive human-robot scenario
is presented in Section 5.1. The robot incrementally learns new
objects and classifies them in an outdoor environment. Thereby,

21

incremental learning

Figure 3.1: Online learning architecture. The ground truth is deter-
mined with an additional model which is allowed to buffer some data
and classify with delay. These delayed labels are used to train the
incremental model in retrospective.

a human can conveniently label objects live or in retrospective
on a tablet.

4. The supervised signal is provided by other systems or sensors which
rely on cues that may not always be available.
One example is the estimation of road lanes, which can be directly
detected by a vision-based system relying on corresponding
markings. However, lane markings are sometimes missing in
case of rural roads for example. One possible solution is to use
the lane-detection system to extract ground-truth information
when the markings are present. This enables the model to learn
the estimation of lane positions based on alternative features
such as road width, the position of the ego car as well as those
of other traffic participants. Ideally, both approaches are fused
and applied depending on the availability of lane markings,
increasing the robustness of the overall system.

How to Evaluate the Model Performance?

In contrast to static models, generated by offline learning algorithms,
the evaluation of an incremental model that dynamically evolves can
be quite challenging due to the temporal factor. We discuss two di-
verse evaluation metrics which allow the inference of different aspects
regarding the algorithmic performance and provide together even a
deeper insight.

22

3 .1 overarching learning scenario

Figure 3.2: Classical scheme of evaluating a batch algorithm in off-line
mode.

Figure 3.3: The process of testing an incremental algorithm in the
off-line setting. Noticeably, only the last constructed model is used for
prediction. All data used during training (xi, yi) is obtained from the
training set Dtrain

Offline Evaluation Let us remind that the classical offline learning
paradigm works as follows. A batch algorithm generates a model
h based on a training set Dtrain = {(xi, yi) | i ∈ {1, . . . , j}}. In the
subsequent test phase, the model is applied on another set Dtest =
{(xi, yi) | i ∈ {1, . . . , k}}, whose labels are kept hidden. Figure 3.2
depicts the process. The model predicts a label ŷi = h(xi) for every
point xi ∈ Dtest and the 0-1 loss L(ŷi, yi) = 1(ŷi 6= yi) is calculated.
The average error on the test set enables an analysis in terms of the
generalization ability to unseen examples.

Incremental algorithms also can be applied in this setting as it
is shown by Figure 3.3. The training data is sequentially processed
in a predefined order. The algorithm generates for the sequence of
tuples (x1, y1), (x2, y2), . . . (xj, yj) a corresponding sequence of models
h1, h2, . . . , hj. Thereby, a model hi is solely based on the previously
constructed model and a limited amount of p recent tuples

hi = train(hi−1, (xi, yi), . . . , (xi−p+1, yi−p+1)).

Only the last model hj is applied on the test set to determine the Test
Error (TE) Ê

Ê(Dtest) =
1
k

k

∑
i=1

1−L(ŷi, yi) =
1
k

k

∑
i=1

1−L(hj(xi), yi).

This metric evaluates the generalization ability of the last model and
neglects all preceding models. Hence, it contains no information about
the learning speed, i.e. the slope of the function we would get by
evaluating all intermediate models hi the same way.

23

incremental learning

Figure 3.4: The online learning scheme: Data is not split into training-
and testing set. Instead, each model predicts subsequently one example,
which is afterward used for the construction of the next model.

Online Evaluation Learning from data streams is usually evaluated
in the online learning setting, which is depicted in Figure 3.4. A
potentially infinite sequence S = (s1, s2, . . . , st, . . .) of tuples si = (xi, yi)
arrives one after another. As t represents the current time stamp,
the learning objective is to predict the corresponding label yt for a
given input xt, which is supposed to be unknown. The prediction
ŷt = ht−1(xt) is done according to the previously learned model ht−1.
Afterward, the true label is revealed and the loss L(ŷt, yt) determined.
The so called Interleaved-Test-Train Error (ITTE) for a sequence up to
the current time stamp t is given by:

E(S) =
1
t

t

∑
i=1

1−L(hi−1(xi), yi). (3.1)

The main difference to the previous setting is that all intermediate
models are considered for the performance evaluation, but each of
them predicts only the following example. Additionally, the data is
used more efficiently because the sets for training and testing are not
disjunct, but instead each instance is used for model testing and adap-
tion. In case of i.i.d. data, the ITTE measures the average generalization
ability of all constructed models.

The combination of both metrics enables conclusions about the
learning curve: Having two different models A and B with the same
test error, but A having a lower ITTE implies that A on average has
a steeper learning curve than B and vice versa. In Section 3.4, both
evaluation settings are applied to thoroughly analyze the aspects of
state-of-the-art incremental learning methods.

How to Adapt the Model Parameters?

In contrast to the static models constructed by batch algorithms, in-
cremental models are continuously evolving. The instance-by-instance
processing scheme demands a model adaptation on the fly, which
can only be optimal in respect to a small part of the data. Hence, the
learning performance is often worse than those of batch algorithms
which can optimize the parameters in respect to the whole dataset. In
particular, the learning itself can be less stable, due to the optimization
based on very few instances, leading flatter learning curve with a

24

3 .1 overarching learning scenario

higher tendency to oscillations. Consequently, incremental learning is
more sensitive to the setting of hyperparameters such as the learning
rate and the resulting model often depends on the order of the data.

One fundamental challenge in incremental learning is the so called
stability-plasticity dilemma (Grossberg, 1988), which describes the
contradicting demands of a high stability to preserve old patterns
and a high plasticity to quickly adapt to new ones. The effect of
catastrophic forgetting (French, 1999) is one special case of the stability-
plasticity dilemma where a model with a high plasticity forgets former
patterns over time as it is continuously is fed with new information.
The stability-plasticity dilemma has been tackled by approaches which
dynamically adapt their plasticity. It is often reduced over time in
linear or exponential way as it is done in simulated annealing (Van
Laarhoven & Aarts, 1987) or adapted based on gradient information
(Zeiler, 2012; Shalev-Shwartz, Singer, Srebro, & Cotter, 2011). However,
these methods usually add further hyperparameters to the overall
system and are known to perform sub-optimal for various cases. In
a nutshell, the problem of how to incrementally adapt the model
parameters is yet largely unsolved.

There are some lossless incremental versions of some batch algo-
rithms: Naive Bayes (NB) (Zhang, 2004a) or k Nearest Neighbor (kNN)
(Cover & Hart, 1967) as classifiers, but also a least squares regression
model can be phrased as incremental variants, which exactly compute
the result of their respective batch counterparts without any loss due
to approximations. In particular, the resulting models are independent
from the order of the data instances.

How to Adapt the Model Complexity?

Machine learning algorithms can be classified into parametric and non-
parametric models. Parametric models are static with a predefined
number of model parameters. These can be given by the employed
model itself as it is the case for linear models or on the basis of some
hyperparameters e.g. specifying the structure of a Neural Network.
Non-parametric models are dynamic and add model parameters as
they process data. Examples for non-parametric models are kNN or
Support Vector Machines with Gaussian kernel if represented in dual
space. Obviously, a model with a predefined size is limited in the
amount of information it can store (Shannon, 2001) and consequently
also in the complexity of the tasks it can effectively handle. Non-
parametric models have the advantage of being able to align their
model complexity to the demands of the task. In case of offline learning,
it is often sufficient to manually adapt the model complexity via setting
corresponding hyperparameters, since the whole dataset is available.
However, in the case of incremental learning from data streams the
complexity of the task is a priori unknown, and therefore the ability to
dynamically grow the model becomes more important, in particularly
it provides an additional degree of freedom to handle the stability-
plasticity dilemma.

25

incremental learning

Model growth induces further challenges such as how and when
to adapt the model complexity. A proven approach is to incrementally
expand the model in such a way that the corresponding cost function
is minimized in a greedy way. Even though prototype-based models
allow to locally extend the model complexity without impairing the
global stability, it is unclear how to grow the model such that a global
cost function is optimized. The ILVQ is such a method which has often
been applied in various areas (Biehl, Bunte, & Schneider, 2013; Wersing
& Körner, 2003; Carlevarino, Martinotti, & Metta, 2000). However, the
addition of new prototypes was yet always based on heuristics. One
of our contribution within this thesis will be an incremental model
architecture which is driven by the objective of cost optimization
(Section 3.2).

The question when to grow the model is strictly coupled with the
crucial trade-off between fast model adaptation and high model com-
plexity. While fast model adaptation is desired for quick convergence, a
too quickly expanding model has not enough time to utilize the model
parameters in an optimal way, since the growth is forced to happen on
a small amount of data. Additionally, large models have a high space-
and time complexity. The timing of model growth is often based on
some hyperparameters which have to be set a priori, requiring the
consideration of different aspects such as the amount of expected data,
the limits in terms of memory and processing time and the necessity
of a quick adaptation. In this context, we provide a contribution for
one particularly popular incremental-learning algorithm, the Very Fast
Decision Tree (VFDT) (Domingos & Hulten, 2000) (Section 3.3). Con-
cretely, we propose a split-time prediction that uses local information
to dynamically decide when to grow the model, replacing the original
scheme which is based on regular intervals that have to be predefined.
Our approach does not only reduce the time complexity without a
loss of classification performance, but it also mitigates the dependence
on hyperparameters, increasing the robustness and adaptivity of the
algorithm.

3 .2 incremental learning vector quantization

Prototype-based approaches such as Neural Gas (Martinetz & Schul-
ten, 1991) or Learning Vector Quantization (LVQ) (Kohonen, 2001)
are popular options among online learning algorithms, with applica-
tions ranging from biomedical data analysis (Biehl et al., 2013), image
recognition (Wersing & Körner, 2003), to robotics (Carlevarino et al.,
2000). The ability of structure adaptation according to the complex-
ity of a given task is helpful and becomes even more crucial with
regard to streaming data, often violating the assumption of data being
i.i.d. (Carlevarino et al., 2000; Jin & Hammer, 2014). Dynamic prototype
insertions and deletions enable this flexibility intuitively. Moreover,
these can be done in an efficient and incremental way because the
model structure is only locally affected.

26

3 .2 incremental learning vector quantization

Regarding prototype-based methods, the question “How to adapt
the model complexity?” can be mapped to “Where to place new pro-
totypes?”. In case of LVQ, several proposals for prototype placement
strategies were made (Grbovic & Vucetic, 2009; Bermejo, Cabestany, &
Payeras-Capellà, 1998; Kirstein, Wersing, & Körner, 2005). Even though
they often place new prototypes in reasonable locations, they are based
on heuristics without mathematical justification and fail when their as-
sumptions do not apply. In contrast, we propose a placement strategy
which relies on the derivation of LVQ as cost function optimization;
it optimizes an approximation of these costs for improved robust-
ness. Since we confine the optimization on a limited number of recent
samples, the resulting implementation offers the advantages of an
adjustable and strictly limited memory consumption paired with lin-
ear complexity. Such linear time and constant memory conditions are
especially relevant for efficient mobile applications.

3 .2 .1 Foundation

Our method is based on the Generalized Learning Vector Quantization
(GLVQ), which frames LVQ as cost function optimization problem.

Generalized Learning Vector Quantization (GLVQ)

Given a classification task of C classes, the training set X = {(xi, yi) ∈
Rn × {c1, ..., cC}}m

i=1 is approximated by an LVQ classifier with a set
of p prototypes W = {(wj, lj) ∈ Rn × {c1, ..., cC}}p

j=1. The Voronoi
region of a prototype (wj, lj) is defined as Vj = {x ∈ X| ‖x−wj‖ ≤
‖x−wk‖ ∀ j 6= k}. A given data point xi is classified according to the
label of its closest prototype using a distance measure d such as the
squared Euclidean distance d(x, w) = ‖x−w‖2.

Sato and Yamada (1995) introduced the generalized LVQ (GLVQ)
which, in contrast to previous heuristic approaches, minimizes the cost
function

J(X, W) =
m

∑
i=1

Φ((d+i − d−i)/(d
+
i + d−i)), (3.2)

where Φ is a monotonically increasing function, e. g. the logistic func-
tion. The distance of a sample xi to its closest prototype w± of the
correct / incorrect class is denoted by d±i . By updating the prototypes
for each data point as follows

w± := w± − λ
∂J(X, W)

∂w±
, (3.3)

where λ is the learning rate, the cost function is minimized in a stochas-
tic gradient descent scheme.

3 .2 .2 Related Work

Various prototype placement strategies have been proposed for on-
line variants of LVQ. All of them propose new prototypes based on

27

incremental learning

recently misclassified instances. Kirstein et al. (2005) suggest to se-
lect the misclassified samples that are the closest to prototypes of
another class. This choice shall lead to insertions along class borders
and was demonstrated within various scenarios. Grbovic and Vucetic
(2009) cluster misclassified samples per class and select centroids of
the biggest clusters as new prototypes. A similar approach was chosen
by Bermejo et al. (1998). But instead of clustering, he determines the
Voronoi region containing the most misclassified samples of one class.
The mean of these samples is chosen as a new prototype.

3 .2 .3 Learning Architecture

The GLVQ in its original form is used as offline algorithm where the
number of prototypes is predefined and multiple iterations over the
dataset are performed during training. We adapt the GLVQ to an incre-
mental architecture termed Incremental Learning Vector Quantization
(ILVQ). It processes each instance only once and inserts new proto-
types on the fly. Every prototype wj has its own linearly decreasing
learning rate λj to approach the stability-plasticity dilemma (Kirstein
et al., 2005). As an overview, the learning architecture works as follows:

The learning architecture initially does not have any prototype,
i. e. W = ∅. For each new sample (xi, yi) we test whether yi is a new
class. If yi is not yet represented in the model, this sample is directly
added as a prototype. Otherwise, we perform the GLVQ-updates (3.3)
and store the sample with its distance information in a short-term
memory of limited size, replacing old ones if necessary. If the sample
is misclassified, we increment an error count. As soon as a predefined
number of errors occurs, the employed placement strategy provides
a new prototype which is added to the set of prototypes W. Then,
we update distances within the short-term memory. The error count
is reset and we start over again. In the remainder of the section, the
single steps are described in more detail.

Limited Sample Memory

Apart from the prototypes, we maintain a short term memory which
is defined as a list

Ψ := [(xi, yi, d+i , d−i) | i ∈ {1, ..., τ}], (3.4)

containing entries for the recent τ samples. Every additional sample
leads to the deletion of the oldest entry as soon as the limit of τ stored
entries is reached, i. e. |Ψ| = τ. Based upon Ψ, placement strategies
propose new prototypes.

The GLVQ-updates (3.3) change prototype positions and corre-
sponding sample distances. However, we neglect these changes within
Ψ for the sake of efficiency. Hence, Ψ contains approximations of the
actual distances and their quality depends on the magnitude of the
learning rates λj as well as on the window size τ. During our experi-
ments, this simplification had negligible or even no consequence on

28

3 .2 incremental learning vector quantization

the systems’ performance. We used a window size of τ = 200 for all
experiments.

Insertion Timing

The moment a new prototype is inserted is based on error counting as
already proposed in (Kirstein et al., 2005). Whenever the error count
reaches a threshold, a new prototype is added and the error count
is reset to zero. This simple and computationally cheap approach
couples growing speed strictly with systems’ performance on training
data. The learning architecture evolves fast in case of high error rate
but changes only slightly when few errors are made. Consequently, a
system will grow as long as it does not classify perfectly (i.e. infinitely
in case of overlapping classes). This can be avoided by adding new
prototypes only if the cost function is significantly reduced and / or by
removing superfluous prototypes as suggested in (Grbovic & Vucetic,
2009). However, we focus in this section solely on the placement of
new prototypes.

Insertion of Prototypes

Whenever a new prototype (w, l) is proposed by a placement strat-
egy and inserted into the network, i. e. W := W ∪ (w, l), the affected
distances stored in Ψ are updated in the following way:

∀ (xi, yi, d+i , d−i) ∈ Ψ : (3.5)
d+i := d(xi, w), if yi = l ∧ d+i > d(xi, w) (3.6)
d−i := d(xi, w), if yi 6= l ∧ d−i > d(xi, w). (3.7)

3 .2 .4 Proposed Placement Strategy: COSMOS

Our placement strategy minimizes the cost function of the recent
past based on randomly sampled prototype positions. We term the
method COSt MinimizatiOn Sampling (COSMOS). COSMOS relies on
a minimization of the GLVQ cost function which is approximated on
the basis of Ψ. Thereby, prototypes are taken from candidate positions
using a random subset Ψ̂ ⊆ Ψ of size |Ψ̂| = τ̂ only. For every candidate
(xi, yi) in Ψ̂, its effect on the costs can efficiently be approximated as
follows:

1. Extend Ŵ := {W ∪ (xi, yi) }.

2. Update Ψ as described in (3.5) but store the result temporarily
in another list Ψ′.

3. Calculate the cost function value J(Ψ′, Ŵ) on the basis of the
distances stored in Ψ′.

29

incremental learning

Algorithm 3.1 The COSMOS placement strategy

Inputs:
Ψ : sliding window data
τ̂ : sample size

Output:
Tuple consisting of the prototype position and label

Initialize:
minCost← 1
proto ← null
Ψ̂← getRandomSubset(Ψ, τ̂)

for all (x, y) ∈ Ψ̂ do
Ψ′ ← updateShortTermMemory(Ψ, (x, y))
cost← calculateCost(Ψ′)
if cost < minCost then

minCost← cost
proto ← (x, y)

return proto

Table 3.1: The evaluated placement strategies and their abbreviations.

Abbr. Prototype placement location

Closest Misclassified instance that is the closest to a prototype of another class
(Kirstein, Wersing, & Körner, 2005).

Cluster Center of the largest cluster, extracted from class-wise clustering of
misclassified samples (Grbovic & Vucetic, 2009).

Voronoi Mean of the misclassified samples within the voronoi cell with the
most misclassifications (Bermejo, Cabestany, & Payeras-Capellà, 1998).

COSMOS Sampled instance which minimizes the cost function on a sliding
window the most (proposed method).

The sample with smallest value J(Ψ′, Ŵ) is added as a new prototype
to W, and Ψ updated accordingly. The complexity is O(τ̂ · τ) and
pseudo code is depicted in Algorithm 3.1.

An early version of the learning architecture in combination with
the COSMOS placement strategy has been proposed in (Losing, 2014).
The contribution here, is a concise and formal description as well as a
richer analysis.

3 .2 .5 Experiments

We compare state-of-the-art placement strategies with our proposal.
These were already described within the Related Work Section 3.2.2
and are listed in Table 3.1. In case of Closest, the popular k-Means
algorithm was used to cluster the misclassified instances. Since k has
to be predefined, the common rule of thumb k =

√ n
2 was utilized.

However, this value was multiplied by a factor of two to achieve the

30

3 .2 incremental learning vector quantization

Figure 3.5: Artificial datasets Border and Overlap. Different classes are
coded by different colors. The Border dataset (Fig. 3.5, left) consists
of three circular classes. Each class has the same number of points
and is uniformly distributed points. The dataset Overlap (Fig. 3.5,
right) contains uniform squared distributions which overlap to various
degrees. The upper row classes have the same densities whereas, below,
the green class is three times denser than the black.

best experimental results. Each placement strategy was integrated in
our learning architecture ILVQ (see section 3.2.3). The resulting four
online learning algorithms are trained using identical conditions on
two artificial datasets with different characteristics. The main aim of
these two-dimensional datasets is to investigate how precisely the
strategies can represent the real class borders. The arrangement of
these problems is shown in Figure 3.5. We used 70% of the data for
training and the rest for testing.

Overlapping class distributions are usually the most difficult to
deal with, since a complete separation is not possible. Given an overlap,
the densest class should be preferred in the Bayesian optimum. These
challenges are incorporated in the Overlap dataset, visualized in Figure
3.5 on the right.

Results

One example of a final prototype arrangement of each strategy can be
seen in Figure 3.6. Boundaries generated by Closest deviate the most
from actual borderlines. On the Border dataset, samples are separated
very accurately at few specific spots, which are clustered with multiple
prototypes, but a significant portion of the actual border is uncovered,
causing the majority of misclassifications. Whether a sample is pro-
moted to a prototype or not, is solely based on its distance to nodes of
other classes. This leads to insertions along class borders and explains
why the algorithm often gets stuck. A prototype inserted close to a
border is very likely to cause new misclassified samples which are, in
turn, closely located to this new prototype. Therefore, many unneces-
sary insertions are used to represent class boundaries at specific areas

31

incremental learning

Figure 3.6: Networks of each placement algorithm after the train-
ing of the datasets Border (top) and Overlap (bottom). Prototypes are
symbolized by triangles and black lines represent the learned class
boundaries.

in contrast to some completely neglected parts. In case of the Overlap
dataset, this problem is even more severe and entraps the algorithm to
insert prototypes in one exclusive area. Closest is very sensitive to noise
because a single sample can cause multiple and consecutive prototype
insertions.

Results of Cluster and Voronoi are quite similar. Prototypes are
spread fairly regular and approximate the actual boundaries well. In
case of ambiguous regions, unnecessary prototypes of both classes
are placed regardless whether density proportions between classes
are existing or not. Initially, classes with higher densities are favored
because large clusters are likely to be found among them. But, as soon
as they are covered, prototypes for less dense classes are inserted too
and deteriorate the error rate again. These strategies perform simi-
larly because both compute clusters of misclassified samples and place
prototypes in their centroids. The clustering quality is crucial for the
performance, since too fine clustering leads to more prototypes than
necessary, whereas too coarse clustering causes a misplacement of pro-
totypes because centroids of too large clusters might be located within
samples of another class. Voronoi clusters spatially by incorporating
the available Voronoi cells, which are shrinking continuously as more
nodes are introduced into the net. Therefore, clustering is initially
coarse and fine at the end. The few misplaced prototypes (Fig. 3.6) are
caused by the coarse clustering at beginning of the training. Cluster,
on the other hand, utilizes k-Means, which requires the number of
clusters as parameter in advance. Since a rather high number is chosen,
coarse clustering is avoided and the number of samples per cluster
is still high enough to prevent too fine clustering. Both algorithms
are robust against noise because a high amount of accumulated noisy
points of the same class is necessary to cause an insertion there.

32

3 .2 incremental learning vector quantization

Table 3.2: Results on the artificial data. The averaged test error and
net-size of ten repetitions are depicted.

Dataset Closest Cluster Voronoi COSMOS
TE #Nodes TE #Nodes TE #Nodes TE #Nodes

Border 9.83 58.2 8.07 42.9 8.29 46.4 6.49 38.2
Overlap 34.24 29.8 25.15 25.6 25.92 26.4 21.26 21.3

∅ 22.03 44.0 16.61 34.3 17.10 36.4 13.87 29.7

1000 2000 3000 4000
#Samples

0.1

0.2

0.3

0.4

E
rr

or
ra

te

Border

COSMOS

Cluster

Closest

Voronoi

1000 2000 3000 4000
#Samples

0.2

0.3

0.4
E

rr
or

ra
te

Overlap

Figure 3.7: The learning curve for the artificial datasets. COSMOS
continuously has the lowest error rate and particularly excels on the
Overlap dataset.

COSMOS reproduces the true class borders the most accurately.
It distributes nodes regularly over the samples and balances well
the trade-off between prototypes being placed as close as possible to
samples of its own class and far from those of another class. Its cost
function optimization regards performances of all classes, which is
crucial for dealing with overlapping distributions as it can be seen by
the result on the Overlap dataset. It is able to assign ambiguous and
non-ambiguous regions correctly and thereby considers also density
differences.

Table 3.2 gives an overview of the achieved test error rates as well
as the final net size. Closest is the worst strategy on both datasets, even
though it uses the most prototypes. Voronoi and Cluster perform simi-
larly with the latter being slightly better. COSMOS delivers the lowest
error rates in spite of requiring the least number of nodes. Its lead is
especially significant on the Overlap dataset where it outperforms the
rest in every aspect.

The achieved error rates during training are depicted in Figure 3.7.
Closest quickly loses touch, whereas COSMOS is in the lead throughout
training.

Comparison against the Incremental Support Vector Machine
(ISVM)

To get a better picture of the performance of the online learning sys-
tem in combination with the proposed COSMOS insertion strategy,

33

incremental learning

Table 3.3: Comparison against the ISVM on the COIL dataset.
COSMOS-GMLVQ learns additionally the metric of the input space.
The test error (TE) and the number of used nodes are given after an
increasing amount of used training examples. Pairs of TE and the
number of nodes which are not Pareto dominated are marked in bold.

Method
TE / #Nodes
500 samples

TE / #Nodes
1000 samples

TE / #Nodes
1700 samples

COSMOS-GLVQ 16.5 / 337 9.6 / 560 6.4 / 810
COSMOS-GMLVQ 15.0 / 330 8.1 / 539 5.3 / 760
ISVM 14.4 / 1834 7.3 / 2139 4.4 / 2501

a comparison with the Incremental Support Vector Machine (ISVM)
was done (Cauwenberghs & Poggio, 2001; Diehl & Cauwenberghs,
2003; Laskov, Gehl, Krüger, & Müller, 2006). We used the ISVM im-
plementation provided by Diehl1 (Diehl & Cauwenberghs, 2003) with
Gaussian kernel (C = 1024, σ = 0.05). The ISVM stores the support
vectors, and additionally a set of reserve vectors which are the inputs
that are most likely to become support vectors in the future. This can
be seen as a counterpart to our short-term memory of recent sam-
ples Φ. Therefore, we also limited the number of reserve vectors to
a maximum of 200 samples. The ISVM was trained in a one-vs-all
scheme. We increased considerably the prototype insertion frequency
to achieve maximum performance. We evaluate COSMOS also in com-
bination with the Generalized Matrix LVQ (GMLVQ) (Schneider, Biehl,
& Hammer, 2009), which is more powerful in comparison to the GLVQ
because it incorporates metric learning of the input space.

We evaluated our approach on the basis of the well-known real-
world benchmark COIL-100 (Nene, Nayar, & Murase, 1996). This RGB-
image dataset consists of 72 views for 100 objects each. These are
placed in the coordinate origin and rotated around the Z axis in steps
of 5 ◦. The images have a size of 128 × 128 pixel and we encoded
them on the basis of the RG-chromaticity space (Jain & Li, 2005) using
21 dimensions. As done by Wallraven, Caputo, and Graf (2003), we
use a subset of 17 views per object, resulting in views every 20 ◦, for
training. Table 3.3 shows the accuracy as well as the stored number of
prototypes / support vectors after an increasing number of training
examples.

3 .2 .6 Discussion

Our incremental learning architecture combines GLVQ with the COS-
MOS placement strategy, optimizing the cost function on the basis of a
limited sample history. The comparison on artificial and image based
datasets showed the superiority of the proposed placement strategy
over current heuristic-based strategies. The optimization has a lin-
ear complexity and enables the handling of overlapping distributions.

1 Code at https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB

34

https://github.com/diehl/Incremental-SVM-Learning-in-MATLAB

3 .3 local split-time prediction

Paired with the GMLVQ, our architecture achieves similar results as the
well-established ISVM, but with a significantly sparser model. Thus, we
provide a novel competitive local incremental learning scheme, which
is strictly based on cost function optimization, mitigating the challenge
how to increase model complexity in a popular distance-based online
learning methodology.

The ILVQ architecture can further be improved in terms of a more
sophisticated way to determine the timing to prototype insertions.
New prototypes should only be added if the performance gain justifies
the burden of additional model parameters. Techniques such as the
Akaike Information Criterion (AIC) or the Bayesion Information Crite-
rion (BIC) (Akaike, 1998; Liddle, 2007) could be used to quantify the
trade-off between performance and model complexity. Furthermore,
the number of added prototypes is currently unlimited, which is an
issue in case of lifelong-learning scenarios. One approach could be to
delete prototypes as soon as a predefined limit is reached. The deletion
of prototypes also paves the way to apply prototype-based methods
within non-stationary environments, where they can provide a sparse
and efficient alternative to current methods, particularly considering
their high degree of transparency and interpretability, a crucial require-
ment for real-world applications. In the context of LVQ, the removal of
prototypes has also been considered in a purely heuristic way (Grbovic
& Vucetic, 2009; Fischer, Hammer, & Wersing, 2015a). Analogous to
COSMOS, a deletion strategy could be implemented which minimizes
the cost function in a similar manner.

3 .3 local split-time prediction

Numerous state-of-the-art algorithms for supervised learning from
data streams are based on decision trees due to their high efficiency
and accuracy (Losing, Hammer, & Wersing, 2018b). One of the most
prominent is the Very Fast Decision Tree (VFDT) (Domingos & Hul-
ten, 2000), an incremental, anytime decision tree induction algorithm,
capable of learning from massive data streams. Incremental decision
trees grow their model in terms of adding new splits which greedily
optimize the class impurity within their leaves. The VFDT relies on
the Hoeffding bound to decide when to grow its model. Concretely,
it verifies whether enough evidence has been collected such that the
currently best split-attribute is indeed the best one with a predefined
probability. This formal foundation enables the construction of trees
which are provably similar to those of classical batch algorithms such
as C4.5 (Quinlan, 1993) or CART (Breiman, Friedman, Olshen, & Stone,
1993). However, the continuous repetition of the mention verification
process is usually the most time-consuming step of the algorithm
(Domingos & Hulten, 2000). To reduce the computational load of these
split-attempts the VFDT incorporates the hyperparameter nmin, control-
ling the number of examples a leaf has to accumulate before a new
split-attempt is performed. Even though this regular approach reduces
the computational complexity, it also leads to a split-delay, since more

35

incremental learning

examples are accumulated than the strict minimum. Consequently,
the tree growth is hampered, often resulting in a lower classification
performance.

Instead of the periodic split-attempts, we propose to predict the
local split-time, i.e. the number of examples a leaf needs to accumulate
before a split is performed, avoiding unnecessary attempts when splits
are unlikely to be performed. Concretely, we use the class distributions
of previous split-attempts to approximate the minimum time until the
Hoeffding bound is met. This cautious approach splits by design with
a low delay, but still substantially reduces the number of split-attempts.
Our approach does not only increase the efficiency of the algorithm,
but moreover its robustness in terms of a reduced dependence on the
setting of nmin.

Recently, split-time prediction was solely evaluated on the basis of
the classification performance (Garcia-Martin, 2017), which is not only
imprecise, but can even be misleading in case of overfitting. Instead,
we formally define the term split-delay, which exactly measures the
delay caused by the split-time prediction. On this basis, we perform
a detailed evaluation including an analysis of the trade-off between
split-delay and the number of split-attempts, the execution time and a
statistical assessment of the resulting classification accuracy. Thereby,
the largest of the commonly applied stream learning benchmarks
are evaluated. The experiments show that our proposal significantly
reduces the run time without a loss in performance.

3 .3 .1 Foundation

As usual, decision trees consist of trees where each interior node is
associated to an attribute j ∈ {1, . . . , n}. In case of a discrete attribute
domain Xj = {aj

1, . . . , aj
vj}, each interior node has vj children which are

mapped to the vj different values of Xj. Leaves maintain a distribution
over the class labels {c1, . . . , cC}. A given data point x is assigned to
one leaf node according to the match of the attributes of x and the
values of the tree’s nodes, starting from the root. Since the inference
of optimum decision trees is NP-hard, greedy approaches iteratively
grow a tree based on impurity measures of the current nodes such as
the entropy or the Gini index. In contrast to batch scenarios, where the
best split-attributes are based on the whole training data, incremental
decision tree induction constructs a tree subsequently based on a
small sample of the data and generates splits on the fly. Algorithm 3.2
shows the pseudocode of the basic algorithm. Thereby, the impurity
measure per leaf l can be given as the classical information gain, for
example: For a set M of labeled data pairs (x, y), the entropy is defined
as H(M) = −∑C

j=1 pj log2 pj where pj is the probability of class j in
M given by its relative frequency. Every discrete-valued attribute j
induces a split into vj leaves according to the possible attribute values

36

3 .3 local split-time prediction

Algorithm 3.2 Incremental decision tree induction

Inputs:
S : stream

Initialize:
Let Tr be a tree with a single leaf l1 (the root)
Let S(l1) be the sufficient statistics l1 collects
Let C(l1) := (1

c , . . . , 1
c) be the initial class distribution

of l1
for all (x, y) ∈ S do

assign (x, y) to leaf li according to matching attributes
update S(li) with (x, y)
update C(li) with y
if criterion to split is fulfilled(*) then

choose best split attribute j of li depending
on impurity(S(li))

split li along all discrete attribute values of j

aj
1, . . . aj

vj . The weighted entropy of a split of M along j is given by

Hj(M) =
vj

∑
k=1

|M(aj
k)|

|M| H(M(aj
k)),

where M(aj
k) := {(x, y) ∈ M | xj = aj

k}. Correspondingly, the infor-
mation gain is defined as Gj(M) = H(M) − Hj(M). The attribute
providing the maximum gain is chosen for the split. In case of binary
splits, we alternatively denote the weighted entropy in terms of both
sets M(aj

1) and M(aj
2)

Hj(M(aj
1),M(aj

2)) =

|M(aj
1)|H(M(aj

1)) + |M(aj
2)|H(M(aj

2))

|M(aj
1)|+ |M(aj

2)|
.

(3.8)

Please note, that incremental decision trees usually do not store the
raw samples (xt, yt) in the leaf. Instead, they derive sufficient statistics
in the form of class-conditional attribute-value occurrences, enabling
the calculation of the information gain with a reduced time- and space
complexity.

The Very Fast Decision Tree (VFDT)

The VFDT is an incremental decision tree induction algorithm. The
moment when a new split is performed is crucial with respect to
learning-speed, tree complexity and overfitting. The VFDT splits a leaf
only if enough evidence has been seen to guarantee that the chosen
split-attribute is the best with a predefined probability. This mathemat-
ically sound approach distinguishes it from other incremental learning

37

incremental learning

trees, which heuristically decide to split based on a predefined number
of examples (Saffari et al., 2009) or a predefined impurity threshold
(Wang, Wan, Cheng, & Li, 2009). The VFDT relies on the Hoeffding
bound, therefore it is also known under the name Hoeffding tree.
Given a continuous random variable r of range R and its observed
mean r̄ after m̂ independent observations, the Hoeffding bound states
that with probability 1− δ the true mean of r is at least r̄− ε where

ε =

√
R2ln(1/δ)

2m̂
.

Concretely, the VFDT determines the two attributes j1, j2 with the
highest information gain Gj1 , Gj2 . If their gain difference ∆G = Gj1 −
Gj2 is larger than ε, then Gj1 is indeed the best split-attribute with
probability 1− δ and a split based on attribute j1 is performed.

The VFDT also splits if too many examples are necessary to decide
on the best attribute. These so-called tie-splits occur when several
attributes have a similar gain and are necessary to avoid stunted tree
growth, which can lead to a performance degradation particularly
at the early stages of learning (Holmes, Richard, & Pfahringer, 2005).
The number of examples required for a tie-split is controlled by a
parameter τ which is set in terms of the Hoeffding bound. Formally,
a tie-split is performed when ∆G < ε < τ. In other words, a tie-split
is performed after R2ln(1/δ)

2τ2 examples. Concretely, using the default
parameter setting (τ = 0.05, δ = 1e − 7) and assuming a range of
R = 1 a tie-split will be done after 3224 examples, which is rather a
small amount particularly considering Big Data tasks. Tie-splits are
supposed to occur rarely but tend to happen very often in practice
and can even be harmful because they sometimes cause imbalanced
trees (Holmes, Richard, & Pfahringer, 2005). The split-criterion ((*) in
Algorithm 3.2) of the VFDT is given as pseudocode in Algorithm 3.3.

Algorithm 3.3 Split criterion of the VFDT

Inputs:
S(li) : statistics of leaf li
nmin: time interval for split tests

Output:
Boolean whether li should be split or not

if |S(li)| mod nmin = 0 then
determine the attributes j1, j2 with highest gain Gj1 , Gj2
return (∆G > ε or ∆G < τ)

else
return false

Numeric Attributes

Incremental decision trees are required to store sufficient statistics in
the leaves such that the class distribution resulting from a split can be

38

3 .3 local split-time prediction

0 20000 40000
#Samples

0.5

0.6

0.7

0.8

E
rr

or
ra

te
RTG

nmin = 50

nmin = 1000

nmin = 3000

0 20000 40000
#Samples

0.425

0.450

0.475

0.500

0.525

Cover type

Figure 3.8: The error typically increases with higher nmin values, due
to a slower tree growth. The gap with respect to the error rate varies
depending on the dataset.

determined. This is straightforward for nominal attributes since the
number of different values is limited. Usually the algorithm stores for
each attribute the class-conditional distribution of the values. However,
for continuous attributes this is not applicable due to the potentially
infinite number of different values.
The VFDT was originally defined for nominal attributes only, but var-
ious proposals have been made to extend it for continuous numeric
attributes (Pfahringer, Holmes, & Kirkby, 2008; Jin & Agrawal, 2003;
Gama, Rocha, & Medas, 2003; Holmes, Richard, & Pfahringer, 2005). A
common approach is to fit a probability distribution for each attribute
instead of storing the raw samples to reduce the required memory.
We use the default setting in the Massive Online Analysis framework
(MOA) (Bifet, Holmes, Kirkby, & Pfahringer, 2010), which approxi-
mates attribute distributions with a single Gaussian. A predefined
number of v split values (default is v = 10) is equidistantly distributed
on the observed attribute range. This lightweight approach, initially in-
troduced in (Pfahringer et al., 2008), is efficient and known to perform
well in practice (Holmes, Richard, & Pfahringer, 2005).

Split-Delay vs. the Number of Split-Attempts

Ideally, the VFDT would test after each example whether the condition
∆G > ε is fulfilled. However, as already mentioned by Domingos and
Hulten (2000), the necessary recomputation of all information gains
is a very time-consuming , and therefore, not applicable in practice.
To reduce the load, the authors introduced the hyperparameter nmin
to define the number of examples a leaf has to accumulate before a
new split-attempt is done. Even though this periodic approach reduces
the computational complexity for tree construction by a factor of nmin,
it comes at the cost of an effectively slower tree growth and usually
a lower performance, since more examples are accumulated than the
strict minimum (Kirkby, 2007). Figure 3.8 shows some examples where
the mentioned relation can be observed. We refer to the number of
surplus examples as split-delay. The setting of nmin controls a trade-off
between computational complexity and classification performance, or

39

incremental learning

more precisely, between the number of split-attempts and the split-
delay.
In the following we fromally define the term split-delay. Given a leaf l,
its true minimum split-time t̂l and a split-time prediction function F
which uses some leaf-specific data Dl to estimate the local split-time.
Dl is obtained from the previously unsuccessful split-attempt and
depends on the corresponding time, however we omit this detail in
favor of a clear notation. Whenever the predicted time F(Dl) is passed,
a new split-attempt is performed. This process is repeated until l is
split. The split-delay is given as

dl =
b

∑
i=1

Fi(Dl)− t̂l ,

where b is the number of required split-attempts and F1 = nmin is
predefined. Hence, the initial split-attempt is always performed after
nmin examples and the split-time prediction is only used if no split
initially occurs. Particularly, the split-delay of nodes splitted at the
initial attempt (t̂l <= nmin) is the same for all split-time prediction
functions. Please note, that tie-splits have by definition no split-delay,
since leaves are always splitted as soon as the maximum number of
examples is accumulated.
We determine the true minimum split-time t̂l by using the VFDT
with nmin = 1, in other word it tries to split after each example, and
has therefore by definition no split-delay. Concretely, we construct
a reference tree which is associated with its set of L split-nodes at
the end of learning. The average split-delay of a F is simply given as

1
|L| ∑l∈L dl

1.

Split-time Prediction

The goal of split-time prediction is to minimize the split-delay and
the number of split-attempts. In the VFDT algorithm, the parameter
nmin globally controls the time interval between split-attempts without
utilizing any information of the processed data. Split-time predictions
use the local statistics of the leaves to increase the efficiency. The VFDT
requires i.i.d. data for the Hoeffding bound to be valid. In such cases,
the central limit theorem states that the more examples are accumu-
lated within a leaf the more precise is the estimation of the true local
class distribution, the two best attributes and the corresponding differ-
ence in information gain ∆G. Using such information, split-attempts
can be avoided when successful split-attempts are unlikely or can be
encouraged in the contrary case. These guarantees are not given in the
case of concept drift, however, past or at least recent data has still some
predictive value in these scenarios which in addition benefit from local
adaptation.
Split-time predictions are only performed when the initial split-attempt
fails (after nmin examples). From then on, we continuously predict the

1 The prediction function F is continuously applied during the construction of the
reference tree to measure the split-delay.

40

3 .3 local split-time prediction

local split-time. We bound the maximum predicted split-time with the
number of examples required for a tie-split nmax = R2ln(1/δ)

2τ2 . Algorithm
3.4 shows the pseudocode for constructing a VFDT with split-time pre-
diction and the corresponding splitting-criterion is given in Algorithm
3.5.

Algorithm 3.4 VFDT with split-time prediction

Inputs:
S : stream
nmin: time interval for split tests

Initialize:
Let Tr be a tree with a single leaf l1 (the root)
Let S(l1) be the sufficient statistics l1 collects
Let C(l1) := (1

c , . . . , 1
c) be the initial class distribution of l1

Let pt(l1) := −1 be the predicted split-time for l1
for all time steps t do

assign (xt, yt) to leaf li according to matching attributes
update S(li) with ((x)t, yt)
update C(li) with yt
if VFDT-split-time-prediction-split-criterion(S(li),nmin,pt(li)) then

choose best split attribute j of li depending
on impurity(S(li))

split li along all discrete attribute values of j

Algorithm 3.5 Split criterion with split-time prediction of the VFDT

Inputs:
S(li) : statistics of leaf li
nmin: time interval for split tests
pt(li): predicted split-time for li

Output:
Boolean whether li should be split or not

if |S(li)| mod nmin = 0 and pt(li) = −1 or |S(li)| = pt(li) then
determine the attributes j1, j2 with highest gain Gj1 , Gj2
if (∆G > ε or ∆G < τ) then

return true
else

pt(li) :=min(split-time-prediction(), nmax)
return false

else
return false

3 .3 .2 Related Work

Local split-time predictions have been only recently proposed by
Garcia-Martin (2017). The authors assume that ∆G remains constant

41

incremental learning

between the two best split attributes and simply predict the number
of necessary examples given by the Hoeffding bound

FCGD = min
(

R2ln(1/δ)

2∆G2 , nmax

)
.

They showed that this intuitive and simple approach drastically re-
duces the run time but also diminishes the accuracy of the VFDT.
In case of an increased ∆G, this method distinctly overestimates the
split-time because the number of examples depends quadratically on
∆G. Our approach is more precise, since it incorporates more infor-
mation for its prediction, namely the resulting class-distributions of
the currently best split. Furthermore, its cautious predictions result
in a substantially lower split-delay, providing the same classification
performance as the original VFDT.

A lot of work has been done to improve the VFDT in different
aspects. It was adapted to specifically deal with noisy datasets (Yang
& Fong, 2011) as well as to one-class scenarios (Li, Zhang, & Li, 2009).
Holmes, Kirkby, and Pfahringer (2005) pointed out that tie-splits, oc-
curring when the best attribute is not determined within a maximum
number of examples, are done very frequently and sometimes lead
to skewed trees. They mitigated this issue by increasing stepwise the
maximum number of required examples after each tie-split.

Gama et al. (2003) incorporated Naive Bayes (Domingos & Pazzani,
1997) classifiers within the leaves to gain more classification power, as
proposed by Kohavi (1996) for batch trees. However, Holmes, Kirkby,
and Pfahringer (2005) showed for various tasks that the initially more
accurate Naive Bayes leaves are outperformed by majority voting in
the long run. They applied a simple adaptive strategy, choosing the
classification method which was more accurate in the past, to get
the best of both worlds. Bifet, Holmes, Pfahringer, and Frank (2010)
used the Perceptron algorithm (Rosenblatt, 1958) instead to reduce the
computational load while maintaining the classification gain.

Even though the Hoeffding bound assumes i.i.d. data, a lot of
publications adapted the VFDT for streams incorporating changes
in the distribution. The first was the Concept-Adapting VFDT by
Hulten et al. (2001), which grows alternative sub-trees as soon as
there is evidence that previously chosen split-attributes are becoming
inappropriate and replaces them when they are less accurate than the
alternative ones. Bifet and Gavaldà (2009) generalized this approach
and used explicit drift detection to initiate the growth of sub-trees
and were able to achieve better results. The VFDT was also applied
in ensemble methods, a very popular approach to deal with non-
stationarity. Bifet, Holmes, and Pfahringer (2010) insert a drift detector
in each single VFDT and reset the classifier when the detection fires.
The resulting method called Leveraging Bagging performed well on
numerous datasets.

Publications tackling the efficiency of the VFDT focused so far
rather on the implementation instead of the core algorithm. A paral-
lelized version of the VFDT called Vertical Hoeffding Tree performs

42

3 .3 local split-time prediction

the attribute-specific tasks such as collecting statistics in the nodes as
well as calculating the gain of corresponding splits in a distributed way
(Kourtellis, Morales, Bifet, & Murdopo, 2016). The gained speed-up
scales with the number of attributes and the amount of applied CPU
cores. Recently, an optimized but sequential C++ implementation was
introduced by Bifet et al. (2017), able to gain a distinct speed-up in
comparison to the versions available in Very Fast Machine Learning
(VFML), the original framework by Domingos and Hulten, and Massive
Online Analysis (MOA) (Bifet, Holmes, Kirkby, & Pfahringer, 2010), a
well established open source framework for data stream mining.

Our enhancement of the VFDT is independent from already pub-
lished work, hence, it can be integrated in any of them, providing the
same benefits as it does for the original algorithm. In particular, it
can be combined with already optimized or parallel implementations
(Kourtellis et al., 2016; Bifet et al., 2017) to increase the efficiency even
further.

3 .3 .3 Proposed Method: OSM

One split-attempt implies the calculation of the information gains of
all evaluated splits. In particularly, the class distribution after each
evaluated split has to be determined. In case of an initially failed
split-attempt, we reuse this information to predict the split-time. More
precisely, on the basis of the class-distributions resulting from the
currently best split, we approximate the minimum amount of required
additional examples until the Hoeffding bound is met. Or put differ-
ently: assuming that the attributes j1 and j2 deliver the highest gain
Gj1 and Gj2 , we estimate how many examples are at least necessary
to sufficiently reduce Gj1 such that ∆G gets large enough. The estima-
tion assumes that the class distribution resulting from the best split
remains similar and that Gj2 is approximately constant. We term our
method One-Sided Minimum (OSM). More specifically, the weighted
entropy of the currently best split j1 is given by Hj1(M). For simplic-
ity, we consider only binary splits (the approach can be extended to
multiway-splits in a straight-forward way) and use Hj1(M(aj1

1), M(aj1
2))

(see equation 3.8) as alternative to denote the weighted entropy.
How many examples need to be added such that this weighted

entropy becomes sufficiently small? The entropy is reduced most if
examples are added to the most frequent class. For the weighted
entropy, an additional degree of freedom is the choice between M(aj1

1)

or M(aj1
2). An exact solution how to best distribute m novel samples

needs to calculate 2m possible solutions. A greedy approach which
incrementally adds examples to the class distribution minimizing the
weighted entropy the most, requires 2m calculations of the entropy.
Instead, we propose to initially determine the lowest of both entropies
M(aj1

1), M(aj1
2) and to incrementally add examples to this set until ∆G

is large enough.

43

incremental learning

We argue in Section 3.3.3 that this approximation usually yields
the same solution as the greedy search. The returned values are equal
or larger than the exact solution which is sufficient for our purpose,
since predicting the minimum is already a cautious approach. A naive
implementation of this approach requires still m entropy calculations.
However, the appealing property of this approach is that it can be
stated as an equation and solved on the basis of root-finding algo-
rithm. For this purpose we used the proven method of Brent (Brent,
1973), a root-finding algorithm which combines the bisection method,
the secant method and inverse quadratic interpolation. In contrast
to Newton’s method, it does not require derivatives and converges
superlinearly for well-behaved functions. Formally, we search a root
of the function

f (x) = Hj2(M)− H(E(M(aj1
1), x), M(aj1

2))−
√

R2ln(1/δ)

2|M|+ x
(3.9)

in the range (0, nmax], where E(M, x) is a function which increases the
most frequent class of M by x samples. Thus, m is given as root of
f (x). In advance, we verify that f (0) and f (nmax) have different signs
to ensure a solution exists in the desired interval. In our experiments,
the solution was usually found in few iterations (on average 12.8).
This strategy is very cautious and predicts low values leading to
unnecessary split-attempts when a split gets likely. Hence, we bound
the minimum prediction by nmin. The final prediction is given by

FOSM

{
nmax if f (0) f (nmax) > 0
max(nmin, m) otherwise.

The complexity of our prediction function is dominated by the entropy
calculations and therefore given as O(C). The OSM approach is in
general pessimistic in its predictions, highly valuing a low split-delay in
favor of reduced split-attempts. However, the number of split-attempts
can be simply reduced by scaling its predictions for tasks where low
split-delay are of secondary importance.

Theoretical Analysis

In the following, we show that OSM yields for the most part equivalent
estimates as the greedy search. To keep the notation clear we define
M1 = M(aj1

1) and M2 = M(aj1
2). Let us remind that the weighted

entropy is given as

H(M1, M2) =
|M1|H(M1) + |M2|H(M2)

|M1|+ |M2|
.

Adding one example to a class distribution has a dwindling effect
on the class frequencies and consequently on the entropy. Hence,
treating both single entropies as constants, we can determine the
partial derivatives of H(M1, M2), where with respect to the size of

44

3 .3 local split-time prediction

each class distribution

∂H(M1, M2)

∂|M1|
=
|M2|(H(M1)− H(M2))

(|M1|+ |M2|)2

∂H(M1, M2)

∂|M2|
=
|M1|(H(M2)− H(M1))

(|M1|+ |M2|)2 .

The sign of the gradient depends only on the difference between
the single entropies H(M1) − H(M2) and vice versa. Therefore, if
the entropies were constant, the greedy search would yield the same
solution as OSM, always adding examples to the class distribution
having initially the lower entropy.
Taking the reduction of the entropies into account, we determine under
which circumstances the solutions deviate. Assume H(M1) < H(M2)
and we iteratively add examples exclusively to M1. Suppose we add
one example to the most frequent class of M1, leading to the new
distribution M′1 and the corresponding entropy H(M′1) = H(M1) + δ1,
where δ1 < 0. Analogously for M2 we get M′2 and H(M′2) = H(M2) +
δ2. The denominator of H(M1, M2) is unaffected by the choice, thus
our solution deviates from the greedy search when

|M2|δ2 + H(M′2) < |M1|δ1 + H(M′1)
(|M2|+ 1)δ2 + H(M2) < (|M1|+ 1)δ1 + H(M1)

(|M2|+ 1)δ2 < (|M1|+ 1)δ1 + H(M1)− H(M2)

(|M2|+ 1)δ2 has not only to be smaller than (|M1|+ 1)δ1, but it addi-
tionally has to make up for the entropy difference H(M1)− H(M2),
which is negative since we assume that H(M1) < H(M2). Since δk

decreases with increasing size of the distribution, the term |M(aj1
k)|δk

remains approximately constant. Hence, the only likely scenario that
our method deviates from the greedy search is when initially H(M1) ≈
H(M2). Please note, that the greedy search unlikely switches between
M1 and M2 because the entropy difference increases when additional
examples are distributed.

3 .3 .4 Experiments

We used large data streams consisting of well known artificial and
real-world benchmarks. Table 3.4 shows their main characteristics and
we briefly describe them in the following. More information about the
datasets is given in Section A.2.

Poker Randomly drawn poker hands are represented by five cards
each encoded with its suit and rank. The class is the poker hand
itself such as one pair, full house and so forth. We used the
version presented by Bifet, Pfahringer, Read, and Holmes (2013),
containing virtual drift via sorting the instances by rank and suit.

Random Tree A random decision tree is constructed by randomly
splitting along the attributes as well as assigning random classes

45

incremental learning

Table 3.4: Various Characteristics of the considered datasets. Some
real-world datasets are sorted (Poker) or shuffled (MNIST8M) and
therefore it is clear whether they contain concept drift or not. In the
case of Rialto and Conver Type, concept drift was detected based on
the method described in Section 4.3.

Dataset #Samples #Feat. #Class Type Concept drift

Poker 829K 10 10 artificial Yes
Random Tree 5M 200 25 artificial No
RBF 10M 100 50 artificial No
LED-Drift 10M 24 10 artificial Yes
Rialto 82K 27 10 real-world Yes
Airline 539K 7 2 real-world ?
Cover Type 581K 54 7 real-world Yes
MNIST8M 8.1M 782 10 real-world No
HIGGS 11M 28 2 real-world ?

to each leaf. Numeric and nominal attributes are supported and
the tree depth can be predefined. Instances are generated by
uniform sampling along each attribute. This dataset is i.i.d. and
was initially proposed by Domingos and Hulten (2000).

Radial Basis Function (RBF) Gaussian distributions with random ini-
tial positions, weights and standard deviations are generated in
d-dimensional space. The weight controls the partitioning of the
examples among the Gaussians. This dataset is i.i.d.

LED-Drift Each instance is reperesented by 24 boolean features with
17 of them being irrelevant. The remaining seven features cor-
respond to segments of a seven-segment LED display. The goal
is to predict the digit displayed on the LED display, where each
feature has a 10% chance of being inverted. Drift is generated by
swapping the relevant features with irrelevant ones.

Rialto Ten of the colorful buildings next to the famous Rialto bridge
in Venice are encoded in a normalized 27-dimensional RGB
histogram (Losing et al., 2018a). We obtained the images from
time-lapse videos captured by a webcam with fixed position.
The recordings cover 20 consecutive days during may-june 2016.
Continuously changing weather and lighting conditions affect
the representation.

Airline The task is to predict whether a given flight will be delayed or
not based on seven attributes encoding various information on
the scheduled departure. This dataset is often used to evaluate
concept drift classifier and is temporally ordered.

Cover Type Cartographic variables such as elevation, slope, soil type,
characterizing 30× 30 meter cells, are assigned to different forest
cover types. Only forests with minimal human-caused distur-

46

3 .3 local split-time prediction

Table 3.5: The evaluated approaches and their abbreviations.

Abbr. Method

VFDT The standard VFDT with periodic split-attempts
CGD VFDT with split-time prediction based on the gain

difference (Garcia-Martin, 2017)
OSM VFDT with split-time prediction based on the class

distribution (proposal)

bances were used, so that resulting forest cover types are more a
result of ecological processes.

MNIST-8M Loosli, Canu, and Bottou (2007) used pseudo-random de-
formations and translations to enlarge the well-known MNIST
database (Lecun, Bottou, Bengio, & Haffner, 1998). The ten hand-
written digits are encoded in 782 binary features. The dataset is
already shuffled in its original publication and therefore contains
no concept drift.

HIGGS This task consists of eleven million simulated particle colli-
sions and was initially published by Baldi, Sadowski, and White-
son (2014). The goal of this binary classification problem is to dis-
tinguish between a signal process producing Higgs bosons and
a background process. The data consist of low-level kinematic
features recorded as well as some derived high-level indicators.

The experiments are performed within the MOA framework and the
split-time prediction approaches were integrated within its VFDT
implementation. The classification is based on the majority class in
the leaves and we used and the default parameters of the VFDT
(nmin = 200, τ = 0.05, δ = 1e − 7) to provide comparable results
to other publications. We investigate how our method performs in
stationary and non-stationary environments by performing two ex-
periments for each dataset. One uses the original order of the data,
whereas the other shuffles the data to ensure stationarity. The datasets
RBF, Random Tree and MNIST8M are originally shuffled, therefore, we
report their result only in the shuffled experiments. Table 3.5 lists the
algorithms that are used in the experiments. The split-delay of CGD is
too large in comparison to the other methods2, therefore, its uncom-
petitive results are neglected for the most part in benefit of reasonably
scaled plots. However, we always report its average performances and
include it in the crucial analysis of the classification error.

Split-delay versus split-attempts

In the following, we investigate the trade-off between the split-delay
and the number of split-attempts achieved by the VFDT and our ap-
proach OSM. We generate Pareto fronts between the split-delay and

2 CGD has an average split-delay of 7600, OSM has a delay of 96.

47

incremental learning

Table 3.6: The number of split-attempts as well as average split-delays
of VFDT and OSM. The results for the shuffled data are given at the
top, whereas those using the original order are at the bottom. OSM
requires always fewer attempts and provides similar split-delays. CGD
has the smallest amount of attempts but also an intolerable high split
delay (On average 701 attempts, 7675 split-delay [nmin = 200]).

nmin = 50 nmin = 200
Dataset #Attempts ∅Delay #Attempts ∅Delay
(shuffled) VFDT OSM VFDT OSM VFDT OSM VFDT OSM

Poker 16570 1732 26 27 4138 1382 92 96
Random Tree 69900 13883 18 29 17102 7660 94 98
RBF 170487 1921 22 28 42702 1640 118 125
LED-Drift 199933 11327 23 20 49897 9687 111 113
Rialto 1644 273 45 45 409 235 90 50
Airline 8904 6665 15 13 1821 1811 103 103
Cover type 11613 1390 32 26 2900 1049 86 55
MNIST8M 161975 13283 20 21 40420 11859 104 107
HIGGS 68966 24725 24 56 17564 14889 103 118

∅ 78888 8355 25 29 19661 5579 100 96

nmin = 50 nmin = 200
Dataset #Attempts ∅Delay #Attempts ∅Delay
(original) VFDT OSM VFDT OSM VFDT OSM VFDT OSM

Poker 16133 2662 20 132 3968 1750 93 155
LED-Drift 199927 11154 23 21 49891 9528 111 113
Rialto 1643 243 25 5 409 211 120 120
Airline 8467 6631 5 5 1618 1618 98 98
Cover type 11028 1703 21 1113 2727 1098 100 934
HIGGS 219624 74730 22 42 55992 46559 88 97

∅ 76137 16187 19 219 19101 10127 102 252

the number of split-attempts by varying the parameter nmin in the
range of [50, 500] 3. Figure 3.9 shows the corresponding results for
various datasets, whereas Table 3.6 lists the values for all dataset with
nmin ∈ {50, 200}. The VFDT requires clearly more attempts particu-
larly for low nmin values. Its average split-delay converges as expected
around nmin

2 . Even though it is able to achieve an arbitrary low split-
delay by definition, the computational cost increases drastically. In
case of stationarity, the Pareto fronts of OSM are always more optimal
than those of VFDT. OSM achieves a similar split-day with substan-
tially fewer split-attempts. The discrepancy is especially high for low
nmin values, where the number of split-attempts performed by OSM
is hardly affected. The split-delay smoothly adapts to corresponding
nmin values. This is confirmed by the average results given in Table 3.6.

3 Please note, that OSM still uses nmin as minimum prediction bound.

48

3 .3 local split-time prediction

0 20000 40000 60000
Split-attempts

0

100

200

300

400

500

S
pl

it
-d

el
ay

RTG shuffled

VFDT

OSM

0 50000 100000 150000
Split-attempts

0

100

200

300

400

500
RBF shuffled

0 50000 100000 150000 200000
Split-attempts

0

100

200

300

400

500

S
pl

it
-d

el
ay

LED-Drift

0 50000 100000 150000 200000
Split-attempts

0

100

200

300

400

500
LED-Drift shuffled

0 2500 5000 7500 10000
Split-attempts

0

200

400

600

800

1000

S
pl

it
-d

el
ay

Cover type

0 2500 5000 7500 10000
Split-attempts

0

200

400

600

800

1000
Cover type shuffled

0 5000 10000 15000
Split-attempts

0

100

200

300

400

500

S
pl

it
-d

el
ay

Poker

0 5000 10000 15000
Split-attempts

0

100

200

300

400

500
Poker shuffled

0 50000 100000 150000 200000
Split-attempts

0

100

200

300

400

500

S
pl

it
-d

el
ay

HIGGS

0 20000 40000 60000
Split-attempts

0

100

200

300

400

500
HIGGS shuffled

Figure 3.9: Trade-off between the number of split-attempts and the
split-delay resulting from varying nmin in [50, 500]. A star highlights
results which are achieved with the default setting of nmin = 200. OSM
also provides better results for data with concept drift (original order)
with the exception of Cover type.

49

incremental learning

Table 3.7: Characteristics of the split-time distributions of VFDT
(nmin = 200). The average split-time varies due to the difficulty of
the task, the number of classes as well as the amount of noise / over-
lap.

Dataset (original) ∅ Split-time Bound-splits Tie-splits

Poker 18.6K 12 21
Random Tree 3.2K 508 5
RBF 78.1K 2 102
LED-Drift 30.1K 41 180
Rialto 19.7K 2 1
Airline 1.9K 27 27
Cover type 19.1K 6 16
MNIST8M 34.1K 13 168
HIGGS 3.2K 50 2546

The split-delay of OSM is similar or even lower (for nmin = 200), but
the number of split-attempts is drastically reduced.
OSM also performs well in non-stationary environments with the ex-
ception of Cover type, where the split-delay is higher in comparison
to VFDT. In contrast to all other datasets, it is not able to reduce the
split-delay with lower values of nmin. In this particularly case, the
best split-attribute drastically changes, violating the assumptions of
the approach. Hence, one weak point of the method is that it rarely
overestimates the split-time in non-stationary environments.
The relative reduction of split-attempts by OSM varies depending on
the dataset, mainly caused by the corresponding split-time distribu-
tion. A high average split-time increases the leeway for the prediction
algorithms to gain an advantage by predicting times far into the future.
Table 3.7 shows the split-time distributions as well as the number
of bound- and tie-splits. The correlation between the reduction in
split-attempts and the average split-time is quite pronounced, e.g. RBF
versus HIGGS. The split-time depends on the data structure itself and
the contained amount of noise / overlap. A high amount of noise re-
quires more examples to confidently determine the best split-attribute,
whereas splits are generated quickly for data that can easily be dis-
criminated along few dimensions. Datasets with a high proportion of
bound-splits and a low average split-time as Random Tree are rather
easy because the best split-attributes are quickly determined. The
opposite is the case for datasets with a high percentage of tie-splits
such as RBF and HIGGS. However, the fact that RBF and HIGGS have
still very different split-times is explained by the different amount of
classes within the datasets. The number of examples the algorithm
waits until a tie-split is performed depends on the number of classes
within the leaf4. Hence, the split-time of tie-splits correlates with the
number of classes in the corresponding dataset, making split-time
predictions particularly appealing for multi-class classification tasks.

4 The range of the entropy depends on the number of classes (R = log c).

50

3 .3 local split-time prediction

Table 3.8: Top: Average error rate (%) and corresponding stan-
dard deviations obtained from 100 repetitions, each time reshuf-
fling the data. The best results are marked in bold. Results
which are significantly worse are underlined (p-value < 0.05).
Bottom: Error rates achieved with the original order of the data. The
significance test is not possible for the “drift setting”, since VFDT is a
deterministic algorithm and reshuffling the data removes the drift.

Dataset (shuffled) VFDT CGD OSM

Poker 38.34(0.3) 38.32(0.3) 38.26(0.4)
Random Tree 15.32(0.2) 17.69(0.5) 15.30(0.2)
RBF 19.26(0.5) 19.34(0.5) 19.23(0.5)
LED-Drift 27.35(0.1) 27.46(0.1) 27.34(0.1)
Rialto 84.26(0.3) 86.11(0.6) 84.26(0.3)
Airline 39.57(0.3) 39.57(0.3) 39.54(0.3)
Cover type 33.80(0.2) 34.14(0.4) 33.79(0.3)
MNIST8M 40.53(0.5) 40.78(0.6) 40.53(0.5)
HIGGS 30.63(0.2) 30.63(0.2) 30.59(0.2)

∅ 36.75 37.67 36.73

Dataset (original) VFDT CGD OSM

Poker 31.39 41.2 31.69
LED-Drift 27.17 27.24 27.17
Rialto 86.04 86.36 86.18
Airline 38.76 38.78 38.72
Cover type 30.27 32.61 31.32
HIGGS 30.3 30.58 30.67

∅ 40.66 42.8 40.96

The high proportion of tie-splits, which are supposed to rarely happen,
for HIGGS and MNIST cast doubt on the guarantee of the VFDT to
construct similar trees as batch algorithms.

Classification Error

The shuffling of the data enables an analysis for significant error rate
differences between the approaches. Welch’s t-test (Welch, 1947) was
used, a two-sample location test allowing different variances between
the samples. We performed 100 repetitions, each time reshuffling
the data. Table 3.8 shows at the top the average error rates with
corresponding standard deviations. Our split-time prediction achieves
the best results for all shuffled datasets and is significantly better
than CGD on half of them, underlining that OSM does not reduce the
classification performance. The CGD approach performs significantly
worse due to its frequent and severe overestimations of the split-time.

Obviously, the original order is changed when the data is shuffled,
therefore the significance analysis could not be performed in this

51

incremental learning

0 200000 400000 600000 800000
#Samples

0.3

0.4

0.5

E
rr

or
ra

te

Poker

VFDT

OSM

CGD

0 200000 400000 600000 800000
#Samples

0.35

0.40

0.45

0.50
Poker shuffled

0 200000 400000 600000
#Samples

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

or
ra

te

Cover type

0 200000 400000 600000
#Samples

0.30

0.35

0.40

0.45

0.50
Cover type shuffled

Figure 3.10: The error course of all methods for two exemplary datasets
using the shuffled as well as the original order.

case. The results are given at the bottom of Table 3.8. Our method
OSM delivers also in this case similar results to VFDT, proving its
robustness in non-stationary environments. The increased split-delay
for the Cover type data is only slightly affecting its error rate. The
CGD method performs worse for each task, particularly in the case
of the Poker data. The temporal course of the error rate is depicted
in Figure 3.10 for some datasets. In case of non-shuffled data, CGD is
performing worse than the normal VFDT, whereas OSM continuously
delivers a similar classification performance.

Computation Time

The run time was measured on a cluster with 256 GB RAM and 40
cores, each with 2.6 GHz. We present only the time used by the VFDT
algorithm, excluding processes such as reading the data from the
hard drive, parsing the file and so forth. Table 3.9 depicts the time
spend on the split-attempts as well as corresponding speedups of
OSM. Our approach clearly reduces the attempt time for most datasets.
The speedup is particularly high for the RBF and MNIST8M and is in
general drastically increased for nmin = 50, highlighting the fact that
OSM substantially scales better for low nmin values.
Table 3.10 shows the total time of the approaches and correspond-
ing speedups achieved by our split-time prediction method. OSM
reduces the overall run time for all datasets, in some cases as RBF
and MNIST8M quite drastically. Figure 3.11 shows the exponentially
growing total speedup for very low nmin values on the right. The de-
velopment of the run time depending on the number of instances for

52

3 .3 local split-time prediction

Table 3.9: The attempt-times as well as corresponding relative speedups
achieved by OSM. Please note, that only the efficiency of this part of the
algorithm has been improved. The speedup drastically increases with
smaller nmin values because OSM is less dependent on this parameter,
using it only as minimum prediction bound. CGD has the lowest
average attempt time of 2.5 seconds and a speedup of 41 (nmin = 200).

nmin = 50 nmin = 200
Dataset Attempt time (s) Speedup (×) Attempt time (s) Speedup (×)
(original) VFDT OSM OSM VFDT OSM OSM

Poker 1.25 0.18 6.94 0.35 0.13 2.69
Random Tree 590.87 127.55 4.63 153.57 80.53 1.91
RBF 374.19 6.12 61.14 92.87 5.48 16.95
LED-Drift 19.67 1.37 14.36 5 1.05 4.76
Rialto 0.62 0.11 5.64 0.15 0.07 2.14
Airline 1.98 1.71 1.16 0.49 0.47 1.04
Cover type 1.63 0.21 7.76 0.45 0.19 2.37
MNIST8M 2504.54 205.31 12.2 644.87 191.69 3.36
HIGGS 50.62 18.19 2.78 14.26 11.58 1.23

∅ 393.93 40.08 12.96 101.33 32.35 4.05

Table 3.10: The runt-time of the whole learning algorithm as well as
corresponding relative speedups achieved by OSM. The speedup is
limited, since the run time of a sub-part is reduced. However, a clear
run time reduction is achieved most of the times, particularly in case
of nmin = 50. CGD has on average the lowest total time of 106 seconds
and a speedup of 1.97 (nmin = 200).

nmin = 50 nmin = 200
Dataset Total time (s) Speedup (×) Total time (s) Speedup (×)
(original) VFDT OSM OSM VFDT OSM OSM

Poker 1.93 0.79 2.44 0.95 0.71 1.34
Random Tree 706.47 246.80 2.86 277.28 206.56 1.34
RBF 495.12 114.30 4.33 199.09 91.71 2.17
LED-Drift 35.18 16.72 2.10 19.4 14.93 1.30
Rialto 0.72 0.21 3.43 0.24 0.16 1.50
Airline 3.83 3.49 1.10 2.3 2.29 1.00
Cover type 3.40 1.58 2.15 2.01 1.41 1.43
MNIST8M 3097.27 812.52 3.81 1255.6 794.97 1.58
HIGGS 98.79 65.5 1.51 67.39 61.92 1.09

∅ 493.63 140.21 2.64 202.7 130.52 1.42

53

incremental learning

0.00 0.25 0.50 0.75 1.00
#Samples ×107

0

50

100

150

200

T
ot

al
ru

n-
ti

m
e

(s
)

RBF shuffled

VFDT

OSM

1 10 20 30 40 50
nmin

0

10

20

30

40

50

T
ot

al
sp

ee
du

p
(×

)

Speedup depending on nmin

HIGGS

Poker

LED-Drift

Figure 3.11: On the left: The course of the total run time for the RBF
dataset. The run time is not increasing linearly because the accuracy
increases over time, reducing the frequency of the splits (nmin = 200).
On the right: The total speedup of OSM increases drastically for low
nmin values.

100 200 300 400 500
#Classes

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

em
pt

ti
m

e
T

ot
al

ti
m

e

Attempt-time proportion

Figure 3.12: The attempt-time in comparison to the total depending on
the number of classes in the RBF task. The relative proportion clearly
increases with more classes in the dataset, making split-time prediction
particularly valuable for multi-class problems.

the RBF dataset can be seen on the left of Figure 3.11. It can be seen
that the speedup would be even higher for more instances.
Our approach optimizes only the efficiency of split-attempts, hence
the potential overall-speedup is limited by the relative time of the
split-attempts in comparison to the total time of the algorithm. Fig-
ure 3.12 illustrates on the right that the relative time increases with
more classes5, which is another reason why split-time predictions are
particularly valuable for multi-class classification tasks.

5 The run time of split-attempts is dominated by the determination of the resulting class
distributions for considered splits, requiring an iteration through all class-dependent
feature distributions.

54

3 .4 a practice-oriented survey

3 .3 .5 Discussion

In this section, the periodic split-attempt scheme of the VFDT was
replaced by a prediction approach based on the local leaf statistics.
On the basis of the resulting class-distributions from the best split, we
approximate the minimum amount of required additional examples
until the Hoeffding bound is met. The yielded approximations are
for the most part equivalent to those of a greedy approach, but are
obtained at a substantially reduced computational cost. The term split-
delay was formally introduced as a precise measurement for evaluating
the accuracy of split-time predictions. The experiments confirmed
a distinct speed-up in comparison to the default VFDT, particularly
for multi-class classification tasks. Moreover, the method significantly
reduced dependence of the run time on the parameter nmin, leading to
an increased overall robustness of the algorithm. Local split-time pre-
dictions are independent from each other and can easily be integrated
in parallelized implementations to increase the efficiency even further.
They constitute one example how to efficiently design a solution for
the question when to increase the model complexity for incremental
tree induction algorithms.

3 .4 a practice-oriented survey

An algorithm has to be chosen according to the preconditions of
a given task because there cannot exist a method which optimally
performs in every scenario (Wolpert, 2002). Different interesting incre-
mental learning algorithms have been published so far with various
strengths and weaknesses. However, there are only a few sources pro-
viding information when to use them, since basically no comparative
in-depth study, experimentally comparing the most popular methods
according to the most relevant criteria, is available. Querying the litera-
ture usually leads to the original publications of considered algorithms
which help only to some extent due to the following reasons:
Authors are naturally focused to demonstrate the merits of their
method and apply them often in the settings they have been designed
for. Furthermore, the evaluation usually considers only one or two
other methods, leading to the conclusion that original publications
often provide a limited overall picture of the algorithm’s qualities. But
even if one takes on the great effort to reproduce the results in the
attempt to form an own opinion, it often turns out to be impossible
because of proprietary datasets or unknown hyperparameters settings.
In the end, either a method is picked based on the own experience,
which usually comprises only a fraction of available algorithms, or a
lot of resources are invested to try out several approaches.

In this section, we will mitigate the mentioned issue by analyzing
the core attributes of eight popular methods. The study aims for a
fundamental comparison of the algorithmic overall performance. The
performance for specific settings, such as strictly limited hardware

55

incremental learning

requiring very efficient learning or tasks with abundant resources
where the accuracy has highest priority, can be inferred from the rich
results provided here. The choice of an algorithm is guided using basic
information (e.g. number of dimensions / samples), usually available
a priori6. The methods are evaluated in offline- and online setting,
enabling a precise comparison in terms of classification performance,
learning speed and model complexity. Thereby, diverse datasets are
used to assess strengths and weaknesses of respective methods and
provide guidance on their applicability for specific tasks. We also ex-
amine the methods in respect to hyperparameter optimization (HPO),
a necessary and crucial process for most applications, which is how-
ever often neglected in the literature, leading sometimes to unpleasant
surprises in practice. Our study primarily focuses on stationary envi-
ronments, which is mirrored by the picked datasets and methods. Even
though we briefly evaluate and discuss the methods in the context of
changing environments, a thorough treatment of the so-called concept
drift takes place within an own chapter (Chapter 4).

3 .4 .1 Foundation

The comparison covers a broad range of algorithm families. Bayesian,
linear, and instance-based models as well as tree ensembles and neu-
ral networks are represented. Model-dependent methods such as the
Incremental Support Vector Machine (Cauwenberghs & Poggio, 2001)
are denoted by an acronym (ISVM), whereas meta algorithms such as
Stochastic Gradient Descent, which can be combined with different
forms of classification prescription, are denoted by an acronym with
additional index (SGDLin), specifying the applied model. In the follow-
ing, the evaluated methods are briefly described.

Incremental Support Vector Machine (ISVM) is one of the most pop-
ular exact incremental version of the SVM and was introduced by
Cauwenberghs and Poggio (2001). Apart from the set of support vec-
tors, a limited number of examples, so called “candidate vectors”, is
maintained. These are the recently processed samples that are most
likely to be promoted to support vectors in future. The smaller the
set of candidate vectors is, the higher is the probability of missing po-
tential support vectors. The ISVM is a lossless algorithm - it generates
the same model as the corresponding batch algorithm - if the set of
candidate vectors contains all previously seen data. Various recent
applications of the ISVM can be found in the literature (Biggio et al.,
2014; Lu, Boukharouba, Boonært, Fleury, & Lecoeuche, 2014).

LASVM is an online approximate SVM solver and was proposed by
Bordes, Ertekin, Weston, and Bottou (2005). In an alternative manner,

6 The number of dimensions as well as the amount of incoming data examples can
commonly be estimated. Furthermore, it can be inferred how crucial a quick reaction
of the system is. For some tasks it is even possible to guess whether a linear classifier
is sufficient (e.g. text classification).

56

3 .4 a practice-oriented survey

the currently processed example is examined whether it constitutes
a support vector and support vectors that possibly became obsolete
are removed. Both steps are based on sequential direction searches as
it is also done in the Sequential Minimal Optimization (SMO) algo-
rithm (Platt, 1998). In contrast to the ISVM, there is no set of candidate
vectors and only the current sample is considered as possible support
vector. The resulting approximate solution significantly reduces the
training time. LASVM was recently applied by Hsieh, Si, and Dhillon
(2014) as well as by Cai, Wen, Lei, Vasconcelos, and Li (2014).

Online Random Forest (ORF) is an incremental version of the Ran-
dom Forest algorithm (Saffari et al., 2009). A predefined number of
trees grows continuously by adding splits whenever enough samples
are gathered within one leaf. Instead of computing locally optimal
splits, a predefined number of random values are tested according
to the scheme of Extreme Random Trees (Geurts, Ernst, & Wehenkel,
2006). The split value optimizing the Gini index the most is selected.
Tree ensembles are very popular, due to their high accuracy, simplic-
ity and parallelization capability. Furthermore, they are insensitive to
feature scaling and can be easily applied in practice. This method has
been lately used by Lakshminarayanan, Roy, and Teh (2014) and by
Pernici and Del Bimbo (2014).

Incremental Learning Vector Quantization (ILVQ) is an adaptation
of the static Generalized Learning Vector Quantization (GLVQ) to a
dynamically growing model, which inserts new prototypes when nec-
essary. The insertion rate is guided by the number of misclassified
samples. We use the architecture introduced by Losing et al. (2015) (see
Section 3.2), which utilizes the prototype placement strategy COSMOS,
minimizing the loss on a sliding window of recent samples. Metric
learning can also be applied to extend the classification abilities further
(Schneider et al., 2009; Bunte et al., 2012).

Learn++ (LPPCART) processes incoming samples in chunks with a
predefined size. For each chunk an ensemble of base classifiers is
trained and combined through weighted majority voting to an “en-
semble of ensembles“ (Polikar et al., 2001). Similar to the AdaBoost
(Freund et al., 1999) algorithm, each classifier is trained with a sub-
set of chunk examples drawn according to a distribution, ensuring
a higher sample probability for misclassified inputs. LPP is a model
independent algorithm and several different base classifiers such as
SVM, Classification and Regression Trees (Breiman, Friedman, Olshen,
& Stone, 1984) (CART) and Multilayer Perceptron (Rumelhart et al.,
1985) have been successfully applied by the authors. As the original
author we employ the popular CART as base classifiers. Chunk-wise
trained models inherently incorporate an adaption delay depending
on the chunk size. The chunk-size parameter constitutes a static way
to approach the stability-plasticity dilemma. De-la-Torre, Granger,
Radtke, Sabourin, and Gorodnichy (2015) and García Molina et al.
(2014) applied this algorithm recently.

57

incremental learning

Incremental Extreme Learning Machine (IELM) reformulates the
batch ELM least-squares solution into a sequential scheme (Liang
et al., 2006). As the batch version, it drastically reduces the training
complexity by randomizing the input weights. The network is static
and the number of hidden neurons has to be predefined. This method
is able to process the data one-by-one or in chunks, which significantly
reduces the overall processing time. However, a valid initialization of
the output weights requires at the beginning a chunk size that is equal
or larger than the number of hidden neurons. Recent applications can
be found in (Tang, Deng, & Huang, 2016; Tang, Deng, Huang, & Zhao,
2015).

Naive Bayes (NBGauss) Let x ∈ X1× . . .×Xn be an instance of discrete
values represented as a vector x = (x1, . . . , xn). The Naive Bayes classi-
fier assigns to this instance a probability for each class ck ∈ {c1, . . . , cC}

P(ck) = p(ck)
n

∏
i=

p(xi|ck).

Thereby, it assumes xi to be conditional independent from every other
feature xj for j 6= i given the class category ck. Usually, p(xi|ck) is
simply determined by frequency counts in the data. This algorithm is
lossless because it can be implemented in an incremental way.

In case of continuous attributes, the values can either be discretized
or the likelihood can be assumed to follow a distribution, e.g. being
Gaussian:

p(xi|ck) =
1

2πσ2
k

exp(− (xi − µk)
2

2σ2
k

),

where µk and σk are estimated on the training data.
The sparse model allows a very efficient learning in terms of pro-

cessing time and memory requirements. This algorithm learns effi-
ciently from few training examples (Salperwyck & Lemaire, 2011) and
has been successfully applied in real-world situations such as Spam
filtering and document classification7 (Metsis, Androutsopoulos, &
Paliouras, 2006; Ting, Ip, & Tsang, 2011). The major drawbacks of this
algorithm are the conditional independence assumption of the fea-
tures as well as its inability to handle multimodal distributions. This
method was recently used in (Lou et al., 2014; Griffis, Allendorfer, &
P. Szaflarski, 2016). In our experiments, we rely exclusively on NB on
the basis of the Gaussian likelihood estimation.

Stochastic Gradient Descent (SGDLin)

is an efficient optimization method for learning a discriminative model
by minimizing a loss function such as the Hinge - or Logistic loss. We
use SGD to learn a linear model by minimizing the Hinge loss function.

7 In the context of features based on text, the Naive Bayes algorithm is usually applied
with the multinomial or Bernoulli event model.

58

3 .4 a practice-oriented survey

Given a linear model with the weight vector wi = (w1
i , . . . , wn

i) at time
step i and the learning rate λ, the update of the weights is given by

wi+1 = wi − λ∇L(ŷi, yi).

SGD was recently revived in the context of large-scale learning (Zhang,
2004b; Bottou, 2010; Richtárik & Takáč, 2016). In combination with
linear models, it performs especially well for sparse, high-dimensional
data as often encountered in the domain of text classification or natural
language processing. However, linear models are a misfit whenever
non-linear class boundaries are required, which is particularly often
the case for low-dimensional data. Recently, Akata, Perronnin, Har-
chaoui, and Schmid (2014) as well as Sapienza, Cuzzolin, and Torr
(2014) applied this method.

Even though new versions of the mentioned algorithms are contin-
uously proposed, we argue that the chosen methods reflect the general
properties of the respective family. Therefore, conclusions of this sur-
vey are commonly applicable for current and upcoming variations of
the corresponding algorithm. This is particularly highlighted by both
SVMs which perform very similar with the difference that LASVM is
able to process slightly larger datasets due to its approximate nature.
However, both share the same drawbacks regarding large or noisy
datasets, which also applies for the recently proposed extension of
LASVM by Ertekin, Bottou, and Giles (2011), albeit in a slightly weaker
degree because a mechanism to reduce the number of support vectors
is introduced. Various extensions for the LPP and the IELM algorithm
have been proposed (Elwell & Polikar, 2011; Ditzler & Polikar, 2013;
Zhao, Wang, & Park, 2012; Ye, Squartini, & Piazza, 2013). Most of them
are tackling non-stationary environments by introducing forgetting
mechanisms. However, the major focus in this study lies on incremental
learning in stationary environments where forgetting is rather harmful
and deteriorates the performance. Furthermore, the basic principle of
the algorithms and the corresponding advantages and disadvantages
remain. In case of LPP, it is the flexibility of arbitrary base classifiers
on the one hand, and the limited knowledge integration across chunks
on the other. Methods for speeding up the convergence of SGD were
presented by Bottou (2010) as well as by Johnson and Zhang (2013).
However, the results obtained by the SGD algorithm in our experi-
ments are not due to a slow learning speed of the SGD algorithm, but
rather highlight the general benefits and limitations of linear models,
such as a low model complexity and linear class boundaries.

3 .4 .2 Related Work

Numerous incremental algorithms have been published, often adapting
existing batch methods to the incremental setting (Cauwenberghs &
Poggio, 2001; Liang et al., 2006). Massive theoretical work has been
done to evaluate their generalization ability and convergence speed
in the stationary setting, often accompanied by assumptions such as

59

incremental learning

linearly separable data (Cesa-Bianchi & Lugosi, 2006; Watkin, Rau, &
Biehl, 1993; Novikoff, 1962).

Although the field of incremental- / online learning is well estab-
lished and particularly employed in the context of Big Data or the
Internet of Things technology (Atzori, Iera, & Morabito, 2010), there
are only a few publications targeting the field in a general way. Most of
these are surveys describing available methods and viable application
domains (Ade & Deshmukh, 2013; Joshi & Kulkarni, 2012).

Giraud-Carrier (2000) give some motivation for incremental learn-
ing and define the notion of incrementality for learning tasks. They
argue in favor of applying incremental learning methods for incremen-
tal tasks, but also point to arising issues such as ordering effects or the
question of trustworthiness.

One survey was recently published by Gepperth and Hammer
(2016). They formalize incremental learning in general and discuss
theoretical as well as arising challenges in practice. Furthermore, an
overview of commonly employed algorithms with corresponding real-
world applications is given.

Incremental learning is more frequently treated in the setting of
streaming scenarios (Gaber, Zaslavsky, & Krishnaswamy, 2005; Aggar-
wal, 2014), although most of the work particularly targets concept drift
(Žliobaite, 2010; Gama, Žliobaite, Bifet, Pechenizkiy, & Bouchachia,
2014; Ditzler, Roveri, Alippi, & Polikar, 2015). Domingos and Hulten
(2003) define key properties for incremental algorithms which are re-
quired to keep up with the rapidly increasing rate of data output. They
stress the necessity of combining models, strictly limited in terms of
processing time and space, with theoretical performance guarantees.

Publications with a practical focus are very rare. One of them was
done by Read, Bifet, Pfahringer, and Holmes (2012) in the setting of con-
cept drift. Batch-incremental methods, these add batch classifier in an
incremental way, e.g. LPP, are compared against instance-incremental
approaches, truly incremental methods that are updated after each
example such as incremental decision trees. The authors reach the
conclusion that instance-incremental algorithms are equally accurate
but use fewer resources and that lazy methods with a sliding window
perform exceptionally well.

A massive study comprising the evaluation of 179 batch classi-
fier on 121 datasets was done by Fernández-Delgado et al. (2014).
This quantitative study considered also different implementations in
varying languages and toolboxes. The best result was achieved by
the Random Forest (Breiman, 2001) algorithm closely followed by the
Support Vector Machine (SVM) (Cortes & Vapnik, 1995) with Gaussian
kernel.

However, such work is still sorely missed for incremental algo-
rithms. We pursue a more qualitative approach and instead of a
massive comparison, provide an in depth evaluation of the major
approaches within stationary environments. Next to the classification
performance, we also inspect the model complexity which allows an
inference of required resources in terms of time and space. The consid-

60

3 .4 a practice-oriented survey

eration of rather neglected aspects such as learning speed and HPO
rounds off our analysis.

3 .4 .3 Datasets and Implementations

In case of SGDLin and NBGauss, the implementations of the Scikit-
learn package were used (Pedregosa et al., 2011). Implementations
for the remaining algorithms are derived from code of the respective
authors. Only publicly available datasets (Dheeru & Karra Taniskidou,
2017; Chang & Lin, 2011), predefining a fixed train-test-split, were
used to enable reproducibility and comparability of our results. Table
3.11 gives the main attributes of the selected datasets. Artificial and

Table 3.11: The evaluated datasets and their characteristics.

Dataset #Train instances #Test instances #Features #Classes

Border 4000 1000 2 3
Overlap 3960 990 2 4

Letter 16000 4000 16 26
SUSY 4500000 500000 18 2

Outdoor 2600 1400 21 40
COIL 1800 5400 21 100
DNA 1400 1186 180 3
USPS 7291 2007 256 10
Isolet 6238 1559 617 26

MNist 60000 10000 784 10
Gisette 6000 1000 5000 2

real-world problems are included, differing widely in the number of
classes, instances and dimensions. Even though the largest dataset has
about 4.5 million instances, our evaluation does not specifically target
learning from big data. Instead, our focus is the practical evaluation of
incremental learning algorithms in terms of different key properties.
Datasets which were not yet introduced are described in the following.
More details to all datasets are given in Section A.2.

Letter The objective is to categorize black-and-white images, repre-
sented by 16 primitive numerical attributes, into one of the 26
capital letters of the English alphabet (Frey & Slate, 1991). The
character images were based on 20 different fonts and each letter
was randomly distorted.

SUSY The objective is to classify whether simulated particle collisions
lead to the generation of new supersymmetric particles or not
and was initially published in (Baldi et al., 2014). The data has
been produced using Monte Carlo simulations. Each instance
consists of eight kinematic features and ten high-level features.

Outdoor We obtained this dataset from images recorded by a mobile
robot in a garden environment (Losing et al., 2015). The task is
to classify 40 different objects, each approached ten times under

61

incremental learning

varying lighting conditions affecting the color based represen-
tation. The objects are encoded in a normalized 21-dimensional
RG-Chromaticity histogram.

COIL Each of the 100 different objects is depicted in 72 different
views in 128× 128 pixel RGB images. These are encoded within
a 21-dimensional RG-Chromaticity space (Jain & Li, 2005).

DNA The objective of this challenge is to categorize a given DNA
sequence into the three classes: exon/intron boundaries (EI),
intron/exon boundaries (IE), neither of them.

USPS This dataset consist of grayscale images with 16 × 16 pixels. The
images contain handwritten digits and the goal is to categorize
them into the corresponding ten classes.

Isolet The objective of this challenge is to recognize the spoken letters
of the alphabet based on common features from the audio pro-
cessing domain. The recording was done based on 150 different
subjects.

MNIST This is one of the most popular databases of handwritten
digits. Digits are size normalized and centered within grayscale
images of 28×28 pixels. The objective is to classify the images
into the ten digits.

Gisette This modification of the MNIST database was especially de-
signed for a feature selection challenge. Changes include a ran-
domized order of the pixels as well as the addition of noisy
dimensions. The scope was reduced to a binary classification
task between the often confused numbers of 4 and 9.

3 .4 .4 Hyperparameter Optimization

The process of model selection varies in complexity depending on
the parameter- amount and type. Table 3.12 lists for each method
the relevant hyperparameters. Parameters which are related to the
feature scale, such as the learning rate or kernel widths are usually
very crucial, since they strongly affect the classification performance
and the model complexity. For instance, an inappropriately chosen
kernel width drastically increases the number of support vectors. A
wrongly set learning rate within the ILVQ leads to more errors during
training and leads to more inserted prototypes.

Some models allow to control the speed of model expansion di-
rectly such as the ILVQ and ORF. This does not only affect the model
complexity, but also influences learning speed and classification error
and may lead to overfitting when a too aggressive growth is set. Rather
uncritical are parameters increasing the leeway of an algorithm. Larger
values are in this case always beneficial for the performance and only
limited by the amount of available resources. The number of trees of

62

3 .4 a practice-oriented survey

Hyperparameter Task independent

SVMs

Kernel function 3

RBF kernel width 7

Regularization 7

Candidate vectors (only ISVM) 3

ORF
Growing speed 7

Evaluated random splits 3

Trees 3

ILVQ

Learning rate 7

Growing speed 7

Window size 3

(Metric learning rate) (7)

LPPCART

Chunk size 7

Base classifier per chunk 3

(Parameter of base classifier) (7)

IELM
Activation function 3

Hidden nodes 7

NBGauss None

SGDLin
Loss function 3

Learning rate 7

Table 3.12: Relevant hyperparameters of the considered algorithms.
Most critical parameters are those which cannot be robustly chosen,
but require a task specific setting.

the ORF or the window size of the ILVQ are such parameters. Gener-
ally speaking, tree based models are easy to tune and perform usually
well out of the box, whereas scale sensitive models such as ISVM,
LASVM or ILVQ require an accurate, dataset dependent configuration
of multiple parameters to deliver competitive results.

Both SVM algorithms are solely paired with the RBF kernel. We use
the metric learning of ILVQ only for datasets with up to 250 dimensions
(the distance calculations using the metric is quadratic in the number
of dimensions and hence not feasible for very high dimensional data).
The NBGauss algorithm is parameterless, hence no tuning is required
at all. We minimize the hinge loss function with SGDLin and adjust
only the learning rate. LPPCART requires the number of base classfier
per chunk as well as the parameters of the base classifier itself (non-
parametric Classification and Regression Trees in our case).

All parameter are set by Hyperopt using the Tree of Parzen Es-
timators (Bergstra, Komer, Eliasmith, Yamins, & Cox, 2015; Bergstra,
Bardenet, Bengio, & Kégl, 2011). Each parameter is individually ad-
justed by performing 250 iterations of a 3-fold cross validation using
only the training data.

63

incremental learning

3 .4 .5 Measure of Model Complexity

We measure the model complexity in terms of the number of parame-
ters that are required for model representation, enabling a comparison
with respect to memory consumption. However, some models are
fundamentally different such that this measure, even though there is
some correlation, should not generally be equated with training- or
run-time. We rather use this measure as an indicator to decide whether
an algorithm struggles (unreasonable high amount of parameters) or is
especially suited (sparse representation paired with high classification
performance) for a given task.

3 .4 .6 Evaluation Settings

Algorithms are evaluated on basis of three different scenarios as it is
illustrated by Figure 3.13. In the first setting, we apply the classical
offline scheme and use the complete training set for the HPO. This
allows a conclusion about the generalization ability of the final model.
However, the usage of the whole training set for the HPO is usually
not possible in practical applications and contradicts the paradigm
of incremental learning. Hence, in the second setting, we optimize
parameters only with a small proportion of training examples. This is
not only closer to practice, but also, in combination with the results
of the first setting, enables to infer whether the hyperparameters can
be reliably estimated on a subset of the data. Since the number of
training examples vary considerably across the datasets, we decided to
use a relative proportion bounded by a maximum number. Precisely,
we use 20% of the training data for HPO but never more than 1000
examples. The third setting applies the hyperparameters obtained
within the second setting, but examines methods in online scheme.
Here, we draw conclusions about the learning curves of the respective
algorithms. To keep the number of training instances similar among all
three evaluation scenarios, only the training set is processed as stream
in online scheme (third setting), whereas the test set is ignored. The
initial examples that are used for HPO are excluded.

3 .4 .7 Experiments

The evaluation of LASVM, NBGauss, ORF and SGDLin is straightfor-
ward, since these access consecutively only the current training exam-
ple. But methods such as ISVM and ILVQ store additionally a window
of recent samples or require chunk-wise training, as LPPCART and
IELM8 do. In both cases, results depend on the window-/chunk size.
Therefore, we treated the window-/chunk size as another hyperparam-
eter and used once again Hyperopt to find the best value. We allowed

8 IELM requires for the initialization at least as many samples as it has hidden neurons
but afterwards it can be updated after each sample.

64

3 .4 a practice-oriented survey

Figure 3.13: In the first setting, hyperparameters are optimized on
basis of the whole training set. The evaluation is done according to
the offline scheme where the test error is determined on a test set
after initial training. The second setting uses a small subset of the
training set for HPO. In the third setting, the same hyperparameters
are used as in the second one, but instead of the TE, algorithms are
evaluated based on the ITTE determined via online scheme. Thereby,
only the training set is used and samples that were used during HPO
are excluded.

a maximum size of 500 samples. All methods were trained single-pass,
in the same order after initial shuffling.

Offline Setting - HPO with all training samples

Table 3.13 shows the test error and corresponding model complexities
at the end of training. Both SVMs achieve on average the lowest
error rates, often with a large margin, but at the expense of having
by far the most complex models. The large amount of parameters is
partly due to the fact that the model is designed to discriminate two
classes, resulting in multiple SVMs to perform schemes such as one
vs. all. Another reason is the linear growth of support vectors with the
amount of samples. The model gets exceedingly complex for noisy or
overlapping datasets such as Isolet or Overlap.

65

incremental learning

Te
st

er
ro

r
C

om
pl

ex
it

y
Se

tt
in

g
1

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Bo
rd

er
0.

6
1.

6
2.

4
3.

2
3.

5
4.

0
64

.5
3.

6
79

7
25

1
3.

7k
19

3
1.

9k
75

0
9

12
O

ve
rl

ap
17

.8
19

.0
16

.3
17

.0
18

.3
16

.6
32

.4
33

.6
10

k
7.

2k
2.

3k
23

5
1.

9k
90

0
12

16
Le

tt
er

3.
0

2.
9

6.
8

6.
1

13
.0

30
.0

43
.6

36
.6

13
1k

14
0k

16
8k

14
k

51
k

8.
4k

44
2

83
2

SU
SY

D
N

F
D

N
F

20
.5

21
.0

D
N

F
D

N
F

21
.3

26
.5

D
N

F
D

N
F

86
.0

51
.2

D
N

F
D

N
F

19
72

O
ut

do
or

29
.1

28
.6

29
.0

33
.1

31
.5

29
.1

76
.2

29
.5

43
k

42
k

8.
8k

11
k

6.
2k

12
k

88
0

1.
7k

C
O

IL
3.

5
6.

8
7.

1
5.

7
10

.8
8.

5
87

.6
10

.0
58

k
93

k
61

k
18

k
9.

2k
36

k
2.

2k
4.

2k
D

N
A

5.
1

5.
1

10
.4

7.
9

9.
5

11
.2

7.
0

11
.6

23
7k

19
0k

5.
0k

33
k

1.
6k

55
k

54
3

1.
1k

U
SP

S
4.

6
4.

4
7.

5
8.

6
9.

7
7.

9
11

.0
24

.6
71

0k
52

0k
33

k
15

k
9.

6k
10

6k
2.

6k
5.

1k
Is

ol
et

3.
8

3.
3

7.
5

8.
0

10
.0

8.
1

8.
5

19
.9

2.
8M

3.
4M

31
k

21
k

12
.0

k
32

2k
16

k
32

k
M

N
is

t
D

N
F

1.
5

5.
7

5.
2

7.
6

10
.9

14
.0

44
.4

D
N

F
14

M
11

1k
31

5k
73

k
39

7k
7.

9k
16

k
G

is
et

te
2.

0
2.

1
5.

4
7.

0
5.

8
8.

6
6.

9
24

.6
7.

0M
6.

2M
4.

7k
26

3k
2.

5k
2.

5M
5.

0k
20

k

∅
7.

7
7.

6
10

.8
11

.1
12

.0
13

.5
34

.0
25

.0
1.

2M
2.

5M
54

k
64

k
17

k
34

4k
3.

2k
7.

3k
∅

ra
nk

1.
9

2.
0

3.
0

3.
7

5.
3

5.
3

6.
3

6.
8

7.
1

7.
0

5.
1

4.
0

3.
4

5.
3

1.
3

2.
5

∅
r̂a

nk
2.

7
2.

3
3.

0
3.

7
5.

3
5.

3
6.

3
6.

8
7.

0
6.

8
5.

1
4.

0
3.

5
5.

3
1.

3
2.

5

Ta
bl

e
3.

13
:T

es
t

er
ro

r
(l

ef
t)

an
d

m
od

el
co

m
p

le
xi

ty
(r

ig
ht

)
af

te
r

tr
ai

ni
ng

,m
ea

su
re

d
by

th
e

ov
er

al
ln

u
m

be
r

of
p

ar
am

et
er

s,
av

er
ag

ed
ov

er
10

re
pe

tit
io

ns
.I

n
th

e
fir

st
se

tt
in

g,
th

e
H

yp
er

pa
ra

m
et

er
s

w
er

e
op

tim
iz

ed
us

in
g

th
e

w
ho

le
tr

ai
ni

ng
da

ta
.T

he
pr

oc
es

si
ng

w
as

ca
nc

el
ed

w
he

ne
ve

r
it

to
ok

lo
ng

er
th

an
24

ho
ur

s
an

d
co

rr
es

po
nd

in
g

ex
pe

ri
m

en
ts

ar
e

de
no

te
d

as
D

N
F.

W
e

ca
lc

ul
at

ed
tw

o
di

ff
er

en
tr

an
ki

ng
s.

Th
e

fir
st

is
th

e
av

er
ag

e
ra

nk
ba

se
d

on
al

ld
at

as
et

s
th

e
al

go
ri

th
m

s
w

er
e

ab
le

to
d

el
iv

er
a

re
su

lt
.T

he
se

co
nd

ra
nk

(r̂
an

k)
,h

ow
ev

er
,p

u
ni

sh
es

al
go

ri
th

m
s

w
it

h
D

N
F

en
tr

ie
s.

In
th

is
ca

se
,t

he
y

ar
e

ra
nk

ed
as

th
e

la
st

in
th

e
re

sp
ec

ti
ve

da
ta

se
t.

66

3 .4 a practice-oriented survey

Te
st

er
ro

r
C

om
pl

ex
it

y
Se

tt
in

g
2

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Bo
rd

er
0.

6
1.

2
3.

7
2.

9
3.

6
3.

8
66

.3
3.

6
1.

1k
1.

5k
8.

0k
28

6
2.

6k
87

5
9

12
O

ve
rl

ap
18

.2
19

.3
18

.8
17

.9
19

.0
17

.8
31

.6
33

.6
10

.9
9.

2
k

31
k

49
6

1.
9k

54
6

12
16

Le
tt

er
3.

6
2.

5
7.

8
4.

9
15

.1
32

.6
46

.1
36

.6
16

3
17

3k
47

3k
11

k
70

k
6.

5k
44

2
83

2
SU

SY
D

N
F

D
N

F
20

.7
26

.6
D

N
F

D
N

F
23

.0
26

.5
D

N
F

D
N

F
1.

5M
45

3k
D

N
F

D
N

F
19

72
O

ut
do

or
28

.1
31

.0
42

.4
36

.8
30

.6
28

.4
74

.3
29

.5
40

k
53

k
92

5
11

k
7.

3k
8.

3k
88

0
1.

7k
C

O
IL

4.
4

7.
5

10
.1

6.
4

11
.9

16
.4

87
.9

10
.0

18
0k

11
3k

14
k

17
k

6.
1k

15
k

2.
2k

4.
2k

D
N

A
4.

8
4.

9
11

.8
9.

2
8.

0
13

.3
6.

7
11

.6
33

3k
32

7k
50

0
42

k
1.

8k
76

k
54

3
1.

1k
U

SP
S

4.
4

5.
3

8.
6

8.
6

11
.1

10
.3

10
.2

24
.6

74
4k

97
8k

61
k

91
k

12
k

50
k

2.
6k

5.
1k

Is
ol

et
3.

5
3.

6
8.

0
10

.6
9.

3
11

.5
10

.4
19

.9
6.

2M
4.

2M
12

3k
67

k
14

k
15

9k
16

k
32

k
M

N
is

t
D

N
F

1.
9

5.
0

5.
7

8.
7

15
.8

12
.3

44
.4

D
N

F
16

M
25

3k
1.

2M
16

2k
16

9k
7.

9k
16

k
G

is
et

te
2.

2
2.

1
7.

3
5.

9
6.

0
16

.2
4.

6
24

.6
7.

0M
6.

7M
16

k
47

0k
3.

0k
1.

0M
5.

0k
20

k

∅
7.

8
7.

9
13

.1
12

.3
12

.3
16

.6
33

.9
25

.0
1.

6M
2.

9M
22

6k
21

6k
28

k
15

1k
3.

2k
7.

3k
∅

ra
nk

1.
4

2.
4

4.
4

3.
6

4.
7

5.
6

5.
7

6.
4

7.
1

7.
0

4.
8

4.
6

3.
6

4.
7

1.
3

2.
4

∅
r̂a

nk
2.

4
2.

6
4.

4
3.

6
4.

7
5.

5
6.

7
6.

4
7.

0
6.

8
4.

8
4.

6
3.

7
4.

7
1.

3
2.

5

Ta
bl

e
3.

14
:T

es
t

er
ro

r
(l

ef
t)

an
d

m
od

el
co

m
p

le
xi

ty
(r

ig
ht

)
af

te
r

tr
ai

ni
ng

,m
ea

su
re

d
by

th
e

ov
er

al
ln

u
m

be
r

of
p

ar
am

et
er

s,
av

er
ag

ed
ov

er
10

re
pe

tit
io

ns
.I

n
th

e
se

co
nd

,t
he

H
yp

er
pa

ra
m

et
er

s
w

er
e

op
tim

iz
ed

on
th

e
ba

si
s

of
a

sm
al

ls
ub

se
t.

Th
e

pr
oc

es
si

ng
w

as
ca

nc
el

ed
w

he
ne

ve
r

it
to

ok
lo

ng
er

th
an

24
ho

ur
s

an
d

w
e

m
ar

k
th

e
co

rr
es

po
nd

in
g

ex
pe

ri
m

en
ts

as
D

N
F.

67

incremental learning

Both SVMs perform similarly and mainly differ in the run time
during training. The high training complexity of ISVM, resulting from
the computation and incremental update of the inverse kernel matrix,
prevents an application for datasets consisting of substantially more
than 10000 samples such as MNist. The approximate nature of LASVM
allows it to process the MNist dataset but it also reaches its limit
for significantly larger datasets as SUSY. The instance-based ILVQ
constructs far sparser models and achieves high accuracies throughout
all datasets. It efficiently handles noisy datasets by sustaining a sparse
model.

As expected, tree-based models require a comparably large amount
of parameters for low-dimensional data, but are eminently efficient
in high-dimensional spaces, due to their compressing representation.
The opposite applies for instance-based models9. The ORF has the
third highest accuracies and constantly beats LPPCART. One explana-
tion, already noticed by He, Chen, Li, and Xu (2011), is that LPPCART
trains each base classifier with samples of only one chunk. Therefore,
knowledge integration across chunks is limited, since it is exclusively
established by the weights of the base classifier. Furthermore, ORF
benefits more from the sub-linear tree complexity because it gener-
ates a few deep trees instead of numerous, shallow ones as done by
LPPCART. Both SVMs could not process the large dataset SUSY due to
their naturally high training complexity. Whereas, IELM and LPPCart
were only limited by the inefficient MATLAB implementation.

The linear model of SGDLin uses the fewest parameters and per-
forms especially well for high dimensional data. However, it struggles
by design with non-linear separability as it is the case for the Bor-
der dataset, or whenever a small amount of examples is available per
class (COIL, Outdoor). The last rank of NBGauss obscures the fact that
it performs reasonably well without severe hiccups, incorporating a
simple and sparse model. Nonetheless, the restriction to unimodal
distributions is reflected in the results of the MNist and Isolet datasets.

Typical effects of different window-/chunk sizes are shown in
Figure 3.14 exemplary for the Overlap dataset. Usually, algorithms
benefit from an increased window-/chunk size. For instance, a larger
window enables the ILVQ to find better positions for new prototypes
and the ISVM to miss less support vectors. Simultaneously, the model
complexity of ILVQ is reduced, since the insertion rate is coupled with
the training-error. The IELM benefits from large chunks due to a more
stable initialization of the output weight matrix. In case of LPPCART,
however, larger chunks reduce the overall number of base classifier,
but at the same time each of them is trained on more training data,
requiring a balancing of these criteria.

9 The number of parameters for instance based models can often be clearly reduced
with a sparse representation for sparse high dimensional data as MNist. However, our
results rely on a dense vector representation.

68

3 .4 a practice-oriented survey

500 1000 1500 2000
Window-/Chunk size

0.16

0.18

0.20

0.22

0.24
E

rr
or

ra
te

ISVM

ILVQ

IELM

LPP

500 1000 1500 2000
Window-/Chunk size

102

103

104

#
P

ar
am

et
er

Figure 3.14: Influence of the window-/chunk size on the test error
(left) and model complexity (right) for dataset Overlap.

.

Offline Setting - HPO with a small set of training samples

Table 3.14 gives an overview of the results in terms of classification
performance and model complexity. The results of NBGauss are reported
for the sake of consistency, since it incorporates no meta parameters
and consequently achieves similar results. Regarding the error rate,
most methods perform slightly worse than in the first setting, leading
to the conclusion that hyperparameters can be robustly chosen based
on few samples. However, the method losing the most performance is
the IELM. This can be explained by the drastically sparser constructed
model which is sufficient for the classification of a few examples but
not complex enough for the whole dataset. Hence, the number of
hidden neurons is underestimated in the optimization.

By contrast, all dynamically growing models tend to use signifi-
cantly more parameters for various reasons: The kernel width of the
SVMs is estimated less accurate with few examples, leading to an
increased number of support vectors. In case of the ILVQ and ORF,
growth is explicitly controlled via one meta parameter. However, the
rate is overestimated because the model is obliged to learn faster when
few instances are available. This leads to a higher complexity than
necessary and can lead to overfitting. One solution could be to adjust
the growth rate during learning guided by a supervised signal, e.g.
the current classification performance.

SGDLin is the only algorithm which incorporates hyperparameters
and achieves, nonetheless, similar results as in the first evaluation.
Its model complexity is exclusively determined by the number of
dimensions and the amount of different classes in the dataset. The
only considered parameter, the learning rate, is reliably estimated on
a subset of the data.

Online Setting - Same hyperparameters as in setting 2 (section
3.4.7)

The resulting ITTEs are given by Table 3.15. In general, the ITTEs are
slightly higher accounting for the relatively high number of false clas-
sifications done at the beginning of learning. The SVMs maintain also
in this setting the upper hand, albeit with less dominance. Tree-based

69

incremental learning

ITTE
Setting 3 ISVM LASVM ORF ILVQ LPPCART IELM SGDLin NBGauss

Border 1.5 3.4 6.0 5.3 11.6 12.0 62.5 5.6
Overlap 18.3 21.2 21.8 18.9 27.3 25.2 32.1 32.5

Letter 8.7 7.3 24.6 11.6 20.7 64.6 59.0 35.8
SUSY DNF DNF 20.7 21.5 DNF DNF 21.3 26.5

Outdoor 13.6 17.7 65.8 17.6 31.5 26.7 82.0 35.0
COIL 24.6 33.7 33.4 20.9 41.3 36.9 90.4 29.8
DNA 10.5 10.5 26.9 15.4 22.1 50.9 15.3 13.9
USPS 3.3 3.4 15.5 7.3 13.4 11.2 11.5 24.0
Isolet 6.4 7.1 30.8 15.3 23.7 19.3 25.7 24.8

MNist DNF 2.5 12.9 9.2 11.0 23.5 16.3 43.5
Gisette 3.7 3.6 9.7 8.9 23.3 19.5 7.9 26.0

∅ 10.1 10.9 24.4 13.6 22.6 28.0 38.6 27.0
∅ rank 1.3 2.1 5.1 2.7 5.5 5.8 6.0 5.7
∅ r̂ank 2.7 2.8 4.7 3.2 5.0 5.5 5.8 5.8

Table 3.15: ITTE averaged over ten repetitions. The ITTE uses each
example of a given input stream first for testing and afterwards for
model construction (see equation 3.1). We used the hyperparameters
of the second offline setting, which are optimized on a small set of
training examples (see section 3.4.7). The model complexity is ne-
glected because it is similar to those of the second offline setting, due
to the same hyperparameters. Only the training set of the original data
was utilized as input stream (samples that were used in the HPO are
excluded).

methods lose the most classification performance, indicating that the
construction of an accurate tree model requires distinctly more exam-
ples than an instance-based one. This is due to the fact that split nodes
are only added when they are necessary for the classification of the
data seen so far. A few training examples can already be differentiated
along one or two dimensions. Sophisticated tree models consisting of
multiple splits are only required for larger amounts of training data.

In contrast, instance-based methods immediately classify examples
along every dimension. Figure 3.15 highlights the different adaption
rates between both model types by depicting exemplary learning
curves. The ITTE is expected to be slightly above the test error for i.i.d.
data because more mistakes are made at the beginning. However, in
case of the Outdoor dataset the algorithms have partly a 20% lower
ITTE. Figure 3.16 depicts the learning curves in both settings. The only
explanation for this discrepancy is that data in the training set is quite
different from those in the test set, implying that data is actually not
i.i.d. As noted by Losing et al. (2015), this visual dataset consists of
objects recorded outdoors. The lighting conditions significantly vary
within the dataset and affect the underlying color based representation.

Restriction of the Overall Classifier Complexity

Methods as SGDLin, NBGauss and IELM are online algorithms and
viable in lifelong-learning applications, since they are constant in their

70

3 .4 a practice-oriented survey

2000 4000 6000
#Samples

0.05

0.10

0.15

0.20

E
rr

or
ra

te
USPS - Test error

ORF

ISVM

ILVQ

LPP

2000 4000 6000
#Samples

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

or
ra

te

Isolet - Test error

Figure 3.15: Learning curves of tree - and instance based models in
comparison. Instance based methods are particularly at the beginning
more accurate and with a steeper learning curve.

.

500 1000 1500 2000 2500
#Samples

0.3

0.4

0.5

0.6

E
rr

or
ra

te

Outdoor - Test error

ORF

ISVM

ILVQ

LPP

500 1000 1500 2000 2500
#Samples

0.2

0.4

0.6

E
rr

or
ra

te

Outdoor - Interleaved test train error

Figure 3.16: Learning curves for the Outdoor dataset in the off- and
online setting. The dramatic discrepancy is subject to distinctly differ-
ent training examples compared to those of the test set, implying the
overall data of being not i.i.d.

.

complexity. ILVQ and LPPCART can be easily restricted to a certain
limit by strategies such as removing the ”worst“ prototype/classifier
(Grbovic & Vucetic, 2009; Elwell & Polikar, 2009). In case of the SVMs,
however, it is less trivial. Even though approaches as proposed by
Downs, Gates, and Masters (2002) do reduce the number of support
vectors, there is to the best of our knowledge no practical method to
bound them strictly. This applies to a lesser degree also for the ORF. It
learns by growing its trees continuously. Therefore, a depth reduction
or pruning mechanism would be necessarily at some point.

Training- and Run-time

The algorithm implementations vary in the written programming
languages as well as their efficiency. For instance, the fastest method
NBGauss, written in C, required four seconds for the Isolet dataset,
whereas the ISVM, implemented in Matlab, took ten minutes. Simply
measuring the run time results not in a fair comparison, since the
impact of the specific implementation is unclear. Therefore, we do not

71

incremental learning

explicitly compare training- and run-time but instead give a broad
categorization based on complexity analysis and practical experience.

The training of both SVMS take by far the most time, since a
quadratic programming problem is solved. However, LASVM is due
to its approximate manner significantly faster than ISVM, but has the
same worst case complexity. Clearly faster is LPPCART and, since we
use it in combination with CART its complexity is O(n log(n)), with
n being the number of training examples. By performing the training
chunk-wise, n is kept small and the training time is significantly re-
duced. The ORF has the same complexity class but the random splits
drastically reduce the time in practice. The ILVQ and IELM have a
similar training complexity O(np), where p is the number of proto-
types / hidden neurons and usually p � n. However, the dynamic
insertion of new prototypes in ILVQ requires additional calculations
slowing it noticeably down. SGDLin and NBGauss are clearly the quick-
est with linear complexity O(n). In general, the train- and run time of
growing models (LASVM, ISVM, ILVQ, LPP, ORF) naturally increase
with model size, affecting the processing time, particularly, for large
datasets. The run time of tree-based methods is sub-linear in regard
to the model size O(log l), l being the number of leaves, which makes
them extremely efficient. All remaining algorithms have a linear rela-
tion between model complexity and run time. Nonetheless, the sparse
models of SGDLin and NBGauss are usually the fastest in the field.

Concept Drift

Learning from data streams in non-stationary environments is a crucial
part of incremental learning. Even though, the considered methods
are not especially designed to handle concept drift, we exemplary
investigate their robustness in respect to different types of drift. It
is typically distinguished between real drift, referring to a changing
class posterior distribution, and virtual drift, implying only a varying
input distribution. These types of changes can occur in an abrupt
or incremental way. Non-stationary environments and corresponding
methods are extensively covered in Chapter 4.

Figure 3.17 illustrates the setting of the experiments. We optimized
the meta parameters using the first 1000 instances and performed an
evaluation in online scheme on the remaining instances. Various algo-
rithms have been published explicitly tackling this challenge (Gama
et al., 2004; Kolter & Maloof, 2007; Elwell & Polikar, 2011).

Datasets

The experiments relied mostly on artificial datasets with known drift
characteristics. We also included two commonly used real-world bench-
mark, where generally the drift characteristics are not known. However,
in the context of this thesis, we tackle this challenge and propose a
method that determines the drift type within real-world tasks (see
Section 4.3). Characteristics of the evaluated datasets are given in Table

72

3 .4 a practice-oriented survey

Figure 3.17: The concept drift experiments are using streaming datasets,
which have a predefined order and there is no splitting into train- and
test examples. The evaluation is performed in the online setting and
the first 1000 samples are used for HPO.

3.16 and we briefly describe them in the following. More information
about the data can be found in Section A.2.

Dataset #Instances #Feat. #Class Drift type

Inter. RBF 200000 2 15 abrupt real
Electricity 45312 5 2 real
Moving RBF 200000 10 5 incremental real
Cover Type 581012 52 7 real

Table 3.16: The evaluated datasets and their characteristics. The drift
type for the real-world datasets is adopted from the experiments in
Section 4.3.6.

Interchanging RBF Fifteen Gaussians with random covariance ma-
trices are regularly swapping their position in feature space.
Thereby, the number of swapped Gaussians increases each time
by one until all are simultaneously changing their location. Each
Gaussian is represented by an own class.

Electricity Each sample describes the current state of an electricity
marked based on attributes such as day of week, time stamp,
and market demand. The challenge is to to predict the relative
change of price (higher or lower) compared to the last 24 hours.
This problem is often used as a benchmark for concept drift
classification (Baena-Garcıa et al., 2006; Kuncheva & Plumpton,
2008; Bifet et al., 2013; Gama et al., 2004).

Moving RBF Gaussian distributions with random initial positions,
weights and standard deviations are moved with constant speed
in 10-dimensional space. The weight controls the partitioning of
the examples among the Gaussians.

73

incremental learning

ITTE
Drift setting ORF ILVQ LPPCART IELM SGDLin NBGauss

Inter. RBF 54.1 23.2 70.6 70.5 65.7 70.1
Electricity 30.1 27.5 32.5 45.2 15.4 36.8
Moving RBF 54.4 23.4 82.0 84.1 59.4 82.9
Cover Type 10.4 11.9 60.3 48.7 5.4 45.4

∅ 37.3 21.5 61.3 62.1 34.0 58.8
∅ Rank 2.3 1.8 5.0 5.5 2.0 4.5

Complexity
Drift setting ORF ILVQ LPPCART IELM SGDLin NBGauss

Inter. RBF 762 k 46 k 166 k 900 45 60
Electricity 140 k 1.4 k 30 k 560 6 20
Moving RBF 721 k 2.6 k 32 k 1.0 k 45 60
Cover Type 1.3 M 292 k 76 k 6.0 k 385 756

∅ 729 k 85 k 76 k 2.1 k 123 234
∅ Rank 6.0 4.3 4.8 3.0 1.0 2.0

Table 3.17: Achieved ITTE (top) and model complexity (bottom). Hy-
perparameters were optimized on the first 1000 samples.

Forest Cover Type The objective is to categorize cartographic vari-
ables as elevation, slope, soil type, . . . of 30× 30 meter cells to
different forest cover types. This data set is a popular benchmark
for drift algorithms (Bifet et al., 2013; Gama et al., 2003; Oza &
Russell, 2001).

Results

The resulting ITTEs as well as model complexities are given by Table
3.17. We excluded the SVMs from the ranking, since the highly over-
lapping distributions led to an extensive growth of support vectors
and to a processing time above 24 hours in all but one task. Methods
that learn a model for all seen data instances, without regarding the
temporal order such as NBGauss and LPPCART are inappropriate for
non-stationary environments as can be seen by the poor results. In
general, a mechanism to forget obsolete knowledge is crucial to be able
to deal with concept drift. This is given to some extent for the ILVQ
and the SGDLin. Both incorporate a learning rate, which, if set flexible
enough for the rate of drift, allows the model to adapt to new concepts.
A common technique to deal with concept drift is the sliding window
(Bifet et al., 2013; Widmer & Kubat, 1996). The ILVQ utilizes one to
insert new prototypes such that the classification on recent examples
is optimized. Hence, it weights new information stronger by design
and has, therefore, the highest capacity of the methods to deal with
concept drift. Our brief evaluation shows that some methods yield
surprisingly accurate results for the considered datasets, while others
simply fail. However, as we will see in Section 4.4.4, methods designed

74

3 .4 a practice-oriented survey

SVMs ORF ILVQ LPPCART IELM SGDLin NBGauss

Endless learning 7 7 (3) (3) 3 3 3

Classification performance ? ? ? ?? ?? ?? ?? ? ?
Learning speed ? ? ? ?? ? ? ? ?? ?? ?? ? ? ?

Model complexity ? ?? ?? ?? ?? ? ? ? ? ? ?
Training time ? ? ? ? ?? ?? ? ? ? ? ? ? ? ? ?

Run time ?? ? ? ? ?? ? ? ? ?? ? ? ? ? ? ?
Complexity of HPO ? ? ? ? ? ? ? ? ? ? ? ?? -

Subset based HPO ?? ?? ?? ?? ?? ? ? ? -
Viable for concept drift 7 7 (3) 7 7 (3) 7

Table 3.18: Discretized assessment of the core algorithmic properties.
Especially, the major categories classification performance and model
complexity are highly affected by the evaluated datasets and represent
the average results on the diverse tasks considered in our experiments.

for non-stationary environments yield clearly better results.

3 .4 .8 Discussion

In this section, a diverse set of popular algorithms was investigated on
different tasks. The results of the experiments are summarized in Table
3.18. It provides a fast overview of the core attributes of the methods,
guiding the choice of an appropriate algorithm for a given task. We
conclude that the SVMs often deliver the best classification perfor-
mance at the expense of the most complex model. The approximate
nature of the LASVM reduces the training time and allows the process-
ing of larger datasets than feasible with the ISVM. The ORF performs
slightly worse but has a very fast training- and run-time. However, its
model as well as those of both SVMs grows linearly with the number
of samples and cannot be limited in a straightforward way. Therefore,
these algorithms are not suited for lifelong-learning in endless streams
in contrast to the remaining methods, having either constant or an
easily boundable complexity. The ILVQ offers an accurate and sparse
alternative to the SVMs. LPPCART is quite flexible, since the base clas-
sifier can be arbitrary selected, however, it may struggle by its limited
knowledge integration across chunks. Tree-based models are especially
suitable for high dimensional data because of their compressed repre-
sentation as well as their sub-linear run time, which is independent
from the number of dimensions. However, the compressed representa-
tion infringes the learning speed, such that instance-based models are
learning faster and are more appropriate for tasks comprising only a
few examples. The sparse models of SGDLin and NBGauss make them to
particularly viable choices for large-scale learning in high-dimensional
space on the one hand, but too simple for low-dimensional tasks that
require non-linear separation, on the other. NBGauss and tree based
methods are the easiest to apply in practice requiring no or just a
little HPO, whereas the SVMs and the ILVQ require the most delicate

75

incremental learning

setting. Thus, depending on the actual demands, e.g. the available
time and memory resources of the actual device and the possibility
to interact for an optimum hyperparameter selection, the choice of
different methods is advisable and our findings provide guidelines for
such choices.

The chapter shed light on incremental learning in stationary en-
vironments. Nowadays, incremental learning is particularly relevant
to efficiently process huge data streams that are continuously gener-
ated in various areas. Here, the assumption of stationarity is mostly
violated, and data distributions change over time in various ways.
In this section, algorithms assuming stationary settings were briefly
examined within non-stationarity. The results revealed the necessity
of specific approaches that explicitly deal with changing distributions.
These are extensively discussed in the next chapter as our focus shifts
to incremental learning in non-stationary environments.

76

4C O N C E P T D R I F T

Summary In this chapter, we focus on incremental learning under concept
drift, a term to denote changes of the underlying data distributions, which is
a prevalent phenomena in data streams. In particularly, we define concept
drift and describe typical forms of change as well as the induced learning
challenges. In this context, we contribute one method that is able to charac-
terize drift in real-world data which is crucial from practical point of view.
Furthermore, a new learning architecture, based on dedicated memories, is
proposed which tackles the challenge of handling different types of drift in
an adaptive way.

Source Code

• The Python source code for the Self-Adjusting Memory (SAM) is available at
https://github.com/vlosing/SAMkNN.

• SAM is also integrated within the open source framework Massive Online Analysis
(MOA) https://moa.cms.waikato.ac.nz/.

• The SAM-Ensemble (SAM-E) will be shortly integrated in MOA. Corresponding JAVA
code is accessible at https://github.com/vlosing/SAM_E.

• Links to all datasets can be found at https://github.com/vlosing/datasets.

Parts of this chapter are based on:

• Losing, V., Hammer, B., & Wersing, H. (2016b). Dedicated memory models for continual
learning in the presence of concept drift. In Advances in neural information processing
systems (nips) 29, continual learning workshop.

• Losing, V., Hammer, B., & Wersing, H. (2016c). Knn classifier with self adjusting mem-
ory for heterogeneous concept drift. In 2016 ieee 16th international conference on data
mining (icdm) (pp. 291–300).

• Losing, V., Hammer, B., & Wersing, H. (2017b). Self-adjusting memory: How to deal
with diverse drift types. In Proceedings of the twenty-sixth international joint conference on
artificial intelligence, IJCAI-17 (pp. 4899–4903).

• Losing, V., Hammer, B., & Wersing, H. (2018c). Tackling heterogeneous concept drift
with the self-adjusting memory (sam). Knowledge and Information Systems, 54(1), 171–
201.

• Losing, V., Hammer, B., Wersing, H., & Bifet, A. (2019). Tackling concept drift with a
diverse self-adjusting memory ensemble. In Submitted to international conference on data
engineering (icde) 2019.

Learning from data streams demands more than an incremental
model adaptation. The classical assumption of data being inde-

pendent and identically distributed (i.i.d.), which is dominant in batch
learning scenarios, usually does not hold for data streams (Žliobaite,
2010). As processes follow temporal patterns so do streams which try
to capture these. For instance, forecasting tomorrow’s weather being
similar to today’s one is usually an accurate and reasonable predic-
tion because they are temporally related. Different temporal patterns
are governed by different underlying distributions that generate the
observations. For instance, seasons are overarching temporal patterns
and the weather in winter is differently distributed than the weather
in summer. In other words, data instances can be highly interdepen-
dent and follow evolving distributions. Changes of the underlying
distribution are named concept drift, or the environment is termed as
non-stationary, and sophisticated learning algorithms are required to
perform under such circumstances.

In this chapter, we will describe useful algorithmic properties for

77

https://github.com/vlosing/SAMkNN
https://moa.cms.waikato.ac.nz/
https://github.com/vlosing/SAM_E
https://github.com/vlosing/datasets

concept drift

learning in the presence of drift. Consequently, we will discuss exist-
ing approaches and propose new ones. Various associated research
questions have to be addressed, the most crucial ones are the following

1. How can we evaluate algorithms when the underlying distri-
bution is constantly changing? How can the performance be
monitored over time?

2. What are the strengths and weaknesses of state-of-the-art algo-
rithms?

3. Which types of drift are contained in real-world data and how
strongly are they pronounced? How can we extract such infor-
mation from a given dataset?

4. How can we efficiently handle the stability-plasticity dilemma,
i.e. how to decide whether past knowledge is still valid? What
is necessary to deal with drift in lifelong-learning applications?
How to design an architecture that is able to deal with different
types of drift?

Hereafter, these challenges are addressed in an explicit way and an-
swers are provided in form of algorithmic contributions or newly
designed architectures, which are analyzed in diverse drift constella-
tions.

1. Definition and Evaluation Concept drift can occur in various
types, temporal patterns and different severities. Corresponding defini-
tions and characteristics are provided in Section 4.1. In comparison to
learning in stationary environments, numerous additional challenges
are arising in changing environments. Section 4.1.5 discusses these
in detail. One of those is the evaluation of incremental models facing
changing distributions, which cannot be done on basis of a single test
set.

2. Taxonomy of State-of-the-Art Methods Since learning under con-
cept drift is a challenging and appealing field of research, numerous
publications have been published tackling various aspects. Modern ap-
proaches are increasingly sophisticated in terms of combining several
proven building blocks. Prominent modules are drift detectors, sliding
windows and ensemble methods, mostly combined with incremental
decision trees or k Nearest Neighbor (kNN). Section 4.2 introduces
them in detail, providing a solid foundation for the subsequent treat-
ment of state-of-the-art drift algorithms. These are briefly described
and presented in tabular form, where the methods are categorized on
basis of a previously defined taxonomy.

3. Concept Drift in Real-World Data In real-world applications, it
is crucial to have information about drift characteristics in the data,
since it facilitates the choice of suitable methods, preventing the costly
and time-consuming process of trying out numerous algorithms with

78

the risk of excluding the best one based on wrong assumptions. Fur-
thermore, it can provide more insight into the dynamics of the process
itself. From a scientific point of view, it is important to assess the extent
of drift in general. For instance, it is yet neither known whether drift
is contained in commonly used benchmarks, nor any specifics about
its type or degree. In spite of these open questions, there are yet no
methodologies able to extract the drift characteristics from a given
dataset. Section 4.1.5 elaborates on the research questions that arise
in relation to determining drift in data, whereas in Section 4.3, we
provide answers in form of a novel approach, able to detect the drift
type and degree in a given dataset.

4. Handling Different Types of Drift Effective handling of differ-
ent drift types demands completely different mechanisms, hence, the
design of a system able to handle multiple types of drift is very chal-
lenging. Furthermore, underlying models such as kNN or decision
trees require specific refinements that exploit their strengths and mit-
igate their weaknesses. Past knowledge needs to be integrated over
time and outdated information has to be filtered or reduced in weight
to adapt to new, possibly contradicting patterns in a fast way. In case of
lifelong-learning scenarios, a compression of stored information is nec-
essary to continue the learning process as soon as the maximum model
size is reached. Hence, a high efficiency is essential in each module for
keeping up with the incoming stream of data. Section 4.1.5 discusses
each of the mentioned points in detail. We tackle some aspects within
our proposed Self-Adjusting Memory (SAM) architecture, which in-
tegrates past and current concepts in an innovative way (Section 4.5).
It explicitly maintains a consistency between old preserved concepts
and the current one, thereby selectively filtering outdated instances.
The level of abstraction is increased in an adaptive way, continuously
balancing memory demands and classification performance. SAM is
able to deal with heterogeneous types of drift adaptively switching its
knowledge basis.

Ensembles aggregate weak learners and often drastically improve
upon a single model’s performance based on a high diversity of the
overall model. In the context of concept drift, they allow the preser-
vation of different concepts across the learners, which can be flexibly
applied according to current drift patterns and types. Section 4.2
discusses them in detail. Their utility with respect to concept drift
adaptation is highlighted by our proposed method SAM-Ensemble
(SAM-E). It combines the benefits of highly diverse ensembles with the
versatility of the SAM algorithm, resulting in an even higher overall
flexibility and robustness which is reflected by a better classification
performance. Efficiency is maintained by a parallel implementation
that exploits the multiple cores of nowadays processing units.

79

concept drift

Figure 4.1: Exemplary changes of data distributions for two subse-
quent points in time t0, t1. The changes are either characterized as real
drift, when the class boundary is affected, or virtual drift, when the
distribution changes without affecting the class boundary.

4 .1 foundation

In the following, concept drift and its two major forms are defined,
as well as associated changing patterns characterized. We discuss the
additional issues faced by incremental learning algorithms applied in
non-stationary environments and name essential properties enabling
the methods to meet the demands. Thereby, we explicitly point to
corresponding novel approaches that are proposed in the frame of this
thesis.

4 .1 .1 Definition

In data stream learning, concept drift occurs when the joint distribution
Pt(x, y) changes for at least two time steps t0 and t1 (Gama et al., 2014):

∃ x : Pt0(x, y) 6= Pt1(x, y),

The joint distribution can also be written as:

Pt(x, y) = Pt(x)Pt(y|x),

where Pt(x) is the distribution of the features and Pt(y|x) the posterior
probability of the classes. This is a broad definition and clearly not
all included types of change are relevant in practice. In the context of
data stream learning, changes of the distributions that manifest over
longer time periods and distinctly affect the performance are usually
considered. In the literature, alternative terms for concept drift such as
non-stationary environments or evolving data streams are often used
interchangeably.

4 .1 .2 Types of Concept Drift

Two major types of concept drift are usually distinguished as illus-
trated by Figure 4.1. The term real drift is used to specify that the

80

4 .1 foundation

Figure 4.2: Real drift as a result of lacking information. The data
overlaps if the time of year information is missing, affecting the class-
boundary over time. An incremental system processing this type of
distribution in temporal order will encounter changing concepts in
form of real concept drift.

relation between observation and labels Pt(y|x) varies over time, in
other words, the location of the class boundary is shifting. Virtual
drift is present when the feature distribution Pt(x), the conditional
probability Pt(x|y) and/or the class priors Pt(y) are changing without
affecting the posterior of the classes Pt(y|x). In the context of batch
learning, virtual drift is also known as covariate shift and refers to
different feature distributions between the training- and test set (Bickel,
Brückner, & Scheffer, 2009). One intuitive explanation may be that the
sets were collected at different times leading to different captured
distributions.

Concept drift can be interpreted as a lack of information about
a given task, often termed as hidden context which guides changes,
but is not captured in the data (Widmer & Kubat, 1996). For instance,
assume the weather tomorrow depends only on the current season and
todays average humidity level. A prediction system that has access to
both information will not experience real drift, but only virtual one,
since the sample independence is still violated. However, as soon as
one of the information is missing, the data may overlap over time and
contradict past patterns, leading to a shifting class boundary, since
the available data is not sufficient to explain the process. Figure 4.2
provides a graphic illustration of this example.

In a nutshell, the more aspects of a problem are captured the less
likely real drift occurs. However, the world is very complex, and hu-
manity is still quite ignorant about it (Firestein, 2012), so that it is
often unclear what type of information is necessary to completely
explain a specific process. Furthermore, from a practical point of view
it is mostly neither possible to obtain all required information nor to
process them within the available time horizon. For instance, consider
the task of a recommender system suggesting relevant news articles
to a user. The user has a certain interest distribution about various
topics, but is not particularly attracted by articles about cars. However,
at some point the user decides to buy a new car and suddenly is keen
on reading articles about cars in general, since he/she wants to be
up-to-date with the current market. As soon as a new car is bought the

81

concept drift

Figure 4.3: Different temporal patterns of change.

user returns to its old habits and declines articles about cars again. In
such a case, it is unlikely that the recommender system has access to
the cause of the change, i.e. the user wanting to buy a new car. Instead,
the system will temporally encounter real concept drift and a quick
reaction is crucial to prevent a series of irrelevant recommendations.
This showcases one of countless everyday examples in which the data
distribution is altered. Hence, sophisticated algorithms are indispens-
able in the field of data-stream learning to mitigate the repercussions
of lacking context information.

4 .1 .3 Patterns of Change

The pattern or rate at which drift is happening can vary and is mostly
categorized either into abrupt, resulting in a severe shift within the
distribution, e.g., caused by a malfunctioning sensor, or incremental,
an evolving change over time, e.g., evoked by a slowly degrading
sensor. Sometimes a gradual transition between the former and current
concept can happen as well. Figure 4.3 illustrates various types of
change. Additionally, concept drift can be characterized as reoccurring
to describe that previous concepts are becoming active again. It should
be noted that these patterns are not formally defined but rather used
as intuitive characterization of the way change is taking place, which
might be ambiguous in particular cases. For instance, incremental drift,
can also be described as a series of subsequent abrupt drifts, since the
distinction is solely based on a subjective spacial and temporal scale.
Also, gradual drift can be interpreted as reoccurring one.

4 .1 .4 Model Evaluation

Evaluation in non-stationary environments is not as straight-forward
as in stationary ones. The classical train-test evaluation based on
two disjunct sets for training and testing is inappropriate, since the
underlying distribution is changing. In case of a few different and
abrupt changes, one test set is required for each concept to estimate
the generalization error in each of those. Even though this has partially
been done for artificial data (Elwell & Polikar, 2009), it is not a suitable
approach for real-world tasks, since it is not clear when different
concepts start and how to get corresponding test sets. In particular,
it breaks down for numerous concepts or in case of continuous or

82

4 .1 foundation

incremental changes where the distribution may change after each
example.

One common approach is to continuously monitor the performance
and to average it over a time period. Concretely, the evaluation is
performed in the online learning setting and relies on the ITTE

E(S) =
1
t

t

∑
i=1

1−L(hi−1(xi), yi)

(Section 3.1.2). Precisely estimating the classification performance is
particularly relevant, since one popular approach is to infer changes
in the distribution based on significant deviations of the classification
performance. For this reason, the current performance is estimated by
determining the ITTE on a few recent instances.

However, in case of strong auto correlation of the labels, the ITTE
can drastically overestimate the performance of an algorithm. For
instance, a naive approach can simply predict the previous label to
achieve a low ITTE without learning any general structure of the under-
lying data distribution. One valid option to prevent such exploitation
is to train and evaluate algorithms in chunks according to the sequen-
tial peculiarities of the tasks. Assume stream S contains m complete
chunks, where each chunk Cj := [(xi, yi), . . . , (xi+mj , yi+mj))] consists
of |Cj| datapoints with corresponding labels, then the chunk-wise ITTE
is given as

Ec(S) =
1

∑m
j=1 |Cj|

m

∑
j=1

∑
∀(x,y)∈Cj

1−L(hj−1(x), y).

Regarding real applications, the exploitation is often naturally inhibited
because ground-truth information is usually obtained with a certain
delay, often too late for strategies that are based on predicting the most
recent ground-truth for the current prediction to be effective.

In this thesis, the chunk-wise evaluation is applied in two different
application scenarios, both with strong auto correlation because of
their sequential nature. The objective of the first scenario is to predict
the maneuver a car-driver will execute at the currently approached
intersection. Maneuvers are distinguished into taking a turn, going
straight or stopping. Predictions are made while the car is approaching
the intersection. Each approach consists of numerous data-points, that
are temporally ordered and all have the same label according to the
taken action (Section 5.2). Hence, the model is trained and evaluated
approach-wise, using all data points of one approach as a single unit.
Similarly, we proceed in the second scenario which deals with human-
motion classification. In this case, each motion is treated as one unit
(Section 5.3). Further evaluation schemes such as weighted variants
of the ITTE are discussed by Gama, Sebastião, and Rodrigues (2013),
however, they are not considered within this thesis.

83

concept drift

4 .1 .5 Challenges

Learning under concept drift is a highly challenging task, since funda-
mentally different types of drift can occur in various forms and rates
and may even emerge simultaneously. In the following, we elaborate
on associated research questions.

How to Quantify Drift in Real-World Data?

Drift-handling capabilities are mostly assessed based on artificial
datasets because drift characteristics such as the type, pattern, strength,
time of occurrence can be predefined. They provide a complete control
of the conditions algorithms are facing and thus a precise investigation
of their reaction. Additionally, artificial data can be generated with few
dimensions to enable a visualization of the data and model structure.
Therefore, scientists can get a precise picture about the qualities of
methods in low-dimensional space with certain drift constellations. In
contrast, estimating the drift-handling capabilities based on real-world
data is rather difficult. It is neither known whether concept drift is
contained at all, nor any specifics about its form. This also applies to
already established real-world benchmarks, therefore, their relevance
in assessing drift-handling capabilities remains unclear. Even though
the research field of learning in non-stationary environments is quite
established, there is rarely work aiming for the extraction of drift char-
acteristics (virtual versus real, abrupt versus incremental, etc.) from a
given dataset.

One reason for the lack of such methods is that it is very difficult
to determine characteristics due to the high diversity of possibly occur-
ring drift, especially considering the fact that multiple, different forms
can simultaneously happen and may superimpose each other. Further-
more, real-world data is commonly high-dimensional, preventing a
straight-forward extraction of the specifics based on visual inspection.
Approaches trying to reduce the dimensionality beforehand are poten-
tially erasing or distorting information and thus falsify the outcomes
(Maaten & Hinton, 2008; Schulz, Gisbrecht, & Hammer, 2015).

A viable approach is to directly model the distribution based on
density estimators such or clustering (Hastie & Tibshirani, 1996; Sil-
verman, 2018; MacQueen, 1967). Subsequently, the development of
these models can be analyzed over time, e.g. measuring the distance
or similarity at different points in time. Dasu, Krishnan, Venkatasubra-
manian, and Yi (2006) propose a drift detection method by modeling
the distributions based on kd-trees (Bentley, 1975) and analyze the
Kulback-Leibler divergence between those. Even though this method
scales linearly with the number of dimensions, the accuracy of the
detections continuously decreases and is already with 10 dimensions
significantly reduced.

A common approach, circumventing the problem of high dimen-
sionality, is to monitor the classification performance over time instead
of the distribution itself (Gama et al., 2004; Bifet & Gavalda, 2007). De-
viations of the performance are then used to draw conclusions about

84

4 .1 foundation

possibly happening drifts. Clearly, this gives only hints about the true
behavior of the distribution and the results depend on the utilized
classification algorithm, which cannot be simply generalized to other
methods. However, it can still be useful to get rough estimates. For in-
stance, applying a drift detection method delivers already information
about the time of drift. Information about the slope of the classification
performance before and after detected drift times can indicate the
pattern, e.g. abrupt versus incremental. Summarizing such specifics of
all detected drift can already deliver limited insights. However, various
drift characteristics cannot be extracted by such a method, e.g. drift
which has no effect on the performance is missed. From a practical
practical point of view this is rather a secondary concern. Furthermore,
it is not possible to distinguish between real or virtual drift, since both
can affect the performance. Regular patterns in the performance may
indicate reoccurring concepts, but this is not clearly ascertainable, since
different concepts may lead to similar patterns.

In this thesis, an approach is proposed which sheds some light on
the drift characteristics in real-world data (Section 4.3). It is also based
on the classification performance, however, instead of monitoring the
temporal classification performance, it analyzes the average perfor-
mance obtained on numerous bootstrap samples of the data. Two
statistical tests are applied to detect significant differences between the
classification performances, resulting from classifiers equipped with
differently sized sliding windows. The method is not only able to infer
the presence of drift, but also about its type and severity. The tests are
applied on common benchmarks to assess their suitability for concept
drift analysis. Clearly, this method is only a first step as it delivers
no complete picture of the drift-specifics. Nonetheless, the extracted
information provides already valuable insights for researchers and
practitioners.

How to Handle Heterogeneous Types of Concept Drift?

Learning under concept drift is an ill-posed problem in the sense that
it is not possible to distinguish a burst of noise from a new concept
in an online way. In practice, it is not clear when drift occurs and
new concepts start. The stability-plasticity dilemma is drastically more
difficult to handle because algorithms require ideally the same stability
as for stationary data when the underlying distribution is static, but
a substantially higher flexibility to adapt quickly as soon as changes
take place. Thus, algorithms are required to dynamically balance their
plasticity according to the volatility of the underlying distribution.

However, this presupposes the capability to detect change in an
explicit or implicit way. The classification performance gives a direct
measurement of the quality of a model and as long as the performance
is unaffected, it is from a practical point of view usually irrelevant
whether concept drift is happening or not. Therefore, methods often
continuously monitor their performance and trigger reactions as soon
as a change is detected. Different drift detection mechanisms are
extensively discussed in Section 4.2.1.

85

concept drift

The advantage of non-parametric methods which are able to dy-
namically adapt their model complexity is even greater in the presence
of concept drift. Therefore, most approaches tackling drift in data
streams are based on non-parametric models such as decision trees
or kNN. As in stationary environments, adding new model param-
eters enables quicker learning and consequently quicker adaptation
to change. However, unlike as for i.i.d. data, the capability to remove
existing model parameters in a selective way is particularly crucial
as it allows to instantly forget obsolete information and enhances the
adaptation. One popular approach to deal with drift is to combine
drift detection with forgetting, in terms of erasing past information as
soon as drift is detected (Bifet et al., 2013; Kuncheva & Žliobaite, 2009;
Klinkenberg & Joachims, 2000; Gama et al., 2004). Even though such
a strategy allows to handle abrupt drift patterns, it also irreversibly
erases all accumulated knowledge until then. In particular, real-world
problems require more sophisticated methods which are able to deal
with different types of drift selectively. For instance, reoccurring drift
requires a conservation or integration of past knowledge in order to
deal with reemerging patterns instead of relearning them always from
scratch.

In recent years, a few algorithms have been published able to
handle specific types of drift such as abrupt (Gama et al., 2004), in-
cremental (Kolter & Maloof, 2007) as well as reoccurring (Elwell &
Polikar, 2011) drift. Some methods can be used for several types of
drift when their hyperparameters are set appropriately. However, this
requires explicit prior knowledge about the task at hand. In the context
of this thesis, a new architecture, the Self-Adjusting Memory (SAM),
is proposed to integrate past and current concepts in an innovative
way (Section 4.4). In contrast to other methods, SAM can handle a
variety of drift types and patterns without any task-specific hyper-
parametrization. The architecture is based on two dedicated memories,
one containing the current concept and the other accumulating all past
ones. A consistency between both memories is continuously main-
tained by selectively filtering contradicting instances. Past knowledge
is compressed whenever the upper memory bound is reached, lead-
ing to an adaptive level of abstraction making SAM well suited for
lifelong-learning scenarios.

Yet, the focus on consistency within one single architecture pre-
vents SAM to store diverse, possibly partially contradicting concepts
which can occur when dealing with concept drift over time. Ensem-
bles aggregate weak learners and often drastically improve on their
individual performance. They are also very popular in the field of
non-stationary stream learning because of their flexibility to selectively
add and remove learners which enables a simple and efficient way
to adapt to changing concepts. We discuss them in detail in Section
4.2.3. In Section 4.5, we propose the SAM-Ensemble (SAM-E), an algo-
rithm combining the advantages of highly diverse ensembles with the
versatility of the SAM algorithm, leading to an even higher classifica-
tion performance and overall robustness. Even though an ensemble
of SAMs is able to deal with concept drift on its own, we also utilize

86

4 .2 related work

a drift-detection on top, which triggers the replacement of the worst
learners in case of a detection. This addition does not not only in-
crease the adaptation speed of the overall model, but also selectively
preserves learners with a suitable parameterization.

Concept drift requires sophisticated models often combining sev-
eral algorithms as incremental learning, drift detection and ensembles.
All these components have own hyperparameters which often cru-
cially affect the overall performance, making it difficult to adjust each
of them to the task-specific needs per hand. Particularly in case of
changing environments, such parameters ideally require a dynamic
configuration. We show for SAM and SAM-E that critical parameters
can be avoided or automatically adjusted by using the current and past
performance as guiding signal. For instance, based on performance
maximization SAM switches between both memories as prediction
model or SAM-E removes the currently worst performing learners
in case of detected drift. Thus, both our methods are easy to use in
practice without the necessity of task-specific adjustments.

4 .2 related work

Before we elaborate on state-of-the-art approaches and use a taxonomy
to categorize them, the fundamental techniques of drift detection and
Bagging ensembles are introduced, which are widely used building
blocks within concept drift algorithms.

4 .2 .1 Drift Detection

A common way to handle drift, is to detect it first and then trigger a
reaction. Drift detection algorithms explicitly determine the time of
change t and enable a direct reaction, i.e. a model specific treatment of
the detected change. The detection is mostly based on indirect cues
such as the classification error. These are extracted from multiple win-
dows, covering different time periods, and are analyzed for significant
deviations (Gama et al., 2004; Bifet & Gavalda, 2007). There are also a
few methods that directly detect drift on the input, thereby evaluating
the distance or the Kullback Leibler divergence between modeled dis-
tributions of different time periods (Dasu et al., 2006; Kifer, Ben-David,
& Gehrke, 2004). However, such approaches are only applicable for
low-dimensional data because their run-time often increases exponen-
tially with the number of dimensions and / or their performance drops
significantly.

One popular detector is ADaptive sliding WINdowing (ADWIN)
(Bifet & Gavalda, 2007), which efficiently monitors the binary error
history (it could be any i.i.d. value between 0 and 1) in a window
containing all values since the last detected change. The window is re-
peatedly partitioned into two sub-windows of various size. Whenever
the difference of their average error exceeds a threshold, depending

87

concept drift

on the size of the sub-windows and a confidence parameter, a change
is detected and the older sub-window is dropped.

It should be noted that the popular scheme of applying statistical
tests on the development of the classification error assumes that the
underlying model is already converged. Otherwise, changes in the
error distribution may simply be caused by the continuous adaptation
of the model, rather than by a change of the underlying data distri-
bution. In practice, this assumption is often violated, particularly in
case of fast incremental concept drift, such that resulting p-values have
rather an approximate character. Moreover, depending on the model,
it is not clear that virtual drift in the data is mirrored by a drift of the
classification error - hence some drift might also be missed.

4 .2 .2 Sliding Window

Sliding windows preserve the most recent data instances, since they
assume that those are highly valuable for current predictions. Sliding
windows are mostly combined with instance-based learners such as
kNN (Cover & Hart, 1967) or SVM (Cortes & Vapnik, 1995). The
window size governs the trade-off between a high plasticity (small
window), resulting in quick adaptation, and a high stability (large
window), providing as much information as possible during phases
without drift. In case of stationary environments, often static sliding
windows with a predefined size are used, whereas dynamic sliding
windows, which adjust the size on the fly within a predefined range,
are applied to deal with the volatility of non-stationary environments.
Thereby, the size can be set on behalf of different techniques. One
popular choice are drift detectors, where size is reduced such that
examples before the latest detected drift are erased (Bifet et al., 2013).
The size can also be adapted based on heuristics as done by Widmer
and Kubat (1996), or by minimizing the amount of errors in the past:
Klinkenberg and Joachims (2000) present a theoretically well-founded
approach for SVMs. They set the size such that an estimation of the
leave-one-out error is minimized without any parametrization.

4 .2 .3 Bagging Ensembles

Machine learning algorithms based on Bootstrap Aggregating (Bag-
ging) (Breiman, 1996) such as the popular Random Forests (Breiman,
2001) are one of the most powerful state-of-the-art learning methods
(Fernández-Delgado et al., 2014; Losing et al., 2018b). Ensemble meth-
ods aggregate weak learners based on voting and often boost the
performance quite drastically. Concretely, the classification function
for an input x is based on the weighted prediction of N learners:

ŷ = arg max
ĉ ∈1,...,c

N

∑
i=1

wi ∗ hi(x), (4.1)

88

4 .2 related work

where wi is the weight of learner hi. One intuitive explanation for the
effectiveness of Bagging is that variance is reduced without increasing
the bias (Friedman, 1997). In offline Bagging, each model is trained
with a bootstrap sample of the training set, and the classification is
based on majority vote, i.e. wi = 1

N (Breiman, 1996). However, the
performance gain of ensembles crucially depends on the diversity of
the learners. Hence, decision tree algorithms are particularly popular,
since they generate different models even when the training set is only
slightly altered.

Ensembles are also popular within concept-drift algorithms be-
cause of their flexibility to add and remove learners, enabling a simple
and efficient way to deal with change. Furthermore, they are able to
preserve information of different concepts distributed among their
learners and selectively apply them by adjusting the corresponding
weights wi. Bootstrap samples of the whole data are not available
in the field of data-stream learning, therefore online adaptations of
Bagging are used. As an example, the proposal of Oza (2005) is widely
accepted. It approximates the bootstrap sample by weighting each
instance according to a Poisson distribution with λ = 11. Another
particularly appealing property regarding real-time processing, is the
independence of models within Bagging ensembles, enabling a straight-
forward parallelization to distribute the computational complexity and
thus reduces the run time.

4 .2 .4 State-of-the-art Methods

In the following, we first recapitulate a few prominent approaches for
learning with drift before discussing overarching criteria which enable
us to structure the methods according to underlying principles.

Probabilistic Adaptive Windowing (PAW) (Bifet et al., 2013) is a sliding
window approach that uses the kNN classifier. One distinctive feature
of this algorithm is that it randomly removes examples from the
window, leading to a mix of recent and older instances. The window
size is not strictly bounded and varies with high probability around
a target size. ADWIN is used as drift detector and the knowledge
obtained until the time of change is simply discarded, which makes the
method ineffective for reoccurring concepts. Nonetheless, competitive
results were achieved on various benchmarks.

Another sliding window approach that is combined with kNN is
the Just-In-Time (JIT) classifier proposed by Alippi and Roveri (2008a,
2008b). The underlying drift detector, an extensions of the cumulative
sum (CUSUM) method (Page, 1954), jointly monitors the classifica-
tion error and the input data to shrink the window when necessary.
One appealing feature is that the k parameter of kNN is dynamically
adapted depending on the window size and an initial leave-one-out
estimate to increase the performance. The approach was also extended
to reoccurring concept in (Alippi, Boracchi, & Roveri, 2013).

1 The Binomial distribution of bootstrap samples with replacement converges towards
a Poisson distribution with λ = 1 for large training sets.

89

concept drift

The Drift Detection Method (DDM) was proposed by Gama et al.
(2004). Although the name may suggest otherwise, it is a complete
concept-drift algorithm consisting of a drift detector and a prescribed
reaction. The detector models the classification error of two different
time windows with a Gaussian distribution, based on the fact that the
Binomial distribution can be closely approximated by a Gaussian distri-
bution for sufficiently large samples. Drift is detected on two different
sensitivity levels. First, a warning is issued if the difference between
the mean errors of both time windows surpasses a corresponding
confidence interval. This triggers the training of a new model in the
background, assuming that drift has already started at this point. Drift
is finally detected, when the error difference surpasses the confidence
interval defined by the second sensitivity level. At this point the model
in the background is used to replace the current one. This methodology
is combined with different learning algorithms: a Perceptron, Neural
Network and Decision Trees.

Based on the above mentioned Online Bagging algorithm (Oza,
2005), Bifet, Holmes, and Pfahringer (2010) propose to utilize a higher
value of λ = 6 for the underlying Poisson distribution, resulting in
distinctly higher instance weights to mitigate the slow learning of the
VFDT. Furthermore, the ensemble diversity is increased by output
detection codes. ADWIN is used as change detector for every tree
such that each detected change leads to the replacement of the worst
classifier. The resulting method Leveraging Bagging (LVGB) achieves
accurate results on various benchmarks.

Recently, Gomes et al. (2017) proposed the Adaptive Random Forest
(ARF) , also an ensemble of VFDTs, which relies on the same Bagging
strategy as LVGB. Additionally, a random projection of the features
is used, as done in the batch Random Forest, to increase the diversity.
Similar to DDM (Gama et al., 2004), they tackle drift by applying a
detector with two different sensitivity levels. The high sensitive setting
initiates the training of a new model in the background, whereas the
less sensitive one triggers the actual replacement. The assumption
is that the drift has started before the less sensitive detection fires,
allowing a quicker adaptation.

Jaber, Cornuéjols, and Tarroux (2013) present Dynamic Adaption
to Concept Changes (DACC), an ensemble algorithm inspired by the
Dynamic Weighted Majority (DWM) (Kolter & Maloof, 2007) method.
A classifier of the worst half of the pool is randomly removed after a
predefined number of examples and replaced by a new one. Newly
generated classifiers are excluded from this elimination process for a
predefined time. Incoming examples are exclusively classified by the
classifier with the highest accuracy. This intuitive approach performed
well within incremental and abrupt drift scenarios.

Learn++.NSE processes incoming examples in chunks with a prede-
fined size (Elwell & Polikar, 2011). A base classifier is trained for each
chunk and added to an ensemble. The weight of each member is deter-
mined by averaging the loss on recent chunks with a sigmoid function.
Similar to AdaBoost (Freund et al., 1999), instances are weighted such
that misclassified inputs have a higher impact on the calculated loss.

90

4 .2 related work

In contrast to other methods, members are not trained further, but
preserve their initial state. Hence, this algorithm is able to deal with
reoccurring concepts, as its members can be revived at any time to
enhance the adaptation as formerly obsolete patterns become current
again.

In the frame of this chapter, we will introduce two new archi-
tectures, the Self-Adjusting Memory (SAM) and the SAM-Ensemble
(SAM-E) (Losing, Hammer, & Wersing, 2016c; Losing, Hammer, Wers-
ing, & Bifet, 2019). SAM, extensively discussed in Section 4.4, integrates
past and current concepts in an innovative way. It constantly main-
tains past information as long as it is consistent with the current one.
Inconsistent instances are selectively removed, allowing to preserve as
much information as possible. Even though the algorithm incorporates
a sliding window, past knowledge is not fading out, but maintained by
adaptive compression, continuously adjusting the level of abstraction
to keep past information within the predefined memory bounds. This
mechanism enables the handling of reoccurring concepts even when
they reach far back in time. The architecture can be combined with
different learning algorithms. However, the kNN algorithm is a great
match as it naturally supports a selective editing of the model in an
efficient way.

SAM is further improved by combining it within the Bagging
ensemble SAM-E, as described in Section 4.5. In contrast to other
drift ensembles, it builds on a method which is already capable to
deal with various types of drift by its own. The ensemble utilizes
SAM on basis of the kNN algorithm. Ensembles of the kNN are
known to be ineffective, since kNN is a stable algorithm, meaning the
model is robust against small variations of the data, leading to a low
ensemble diversity (Breiman, 1996). Hence, the diversity is increased
by randomizing the subspace as well as the k of kNN which turns
out to be highly effective. ADWIN is used on top of the ensemble
and triggers the replacement of the worst performing learners with
new randomized SAM models, leading to an adaptive preservation of
learners with suitable configurations for current demands.

4 .2 .5 Taxonomy

Design Principles

Concept drift algorithms can roughly be categorized along three over-
arching design principles.

Active / Passive Methods are often divided into active and passive
approaches (Ditzler et al., 2015). The idea behind active approaches is to
explicitly detect drift and only then react in a purposeful way. Mostly,
drift-detection techniques are used to trigger a reaction which usually
consists of erasing the knowledge acquired before the drift. In contrast,
passive approaches continuously adapt their model, thereby dealing
with drift in an implicit way. One example are linear models optimized

91

concept drift

on the basis of SGD and a constant learning rate. Another example
are static sliding window methods. Both are constantly updating their
model with the most recent data, such that old patterns eventually are
forgotten. On the one hand, active approaches have low computational
demands in periods without change, since they only need to monitor
the process without updating the model. On the other hand, passive
methods usually have a simple design and are easy to use because
they have no awareness of drift at all. Therefore, they do not have to
deal with issues as false detections of drift or missed ones.

In general, methods that solely rely on the detection of drift are
able to detect abrupt drift with low delay, however, they struggle
with incremental change, which may remain undetected if it is too
slow in relation to the monitored time span. Nowadays, purely active
methods are basically not published anymore, therefore, the classic
definition is rather obsolete. Instead, drift-aware methods are coupled
with continuously updated models to get the best of both worlds
(Bifet, Holmes, & Pfahringer, 2010; Bifet et al., 2013; Losing, Hammer,
Wersing, & Bifet, 2019; Losing et al., 2018a). Hence, we extend the
classic definition and term all drift-aware methods as active and denote
the rest as passive.

Single Model / Meta Model Drift can be handled within a single
model or on the basis of a meta model. Algorithms based on sliding
windows or SGD handle drift on their own (Shalev-Shwartz et al., 2011;
Bifet et al., 2013; Losing et al., 2018a; Alippi & Roveri, 2008b). They
are able to react to drift in a very fine-grained way such as editing
the examples within the window or changing the learning rate after
each example. Meta models combine several models by means of
high-level algorithms or rules. Algorithms based on Bagging are very
popular meta models. They often use stationary algorithms such as
VFDT or NB for their learners. Change is handled on a higher level by
replacing outdated learners with new ones. Meta models are versatile
because arbitrary underlying learning algorithms can be used, in some
cases even batch algorithms (Elwell & Polikar, 2011). Some methods
designed for concept drift are even integrating proven single drift
algorithms within meta models, termed single/meta, for an increased
flexibility and higher performance (Losing, Hammer, Wersing, & Bifet,
2019).

Model- /Data-based Representation The learned representation
can either be centered around constructed models or the input data
itself. Algorithms of the first type use the input only for model train-
ing and discard it afterwards. Thus, information is retained in a
compressed way, allowing to condense large amounts of data. Ex-
emplary algorithms include incremental decision trees, or ensemble
of those (Domingos & Hulten, 2000; Saffari et al., 2009; Bifet, Holmes,
& Pfahringer, 2010; Gomes et al., 2017). Contrary, methods focusing
on data, explicitly keep the original input and construct on this behalf
corresponding models. They explicitly edit the data, such as remov-

92

4 .2 related work

ing obsolete or redundant instances. However, the memory may be
quickly exhausted in case of high-dimensional inputs. Typically, slid-
ing window approaches are data centered. In this context, kNN-based
algorithms are special, since they seamlessly blend between data and
model. Editing the underlying data of a kNN algorithm simultane-
ously changes the underlying model and enables particular powerful
and efficient algorithms. Such methods are denoted as model/data.

Application Characteristics

Besides such design principles, one can also identify overarching capa-
bilities of drift algorithms which are important in respect to real-world
applications. In the following, three criteria are defined.

Memory Requirement One aspect is whether the amount of al-
located memory is limited, which is important for any serious real-
world application. Particularly, lifelong-learning scenarios as well as
applications using mobile platforms require efficient methods, able to
perform on basis of strictly bounded resources. The memory demand
of data-centered models as sliding windows is naturally bounded by a
maximum number of storable instances. Model-centered algorithms
are often unlimited in their memory demands, as it is the case for var-
ious incremental decision tree algorithms, which continuously grow
with incoming examples (Saffari et al., 2009). Simply stopping the
growth would mean to stop the learning process, which is unsatisfying
in most applications. However, the majority of learning methods can
be bounded by rather simple mechanisms. For example, the VFDT
limits the memory by pruning the least used branches and, therefore,
frees resources when necessary.

Drift Type Specificity Algorithms that are dependent on a spe-
cific configuration regarding their hyperparameters to handle certain
drift types are not viable for scenarios where multiple drift types oc-
cur or where changing patterns are a priori unknown. For example,
methods relying on drift detection have usually a sensitivity parameter
which predefines the range of drift speed an algorithm can handle.
Hence, they need an adaptation to the application at hand. Whereas
algorithms that automatically adapt to different types of drift can be
applied out-of-the-box in a wide range of applications.

Handling of Reoccurring Drift Applications where data that fol-
low repetitive patterns benefit from algorithms that are able to reuse
past information over long time periods. Some patterns may have been
temporarily obsolete but eventually reemerge again. In case of reoc-
curring concepts, methods that simply discard former knowledge in
case of detected drift are as unfit as plain sliding-window approaches
where knowledge is slowly fading out due to the predefined maximum
size. Instead, sophisticated techniques are demanded that conserve
former concepts and revive them when necessary. One possibility is to
preserve past knowledge in separate models and to apply them when

93

concept drift

Table 4.1: Taxonomy of state-of-the-art algorithms according to design
principles (top) and application characteristics (bottom).

Algorithm Approach Drift Handling Basis of Representation

ARF Active Meta Model
DACC Passive Meta Model
DDM Active Single Model
JIT Active Single Data
L++.NSE Passive Meta Model
LVGB Active Meta Model
PAW Active Single Model/Data
SAM Active Single Model/Data
SAM-E Active Single/Meta Model/Data

Algorithm Memory Drift Type Specificity Reoccurring Concepts

ARF Unlimited Yes No
DACC Limited Yes No
DDM Limited Yes No
JIT Limited No Yes
L++.NSE Unlimited Yes Yes
LVGB Unlimited Yes No
PAW Limited Yes No
SAM Limited No Yes
SAM-E Limited No Yes

corresponding concepts emerge again (Elwell & Polikar, 2011; Alippi
et al., 2013).

Having introduced these overarching principles, Table 4.1 provides
a high-level characterization of the mentioned algorithms. The cate-
gorization is based on the originally published version. It does not
consider extensions of the methods themselves or transferable mech-
anisms from similar methods. For example, most algorithms can be
limited in terms of memory consumption with various adaptations.
Also the chosen learning algorithm within ensembles does affect some
criteria. The overview shows that most methods nowadays are drift-
aware. It also reveals two common issues, which are addressed within
this thesis:

• Methods often require a manual configuration to specific drift
types.

• Reoccurring concepts are not especially considered.

4 .3 quantifying concept drift

This section focuses on the challenge of identifying the drift characteris-
tics in real-world data. In particular, we investigate whether commonly
applied real-world benchmark contain any drift at all. While concept
drift is explicitly generated in artificial datasets, it is rather difficult
to identify in real-world data. The common approach is simply to

94

4 .3 quantifying concept drift

reason about whether one expects drift being present due to domain
knowledge. However, any reliable information about the type of drift
contained in the data is crucial. From the scientific point of view, it
enables a more detailed analysis of drift handling capabilities. In terms
of practical use, information about the drift characteristics clearly fa-
cilitates the choice of an appropriate algorithm for a given task. For
instance, whenever no real drift is present at all, classical incremental
/ online algorithms such as NB or incremental decision trees may be
the better choice in regard to the efficiency as well as the classification
performance.

We propose a method to determine the drift type, real or virtual,
and its degree in a given dataset. Hence, it directly tackles the challenge
of how to determine drift characteristics in a given data stream. To
the best of our knowledge, this has not been done so far in literature.
The method processes data in online fashion, however, multiple passes
are required. In case of very large or potentially infinite streams, we
assume a sufficiently large subpart to be available, containing similar
drift characteristics as the whole stream.

The method consists of two consecutive tests. The first detects
real drift. If that is not the case, we apply the second one to test for
virtual drift. No drift is present whenever both tests are negative. We
use sliding windows of various sizes applied on bootstrap samples
(Wilcox, 2012) of the dataset and analyze the resulting classification
errors for significant deviations. The degree of drift is inferred from
the magnitude of the error differences.

The type of classifier coupled with the sliding windows is exchange-
able. However, the results of the tests depend on the classification per-
formance and consequently on the utilized algorithm. From a practical
point of view, the tests should be performed with the same or at least
a closely related algorithm as the one used for the application. In the
context of this thesis, kNN is used because its result are particularly
interesting in respect to the drift-handling architecture SAM (Section
4.4), which is mostly combined with it. Furthermore, kNN is a popular
algorithm in the domain of learning from data streams such that our
findings are directly relevant for numerous methods.

4 .3 .1 Prerequisites

Assume a representative set of streaming instances is given S =
(s1, s2, . . . , sn) with n tuples si = (xi, yi), whereby n is chosen as large
as possible, respecting computational restrictions.2 The tests heavily
rely on bootstrap samples from the given data. In the following, we
will use two types of bootstrap samples: Samples B1, . . . , Bm with
|Bi| = |S| are randomly drawn from S with replacement. Hence, the
samples have a random order. In contrast, B̃1, . . . , B̃m with |B̃i| = |S| are
drawn from S with replacement whereby the ordering in S is explicitly
preserved.

2 The complete datasets was used in the experiments. However, in real-world tasks this
is often not possible.

95

concept drift

For every such data stream Bi and B̃i, we evaluate the classification
results of classifiers induced by sliding windows of different size. We
consider a small number of different representative sliding window
sizes W = {w1, . . . , wb}, where b is usually small for computational
efficiency and to prevent false positives of the tests3. Given the current
time t, a window size w and data stream (s1, s2, . . . , sn), a sliding win-
dow induces kNN models ht = kNN{st−w+1,...,st} and a corresponding
ITTE. The errors induced by models of window size w and data stream
Bi are referred to as ew

i , and for data stream B̃i as ẽw
i , respectively.

4 .3 .2 Test for Real Drift

This test is inspired by the observation that whenever real drift is
present, an algorithm using a sliding window approach tends to make
fewer errors with smaller windows than with very large ones. This
contradicts the classical assumption for i.i.d. datasets as stated in the
PAC model (Mitchell, 1997): The error rate of a consistent learning
algorithm decreases with increasing number of examples towards the
Bayes error. However, streaming data containing real drift is not i.i.d.
More mistakes are done when outdated instances are in conflict with
examples of the current concept. In such a case, small windows contain
less outdated instances leading to more accurate results.

Within the test, the behavior of large windows is evaluated by a
reference model k̂NNt := kNN{st−ŵ+1,...,st}. It is coupled with a sliding
window of size ŵ, chosen as large as possible regarding computational
restrictions4. Its classification error is compared with those of models
with smaller window size w, as evaluated by ẽw

i . More precisely, we
test whether any test model yields a significantly lower error rate than
the reference model. We refer to the error of the reference model k̂NN
on the bootstrap sample B̃i as r̃i. A one-sided hypothesis test with
an α-value of 1% is used. Thereby, the null hypothesis is given as:
The error of the reference model r̃ is smaller or equal to the error ẽw,
induced by a model with window size w. The first percentile βw of the
error differences {r̃i − ẽw

i |i ∈ {1, . . . , m}} is determined and the null
hypothesis is rejected as soon as βw > 0. Real drift is inferred to be
within the data if the null hypothesis is rejected for any window size
w ∈W.

4 .3 .3 Test for Virtual Drift

In case of a negative real-drift test, a detection for virtual one is per-
formed. Here, we test whether the error rate of any test model is lower
for the ordered bootstrap samples in comparison to the unordered ones.
Intuitively, randomizing the temporal order of virtual drift datasets
leads to a higher error rate because of the following reasons: In case of

3 Throughout all experiments three models were consistently used with W =
{500, 1000, 5000}.

4 In the experiments, ŵ = 20000 was used.

96

4 .3 quantifying concept drift

changing concepts, each concept is processed after another, making
the problem less challenging than learning the whole distribution at
once. Furthermore, the representation of each concept is richer, since
the space of the sliding window is largely used for one concept at a
time, instead of being partitioned among all of them.

In this case, the null hypothesis is the error ew being smaller or
equal to ẽw for a model with a sliding window size w. Analogous
to the previous test, the first percentile βw of the error differences
{ew

i − ẽw
i |i ∈ (1, . . . , m)} is determined and virtual drift is inferred to

be present if ∃w ∈W : βw > 0.

4 .3 .4 Drift Degree

Whenever one of the tests is positive, the corresponding drift degree
is estimated. The degree simply correlates with the magnitude of the
relative error differences. An error fraction ψ is used to distinguish
between low and high degrees of drift. ψ is differently defined for each
of the tests:

Real Drift

Regarding the real-drift test, ψ is the minimum error fraction of all test
models in comparison to the reference model:

ψ = arg min
w∈W

∑m
i=1 ẽw

i

∑m
i=1 r̃i

.

Virtual Drift

In case of the virtual-drift test, ψ is defined as the minimum fraction
between the error achieved on the ordered and unordered bootstrap
samples.

ψ = arg min
w∈W

∑m
i=1 ẽw

i

∑m
i=1 ew

i
.

Subsequently, ψ is compared against a threshold γ to obtain the
degree:

ψ 7→
{

high if ψ < γ

low otherwise.

4 .3 .5 Datasets

Table 4.2 shows the analyzed datasets. We used various popular artifi-
cial and real-world benchmarks. The artificial benchmarks are useful
to evaluate the accuracy of the proposal, since the true drift charac-
teristics are known. In the following, the datasets which were were
not yet introduced are briefly described. More information about all
datasets is provided in Section A.2.

97

concept drift

Table 4.2: Characteristics of the considered datasets. A=Abrupt,
I=Incremental, R=Real, V=Virtual

Drift Characteristics
Dataset #Inst. #Feat. #Class Type Type Pattern Degree Reocc.

SEA Concepts 50K 3 2 Art. R A ? No
Rot. Hyperplane 200K 10 2 Art. R I ? No
Moving RBF 200K 10 5 Art. R I ? No
Inter. RBF 200K 10 15 Art. R A ? No
Moving Squares 200K 2 4 Art. R I ? Yes
Transient Chessb. 200K 2 8 Art. V A ? Yes
Chessboard i.i.d. 200K 2 8 Art. - - - -
Mixed Drift 600K 2 8 Art. R,V A,I ? Yes
Poker 829K 10 10 Art. V A ? No

Outdoor 4K 21 40 Real-world ? ? ? ?
Weather 18.1K 8 2 Real-world ? ? ? ?
Electricity 45.3K 5 2 Real-world ? ? ? ?
MNIST 70K 764 10 Real-world - - - -
Rialto 82.2K 27 10 Real-world ? ? ? ?
Cover Type 581K 54 7 Real-world ? ? ? ?

SEA Concepts This dataset was proposed by Street and Kim (2001)
and consists of 50000 instances with three attributes of which
only two are relevant. The two class decision boundary is given
by f1 + f2 = θ, where f1, f2 are the two relevant features and θ
a predefined threshold. Abrupt drift is simulated with four dif-
ferent concepts, by changing the value of θ every 12500 samples.
Also included are 10% of noise.

Rotating Hyperplane A hyperplane in d-dimensional space is de-
fined by the set of points x that satisfy ∑d

i=1 wixi = w0. The
position and orientation of the hyperplane are changed by con-
tinuous addition of a term δ to the weights wi = wi + δ. We
used the Random Hyperplane generator in MOA with the same
parametrization as Bifet et al. (2013) (10 dimensions, 2 classes,
δ=0.001).

Moving Squares Four equidistantly separated, squared uniform dis-
tributions are moving in horizontal direction with constant speed.
The direction is inverted whenever the leading square reaches
a predefined boundary. Each square represents a different class.
The added value of this dataset is the predefined time horizon
of 120 examples before old instances may start to overlap cur-
rent ones. This is especially useful for dynamic sliding window
approaches, allowing to test whether the size is adjusted accord-
ingly.

Transient Chessboard Virtual drift is generated by revealing succes-
sively parts of a chessboard. This is done square by square ran-
domly chosen from the whole chessboard such that each square
represents an own concept. Every time after four fields have been
revealed, samples covering the whole chessboard are presented.
This reoccurring alternation penalizes algorithms tending to dis-

98

4 .3 quantifying concept drift

card former concepts. To reduce the impact of classification by
chance we used eight classes instead of two.

Mixed Drift The datasets Interchanging RBF, Moving Squares and
Transient Chessboard are arranged next to each other and sam-
ples of these are alternately introduced. Therefore, incremental,
abrupt and virtual drift are occurring at the same time, requiring
a local adaptation to different drift types.

Chessboard i.i.d. The data was randomly sampled from a chessboard
pattern, consisting of eight different classes. This dataset has
no drift at all, but is useful in terms of evaluating the method
regarding false positives.

Weather 5975223 introduced this. In the period of 1949-1999 eight
different features such as temperature, pressure wind speed etc.
were measured at the Offutt Air Force Base in Bellevue, Nebraska.
The target is to predict whether it is going to rain on a certain day
or not. The dataset contains 18159 instances with an imbalance
towards no rain (69%).

4 .3 .6 Experiments

Apart from real-world datasets, the tests were applied on artificial
benchmarks as a proof of concept. Furthermore, datasets without any
drift are used as well (Chessboard i.i.d., MNIST (Lecun et al., 1998)).

500 bootstrap samples were generated per dataset, but the results
are often unambiguous such that a considerably smaller amount would
have been sufficient for clear results. The reference model k̂NN was
coupled with a sliding window ŵ = 20000 samples, whereas the test
models had windows of 500, 1000 and 5000 samples. Each test for each
test model was performed with an α-value of 1%. Using the union
bound this sums up to a total α-value of 3% for the whole real drift
test as well as for the virtual one. The drift-degree threshold γ was set
to 0.85. Hence, a high degree is inferred when the relative mean error
difference is larger than 15%.

Real Drift Test

The results are listed in Table 4.3. In all artificial datasets, real drift is
correctly detected. Also its absence in the datasets Transient Chessboard,
Chessboard i.i.d. and MNIST is accurately inferred. It is inferred that
SEA Concepts and Rotating Hyperplane have a low drift degree which is
reasonable because, in case of SEA Concepts, only three minor abrupt
changes are occurring, whereas a slowly progressing incremental drift
is present in Rotating Hyperplane, both having a rather small impact
on the classification performance. All remaining artificial datasets a
high drift degree is attested due to the substantial error rate deviations.
Figure 4.4 depicts some exemplary histograms of error differences.

99

concept drift

Table 4.3: Mean error rates and corresponding standard deviations
achieved by kNN classifier with differently sized sliding windows on
ordered bootstrap samples. A dataset is tested positive for real drift
as soon as the first percentile of the distribution of error differences
between reference and any test model is larger then 0. Entries leading
to the highest positive first percentile βw are marked bold. Naturally,
this strongly correlates with the highest differences between the mean
values. We omitted the first percentile values of each model for the
sake of clarity.

Dataset kNN500 kNN1000 kNN5000 k̂NN20000 Real drift Degree ψ

SEA Concepts 11.16(.1) 10.76(.1) 10.52(.1) 12.12(.1) 3 Low .87
Rot. Hyperplane 15.42(.1) 14.36(.1) 12.67(.1) 12.82(.1) 3 Low .98
Moving RBF 8.89(.0) 9.38(.0) 14.51(.1) 19.32(.1) 3 High .46
Inter. RBF 3.63(.0) 6.66(.0) 25.56(.1) 39.37(.1) 3 High .09
Moving Squares 32.80(.1) 36.72(.1) 43.18(.1) 42.86(.1) 3 High .77
Transient Chessb. 11.22(.1) 10.85(.0) 5.19(.0) 3.18(.0) 7 - -
Chessboard i.i.d. 25.48(.1) 17.72(.1) 8.05(.1) 4.33(.1) 7 - -
Mixed Drift 8.49(.0) 13.67(.0) 18.74(.1) 25.54(.0) 3 High .33
Poker Hand 14.21(.0) 13.04(.0) 13.04(.0) 10.76(.0) 7 - -

Outdoor 11.37(.2) 11.05(.2) 10.86(.2) 10.86(.2) 7 - -
Weather 15.94(.1) 15.58(.1) 15.19(.2) 15.14(.2) 7 - -
Electricity 15.10(.1) 15.84(.1) 17.96(.1) 19.54(.1) 3 High .77
MNIST 12.34(.1) 9.57(.1) 5.39(.1) 3.75(.1) 7 - -
Rialto 16.00(.1) 16.77(.1) 18.00(.1) 17.89(.2) 3 Low .89
Cover Type 3.86(.0) 2.89(.0) 3.05(.0) 3.17(.0) 3 Low .91

4.00 4.25 4.50 4.75
Error rate difference

0

20

40

60

Am
ou

nt

Real drift test - Electricity - WS 500

1.5 1.0 0.5 0.0
Error rate difference

0

20

40

60

Am
ou

nt

Real drift test - Weather - WS 500

Figure 4.4: Exemplary histograms of error rate differences achieved
on 500 ordered bootstrap samples. The differences shown here were
obtained between the reference model using a sliding window of
20000 samples and a test model with 500 samples. The test is positive
whenever the first percentile of the distribution, illustrated by the
dashed line, is larger than 0. This is true for the Electricity dataset (left)
but not for Weather.

100

4 .3 quantifying concept drift

0 10000 20000 30000
#Samples

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
ra

te
Interchanging RBF

ws 500

ws 1000

ws 5000

ws 20000

0 10000 20000 30000
#Samples

0.0

0.1

0.2

0.3

0.4

E
rr

or
ra

te

Transient Chessboard

Figure 4.5: Error rate course of kNN models with differently sized
sliding windows. In the case of real drift (left), the error rate of larger
windows recovers significantly slower after each abrupt drift. In con-
trast, larger windows achieve lower error rates when no real drift is
present (right) because the additional data facilitates the problem.

Table 4.4: Mean error rates and corresponding standard deviations
achieved by kNN classifier with differently sized sliding windows on
unordered bootstrap samples. A dataset is tested positive for virtual
drift as soon as the first percentile of the distribution of differences
between the error achieved on ordered (see Table 4.3) and unordered
bootstrap samples with the same window size is larger then 0. Entries
leading to the highest positive first percentile βw are marked bold. We
omitted the first percentile values for the sake of clarity.

Dataset kNN500 kNN1000 kNN5000 Virtual drift Degree ψ

Transient Chessboard 25.47(.11) 17.72(.08) 7.98(.06) 3 high .70
Chessboard i.i.d. 25.51(.10) 17.74(.10) 8.04(.07) 7 - -
Poker Hand 36.56(.05) 34.51(.05) 29.77(.06) 3 high .52

Outdoor 33.94(.67) 26.39(.69) - 3 high .66
Weather 23.05(.38) 22.37(.39) 21.52(.37) 3 low .95
MNIST 12.52(.1) 9.63(.1) 5.55(.0) 7 - -
Rialto 55.83(.20) 49.58(.21) 36.52(.21) 3 high .44

Three out of the six real-world datasets contain real drift. Our
results confirm the common assumption of real-world tasks having
rather little amounts of real concept drift, particularly when compared
to artificial ones. Only the Electricity task incorporates a high degree
of real drift.

Figure 4.5 illustrates the error-rate development of differently-sized
sliding windows. In the case of real drift (Interchanging RBF), the error
rate of larger windows is higher, whereas the opposite is true when
real drift is not present (Transient Chessboard).

Virtual Drift Test

Table 4.4 shows the results of the virtual drift detection. The test cor-
rectly identifies virtual drift within the Transient Chessboard data set as
well as its absence in the tasks Chessboard i.i.d. and MNIST. Dataset

101

concept drift

0.0 0.5 1.0 1.5
Error rate difference

0

20

40

60

Am
ou

nt

Virtual drift test - Weather - WS 500

0.2 0.0 0.2
Error rate difference

0

20

40

60

Am
ou

nt

Virtual drift test - Chessb. i.i.d. - WS 500

Figure 4.6: Exemplary histograms of error rate differences achieved
with the test model using a sliding window of 500 samples. The differ-
ences were obtained between the achieved error rate on unordered and
ordered bootstrap samples. The test is positive whenever the first per-
centile of the distribution, illustrated by the dashed line, is larger than
0. This is true for the Weather benchmark (left) but not for Chessboard
i.i.d. (right).

Weather contains a low degree, whereas all others incorporate a high
one. Figure 4.6 shows exemplary distributions of the error differences.

In a nutshell, the tests reliably detected real and virtual drift as
well as their absence in the artificial data. However, they were not able
to infer that the Mixed Drift dataset contains next to the detected real
drift also virtual one. This issue is extensively discussed in Section
4.3.7. In case of the real-world benchmarks, there is no ground truth,
however, the classification in the respective types appears plausible.

4 .3 .7 Discussion

In this section, we tackled the common problem of unknown drift
characteristics in real-world datasets. To the best of our knowledge,
this has not been done so far. We contributed a methodology of two
consecutive tests able to detect the drift type, virtual or real, and its
degree. Both tests are based on detecting significant error differences
of classification performances achieved on bootstrap samples of the
dataset by differently sized sliding windows. The degree of drift is
inferred from the magnitude of the differences.

There are some downsides of the approach. The results depend
on the classification performance of the chosen algorithm. Other algo-
rithms will deliver different classification performances due to their
own characteristics. Hence, the results are particularly relevant if the
tests are performed with the same or at least a closely related algorithm
as the one intended for the real application. The tests also depend on
properly chosen sliding window sizes. The measured error differences
hinge on the drift speed as well as the complexity of the task and are

102

4 .4 self-adjusting memory (sam)

properly reflected in adequate window sizes. In case of the real drift
test, too large windows may not lead to significant error differences.
Since the drift degree is estimated according to the magnitude of error
differences, the choice of the window sizes naturally affects these as
well. A possible solution is simply to test more window sizes, but
such an approach demands to account for the increased risk of false
positives, e.g. a Bonferroni correction of the α-values (Bonferroni, 1936).
However, the experiments showcased that as long as a reasonable
range of window sizes is covered, the tests deliver reliable results for a
broad range of tasks. Naturally, the significance requirement prevents
the detection of very small amounts of drift, which from a practical
point of view is rather negligible because of an expected small impact
on a continuously adapting system. In cases, where virtual and real
drift are both present the proposed methodology is only able to detect
the real drift type.

In spite of these minor issues, our approach correctly classified all
artificial datasets and delivered a reasonable categorization of the real-
world benchmarks. We conclude that concept drift is commonly found
in real-world streaming and can significantly affect the classification
performance, demanding for sophisticated methods which are able to
handle diverse types of drift.

4 .4 self-adjusting memory (sam)

In recent years, a few algorithms have been published able to handle
specific types of drift such as abrupt (Gama et al., 2004), incremental
(Kolter & Maloof, 2007) as well as reoccurring (Elwell & Polikar, 2011)
drift. Some methods can be used for several types of drift when their
metaparameters are set appropriately. However, this requires explicit
prior knowledge about the task at hand. In real-world applications,
changes often occur in multiple and even concurrent forms at various
rates. One example is the field of personalized assistance, in which
individual user behavior is taken into account to provide appropriate
assistance in various situations (Schiaffino, Garcia, & Amandi, 2008).
However, individual behavior in particular can change in arbitrary
ways. Systems anticipating only certain forms of drift will perform
suboptimal at best, or fail completely at worst, when unexpected forms
of change occur.

This section introduces the Self-Adjusting Memory (SAM), a versa-
tile architecture designed to face the challenge of handling different
types of concept drift in data-stream learning. It exhibits several analo-
gies to the structure of the human memory as we explicitly partition
knowledge between short- and long-term memory. The intuitive combi-
nation of those memories as well as the explicitly preserved consistency
are the main novelties of this contribution. SAM can be easily applied
in practice without any parametrization, because hyperparameters are
avoided through dynamic adaptation of various aspects guided by
error minimization.

103

concept drift

To enable a proper analysis of algorithms in terms of suitability for
certain forms of drift, we do not only contribute new artificial bench-
marks with ground truth drift type but also vision-based real-world
datasets recorded outdoors: an environment where concept drift is nat-
urally present. SAM is mostly evaluated in combination with the kNN
classifier, but its flexibility is also showcased by coupling it with NB for
the domain of text classification. The extensive evaluation on artificial
and real-world benchmarks demonstrates the gain of SAM in compari-
son with state-of-the-art approaches. As the only method, it achieves
highly competitive results throughout all experiments, demonstrating
its robustness and the capability of handling heterogeneous concept
drift.

4 .4 .1 Architecture

In the research field of human memory the dual-store model (Atkinson
& Shiffrin, 1968), consisting of the Short-Term and Long-Term memory
(STM & LTM), is largely accepted. Sensory information arrives at the
STM and is joined by context relevant knowledge from the LTM. Infor-
mation getting enough attention by processes such as active rehearsal
is transferred into the LTM in form of Synaptic Consolidation (Dudai,
2004). The capacity of the STM is quite limited and information is kept
up to one minute, whereas the LTM is able to preserve it for years
(Miller, 1956). Immediate processing e.g. remembering the beginning
of a read sentence, largely uses the STM. Whereas knowledge recalled
from the past either explicitly requires the LTM e.g. consciously re-
membering events in life, or in an implicit way e.g. how to ride a
bike.

The SAM architecture is partly inspired by this model and exhibits
the following analogies:

• Explicit separation of current and past knowledge, stored in
dedicated memories.

• Different conservation spans among the memories.

• Transfer of filtered knowledge from the STM to the LTM.

• Situation dependent usage.

The basic idea is to combine dedicated models for the current concept
Pt(x, y) and all former ones Pt−1(x, y), . . . , P1(x, y) in such a way that
the prediction accuracy is maximized. This is a very general concept,
which could be coupled with different type of models, requiring a dif-
ferent realization. In the context of this thesis, the SAM architecture is
showcased mainly with kNN, as a non-parametric model, but also with
the parametric model of NB. Two different memories are constructed:
The Short-Term Memory (STM), containing data of the current concept,
and the Long-Term Memory (LTM), maintaining knowledge of past
concepts. Figure 4.7 illustrates this approach. SAM shares the common
assumption of new data being more relevant for current predictions.

104

4 .4 self-adjusting memory (sam)

Figure 4.7: Illustration of the general approach. Each column represents
one concept, different colors encode different classes. The STM contains
only the current concept, while the LTM preserves only knowledge
which is consistent in regard to the STM.

Hence, information from former concepts which is in conflict with the
one of the current concept is selectively removed, but we explicitly
preserve the rest in compressed fashion. Hyperparameters are mostly
avoided. Instead, parameters are dynamically tuned at various steps,
guided by error minimization on the recent data. The architecture is
depicted in Figure 4.8 and described in detail below.

Model definition

Memories are represented by sets MST, MLT, MC. Each memory is
a subset in Rn × {1, . . . , c} of varying length, adjusted during the
adaptation process. The STM represents the current concept and is a
dynamic sliding window containing the most recent m examples of
the data stream:

MST = {(xi, yi) ∈ Rn × {1, . . . , c} | i = t−m + 1, . . . , t}. (4.2)

The LTM preserves all former information, which is not contradicting
those of the STM, in a compressed way. In contrast to the STM, the
LTM is neither a continuous subpart of the data stream nor given by
exemplars of it, but instead a set of p points:

MLT = {(xi, yi) ∈ Rn × {1, . . . , c} | i = 1, . . . , p}.

The combined memory (CM) is the union of both memories with size
m + p:

MC = MST ∪MLT.

105

concept drift

Figure 4.8: SAM architecture: Incoming examples are stored within the
STM. The cleaning process keeps the LTM all-time consistent with the
STM. Whenever, the STM is reduced in size, its discarded knowledge
is transfered into the LTM. Accumulated knowledge is compressed
each time the available space is exhausted. Both models are considered
during prediction, depending on their past performances.

Every set induces a classifier, the SAM’s default choice is distance
weighted kNN : Rn 7→ {1, . . . , c}, kNNMST , kNNMLT , kNNMC . The
kNN function assigns a label for a given point x based on a setZ =
{(xi, yi) ∈ Rn × {1, ..., c} | i = 1, . . . , m}:

kNNZ(x) = arg max
ĉ
{ ∑

xi∈Nk(x,Z)|yi=ĉ

1
d(xi, x)

|ĉ = 1, . . . , c},

where d(x1, x2) is the Euclidean distance between two points x1, x2 and
Nk(x, Z) returns the set of k nearest neighbors of x in Z. Weights wST,
wLT, wC are representing the accuracy of the corresponding model on
the current concept and are determined as described in section 4.4.1.

The prediction of our complete model relies on the sub-model with
the highest weight5 and is defined for a given point x as:

x 7→


hMST(x) if wST ≥ max(wLT, wC)

hMLT(x) if wLT ≥ max(wST, wC)

hMC(x) if wC ≥ max(wST, wLT).

(4.3)

This model is adapted incrementally for every time t as described in
section 4.4.1.

Model parameter

During the adaptation phase we adjust the following parameters:

• The size m of the STM.

5 In case of ties, we prioritize the models in the following order: hMST , hMLT , hMC .

106

4 .4 self-adjusting memory (sam)

• The data points in the LTM.

• The weights wST, wLT, wC.

The model has the subsequent hyperparameters, which can be robustly
chosen and do not require a task specific setting:

• The number of neighbors k.

• The minimum length Lmin of the STM.

• The maximum number of stored examples Lmax (STM and LTM
combined).

We used for all experiments the same values which underlines the
robustness of our approach. The number of neighbors was set to
k = 5, a common default value in various implementations (Pedregosa
et al., 2011). The minimum length was set to Lmin = 50 which is
usually large enough to robustly estimate the current error on the one
hand and still allows a quick reaction to drift on the other. Lmax =
5000 as a reasonable trade-off between a fast run-time / low memory
consumption and a high degree of freedom for the approach to prove
its qualities. Please note that a too restrictive size makes a precise
evaluation of the system’s adaptation capabilities impossible.

Model adaptation

The adaptation comprises every memory as well as the corresponding
weights. We denote a data point at time t as (xt, yt) and the corre-
sponding memories MSTt , MLTt , MCt .

Adaptation of the Short Term Memory

The STM is a dynamic sliding window containing the most recent
examples. Every incoming example of the stream gets inserted such
that the STM grows continuously. Its role is to exclusively contain
data of the current concept. Therefore, its size has to be reduced when-
ever the concept changes such that examples of the former concept
are dropped. However, we do not explicitly detect a concept change.
Instead, we adjust the size such that the ITTE of the remaining STM
is minimized. This approach relies on the fact that a model trained
on internally consistent data yields fewer errors. We assume that the
remaining instances represent the current concept or are sufficiently
”close” to it.

Formally, we evaluate differently sized STMs and adopt the one
with minimum ITTE E. We use bisection to compare only a logarithmic
number of windows. Tested windows are:

Ml = {(xt−l+1, yt−l+1), . . . , (xt, yt)},

where l ∈ {m, m/2, m/4 . . .} and l ≥ Lmin.

MSTt+1 = arg min
S∈{Mm,Mm/2,...}

E(S).

107

concept drift

Whenever the STM is shrunk, the set of discarded examples Ot is
defined as

Ot = MSTt \MSTt+1 . (4.4)

Instead of the commonly used cross validation error, we rely on the
ITTE because it has various advantages in the streaming setting. The
former is applied on random splits of the data and requires multiple
repetitions to deliver a stable estimation of the error, which signifi-
cantly increases the computational cost. Whereas the latter uses every
example for test and training in the original order and therefore is the
natural choice in the incremental learning setting.

Our way to adapt the size of the STM has similarities with the one
of Klinkenberg and Joachims (2000). However, the approach is based
on SVM specific estimates of the leave-one-out error and the authors
do not indicate how to choose evaluated window sizes. In contrast,
we propose to directly determine the interleaved test-train error on
recursively bisected windows, which is applicable for arbitrary models.

Cleaning and Transfer

The LTM contains all data of former concepts that is consistent with
the STM. This requires a cleaning of the LTM according to every seen
example. Furthermore, whenever the STM is reduced in size, we do not
simply discard the sorted out data, since it still may contain valuable
information for future prediction. In case of reoccurring drift, methods
preserving past knowledge do not have to relearn former concepts
and therefore produce fewer errors.

Instead, we transfer as much knowledge as possible into the LTM.
Before doing so, we delete examples from the separated set Ot (see
Equation 4.4) which are contradicting those in MSTt+1 . This adaptation
is formalized by two operations.

1. Set A is cleaned by set B regarding an example (xi, yi) ∈ B

clean : (A, B, (xi, yi)) 7→ Â

where A, B, Â ⊂ Rn × {1, . . . , c} and (xi, yi) ∈ B. Â is defined in
two steps.
(1) We determine the k nearest neighbors of xi in B \ (xi, yi) and
select the ones with label yi. These define the threshold

θ = max{d(xi, x)|x ∈ Nk(xi, B \ (xi, yi)),
y(x) = yi}.

(2) The k nearest neighbors of xi ∈ A which are inconsistent to
B are cleaned based on the threshold, yielding the result of this
operation:

Â = A \ {(xj, y(xj))|xj ∈ Nk(xi, A),

d(xj, xi) ≤ θ, y(xj) 6= yi}.

108

4 .4 self-adjusting memory (sam)

2. Furthermore, we require a cleaning operation for the full set B

clean : (A, B) 7→ Â|B|

where A, B, Â|B| ⊂ Rn × {1, . . . , c}. This is defined iteratively by
applying the former cleaning for all (xi, yi) ∈ B as

Â0 = A
Ât+1 = clean(Ât, B, (xt+1, yt+1)).

The adaptation of the LTM takes place at two different steps. To ensure
a consistent model at any time, cleaning takes place according to every
incoming sample (xt, yt)

M̃LTt = clean(MLTt , MSTt , (xt, yt)).

Whenever the STM is shrunk, the discarded set Ot is transferred into
the LTM after cleaning, i.e. the LTM becomes

MLTt+1 =

{
M̃LTt ∪ clean(Ot, MSTt+1) if STM is shrunk
M̃LTt otherwise

Compression of the LTM

In contrast to the FIFO principle of the STM, instances are not fading
out as soon as the size limit of the LTM is reached. Instead, we con-
dense the available information to a sparse knowledge representation
via clustering. This enables a far longer conservation than possible
with simple out fading. Formally, for every class label ĉ we group the
corresponding data points in the LTM

MLTĉ = {xi|(xi, ĉ) ∈ MLT}.
We use the clustering algorithm kMeans++6 with |MLTĉ |/2 clusters.
The resulting prototypes M̂LTĉ represent the compressed original data.
The LTM is given by the union of all prototypes

MLT =
⋃
ĉ
{(xi, ĉ)|xi ∈ M̂LTĉ}

This process is repeated each time the size limit is reached leading to
a self-adapting level of compression.

Model weight adaptation

The weight of a memory is its accuracy averaged over the last mt
samples, where mt = |MSTt | is the size of the current STM. Hence, the
weight of the LTM at time stamp t equals

wt
LT =

|{i ∈ {t−mt + 1, . . . , t} | kNNMLTi
(xi) = yi}|

mt

and analogous for STM and CM.

6 We used kMeans++ (Arthur & Vassilvitskii, 2007) because of its efficiency and scala-
bility to larger datasets.

109

concept drift

4 .4 .2 Time Complexity

The adaptation of the STM is by far the most time consuming process
of SAM and determines the upper bound of the complexity. Therefore,
we exclusively give a complexity analysis of this part and neglect the
others.

Each time, we are evaluating up to log2
Lmax
Lmin

differently sized STMs,
where Lmin and Lmax are the minimum and maximum lengths of the
STM. The complete calculation of the error for one STM is upper
bounded by O(L2

max). This results in the overall worst case complexity
of O(nL2

max log2
Lmax
Lmin

) for n examples. There is a lot of room to reduce
this complexity, for instance, the calculation of the error can be done
incrementally whenever the following condition is met:
Given an exemplary STM St−1 (defined as in equation 4.2). If its suc-
cessor St is simply an extension of St−1, such that St = [St−1, (xt, yt)],
the corresponding error is given by

E(St) =
(t− 1)E(St−1) + 1(ht−1(xt) 6= yt)

t
. (4.5)

This is the case whenever an STM simply is growing by the current
example, which happens frequently in practice and clearly dwindles
the time complexity of the method.

4 .4 .3 Speedup via Approximate ITTE

In order to speed up the size adjustment of the STM, an approximate
incremental computation of the ITTE, evaluating the performance of each
candidate window, is proposed based on the observation 4.5. Essen-
tially, all possible STM windows of different sizes resulting from the
bisection are stored, including their predictions on the corresponding
windows as well as the respective approximation of the ITTE. These
values can efficiently be computed incrementally over the given stream.

More precisely, at time step t, the following ingredients are required:
Let m = mt be the size of the current STM which is used in SAM.
Denote the part of the data stream at time point t of length l as
Mt

l = [(xt−l+1, yt−l+1), . . . , (xt, yt)] and the classifier induced by it as
hMt

l
. We store log2

Lmax
Lmin

STM candidatesMi, enumerated by i = 1, . . . ,

log2
Lmax
Lmin

, where every candidateMi carries the following information:

• A length parameter mi
t := dmt/2ie corresponding to bisections of

the current STM. This parameter uniquely induces the candidate
memory Mt

mi
t

as part of the current data stream and the respective

classifier hi
t := hMt

mi
t

. We use the convention that the memory is

empty, i.e. no candidate STM is given, whenever dmt/2ie < Lmin.

• A sequence of the last mi
t predictions of the incremental classifier

hi
t given by its predecessor model in the preceding time steps:

Ŷi
t := [ŷi

j := hi
j−1(xj) | j = t−mi

t + 1, . . . , t].

110

4 .4 self-adjusting memory (sam)

• The corresponding ITTE E i
t := 1

mi
t

∑t
j=t−mi

t+1 1(ŷ
i
j 6= yj).

Mi can be computed incrementally as follows: at time step t + 1, the
current STM is extended by the data point (xt+1, yt+1) which requires
the following updates of the candidate STMs:

• mi
t+1 = d(mt + 1)/2ie, where the corresponding start index can

be computed as (t + 1− mi
t+1 + 1). As long as the STM is not

reduced the length parameter of each candidate STM is growing.
Hence, additional candidate STMs become available as soon as
their length parameter surpasses Lmin.

• The sequence of prediction values Ŷi
t+1 can be obtained from Ŷi

t
by adding the prediction ŷi

t+1 := hi
t(xt+1)]. In addition, whenever

d(mt + 1)/2ie = dmt/2ie, the first entry ŷi
t−mi

t+1
is deleted from

the sequence.

• Accordingly, the induced ITTE E i
t+1 is updated on the basis of

Ŷi
t+1.

These errors are incrementally determined, and, the current STM is
replaced whenever a candidate STM yields a lower error. The replace-
ment is also done in an incremental way by a re-enumeration of the
given candidate STMs.

The complexity of one such incremental update is given by the
effort of computing O(log2

Lmax
Lmin

) classifiers h, i.e. the effort is linear
and no longer quadratic w.r.t. Lmax.

However, this computation only approximates the ITTE of the can-
didate STMs. Hence, one auxiliary step is necessary before actually
substituting the STM by a new candidate. More precisely, assume that
we are interested in the performance of candidate STMMi with win-
dow [(xt−mi

t+1, yt−mi
t+1), . . . , (xt, yt)]. The interleaved test-train error

for models based on this stream has the form

Ei
t :=

t

∑
j=t−mi

t+1

1(hMj−1

j−1−t+mi
t

(xj) 6= yj)/mi
t (4.6)

where Mj−1
j−1−t+mi

t
= [(xt−mi

t+1, yt−mi
t+1), . . . , (xj−1, yj−1)].

E i
t differs from Ei

t by referring to the model hi
j−1(xj) based on the

ith candidate STM at time step j− 1, instead of the model hMj−1

j−1−t+mi
t

(xj)

which, in general, relies on a shorter part of the time window only.
This difference is due to the fact that the start point of candidate STMs
is shifted in time when processing the given data stream. Hence, in
particular for stationary settings, the error E i

t can underestimate Ei
t,

and, in consequence, too short candidate STMs would be selected. The
following validation step is performed to prevent such cases:

• Whenever a candidate STMMi yields a smaller error than the
current STMM0, we recompute the exact error Ej

t for all STMs

111

concept drift

Table 4.5: The compared algorithms and the chosen hyperparameter.
Ensembles consisted of 10 members. We used a maximum window
sizes of 5000 and 1000 samples but never more than 10% of the whole
dataset and k was set to 5 for all kNN-based methods.

Abbr. Classifier Parameter

L++.NSE Learn++.NSE with CART chunk-size = optimized
DACC DACC with VFDT n = 10
LVGB LVGB with VFDT n = 10
kNNS KNN with fixed size sliding window Lmax ∈ {1000, 5000}, k = 5
PAW kNN with PAW and ADWIN Lmax ∈ {1000, 5000}, k = 5
SAM Self adjusting memory with kNN Lmax ∈ {1000, 5000}, k = 5

with index j ≥ i, thereby referring to Eq 4.6. We use this opportu-
nity to replace the approximated information of the correspond-
ing candidate STMs with the actual ones, i.e. we set E j

t = Ej
t,

Ŷ j
t = Y j

t for all STMs with index j ≥ i. Only if the novel computa-
tion confirms the quality of the candidate STM, the current STM
is exchanged.

This recalculation is done only if a novel STM would be selected, hence
the efficiency is hardly affected.

4 .4 .4 Experiments - SAM-kNN

We compare SAM with well-known state of the art algorithms for
handling drift in streaming data. Thereby, we also utilize the previ-
ously obtained drift characteristics for the analysis. Initially, SAM is
coupled with kNN. Evaluations regarding the NB model are given
in Section 4.4.5. Implementations of the other algorithms were either
obtained from the original authors or were already available in MOA.
Table 4.5 gives an overview of the algorithms as well as the chosen
hyperparameter. Apart from the methods already discussed in 4.2, we
compare against a distance weighted kNN classifier with a sliding
window of fixed size. Learn++.NSE is combined with Classification
and Regression Trees (CART) (Breiman et al., 1984) as it is done by its
author.

Window based approaches were allowed to store 5000 samples (we
also report results for a size of 1000 samples) but never more than 10%
of the whole dataset.7 This rather large amount enables a high degree
of freedom and prevents the concealment of their qualities with a too
restricted window, in especially the capability of dynamically adjusting
the window size is more transparent. The chunk size parameter of
L++.NSE has to be predefined, which plays a similar role as the size of
sliding windows. To avoid any disadvantage we evaluated several sizes
and report the best result. No further dataset specific hyperparameter
were optimized, since we wanted to provide as little prior knowledge
as possible.

7 Regarding our approach, the available space is shared between the STM and LTM.

112

4 .4 self-adjusting memory (sam)

Table 4.6: Characteristics of the considered datasets. A=Abrupt,
I=Incremental, R=Real, V=Virtual. The drift characteristics of the real-
world data were obtained by the approach described in Section 4.3.

Drift Characteristics
Dataset #Inst. #Feat. #Class Type Type Pattern Degree Reocc.

SEA Concepts 50K 3 2 Art. R A Low No
Rot. Hyperplane 200K 10 2 Art. R I Low No
Moving RBF 200K 10 5 Art. R I High No
Inter. RBF 200K 10 15 Art. R A High No
Moving Squares 200K 2 4 Art. R I High Yes
Transient Chessb. 200K 2 8 Art. V A High Yes
Mixed Drift 600K 2 8 Art. R,V A,I High Yes
Poker 829K 10 10 Art. V A High No

Outdoor 4K 21 40 Real-world V ? High ?
Weather 18.1K 8 2 Real-world V ? Low ?
Electricity 45.3K 5 2 Real-world R ? High ?
Rialto 82.2K 27 10 Real-world R ? Low ?
Cover Type 581K 54 7 Real-world R ? Low ?

Datasets

Table 4.6 lists details of the evaluated datasets. The information about
the drift characteristics of the real-world tasks were adopted from
the experiments in Section 4.3. Regarding artificial data, commonly
published benchmarks were considered, some of those were generated
on the basis of Massive Online Analysis (MOA) (Bifet, Holmes, Kirkby,
& Pfahringer, 2010) with common parametrizations. Four new datasets
were added allowing an extensive evaluation on specific drift types,
including reoccurring virtual drift, which is often ignored in the com-
munity. The dataset Moving Squares is particularly relevant to evaluate
dynamic sliding window approaches because the optimal window size
is predefined by the problem. In case of real-world data, the largest
available benchmarks were useds. Furthermore, two new challenging
datasets obtained from visual data are contributed (Outdoor, Rialto).
All datasets were already introduced in context of the determination
of the drift characteristics in Section 4.3. A detailed description of all
datasetc can be found in Section A.2.

Exact- versus Approximate ITTE

Initially, we compare two versions of SAM. One adapts the STM based
on the exact ITTE, whereas the other relies on the proposed approxi-
mation in Section 4.4.3. Thereby, SAMExact denotes the exact version.
Table 4.7 lists the corresponding results regarding the classification
performance and the run time. Regarding the classification perfor-
mance both approaches are delivering similar results without distinct
differences. However, the run time of the approximation is on average
clearly reduced. The specific speedup varies from task to task. It mainly
depends on the average size of the STM, because the complexity of the
exact calculation grows quadratically in respect to the size, whereas a
linear dependence is given in case of the approximation. Hence, the

113

concept drift

Table 4.7: Comparison between the exact calculation of the ITTE within
the STM adaptation (SAMExact) versus the approximation (SAM) de-
scribed in Section 4.4.3. The speedup mainly depends on the average
size of the STM, which varies from task to task. The algorithm was
allowed to store up to 5000 instances but never more than 10% of the
whole dataset.

ITTE Run Time (s)
Dataset SAMExact SAM SAMExact SAM

SEA Concepts 12.53 12.27 14.1 12.4
Rot. Hyperplane 13.32 13.42 65.1 73.0
Moving RBF 15.25 15.28 557.2 133.9
Inter. RBF 5.61 7.07 468.8 88.9
Moving Squares 2.30 2.65 35.8 32.1
Transient Chessb. 6.40 6.37 117.1 45.0
Mixed Drift 13.47 13.50 548.3 180.0
Poker 14.52 14.26 390.37 360.8

Artificial ∅ 10.43 10.60 274.6 115.8

Outdoor 11.32 11.70 0.96 0.5
Weather 21.98 21.86 4.3 3.0
Electricity 17.69 17.70 12.3 10.7
Rialto 18.61 18.59 76.7 41.4
Cover Type 4.81 4.80 1058.1 1035.5

Real world ∅ 14.88 14.93 230.5 218.2

Overall ∅ 12.14 12.27 257.6 155.2

larger the STM the larger is the speedup gained by the approximation.
Empirically, the approximation has only benefits without any draw-
backs, therefore it is exclusively used within this thesis and referred to
as SAM.

Results

The evaluation of the classification performance is done by measuring
the ITTE. The error rates of all experiments are shown in Table 4.8.
To test on significant differences among the methods, we rely on the
proven approach suggested in (Demšar, 2006). Concretely, we use the
non-parametric, rank-based Friedman test with α = 0.05. If the null
hypothesis is rejected, we proceed with the Nemenyi post-hoc test to
identify the algorithms with significant differences.

The proposed method SAM outperforms the others quite signif-
icantly as it almost halves the average error rate of the second best
method LVGB. Even more important is the fact that other methods
struggle at one or another dataset but our approach delivers consis-
tently robust results. All drift types are handled better or at least
competitively. This is particularly clarified in the large gap achieved
within the Mixed Drift dataset, which contains incremental, abrupt
and virtual drift at the same time. SAM is the only method able to

114

4 .4 self-adjusting memory (sam)

Table 4.8: Interleaved Test-Train error (ITTE) rates of all experiments.
Window-based approaches are considered with the maximum size of
5000 instances for the ranking. For each dataset the lowest value is
marked in bold.

Window size 5000 Window size 1000
Dataset L++.NSE DACC LVGB kNNS PAW SAM kNNS PAW SAM

SEA Concepts 14.48 15.68 11.66 13.83 12.39 12.27 13.96 12.79 13.27
Rot. Hyperplane 15.58 18.32 12.73 16.49 15.57 13.42 18.44 16.40 15.23
Moving RBF 44.50 54.29 45.62 20.29 25.51 15.28 12.89 19.38 12.13
Inter. RBF 27.52 1.40 7.14 39.67 8.60 7.07 10.15 6.57 3.09
Moving Squares 65.90 1.15 11.74 68.63 62.13 2.65 59.24 57.85 2.64
Transient Chessb. 1.98 41.87 14.69 6.19 19.61 6.37 13.72 21.31 11.27
Mixed Drift 40.37 62.11 25.97 28.78 28.88 13.50 20.27 25.68 12.26
Poker 22.14 20.11 17.93 17.08 31.62 14.26 17.08 31.11 16.89

Artificial ∅ 29.06 26.87 18.44 26.37 25.54 10.60 20.72 23.89 10.85
Artificial ∅ rank 5.50 3.75 2.55 3.80 4.00 1.40 - - -

Outdoor 57.80 35.65 39.28 14.02 26.25 11.70 14.02 26.25 11.70
Weather 22.88 26.78 22.18 21.53 22.37 21.86 22.09 22.54 22.31
Electricity 27.24 16.97 17.58 26.59 25.37 17.70 23.08 23.52 17.58
Rialto 40.36 28.93 40.46 22.74 30.45 18.59 20.72 29.61 18.23
Cover Type 15.00 9.79 8.54 4.21 7.87 4.80 3.96 8.06 5.77

Real world ∅ 32.66 23.62 25.61 17.82 22.46 14.93 16.77 22.00 15.12
Real word ∅ rank 5.67 3.83 4.17 2.17 3.50 1.67 - - -

Overall ∅ 30.44 25.62 21.19 23.08 24.36 12.27 19.20 23.16 12.49
Overall ∅ rank 5.00 4.31 3.19 3.12 3.75 1.62 - - -

Nemenyi significance: SAM � {L++.NSE, DACC, PAW}

10000 20000 30000
#Samples

0.0

0.2

0.4

0.6

E
rr

or
ra

te

Rialto

SAM

PAW
KNNS

10000 20000
#Samples

0.025

0.050

0.075

0.100

0.125

E
rr

or
ra

te

Moving Squares

SAM

DACC

LVGB

Figure 4.9: Error rate courses of the three best methods in the Rialto
and Moving Squares datasets. The daily pattern of the Rialto dataset is
reflected in the up and down of the error rates. Whereas, the continu-
ous incremental drift in the Moving Squares dataset results in a rather
constant performance.

perform significantly better than other algorithms according to the
Nemenyi test. Concretely, the rank-based comparison attest SAM a
statistical significant difference to the methods L++.NSE, DACC and
PAW.

Figure 4.9 depicts for various datasets the development of the error
rate, regarding the respectively best methods. The robustness of SAM

115

concept drift

is highlighted by the fact that it is always within the three best methods.
It performs best in the Rialto dataset. The daily pattern is reflected
in the up and down of the error rates. During midday the task is
comparably easy because the colors are clearly pronounced, whereas
the rather blurry conditions of the morning and evening are clearly
more challenging. SAM performs second best in the Moving Squares
dataset, slightly worse than the best method DACC. Since kNNWA

also uses kNN and actively manages its window, it is closely related
to SAM. However, it performs worse in all experiments. SAM uses a
distance weighted kNN, whereas kNNWA relies on uniform weights
(majority voting). We evaluated SAM also with majority voting and got
an overall average error rate of 14.72%, emphasizing that its advantage
is due to the memory architecture.

For the sake of completeness, we also report the error rates of all
window based approaches with a window size of 1000 samples as
done in (Bifet et al., 2013). Especially the results of kNNS and kNNWA

are significantly better with the smaller window. SAM also profits
sometimes, e.g. for the Moving RBF dataset, albeit clearly weakened.
The reason is that the smaller window conceals the issue that the
methods sometimes fail to shrink the window appropriately. Samples
of former concepts are fading out faster of the smaller window and
are, therefore, less often contradicting the current concept in the case
of real drift. We chose the larger and more informative size of 5000
samples for the ranking.

Our results confirm the fact that kNN is in general a very com-
petitive algorithm in the streaming setting. It is quite surprising that
the fixed sliding window approach kNNS performs comparably well
or even better than more sophisticated methods such as DACC or
L++.NSE. The fixed sliding window approach only struggles with high
real drift tasks and achieves competitive results in all other settings.
This is especially emphasized by the second best average result for real-
world datasets, which contain rather low degrees of real drift. Hence,
this simple approach with a comparably low computation complexity
may be a reasonable alternative to sophisticated drift algorithms in a
variety of real-world tasks.

Memory Behavior

In this section, we illustrate the adaptation of the memories as well
as their task specific roles. Figure 4.10 shows on the top left the size
adjustment of the STM during the Interchanging RBF experiment. The
algorithm reliably reduces the window size after each abrupt drift.
However, we also observe a certain delay, during which wrong pre-
dictions are likely to occur. This delay is due to two reasons. Firstly,
a certain amount of examples is required to reliably predict the new
concept. Secondly, the more examples of the former concept are con-
tained in the STM, the more stable is its representation and the more
examples of the new concept are required to deteriorate the overall
accuracy sufficiently. Hence, the delay illustrates a self-adjusting trade-
off between adaptation speed to new concepts and the robustness

116

4 .4 self-adjusting memory (sam)

0 10000 20000 30000 40000
#Samples

0

1000

2000

3000

4000

ST
M

 s
iz

e
Interchanging RBF

0 10000 20000 30000 40000
#Samples

STM

LTM

CM

Se
le

ct
ed

 m
od

el

Interchanging RBF

Figure 4.10: Illustrations of the Interchanging RBF dataset.
Only a part of the dataset is depicted for the sake of clarity.
Top: The size adaptation of the STM is shown on the left.
Dashed vertical lines mark the moments of abruptly changed
concepts. The delay of the model shrinks with increasing
strength of drift. Only the STM is used for prediction (right).
Bottom: Snapshots of the STM and LTM. Points of the LTM that
are in accordance with the STM are preserved. Different classes are
represented by different colors.

against noise, governed by the stability of both concepts. The adap-
tation delay decreases with increasing drift strength. The selective
cleaning of the LTM is also visible in Figure 4.10. The empty spots
within the clusters are due to the cleaning of contradicting instances.
The remaining samples were harmless and consequently are kept in
memory.

As already mentioned, the Moving Squares dataset is designed
such that the squares may overlap each other if more than 120 of the
recent examples are kept in memory. Hence, the best strategy for this
problem is to keep the window as small as possible and to use only the
most recent examples for prediction. Figure 4.11 shows how the size of
the STM is mostly kept between 50 and 150 samples, allowing a nearly
perfect prediction. This is also clarified by its snapshot, illustrating
the absence of overlapping instances. The parameter controlling the
minimum size of the STM prevents a size reduction below 50 examples.

117

concept drift

0 2000 4000 6000 8000 10000
#Samples

0

50

100

150

200

ST
M

 s
iz

e

Moving Squares

0 2000 4000 6000 8000 10000
#Samples

STM

LTM

CM

Se
le

ct
ed

 m
od

el

Moving Squares

Figure 4.11: Depictions of the Moving Squares benchmark.
Top: The STM size is most of the time kept below 120
samples and avoids the overlap of current points by out-
dated ones. The STM is exclusively used for prediction (right).
Bottom: Snapshots of the STM and LTM. Classes do not overlap within
both memories.

Otherwise, an even lower error rate could be achieved.
In contrast to the previous two datasets, which basically do not

require the LTM, the LTM is crucial for the prediction in the Transient
Chessboard task as it is illustrated by Figure 4.12. The STM is used
alone whenever the data is presented square by square because it con-
tains solely relevant information for the current square and produces
less mistakes than in combination with the LTM. Whereas, during the
periods in which examples are distributed over the whole board, the
LTM is heavily used, since it contains beneficial information from the
past. Its snapshot reveals the compressed preservation of the whole
chessboard.

The task-dependent relevance of both memories is exemplified with
real-world data in Fig.4.13: While the LTM is the preferred prediction
model in the Weather dataset, it is the STM that classifies most of the
instances of the Rialto task.

Impact of Clustering on Generalization

The class-wise clustering distinctly restructures the LTM. We empir-
ically analyzed its impact on the generalization error. Precisely, we
measured the error rate of the LTM for the subsequent 1000 samples
of the stream before and after each clustering. This has been done for
all datasets with total memory sizes of 5000 and 1000 samples (for the
STM and LTM combined). It turns out that the generalization error
is only slightly affected. Precisely, the average error rate of the LTM
before and afterwards the clustering is 33.62% and 34.10% for the
memory size of 5000 samples. The size of 1000 samples results in an
error of 33.63% and 35.14%.

118

4 .4 self-adjusting memory (sam)

0 5000 10000 15000 20000
#Samples

0

250

500

750

1000

1250

ST
M

 s
iz

e

Transient Chessboard

0 5000 10000 15000 20000
#Samples

STM

LTM

CM

Se
le

ct
ed

 m
od

el

Transient Chessboard

Figure 4.12: Illustrations of the Transient Chessbord dataset.
Top: Each 1000 examples the square by square revelation (blue
background) is alternated by samples covering the whole chess-
board(white background). The STM tracks the current concept:
It shrinks after each revealed field in the first phase and grows
during the second phase to contain the whole chessboard.
Only a part of the dataset is depicted for the sake of clarity.
Bottom: The LTM preserves the whole chessboard in compressed
fashion, whereas only the current concept is contained in the STM.

0 20000 40000 60000 80000
#Samples

STM

LTM

CM

Se
le

ct
ed

 m
od

el

Rialto

0 5000 10000 15000
#Samples

STM

LTM

CM

Se
le

ct
ed

 m
od

el

Weather

Figure 4.13: Model selection for the datasets Rialto (left) and Weather
(right).

119

concept drift

Table 4.9: The run time (s) of each algorithm. Window-based ap-
proaches were allowed to store up to {5000, 1000} instances, but never
more than 10% of the whole dataset. The time of L++.NSE is neglected
because the Matlab-based implementation was far from being com-
petitive in comparison to other methods which are all implemented
in JAVA within MOA. For each dataset the lowest value is marked in
bold.

Window size 5000 Window size 1000
Dataset DACC LVGB kNNS PAW SAM kNNS PAW SAM

SEA Concepts 3.0 3.7 15.5 58.9 12.4 8.8 20.8 5.8
Rot. Hyperplane 22.2 27.1 73.9 681.9 73.0 38.4 180.5 27.5
Moving RBF 32.5 42.5 74.5 690.4 133.9 38.5 179.0 38.1
Inter. RBF 26.5 24.5 62.2 53.0 88.9 34.8 37.8 31.3
Moving Squares 11.0 18.8 62.1 75.5 32.1 35.1 47.2 13.9
Transient Chessb. 9.7 15.1 62.5 34.0 45.0 34.8 28.8 19.4
Mixed Drift 56.6 62.7 189.9 248.8 180.0 105.7 140.4 85.2
Poker 64.3 83.0 330 768.3 360.8 185.2 532.1 102.1

Outdoor 4.4 8.0 0.8 2.8 0.6 0.7 3.4 0.6
Weather 2.6 2.7 3.7 17.1 3.0 3.4 11.6 3.0
Electricity 3.8 5.9 13.9 39.1 10.7 8.3 19.9 5.4
Rialto 38.3 43.5 48.7 91.3 41.4 19.1 76.5 18.4
Cover Type 211.6 200.3 658.3 2613.3 1035.5 224.4 1054.4 247.7

∅ 37.4 41.4 122.8 413.4 155.2 56.7 179.4 46.1
∅ rank 1.36 2.14 3.64 4.57 3.29 - - -

Run Time

The run time of an algorithm is particularly crucial in the context
of data-stream learning. Table 4.9 depicts the measured time in sec-
onds. We ignored L++.NSE in this regard, since its Matlab-based
implementation was not competitive in comparison to the JAVA-based
implementation of the remaining algorithms.

Even though the tree ensembles DACC and LVGB consist in our
case of 10 single classifiers, they are still clearly faster than singe kNN-
based methods. This is due to their logarithmic query complexity
as well as their natural compression scheme. However, SAM is only
slightly slower in comparison to the simple kNNS, highlighting that
its partly complex building blocks such as the cleaning procedure
or the STM adaptation are efficiently implemented. Concretely, the
distances of the samples, which are anyways required for the kNN-
based classification, are cached such that no additional distances have
to be determined. It is noteworthy that the implementation of the
nearest-neighbor search of PAW is comparably inefficient. PAW is a
single kNN-based classifier which has rather a low overhead, but still
requires a multiple of SAM’s run time. As expected, the run time
of kNN-based algorithms heavily depends on the size of the sliding
window as it is highlighted by the distinctly quicker processing when
the upper bound is set to 1000 instances. In this case, SAM’s run time
is comparable to the tree ensembles, but it still drastically outperforms
them in terms of the classification accuracy (see Table 4.8).

120

4 .4 self-adjusting memory (sam)

Table 4.10: Characteristics of the considered datasets. A=Abrupt,
I=Incremental, R=Real, V=Virtual

Drift Characteristics
Dataset #Inst. #Feat. #Class Type Type Pattern

SPAM 9.3K 40K 2 Real-world ? ?
20 Newsgroups 16K 62K 20 Real-world - -
20 Newsgroups Sorted 16K 62K 20 Real-world V A
20 Newsgroups Switched 48K 62K 20 Real-world R A

4 .4 .5 Experiments - SAM-NB

The SAM architecture permits a combination with different classifier
models. However, the memories are frequently and selectively edited,
hence models allowing incremental and decremental adaptations are
crucial for a low time complexity. The NB algorithm is next to kNN
a viable choice. NB is a classical linear algorithm, which is still very
relevant, in particular for very high-dimensional data as commonly
found in the domain of text classification. It allows an incremental
and decremental update of its sparse model which is represented by
the class priors p(Ck), k ∈ 1, . . . , k and the conditional probabilities
p(x|Ck). Each SAM memory is coupled with one NB model denoted
as NBMST , NBMLT , NBMC . Changes on the memories are shadowed by
incremental/decremental operations on the corresponding NB models.
However, the cleaning procedure is yet based on kNN, because it is
an open question how this can be done for non-local models as NB,
which is not considered within this thesis.

Datasets

Table 4.10 depicts details of the considered text classification tasks,
which are then briefly introduced.

SPAM The Spam Corpus dataset was developed by Katakis, Tsoumakas,
Banos, Bassiliades, and Vlahavas (2009) on the basis of SpamAs-
sassin8 data collection covering an extended time period. The
goal is to classify between spam or ham (not spam). Each at-
tribute encodes the occurrence of one of the 39917 words within
an e-mail.

20 Newsgroups The 20 newsgroups dataset comprises around 18000
newsgroups posts on 20 topics split. The goal is to assign each
post to the corresponding category. Posts are encoded using the
commonly applied term frequency–inverse document frequency
(Salton & McGill, 1986). It is a very high-dimensional datasets
with more dimensions than samples.

20 Newsgroups Sorted In this version of the 20 newsgroups data,
abrupt virtual drift is created by sorting the instances by the class
label. In terms of discrimination, this problem is particularly at

8 http://spamassassin.apache.org/

121

http://spamassassin.apache.org/

concept drift

Table 4.11: Interleaved test-train error rates of different .

Dataset NB LVGB LVGB-NB SAM-kNN SAM-NB

SPAM 2.81 7.35 2.49 7.00 3.21
20 Newsgroups 22.02 94.16 21.69 70.05 27.48
20 Newsgroups Sorted 14.30 22.59 14.30 7.83 7.71
20 Newsgroups Switched 70.44 94.7 22.40 72.00 41.81

∅ 27.39 54.70 15.22 39.22 20.05
∅ rank 2.62 5.00 1.62 3.50 2.25

the beginning easier than the original one because the number
of classes increases over time.

20 Newsgroups Switched The original input is repeated three times.
After every iteration each class label is randomly mapped to
another class which leads to abrupt real drift.

Results

Table 4.11 lists the results of SAM-NB in comparison to different
other algorithms. LVGB-NB, which denotes the combination between
LVGB and NB as underlying learning algorithm, achieves the best re-
sults. SAM-NB handles the virtual drift task very well, but particularly
performs worse within the “20 Newsgroups Switched” task. This is
probably due to its crucial cleaning operation which internally still re-
lies on nearest neighbor. However, SAM-NB is still substantially better
than ordinary NB, which cannot handle drift at all as it is mirrored
within its error rates for both drift tasks. Our experiments confirm
that the linear classifier NB performs very well in such high dimen-
sional tasks, whereas more sophisticated methods as decision trees or
kNN are struggling. The SPAM dataset seems to have a rather small
amount of drift, since the common NB algorithm delivers a competitive
performance.

4 .4 .6 Discussion

This section introduced the Self-Adjusting Memory (SAM) architecture,
designed to handle heterogeneous concept drift within streaming data.
SAM explicitly separates the current concept from former ones and
preserves both in dedicated memories combining them according to
the demands of the current situation. Thereby, it omits a common
weakness of available methods that simply discard former knowledge
and produce more mistakes in case of reoccurring drift. Our method is
easy to use in practice, since it requires neither meta-parametrization
nor related prior knowledge about the task at hand.

In comparison to state-of-the-art methods, SAM is the only algo-
rithm which consistently achieved accurate results for heterogeneous
drift types: virtual versus real drift pronounced in various patterns.
The flexibility of the architecture allowed us not only a combination
with kNN but also with the NB model, which is known to be highly

122

4 .5 sam-ensemble (sam-e)

efficient in very high-dimensional data. We showed that the different
memory types fulfill different functions in the overall model. While
the STM represents the actual concept, the LTM conserves established
knowledge as long as it is consistent with the STM. This decomposition
proved to be particularly effective to simultaneously deal with hetero-
geneous drift types in real-world streaming data. Furthermore, the
experiments highlighted that, apart from tasks with a high real drift
degree, the simple fixed sliding window approach can be a reasonable
alternative to more sophisticated drift algorithms.

The method can be extended in various way, as for instance consid-
ering a spacial decomposition to enable a more fine-grained combina-
tion of the memory models, enabling a reaction to different concurring
drift types for different locations in space. The k parameter of kNN
could be adapted as it is done in (Alippi & Roveri, 2008b) to improve
the performance further. The SAM architecture can also be combined
with other incremental / decremental methods such as ISVM. The
cleaning operation is currently strictly coupled with the kNN model,
which is sub-optimal when other models such as NB or ISVM are used,
since an consistency between the memory is algorithm-specific. Hence,
defining the cleaning operation in terms of the corresponding classifier
model is beneficial for the overall system.

Currently, the adaptive compression in the LTM is based on unsu-
pervised clustering. Taking into account the label information within
this process enables a more specific compression in terms of especially
considering the goal of accurate class discrimination.

Even though our memory architecture performs very robustly, there
are some cases leading to unnecessary deletions within the LTM. For
instance, a large amount of spread noise erases information from the
LTM because of the assumption of new data being the most valuable
one. Contrary concepts temporarily interchanging each other cause
also deletions. This is due to the established consistency, which pre-
vents the storage of contradicting concepts, and requires the relearning
in case of such reoccurring patterns. This issue is tackled in terms of
creating a diverse ensemble of SAMs as described in the next section.

4 .5 sam-ensemble (sam-e)

Machine learning algorithms based on Bootstrap Aggregating (Bag-
ging) (Breiman, 1996) such as the popular Random Forests (Breiman,
2001) are one of the most powerful state-of-the-art learning methods
(Fernández-Delgado et al., 2014; Losing et al., 2018b). These ensembles
aggregate weak learners and often drastically improve on their single
performance. One intuitive explanation by Friedman (1997) reasons
that Bagging reduces the overall variance while maintaining the bias.
Ensembles are also very popular in the field of non-stationary stream
learning because of their flexibility to selectively add and remove
learners, enabling a simple and efficient way to handle concept drift.
Furthermore, past concepts can be distributed among the learners and
specifically applied in a suitable context.

123

concept drift

In this section, we propose the SAM Ensemble (SAM-E) algorithm
and combine the advantages of Bagging ensembles with the highly
robust SAM algorithm to boost the performance further. Breiman
pointed out in (Breiman, 1996) that Bagging requires a diverse ensem-
ble to work which is only generated by unstable learners. Unstable in
the sense that small variation in the training set lead to very different
models. Here, we solely consider SAM in combination with the stable
kNN algorithm. Hence, we induce randomization in multiple ways
to increase diversity. Even though an ensemble of SAMs is able to
deal with concept drift on its own, we also utilize a drift-detection on
top, which triggers the replacement of the worst learners in case of
a detection. This addition does not not only increase the adaptation
speed of the overall model, but also selectively preserves learners with
a suitable parametrization.

We provide a parallel implementation which clearly reduces the
processing time. It is open source and will be integrated within the
popular Massive Online Analysis (MOA) (Bifet, Holmes, Kirkby, &
Pfahringer, 2010), facilitating the comparison for other researchers.
On this basis, we perform an extensive and transparent evaluation
on a large database of common artificial and real-world benchmarks,
covering various types and rates of concept drift. All benchmarks
are publicly available, providing transparent and easily reproducible
results. We first analyze how each of the algorithmic building blocks
contributes to the overall performance and diversity. Subsequently, we
compare our approach with SAM itself as well as other state-of-the-art
methods. SAM-E consistently achieves the best results, emphasizing
that it does not only improve on the performance of SAM, but also
clearly outperforms all other methods.

4 .5 .1 Architecture

The success of Bagging mainly depends on accurate and diverse learn-
ers hi, in our case N SAM models SAMi, i = 1 . . . N, as well as a
proper aggregation of those (Breiman, 1996). Oza (2005) use for the
Online Bagging a Poisson distribution with λ = 1 to determine the
weight of each instance for each learner. In other words, at time step t,
the ith learner, hi

t, is adapted to the training sample (xt, yt) weighted
by p, where p is a natural number distributed according to a Poisson
distribution with parameter λ. In particular, the sample is dropped
if p = 0. On average, 67% of the data are used by every learner if λ
is set to 1. LVGB and ARF use λ = 6 where each learner gets 97% of
the data and even more importantly with a distinctly higher weight.
Even though this should lead to a lower diversity because all learners
see more or less the same data instances, it mitigates the slow learn-
ing speed of the VFDT, and outweighs any disadvantage. We also
use λ = 6, however we do not use it to improve the learning speed
of kNN, since instance-based models have naturally a high learning
speed. Instead, we target a quicker reaction to drift. In the proposed
method, the learners mostly handle drift themselves and a low λ leads

124

4 .5 sam-ensemble (sam-e)

to slower adaptation, since each of them has effectively less samples
to react.

In contrast to the unstable decision tree algorithm, where Bagging
alone creates enough diversity, kNN (and therefore SAM) is a stable
method where additional diversity has to be induced. Hence, we
randomize for each learner its k and subspace. The performance of
kNN is known to depend on the selected k (Hastie, Tibshirani, &
Friedman, 2001) and the Random Subspace Method (Ho, 1998) is a
proven technique to increase diversity and generalization of ensemble
methods (Ho, 1998). Concretely, when a new learner is generated we
randomize it by two parameters k, X̂, where k is drawn from a uniform
discrete distribution, k ∼ U (a, b) and the coefficients of X̂ ∈ Rn̂ are
sampled with replacement from the original space X ∈ Rn where
n̂ = dβne and β ≤ 1. Varying the subspace and the neighborhood
sizes does not only influence the classification itself, but it also affects
the cleaning process of SAM, enabling the ensemble to store different
types of concepts which might be used at different points in time. Each
SAM model is weighted by its accuracy for the current concept, i.e.
wi = max(wST, wLT, wC). Formally, the prediction function is given as

ŷt = arg max
ĉ ∈1,...,c

N

∑
i=1

wi ∗ SAMi(xt), (4.7)

where SAMi is the prediction function of the ith submodel (see Equa-
tion 4.3).

Even though each sub model is able to handle drift by its own, we
add a drift detection on top of the ensemble, which initiates a selec-
tion process among the learners regarding their randomized model
parameters k and beta. In particular, in the case of strong drift, the
performance of the overall model is still affected, triggering a detec-
tion and the replacement of the worst performing learners, which has
two main benefits. First, it mitigates the inert adaptation to concept
drift, a natural consequence of model aggregation. Furthermore, it
creates a competition within the ensemble where only members with
a suitable parametrization for the current situation are lasting, which
can be seen as an adaptive hyperparameter selection. Concretely, we
replace a proportion r of the ensemble to be invariant to the ensemble
size. SAM-E can be combined with arbitrary drift detection methods,
we used the popular detector ADWIN (Bifet & Gavalda, 2007) in the
experiments. An overview of the architecture is depicted in Figure 4.14
and the pseudo code is given in Algorithm 4.1.

4 .5 .2 Parallel Implementation

SAM is based on kNN and its complexity is dominated by the distance
calculations. It has a complexity of O(wn) per instance where w is the
average window size. SAM-E uses a subspace projection reducing the
complexity to O(wn̂). In Bagging, learners are completely indepen-
dent from each other, allowing a straight forward parallellization to

125

concept drift

Figure 4.14: Architecture of SAM-E: The ensemble classifies the input
of the incoming stream and its performance is monitored by the drift
detection. In case of significant changes, the worst performing learners
are replaced by new ones with a randomized configuration.

Algorithm 4.1 The SAM-E algorithm
Inputs:

S : data stream
N : ensemble size
a, b :bounds for randomization of k
β : relative size of the randomized subspace
r : proportion of replaced learners in case of detect drift
δ : drift detection sensitivity threshold
STMmax, LTMmax : maximum bounds for the STM and LTM of
SAM

Initialize:
C ← CreateSAMs(a, b, β, STMmax, LTMmax, N)
W ← {1/N, . . . , 1/N}

while S.hasNext() do
(x, y)← S.next()
ŷ← weightedPrediction(x, C, W) (Equation 4.7)
if driftDetected(δ, ŷ, y) then

C ← replaceWorstClassifiers(C, W, r)
W ← updateWeights(C, y)
for all i ∈ {1, . . . , N} do

p←Poisson(λ = 6)
if p > 0 then

Ci.train(x, y, p)

reduce the computational costs, particularly considering the drastically
increasing number of available cores in modern hardware. Therefore,
a parallel implementation is provided and the gained speedup is ana-
lyzed in Section 4.5.4.

4 .5 .3 Datasets

We used a big variety of artificial and real-world benchmarks as illus-
trated by Table 4.12.

In the following, we briefly describe the datasets that were not
introduced yet. More information about all datasets can be found in
Section A.2.

126

4 .5 sam-ensemble (sam-e)

Table 4.12: Characteristics of the considered datasets.

Dataset #Inst. #Feat. #Class Type

SEA Concepts 50K 3 2 Artificial
Rot. Hyperplane 200K 10 2 Artificial
Moving RBF 200K 10 5 Artificial
Inter. RBF 200K 10 15 Artificial
Moving Squares 200K 2 4 Artificial
Transient Chessb. 200K 2 8 Artificial
Random Tree 200K 200 25 Artificial
LED-Drift 200K 24 10 Artificial
Mixed Drift 600K 2 8 Artificial
Poker 829K 10 10 Artificial

Outdoor 4K 21 40 Real-world
Spam 9.3K 40K 2 Real-world
Weather 18.1K 8 2 Real-world
Electricity 45.3K 5 2 Real-world
Rialto 82.2K 27 10 Real-world
Airline 539.3K 7 2 Real-world
Cover Type 581K 54 7 Real-world
PAMAP 2.7M 52 18 Real-world
KDD99 4.9M 41 23 Real-world

Physical Activity Monitoring (PAMAP) This activity recognition task
includes eighteen different activities performed by up to nine
different subjects and comprises ten hours of recorded data in
total (Reiss & Stricker, 2012). The features are obtained from
three inertial measurement units (IMU) and a heart rate monitor.
The IMUs have a sampling rate of 100Hz and are located on
the chest, the dominant wrist and ankle. It is a frequently used
benchmark dataset (Reyes-Ortiz, Oneto, SamÃ, Parra, & Anguita,
2016; Ordóñez & Roggen, 2016; Gan & Tao, 2015).

KDD99 This intrusion detection dataset is well known and widely
used to analyze the performance of data stream learning algo-
rithms (Amini, Wah, & Saboohi, 2014; Aggarwal, Han, Wang, &
Yu, 2003). It simulates different types of cyber attacks and pro-
vides the highly imbalanced data in temporal order. Seventeen
different classes are incorporated within the 5 million instances
which are encoded with 41 attributes.

4 .5 .4 Experiments

Initially, different configurations of SAM-E are tested where the degree
of randomization is varied to investigate its effects on the classification
performance and diversity. Afterward, the parallel and the sequential
implementation are evaluated in terms of run time and Ram-hours

127

concept drift

Table 4.13: The compared variations of the algorithm with different
degree of randomization as well as with drift detection and without.

Abbr. Randomizing K Feature Subspace Drift detection

SAM-ENone 7 7 7

SAM-Ek 3 7 7

SAM-Ek,f 3 3 7

SAM-Ek,f,d 3 3 3

(Bifet, Holmes, Pfahringer, & Frank, 2010). Finally, SAM-E is compared
with other state-of-the-art methods in detail.

As in Section 4.4.4, the rank-based Friedman test as well as the
Nemenyi post-hoc test (Demšar, 2006) are used to analyze for statis-
tical significant differences among the methods. All experiments are
executed within MOA to create possibly fair conditions in terms of
used evaluation scheme and programing language. We use a cluster
consisting of 24 Intel Xeon 2.60GHz cores with 32 GB RAM to perform
the experiments. SAM-E is configured as follows for all experiments:

• k is uniformly drawn from the range [1, . . . , 7].

• The random subspace of each learner X̂ ∈ Rn̂ is set to use 70%
of the original number of features, i.e. β = 0.7.

• ADWIN is used as drift detection algorithm with its default
settings.

• Each time ADWIN detects a drift 10% of the worst performing
learners are replaced.

Variations of SAM-E

We analyze the effects of the suggested randomizations and the top-
level drift detection on the classification performance. Table 4.13 lists
all compared versions of SAM-E and the corresponding error rates
are given in Table 4.14. Randomizing the k clearly improves the
performance in comparison to Bagging alone. In general, a higher
randomization leads to a higher performance in our experiments.
However, the optimal degree of randomization clearly depends on the
size of ensemble. The larger the ensemble the more randomness is
beneficial. Hence, it is to expect that the performance of substantially
larger ensembles could be further improved with more randomization
such as a further reduced set of features.

The low error-rate for LED-Drift of SAM-E variants incorporating
random subspaces suggests that it mitigates the susceptibility to noisy
dimensions, one major weakness of kNN models. The comparison of
SAM-Ek,f,d and SAM-Ek,f allows the evaluation of the drift detection
on top of the ensemble, which is nearly always beneficial and in case

128

4 .5 sam-ensemble (sam-e)

Table 4.14: Interleaved Test-Train error rates of different variations of
SAM-E with an ensemble size of n = 10. The best results are marked
in bold.

Dataset SAM-ENone SAM-Ek SAM-Ek,f SAM-Ek,f,d

SEA Concepts 12.61 12.31 12.28 12.28
Rot. Hyperplane 13.12 13.49 12.41 12.49
Moving RBF 12.02 11.47 11.98 11.86
Inter. RBF 3.32 3.08 3.37 3.30
Moving Squares 2.41 3.12 2.47 2.47
Transient Chessb. 10.92 10.5 10.08 10.30
Random Tree 35.36 34.47 32.72 32.72
LED-Drift 43.22 43.46 37.52 35.48
Mixed Drift 11.98 11.58 11.6 11.58

Artificial ∅ 16.11 15.94 14.94 14.72
Artificial ∅ rank 3.33 2.72 2.17 1.78

Outdoor 11.02 8.48 8.98 8.98
Weather 21.91 21.6 21.81 21.81
Electricity 17.41 15.36 16.66 16.36
Rialto 18.06 15.65 16.64 15.80
Airline 39.12 38.88 37.53 35.51
Cover Type 5.66 3.78 8.1 4.69
Poker 15.82 12.59 15.03 8.79
PAMAP 0.02 0.02 0.02 0.02
SPAM 6.67 5.37 5.38 5.61
KDD99 0.01 0.01 0.01 0.01

Real world ∅ 13.57 12.17 13.02 11.76
Real world ∅ rank 3.6 1.6 2.7 2.1

Overall ∅ 14.77 13.96 13.93 13.16
Overall ∅ rank 3.47 2.13 2.45 1.95

Nemenyi significance: {SAM-Ek, SAM-Ek,f,d} � SAM-ENone

of Poker it nearly halves the error-rate. This is due to the increased vari-
ability of the algorithm in case of drift, enabling a faster adaptation to
the current concept. The versions SAM-Ek,f,d and SAM-Ek even deliver
statistically significantly better results in comparison to SAM-ENone.

Figure 4.15 depicts on the left the temporal course of the error-
rate for some datasets. In the most cases, the advantage of SAM-Ek,f,d
compared to the other variations increases over time. Corresponding
kappa-error diagrams (Margineantu & Dietterich, 1997) are shown on
the right of Figure 4.15. These diagrams are commonly used to inspect
diversity of ensembles. The pairwise kappa statistic is plotted against
the classification performance of the learners. Highly diverse learners
(low pairwise kappa-statistic) with a low error rate are essential for an
performance improvement on the basis of ensembles. Most of the time
SAM-Ek,f,d is able to achieve that better than others. One exception is
the Electricity task, where it has a higher diversity in comparison to
SAM-Ek,f, however, the error-rate of the single learner is also higher,
resulting in an overall lower classification performance. The relatively
high kappa statistics of SAM-ENone attest a low diversity, which limits

129

concept drift

50000 100000 150000
#Samples

0.375

0.400

0.425

0.450

0.475

E
rr

or
ra

te

LED-Drift

SAM-Ek

SAM-Ek,f

SAM-ENone

SAM-Ek,f,d

0.2 0.4 0.6 0.8
Pairwise kappa statistic

0.45

0.50

0.55

0.60

0.65

0.70

A
vg

.
er

ro
r

LED-Drift

SAM-Ek

SAM-Ek,f

SAM-ENone

SAM-Ek,f,d

200000 400000
#Samples

0.30

0.35

0.40

0.45

E
rr

or
ra

te

Airline

0.2 0.4 0.6
Pairwise kappa statistic

0.36

0.38

0.40

0.42

A
vg

.
er

ro
r

Airline

10000 20000 30000 40000
#Samples

0.12

0.14

0.16

0.18

0.20

E
rr

or
ra

te

Electricity

0.7 0.8 0.9
Pairwise kappa statistic

0.16

0.18

0.20

A
vg

.
er

ro
r

Electricity

200000 400000 600000 800000
#Samples

0.10

0.12

0.14

0.16

0.18

E
rr

or
ra

te

Poker

0.5 0.6 0.7 0.8 0.9
Pairwise kappa statistic

0.15

0.20

0.25

0.30

A
vg

.
er

ro
r

Poker

Figure 4.15: The temporal course of the error rate (on the left) as well
as corresponding kappa-error diagrams (on the right). High diversity
coupled with a low error-rate result in the best ensemble classification
performance.

130

4 .5 sam-ensemble (sam-e)

10 20 50 100
Ensemble size

0

20000

40000

60000

A
vg

.
C

P
U

ti
m

e
(s

)

40
53

.6
4

81
68

.3
9 20

76
5.

95

42
65

0.
52

19
13

.4
2

37
09

.8
6

75
12

.7
8

13
66

8.
69

17
00

.8
9

20
81

.0
5

34
06

.3
8

66
21

.3
1

CPU-Time

sequential

parallel

parallel-buffered

10 20 50 100
Ensemble size

0

5

10

15

20

25

A
vg

.
R

A
M

-H
ou

rs
(G

B
-H

ou
rs

)

0.
22 0.
87

5.
42

21
.7

0

0.
20 0.
76

3.
81

13
.8

5

0.
18

0.
43 1.

74

6.
63

RAM-Hours

Figure 4.16: Comparison of the parallel and sequential implementation
in terms of average run time and RAM-hours. The gained speed-up
also reduces the RAM-hours even though more memory is needed
due to the multi-threading overhead. Relaxing the test-train scheme to
buffering 100 instances clearly increases the gain further.

the leeway to reduce the error rate beyond those of the single classifiers.
One example is the LED-Drift dataset where its learners have the lowest
error rate, but the classification error of the ensemble is comparatively
high. The replacement of the worst learners triggered by the drift-
detection decreases the error-rates of the learners which is especially
pronounced for the tasks Airline and Poker.

Due to these results, further experiments are solely done by the
variant SAM-Ek,f,d which we refer to as SAM-E.

Sequential and Parallel implementation

The utilized resources of the sequential and parallel implementation
are measured in terms of the average run time and RAM-hours for
all datasets. One RAM-hours equals one GB of RAM deployed for
one hour (Bifet, Holmes, Pfahringer, & Frank, 2010). We provide re-
sults for different ensemble sizes. The interleaved test-train processing
enforces the aggregation after each example and especially a com-
pleted training of the previous instance. Therefore, the threads are
very short and create a comparably large overhead. However, this
scheme is only performed for the evaluation. In practice, instances
can easily be buffered to small chunks and processed at once. We also
consider this processing scheme and buffer chunks of 100 instances.
Figure 4.16 depicts the results. The parallel implementation halves the
run time for an ensemble size of 10 and achieves a speedup of 3 for
the largest tested ensembles with n = 100. The buffering mechanism
is very effective and doubles the gained speed-up, underlining the
benefits of a parallel implementation. Even though parallel processing
allocates more memory because to the multi-threading overhead, the
drastically reduced run-time makes more than up for it and overall
less RAM-hours are required.

131

concept drift

Table 4.15: The compared algorithms and the chosen hyperparameter.
Ensembles were evaluated with 10 and 100 members. We used a
maximum window size of 5000 samples and k was set to 5 for all kNN
based methods.

Abbr. Classifier Parameter

VFDT Hoeffding Tree (VFDT) -
PAW Probabilistic Adaptive Window with kNN w = 1000
SAM Self-Adjusting Memory with kNN w = 1000

LVGB Leveraging Bagging with VFDT n = {10, 100}
ARF Adaptive Random Forest with VFDT n = {10, 100}
SAM-E Self-Adjusting Memory Ensemble n = {10, 100}, w = 1000

Comparison with State-of-the-Art Methods

We compare SAM-E not only to other ensemble methods specialized
for data stream learning with concept drift, but also include a compari-
son to single classifiers such as SAM itself, PAW and VFDT. Table 4.15
lists all algorithms as well as important hyperparameter settings. All
hyperparameters which are not explicitly listed, such as the split confi-
dence of the VFDT or the k of SAM are simply set to the default values
of the respective original publication9. Sliding-window approaches
(SAM, PAW, SAM-E) were allowed to store 1000 samples but never
more than 10% of the whole dataset.

Classification Performance

The error rates are listed in Table 4.16. SAM-E achieves the best classifi-
cation performance on average. The fact that the single SAM algorithm
delivers the second best results highlights in general the superiority
of the architecture within this domain. Apart from the task Interchang-
ing RBF, SAM-E is always better than the single SAM algorithm and
in case of Random Tree, LED-Drift, Outdoor, and Poker quite distinctly.
To the best of our knowledge, SAM-E achieves the lowest error rate
ever reported for the frequently evaluated Poker benchmark. The two
comparably poor performances of SAM-E in the tasks Random Tree
and LED-Drift are due to the susceptibility of kNN based approaches
in regard to noisy dimensions. Incorporating metric learning or di-
mensionality weighting techniques such as (Jain, Kulis, Dhillon, &
Grauman, 2009) would likely lead to further improvements. However,
the random subspaces enable SAM-E to perform clearly better in
these cases compared to the single SAM algorithm. Our method even
outperforms VFDT and PAW with statistical significance.

Both tree ensembles ARF and LVGB deliver several times dras-
tically worse results, mostly due to their comparably slow learning
speed (Outdoor) or limited adaptation ability in case of incremental
fast drift (Moving Squares). Furthermore, they do not have an explicit
mechanism to deal with reoccurring drift as shown by the results for

9 The hyperparameter setting of the algorithms used in the original publication are
usually set as default values in MOA.

132

4 .5 sam-ensemble (sam-e)

Table 4.16: Interleaved Test-Train error rates achieved by single classi-
fiers and ensemble models. Ensembles consisted of n = 10 members.
The best results are marked in bold.

Dataset VFDT PAW SAM ARF LVGB SAM-E

SEA Concepts 15.16 13.35 13.22 11.68 11.68 12.28
Rot. Hyperplane 15.02 18.02 15.22 17.35 12.73 12.49
Moving RBF 66.27 17.21 12.10 34.02 45.62 11.86
Inter. RBF 74.71 5.79 3.27 2.68 10.08 3.30
Moving Squares 66.73 56.72 2.64 36.84 11.74 2.47
Transient Chessb. 45.24 17.16 11.26 26.30 14.69 10.30
Random Tree 10.36 23.81 37.05 5.78 3.93 32.72
LED-Drift 26.30 35.30 45.99 27.39 26.13 35.48
Mixed Drift 55.42 38.18 12.27 19.87 25.97 11.58

Artificial ∅ 41.69 25.06 17.00 20.21 18.06 14.72
Artificial ∅ rank 4.89 4.44 3.33 3.17 2.83 2.33

Outdoor 42.68 16.88 11.58 61.52 39.28 8.98
Weather 26.49 23.40 22.31 21.87 22.18 21.81
Electricity 29.00 23.05 17.58 21.13 17.58 16.36
Rialto 76.19 24.07 18.27 27.20 40.46 15.80
Airline 34.94 33.75 39.84 34.20 36.89 35.51
Cover Type 21.85 6.50 5.76 8.33 8.54 4.69
Poker 25.88 31.07 16.86 19.23 17.93 8.79
PAMAP 1.22 0.03 0.02 0.03 0.11 0.02
SPAM 19.09 16.43 7.00 8.18 7.35 5.61
KDD99 0.10 0.02 0.01 0.03 0.03 0.01

Real world ∅ 27.74 17.52 13.92 20.17 19.04 11.76
Real world ∅ rank 5.5 3.75 2.55 3.8 4. 1.4

Overall ∅ 34.35 21.09 15.38 20.19 18.57 13.16
Overall ∅ rank 5.21 4.08 2.92 3.5 3.45 1.84

Nemenyi significance: SAM-E � {VFDT, PAW}

Transient Chessboard and Rialto. They excel at the Random Tree task,
which is known to be rather easy for tree-based methods, since the
task is to learn a tree-based model.
Figure 4.17 depicts the temporal course of the classification perfor-
mance for some datasets as well as corresponding kappa-error di-
agrams. SAM-E achieves the best classification performance on the
basis of more accurate base classifiers in comparison to ARF and LVGB.
Its diversity is high and comparable to the tree ensembles, creating
enough leeway for the the model aggregation to improve on the single
learner performance.

Run Time

The measured run time is given in Table 4.17. Tree-based methods are
most of the times clearly faster than those relying on kNN. Particularly,
in case of high-dimensional data such as SPAM, the evaluation com-
plexity O(log n) of the decision tree versus O(n) of kNN leads to a
distinct difference. Furthermore, the learning complexity of incremen-
tal decision trees depends on the current classification performance,

133

concept drift

1000 2000 3000
#Samples

0.2

0.4

0.6

0.8

E
rr

or
ra

te

Outdoor

SAM

SAM-E

ARF

LVGB

0.6 0.7 0.8 0.9
Pairwise kappa statistic

0.2

0.4

0.6

A
vg

.
er

ro
r

Outdoor

200000 400000
#Samples

0.30

0.35

0.40

0.45

E
rr

or
ra

te

Airline

0.30 0.35 0.40 0.45 0.50
Pairwise kappa statistic

0.37

0.38

0.39

0.40

A
vg

.
er

ro
r

Airline

200000 400000 600000
#Samples

0.05

0.10

0.15

E
rr

or
ra

te

Cover type

0.6 0.7 0.8 0.9
Pairwise kappa statistic

0.05

0.10

0.15

A
vg

.
er

ro
r

Cover type

200000 400000 600000 800000
#Samples

0.10

0.15

0.20

E
rr

or
ra

te

Poker

0.4 0.5 0.6 0.7 0.8
Pairwise kappa statistic

0.15

0.20

0.25

0.30

A
vg

.
er

ro
r

Poker

Figure 4.17: The temporal course of the error rate (on the left) as well
as corresponding kappa-error diagrams (on the right). For the sake
of clarity, only the four best methods are considered. SAM-E achieves
the best classification performance on the basis of more accurate base
classifiers in comparison to ARF and LVGB.

134

4 .5 sam-ensemble (sam-e)

Table 4.17: The run times (s) of the experiments. Ensembles consisted
of n = 10 members. The best results are marked in bold.

Dataset VFDT PAW SAM ARF LVGB SAM-E

SEA Concepts 1.0 19.0 4.7 8.0 3.9 20.6
Rot. Hyperplane 3.8 182.1 23.1 45.6 26.6 85.3
Moving RBF 4.7 180.9 35.0 37.6 41.6 135.8
Inter. RBF 13.7 103.5 42.2 58.8 171.8 149.1
Moving Squares 2.0 48.2 11.7 44.1 20.2 59.2
Transient Chessb. 2.4 26.0 16.5 31.8 15.7 75.3
Random Tree 4.8 131.6 17.5 25.2 30.5 77.8
LED-Drift 3.9 154.0 59.9 26.3 32.3 190.8
Mixed Drift 6.5 471.2 69.4 102.5 62.4 463.3

Artificial∑ 42.7 1316.5 280.1 379.9 404.9 1257.0

Outdoor 0.9 2.5 0.7 3.4 8.7 1.8
Weather 0.5 10.2 2.5 4.1 2.9 9.1
Electricity 1.1 18.4 4.4 11.2 5.7 19.2
Rialto 4.4 64.9 17.4 27.8 42.7 68.3
Airline 8.6 316.2 37.0 322.3 598.3 235.8
Cover Type 18.8 788.4 201.9 148.2 191.6 1195.7
Poker 10.6 485.7 91.1 204.8 86.7 502.0
PAMAP 144.8 12534.1 1223.3 288.0 390.9 8506.9
SPAM 266.8 48889.9 2142.9 2737.0 1510.3 15651.0
KDD99 119.0 22757.6 1520.6 456.5 511.8 8908.3

Real world ∑ 575.4 85867.8 5241.7 4203.1 3349.6 35097.9
Overall ∑ 618.1 87184.3 5521.8 4583.1 3754.5 36355.0

whereas those of NN-methods is constant. A decision tree is only
growing in case of ambiguous labels within the leaves, therefore tasks
with a high classification performance such as PAMAP or KDD cause
a very slow growth and quick processing. However, large and noisy
datasets lead to endlessly growing trees, which eventually become
slow and inefficient.

Overall, SAM-E requires approximately eight times as much pro-
cessing time as the tree-based ensembles. This factor is halved, if the
exceptionally easy tasks of PAMAP and KDD are not considered. Nat-
urally, the complexity of sliding-window approaches depends on the
window size. For example, SAM-E is faster for the task Outdoor than
the tree-based methods because in this small task the window size
is limited to 400 instances (400 instances correspond to 10% of the
dataset).

As already noted in Section 4.4.4, the NN-search of PAW is ineffi-
cient compared to ours. It is a single kNN-based classifier and requires
a multiple of the run time of the SAM-E ensemble which consists of ten
SAM classifiers that additionally perform more complex processing
steps such as the cleaning, the STM adaptation and LTM clustering.

Some exemplary developments of the run time are given in Figure
4.18. Even though the VFDT is the quickest method for the Airline
dataset, LVGB has the highest run time due to its drift detection (AD-
WIN), which is created for each learner and dominates the processing
time.

135

concept drift

0 500 1000 1500 2000 2500 3000 3500 4000

#instances

0

2

4

6

8

ru
n

ti
m

e
(s

)

Outdoor

SAM

ARF

LVGB

SAM-E

VFDT

PAW

0 20000 40000 60000 80000

#instances

0

10

20

30

40

50

60

70

80

ru
n

ti
m

e
(s

)

Rialto

0 100000 200000 300000 400000 500000

#instances

0

100

200

300

400

500

600

ru
n

ti
m

e
(s

)

Airline

0 1000000 2000000 3000000 4000000

#instances

0

5000

10000

15000

20000

ru
n

ti
m

e
(s

)

KDD99

Figure 4.18: The development of the run time for some datasets. The
complexity of the VFDT depends on the classification performance.
Easy tasks such as KDD99 lead to slowly growth of the trees, since
most leaves have no ambiguous class label information. In contrast,
the complexity of kNN-based approaches is independent from their
error rate.

Scalability

The results achieved with 100 learners are given in Table 4.18. In-
creasing the number of members improves the performance of SAM-E
further, even though only slightly. Noteworthy, LVGB performs worse
with the larger ensemble because it only replaces one learner at a
time in case of detected drift, which has a decreasing effect when the
number of learners is increased. ARF has the largest performance gain
due to its higher diversity (see Figure 4.17). However, increasing the
size further does not lead to further improvement 10. Overall, SAM-E
remains dominant and even performs significantly better than LVGB.

4 .5 .5 Discussion

SAM-E combines the robust drift-handling algorithm SAM with the
advantages of a highly diversified ensemble. The diversity is ensured
by randomizing the feature space as well as the underlying kNN-
search, which heavily affects SAM’s cleaning operation enabling the
preservation of partially contradicting concepts that might be useful
at different points in time. Additionally, a drift detection, monitoring
the performance of the ensemble, enables a faster adaptation in case

10 We repeated the experiments for ARF with n = 250, resulting in an average error rate
of 18.53.

136

4 .5 sam-ensemble (sam-e)

Table 4.18: Interleaved Test-Train error rates of the ensembles using
n = 100 learners. The best results are marked in bold.

Dataset ARF LVGB SAM-E

SEA Concepts 11.39 12.78 12.27
Rot. Hyperplane 15.27 12.74 11.43
Moving RBF 27.64 43.99 11.48
Inter. RBF 2.67 27.38 3.29
Moving Squares 34.38 33.24 2.75
Transient Chessb. 22.77 2.5 10.35
Random Tree 4.97 3.74 32.37
LED-Drift 27.1 26.01 34.49
Mixed Drift 17.35 22.24 11.54

Artificial ∅ 18.17 20.51 14.44
Artificial ∅ rank 2.20 2.10 1.70

Outdoor 59.3 42.32 9.02
Weather 20.93 22.02 21.04
Electricity 19.74 18.84 15.39
Rialto 22.43 42.46 15.54
Airline 33.3 36.2 35.54
Cover Type 7.41 7.16 4.75
Poker 17.56 8.83 8.72
PAMAP 0.03 0.22 0.02
SPAM 7.4 8.89 5.01
KDD99 0.03 0.04 0.01

Real world ∅ 18.81 18.70 11.55
Real world ∅ rank 2.11 2.67 1.20

Overall ∅ 18.51 19.56 12.92
Overall ∅ rank 2.16 2.37 1.47
Nemenyi significance: SAM-E � LVGB

of drift and explicitly filters learners with improper parametrization
for the current situation. As SAM itself, our method is easy to use in
practice, since the few hyperparameters can be robustly set in general
without the necessity of dataset-specific tuning. We provide a parallel
implementation which clearly reduces the processing time. It is open-
source and will be integrated within the popular MOA framework11,
facilitating the comparison for other researchers. In the evaluation, we
showed the effects of the different algorithmic building blocks and
compared SAM-E with other state-of-the-art methods. It consistently
outperformed all other approaches, some with statistical significance.

There are various ways to build on our work. Quite obvious exten-
sions are the incorporation of online metric learning and / or feature
drift approaches that can mitigate the typical susceptibility of kNN
to scaling and noise; or approximate kNN-querying that can possibly
dwindle computational load, enabling even larger ensembles with

11 https://moa.cms.waikato.ac.nz/

137

https://moa.cms.waikato.ac.nz/

concept drift

potential for more randomization.
A more profound extension is to develop the architecture towards

a semantic or episodic memory. SAM-E was a first step to create more
complex memory architectures as the projection in different sub-spaces
and the varying granularity in which inconsistent information is re-
moved generate memories with different views on the current situation.
However, these memories are mainly based on randomization and
have no specific meaning. It would be interesting to create diverse
memories in a more purposeful way, in terms of a semantic represen-
tation, where memories explicitly capture different semantic concepts
and may even act on varying time scales.

138

5R E A L - W O R L D A P P L I C AT I O N S

Summary Three real-world applications of incremental learning are pre-
sented in this chapter. The tasks are completely different as they include
object recognition, driver-intent prediction as well as rapid motion classifi-
cation, highlighting the wide range of applicability. Thereby, we showcase
previously proposed methods such as ILVQ or SAM. Another focus is to
combine personalized learning with online adaptation, which is analyzed in
the frame of two different scenarios.

Source Code

• Python sources of the Incremental Learning Vector Quantization (ILVQ) with the COst
MinimizatiOn Sampling (COSMOS) (Losing et al., 2015) is available at
https://github.com/vlosing/incrementalLearning.

• Original C++ sources of Online Random Forest (ORF) (Saffari et al., 2009) are provided
at
https://github.com/amirsaffari/online-random-forests.

• The Outdoor dataset is available at https://github.com/vlosing/incrementalLearning.
Due to privacy issues, data of the driver maneuver prediction as well as human motion
recognition cannot be published.

Parts of this chapter are based on:

• Losing, V., Hammer, B., & Wersing, H. (2015). Interactive online learning for obstacle
classification on a mobile robot. In 2015 international joint conference on neural networks
(ijcnn) (pp. 1–8). IEEE.

• Losing, V., Hammer, B., & Wersing, H. (2017a). Personalized maneuver prediction at
intersections. In 2017 ieee 20th international conference on intelligent transportation systems
(itsc) (pp. 1–6).

• Losing, V., Hammer, B., & Wersing, H. (2019). Personalized online learning of whole
body motions using multiple inertial measurement units. In Ieee international conference
on robotics and automation (icra) 2019.

Incremental learning offers various benefits for real-world appli-
cations. For instance, stream-wise processing fosters low time- and

space complexities, enabling implementations for mobile devices with
very limited amount of resources. Moreover, direct processing on the
hardware increases the independence of the system as it is neither
dependent on computational servers, e.g. cloud services, nor on the
environment in terms of a network connection.

Incremental learning has been applied in plenty scenarios. Con-
cretely, various applications put emphasis on the incremental inte-
gration of new data or classes into the system without considering
non-stationary environments in particular. In this context, applications
in the computer vision domain are quite common. Tackled tasks in-
clude object classification (Losing et al., 2015; Kirstein et al., 2005; Bai,
Ren, Zhang, & Zhou, 2015), object detection (Opelt, Pinz, & Zisserman,
2006; Lu et al., 2014; Dou, Li, Qin, & Tu, 2015), tracking (Cai et al., 2014;
Li, Dick, Shen, Van Den Hengel, & Wang, 2013) or gaze estimation
(Sugano, Matsushita, Sato, & Koike, 2008).

An incremental algorithm that learns and adapts a low-dimensional
eigenspace representation to reflect appearance changes of the target
was presented by Lim, Ross, Lin, and Yang (2005). Embedded within a
Markov Chain Monte Carlo framework it is applied to track objects.
Kirstein, Wersing, Gross, and Körner (2012) presented an approach for

139

https://github.com/vlosing/incrementalLearning
https://github.com/amirsaffari/online-random-forests
https://github.com/vlosing/incrementalLearning

real-world applications

lifelong-learning of object categories. Category-specific representations
are incrementally learned and combined with an LVQ-based classifier.

Incremental learning was also applied in teaching human gestures
to a humanoid robot (Calinon & Billard, 2007). In detail, motion data,
captured from IMU sensors, is projected in a latent space and encoded
in an incrementally adapted Gaussian Mixture Model (GMM). Kulić,
Ott, Lee, Ishikawa, and Nakamura (2012) used incremental learning in
an unsupervised way to obtain and update full-body motion primitives
from motion capture data. In more detail, they first partitioned the
data based on stochastic segmentation and then extracted primitives
with an incremental clustering algorithm.

Several real-world applications used incremental learning to cope
with non-stationary environments. Common tasks are spam filter-
ing (Fdez-Riverola, Iglesias, Diaz, Méndez, & Corchado, 2007; Méndez,
Fdez-Riverola, Iglesias, Diaz, & Corchado, 2006) and anomaly detection
in the context of cyber security (Lane & Brodley, 1998; Maggi, Robert-
son, Kruegel, & Vigna, 2009). Further applications include anti-biotic
resistance analysis (Tsymbal, Pechenizkiy, Cunningham, & Puuronen,
2006), financial distress prediction (Sun & Li, 2011) or place recogni-
tion within dynamic environments (Luo, Pronobis, Caputo, & Jensfelt,
2007).

Incremental learning is also appealing for the purpose of person-
alization which denotes the modification of a system towards the
characteristics of an individual user. Two different modes of personal-
ization have been distinguished (Fischer, 2001; Hasenjäger & Wersing,
2017):

1. Active customization by the user, e.g. by making selections and
setting parameters.

2. Adaptive systems where the usage history is employed to estimate
user preferences and situation statistics to adjust parameters and
behavior.

In context of this thesis, the term personalization mainly refers to the
second type. The general idea is that the focus on one person drastically
reduces the variance within the data, enabling a better performance
with a smaller amount of data. In other words, products/services
trying to serve a broad range of customers have to make sacrifices in
order to perform well on average. In contrast, the focus on one single
user enables a very specific adaptation to its individual demands.
Hence, personalization is particularly crucial in the case of highly
diverse customers. The process of personalizing a product is known
to foster emotional bonding which directly correlates with the user’s
effort during the adaptation (Mugge, Schoormans, & Schifferstein,
2009). Personalization also leads to higher brand loyalty, making it
especially attractive for manufacturers (Ball, Coelho, & Vilares, 2006).

As incremental learning usually happens within the application, it
is particularly suited for online adaptation to one specific user, its envi-
ronment or behavior. Furthermore, the major problem of inter-person
generalization is completely avoided, facilitating the task as well as

140

the computational complexity, since post-processing steps such as nor-
malization or temporal integration can often be omitted. However,
adaptive personalization has been mainly investigated on basis of of-
fline models (Weiss & Lockhart, 2012; Medrano, Plaza, Igual, Sánchez,
& Castro, 2016; Neto, de Souza Baptista, & Campelo, 2016; Bifulco,
Pariota, Simonelli, & Di Pace, 2013; Butakov & Ioannou, 2015; Harsham
et al., 2015; Orth et al., 2017). Regarding personalized recommendation,
there are partially incremental systems, i.e. they update user-profiles
on the fly which directly affect the recommendations, but their under-
lying knowledge base relies on batch processing. E.g. Google News
uses collaborative filtering for its news recommendations (Das, Datar,
Garg, & Rajaram, 2007). In real-time, user statistics such as clicked
news stories are updated and considered within an updated news
feeds. However, the main module of the recommendation is based on
static user categories that are extracted via batch processing, as they
comprise the behavior of all users within the last few months. Appli-
cations which mainly rely on incremental machine learning methods
for the purpose of personalization were only recently considered by
Losing, Hammer, and Wersing (2017a, 2019) and both were published
in context of this thesis.

In this chapter, three applications of incremental learning are pre-
sented and discussed, thereby tackling the following major challenges:

• Given an application scenario, how can incremental learning
be efficiently integrated and how does it perform in terms of
classification performance and model complexity?

• What are the benefits of personalized online learning in compar-
ison to average offline learning for certain settings?

In the first application, a mobile robot is performing object recog-
nition in a garden environment. It is an interactive learning scenario,
since the user can label the visual stream at any time during applica-
tion to trigger the incremental adaptation. The outdoor environment
makes this task particularly challenging because changing lighting
conditions impact substantially the visual representation, i.e. there is
concept drift in the data. We apply the ILVQ learning architecture
from Section 3.2 and compare it with other state-of-the-art methods.

In regard to personalization, two different learning schemes are
applied and analyzed. The first uses batch learning and represents
the nowadays dominant approach of pretraining a static model at the
company. Customers may be able to perform a rough configuration
based on few predefined templates. However, the underlying model
remains largely unchanged. Usually, the training process at the com-
pany relies on a large dataset, trying to cover all likely situations that
may be faced in practice. Consequently, a model is generated which
maximizes the average performance for multiple users. This learning
scheme is referred to as average offline learning.

In contrast, personalized online learning refers to a model which is
delivered without any prior knowledge to the customer and directly

141

real-world applications

learns during application. Hence, its objective is to maximize its per-
formance on the personalized input it encounters in practice, allowing
a flexible adaptation to individual demands.

We compare both schemes within two different applications. One
focuses on the behavior prediction of a driver at intersections encoun-
tered on the daily commute (Section 5.2). Such predictions can be used
to provide situation-specific assistance in terms of warnings or notifica-
tions. The objective of the second scenario is to classify human motions
as quickly as possible based on IMU signals (Section 5.3). Fast motion
classification is a prerequisite for several applications, however, we are
particularly interested in supporting humans to execute their current
motion by actively controlling assistive devices such as prosthesis or
exoskeletons.

5 .1 interactive online learning on a mobile robot

In this Section, the proposed learning architecture consisting of the
ILVQ in combination with COSMOS prototype placement strategy
(see Section 3.2) is applied in a real-world application. In particular, a
flexible scheme for interactive learning, a predestined application for
incremental algorithms (Amershi & Cakmak, 2014) is investigated. An
online recognition architecture that is capable of interactive learning
of up to 50 objects in short time was presented in (Kirstein et al.,
2005). Here we will rely on a similar architecture but incorporate and
investigate a richer online learning model. Vision based incremental
learning on a mobile robot was also performed by Luo et al. (2007)
as well as by Filliat (2008). However, these systems perform indoors
and use different algorithms such as incremental SVM or the Bag of
Words scheme (Salton & McGill, 1986). We demonstrate our framework
within a real-time-learning scenario which focuses on the challenging
task of outdoor object classification on a mobile robot. Hereby, the
framework is paired with two mobile apps, creating an easy-to-use
online learning system.

5 .1 .1 Application Setup

In our scenario, an autonomous robot is exploring a garden environ-
ment (Fig. 45.1) in a random scheme. The user interacts in real-time
with the robot by labeling approached objects via an iPad. Labeled
objects are incrementally incorporated into the model and learned
immediately enabling a direct reaction of the system. New objects can
be introduced at any time.

Whenever an object is approached, the robot stops in front of it
within a certain distance. If the user does not provide a label, the robot
announces the recognized class. Unknown objects as well as uncertain
classifications are expressed explicitly. Object specific actions are only
executed in case of confident classifications. Actions may include oral
comments as well as driving behaviors such as avoiding or driving over.

142

5 .1 interactive online learning on a mobile robot

Figure 5.1: Typical scene of the interactive scenario. The robot drives
randomly on the grass area and encounters various objects. The user
follows the image-stream on the iPad and can label approached objects.

Objects are always avoided whenever they are classified as unknown
or uncertain. Since the garden border is treated as any other object, but
coupled strictly with avoidance, the robot stays within the grass area.

We used the Pioneer platform of Adept MobileRobots with a front-
mounted Playstation Eye camera, which is directed on the ground
and captures the scene with a frame rate of 120 Hz. Computation
is done by a Lenovo ThinkPad, also mounted on the robot. A color-
based grass segmentation algorithm detects obstacles whenever their
representation deviates significantly from an environment model. Since
this model is adapted dynamically, a high range of color variety can
be handled.

The interactive scenario including live-labeling is showcased in the
video available at https://github.com/vlosing/datasets/blob/master/
stationary/Outdoor/outdoorRobot.avi.

The framework was initially presented by Losing (2014). The publi-
cation gives a detailed description wit respect to the image filtering,
the App-based interaction and the faced challenges of computer vision
in an outdoor scenario.

5 .1 .2 Experiments

In our interactive scenario, various consecutive images of the same
object are recorded in constant pose and more or less constant lighting
conditions. If the user decides to label this object sequence, all belong-
ing samples are trained in the recorded order. In case of classification,
the whole sequence is unknown for the classifier. Therefore, it is impor-
tant to analyze the generalization to new object sequences, since this is
the practically relevant case. It is particularly interesting considering
the given small variance within one sequence compared to the high
variance across different sequences. Hence, we trained the learning
architecture approach-wise. However, the order of the sequences was
random.

143

https://github.com/vlosing/datasets/blob/master/stationary/Outdoor/outdoorRobot.avi
https://github.com/vlosing/datasets/blob/master/stationary/Outdoor/outdoorRobot.avi

real-world applications

Table 5.1: Results for the Outdoor dataset with using whole sequences
either as training or testing in comparison to a completely random
partitioning. In both cases, 60% of the data were used for training, 30%
for testing.

Sequence-wise Test error Train error #Nodes

COSMOS 38.62 8.96 232.0
Closest 40.42 11.96 245.8
Cluster 40.82 11.04 235.6
Voronoi 41.19 10.78 231.3

Random Test error Train error #Nodes

COSMOS 18.42 14.06 234.8
Closest 21.97 16.77 253.4
Cluster 21.45 16.94 247.0
Voronoi 18.82 14.38 236.6

We are interested to evaluate the proposed prototype-placement
strategy COSMOS in comparison to other state-of-the-art placement
schemes. All prototype placement strategies are in detail described
in Section 3.2. Table 5.1 shows the test error for seven training se-
quences per object, achieved by each placement strategy. Also depicted
is the outcome for training a random proportion of 60% of the data.
The heavy performance decline on the test set for the approach-wise
training is striking, indicating that generalization to completely un-
seen sequences is more challenging. Consequently, the chosen feature
representation is not robust enough against the different variations
contained in the dataset. A lot of directly illuminated objects share
a similar representation with a big concentration on the yellow bin
and the variance of the representation across different objects is of-
ten smaller than those of the same object across different approaches.
Nevertheless, a high accuracy is achieved when images are shuffled
randomly. Even though a high variance is given for the dataset, the
difference of images within one sequence is usually small. As soon as
one image of each sequence is contained in the training set, the major
part of variance is covered and high rates are possible.

There are also more prototypes inserted in the approach-wise
training which is caused by more errors during training. One cause
is the dependence of the GLVQ updates on a random order due to
the underlying stochastic gradient descent minimization. But the main
reason is that, during training, the generalization from sequence to
sequence is limited too. Therefore, whenever a new sequence is trained,
the classifier makes more mistakes until prototypes are added.

COSMOS achieves the best results, but compared to the artificial
datasets (Section 3.2), the performance difference between placement
strategies is rather small. The image dataset contains many times more
classes but less samples per class. Therefore, the choice among these

144

5 .1 interactive online learning on a mobile robot

500 1000 1500 2000 2500
#Samples

0.4

0.5

0.6

0.7

E
rr

or
ra

te

Outdoor

COSMOS

Cluster

Closest

Voronoi

Figure 5.2: Learning curve (test error) for approach-wise training on
the Outdoor dataset.

Table 5.2: Comparison against other classifier using the approach-wise
training. COSMOS-GMLVQ additionally learns the metric of the input
space and is therefore more powerful than COSMOS-GLVQ. The test
error (TE) and the number of used nodes are given after an increasing
amount of used training examples. Pairs of TE and the number of
nodes which are not Pareto dominated are marked in bold. Results of
a batch kNN are given as reference, because LVQ and SAM are based
on nearest neighbor as well.

Method
TE/#Nodes
500 samples

TE/#Nodes
1500 samples

TE/#Nodes
2400 samples

COSMOS-GLVQ 57.1/116 41.4/446 35.7/949
COSMOS-GMLVQ 55.9/100 40.7/377 32.9/774
ISVM 59.4/363 42.5/777 34.8/1347
SAM 59.4/414 47.5/975 35.7/1408

Batch kNN 58.0/500 41.0/1500 34.6/2400

samples is more limited per class, which leaves little leeway to choose
good or bad candidates. Furthermore, the data in the high-dimensional
space is not broadly distributed but rather strongly clustered. Hence,
the already limited choice makes additionally not a big difference.
Figure 5.2 depicts the learning curve. All placing strategies perform
similar but COSMOS leads continuously throughout the training.

Comparison Against the ISVM and SAM

We evaluate COSMOS also in combination with the Generalized Matrix
LVQ (GMLVQ) (Schneider et al., 2009), which is more powerful because
it incorporates metric learning of the input space. Table 5.2 shows the
accuracy as well as the stored number of prototypes / support vectors
after an increasing number of training examples. This experiment
is based on the approach-wise evaluation. Our algorithm performs
better than ISVM on the Outdoor dataset and uses thereby a less
complex model. The combination with the GMLVQ has always a higher

145

real-world applications

accuracy and less nodes compared to the GLVQ one. Additionally
the complexity, i.e. number of support vectors generated by ISVM,
cannot be limited in a straight-forward way unlike for incremental
LVQ variants. The metric learning allows our architecture to achieve
even better results than the batch kNN algorithm, which uses the
whole training set as model representation.

We also applied our SAM architecture within this task. The mem-
ory limit was set to a maximum of 1500 instances, matching the model
complexity of ISVM. Generally, SAM is designed for learning on large
data streams. In this rather small task, some of its essential mecha-
nisms as the adaptive compression within the LTM have basically no
effect. Also the adaptive switching of the knowledge base between
the STM and LTM does not matter, since the evaluation is done in
offline scheme as the models are first constructed based on a training
set and evaluated afterward on a separate test set. Nonetheless, Table
5.2 illustrates that SAM achieves comparable results to those of the
ISVM, GLVQ and the batch kNN.

5 .1 .3 Discussion

We demonstrated our learning architecture which combines the GM-
LVQ with the COSMOS prototype placement strategy within an in-
teractive online learning scenario on a mobile robot. Objects, lying
outdoor on the lawn, are trained in real-time and instantly incorpo-
rated into the model representation, enabling a direct system reaction.
The used RG-chromaticity color histogram turned out to be insuffi-
ciently robust to deal with changes due to various lighting conditions.
Generalization to completely unseen image sequences, as necessary for
the scenario, is therefore only partially possible. However, the repre-
sentation is not coupled to our learning architecture and can be easily
exchanged. One particularly attractive feature representation is the
one obtained by Deep Learning (Simonyan & Zisserman, 2014).

On the basis of the scenario we recorded a challenging object
classification benchmark and made it available to the public. Here, we
showed that our system outperforms the ISVM, a proven state-of-the-
art method, by achieving a higher classification performance with a
substantially sparser model.

In this section, the incremental adaptation of model complexity
was demonstrated within a real-world application. In detail, the model
started from scratch without any parameters and evolved steadily as
more and more training data was used, adaptively adjusting its own
complexity to the demands of the task. The learning of the model
was mirrored in a steadily decreasing error rate the more parameters
were allocated. Thereby, adjusting model parameters based on cost-
minimization turned out to be particularly effective for prototype-
based learning.

146

5 .2 personalized maneuver prediction

5 .2 personalized maneuver prediction

This section focuses on exploring the potential of personalized in-
cremental learning in the context of driver maneuver prediction at
intersections.

Current advanced driver assistance systems are designed to deliver
robust performance over an average range of driving conditions and
driver profiles. Consequently, drivers are often dissatisfied because
the assistance offered does not match their expectations and preferred
driving style. Additionally, the frequently reoccurring driving situa-
tions experienced by one particular individual driver constitute only a
small fraction of all possible situations. Both factors, individual driver
characteristics and reoccurring driving situations provide a great po-
tential for an optimization of the assistance system from an average
system to a better adapted, personalized one.

In the automotive context, adaptive personalization based on offline
estimation of an appropriate parametrized driver model has been
recently considered for real-time route prediction (Neto et al., 2016),
adaptive cruise control (Bifulco et al., 2013; Butakov & Ioannou, 2015),
predictive Human Machine Interaction (Harsham et al., 2015) and
cooperative assistance-on-demand (Orth et al., 2017).

Recently, the application of more generic non-parametric machine
learning models caught more interest in the context of advanced driver
assistance systems (ADAS) and autonomous driving (Kuefler, Morton,
Wheeler, & Kochenderfer, 2017). Their application is, however, often
limited to cases of available big datasets necessary for training deep
architectures. In this section, we show that generic online learning
architectures capable of incremental learning from few training data
can be employed for efficient personalization of maneuver prediction
as a subsystem of an integrated ADAS.

Tactical maneuver prediction with a horizon of about 2-5 seconds
is a highly relevant sub-function for controlling warnings and active
safety systems in a car (see the review of Doshi and Trivedi (2011)).
Approaches can be based on driver sensing and intention estimation
(Rodemerk, Winner, & Kastner, 2015) or just taking GPS traces for tra-
jectory estimation (Liebner, Klanner, Baumann, Ruhhammer, & Stiller,
2013; Klingelschmitt, Platho, Groß, Willert, & Eggert, 2014). A para-
metric behavior model for curvature-dependent velocity profiles of
straight driving and right turns is estimated based on intersection
crossing training data (altogether 245 approaches) by Liebner et al.
(2013). Klingelschmitt et al. (2014) proposed the anticipated velocity at
stop line (AVS) feature, defined as AVS = v2 + 2da, where v denotes
the velocity, a the acceleration and d the distance to the intersection.
Using a small amount of data (34 approaches on seven intersections)
they showed that this information alone is a strong indicator for the
drivers intention approaching an intersection. An online learning ap-
proach of feature-based maneuver prediction was proposed by Wiest
et al. (2015) and applied in a limited setting of two intersections.

In this contribution, we propose a model-free data-driven approach

147

real-world applications

Figure 5.3: All traces of two different drivers in the direction from
home to work. The location of the drivers home as well as the working
place are marked by “H” and “W” respectively. In contrast to the
rather fix route on the left, the commute on the right incorporates
multiple alternative routes.

to maneuver prediction, capable of incremental online learning. Com-
pared to other feature-based contributions, our simple approach scales
to distinctly more intersections (285 with 5043 approaches) and does
not rely on specific filtering, nor on manual labeling of real-world
data. Based on a previous analysis of incremental learning architec-
tures (Losing et al., 2018b), we choose an appropriate architecture
and demonstrate the performance gain that can be obtained by per-
sonalized adaptation of the prediction. We also stress the benefits
of personalized context features, which can be easily obtained in the
personalized context and lead to a further performance boost.

5 .2 .1 Dataset

Our dataset was extracted from recordings of the daily work-home
commute of eleven different drivers. Personalization is particularly
useful in this setting, since each driver takes daily an individual and
usually similar route. This repeated pattern can be exploited by state-of-
the-art machine learning methods and can provide a robust prediction
function after only a few commutes. We used the mobile App Track-
Addict1 in combination with an IPhone 5 to record the data. The GPS
trace itself was delivered by the Dual XGPS 160, which in contrast to
the IPhone delivers the data at a rate of 10 Hz. TrackAddict provides
additional raw data to each GPS coordinate such as time, velocity,
gyroscope values as well as the corresponding video. However, we
utilize only the time (s), velocity (km h−1) and the GPS coordinates (◦)
for our analysis.

The variance of the daily route varies from driver to driver as it is
illustrated by Figure 5.3. Some drivers are taking only small detours,
whereas others choose among several different alternatives.

Preprocessing

We removed too short streams (< 5 min) as well as those with a
too low GPS rate resulting from failures of the GPS receiver. Only

1 http://racerender.com/TrackAddict/Features.html

148

http://racerender.com/TrackAddict/Features.html

5 .2 personalized maneuver prediction

intersection approaches were extracted from the raw data. We used a
maximum prediction horizon of four seconds leading to approximately
40 data points per approach. This time is sufficient to provide situation-
dependent assistance at intersections (Doshi & Trivedi, 2011).

Relevant Intersections and Potential Stop Points

A stream of driver d corresponding to a commute ride is given by a se-
quence Sd = [p1, . . . , pm] of m recorded tuples p = (time, vel, long, lat).
A potential stop point within such a given stream is determined by
a measurement with velocity smaller than some predefined value α,
whereby we always take the first such measurement in a row, and we
make sure a certain velocity β is reached before the next stop can be
encountered. That means, a potential stop is found at time step ti if
velti ≤ α, velti−1 > α, and there exists some t′ before the time of the
next stop point t̂ such that ti < t′ < t̂ and velt′ ≥ β. In case of ti being
the last stop point of a stream, the latter condition is omitted. This
way, every commute ride Sd

r of a driver d yields a set of potential stop
points Od

r := {o1, . . . , okr}. For every driver d, we collect all commute
sequences Sd

total :=
⋃

r Sd
r and the corresponding set of potential stop

points Od
total := {oi | ∃r oi ∈ Od

r }.
Since we are interested in the prediction of driver behavior at

intersections, we determine all intersections of the observed drives
within the corresponding map area2. Thereby, intersections are simply
represented by their GPS-coordinates I = (long, lat). To reduce the
amount of intersections and also to generate a challenging as well as
balanced dataset, we consider only intersections at which the driver
has stopped at least once. Further, we align a potential stop point oj
to an intersection Ij, provided the point oj is the closest stop point to
Ij and the distance is smaller than a predefined value γ, measured in
the Euclidean distance of the GPS signals3. All potential stop points
which are not aligned to an intersection are irrelevant.

Automatic Labeling

For every commute, we identify the relevant intersections on its way.
We identify the parts of the commute ride, which are within a distance
of at most 20 m to the intersection. For these events, we distinguish
the following classes:

• straight (cross without stopping)

• stop

• turn (turn left or right without stopping)

All datapoints of one approach are labeled as the same class. An
approach is labeled as stop provided it is contained in the list of stop

2 We extracted the intersections from OpenStreetMap (OpenStreetMap contributors,
2017)

3 We chose the parameter values α = 5 km h−1, β = 20 km h−1 and γ = 20 m to
generate the dataset.

149

real-world applications

Figure 5.4: A typical right turn approach. The approach data con-
tains all points four seconds backwards from the closest point to the
intersection.

points as described above. In this case, it is irrelevant whether the car
goes straight or takes a turn after the initial stop. A stop approach
contains the data sequence four seconds backwards from the stop point.
Please note, that our learning task is not the same as learning the daily
route of the driver. The car can stop at any day at any intersection
caused by e.g. traffic lights, preceding cars or pedestrians, which makes
the subsequently taken direction extraneous. For the remaining events,
we automatically determine the type based on the following geometric
considerations. Two lines are fitted to the GPS trace, before and after
the intersection. An approach is labeled as turn when the angle in
between the two lined is larger than 30◦. Otherwise, it is labeled as
straight. The turn and straight data contain the data sequence four
seconds backwards from the closest point to the intersection. Figure
5.4 illustrates an exemplary intersection turn approach.

A typical GPS stream with labeled intersection approaches is shown
in Figure 5.5. Even though we optimized the parameters of the auto-
matic labeling, our data driven approach comes at the cost of a minor
amount of label noise. This mainly concerns approaches of the straight
and turn class, which are sometimes hard to discriminate from each
other, due to the arbitrary different intersection layouts. Furthermore,
the imprecision of the GPS signal adds to the complexity.

Dataset Characteristics

The main characteristics of the resulting datasets are given in Table
5.3. The number of approaches of each driver varies naturally within
the dataset, depending on the amount of recorded streams, the length
of the commute as well as whether the corresponding route is located
in a rural or urban area. Table 5.4 illustrates the largely similar class
distribution of the approaches with turn having the smallest share.

150

5 .2 personalized maneuver prediction

Figure 5.5: A GPS trace from home to work. The crosses mark the
relevant intersection for this trace, whereas white dots denote stopping
positions. Please note that some intersections are excluded due to the
fact that the driver did not stop at them on all streams in one direction.
The labels of the approaches are given by ↑ = straight,↔ = turn, s =
stop. The color of the trace encodes the velocity in km h−1.

Table 5.3: The dataset broken down to the individual drivers, contribut-
ing to the dataset in different proportions. Driver ten has with 22.4%
the highest share, whereas driver three with 2.7% the smallest one.
Each approach is usually represented by 40 single datapoints.

DriverID #Streams #Intersections #Approaches #Datapoints

1 31 35 809 32664
2 23 17 240 9722
3 14 27 260 5427
4 37 26 561 22702
5 12 32 211 8510
6 30 17 288 11674
7 35 16 414 16752
8 28 30 642 25814
9 24 13 379 15303
10 57 61 1103 44648
11 21 11 136 5482
∑ 312 285 5043 198698

Table 5.4: The class distribution of the dataset.

Class #Approaches #Datapoints Proportion (%)

Straight 1819 72194 36.33
Stop 2062 80985 40.76
Turn 1162 45519 22.91

151

real-world applications

Table 5.5: The evaluated models with corresponding feature sets. Vel
= Velocity, Acc = Acceleration, Dist = Distance to intersection, I-Lat=
Intersection-Latitude, I-Lon = Intersection-Longitude.

Abbreviation Model Learning Features

AVGAVS Logistic Regression offline AVS,Dist
AVG Random Forest offline AVS,Vel,Acc,Dist
PERS Online Random Forest online AVS,Vel,Acc,Dist

PERSC Online Random Forest online AVS,Vel,Acc,Dist,I-Lat,I-Lon

5 .2 .2 Experiments

Average offline models are compared against personalized online
models in the supervised classification setting. Thereby, the objective
is to predict one out of C intersection maneuvers, represented by
the target variable y ∈ {c1, . . . , cC}, on the basis of a set of features
x ∈ Rn, which characterizes the ego vehicle state using attributes such
as velocity, acceleration or GPS-coordinates.

Four different models were evaluated. Table 5.5 depicts their char-
acteristics as well as the respective set of features. At each point in time
of an intersection approach the feature vector xt, possibly containing
the velocity, acceleration, AVS (Klingelschmitt et al., 2014) and the GPS
coordinates of the intersection, is used to calculate the prediction of
the corresponding model. Average offline models were evaluated in a
leave-one-driver-out scheme. Precisely, they are tested with the data
of one specific driver, whereas those of the remaining drivers is used
for training. This is done repeatedly such that each driver is used for
testing once. We mainly utilize on- and offline variants of the popu-
lar Random Forest (RF) (Breiman, 2001) to enable a fair comparison.
The RF is a well known state-of-the-art learning algorithm, delivering
highly competitive results (Fernández-Delgado et al., 2014; Losing
et al., 2018b) and is easy to apply out of the box. We additionally
use as baseline a Logistic Regression (Bishop, 2006) model with the
AVS feature and the distance to the intersection as it was proposed
by Klingelschmitt et al. (2014). The other offline model is a RF with
an extended feature set including next to the AVS feature, also the
velocity, acceleration as well as the distance to the intersection.

We conducted also experiments coupling the Logistic Regression
model with the extended feature set, as well as the RF with the AVS
feature only. However, the Logistic Regression model did not profit
from the additional features and the RF performed on average about
5% worse than AVGAVS. Consequently, we omit these results in our
analysis.

Both incremental models are instances of the Online Random Forest
(ORF) (Saffari et al., 2009). One is using the same feature set as the
RF, whereas the other additionally incorporates personalized context
information in terms of the GPS coordinates of the corresponding
intersection. Personalized context features have the advantage of being
rather easily to obtain for a specific user and can substantially boost

152

5 .2 personalized maneuver prediction

the individual prediction after only a few examples. In the context of
the average user, however, they often have no specific meaning at all
and can even deteriorate the performance or require a huge amount
of training examples to be beneficial. In our case, for example, the
intersection GPS coordinates would only boost the performance of
the average model if it incorporates examples for each intersection
approached from all directions. This requires a tremendous amount
of data, by far more than contained in our dataset, even though the
routes of the drivers are locally related.

We evaluate the incremental models in the online learning setting
(see Section 3.1.2). However, since the data is temporally ordered and
has a high degree of label autocorrelation we perform the approach-
wise scheme. Precisely, the model has to predict all samples of one
approach, before the corresponding labels get revealed. We trained
from the scratch one online model for every driver in single pass.
Meaning, the online models are utilized without any form of pre-
training and only access the data of one specific driver.

Results

Figure 5.6a shows the resulting error rates for different prediction
horizons.

Clearly, the prediction gets easier the closer the driver is to the
intersection. The method AVG performs on average similar to AVGAVS
even though it uses additional features. However, the AVS feature
is basically a compression of the velocity, acceleration and intersec-
tion distance for the purpose of intersection intent inference. Our
experiments confirm its usefulness in this context.

Both online models substantially outperform their offline counter-
parts, underlining the benefits of a personalized prediction within this
setting. This is particularly remarkable considering the severely smaller
amount of available training data as well as the usual performance
advantage of offline models. The error rate may even decrease further
with larger training sets. Moreover, it is shown that the addition of the
intersection GPS coordinates boosts the performance throughout the
whole prediction horizon.

The advantage of the online models is even more pronounced
if their performance is measured after a certain amount of training
data has been seen. Figure 5.6b contrasts the mean error rate to those
achieved on the second half of each drivers data. The error rate is
distinctly lower for the second half of the data, due to the naturally
higher amount of mistakes done at the beginning of learning.

The learning curves of the online models are shown in Figure
5.6c. Precisely, it depicts the error rate depending on the number
of trained approaches for a specific intersection. The personalized
predictors require only a small amount of training data to compete
with the average ones. In fact, they are already more accurate at the
third time they approach the same intersection. Hence, only one / two
days of commute tours are sufficient to gain an advantage with the
personalized models in our scenario. PERS seems to be converged

153

real-world applications

0 1 2 3 4
Prediction horizon (s)

0.0

0.1

0.2

0.3

0.4

E
rr

or
ra

te

AVGAVS

AVG

PERS
PERSC

Error rate for different prediction horizons

(a)

0 1 2 3 4
Prediction horizon (s)

0.0

0.1

0.2

0.3

0.4

E
rr

or
ra

te

PERS

PERS second half
PERSC
PERSC second half

Error rate for different prediction horizons

(b)

0 2 4 6 8 10
Approaches per intersection

0.0

0.1

0.2

0.3

0.4

E
rr

or
ra

te

AVGAVS

AVG

PERS
PERSC

Learning curve

(c)

Figure 5.6: (a) The mean error rate of the evalu-
ated models depending on the prediction horizon.
(b) The mean error rate as well as the one considering only
the second half of each drivers data, achieved by both online
models. The error rate is distinctly lower for the second half,
because more mistakes are done at the beginning of learning.
(c) Learning curve of the personalized online models. The average er-
ror rate is given depending on the number of experienced approaches
for the specific intersection. The personalized predictors are quickly
more accurate than average ones. The average performance of the
offline models is given via dotted lines.

154

5 .2 personalized maneuver prediction

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

AVGAVS (AUC = 0.88)

AVG (AUC = 0.86)

PERS (AUC = 0.89)

PERSC (AUC = 0.94)

ROC - Straight

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

AVGAVS (AUC = 0.97)

AVG (AUC = 0.96)

PERS (AUC = 0.96)

PERSC (AUC = 0.96)

ROC - Stop

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

AVGAVS (AUC = 0.75)

AVG (AUC = 0.74)

PERS (AUC = 0.80)

PERSC (AUC = 0.87)

ROC - Turn

Figure 5.7: ROC curves of the models for all classes. The online models
are superior for the straight and turn class, whereas all models have a
similar ROC for the stop class.

Straight Stop Turn

Straight

Stop

Turn

0.88 0.11 0.02

0.03 0.97 0.01

0.68 0.28 0.04

AVGAVS

Straight Stop Turn

0.75 0.06 0.19

0.03 0.92 0.05

0.49 0.16 0.35

AVG

Straight Stop Turn

0.74 0.08 0.18

0.03 0.93 0.04

0.4 0.18 0.42

PERS

Straight Stop Turn

0.83 0.07 0.1

0.04 0.9 0.06

0.21 0.18 0.61

PERSC

Figure 5.8: Confusion matrices of the models. Most confusions occur
between the straight and turn class. However, the context features
distinctly enhance the discrimination. AVGAVS has constantly a low
confidence for the turn class as it is rarely used for prediction.

after approximately four approaches, whereas PERSC keeps improving
with additional data.

Figure 5.7 depicts the receiver operating characteristic (ROC) curves
for all classes and Figure 5.8 shows the confusion matrices of the
models.

Most confusions occur between the straight and turn class, whereas
the stop approaches are classified with high accuracy. AVGAVS has the
lowest error rate for the straight and stop class. However, particularly
the ROC curve for the straight class illustrates that it is not necessarily
the best model. Rather, these low error rates come at the cost of a poor

155

real-world applications

accuracy for the minority class turn, constantly predicted with a low
confidence, and therefore, rarely used. Nonetheless, the ROC curve for
the turn class shows that AVGAVS is quite able to reasonably predict
this class with an appropriate tuning of the confidence thresholds.

The personalized models perform particularly well for the straight
and turn class because of several reasons. Clearly, they profit from the
fact that the class distribution of a specific driver is often different than
those of the average driver. Furthermore, a driver may approach inter-
sections in a specific way, facilitating the personalized classification.

PERSC is by far the best model in general. It is able to implicitly
generate an intersection specific prediction model, due to its access to
the intersection GPS coordinates.

Generalization of Personalized Models

One interesting question is whether the personalized models are able
to learn a driver-specific way of approaching intersections in gen-
eral. Therefore, we analyze the personalized model in a leave-one-
intersection-out as well as in a leave-one-approach-out experiment and
compare its performance with those of an average model. For a fair
comparison we use for both models the extended feature set (AVS, Vel,
Acc, Dist). The average model achieves in both experiments an error
rate of 0.29, whereas the personalized model performs slightly worse
in the leave-one-intersection-out experiment (error: 0.30), but clearly
better in the leave-one-approach-out setting (error: 0.24). Therefore, it
is not confirmed that the personalized model learns a generic driver-
specific way of approaching intersections. Rather, we can conclude that
the advantage of the personalized models is mainly based on already
seen intersections approached by the specific driver.

Results of SAM and ILVQ

We also evaluated our SAM and ILVQ architecture to assess their
potential as personalized models within this task. Thereby, we use
the same architecture for ILVQ as in the outdoor robotics application
described in Section 5.1 (COSMOS prototype-placement strategy with
metric learning on basis of GMLVQ). Both algorithms are distance-
based classifiers, hence, each dimension was normalized, using a small
sample (10% of the data) of the personalized data, to compensate for
different feature scales. Furthermore, the learning rate of ILVQ was
optimized on the small sample as well. Figure 5.9 shows the result-
ing error rates for different prediction horizons for the personalized
model as well as the one using context information. ILVQ and SAM
achieve competitive results in comparison to ORF, underlining their
robustness for real-world scenarios. SAM was even applied out of
the box without any tuning of the hyperparameters. The models are
particularly competitive when the context features are used. The task
contains mainly virtual drift in terms of label autocorrelation as well
as a repetitive order of approached intersections. Since real drift is not
present, incrementally growing models designed for stationary envi-

156

5 .2 personalized maneuver prediction

0 1 2 3 4
Prediction horizon (s)

0.1

0.2

0.3

0.4
E

rr
or

ra
te

PERS-ORF

PERS-SAM

PERS-ILVQ

Different Personalized Models

0 1 2 3 4
Prediction horizon (s)

0.1

0.2

0.3

0.4

E
rr

or
ra

te

PERSC-ORF

PERSC-SAM

PERSC-ILVQ

Different Personalized Models
(with Context Features)

Figure 5.9: The mean error rate of different personalized models de-
pending on the prediction horizon. The results on the left are based
on the feature set of velocity, acceleration and distance to intersection.
Performances which include also the context features in form of GPS
coordinates of the corresponding intersection are depicted on the right.

ronments, as ILVQ or ORF, achieve a high performance. The absence
of real drift is also the explanation that SAM performs slightly worse.
In such a case, there is little conflict between current and past concepts
and therefore SAM’s preservation of information is mainly based on
the successive compression of the long-term memory. Here, it discards
valuable information in form of the supervised signal by relying on
unsupervised clustering.

5 .2 .3 Discussion

This section highlighted the benefits of a personalized incremental
learning approach in the setting of intersection maneuver prediction. It
is a particularly suitable setting for personalized incremental learning
because of the following reasons. First, the prediction of intersection
behavior allows an accurate and automatic extraction of ground truth
information in retrospective. Second, the focus on the daily commute
enables a quick adaptation of personalized online models, since corre-
sponding trajectories have rather a low variance and can be extracted
on a daily basis.

A dataset containing the GPS traces of the daily work-home com-
mute, driven by eleven different drivers, was recorded, covering al-
together 285 intersections with corresponding 5043 approaches. Our
dataset is severely larger and more diverse than those in comparable
contributions. We applied a simple, model-free as well as data-driven
approach, providing an accurate maneuver prediction. In contrast to
state-of-the art techniques, it does not rely on explicit and sophisti-
cated ego vehicle modeling, nor on manually labeled data. Precisely,
we compare the prediction error rate of offline models trained in a
leave-one-driver-out scheme with incremental personalized models,
trained in online fashion exclusively with the data of one specific driver.

157

real-world applications

The efficient personalized models turned out to be more accurate after
only a small amount of training data than their offline counterparts.
Precisely, they are already more accurate after one or two commute
tours. Furthermore, we highlighted that personalized context data
such as the intersection GPS coordinates, often only viable and useful
for the specific user, additionally increase the performance.

Our simple, model-free as well as data-driven approach leads to
an accurate maneuver prediction and, in comparison to state-of-the art
techniques, does neither rely on explicit and sophisticated ego vehicle
modeling nor on manually labeled data. However, in the case of avail-
able precise lane-level maps, an explicit modeling of intersections may
have advantages with respect to a better generalization to areas driven
for the first time (Liebner et al., 2013). In subsequent experiments, we
showed that the advantage of the personalized models is not due to
a generic driver-specific way of approaching intersections, but rather
based on already seen intersections approached by the specific driver.

5 .3 personalized human action classification

In this section, the benefits of personalized online learning are inves-
tigated within the task of online action classification. We apply the
Xsens bodysuit (Roetenberg, Luinge, & Slycke, 2009) to record a rich
and large motion database, incorporating eighteen different classes. In
a preliminary study, we first utilize a greedy feature selection approach
to determine the crucial IMUs that are necessary to achieve a high clas-
sification performance. Subsequently, we thoroughly compare average
offline machine learning models with online personalized ones. Our
experiments show that online models require a small amount of data
to outperform average user systems, particularly if only the raw sensor
data is used, often a necessity for applications with strictly limited
computational resources. The performance advantage of the online
modes increases further with more personal training data.

The classification of human actions is crucial for diverse applica-
tion scenarios such as surveillance, human-machine interactions and
pervasive health care (Aggarwal & Ryoo, 2011; Poppe, 2010). In con-
trast to the tasks of activity recognition or offline action classification,
where the classification is performed on the basis of a fully observed
sequence, online action classification aims to recognize the motion on
the fly and as quickly as possible. This crucial difference opens up
a spectrum of further application scenarios. One that we are partic-
ularly interested in is the control of wearable devices which actively
support the motion of users. Such hardware may support physical
rehabilitation or assist handicapped persons by means of an improved
prosthesis control for example (Paaßen, Schulz, Hahne, & Hammer,
2017; Kong & Jeon, 2006). Another application area are working en-
vironments where repetitive and strenuous motions such as bending
and kneeling are frequently demanded (Pratt, Krupp, Morse, & Collins,
2004; Muramatsu, Kobayashi, Sato, Jiaou, & Hashimoto, 2011).

158

5 .3 personalized human action classification

Usually, action classification is done with skeleton data extracted
from vision-based sensors (Garcia-Hernando & Kim, 2017; Li et al.,
2016; Gaidon, Harchaoui, & Schmid, 2011; Wang & Schmid, 2013; Jain,
v. Gemert, Jégou, Bouthemy, & Snoek, 2014). However, the accessibility
of visual data is limited to environments equipped with the necessary
sensors. In case of wearable devices, integrating inertial measuring
units (IMU) is a viable and elegant solution to obtain a continuous data
stream independent from environmental properties. IMUs have been
mostly used for activity recognition tasks, which aim to discriminate
high-level actions such as walking, cycling and swimming, often on
the basis of commercial everyday hardware like smart-phones, smart-
watches or fitness-tracker wristbands (Kwapisz, Weiss, & Moore, 2010;
Weiss, Timko, Gallagher, Yoneda, & Schreiber, 2016; Nelson, Verhagen,
& Noordzij, 2016). In contrast, we apply the Xsens bodysuit which
incorporates 17 IMUs spread across the body, providing a precise
measurement of postures with a high sample rate, enabling motion
recognition in a fine-grained way.

Commonly, online action classification has been tackled with offline
machine learning methods. A static model is generated by a large
amount of labeled examples and then applied to a hold-out set (Garcia-
Hernando & Kim, 2017; Li et al., 2016; Gaidon et al., 2011; Wang
& Schmid, 2013; Jain et al., 2014). However, we aim for a system
that adapts to the personal behavior patterns of its user in real-time
and on the fly based on inertial measurements. Ideally, a continuous
collaboration between the system and user is triggered where both
alternatively adjust to each other and maximize the utility of the
system. A static model is simply not suitable in such a scenario. Hence,
we apply online machine learning algorithms which continuously
adapt to the incoming data stream. Since the data is processed one-by-
one, these algorithms are able to handle infinite streams and thereby
guarantee a low time and space complexity. Therefore, even limited
computational hardware is able to process the stream locally without
access to cloud services, allowing an application independent from
internet connectivity and offering complete data privacy at the same
time.

The potential of personalization in the context of motion recog-
nition was mostly analyzed with static models. Weiss and Lockhart
(2012) investigated personalization in an activity recognition task on
the basis of accelerometer-data obtained from smart phones. In their
experiments, personalized models were more accurate with a clearly
smaller amount of training data. Medrano et al. used personalized
models for the task of human fall-detection and achieved a higher per-
formance in comparison to average user models (Medrano et al., 2016).
Our contribution differs from the mentioned work, since we combine
personalization with online learning to classify fine-grained motion
classes on the basis of a large data foundation obtained with multiple
IMUs. We first perform a forward feature selection to determine a
small sub-set of IMUs which are the most valuable ones in terms of
classification performance. Subsequently, we thoroughly compare av-
erage offline machine learning models with online personalized ones.

159

real-world applications

Our experiments show that online models require a small amount
of data to outperform average user systems, particularly if only the
raw sensor data is used, often a necessity for applications with strictly
limited computational resources. The advantage of the online models
increases further with more training data.

5 .3 .1 Online Action Classification

The focus is the evaluation of average offline models as well as per-
sonalized online models in the online action classification task (Li
et al., 2016). A stream {x1, x2, . . . , xt} of feature vectors (IMU sensor
measurements in our case) arrives one after another. The goal is to
determine whether a frame xt at time t belongs to an action among
the predefined C action classes. In contrast to action detection tasks,
there are no situations in which xt does not belong to any predefined
action. A model predicts the action class in the form of:

y?t = arg max
yt∈{1,...,C}

P(yt|x1, . . . , xt).

Naturally, online action classification is more challenging than offline
action classification, since methods are not allowed to peek in the
future and must instantaneously determine the action of xt.

5 .3 .2 Dataset

The data recording as well as the resulting dataset is described in this
section.

Recording Setup

We used the popular Xsens bodysuit with 17 IMUs, measuring linear
and angular motions with a triad of gyroscopes and accelerometers,
distributed on different body locations as shown in Figure 5.10. The
sample rate of 120 Hz is sufficient to track even highly dynamic mo-
tions as common in sports (Tessendorf, Gravenhorst, Arnrich, & Tröster,
2011). We used a sub-sampled rate of of 60 Hz. Six additional sensor
positions are interpolated, resulting in altogether 23 different segments.
Altogether, 13 different feature types such as acceleration, joint-angles or
orientation are provided for each segment and are encoded with three
or four dimensions. Various filters are used to provide also integrated
feature types such as velocity and position. However, these are known
to be prone to drift due to the inevitable sensor bias (Damgrave &
Lutters, 2009).

Feature Extraction and Normalization

We translated the position of all segments such that the pelvis is in
the origin of the X-Y coordinates. Xsens offers kinematic data as 3-
dimensional vectors. We enriched the data by adding further feature

160

5 .3 personalized human action classification

Figure 5.10: The Xsens body suit with 17 IMU sensors. The sternum
IMU is occluded due to the image perspective. We used the wireless
version. Source: https://www.xsens.com/.

types which encode only the magnitude of these. Furthermore, a
normalized version of each feature is added which is obtained by
mean-subtraction and scaling to unit-variance. This has been done per
person to improve generalization across different subjects. In total, up
to 32 different feature types are available for each of the 23 segments,
resulting in 1472 dimensions per sample.

Action variety

Four different subjects performed nine movement sequences consisting
of several single actions. These sequences were repeated 10-20 times.
In total, sixteen fine-grained action classes are present in the data4.
The recordings were done in one session for each subject and the data
was manually labeled. Figure 5.11 depicts some action sequences. The
action class distribution of the dataset is depicted in Figure 5.12. The
data is mainly dominated by five different walking actions as well as
the standing class, which frequently occurs in-between. Altogether, the
dataset encodes 2755 actions represented by 329021 single instances.

5 .3 .3 Experiments

Analogous to the evaluation in Section 5.2.2, we compare an offline
average user model against an online personalized one, which we
denote as average (AVG) and personalized (PERS) from now on. The
average model is trained in leave-one-subject-out scheme. Precisely,
it is tested with the data of one specific subject, whereas data of the

4 The action classes are : stand, walk forward, walk backwards, walk sideways, walk
curve, turn, squat down, squat up, lunge down, lunge up, stand with object, walk
forward with object, walk backwards with object, turn with object, put object down,
squat up with object)

161

https://www.xsens.com/

real-world applications

Figure 5.11: Exemplary sub-parts of sequences with different subse-
quent actions. The fine-grained ground truth is depicted in the green
boxes. The classes are often ambiguous in the transition period from
one action to another.

Figure 5.12: The imbalanced class distribution of the recorded data.
For reasons of clarity, only the dominating classes are labeled in the
chart. ST = stand, WB = walk backwards, WF = walk forward, WS =
walk sideways, TU= turn around.

remaining three subjects is used for training. This is done repeatedly
such that each subject is used for testing once. Personalized models
are evaluated in the online learning setting, as described in Section
3.1.2. The model classifies first the label of one sample and uses it
afterward for model adaption. This is done for all samples in the
dataset. As in the application of the driver maneuver prediction in
Section 5.2.2, there is once again a high degree of label autocorrelation,
since each action consists of a number of samples with the same class.
Therefore, we perform an action-wise evaluation. Precisely, the model
classifies all samples of one action, before the corresponding labels
get revealed. The personalized models are trained from scratch, one
online model for every subject in single pass. Consequently, online
models are utilized without any form of pre-training and only access
the data of one subject. Please note, that we calculate both errors (off-
and online) using the same data for testing, but the online algorithms
continuously adapt their model to the test subject.

We apply on- and offline variants of the popular Random Forest

162

5 .3 personalized human action classification

Table 5.6: The three most important feature types.

Priority AVG PERS

1 position (scaled) sensor-acceleration
2 magnitude-angular-velocity (scaled) sensor-angular-velocity
3 velocity (scaled) center-of-mass

(RF) (Breiman, 2001; Saffari et al., 2009) to enable a possibly fair com-
parison. Concretely, we use decision forests consisting of 50 trees and
rely on the class entropy as impurity function (Fayyad & Irani, 1992).

Encoding Recent Motion Data

Action classification is known to be more accurate when the feature
vector encodes not only the current sensor state, but the recent motion
history. We performed preliminary experiments to compare the effect
of different feature configurations. We evaluate the performance for
encoding only the current sensor state versus stacking the features of
the last 30 frames (∼0.5 s)) versus encoding the features of the last 30
frames via the five highest values of the discrete cosine transformation
(DCT) (Ahmed, Natarajan, & Rao, 1974). The highest performance
is achieved by the DCT encoding even though it uses a substantially
lower amount of dimensions in comparison to stacking. Based on these
results, we use the DCT encoding for the rest of the experiments5. The
detailed results are listed in the appendix (Table A.1).

Feature Selection

The Xsens body suit offers various feature types for each segment.
To reduce the number of input dimensions, we performed for each
model feature selection, determining the most valuable dimensions in
two steps. We use forward feature selection (Abe, 2010) to minimize
the classification error. Concretely, we start with an empty set and
iteratively add the feature type / segment which minimizes the error
the most until all of them are used. In the first step, we extract the most
valuable feature types (see Section 5.3.2), thereby using all segments
and in the second we determine the most valuable segments using
only the previously extracted feature types. The normalized feature
types were not offered to the personalized model, since they have no
effect on person-specific and scale-invariant models. Figure 5.13 shows
the error rate depending on the number of feature types / segments.
It can be seen, that only few feature types and segments are necessary
to reach a high performance. Using all feature types is even harmful
which is probably caused by overfitting. The personalized model relies
on less data and is therefore more affected. Based on these results, we
decide to use the three best feature types together with the five most
valuable segments. Table 5.6 lists the most valuable feature types for
both models. The chosen types by the average model are mostly tempo-

5 The discrete Fourier transformation (DFT) (Harris, 1978) was evaluated as well,
however, it performed worse than the DCT

163

real-world applications

Figure 5.13: Forward feature selection in two steps: First, the best
feature types are determined using all segments (top). Subsequently,
the most valuable segments are determined on the basis of the three
best feature types (bottom). The personalized model had no access to
the normalized features because they have no effect on its performance.
The number of evaluated segments depends on the chosen feature
types in the first step. Hence, the number of evaluated segments is
different for both models.

Figure 5.14: The favored sensor locations of both models. There is
no excessively covered body part. Instead, the sensors are equally
distributed across the whole body.

rally integrated and normalized, highlighting that the person-specific
normalization improves the inter-person generalization. In contrast,
the personalized model prefers rather the raw sensor data. Figure 5.14
displays the preferred sensors. Both models equally distribute the
segments across the body, indicating that our motion dataset profits
from an encoding of the whole body posture.

Results

The reported results are based on the selected features (Section 5.3.3)
which are encoded via the five highest values of the corresponding
DCT (Section 5.3.3). Figure 5.15 shows the average error rate of the per-
sonalized and average model depending on the relative action progress.
As expected, the models are the most uncertain during the transition
period from one action to another, since the data is very similar then
for consecutive action classes. Also the ground truth is most incon-
sistent then because it is hard to define the exact moment one action

164

5 .3 personalized human action classification

Figure 5.15: The classification performance depending on the relative
progress of the action. The models are less accurate in the transitions
between the actions.

ends and another starts. The models are particularly uncertain at the
beginning of motions because the feature vector encodes the recent
past. Consequently, a lot of variance is within the data at this stage,
since different action classes can transition into the same class.

The overall results of both models are similar. However, the per-
sonalized model is continuously adapting, therefore, we analyze it in
more detail. Assuming the data of a given subject contains l single
motions, we break the set into approximately equally sized sets l1 and
l2, i.e. |l1| ≈ |l2| ≈ |l|

2 , and measure the performance on each of those
independently. The performance of the first half is the incremental
error achieved on l1 by an online model starting from scratch without
any prior knowledge and continuously adapting on the basis of l1.
Averaging the results over all subjects leads to the curve in the plot.
As expected, it performs clearly worse in comparison to the average
model. The performance of the second half is the incremental error
achieved on the second half of the motions l2, but this time the model
has already seen the data of the first half l1. In this case, we observe
that the personalized model significantly outperforms the average one as
soon it has seen enough motions of the respective person. The average
performance of the personalized model can be expected to converge at
least towards the error rate achieved for the second half of the data
with additional motion sequences.

The learning curves are depicted in Figure 5.16. The performance
of the personalized model is measured by averaging the performance
over the last 3600 instances (∼1 min), whereas the performance of the
average model is always measured by classifying the whole data of the
hold-out-subject. The average model has access to significantly more
data because it is trained on three subjects. Nonetheless, the learning
curve of the personalized model is not only steeper, but it reaches a
distinctly lower error rate, highlighting the benefits of personalized
learning in this field.

165

real-world applications

Figure 5.16: The learning curve of both models. The personalized model
achieves a lower error with significantly less data.

Figure 5.17: The error rate depending on the relative progress of the
action. The performance achieved with the raw features is compared
with the one including integrated information. The distinct sensor
signals across the subjects reduce the generalization ability of the
average model.

Raw Sensor Data

It is a matter of time until the integration of even low sensor bias signals
leads inevitably to drift, if no recalibration is periodically performed.
One way to avoid the continuous bias accumulation is to use the raw
sensor signals without any integration. Also applications where the
integration is not possible due to limited computational resources
have to rely on the raw data. Figure 5.17 depicts the classification
performance when only the raw sensor data is used in comparison to
the one using also integrated features6.

The inter-subject generalization ability of the average model signif-
icantly drops if only the sensor data is used, because of the person-
specific nature of the raw signals. The personalized model is basically
not affected, since it uses in both cases mostly the raw signals. Hence,
personalized learning is even more valuable when the input is limited

6 Similar to the selection process in Section 5.3.3, we determined the most relevant
features of the raw sensor data.

166

5 .3 personalized human action classification

Figure 5.18: The classification performance depending on the relative
progress of the action on the basis of different personalized classifiers.

to the raw sensor data.

Results of SAM and ILVQ

We also evaluated the SAM and ILVQarchitecture as personalized
models within this task. Thereby, we use the same architecture for
ILVQ as in the outdoor robotics application described in Section 5.1
(COSMOS prototype-placement strategy with metric learning on basis
of GMLVQ). Both algorithms are distance-based classifiers, hence, each
dimension was normalized, using a small sample (10% of the data)
of the personalized data, to compensate for different feature scales.
Furthermore, the learning rate of ILVQ was estimated on a small sam-
ple as well. Both distance-based models perform the classification
exclusively on the basis of the current state. In contrast to the ORF,
they did not benefit from stacking cosine transformation of the recent
past, therefore their prediction is based on the current sample only.
Figure 5.18 shows on the left the resulting error rates depending on
the relative progress of the action. ILVQ achieves competitive results
in comparison to ORF. In fact it has even a better performance when
the ORF is limited to make a prediction based on the current sample
as well. SAM performs slightly worse which is mainly caused by its
unsupervised compression scheme as indicated by Figure 5.18 on the
right: An increase of the memory limit, which results in fewer compres-
sion cycles, leads to a drastically increased performance. As already
noted in Sections 4.4.6, 5.2.2, using the supervised signal within the
compression seems a promising step to improve the SAM architecture.

5 .3 .4 Discussion

In this section, we analyzed the application of personalized online ma-
chine learning models in the task of online action classification. Using
the Xsens body suit, we recorded a large motion database with over
2750 actions. Four different subjects repetitively performed various
motion sequences which are categorized into sixteen different classes.
The data was enriched with normalization techniques to improve the
inter-subject generalization. We performed a forward feature selec-

167

real-world applications

tion, which showed that only a few IMUs are necessary to obtain a
high performance. Using state-of-the-art machine learning algorithms,
we compared personalized online models against average-user offline
models. It turns out that personalized models are very efficient learn-
ers yielding better results with a small amount of data which indicates
that the motions are indeed performed in a personalized way. The
performance gain is particularly pronounced when only the raw sensor
signals are used without any integration. The advantage is likely to
increase with additional data.

The analysis is based on pre-labeled data. Since the long-term goal
is to utilize personalized online models in a real-world application,
it is required to obtain online ground truth information. In Section
3.1.2, several feasible ways of obtaining such information are discussed.
Regarding the application at hand, the approach of using an offline
model which delivers the labels with a tolerable delay seems the
most promising one. Additionally, manually provided labels could
be incorporated as well. There are further interesting possibilities
to extend the current analysis. In particular, an investigation of the
personal data variance between different recording sessions is crucial
to obtain a robust estimate of the expected benefits in practice due
to personalized online learning. Another promising starting point is
the fusion of offline average models with online personalized ones to
avoid a cold start at the beginning.

Our study constitutes only a first step on the way to apply per-
sonalized online learning in the task of actively supporting human
motions. However, the results show that such models can offer added
value, in terms of an online adaptation to individual motion sequences.
Thereby, they achieve a higher performance on basis of less complex
models, requiring only few training data. Hardware driven by such
approaches could enable fascinating adaptation cycles between human
and system, which both continuously adapt to each other to maximize
the system’s utility. This is especially interesting in lifelong-learning
scenarios such as the support of permanently handicapped people
with highly personalized prostheses.

168

6C O N C L U S I O N

In this thesis, we advocated incremental machine learning as an at-
tractive alternative to the widespread offline learning in the domain

of supervised classification. We contributed various new algorithms
and consistently published the source code or even integrated the
methods within the MOA framework. Hence, our research is highly
transparent and enables straightforward reproducibility, facilitating
the work for fellow researchers.

First, we targeted stationary environments, tackling the common
problem of practitioners to select suitable incremental algorithms for
a given task. Guidance was provided in terms of an extensive sur-
vey that compared state-of-the-art methods in key properties. The
main findings were compactly presented in form of an overview table,
streamlining the choice of a suitable algorithm. We addressed the
stability-plasticity dilemma in case of the LVQ by contributing the
first incremental prototype-placement strategy which is not based on
heuristics, but instead directly minimizes the cost function. This math-
ematically sound approach is especially able to handle overlapping
distributions, a task where heuristics mostly fail. Methods based on
growing models have to decide on the fly when to add new model
parameters. Inevitably, a trade-off arises between adaptation speed
and model complexity / run time. In this regard, an improvement
for the VFDT was provided. We replaced its regular scheme of split
evaluations, which is based on an predefined interval. Instead, we
applied a data-driven approach that uses local information to predict
the split-time. It drastically reduced the run time without affecting the
classification performance.

Subsequently, we focused on non-stationary environments, where
the underlying distribution may change in arbitrary ways. A novel
method was proposed, which is able to detect the drift characteris-
tics within a dataset. Such information gives more insight into the
task at hand and facilitates the choice of a proper learning algorithm.
Concretely, we extracted characteristics of commonly used real-world
datasets to assess their suitability as a benchmark for concept drift
evaluation. One major contribution is the novel SAM architecture, a
biologically inspired algorithm that can handle different types of con-
cept drift. Its key idea is to establish a consistency between a short-
and long-term memory, leading to an innovative way of integrating
new knowledge in the current representation. The architecture is well-
suited for lifelong-learning applications because the level of abstraction
is adaptively increased, continuously balancing memory demands and
classification performance. The robustness was further increased on
the basis of a bagging ensemble that applies a set of highly diverse
SAMs to boost the performance even more.

We also shed light on possible application scenarios and discussed
viable options to obtain ground truth information on the fly, a neces-

169

conclusion

sary prerequisite for supervised incremental learning. In particular,
we applied the proposed algorithms within three completely different
real-world tasks, highlighting the wide range of applicability. One
task utilized prototype-based learning within an outdoor scenario on
a mobile robot. The potential of personalized online learning was
assessed in two different tasks. One was about predicting the driver
behavior at intersections encountered on the daily commute, whereas
the other tackled online motion recognition based on IMU signals.
Adaptive personalized learning turned out to be beneficial in both sce-
narios, offering multiple advantages over static average-user models,
demanding further research and a stronger consideration in practice.

6 .1 high-level insights

In the course of the thesis, we could confirm established learning
principles and even provide new insights. These are summarized in
the following.

• Our proposed prototype-placement strategy confirms that learn-
ing on basis of formally backed optimization is preferable over
heuristics most of the times.

• The idea of local split-time prediction showcases that local adap-
tation guided by local information has various advantages over
globally predefined mechanisms.

• Various building blocks of SAM architecture are based on error
minimization in retrospective. This mechanism offers a valuable
handle to dynamically adapt the system, leading to a higher
robustness and simpler usability in comparison to systems based
on static and predefined configurations.

• Dedicated memory models turn out to be effective in various
scenarios. This concept can be transferred to applications in
terms of fine-grained situation-specific memories or models, that
are applied according to the given situation.

• Seamless blending between memory and model represents an
efficient way of explicitly editing both, memory and model, at
the same time. The robust handling of the stability-plasticity
dilemma by such an architecture indicates that tight coupling
between memory and model on basis of the same representation
is an effective mechanism for adaptive learning.

6 .2 outlook

Although this thesis addressed various challenges by corresponding
contributions, there are still many open questions remaining that offer
interesting opportunities for future research.

170

6 .2 outlook

One step was taken towards the path of extracting drift characteris-
tics from a given dataset. Various aspects are not yet determined such
as the timing and the frequency of occurring drift, corresponding drift
patterns, e.g. abrupt versus incremental as well as the presence of re-
occurring concepts. These properties could be indirectly inferred from
the performance development over time, but also other approaches
relying on data visualization or distribution models could be viable.

We exclusively treated incremental learning for supervised classifi-
cation. Research on incremental learning in the context of regression
is relatively rare, even though there is a myriad of possible applica-
tions. Therefore, it constitutes an appealing research direction. Some
contributions of this thesis can easily be transferred into the regression
setting. For instance, the SAM architecture can be reformulated by
defining conflicting instances in terms of a target distance. In the same
way, the split-time prediction for decision trees can be transferred, by
replacing the class impurity function.

The SAM architecture provides a way of establishing a consistency
between two memories. However, consistency is continuously obtained
based on the current concept only, and information that has been
classified once as inconsistent is irreversibly erased. Especially in case
of reoccurring concepts or lifelong-learning scenarios, information may
become inconsistent with the current belief but turn out to be relevant
again at later stage. Even though the extension to an ensemble yields
a variety of SAM architectures, it only partially solves this problem.
An explicit construction of multiple memories that capture an own
consistency seems more viable. Analogous to the human episodic
memory (Tulving et al., 1972), they could cover different time periods
or even be hierarchically arranged, operating on different time scales.
Similarly, the construction of semantic-specific memories that are kept
consistent over time, potentially acting on different levels of abstraction,
seems an interesting idea that merits pursuing.

Our work regarding personalized online learning can be followed
up by transferring such a system to the actual hardware and pro-
viding further empirical evidence of the benefits within the concrete
applications. We demonstrated that personalized online learning is
feasible on the basis of few data samples in an efficient way. It allows
systems to operate on their own without the necessity of a network
connection. However, further steps are required to develop such ap-
proaches beyond the prototype stage. It is mandatory to ensure the
safe application of such systems and to provide performance guaran-
tees. Currently, learning occurs from scratch solely depending on the
individual input. If the system gets initially misleading data instances,
we have to make sure that it recovers very quickly, or even ignores
them from the beginning. The input can also be very noisy or even
completely unexpected, where still a safe reaction is mandatory. One
part of the solution could be to integrate rejections as output, allowing
the system to ignore data instances where its confidence is not high
enough (Scheme, Hudgins, & Englehart, 2013; Fischer, Hammer, &
Wersing, 2015b). Another important building block is to have fall-back
mechanisms which could rely on robust models acquired via batch

171

conclusion

learning on large datasets. Such models can be thoroughly tested to
ensure a baseline performance. In particular, they can mitigate the
“cold-start issue” of personalized models, which initially have a low
performance.

High transparency is another important aspect to increase trust in
and acceptance of autonomous systems (Cramer et al., 2008). This im-
plies a high transparency of the online adaptation process in our case.
If the user understands the basic functionality of the system it can ex-
plicitly provide inputs that develop the system into a desired direction.
Transparency could be provided based on explicit explanations, as it
is often done by recommender systems (Tintarev & Masthoff, 2007), or
on model visualizations (Verbert, Parra, Brusilovsky, & Duval, 2013;
Schulz et al., 2015).

172

AA P P E N D I X

a .1 detailed results

a .1 .1 Motion Classification

For the sake of completeness, we report the average error rates of all
experiments in Table A.1.

Table A.1: Average error rates of all experiments. Results of the table at
the top are based on all available features including post-integrations
and normalizations. Whereas, the second table lists the error rates that
were achieved using only the raw sensor signals. In both cases, three
feature types and five segments were used for both models.

Feature set #Dimensions Error rate Error rate
AVG PERS AVG PERS PERS-1.half PERS-2.half

Single frame 33 27 17.72 18.60 17.34 9.86
Stacked 990 810 11.68 14.51 22.95 6.07
DCT 165 135 11.57 13.46 21.35 5.58

Feature set #Dimensions Error rate Error rate
AVG PERS AVG PERS PERS-1.half PERS-2.half

Single frame 35 35 24.67 17.23 23.74 10.80
Stacked 1050 1050 19.00 14.88 21.83 7.94
DCT 175 175 17.90 14.27 21.51 7.03

173

appendix

a
.1

.2
Pr

ac
tic

e-
or

ie
nt

ed
su

rv
ey

In
th

e
fo

llo
w

in
g

w
e

pr
ov

id
e

th
e

re
su

lt
s

of
th

e
ex

pe
ri

m
en

ts
gr

ou
pe

d
by

ea
ch

da
ta

se
t

to
fa

ci
lit

at
e

th
e

co
m

pa
ri

so
n

be
tw

ee
n

th
e

th
re

e
di

ff
er

en
t

se
tt

in
gs

.

A
cc

ur
ac

y
C

om
pl

ex
it

y
B

or
de

r
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
99

.4
98

.4
97

.6
96

.8
96

.5
96

.0
35

.5
96

.4
79

7
25

1
3.

7k
19

3
1.

9k
75

0
9

12
Se

tt
in

g
2

99
.4

98
.8

96
.3

97
.1

96
.4

96
.2

33
.7

96
.4

1.
1k

1.
5k

8.
0k

28
6

2.
6k

87
5

9
12

Se
tt

in
g

3
98

.5
97

.6
94

.0
94

.7
88

.4
88

.0
37

.5
94

.4
-

-
-

-
-

-
-

-
O

ve
rl

ap
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
82

.2
81

.0
83

.7
83

.0
81

.7
83

.4
67

.6
66

.4
10

k
7.

2k
2.

3k
23

5
1.

9k
90

0
12

16
Se

tt
in

g
2

81
.8

80
.7

81
.2

82
.1

81
.0

82
.2

68
.4

66
.4

10
.9

9.
2

k
31

k
49

6
1.

9k
54

6
12

16
Se

tt
in

g
3

81
.7

78
.8

78
.2

81
.1

72
.7

74
.8

67
.9

67
.5

-
-

-
-

-
-

-
-

Le
tt

er
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
97

.0
97

.1
93

.2
93

.9
87

.0
70

.0
56

.4
63

.4
13

1k
14

0k
16

8k
14

k
51

k
8.

4k
44

2
83

2
Se

tt
in

g
2

96
.4

97
.5

92
.2

95
.1

84
.9

67
.4

53
.9

63
.4

16
3

17
3k

47
3k

11
k

70
k

6.
5k

44
2

83
2

Se
tt

in
g

3
91

.3
92

.7
75

.4
88

.4
79

.3
35

.4
41

.0
64

.2
-

-
-

-
-

-
-

-
SU

SY
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
D

N
F

D
N

F
79

.5
79

.0
D

N
F

D
N

F
78

.7
73

.5
D

N
F

D
N

F
86

.0
51

.2
D

N
F

D
N

F
19

72
Se

tt
in

g
2

D
N

F
D

N
F

79
.3

73
.4

D
N

F
D

N
F

77
.0

73
.5

D
N

F
D

N
F

1.
5M

45
3k

D
N

F
D

N
F

19
72

Se
tt

in
g

3
D

N
F

D
N

F
79

.3
78

.5
D

N
F

D
N

F
78

.7
73

.5
-

-
-

-
-

-
-

-
O

ut
do

or
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
70

.9
71

.4
71

.0
66

.9
68

.5
70

.9
23

.2
60

.5
43

k
42

k
8.

8k
11

k
6.

2k
12

k
88

0
1.

7k
Se

tt
in

g
2

71
.9

69
.0

57
.6

63
.2

69
.4

71
.6

25
.7

60
.5

40
k

53
k

92
5

11
k

7.
3k

8.
3k

88
0

1.
7k

Se
tt

in
g

3
86

.4
82

.3
34

.2
82

.6
68

.5
73

.3
18

.0
65

.0
-

-
-

-
-

-
-

-
C

O
IL

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Se
tt

in
g

1
96

.5
93

.2
92

.9
94

.3
89

.2
91

.5
12

.4
90

.0
58

k
93

k
61

k
18

k
9.

2k
36

k
2.

2k
4.

2k
Se

tt
in

g
2

95
.6

92
.5

89
.9

93
.6

88
.1

83
.6

12
.1

90
.0

18
0k

11
3k

14
k

17
k

6.
1k

15
k

2.
2k

4.
2k

Se
tt

in
g

3
75

.4
66

.3
66

.6
79

.1
58

.7
63

.1
9.

6
70

.2
-

-
-

-
-

-
-

-

174

a .1 detailed results

O
ff

-l
in

e
ac

cu
ra

cy
C

om
pl

ex
it

y
D

N
A

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Se
tt

in
g

1
94

.9
94

.9
89

.6
92

.1
90

.5
88

.8
93

.0
88

.4
23

7k
19

0k
5.

0k
33

k
1.

6k
55

k
54

3
1.

1k
Se

tt
in

g
2

95
.2

95
.1

88
.2

90
.8

92
.0

86
.7

93
.3

88
.4

33
3k

32
7k

50
0

42
k

1.
8k

76
k

54
3

1.
1k

Se
tt

in
g

3
89

.5
89

.5
73

.1
84

.6
67

.9
49

.1
84

.7
86

.1
-

-
-

-
-

-
-

-
A

cc
ur

ac
y

C
om

pl
ex

it
y

U
SP

S
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss

Se
tt

in
g

1
95

.4
95

.6
92

.5
91

.4
90

.3
92

.1
89

.0
75

.4
71

0k
52

0k
33

k
15

k
9.

6k
10

6k
2.

6k
5.

1k
Se

tt
in

g
2

95
.6

94
.7

91
.4

91
.4

88
.9

89
.7

89
.8

75
.4

74
4k

97
8k

61
k

91
k

12
k

50
k

2.
6k

5.
1k

Se
tt

in
g

3
96

.7
96

.6
84

.5
92

.7
86

.6
88

.8
88

.5
76

.0
-

-
-

-
-

-
-

-
Is

ol
et

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Se
tt

in
g

1
96

.2
96

.7
92

.5
92

.0
90

.0
91

.9
91

.5
80

.1
2.

8M
3.

4M
31

k
21

k
12

.0
k

32
2k

16
k

32
k

Se
tt

in
g

2
96

.5
96

.4
92

.0
89

.4
90

.7
88

.5
89

.6
80

.1
6.

2M
4.

2M
12

3k
67

k
14

k
15

9k
16

k
32

k
Se

tt
in

g
3

93
.6

92
.9

69
.2

84
.7

76
.3

80
.7

74
.3

75
.2

-
-

-
-

-
-

-
-

M
N

IS
T

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Se
tt

in
g

1
D

N
F

98
.5

94
.3

94
.8

92
.4

89
.1

86
.0

55
.6

D
N

F
14

M
11

1k
31

5k
73

k
39

7k
7.

9k
16

k
Se

tt
in

g
2

D
N

F
98

.1
95

.0
94

.3
91

.3
84

.2
87

.7
55

.6
D

N
F

16
M

25
3k

1.
2M

16
2k

16
9k

7.
9k

16
k

Se
tt

in
g

3
D

N
F

97
.5

87
.1

90
.8

89
.0

86
.5

83
.7

56
.5

-
-

-
-

-
-

-
-

G
is

et
te

IS
V

M
LA

SV
M

O
R

F
IL

V
Q

LP
P C

A
R

T
IE

LM
SG

D
Li

n
N

B G
au

ss
IS

V
M

LA
SV

M
O

R
F

IL
V

Q
LP

P C
A

R
T

IE
LM

SG
D

Li
n

N
B G

au
ss

Se
tt

in
g

1
98

.0
97

.9
94

.6
93

.0
94

.2
91

.4
93

.1
75

.4
7.

0M
6.

2M
4.

7k
26

3k
2.

5k
2.

5M
5.

0k
20

k
Se

tt
in

g
2

97
.8

97
.9

92
.7

94
.1

94
.0

83
.8

95
.4

75
.4

7.
0M

6.
7M

16
k

47
0k

3.
0k

1.
0M

5.
0k

20
k

Se
tt

in
g

3
96

.3
96

.4
90

.3
91

.1
86

.7
80

.5
92

.1
74

.0
-

-
-

-
-

-
-

-

175

appendix

Figure A.1: The artificial data sets Border (on the left left) and Overlap
(right). Different classes are coded by different colors.

a .2 datasets

a .2 .1 Artificial

Radial basis function (RBF) Gaussian distributions with random ini-
tial positions, weights and standard deviations are generated in
d-dimensional space. The weight controls the partitioning of the
examples among the Gaussians. We used the RBF generator in
MOA (100 dim., 50 classes, 100 centroids) (Losing et al., 2018a).
This dataset is i.i.d.

Random Tree A random decision tree is constructed by randomly
splitting along the attributes as well as assigning random classes
to each leaf. Numeric and nominal attributes are supported
and the tree depth can be predefined. Instances are generated
by uniform sampling along each attribute. Traversing the tree
with the instance determines the corresponding class label. This
dataset is i.i.d. and was initially proposed by Domingos and
Hulten (2000). It is regarded as an easy task for decision trees.
We used the Random tree generator in MOA (100 numeric dim.,
100 nominal dim., 25 classes).

Border This two-dimensional dataset consists of three circular classes
and is depicted in Figure A.1 on the left. Each class is represented
by 1000 uniformly distributed points (Losing et al., 2015).

Overlap The dataset is depicted in Figure A.1 on the right. Squares
of uniformly distributed classes are overlapping each other with
various degrees. The upper row classes have the same densities
whereas, the green class below is three times denser than the
black one (Losing et al., 2015).

Interchanging RBF Fifteen Gaussians with random covariance matri-
ces are replacing each other every 3000 samples (Losing et al.,

176

a .2 datasets

2016c). Thereby, the number of Gaussians switching their po-
sition increases each time by one until all are simultaneously
changing their location. This allows to evaluate an algorithm in
the context of abrupt drift with increasing strength. Altogether
66 abrupt drifts are occurring within this dataset.

Moving RBF Gaussian distributions with random initial positions,
weights and standard deviations are moved with constant speed
v in d-dimensional space. The weight controls the partitioning
of the examples among the Gaussians. We used the Random
RBF generator in MOA (Bifet, Holmes, Kirkby, & Pfahringer,
2010) with the same parametrization as by Bifet et al. (2013) (10
dimensions, 50 Gaussians, 5 classes, v=0.001).

LED-Drift Each instance is reperesented by 24 boolean features with
17 of them being irrelevant. The remaining seven features cor-
respond to segments of a seven-segment LED display. The goal
is to predict the digit displayed on the LED display, where each
feature has a 10% chance of being inverted. Drift is generated by
swapping the relevant features with irrelevant ones. We used the
LED-Drift generator in MOA (7 drifting dimensions, 10% noise).

Poker One million randomly drawn poker hands are represented by
five cards each encoded with its suit and rank. The class is the
poker hand itself such as one pair, full house and so forth. The
original form available at UCI (Dheeru & Karra Taniskidou, 2017)
has no drift, since the poker hands are static and instances are
randomly generated. However, we used the version presented by
Bifet et al. (2013), containing virtual drift via sorting the instances
by rank and suit.

SEA Concepts This dataset was proposed by Street and Kim (2001)
and consists of 50000 instances with three attributes of which
only two are relevant. The two class decision boundary is given
by f1 + f2 = θ, where f1, f2 are the two relevant features and θ
a predefined threshold. Abrupt drift is simulated with four dif-
ferent concepts, by changing the value of θ every 12500 samples.
Also included are 10% of noise.

Rotating Hyperplane A hyperplane in d-dimensional space is de-
fined by the set of points x that satisfy ∑d

i=1 wixi = w0. The
position and orientation of the hyperplane are changed by con-
tinuous addition of a term δ to the weights wi = wi + δ. We
used the Random Hyperplane generator in MOA with the same
parametrization as proposed by Bifet et al. (2013) (10 dimensions,
2 classes, δ=0.001).

Moving Squares Four equidistantly separated, squared uniform dis-
tributions are moving in horizontal direction with constant speed
(Losing et al., 2016c). The direction is inverted whenever the
leading square reaches a predefined boundary. Each square rep-
resents a different class. The added value of this dataset is the

177

appendix

predefined time horizon of 120 examples before old instances
may start to overlap current ones. This is especially useful for
dynamic sliding window approaches, allowing to test whether
the size is adjusted accordingly.

Transient Chessboard Virtual drift is generated by revealing succes-
sively parts of a chessboard (Losing et al., 2016c). This is done
square by square randomly chosen from the whole chessboard
such that each square represents an own concept. Every time
after four fields have been revealed, samples covering the whole
chessboard are presented. This reoccurring alternation penalizes
algorithms tending to discard former concepts. To reduce the
impact of classification by chance we used eight classes instead
of two.

Mixed Drift The datasets Interchanging RBF, Moving Squares and
Transient Chessboard are arranged next to each other and sam-
ples of these are alternately introduced (Losing et al., 2016c).
Therefore, incremental, abrupt and virtual drift are occurring
at the same time, requiring a local adaptation to different drift
types.

a .2 .2 Real-world

MNIST The MNIST is the most popular database of handwritten
digits and was introduced by Lecun et al. (1998). The digits
have been size-normalized and centered in grayscaled images of
28×28 pixels. The objective is to classify the images into the 10
digits. It is a good database for people who want to try learning
techniques and pattern recognition methods on real-world data
while spending minimal efforts on preprocessing and formatting.

MNIST-8M Loosli et al. (2007) used pseudo-random deformations
and translations to extended the well known MNIST database
(Lecun et al., 1998) to eight million instances. The ten handwritten
digits are encoded in 782 binary features. The dataset is already
shuffled in its original publication and therefore contains no
concept drift.

Letter The objective is to categorize black-and-white images, repre-
sented by 16 primitive numerical attributes, into one of the 26
capital letters in the English alphabet (Frey & Slate, 1991). The
character images were based on 20 different fonts and each letter
was randomly distorted.

SUSY The objective is to classify whether simulated particle collisions
lead to the generation of new supersymmetric particles or not
and was initially published by Baldi et al. (2014). The data has
been produced using Monte Carlo simulations. Each instance
consists of eight kinematic features and 10 derived high-level
features.

178

a .2 datasets

COIL Each of the 100 different objects is depicted in 72 different views
in 128 × 128 pixel RGB images (S. A. Nene & Murase, 1996).
These are encoded within a 21-dimensional RG-Chromaticity
(Jain & Li, 2005) space. As proposed by Wallraven et al. (2003),
a subset of 17 views per object, resulting in views every 20 ◦,
are used for training. The remaining 55 views are used for the
evaluation.

DNA Splice junctions are points on a DNA sequence at which “super-
fluous” DNA is removed during the process of protein creation
in higher organisms (Noordewier, Towell, & Shavlik, 1991). Exons
are the parts of the DNA sequence retained after splicing and
introns the spliced out part. The objective is to categorize a given
DNA sequence into the 3 classes: exon/intron boundaries (EI),
intron/exon boundaries(IE), neither of them.

USPS This dataset consist of grayscale images with 16 × 16 pixels
(Hull, 1994). The images contain handwritten digits and the goal
is to categorize them into the corresponding 10 classes.

Isolet The goal is to recognize the spoken letters of the alphabet.
Various common features from the audio processing domain
such as spectral coefficient,; contour features, sonorant features,
pre-sonorant features, and post-sonorant features are encoding
the signal (Cole & Fanty, 1990). The recording was done based
on 150 different subjects.

Gisette The data set was is based on the MNIST database. The goal is
to distinguish between the written number 4 and 9. The original
data were modified for the purpose of the feature selection chal-
lenge (Guyon, Gunn, Nikravesh, & Zadeh, 2006). In particular,
pixels were samples at random in the middle top part of the
feature containing the information necessary to disambiguate
both numbers and higher order features were created as products
of these pixels to plunge the problem in a higher dimensional
feature space. Various noise features were added having no
predictive power. The order of the features and patterns were
randomized.

Forest Cover Type Assigns cartographic variables such as elevation,
slope, soil type, . . . of 30× 30 meter cells to different forest cover
types. Only forests with minimal human-caused disturbances
were used, so that resulting forest cover types are more a result
of ecological processes. It is often used as a benchmark for drift
algorithms (Bifet et al., 2013; Gama et al., 2003; Oza & Russell,
2001).

Airline The Airline data set was inspired by the regression data set
from Ikonomovska1. The task is to predict whether a given flight

1 https://kt.ijs.si/elena_ikonomovska/data.html

179

https://kt.ijs.si/elena_ikonomovska/data.html

appendix

Figure A.2: Objects, positioned in a garden, are approached by a mobile
robot under different lighting conditions. Each row shows the first,
fifth and tenth image of one approach.

will be delayed or not based on seven attributes encoding var-
ious information on the scheduled departure. This dataset is
often used to evaluate concept drift classifier and is temporally
ordered.

HIGGS This task consists of eleven million simulated particle colli-
sions and was initially published by Baldi et al. (2014). The goal
of this binary classification problem is to distinguish between a
signal process producing Higgs bosons and a background pro-
cess. The data consist of low-level kinematic features recorded
as well as some derived high-level indicators.

Outdoor We obtained this data set from images recorded by a mobile
in a garden environment (Losing et al., 2015). The task is to
classify 40 different objects, each approached ten times under
varying lighting conditions affecting the color based representa-
tion (see Figure A.2). Each approach consists of 10 images and
is represented in temporal order within the dataset. The objects
are encoded in a normalized 21-dimensional RG-Chromaticity
histogram.

SPAM Katakis et al. (2009) developed the Spam Corpus data set
was on the basis of SpamAssassin2 data collection covering an
extended time period. The goal is to classify between spam or

2 http://spamassassin.apache.org/

180

http://spamassassin.apache.org/

a .2 datasets

Figure A.3: Images of the Rialto bridge recorded at differ-
ent times of day. The color based representation of the build-
ings changes significantly during each of the 20 recorded days.
Source of the images: https://www.skylinewebcams.com.

ham (not spam). Each attribute encodes the occurrence of one of
the 39917 words within an e-mail.

Weather Elwell and Polikar (2011) introduced this dataset. In the
period of 1949-1999 eight different features such as temperature,
pressure wind speed etc. were measured at the Offutt Air Force
Base in Bellevue, Nebraska. The target is to predict whether it is
going to rain on a certain day or not. The dataset contains 18159
instances with an imbalance towards no rain (69%).

Electricity This problem is often used as a benchmark for concept drift
classification. Initially described by Harries and Wales (1999), it
was used thereafter for several performance comparisons (Baena-
Garcıa et al., 2006; Kuncheva & Plumpton, 2008; Bifet et al., 2013;
Gama et al., 2004). A critical note to its suitability as a benchmark
was given by Žliobaite (2013). The dataset holds information of
the Australian New South Wales Electricity Market, whose prices
are affected by supply and demand. Each sample, characterized
by attributes such as day of week, time stamp, market demand
etc., refers to a period of 30 minutes and the class label identifies
the relative change (higher or lower) compared to the last 24
hours.

Rialto Bridge Timelapse Ten of the colorful buildings next to the
famous Rialto bridge in Venice are encoded in a normalized 27-
dimensional RGB histogram (Losing et al., 2016c). We obtained
the images from time-lapse videos captured by a webcam with
fixed position. The recordings cover 20 consecutive days during
may-june 2016. Continuously changing weather and lighting
conditions affect the representation, generating natural concept
drift as shown in Figure A.3.

181

https://www.skylinewebcams.com.

appendix

Physical Activity Monitoring (PAMAP) This activity recognition task
includes eighteen different activities performed by up to nine
different subjects and comprises ten hours of recorded data in
total Reiss and Stricker (2012). The features are obtained from
three inertial measurement units (IMU) and a heart rate monitor.
The IMUs have a sampling rate of 100Hz and are located on
the chest, the dominant wrist and ankle. It is a frequently used
benchmark dataset (Reyes-Ortiz et al., 2016; Ordóñez & Roggen,
2016; Gan & Tao, 2015).

KDD99 This intrusion detection data set is well known and widely
used to analyze the performance of data stream learning algo-
rithms (Amini et al., 2014; Aggarwal et al., 2003). It simulates
different types of cyber attacks and provides the highly imbal-
anced data in temporal order. Seventeen different classes are
incorporated within the 5 million instances which are encoded
with 41 attributes.

182

bibliography

B I B L I O G R A P H Y

Abe, S. (2010). Feature selection and extraction. In Support vector ma-
chines for pattern classification (pp. 331–341). Springer.

Acerbi, A., Ghirlanda, S., & Enquist, M. (2012). The logic of fashion
cycles. PLOS ONE, 7(3), 1–9.

Ade, R. & Deshmukh, P. (2013). Methods for incremental learning: A
survey. International Journal of Data Mining & Knowledge Manage-
ment Process, 3(4), 119.

Aggarwal, C. C. (2014). Data classification: Algorithms and applications
(1st). Chapman & Hall/CRC.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework
for clustering evolving data streams. In Proceedings of the 29th
international conference on very large data bases - volume 29 (pp. 81–
92). VLDB ’03. Berlin, Germany: VLDB Endowment.

Aggarwal, J. & Ryoo, M. (2011). Human activity analysis: A review.
ACM Computing Surveys, 43(3), 16:1–16:43.

Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K., & Wetzels, M. (2015).
Unraveling the personalization paradox: The effect of informa-
tion collection and trust-building strategies on online advertise-
ment effectiveness. Journal of Retailing, 91(1), 34–49.

Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine trans-
form. IEEE Transactions on Computers, C-23(1), 90–93.

Akaike, H. (1998). Information theory and an extension of the max-
imum likelihood principle. In Selected papers of hirotugu akaike
(pp. 199–213). Springer.

Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2014). Good
practice in large-scale learning for image classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(3),
507–520.

Alexander, D. C. (2017). Natural disasters. Routledge.
Alippi, C., Boracchi, G., & Roveri, M. (2013). Just-in-time classifiers

for recurrent concepts. IEEE Transactions on Neural Networks and
Learning Systems, 24(4), 620–634.

Alippi, C. & Roveri, M. (2008a). Just-in-time adaptive classifiers—part
i: Detecting nonstationary changes. IEEE Transactions on Neural
Networks, 19(7), 1145–1153.

Alippi, C. & Roveri, M. (2008b). Just-in-time adaptive classifiers—part
ii: Designing the classifier. IEEE Transactions on Neural Networks,
19(12), 2053–2064.

Amershi, S. & Cakmak, M. (2014). Power to the people: The role of
humans in interactive machine learning. AI Magazine.

Amini, A., Wah, T. Y., & Saboohi, H. (2014). On density-based data
streams clustering algorithms: A survey. Journal of Computer
Science and Technology, 29(1), 116–141.

Arthur, D. & Vassilvitskii, S. (2007). K-means++: The advantages
of careful seeding. In Proceedings of the eighteenth annual acm-

183

bibliography

siam symposium on discrete algorithms (pp. 1027–1035). Society for
Industrial and Applied Mathematics.

Atkinson, R. C. & Shiffrin, R. M. (1968). Human memory: A proposed
system and its control processes. The psychology of learning and
motivation, 2, 89–195.

Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A
survey. Computer networks, 54(15), 2787–2805.

Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda,
R., & Morales-Bueno, R. (2006). Early drift detection method.
In Fourth international workshop on knowledge discovery from data
streams (Vol. 6, pp. 77–86).

Bai, X., Ren, P., Zhang, H., & Zhou, J. (2015). An incremental structured
part model for object recognition. Neurocomputing, 154, 189–199.

Baldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for Exotic
Particles in High-Energy Physics with Deep Learning. Nature
Commun. 5. arXiv: 1402.4735 [hep-ph]

Ball, D., Coelho, P. S., & Vilares, M. J. (2006). Service personalization
and loyalty. Journal of services marketing, 20(6), 391–403.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term de-
pendencies with gradient descent is difficult. IEEE transactions
on neural networks, 5(2), 157–166.

Bennett, W. L. (2012). The personalization of politics: Political identity,
social media, and changing patterns of participation. The AN-
NALS of the American Academy of Political and Social Science, 644(1),
20–39.

Bentley, J. L. (1975). Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9), 509–517.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for
hyper-parameter optimization. In Advances in neural information
processing systems (pp. 2546–2554).

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., & Cox, D. D. (2015).
Hyperopt: A python library for model selection and hyperpa-
rameter optimization. Computational Science & Discovery, 8(1),
014008.

Bermejo, S., Cabestany, J., & Payeras-Capellà, M. (1998). A new dy-
namic lvq-based classifier and its application to handwritten
character recognition. In European symposium on artificial neural
networks ESANN.

Bickel, S., Brückner, M., & Scheffer, T. (2009). Discriminative learning
under covariate shift. Journal of Machine Learning Research, 10(Sep),
2137–2155.

Biehl, M., Bunte, K., & Schneider, P. (2013). Analysis of flow cytometry
data by matrix relevance learning vector quantization. PLoS ONE.

Bifet, A. & Gavalda, R. (2007). Learning from time-changing data
with adaptive windowing. In Siam international conference on data
mining (sdm) (Vol. 7, p. 2007). SIAM.

Bifet, A. & Gavaldà, R. (2009). Adaptive learning from evolving data
streams. In Advances in intelligent data analysis viii: 8th international
symposium on intelligent data analysis.

184

http://arxiv.org/abs/1402.4735

bibliography

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). Moa: Massive
online analysis. The Journal of Machine Learning Research, 11, 1601–
1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for
evolving data streams. In Machine learning and knowledge discovery
in databases (pp. 135–150). Springer.

Bifet, A., Holmes, G., Pfahringer, B., & Frank, E. (2010). Fast perceptron
decision tree learning from evolving data streams. In Advances in
knowledge discovery and data mining (pp. 299–310). Berlin, Heidel-
berg: Springer Berlin Heidelberg.

Bifet, A., Pfahringer, B., Read, J., & Holmes, G. (2013). Efficient data
stream classification via probabilistic adaptive windows. In Pro-
ceedings of the 28th annual acm symposium on applied computing
(pp. 801–806). SAC ’13. Coimbra, Portugal: ACM.

Bifet, A., Zhang, J., Fan, W., He, C., Zhang, J., Qian, J., . . . Pfahringer,
B. (2017). Extremely fast decision tree mining for evolving data
streams. In Proc. of the 23rd sigkdd international conference on knowl-
edge discovery and data mining. KDD ’17. Halifax, NS, Canada.

Bifulco, G. N., Pariota, L., Simonelli, F., & Di Pace, R. (2013). Devel-
opment and testing of a fully adaptive cruise control system.
Transportation Research Part C: Emerging Technologies, 29, 156–170.

Biggio, B., Corona, I., Nelson, B., Rubinstein, B. I., Maiorca, D., Fumera,
G., . . . Roli, F. (2014). Security evaluation of support vector ma-
chines in adversarial environments. In Support vector machines
applications (pp. 105–153). Springer.

Bikhchandani, S. & Sharma, S. (2000). Herd behavior in financial
markets. IMF Staff papers, 47(3), 279–310.

Bishop, C. M. (2006). Pattern recognition and machine learning (information
science and statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc.

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle proba-
bilita. Libreria internazionale Seeber.

Bordes, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel
classifiers with online and active learning. Journal of Machine
Learning Research, 6, 1579–1619.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient
descent. In Proceedings of compstat’2010 (pp. 177–186). Springer.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–
140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1993).

Classification and regression trees.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification

and Regression Trees. Monterey, CA: Wadsworth and Brooks.
Brent, R. (1973). Algorithms for minimization without derivatives. Dover

Books on Mathematics.
Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T., &

Biehl, M. (2012). Limited rank matrix learning, discriminative
dimension reduction and visualization. Neural Networks, 26, 159–
173.

185

bibliography

Butakov, V. & Ioannou, P. (2015). Personalized driver/vehicle lane
change models for ADAS. IEEE Transactions on Vehicular Technol-
ogy, 64(10), 4422–4431.

Cai, Z., Wen, L., Lei, Z., Vasconcelos, N., & Li, S. Z. (2014). Robust
deformable and occluded object tracking with dynamic graph.
IEEE Transactions on Image Processing, 23(12), 5497–5509.

Calinon, S. & Billard, A. (2007). Incremental learning of gestures
by imitation in a humanoid robot. In Proceedings of the acm/ieee
international conference on human-robot interaction (pp. 255–262).
ACM.

Carlevarino, A., Martinotti, R., & Metta, G. (2000). An incremental
growing neural network and its application to robot control. In
International joint conference on neural networks. 2000.

Carolis, B. D., Ferilli, S., & Redavid, D. (2015). Incremental learning of
daily routines as workflows in a smart home environment. ACM,
4(4), 20:1–20:23.

Carpenter, G. A., Grossberg, S., & Reynolds, J. (1991). Artmap: A
self-organizing neural network architecture for fast supervised
learning and pattern recognition. In Ijcnn-91-seattle international
joint conference on neural networks (Vol. 1, 863–868 vol.1).

Carpenter, G. A. & Grossberg, S. (1987a). A massively parallel archi-
tecture for a self-organizing neural pattern recognition machine.
Computer vision, graphics, and image processing, 37(1), 54–115.

Carpenter, G. A. & Grossberg, S. (1987b). Art 2: Self-organization
of stable category recognition codes for analog input patterns.
Applied optics, 26(23), 4919–4930.

Cauwenberghs, G. & Poggio, T. (2001). Incremental and decremental
support vector machine learning. In Advances in neural information
processing systems (pp. 409–415).

Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D. P., Schapire,
R. E., & Warmuth, M. K. (1997). How to use expert advice. Journal
of the ACM (JACM), 44(3), 427–485.

Cesa-Bianchi, N. & Lugosi, G. (2006). Prediction, learning, and games.
Cambridge university press.

Chang, C.-C. & Lin, C.-J. (2011). Libsvm: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2.

Charikar, M., Chekuri, C., Feder, T., & Motwani, R. (2004). Incremental
clustering and dynamic information retrieval. SIAM Journal on
Computing, 33(6), 1417–1440.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Netw.
and Appl. 19(2).

Cole, R. & Fanty, M. (1990). Spoken letter recognition. In Proceedings
of the workshop on speech and natural language (pp. 385–390). HLT
’90. Hidden Valley, Pennsylvania: Association for Computational
Linguistics.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine
learning, 20(3), 273–297.

Cover, T. M. & Hart, P. E. (1967). Nearest neighbor pattern classification.
Information Theory, IEEE Transactions on, 13(1), 21–27.

186

bibliography

Cramer, H., Evers, V., Ramlal, S., Van Someren, M., Rutledge, L., Stash,
N., . . . Wielinga, B. (2008). The effects of transparency on trust
in and acceptance of a content-based art recommender. User
Modeling and User-Adapted Interaction, 18(5), 455.

Damgrave, R. G. J. & Lutters, D. (2009). The drift of the xsens moven
motion capturing suit during common movements in a work-
ing environment. In Proceedings of the 19th cirp design conference–
competitive design. Cranfield University Press.

Das, A. S., Datar, M., Garg, A., & Rajaram, S. (2007). Google news per-
sonalization: Scalable online collaborative filtering. In Proceedings
of the 16th international conference on world wide web (pp. 271–280).
ACM.

Dasu, T., Krishnan, S., Venkatasubramanian, S., & Yi, K. (2006). An
information-theoretic approach to detecting changes in multidi-
mensional data streams. Interfaces.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Res, 7, 1–30.

Dheeru, D. & Karra Taniskidou, E. (2017). UCI machine learning
repository.

Diehl, C. P. & Cauwenberghs, G. (2003). Svm incremental learning,
adaptation and optimization. In Proceedings of the international
joint conference on neural networks, 2003. (Vol. 4, 2685–2690 vol.4).

Ditzler, G. & Polikar, R. (2013). Incremental learning of concept drift
from streaming imbalanced data. ieee transactions on knowledge
and data engineering, 25(10), 2283–2301.

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in
nonstationary environments: A survey. Computational Intelligence
Magazine, IEEE, 10(4), 12–25.

Domingos, P. & Hulten, G. (2000). Mining high-speed data streams.
In Proceedings of the sixth acm sigkdd international conference on
knowledge discovery and data mining (pp. 71–80). ACM.

Domingos, P. & Hulten, G. (2003). A general framework for mining
massive data streams. Journal of Computational and Graphical Statis-
tics, 12(4), 945–949.

Domingos, P. & Pazzani, M. (1997). On the optimality of the simple
bayesian classifier under zero-one loss. Machine Learning, 29(2).

Doshi, A. & Trivedi, M. M. (2011). Tactical driver behavior prediction
and intent inference: A review. In Intelligent transportation systems
(itsc), 2011 14th international ieee conference on (pp. 1892–1897).
IEEE.

Dou, J., Li, J., Qin, Q., & Tu, Z. (2015). Moving object detection based
on incremental learning low rank representation and spatial
constraint. Neurocomputing, 168.

Downs, T., Gates, K., & Masters, A. (2002). Exact simplification of
support vector solutions. Journal of Machine Learning Res, 2, 293–
297.

Dreyfus, S. E. & Dreyfus, H. L. (1980). A five-stage model of the men-
tal activities involved in directed skill acquisition. California Univ
Berkeley Operations Research Center.

187

bibliography

Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is
the engram? Annual Review of Psychology, 55, 51–86.

Elwell, R. & Polikar, R. (2009). Incremental learning in nonstationary
environments with controlled forgetting. In 2009 international
joint conference on neural networks (pp. 771–778).

Elwell, R. & Polikar, R. (2011). Incremental learning of concept drift
in nonstationary environments. IEEE Transactions on Neural Net-
works, 22(10), 1517–1531.

Ertekin, S., Bottou, L., & Giles, C. L. (2011). Nonconvex online support
vector machines. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(2), 368–381.

Fayyad, U. M. & Irani, K. B. (1992). The attribute selection problem in
decision tree generation. In Aaai (pp. 104–110).

Fdez-Riverola, F., Iglesias, E. L., Diaz, F., Méndez, J. R., & Corchado,
J. M. (2007). Applying lazy learning algorithms to tackle concept
drift in spam filtering. Expert Systems with Applications, 33(1), 36–
48.

Feng, Y. & Gallego, G. (1995). Optimal starting times for end-of-season
sales and optimal stopping times for promotional fares. Manage-
ment science, 41(8), 1371–1391.

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014).
Do we need hundreds of classifiers to solve real world classifi-
cation problems? Journal of Machine Learning Research, 15, 3133–
3181.

Filliat, D. (2008). Interactive learning of visual topological navigation.
In 2008 ieee/rsj international conference on intelligent robots and
systems (pp. 248–254).

Firestein, S. (2012). Ignorance: How it drives science. OUP USA.
Fischer, G. (2001). User modeling in human-computer interaction. User

Modeling and User-Adapted Interaction, 11(1-2), 65–86.
Fischer, L., Hammer, B., & Wersing, H. (2015a). Certainty-based proto-

type insertion/deletion for classification with metric adaptation.
In Proceedings of the european symposium on artificial neural networks
ESANN (pp. 7–12).

Fischer, L., Hammer, B., & Wersing, H. (2015b). Efficient rejection
strategies for prototype-based classification. Neurocomputing, 169,
334–342.

Forlizzi, J. & DiSalvo, C. (2006). Service robots in the domestic environ-
ment: A study of the roomba vacuum in the home. In Proceedings
of the 1st acm sigchi/sigart conference on human-robot interaction
(pp. 258–265). ACM.

French, R. M. (1999). Catastrophic forgetting in connectionist networks.
Trends in cognitive sciences, 3(4), 128–135.

Freund, Y. & Schapire, R. E. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1), 119–139.

Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to
boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-
780), 1612.

188

bibliography

Frey, P. W. & Slate, D. J. (1991). Letter recognition using holland-style
adaptive classifiers. Machine Learning, 6, 161.

Friedman, J. H. (1997). On bias, variance, 0/1—loss, and the curse-of-
dimensionality. Data Mining and Knowledge Discovery, 1(1), 55–
77.

Fu, Z., Wu, D.-A. J., Ross, I., Chung, J. M., Mamelak, A. N., Adolphs,
R., & Rutishauser, U. (2019). Single-neuron correlates of error
monitoring and post-error adjustments in human medial frontal
cortex. Neuron, 101(1), 165–177.e5.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash,
M. (2015). Internet of things: A survey on enabling technolo-
gies, protocols, and applications. IEEE Communications Surveys
Tutorials, 17(4).

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data
streams: A review. ACM Sigmod Record, 34(2), 18–26.

Gaidon, A., Harchaoui, Z., & Schmid, C. (2011). Actom sequence
models for efficient action detection. In Cvpr 2011 (pp. 3201–
3208).

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning
with drift detection. In Advances in artificial intelligence–sbia 2004
(pp. 286–295). Springer.

Gama, J., Rocha, R., & Medas, P. (2003). Accurate decision trees for
mining high-speed data streams. In Proceedings of the ninth acm
sigkdd international conference on knowledge discovery and data min-
ing (pp. 523–528). ACM.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream
learning algorithms. Machine Learning, 90(3), 317–346.

Gama, J., Žliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A.
(2014). A survey on concept drift adaptation. ACM Computing
Surveys (CSUR), 46(4), 44.

Gan, J. & Tao, Y. (2015). Dbscan revisited: Mis-claim, un-fixability, and
approximation. In Proc. of the 2015 sigmod international conference
on management of data (pp. 519–530). SIGMOD ’15. Melbourne,
Victoria, Australia.

García Molina, J. F., Zheng, L., Sertdemir, M., Dinter, D. J., Schönberg,
S., & Rädle, M. (2014). Incremental learning with svm for mul-
timodal classification of prostatic adenocarcinoma. PLOS ONE,
9(4), 1–14.

Garcia-Hernando, G. & Kim, T.-K. (2017). Transition forests: Learning
discriminative temporal transitions for action recognition and
detection. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 407–415.

Garcia-Martin, E. (2017). Extraction and energy efficient processing of
streaming data, dissertation.

Gepperth, A. & Hammer, B. (2016). Incremental learning algorithms
and applications. In Proceedings of the european sympoisum on
artificial neural networks (ESANN).

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized
trees. Machine Learning, 63(1), 3–42.

189

bibliography

Giraud-Carrier, C. (2000). A note on the utility of incremental learning.
Ai Communications, 13(4), 215–223.

Gomes, H., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger,
B., . . . Abdessalem, T. (2017). Adaptive random forests for evolv-
ing data stream classification. Machine Learning, 106(9), 1469–
1495.

Grbovic, M. & Vucetic, S. (2009). Learning vector quantization with
adaptive prototype addition and removal. In 2009 international
joint conference on neural networks (pp. 994–1001).

Griffis, J., Allendorfer, J., & P. Szaflarski, J. (2016). Voxel-based gaussian
naïve bayes classification of ischemic stroke lesions in individual
t1-weighted mri scans. Journal of Neuroscience Methods, 257, 97–
108.

Grossberg, S. (1976a). Adaptive pattern classification and universal
recoding: I. parallel development and coding of neural feature
detectors. Biological cybernetics, 23(3), 121–134.

Grossberg, S. (1976b). Adaptive pattern classification and universal
recoding: I. parallel development and coding of neural feature
detectors. Biological cybernetics, 23(3), 121–134.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mecha-
nisms, and architectures. Neural networks, 1(1), 17–61.

Gu, B., Sheng, V. S., Tay, K. Y., Romano, W., & Li, S. (2015). Incremental
support vector learning for ordinal regression. IEEE Transactions
on Neural networks and learning systems, 26(7), 1403–1416.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Inter-
net of things (iot): A vision, architectural elements, and future
directions. Future generation computer systems, 29(7), 1645–1660.

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2006). Feature
extraction: Foundations and applications (studies in fuzziness and soft
computing). Berlin, Heidelberg: Springer-Verlag.

Harries, M. & Wales, N. S. (1999). Splice-2 comparative evaluation:
Electricity pricing.

Harris, F. J. (1978). On the use of windows for harmonic analysis with
the discrete fourier transform. Proceedings of the IEEE, 66(1), 51–
83.

Harsham, B., Watanabe, S., Esenther, A., Hershey, J., Le Roux, J., Luan,
Y., . . . Potluru, V. (2015). Driver prediction to improve interaction
with in-vehicle hmi. In Proc. workshop on digital signal processing
for in-vehicle systems (dsp).

Hasenjäger, M. & Wersing, H. (2017). Personalization in advanced
driver assistance systems and autonomous vehicles: A review. In
2017 ieee 20th international conference on intelligent transportation
systems (itsc) (pp. 1–7).

Hasselmo, M. E. (2006). The role of acetylcholine in learning and
memory. Current opinion in neurobiology, 16(6), 710–715.

Hastie, T. & Tibshirani, R. (1996). Discriminant analysis by gaussian
mixtures. Journal of the Royal Statistical Society. Series B (Method-
ological), 155–176.

190

bibliography

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statis-
tical learning. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc.

He, H., Chen, S., Li, K., & Xu, X. (2011). Incremental learning from
stream data. IEEE Transactions on Neural Networks, 22(12), 1901–
1914.

Helsper, E. J. (2010). Gendered internet use across generations and life
stages. Communication research, 37(3), 352–374.

Higgins, C., Duxbury, L., & Lee, C. (1994). Impact of life-cycle stage and
gender on the ability to balance work and family responsibilities.
Family Relations, 144–150.

Hilbert, M. & López, P. (2011). The world’s technological capacity to
store, communicate, and compute information. Science (New York,
N.Y.) 332, 60–5.

Ho, T. K. (1998). The random subspace method for constructing de-
cision forests. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(8), 832–844.

Holmes, G., Kirkby, R., & Pfahringer, B. (2005). Stress-testing hoeffding
trees. In Knowledge discovery in databases: Pkdd 2005: 9th euro-
pean conference on principles and practice of knowledge discovery in
databases, porto, portugal, october 3-7, 2005. proc.

Holmes, G., Richard, K., & Pfahringer, B. (2005). Tie-breaking in ho-
effding trees. In Proc. of the workshop w6 the second international
workshop on knowledge discovery in data streams.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5),
359–366.

Hsieh, C.-J., Si, S., & Dhillon, I. S. (2014). A divide-and-conquer solver
for kernel support vector machines. In Proceedings of the 31st in-
ternational conference on international conference on machine learning
- volume 32 (pp. I-566–I-574). ICML’14. Beijing, China: JMLR.org.

Hull, J. J. (1994). A database for handwritten text recognition research.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5),
550–554.

Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing
data streams. In Proc. of the seventh sigkdd international conference
on knowledge discovery and data mining.

Jaber, G., Cornuéjols, A., & Tarroux, P. (2013). Online learning: Search-
ing for the best forgetting strategy under concept drift. In Neural
information processing (pp. 400–408). Springer.

Jain, A. K. & Li, S. Z. (2005). Handbook of face recognition. Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

Jain, M., v. Gemert, J., Jégou, H., Bouthemy, P., & Snoek, C. G. M.
(2014). Action localization with tubelets from motion. In 2014 ieee
conference on computer vision and pattern recognition (pp. 740–747).

Jain, P., Kulis, B., Dhillon, I. S., & Grauman, K. (2009). Online metric
learning and fast similarity search. In Advances in neural infor-
mation processing systems 21 (pp. 761–768). Curran Associates,
Inc.

191

bibliography

Jarvis, P. (2012). Towards a comprehensive theory of human learning. Rout-
ledge.

Jin, R. & Agrawal, G. (2003). Efficient decision tree construction on
streaming data. In Proc. of the ninth sigkdd international conference
on knowledge discovery and data mining. KDD ’03. Washington,
D.C.

Jin, Y. & Hammer, B. (2014). Computational intelligence in big data.
Computational Intelligence Magazine, IEEE, 9(3).

Johnson, R. & Zhang, T. (2013). Accelerating stochastic gradient de-
scent using predictive variance reduction. In Advances in neural
information processing systems (pp. 315–323).

Joshi, P. & Kulkarni, P. (2012). Incremental learning: Areas and methods-
a survey. International Journal of Data Mining & Knowledge Man-
agement Process, 2(5), 43.

Katakis, I., Tsoumakas, G., Banos, E., Bassiliades, N., & Vlahavas, I.
(2009). An adaptive personalized news dissemination system.
Journal of Intelligent Information Systems, 32(2), 191–212.

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data
streams. In Proceedings of the thirtieth international conference on
very large data bases-volume 30 (pp. 180–191). VLDB Endowment.

Kirkby, R. B. (2007). Improving hoeffding trees (Doctoral dissertation, The
University of Waikato).

Kirstein, S., Wersing, H., Gross, H.-M., & Körner, E. (2012). A life-long
learning vector quantization approach for interactive learning of
multiple categories. Neural Networks, 28, 90–105.

Kirstein, S., Wersing, H., & Körner, E. (2005). Rapid online learning
of objects in a biologically motivated recognition architecture.
In Pattern recognition (pp. 301–308). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Kivinen, J. & Warmuth, M. K. (1997). Exponentiated gradient versus
gradient descent for linear predictors. Information and Computa-
tion, 132(1), 1–63.

Klingelschmitt, S., Platho, M., Groß, H.-M., Willert, V., & Eggert, J.
(2014). Combining behavior and situation information for re-
liably estimating multiple intentions. In Ieee intelligent vehicles
symposium (iv).

Klinkenberg, R. & Joachims, T. (2000). Detecting concept drift with
support vector machines. In Proceedings of the seventeenth interna-
tional conference on machine learning (pp. 487–494). ICML ’00. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid. In Proc. of the second international conference
on knowledge discovery and data mining. KDD’96. Portland, Oregon.

Kohonen, T. (2001). Self-organizing maps (3rd). Springer series in infor-
mation sciences, 30. Berlin: Springer.

Kolter, J. Z. & Maloof, M. A. (2007). Dynamic weighted majority: An
ensemble method for drifting concepts. The Journal of Machine
Learning Research, 8, 2755–2790.

192

bibliography

Kong, K. & Jeon, D. (2006). Design and control of an exoskeleton for
the elderly and patients. IEEE/ASME Transactions on mechatronics,
11(4), 428–432.

Kourtellis, N., Morales, G. D. F., Bifet, A., & Murdopo, A. (2016). Vht:
Vertical hoeffding tree. In 2016 ieee international conference on big
data (big data).

Kuefler, A., Morton, J., Wheeler, T., & Kochenderfer, M. (2017). Imitat-
ing driver behavior with generative adversarial networks. arXiv
preprint arXiv:1701.06699.

Kulić, D., Ott, C., Lee, D., Ishikawa, J., & Nakamura, Y. (2012). Incremen-
tal learning of full body motion primitives and their sequencing
through human motion observation. The International Journal of
Robotics Research, 31(3), 330–345.

Kuncheva, L. I. & Žliobaite, I. (2009). On the window size for classifi-
cation in changing environments. Intelligent Data Analysis, 13(6),
861–872.

Kuncheva, L. I. & Plumpton, C. O. (2008). Adaptive learning rate for
online linear discriminant classifiers. In Structural, syntactic, and
statistical pattern recognition (pp. 510–519). Springer.

Kwapisz, J. R., Weiss, G. M., & Moore, S. A. (2010). Activity recognition
using cell phone accelerometers. In Proceedings of the fourth inter-
national workshop on knowledge discovery from sensor data (pp. 10–
18).

De-la-Torre, M., Granger, E., Radtke, P. V., Sabourin, R., & Gorodnichy,
D. O. (2015). Partially-supervised learning from facial trajectories
for face recognition in video surveillance. Information Fusion, 24,
31–53.

Lakshminarayanan, B., Roy, D. M., & Teh, Y. W. (2014). Mondrian
forests: Efficient online random forests. In Advances in neural
information processing systems (pp. 3140–3148).

Lane, T. & Brodley, C. E. (1998). Approaches to online learning and
concept drift for user identification in computer security. In Pro-
ceedings of the fourth international conference on knowledge discovery
and data mining (pp. 259–263). KDD’98. New York, NY: AAAI
Press.

Laskov, P., Gehl, C., Krüger, S., & Müller, K.-R. (2006). Incremental sup-
port vector learning: Analysis, implementation and applications.
Journal of Machine Learning Res, 7.

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. of the IEEE,
86(11).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521(7553), 436.

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., . . .
Sackinger, E., et al. (1995). Comparison of learning algorithms
for handwritten digit recognition. In International conference on
artificial neural networks (Vol. 60, pp. 53–60). Perth, Australia.

Li, C., Zhang, Y., & Li, X. (2009). Ocvfdt: One-class very fast decision
tree for one-class classification of data streams. In Proc. of the

193

bibliography

third international workshop on knowledge discovery from sensor data.
SensorKDD ’09. Paris, France.

Li, X., Dick, A., Shen, C., Van Den Hengel, A., & Wang, H. (2013).
Incremental learning of 3d-dct compact representations for robust
visual tracking. IEEE transactions on pattern analysis and machine
intelligence, 35(4), 863–881.

Li, Y., Lan, C., Xing, J., Zeng, W., Yuan, C., & Liu, J. (2016). Online
human action detection using joint classification-regression recur-
rent neural networks. In Computer vision – eccv 2016 (pp. 203–220).
Cham: Springer International Publishing.

Liang, N., Huang, G., Saratchandran, P., & Sundararajan, N. (2006). A
fast and accurate online sequential learning algorithm for feed-
forward networks. IEEE Transactions on Neural Networks, 17(6),
1411–1423.

Liddle, A. R. (2007). Information criteria for astrophysical model se-
lection. Monthly Notices of the Royal Astronomical Society: Letters,
377(1), L74–L78.

Liebner, M., Klanner, F., Baumann, M., Ruhhammer, C., & Stiller, C.
(2013). Velocity-based driver intent inference at urban intersec-
tions in the presence of preceding vehicles. IEEE Intelligent Trans-
portation Systems Magazine, 5(2), 10–21.

Lim, J., Ross, D. A., Lin, R.-S., & Yang, M.-H. (2005). Incremental
learning for visual tracking. In Advances in neural information
processing systems (pp. 793–800).

Littlestone, N. (1988). Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine Learning,
2(4), 285–318.

Loosli, G., Canu, S., & Bottou, L. (2007). Training invariant support
vector machines using selective sampling. In Large scale kernel
machines.

Losing, V. (2014). Master thesis: Online learning on a mobile robot.
Losing, V., Hammer, B., & Wersing, H. (2015). Interactive online learn-

ing for obstacle classification on a mobile robot. In 2015 interna-
tional joint conference on neural networks (ijcnn) (pp. 1–8). IEEE.

Losing, V., Hammer, B., & Wersing, H. (2016a). Choosing the best
algorithm for an incremental on-line learning task. In 2016 24th
european symposium on artificial neural networks (esann).

Losing, V., Hammer, B., & Wersing, H. (2016b). Dedicated memory
models for continual learning in the presence of concept drift. In
Advances in neural information processing systems (nips) 29, continual
learning workshop.

Losing, V., Hammer, B., & Wersing, H. (2016c). Knn classifier with self
adjusting memory for heterogeneous concept drift. In 2016 ieee
16th international conference on data mining (icdm) (pp. 291–300).

Losing, V., Hammer, B., & Wersing, H. (2017a). Personalized maneuver
prediction at intersections. In 2017 ieee 20th international conference
on intelligent transportation systems (itsc) (pp. 1–6).

Losing, V., Hammer, B., & Wersing, H. (2017b). Self-adjusting memory:
How to deal with diverse drift types. In Proceedings of the twenty-

194

bibliography

sixth international joint conference on artificial intelligence, IJCAI-17
(pp. 4899–4903).

Losing, V., Hammer, B., & Wersing, H. (2018a). Enhancing very fast
decision trees with local split-time predictions. In 2018 ieee 16th
international conference on data mining (icdm).

Losing, V., Hammer, B., & Wersing, H. (2018b). Incremental on-line
learning: A review and comparison of state of the art algorithms.
Neurocomputing, 275.

Losing, V., Hammer, B., & Wersing, H. (2018c). Tackling heterogeneous
concept drift with the self-adjusting memory (sam). Knowledge
and Information Systems, 54(1), 171–201.

Losing, V., Hammer, B., & Wersing, H. (2019). Personalized online
learning of whole body motions using multiple inertial measure-
ment units. In Ieee international conference on robotics and automation
(icra) 2019.

Losing, V., Hammer, B., Wersing, H., & Bifet, A. (2019). Tackling con-
cept drift with a diverse self-adjusting memory ensemble. In
Submitted to international conference on data engineering (icde) 2019.

Lou, W., Wang, X., Chen, F., Chen, Y., Jiang, B., & Zhang, H. (2014).
Sequence based prediction of dna-binding proteins based on
hybrid feature selection using random forest and gaussian naïve
bayes. PLOS ONE, 9(1), 1–10.

Lu, Y., Boukharouba, K., Boonært, J., Fleury, A., & Lecoeuche, S. (2014).
Application of an incremental svm algorithm for on-line hu-
man recognition from video surveillance using texture and color
features. Neurocomputing, 126, 132–140.

Luo, J., Pronobis, A., Caputo, B., & Jensfelt, P. (2007). Incremental
learning for place recognition in dynamic environments. In
2007 ieee/rsj international conference on intelligent robots and sys-
tems (pp. 721–728).

Ma, S., Li, X., Ding, Y., & Orlowska, M. E. (2007). A recommender
system with interest-drifting. In Web information systems engineer-
ing – wise 2007 (pp. 633–642). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Maaten, L. v. d. & Hinton, G. (2008). Visualizing data using t-sne.
Journal of machine learning research, 9(Nov), 2579–2605.

MacQueen, J. B. (1967). Some methods for classification and analysis of
multivariate observations. In Proc. of the fifth berkeley symposium
on mathematical statistics and probability (Vol. 1). University of
California Press.

Maggi, F., Robertson, W., Kruegel, C., & Vigna, G. (2009). Protect-
ing a moving target: Addressing web application concept drift.
In International workshop on recent advances in intrusion detection
(pp. 21–40). Springer.

Margineantu, D. D. & Dietterich, T. G. (1997). Pruning adaptive boost-
ing. In Proceedings of the fourteenth international conference on ma-
chine learning (pp. 211–218). ICML ’97. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Martinetz, T. M. & Schulten, K. J. (1991). A “neural gas” network
learns topologies. In Proceedings of the international conference on

195

bibliography

artificial neural networks 1991 (pp. 397–402). Amsterdam; New
York: North-Holland.

Medrano, C., Plaza, I., Igual, R., Sánchez, Á., & Castro, M. (2016).
The effect of personalization on smartphone-based fall detectors.
Sensors, 16(1), 117.

Méndez, J. R., Fdez-Riverola, F., Iglesias, E. L., Diaz, F., & Corchado,
J. M. (2006). Tracking concept drift at feature selection stage in
spamhunting: An anti-spam instance-based reasoning system. In
European conference on case-based reasoning (pp. 504–518). Springer.

Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006). Spam filtering
with naive bayes-which naive bayes? In Third conference on email
and anti-spam (ceas (pp. 27–28).

Miller, G. A. (1956). The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psycho-
logical review, 63(2), 81.

Minsky, M. & Papert, S. (1972). Perceptrons: An introduction to computa-
tional geometry. Mit Press.

Mitchell, T. M. (1997). Machine learning (1st ed.). New York, NY, USA:
McGraw-Hill, Inc.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., G Bellemare,
M., . . . Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature, 518, 529–33.

Mojet, J., Christ-Hazelhof, E., & Heidema, J. (2001). Taste perception
with age: Generic or specific losses in threshold sensitivity to the
five basic tastes? Chemical senses, 26(7), 845–860.

Mugge, R., Schoormans, J. P., & Schifferstein, H. N. (2009). Emotional
bonding with personalised products. Journal of Engineering Design,
20(5), 467–476.

Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., & Hashimoto, T.
(2011). Quantitative performance analysis of exoskeleton aug-
menting devices - muscle suit - for manual worker. International
Journal of Automation Technology, 5, 559–567.

Nellore, K. & Hancke, G. P. (2016). A survey on urban traffic man-
agement system using wireless sensor networks. Sensors, 16(2),
157.

Nelson, E. C., Verhagen, T., & Noordzij, M. L. (2016). Health empow-
erment through activity trackers: An empirical smart wristband
study. Computers in human behavior, 62, 364–374.

Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image
library (coil-100).

Neto, F. D. N., de Souza Baptista, C., & Campelo, C. E. (2016). A user-
personalized model for real time destination and route prediction.
In Intelligent transportation systems (itsc), 2016 ieee 19th international
conference on (pp. 401–407). IEEE.

Noordewier, M. O., Towell, G. G., & Shavlik, J. W. (1991). Training
knowledge-based neural networks to recognize genes in dna
sequences. In Advances in neural information processing systems 3
(pp. 530–536). Morgan-Kaufmann.

196

bibliography

Novikoff, A. (1962). On convergence proofs of perceptrons. In Proceed-
ings of the symposium on the mathematical theory of automata (Vol. 12,
2, pp. 615–622).

Opelt, A., Pinz, A., & Zisserman, A. (2006). Incremental learning of
object detectors using a visual shape alphabet. In Proceedings
of the 2006 ieee computer society conference on computer vision and
pattern recognition-volume 1 (pp. 3–10). IEEE Computer Society.

OpenStreetMap contributors. (2017). Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org.

Ordóñez, F. J. & Roggen, D. (2016). Deep convolutional and lstm recur-
rent neural networks for multimodal wearable activity recogni-
tion. Sensors, 16(1).

Orth, D., Kolossa, D., Sarria Paja, M., Schaller, K., Pech, A., & Heck-
mann, M. (2017). A maximum likelihood method for driver-
specific critical-gap estimation. In 2017 ieee intelligent vehicles
symposium (iv).

Oza, N. C. (2005). Online bagging and boosting. In Ieee transactions on
systems, man, and cybernetics (Vol. 3, pp. 2340–2345). IEEE.

Oza, N. C. & Russell, S. (2001). Experimental comparisons of online
and batch versions of bagging and boosting. In Proceedings of the
seventh acm sigkdd international conference on knowledge discovery
and data mining (pp. 359–364). ACM.

Paaßen, B., Schulz, A., Hahne, J., & Hammer, B. (2017). An EM transfer
learning algorithm with applications in bionic hand prostheses.
In Proceedings of the 25th european symposium on artificial neural
networks (esann 2017) (pp. 129–134). Bruges: i6doc.com.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2),
100–115.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., . . . Duchesnay, E. (2011). Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research, 12, 2825–2830.

Pernici, F. & Del Bimbo, A. (2014). Object tracking by oversampling
local features. IEEE transactions on pattern analysis and machine
intelligence, 36(12), 2538–2551.

Pfahringer, B., Holmes, G., & Kirkby, R. (2008). Handling numeric
attributes in hoeffding trees. In Advances in knowledge discovery
and data mining.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for train-
ing support vector machines.

Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An
incremental learning algorithm for supervised neural networks.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 31(4), 497–508.

Poppe, R. (2010). A survey on vision-based human action recognition.
Image Vision Computing, 28(6), 976–990.

Pratt, J. E., Krupp, B. T., Morse, C. J., & Collins, S. H. (2004). The
roboknee: An exoskeleton for enhancing strength and endurance
during walking. In Ieee international conference on robotics and
automation, 2004. proceedings. icra ’04. 2004 (Vol. 3, 2430–2435
Vol.3).

197

 https://www.openstreetmap.org

bibliography

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., . . . Ng,
A. Y. (2009). Ros: An open-source robot operating system. In Icra
workshop on open source software (Vol. 3, 3.2, p. 5). Kobe, Japan.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1),
81–106.

Quinlan, J. R. (1993). C4.5: Programs for machine learning.
Raghupathi, W. & Raghupathi, V. (2014). Big data analytics in health-

care: Promise and potential. Health information science and systems,
2(1), 3.

Read, J., Bifet, A., Pfahringer, B., & Holmes, G. (2012). Batch-incremental
versus instance-incremental learning in dynamic and evolving
data. In International symposium on intelligent data analysis (pp. 313–
323). Springer.

Reed, R. D. & Marks, R. J. (1998). Neural smithing: Supervised learning in
feedforward artificial neural networks. Cambridge, MA, USA: MIT
Press.

Reiss, A. & Stricker, D. (2012). Introducing a new benchmarked dataset
for activity monitoring. In 2012 16th international symposium on
wearable computers (pp. 108–109).

Reyes-Ortiz, J.-L., Oneto, L., SamÃ, A., Parra, X., & Anguita, D. (2016).
Transition-aware human activity recognition using smartphones.
Neurocomputing, 171(Supplement C), 754–767.

Richtárik, P. & Takáč, M. (2016). Parallel coordinate descent methods
for big data optimization. Mathematical Programming, 156(1), 433–
484.

Rodemerk, C., Winner, H., & Kastner, R. (2015). Predicting the driver’s
turn intentions at urban intersections using context-based indica-
tors. In Intelligent vehicles symposium (iv), 2015 ieee (pp. 964–969).
IEEE.

Roetenberg, D., Luinge, H., & Slycke, P. (2009). Xsens mvn: Full 6dof
human motion tracking using miniature inertial sensors. 3.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for in-
formation storage and organization in the brain. Psychological
Review, 65–386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning
internal representations by error propagation. DTIC Document.

S. A. Nene, S. K. N. & Murase, H. (1996). Columbia object image
library (coil-100).

Saffari, A., Leistner, C., Santner, J., Godec, M., & Bischof, H. (2009).
On-line random forests. In 2009 ieee 12th international conference
on computer vision workshops, iccv workshops (pp. 1393–1400).

Salperwyck, C. & Lemaire, V. (2011). Learning with few examples: An
empirical study on leading classifiers. In The 2011 international
joint conference on neural networks (pp. 1010–1019).

Salton, G. & McGill, M. J. (1986). Introduction to modern information
retrieval. New York, NY, USA: McGraw-Hill, Inc.

Sapienza, M., Cuzzolin, F., & Torr, P. H. (2014). Learning discriminative
space–time action parts from weakly labelled videos. International
journal of computer vision, 110(1), 30–47.

198

bibliography

Sato, A. & Yamada, K. (1995). Generalized learning vector quantization.
In Proceedings of the 8th international conference on neural information
processing systems (pp. 423–429). NIPS’95. Denver, Colorado: MIT
Press.

Scheme, E. J., Hudgins, B. S., & Englehart, K. B. (2013). Confidence-
based rejection for improved pattern recognition myoelectric
control. IEEE Transactions on Biomedical Engineering, 60(6), 1563–
1570.

Schiaffino, S., Garcia, P., & Amandi, A. (2008). Eteacher: Providing
personalized assistance to e-learning students. Computers & Edu-
cation, 51(4), 1744–1754.

Schlimmer, J. C. & Granger, R. H. (1986). Incremental learning from
noisy data. Machine Learning, 1(3), 317–354.

Schlimmer, J. & Fisher, D. (1986). A case study of incremental concept
induction. (pp. 496–501).

Schneider, P., Biehl, M., & Hammer, B. (2009). Adaptive relevance ma-
trices in learning vector quantization. Neural Computing, 21(12),
3532–3561.

Schulz, A., Gisbrecht, A., & Hammer, B. (2015). Using discriminative
dimensionality reduction to visualize classifiers. Neural Processing
Letters, 42(1), 27–54.

Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pega-
sos: Primal estimated sub-gradient solver for svm. Mathematical
Programming, 127(1), 3–30.

Shannon, C. E. (2001). A mathematical theory of communication. ACM
SIGMOBILE mobile computing and communications review, 5(1), 3–
55.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., van den Driess-
che, G., . . . Hassabis, D. (2016). Mastering the game of go with
deep neural networks and tree search. Nature, 529, 484–489.

Silverman, B. W. (2018). Density estimation for statistics and data analysis.
Routledge.

Simonyan, K. & Zisserman, A. (2014). Very deep convolutional net-
works for large-scale image recognition. arXiv:1409.1556.

Spencer, R. (2013). The square kilometre array: The ultimate chal-
lenge for processing big data. In Iet seminar on data analytics 2013:
Deriving intelligence and value from big data.

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron,
M. J., . . . Robinson, G. E. (2015). Big data: Astronomical or ge-
nomical? PLOS Biology, (7).

Street, W. N. & Kim, Y. (2001). A streaming ensemble algorithm (sea)
for large-scale classification. In Proceedings of the seventh acm
sigkdd international conference on knowledge discovery and data min-
ing (pp. 377–382). KDD ’01. San Francisco, California: ACM.

Sugano, Y., Matsushita, Y., Sato, Y., & Koike, H. (2008). An incremental
learning method for unconstrained gaze estimation. In European
conference on computer vision (pp. 656–667). Springer.

Sun, J. & Li, H. (2011). Dynamic financial distress prediction using
instance selection for the disposal of concept drift. Expert Systems
with Applications, 38(3), 2566–2576.

199

bibliography

Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme learning machine
for multilayer perceptron. IEEE transactions on neural networks and
learning systems, 27(4), 809–821.

Tang, J., Deng, C., Huang, G.-B., & Zhao, B. (2015). Compressed-
domain ship detection on spaceborne optical image using deep
neural network and extreme learning machine. IEEE Transactions
on Geoscience and Remote Sensing, 53(3), 1174–1185.

Tessendorf, B., Gravenhorst, F., Arnrich, B., & Tröster, G. (2011). An imu-
based sensor network to continuously monitor rowing technique
on the water. In 2011 seventh international conference on intelligent
sensors, sensor networks and information processing (pp. 253–258).

Ting, S., Ip, W., & Tsang, A. H. (2011). Is naive bayes a good classi-
fier for document classification? International Journal of Software
Engineering and Its Applications, 5(3), 37–46.

Tintarev, N. & Masthoff, J. (2007). A survey of explanations in recom-
mender systems. In 2007 ieee 23rd international conference on data
engineering workshop (pp. 801–810). IEEE.

Tseng, M. M. & Piller, F. (2011). The customer centric enterprise: Ad-
vances in mass customization and personalization. Springer Science
& Business Media.

Tsymbal, A., Pechenizkiy, M., Cunningham, P., & Puuronen, S. (2006).
Handling local concept drift with dynamic integration of classi-
fiers: Domain of antibiotic resistance in nosocomial infections. In
19th ieee international symposium on computer-based medical systems,
2006. (pp. 679–684). IEEE.

Tulving, E. et al. (1972). Episodic and semantic memory. Organization
of memory, 1, 381–403.

U.S. Department of Transportation, F. H. A. (2007). The national inter-
section safety problem.

UTGOFF, P. E. (1988). Id5: An incremental id3. In J. Laird (Ed.), Ma-
chine learning proceedings 1988 (pp. 107–120). San Francisco (CA):
Morgan Kaufmann.

Van Laarhoven, P. J. & Aarts, E. H. (1987). Simulated annealing. In
Simulated annealing: Theory and applications (pp. 7–15). Springer.

Verbert, K., Parra, D., Brusilovsky, P., & Duval, E. (2013). Visualizing
recommendations to support exploration, transparency and con-
trollability. In Proceedings of the 2013 international conference on
intelligent user interfaces (pp. 351–362). ACM.

Wallraven, Caputo, & Graf. (2003). Recognition with local features: The
kernel recipe. In Proceedings ninth ieee international conference on
computer vision (257–264 vol.1).

Wang, A., Wan, G., Cheng, Z., & Li, S. (2009). An incremental extremely
random forest classifier for online learning and tracking. In 2009
16th ieee international conference on image processing (icip).

Wang, H. & Schmid, C. (2013). Action recognition with improved
trajectories. In 2013 ieee international conference on computer vision
(pp. 3551–3558).

Watkin, T. L., Rau, A., & Biehl, M. (1993). The statistical mechanics of
learning a rule. Reviews of Modern Physics, 65(2), 499.

200

bibliography

Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., & Schreiber,
A. J. (2016). Smartwatch-based activity recognition: A machine
learning approach. In 2016 ieee-embs international conference on
biomedical and health informatics (bhi) (pp. 426–429).

Weiss, G. M. & Lockhart, J. W. (2012). The impact of personalization
on smartphone-based activity recognition. In Aaai workshop on
activity context representation: Techniques and languages (pp. 98–
104).

Welch, B. L. (1947). The generalization of student’s’ problem when
several different population variances are involved. Biometrika,
34(1/2).

Werbos, P. (1974). Beyond regression : New tools for prediction and
analysis in the behavioral sciences.

Wersing, H. & Körner, E. (2003). Learning optimized features for hierar-
chical models of invariant object recognition. Neural Computation,
15(7).

Widmer, G. & Kubat, M. (1992). Learning flexible concepts from
streams of examples: Flora2, 463–467.

Widmer, G. & Kubat, M. (1993). Effective learning in dynamic envi-
ronments by explicit context tracking. In European conference on
machine learning (pp. 227–243). Springer.

Widmer, G. & Kubat, M. (1996). Learning in the presence of concept
drift and hidden contexts. Machine learning, 23(1), 69–101.

Wiest, J., Karg, M., Kunz, F., Reuter, S., Kreßel, U., & Dietmayer, K.
(2015). A probabilistic maneuver prediction framework for self-
learning vehicles with application to intersections. In Intelligent
vehicles symposium (iv), 2015 ieee (pp. 349–355). IEEE.

Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis
testing. Academic Press.

Wolpert, D. H. (2002). The supervised learning no-free-lunch theorems.
In Soft computing and industry (pp. 25–42). Springer.

Yang, H. & Fong, S. (2011). Optimized very fast decision tree with
balanced classification accuracy and compact tree size. In The 3rd
international conference on data mining and intelligent information
technology applications.

Yang, R. & Newman, M. W. (2013). Learning from a learning thermo-
stat: Lessons for intelligent systems for the home. (pp. 93–102).
UbiComp ’13. Zurich, Switzerland: ACM.

Ye, Y., Squartini, S., & Piazza, F. (2013). Online sequential extreme learn-
ing machine in nonstationary environments. Neurocomputing, 116,
94–101.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014).
Internet of things for smart cities. IEEE Internet of Things Journal,
1(1).

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

Zhang, H. (2004a). The optimality of naive bayes. AAAI, 1(2), 3.
Zhang, T. (2004b). Solving large scale linear prediction problems us-

ing stochastic gradient descent algorithms. In Proceedings of the

201

bibliography

twenty-first international conference on machine learning (p. 116).
ACM.

Zhao, J., Wang, Z., & Park, D. S. (2012). Online sequential extreme
learning machine with forgetting mechanism. Neurocomputing,
87, 79–89.

Žliobaite, I. (2010). Learning under concept drift: An overview. eprint:
arXiv:1010.4784

Žliobaite, I. (2013). How good is the electricity benchmark for evaluat-
ing concept drift adaptation. CoRR, abs/1301.3524.

202

arXiv:1010.4784

	Contents
	Introduction
	Contributions and Manuscript Structure
	Publications in the Context of this Thesis

	Historical Background
	Biologically Inspired Learning
	Pseudo-Incremental Learning
	Early Incremental/Online Learning
	Support Vector Machine and Convex Optimization
	The Rise of Tree Ensembles
	Current State

	Incremental Learning
	Overarching Learning Scenario
	Definition
	Challenges

	Incremental Learning Vector Quantization
	Foundation
	Related Work
	Learning Architecture
	Proposed Placement Strategy: COSMOS
	Experiments
	Discussion

	Local Split-Time Prediction
	Foundation
	Related Work
	Proposed Method: OSM
	Experiments
	Discussion

	A Practice-Oriented Survey
	Foundation
	Related Work
	Datasets and Implementations
	Hyperparameter Optimization
	Measure of Model Complexity
	Evaluation Settings
	Experiments
	Discussion

	Concept Drift
	Foundation
	Definition
	Types of Concept Drift
	Patterns of Change
	Model Evaluation
	Challenges

	Related Work
	Drift Detection
	Sliding Window
	Bagging Ensembles
	State-of-the-art Methods
	Taxonomy

	Quantifying Concept Drift
	Prerequisites
	Test for Real Drift
	Test for Virtual Drift
	Drift Degree
	Datasets
	Experiments
	Discussion

	Self-Adjusting Memory (SAM)
	Architecture
	Time Complexity
	Speedup via Approximate ITTE
	Experiments - SAM-kNN
	Experiments - SAM-NB
	Discussion

	SAM-Ensemble (SAM-E)
	Architecture
	Parallel Implementation
	Datasets
	Experiments
	Discussion

	Real-World Applications
	Interactive Online Learning on a Mobile Robot
	Application Setup
	Experiments
	Discussion

	Personalized Maneuver Prediction
	Dataset
	Experiments
	Discussion

	Personalized Human Action Classification
	Online Action Classification
	Dataset
	Experiments
	Discussion

	Conclusion
	High-Level Insights
	Outlook

	Appendix
	Detailed results
	Motion Classification
	Practice-oriented survey

	Datasets
	Artificial
	Real-world

	Bibliography

