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Abstract 

 

Two-dimensional (2D) materials have significant technological importance due to their 

exceptional electronic and mechanical properties, which stem from the quantum confinement 

of charge carriers along a single plane. Their thin atomic nature and large surface-to-volume 

ratio offer an opportunity to tailor their properties, making them suitable candidates for next-

generation electronic devices.  

Molybdenum trioxide (MoO3) is a wide bandgap and high dielectric material that can be 

obtained in 2D structure. The bandgap of the material can be readily tuned using ion 

intercalation method. Consequently, carrier mobility can be enhanced by increasing the 

charge carriers’ density near the Fermi level. As such, reliable production of few atoms thick 

2D material is essential for translating their properties into electronic applications. However, 

obtaining the desired thickness of uniform 2D MoO3 crystal is challenging, as the existing 

exfoliation technique do not produce crystals of uniform thickness efficiently. A new 

chemical route has been developed to thin down bulk crystals of MoO3 in order to obtain them 

in 2D form. The viability and reliability of the etching process has been established via detail 

characterisation of the material pre- and post-etching. The electrical characterisation of the 

2D MoO3 crystals based field effect transistors show high switching ratios.  

Non-volatile resistive memory devices are theorised to be the most promising pathway 

towards analogue memory and neuromorphic computing. Metal oxides are widely used as 

channel material in such memory devices. High dielectric constant and thermal stability of 



 

 
xvi 

MoO3 renders it ideal for resistive memory applications as high dielectric nature suppresses 

the undesirable parasitic effects during resistive switching performance. The reversible and 

non-volatile resistive switching behaviour of planar MoO3 crystals has been investigated. The 

room temperature memory retention shows high on/off ratio of >10
3 

for 10
4
 s duration and 

endurance of > 6,000 cycles, and low power consumption. This study demonstrates the 

viability of MoO3 as a resistive memory element and paves the way for future 2D resistive 

memory technologies. 

Furthermore, conductometric gas sensors have been developed based on the 2D crystals of 

non-stoichiometric MoO3. Thermodynamically stable MoO3 shows excellent electron affinity 

towards various gaseous elements. In addition, 2D structure endows them with an ultrahigh 

surface area that contains an extremely large proportion of surface atoms. These surface 

atoms serve as active sites to effectively react with gas molecules for gas sensing 

applications. Detail characterisations of the sensors show excellent selectivity and high 

sensitivity towards toxic and health hazard gases such as, H2S and NO2. The cyclic 

repeatability shows a negligible variation in sensitivity that establishes the viability of a high 

responsive gas sensor based on 2D MoO3. 

Hence, thermally stable and high dielectric 2D MoO3 has the potential to offer a new-

generation of nano-electronic applications with excellent performance.  
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Chapter 1 : INTRODUCTION 

1.1 Motivation 

In the current digital era, smart devices demand efficient and high-density electronics. 

Existing silicon-based technology is unable to provide such efficiency, as it has reached its 

theoretical and physical limitations.
1
 Consequently, new materials compatible with the 

existing silicon-based technology in the field of electronics are being investigated as an 

alternative. The isolation of the graphene monolayer in 2004 by the mechanical exfoliation of 

bulk graphite unfolded a new era in the field of electronics, as well as in the realm of two-

dimensional (2D) materials.
2-3

 Since then, it has been the most investigated 2D material due 

to its excellent physical and electronic properties.
4-9 The unique electronic properties of 2D 

materials compared to their bulk counterparts arise from the quantum confinement of charge 

carriers, as the bulk materials are scaled down to monolayers.
10-11

 Additionaly, the surface 

effect of the single/few atomic layer thicknesses of 2D materials favours the fabrication of 

flexible electronic/optoelectronic devices.
12

 However, graphene lacks an energy bandgap, 

which has hindered its widespread deployment in nano-electronic applications.
13

 This has 

initiated extensive research to explore other 2D materials, such as molybdenum 

dichalcogenides and oxide, hexagonal boron-nitride (h-BN), black phosphorous or 

phosphorene. Among them, molybdenum trioxide (MoO3) is a potential transition metal 

oxide abundant in nature. MoO3 has a wide band gap (~3.2 eV), a high dielectric constant (k) 

and is a thermodynamically stable, layered semiconducting material. It can be obtained in 

multiple stable states based on the oxidation level in the crystals. It shows enhanced 



 

 
2 

electronic transport properties, as its bandgap can be easily tuned via the manipulation of its 

stoichiometry.
14

 Ion intercalation is a method to tune the bandgap of the material by 

introducing oxygen vacancies in the crystal lattice, which results in increasing charge carriers 

near the Fermi level.
11, 15

 In 2D form, a large number of atoms is exposed due to the large 

area-to-volume ratio, which enhances the reaction sites.
16-17

 As a result, 2D MoO3 has been 

used as a functional material in a wide range of promising nano-electronic applications, such 

as in photochromic devices, field effect transistors (FETs),
11, 14, 18

 resistive memories
19

 and 

gas sensors.
20-21

  

The reliable production of atomically thin and uniform 2D crystals is essential for translating 

their electronic properties into applications.
22-23

 Two-dimensional MoO3 crystals can be 

achieved via both top-down and bottom-up synthesis methods. The existing top down 

exfoliation techniques of obtaining 2D crystals of MoO3 do not produce pure 2D crystals 

simultaneously and efficiently.
24

 Mechanical exfoliation is a top-down method, and it is a 

simple and easy way to obtain pure crystals for scientific research. However, the randomness 

in the lateral size and thickness of the exfoliated crystals makes it challenging to obtain single 

crystals with required thicknesses.
3, 24

 To manage this issue, post-deposition wet chemical 

etching of the multi-layered crystals is a promising route towards the sustainable production 

of 2D crystals with desired thicknesses. Several reports on the chemical etching of MoS2 

crystals show the viability of the method, but there is no report on the controllable etching of 

MoO3 crystals.
24-28

 As such, a new route of controllable chemical etching to obtain 2D MoO3 

crystals would add new knowledge to the field. Furthermore, electronic charaterisation of 

such 2D crystals via field effect transistors (FETs) would be benefit the field of nano-

electronics. 

The potential production of MoO3 with large area coverage in the millimetre range and their 



 

 
3 

viable electronic applications are crucial areas of research that requires investigation.. 

Chemical vapour deposition (CVD) has been found to be a valuable bottom-up synthesis 

process that provides the scalable and controllable growth of high quality and large-area 2D 

crystals of graphene and molybdenum dichalcogenides.
29-33

 Despite the successful and 

controllable growth of large-area dichalcogenides, the synthesis of MoO3 via CVD has 

received little attention.
34-35

 As such, developing a viable synthesis technique to grow large-

area MoO3 would be valuable to the study in electronic applications and areas such as 

resistive memory. Reversible resistive memories or memristors are potential candidates for 

future storage and neuromorphic computing technologies. They possess excellent 

characteristics, including scalability, multiple switching states, fast switching speeds, high 

cyclic endurance as well as CMOS compatibility.
36-37

 A large variety of metal oxides have 

been widely used as channel material in resistive memory applications that shows non-

volatile memory performances.
38-39

 However, they are still in their infancy and do not meet 

the criteria for the real data storage technology in modern electronics.
40-41

 Thus, investigation 

of novel electronically active 2D materials as active switching layers for high-performance 

resistive memory devices is required. However, 2D crystals are rarely studied for resistive 

memory applications, due to lack of large area synthesis technique.
42

 MoO3 is a versatile 

metal oxide with high dielectric value, that can be obtained in various oxidation states via 

CVD synthesis technique and has the potential for resistive memory applications.
43

 

Furthermore, investigation in memory characteristics of such MoO3 crystals would enrich the 

field of planar memory. 

In modern society, continuous development of industry and agriculture requires continuous 

and ever-increasing production that results in the emission of toxic and greenhouse gases in 

the environment. Thus, detecting traces of toxic gases and monitoring air quality are 

important to environmental safety and the quality of human life. Metal oxides are often used 
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as sensitive layers in gas sensing technologies.
44

 However, most metal-oxide based gas 

sensors work at high temperature accompanied with increased power consumption.
45-46

 

Hence, incorporation of 2D material in gas sensing devices are gaining attention to study as 

an alternative, as atomically thin 2D layers of sensing material allow achieving higher 

sensitivity and faster response. The large surface-to-volume ratio of 2D crystals provides a 

significant number of surface atoms as reaction sites, which cannot be achieved in their bulk 

counterparts and is favourable for gas-sensing applications.
13,17, 47

 Graphene and graphene 

oxide have been widely employed in the gas-sensing field due to a high specific surface area, 

fast electron transport and high conductivity.
17, 47

 Furthermore, a variety of 2D 

dichalcogenides also have shown superior sensing capability.
48

 Though MoO3 thin films 

shows excellent gas-sensing properties, as a sensor material 2D MoO3 has not been studied 

extensively.
49-52

 The existence of oxygen vacancy in MoO3 provides a large charge carrier 

concentrations and referred to as non-stoichiometric MoO3/(MoO3-x) which further enhances 

the electronic properties of the material. Thus, research on the gas-sensing performance of 

non-stoichiometric 2D MoO3 crystals would enable highly selective and high-performance 

sensing applications in comparison to the existing thin film-based sensors. 

Given the research gaps outlined above, the primary aims of this research are as follows, 

a) To investigate a new synthesis technique to obtain 2D MoO3 crystals and characterise their 

electronic performance in FETs, 

b) To investigate the resistive memory behaviour in large-area MoO3 crystals and  

c) To investigate the sensing performance of highly toxic NO2 and H2S gases in non-

stoichiometric 2D -MoO3-based devices. 
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1.2 Objectives 

The research work in this PhD dissertation can be briefly classified under the following 

objectives: 

(a) To develop an easily deployable chemical etching route in order to obtain pure 2D 

MoO3 crystals and to study their electrical performance as a channel material in 

FETs, 

(b) To characterise the resistive memory behaviour in large area MoO3 crystals. 

(c) To study the gas sensing characteristics of non-stoichiometric 2D -MoO3 based 

sensors.   

1.3 Original Contributions  

In this research, the following novel methods, which represent original contributions to the 

field, will be adopted: 

1.3.1 Investigation of a novel synthesis technique to obtain 2D crystals of 

MoO3 

A novel chemical thinning route is developed in order to obtain 2D -MoO3 crystals of 

desired thicknesses controllably and reliably. Furthermore, the thinned down 2D crystals is 

employed in FETs applications to characterise the electrical performance. Full details of the 

method to achieve this objective of the research will be described in chapter 3.  
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1.3.2 Investigation of resistive memory behavior in large area MoO3 

The reversible resistive switching behavior of large area MoO3 is characterised via cyclic 

repeatability, data retention and cyclic endurance capabilities. Detail characterisation on the 

pristine and electroformed cells is studied to understand switching mechanism in the memory 

cells. Full details of the methods used to achieve this objective and the experimental results 

will be described in Chapter 4.  

1.3.3 Investigation of gas sensing characteristics of non-stoichiometric 2D 

-MoO3 

This section of the PhD research is focused on gas sensing characterisation of non-

stoichiometric 2D -MoO3. It is demonstrated that gas sensors based on non-stoichiometric 

2D -MoO3 has the potential to offer high sensing performance. The successful application 

of the concept will be explained in detail in Chapter 5.   

1.4 Thesis organisation 

In Chapter 2, a comprehensive literature review regarding the synthesis process and 

applications based on 2D MoO3 is presented. This chapter describes the different techniques 

that are available to obtain bulk MoO3 crystals in a 2D structure. Furthermore, a detailed 

perspective on the existing memory and gas sensing applications based on 2D MoO3 is 

presented.  

In Chapter 3, a controllable and repeatable chemical thinning process of obtaining 2D MoO3 

will be discussed and incorporation of such 2D crystals into FETs will be studied. A thorough 
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characterisation of the pre- and post-etching crystals will be performed in order to establish 

the viability of the etching process.  

To understand the non-volatile memory behaviour of 2D MoO3 crystals, a detail 

characterisation will be performed. The reversible resistive behaviour of the material along 

with details of the switching mechanism will be presented in Chapter 4.  

In Chapter 5, gas-sensing characterisation of non-stoichiometric 2D MoO3 will be presented. 

A detail methodology to perform the characterisation and gas sensing mechanism will be 

discussed. 

Finally, Chapter 6 will discuss the overall conclusions of this PhD research and possible 

future directions. 

1.5 Publications  

1.5.1 First author 

 F. Rahman, T. Ahmed, S. Walia, E. Mayes, S. Sriram, M. Bhaskaran and S. 

Balendhran,“ Reversible resistive switching behaviour in layered MoOx”, Nanoscale, 

2018, 10, 19711 . 

 F. Rahman, T. Ahmed, S. Walia, E. Mayes, S. Sriram, M. Bhaskaran and S. 

Balendhran “Two-dimensional MoO3 via a top-down chemical thinning route”,  2D 

Materials, 2017, 4, 035008. 
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1.5.2 Co-author 

 A. Arash, T. Ahmed, A. G. Rajan, S. Walia, F. Rahman, A. Mazumder, R. 

Ramanathan, S. Sriram, M. Bhaskaran, E. H. Mayes, M. Strano and S. Balendhran 

“Large-area synthesis of two-dimensional MoO3-x for enhanced optoelectronic 

applications”, 2D Materials, 2019. 

 S. Walia, S. Balendhran, T. Ahmed, M. Singh, C. El-Badawi, M. D. Brennan, P. 

Weerathunge, Md. N. Karim, F. Rahman, A. Rassell, J. Duckworth, R. Ramanathan, 

G. E. Collis, C. J. Lobo, M. Toth, J. C. Kotsakidis, B. Weber, M. Fuhrer, J. M. 

Dominguez-Vera, M. J. S. Spencer, I. Aharonovich, S. Sriram, M. Bhaskaran, and V. 

Bansal “Ambient protection of few-layer black phosphorus via sequestration of 

reactive oxygen species”, Advanced materials, 2017, 29, 1700152. 

1.5.3 In progress 

 F. Rahman,  Md. A. Rahman, S. Walia, S. Sriram, M. Bhaskaran and S. Balendhran, 

“Dual gas sensing characteristics of non-stoichiometric 2D α-MoO3.”  
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Chapter 2 : LITERATURE REVIEW 

2.1 Introduction 

As modern technologies continue to evolve in a moderately exponential and self-enhancing 

manner, existing technologies for the current computing systems are approaching their 

physical limits. These highly evolved technologies demand electronic devices that are not 

only simple and infinitesimal in size but also increasingly capable. Two-dimensional 

materials are substances with a thickness of a few nanometres or less. As they are only one or 

several atoms thick, they have the potential to play a significant role in the future of nano-

electronics and the assembly of novel ultrathin devices. Since the discovery of graphene, it 

has been the most popular and vastly used 2D material due to its ultrahigh carrier mobility 

(> 200,000 cm
2
V

-1
s

-1
), large mechanical strength (55 N/m), room temperature quantum Hall 

effect and tuneable optical absorption.
1-2

 As such, progress in graphene research has had an 

enormous effect on the field of electronics.
3-6

 However, the lacking intrinsic bandgap in 

graphene has led to the further investigation of other 2D materials, such as metal 

dichalcogenides and layered metal oxides.
7
 The properties of these 2D materials are widely 

studied, as they show both exceptional electrical and thermal conductivity, and excellent 

flexibility and stretchability.
8-16

 The 2D material family encompasses a large variety of 

materials with versatile electronic and physical properties including insulating to 

semimetallic behaviour. As such, 2D nanostructures are anticipated to have an important 

influence on a huge diversity of electronics and optoelectronic applications.
17-21
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2.2 2D MoO3 

Molybdenum oxide (MoO3), a member of the 2D materials family, is an n-type material with 

a wide bandgap (~3 eV) and high dielectric (k) value. Its high dielectric value makes it 

appropriate for electronic applications, as it reduces Coulomb scattering. MoO3 shows 

enhanced electronic properties, where the band structure of MoO3 can be tuned via ionic 

intercalation, which enables the engineering of its properties and potentially renders it semi-

metallic to insulating on demand.
21

 Usually, ion intercalation changes the stoichiometry of 

the material by introducing oxygen vacancies, thus, enhancing the charge carrier 

concentration as a result of the increasing density of states at the Fermi level.
22

 Such aspects 

of 2D MoO3 makes it promising in a variety of potential applications such as field effect 

transistors,
21

 bio and gas-sensors,
23-24 

light emitting diodes,
25

 supercapacitor electrodes,
26

 

flexible photodetectors,
27

 and memristors.
28

  

MoO3 has two major crystal phases: thermodynamically stable α-MoO3 and metastable β-

MoO3 (Figure 2.1).
29-30 

Among them, orthorhombic α-MoO3 possesses the stratified layered 

crystal phase of molybdenum trioxide, and α-MoO3 possesses the double layers of MoO6, 

stacked together through weak van der Waals forces along the vertical direction. Each double 

layer consists of edge-sharing MoO6 octahedra along the {0 0 1} direction and corner-sharing 

rows along the {1 0 0} direction.
31-32

 This layered and stratified configuration allows for the 

easy exfoliation of layers from the parent crystal. In addition, the weak van der Waals 

attraction facilitates layered growth of the material from the bottom. 
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Furthermore, oxygen deficient intermediate state of Molybdenum Oxide can be obtained 

which is in between MoO3 and MoO2 (i.e., Mo18O52, Mo17O47, Mo9O26, Mo8O23, Mo5O14, and 

Mo4O11). Figure 2.2 represents some of the sub-stoichiometric crystal structure.
27

  The 

oxygen vacancies induce gap states, resulting in bandgap engineering and enhancing the 

charge carrier concentration near the gap states.
21,34

 Hence, these oxygen vacancies play an 

important role in modifying the electronic and optical properties of the material.
34

 There are 

theoretical and experimental results demonstrating that oxygen vacancies play an important 

role in modifying the electronic and optical properties of the oxide.
35

 Hydrogen intercalation 

is one of the most common adopted procedures for producing the oxygen vacancies in the 

material.
21,36

 Alkali metals such as lithium (Li), sodium (Na), potassium (K) has been used as 

intercalants for the manipulation of the stoichiometry of the material.
37-38

 Other than this, 

thermal treatment and ultraviolet irradiation can be adopted to change the stoichiometry of 

the material.
34,39

  

  

Figure 2.1 Schematic illustration of crystal structures of (a) orthorhombic α-MoO3, and (b) monoclinic β-

MoO3. The gray and red balls correspond to Mo and O atoms, respectively. The black lines show each 

unit cell.
30

  



 

 
18 

 

2.3. Synthesis of 2D MoO3 

 The development of facile, feasible and reliable methods for the preparation of 2D materials 

is of great importance for the exploration of their properties and translating their new 

electronic and optical properties into applications. As such, considerable efforts have been 

devoted to the synthesis of a large variety of 2D materials. Generally, all these methods can 

be classified into two categories: (i) top-down approaches, including mechanical exfoliation 

and liquid-phase exfoliation, and (ii) bottom-up approaches, including CVD. The top-down 

method relies on the exfoliation of layered bulk crystals into single or few-layer nano-sheets, 

in which various driving forces are used to break the weak van der Waals interaction between 

the stacked layers. However, the lack of uniformity in the exfoliated crystal’s size and shape 

appears an important issue that has motivated development beyond the fundamental studies. 

Figure 2.2 Crystal structures of sub-stoichiometric molybdenum oxides (a–e) as indicated in 

each image and showing their single unit cells.
27
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2.3.1 Mechanical exfoliation 

Mechanical exfoliation is a simple and popular technique to obtain single/few layers of MoO3 

by cleaving bulk crystals. The adjacent double layers of MoO6 octahedra are linked together 

only by weak van der Waals forces forming the layered structure of MoO3. The weak van der 

Waals forces between sheets can be overcome by applying a sufficient mechanical force 

perpendicular to the planar direction using adhesive tape. Eventually, a single atomic layer 

can be isolated from the bulk and deposited onto a substrate for characterisation. Novoselov 

et al. first used this method to peel off graphene layers from graphite.
20

 Since then it has been   

the mostly used technique to obtain 2D crystals (Figure 2.3a–d).
8
  This method is highly 

remarkable, as it offers a simple strategy for preparing 2D mono-atomic layers and it enables 

the fundamental study of the material.
40-42

 As such, most reported data and theory on the 

fundamental physics and devices of 2D materials have largely relied on the mechanical 

exfoliation method. Indeed, this produces high quality atomically thin and pristine crystals, 

but it is not scalable and does not allow for the controllable production of crystals with 

uniform thicknesses and size (Figure 2.3 e,f).
32  
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2.3.2 Liquid phase exfoliation  

Liquid-phase exfoliation is a high yield method to produce 2D crystals; this involves the 

exfoliation of the layers using the intercalation method.
43-44

 Different chemical elements are 

intercalated between the gaps of the layers, and they weaken the van der Waals bonding 

between the layers. The MoO3 crystals suspended in a suitable solvent are sonicated using a 

high-energy probe sonicator to create synergy with the surface energy of MoO3. The 

sonication process applies shear force on the surface of the crystals, which delaminates and 

exfoliates the layers of the crystals.,
23,45

 Subsequently, this suspension of exfoliated crystals 

is centrifuged to separate the lighter monolayers from their bulk counterparts. Figure 2.4a–c 

Figure 2.3 Micromechanical exfoliation of 2D crystals. (a) Adhesive tape is pressed against a 2D 

crystal so that the top few layers are attached to the tape (b). (c) The tape with crystals of layered 

material is pressed against a surface of choice. (d) Upon peeling off, the bottom layer is left on the 

substrate.
8
 (e) Typical optical image and atomic force microscopy (AFM) thickness  profiles (inset) of 

mechanically exfoliated MoO3 crystals.
32 
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illustrates the steps in a liquid exfoliation process.
7
 Dispersions of layered compounds in a 

liquid solution can be deposited over large areas, where the size and thickness of the material 

are comparatively controllable. Though it is a high-yield technique, the properties of the  

resulting exfoliated liquid differ from those of its bulk, as the solvent used for exfoliation 

may leave residue. Figure 2.4d–e shows the AFM image and transmission electron 

microscopy (TEM) images of liquid phase exfoliated 2D MoO3 crystals.
24

  

 

  

Figure 2.4 Liquid exfoliation processes. (a) Probe sonication (b) Centrifugation (c) Separation of 

monolayers.
7
 (d) AFM image and (e) TEM images of 2D α-MoO3 crystals.

24
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2.3.3 Chemical vapour deposition 

Bottom-up CVD is an effective technique that has recently been adopted for studying the 

scalable and reliable production of large-area 2D materials. In particular, this technique relies 

on the direct synthesis of 2D materials from different precursors by chemical reactions or the 

direct growth of the precursor under certain experimental conditions on various substrates.
46-

49
 Figure 2.5a illustrates the experimental setup for 2D MoO3-x growth.

12
  In a typical process, 

the given substrate is exposed to one or two reactive precursors at a high temperature in a 

high vacuum furnace. Herein the volatile precursors react and/or decompose on the surface of 

the substrate to form 2D crystals or large-area ultra-thin films. As such, 2D materials can be 

synthesised on a wafer scale by controlling the growth parameters (pressure, temperature and 

time, etc.), precursors and substrates. Ultra-thin 2D dichalcogenides with a high crystal 

quality, scalable size, tuneable thickness and excellent electronic properties are produced.
50-51

 

Kim et al. reported crystalline-layered nature of CVD-grown bulk MoO3 using single 

precursor MoO3 powder (Figure 2.5b, c).
52

 As such, the large area growth of 2D MoO3 would 

be worthwhile for fundamental study and its electronic applications. 

Figure 2.5 Schematic diagram of the CVD process for MoO3-x growth.
12

 (b) TEM cross-section image of 

the sample obtained by exposing the sample to a FIB; the inset shows the EDS spectrum of MoO3. (c) 

STEM mode image of MoO3.
52
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2.4 Applications 

The unprecedented physical, electronic, chemical and optical properties of 2D materials 

arising from their unique structural features offer great potential for numerous applications. 

The abundant numbers in the family of 2D materials with versatile properties enable us to 

select materials specific to the desired application. Ultrathin 2D materials have been explored 

for various uses in electronics, optoelectronics, gas and biosensors and energy storage.
2, 16, 19, 

53
 As such, some promising applications based on 2D material platforms, particularly 

focusing on FETs,
11, 21, 54-55

 resistive memory
56-57 

and gas sensors
58-59

 have been highlighted 

in this section. 

2.4.1 Field Effect Transistors 

The most important basic building block of modern-era electronic circuits is the FET, mostly 

used as a switch in digital circuits. An ideal transistor channel material should satisfy several 

criteria, such as having high charge carrier mobility for faster operation, high on/off ratios 

and a high dielectric value to reduce unexpected charge carrier scattering. Two-dimensional 

materials, representing the ultimate limit of miniaturisation in the vertical dimension, are 

therefore highly interesting, as they allow a great degree of electrostatic control. To date, 

graphene has been the most investigated 2D material, as it shows the high carrier mobility of 

10
5 

cm
2
V

-1
s

-1 
at room temperature due to confined electrons in graphene behaving like 

massless Dirac fermions.
60

 However, the lack of an intrinsic bandgap of graphene has drawn 

attention to alternative layered materials, such as transition metal dichalcogenides and MoS2, 

despite their electrical performance remaining relatively low.
61-63

 Radisavljevic et al. have 

reported modulation in single layer MoS2 where carrier mobility is ~217
 

cm
2
V

-1
s

-1 

(Figure 2.6a-c).
11

 Wide band gap MoO3 has a naturally low free-carrier concentration, which 



 

 
24 

is challenging for FET applications. Nonetheless, the stoichiometry of the material can be 

tuned, resulting in increased in free-carrier concentrations that lead to fabrication of 2D 

FETs. Indeed, electronic properties of liquid exfoliated 2D MoO3 nanoflakes have been 

successfully tuned by manipulating the level of oxygen deficiencies and used as printable 

semiconducting ink for printing and bio sensing FETs.
23,55

 Balendhran et al. reported that 

intrinsic high dielectric values of 2D MoO3 provide an environment that reduce Coulomb 

scattering during transport, resulting in enhanced carrier mobility (Figure 2.6d–f).
21

 

Furthermore, MoO3 was used as the surface over layer, which is able to modulate the 

transport properties of MoS2 based FETs.
64

 As such, exfoliated MoO3 with a high dielectric 

constant has been studied as a channel, as it shows excellent carrier mobility and a higher 

on/off ratio. 

Figure 2.6(a) AFM image of a single layer of MoS2 crystal and corresponding cross- sectional plot along the 

red line. (b) Room-temperature transfer characteristic for the FET with 10 mV applied bias voltage Vds. 

Inset: Ids-Vds curve acquired for Vbg values of 0, 1 and 5 V. (c) Ids-Vds curves recorded for different values of 

Vtg.
11

(d) AFM scan and the corresponding thickness profile of a MoO3 FET fabricated by electron beam 

direct writing. (e) Ids-Vds characteristics of the FET with varying back-gate voltages (Vgs) in steps of 0.4 V 

from −2 to + 2 V. (b) Corresponding Ids-Vgs curves of the FET acquired at Vds values of 20, 50, and 

100 mV.
21
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2.4.2 Resistive memories 

The current digital era of smart devices demands efficient and high-density electronics. It 

becomes notably difficult to retain a charge reliably in existing Si-based technology due to its 

theoretical and physical limitations.
65-67

 Non-volatile resistive memory technology has the 

potential to offer high-performance memory devices due to their simple physical structure, 

scalability and reliable characteristics. 
68-69

 Metal oxides with a high dielectric value are the 

most popular active material, as they exhibit reversible resistive switching behaviours. In 

general, the oxygen vacancies of the oxide material play an important role in such switching 

behaviour under the influence of applied external electric fields.
70

 These oxygen vacancies 

sometimes exist in the system, or they may be generated by inducing a thermal or electrical 

reduction. It is believed that under the influence of an applied electric field, these oxygen 

vacancies diffuse through the channel material that forms one/more conductive filamentary 

paths. Consequently, these filamentary paths form and rupture with changes in the biasing 

voltages. In some cases these oxygen vacancies causing physical deformation of the junction, 

which can be mitigated by shrinking to the nanoscale and controlling the electroforming 

voltage polarity.
70

 However, existing oxide-based memory cells experience several 

drawbacks, such as a high electroforming voltage, poor retention and low switching 

ratios.
64,71-78

 As a result, research has been extended to understand the resistive behaviour of 

2D materials, as they show excellent electronic properties. Several reports of reversible 

resistive memory applications based on 2D MoS2 have been published that show resistive 

memory, but with comparatively poor performances.
9,13,56

 Cheng et al. shown resistive 

memory behaviour in 1T phase MoS2 crystals (Figure 2.7a and b).
9
 Further, Sangwan et al.  

reported grain boundary mediated resistive memory behaviour in single layer MoS2 

(Figure 2.7c, d).
13

 M. Arita et al.  notably examined the potential of MoO3 prepared by 

thermal oxidation of Mo films, in the resistive random-access memory (RERAM) switching 
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(Figure 2.7e, f and g).
79 

However, neither reproducibility nor stability of the reported MoO3–

based ReRAM switching was significant. Z-H. Tan et al.  synthesised MoO3 nanobelts using 

hydrothermal method for a resistive switching performance study. This showed stable 

unipolar switching with high ON/OFF ratio  and demonstrated that the electroforming 

process introduces defect states in MoO3 (Figure 2.7h, i and j).
80 

Despite the high ON/OFF 

ratio, the cyclic endurance of the memory devices was not established. Thus,
 
MoO3 which 

can exist in multiple stable oxidation states is favourable for resistive switching memory 

devices. However, there is no detailed study of stable and repeatable 2D MoO3-based 

resistive switching applications. Considering the high-dielectric value of MoO3, and 

enhanced carrier mobility observed in 2D structures, it would be valuable to study the 

resistive memory behaviour of planar 2D MoO3.  

Figure 2.7(a) AFM image and corresponding height profile of MoS2 nanosheets (b) Typical I−V 

characteristic of Ag/MoS2/Ag switch at room temperature.
9
 (c) Schematic of a MoS2 memristor (d) Partial 

I–V characteristics of an electroformed MoS2 memristor.
13

 (e) I–V curve showing set and reset processes. 

(f) The log–log plot of the voltage and the current during the set process where the numbers denote the 

sequence of voltage application. (g) The endurance property where the resistance was estimated at 0.1 V. 
79

(h) scanning electron microscopy (SEM) image of an Au/MoO3/Au device.(i) R-V curves of the first cycle 

of voltage sweeping. (j) ON and OFF retention states.
80
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2.4.3 Sensors 

Environmental pollution is one of the greatest challenges in the modern era. The continuous 

emission of toxic gases in the air has accelerated the study and investigation of effective gas 

sensors. Among these gases, nitrogen oxide (NO2) and hydrogen sulphide (H2S) are highly 

toxic and hazardous. Even at significantly low concentrations, they cause severe effects on 

the nervous system.
81-82

 As such, detecting traces of such gases in the atmosphere is essential 

for both human health and environmental safety. Until now, semiconducting metal oxides are 

largely used as sensor materials due to their high sensitivity towards many target gases, as 

well as their low cost, easy fabrication and compatibility with present technology.
83-85

 

Accordingly, many metal oxides, such as SnO2,
84

 CuO
86-88

 and WO3,
89

 as well as MoO3
90-93

 

thin films and nanostructures, have been used to detect H2S and NO2, as they show excellent 

sensing properties. Among them MoO3 has been extensively studied in gas-sensing 

applications due to their noticeable surface sensitivity to reducing and oxidizing gases at 

elevated operating temperatures.
91-92

 However, the demand for highly sensitive, selective, 

low-power consuming and reliable sensors has motivated research on 2D material-based 

sensors. The high surface-to-volume ratio, along with the excellent electronic properties of 

2D materials, offer the potential for the detection of large amounts of target analysts per unit 

area, as well as result in a rapid response and recovery with low power consumption.
59,94-95

 

Donarelli et al. reported on chemically exfoliated MoS2 based conductometric gas sensors 

(Figure 2.8a).
10

 These exfoliated MoS2 flakes exhibited dynamic sensing response towards 

NO2 at a temperature of 200 °C. However, the sensors demonstrated poor selectivity, 

sensitivity and significantly long air recovery kinetics with unstable base line. Alsaif et al. 

has developed conductometric gas-sensors based on liquid exfoliated MoO3 for H2 sensing 

applications (Figure 2.8b–c).
24

 The MoO3 sensors demonstrated large sensitivity towards H2 
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with fast response and recovery time. Ji et al. prepared 2D MoO3 combining grinding and 

sonication exfoliation method, and used them for the detection of volatile organic compounds 

(VOCs) (Figure 2.8d–f).
95 95

 These 2D MoO3–based sensors showed significantly faster 

response and recovery compared to their bulk counterparts. Usually, arrays of sensors are 

used to identify and detect different type of gases, which increase the size of the device and 

power consumption.
96

 Thus, the detection of multiple gases using a single sensor is an 

effective solution which helps to reduce the sensor size and power consumption by 

minimising the number of sensors.
97

 Often gas sensors exhibit similar responses to a range of 

gases, which results in poor selectivity. So, the response sensitivity between two or more 

gases should be detectable and distinguishable for reliable selectivity. Several reports show 

that introducing oxygen vacancies in to the lattice of sensor materials enhances the response 

Figure 2.8 (a) Dynamic response of the MoS2 device toward NO2 in the range 20 ppb–1 ppm at 200 °C. 

Inset: magnified view of the electrical response to 20 ppb NO2.
10 

The actual resistance changes of (b) the 

MoO3/Si and (c) the MoO3/glass sensors in response to 1% of H2 gas in dry synthetic air with respect to 

time at different temperatures.
24 

(d) Transient sensor response toward 100 ppm alcohol vapor at different 

temperatures using MoO3 nanosheets. Inset shows the response and recovery curves for the senor at its 

optimum working temperature (e) Response and recovery curves of the MoO3 nanosheets based sensor 

toward different alcohol vapour concentration ranging from 10 ppm to 500 ppm at the optimum working 

temperature. (f) Sensor responses of those made of MoO3 nanosheets toward 100 ppm VOCs.
96
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performance.
98

 Thus, oxygen deficient 2D MoO3–based conductometric sensors have been 

developed and the response performances of such material towards NO2 and H2S gases were 

studied as a dual gas sensor. The distinctive and unique physical and enhanced electronic 

properties of 2D MoO3 made them promising candidates for the development of high 

sensitive and lower power consumption novel gas sensing applications.  

2.5 Conclusions 

Several synthesis methods for obtaining 2D MoO3 including a collective review on the 

applications of 2D MoO3 were presented in this chapter. However, research on 2D materials 

is in continuous progress and holds potential for the development of diverse range of 

applications. Based on the presented discussion, the following choices of study were made to 

address the identified knowledge gaps.  

It is found that the contemporary exfoliation techniques do not produce pristine crystals 

efficiently. Hence, the post deposition etching technique will be a novel route for obtaining 

2D crystals, as this direction has never been explored in order to obtain pure crystals of 2D 

MoO3 controllably. Consequently the study of both physical and electronic properties based 

on such etched 2D crystals would confirm the viability of the method and would be beneficial 

for nano-electronic applications. A detailed study on the etching method will be presented in 

Chapter 3.    

Though 2D materials show excellent electronic and physical properties, no study has been 

carried out for understanding the resistive memory behaviour of sub-stoichiometric 2D MoO3 

crystals. The sub-stoichiometric nature of MoO3 provides the oxygen deficiencies, which are 

required for electroforming and switching mechanism.  Hence, to understand the switching 

mechanism of such planar system, the sub-stoichiometric 2D MoO3 crystals-based memory-
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performance characterisation will be studied and presented in Chapter 4.  

Evidently, 2D materials have the potential to act as high performance sensor materials due to 

their unique physical properties, including a high surface-to-volume ratio, tuneable bandgaps 

and high absorption coefficient. However, the gas-sensing characteristics of 2D crystals in 

non-stoichiometric -MoO3 have rarely been studied. Exploration of such 2D gas-sensing 

systems is an important next step to realise high performance gas-sensing technology. As 

such,  a detail sensing characterisation of 2D non-stoichiometric α-MoO3 will be presented in 

Chapter 5.  
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Chapter 3 : FIELD EFFECT TRANSISTORS BASED ON 

CHEMICALLY ETCHED 2D MoO3   

Existing exfoliation techniques (both mechanical and liquid-phase exfoliation) to obtain 2D 

MoO3 do not produce high-yield pure crystals with a uniform thickness simultaneously. In 

this chapter, a novel wet chemical etching route in order to obtain 2D MoO3 crystals is 

presented. The reliability and repeatability of the chemical etching technique of obtaining 2D 

MoO3 is investigated thoroughly. In addition, extensive characterisations of MoO3 crystals 

are carried out pre- and post-etching to establish the material’s compositional integrity 

through the etching process. FETs based on these 2D MoO3 crystals have been demonstrated 

to assess the transport properties of the post-etched material. 

3.1 Introduction 

Two-dimensional materials yield a high specific surface area with quantum confinement of 

charge carriers, which offer extraordinary mechanical, optical and electronic properties in 

comparison to their bulk counterparts.
1-3

 Graphene has been the most investigated 2D 

material, since its discovery more than a decade ago. However, the lack of an intrinsic energy 

band gap has hindered the widespread deployment of graphene in nano-electronic 

applications.
4
 Hence, an extensive effort has been applied into the exploration of other 

semiconducting 2D materials, from both scientific and application point of view. Reliable 

production of high purity, crystalline 2D materials is a crucial aspect for studying them and 

translating their electronic and optical properties into a viable technology. 
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Typically, 2D materials can be realized by bottom-up synthesis and top-down exfoliation 

methods. CVD has been the most effective and widely adopted bottom-up technique, 

commonly used in the large area growth of 2D crystals (graphene,
5
 MoS2

6-7
). However, 

obtaining the desired thickness of 2D materials using CVD is rather complicated as it 

involves several parameters to be optimised such as amount of precursor, deposition 

temperature/pressure, and carrier gas flow rate. The top-down synthesis methods include 

mechanical
3, 8

 and liquid 
9-10

 phase exfoliation processes. Liquid phase exfoliation has a 

higher yield of 2D crystals, but generally carries significant traces of contaminants from the 

solvents which tend to affect the intrinsic properties of the material. As a result, the structural 

and electronic qualities of liquid phase exfoliated 2D materials are compromised. Mechanical 

exfoliation is the simplistic traditional process to achieve 2D crystals, first demonstrated for 

graphene.
11

 This process provides crystals of high purity, which is ideal for electronic device 

applications and fundamental research. However, the exfoliated crystals are found in random 

lateral sizes and thicknesses, making it challenging to obtain single crystals with desired 

thicknesses on-demand. As a result, post-deposition etching of the multi-layered crystals is a 

promising avenue towards the sustainable production of 2D crystals with desired thicknesses. 

Recently, wet chemical thinning of MoS2 using HNO3,
12

 laser thinning,
13

 and layer-by-layer 

thinning of MoS2 by using XeF2
14

 has been reported. However, there has not been any 

reported post deposition thinning method to controllably obtain 2D MoO3 crystals. 

This work explores a facile and low-cost, top-down, wet chemical etching method to obtain 

2D crystals of MoO3. The reliability and repeatability of the chemical etching process is 

investigated. Extensive characterisations of the MoO3 crystals are carried out pre- and post-

etching, in order to establish the retention of the material’s compositional integrity through 

the etching process. Field effect transistors (FETs) based on these etched crystals has been 

demonstrated to assess the transport properties of the post-etched material. 
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3.2 Experimental Section 

3.2.1 Preparation of MoO3 crystals 

Mechanical exfoliation of MoO3 crystals was conducted using polydimethylsiloxane (PDMS) 

as an alternative to the conventional scotch-tape method.
15

 Firstly, 80 nm SiO2/Si substrates 

were cleaned using acetone and isopropyl alcohol, followed by drying with compressed N2. 

Subsequently, the substrates were subjected to 5 min of oxygen plasma treatment, ensuring 

all organic residues are completely removed. The MoO3 crystals were then cleaved using 

flexible pieces of PDMS and transferred onto the SiO2/Si substrates. The samples were 

further subjected to oxygen plasma treatment for 2 min to remove any residue from PDMS. 

3.2.2 Chemical etching process 

A potassium hydroxide buffer solution was utilised as the etchant to thin the exfoliated MoO3 

crystals. This was chosen as a commercially available solution AZ400K (AZ Chemicals), 

which is routinely used as a developer in photolithography processes. A range of solutions 

with varying ratio of etchant: water content (1:100, 1:200, 1:300, 1:400, and 1:500) were 

prepared to identify the best ratio for controllable etching. The exfoliated MoO3 crystals were 

etched for a fixed duration of 5 s, at various etchant concentrations and the solution with the 

slowest etch rate was adopted for further experiment and characterisation. The thinning 

process was then repeated multiple times to establish repeatability. 

3.2.3 Characterisation  

The change in thickness of MoO3 crystals was measured using Digital Instruments D3100 

atomic force microscope (AFM) under tapping mode. LabRam HR Evolution Raman 
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Spectrometer (laser excitation at 532 nm with a 50× objective) was utilised to assess 

composition of MoO3 crystals before and after etching. A high resolution transmission 

electron microscope (JEOL 2100F at 200 KV) was utilised to characterise and compare the 

crystal structure of MoO3 before and after etching. The devices were characterised for their 

electronic transport properties in a back-gated FET configuration using semiconductor 

parameter analyser (Keithley 4200SCS). 

3.2.4 Field effect transistor fabrication  

Device fabrication was carried out on the etched crystals by adopting standard 

photolithography. Source and drain electrodes (Au 100 nm with Cr 10 nm to promote 

adhesion) were deposited using electron beam deposition. The fabricated devices were 

subjected to liquid phase H
+
 intercalation using 0.5 M H2SO4 in a propylene carbonate (PLC) 

solution at a constant bias voltage of 0.5 V. 

 3.3 Results and Discussion 

In this study, mechanically exfoliated crystals of MoO3 are employed. Thermodynamically 

stable orthorhombic -MoO3 phase, possesses double layers of MoO6, stacked together 

through weak van der Waals forces along the [010] vertical direction (Figure 3.1). Each 

double layer consists of edge-sharing MoO6 octahedra along the [001] direction and corner-

sharing rows along the [100] direction. This configuration allows easy exfoliation of layers 

from the parent crystal. Mechanical exfoliation preferentially breaks large crystals of MoO3 

along the [001] direction resulting in long rectangular crystals (Figure 3.1a,b). This can be 

attributed to the doubly-coordinated O(2) being weaker than the triply-coordinated O(3) 

(Figure 3.1a,b). 



 

 
45 

 

 

Typically, base (OH
–
) solutions are known to be solvents for metal oxides. Hence, we utilise 

a KOH-based buffer solution to controllably etch MoO3. Multiple etching experiments were 

conducted on mechanically-exfoliated MoO3 crystals, with varying concentrations of the 

etchant (in water) at a constant etch duration (5 s), in order to determine an optimum etchant 

concentration for controlled crystal thinning. Figure 3.2a shows the statistical data regarding 

the change in thickness (t) of multiple crystals with respect to etchant ratio, obtained using 

atomic force microscopy. As seen in the graph, t is very large (~65 nm) for a 5 s etch 

duration, at an etchant ratio of 1:100, where controllability of the change in thickness is 

Figure 3.1 Crystal structure of MoO3 crystal along (a) 001 direction and (b) 100 

direction. 
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minimal. The etchant is further diluted with water and, t is significantly lower (~5 nm) for 

the same etch duration, at an etchant ratio of 1:500. An overall decreasing trend of t with 

respect to the etchant ratio was observed, with the highest controllability achieved at an 

etchant to water ratio of 1:500. This is expected, as fewer number of cations in the etchant 

result in a weaker reaction with the edge sharing oxygen atoms in the crystal; thereby, 

providing controllability over the thinning process with respect to etch duration. As such, a 

ratio of 1:500 is adopted as the ratio for further characterisation of the thinning process. 

Subsequently, the MoO3 crystals were subjected to increasing etch durations using an etchant 

to water ratio of 1:500. The etch rate was calculated, by assessing the corresponding t. 

Figure 3.2b presents the statistical data regarding the variation in the etch rate with respect to 

the etch duration for multiple crystals, depicting a non-linearly rising trend in the etch rate. 

The non-linearity is expected due to the non-uniform distribution of the initial dimensions of 

the subjected crystals. The exponentially rising trend in the etch rate can be attributed to two 

factors: (i) the non-linearly increasing number of exposed dangling oxygen bonds in the 

crystal with progressing etch durations, and (ii) the exothermic process of the etching reaction 

results in moderately increased temperatures, which would accelerate the reaction rate with 

time.
14

 To confirm the repeatability of the process, the experiments were conducted multiple 

times and the etch rate was confirmed to be consistent with the observed trend at a confidence 

level of 95%.  
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Figure 3.2c shows the surface atomic force microscopy (AFM) scans of a MoO3 crystal prior 

to and after 25 s of etching. The corresponding cross-sectional thickness profile (indicated by 

the dotted lines) of the MoO3 crystal pre- and post-etching (at two etching steps) are 

indicative of the change in thickness. Cross-sectional profiles indicate that ~3 and ~33 mono 

layers of MoO3 have been etched after 5 and 25 s of etching, respectively. Based on the AFM 

analysis of the etched crystals, it can be seen that the top-down thinning process results in the 

bulk crystals of MoO3 being stripped down into 2D layers. The etch process is observed to 

start from the crystal edges and move inwards with time, resulting a slight reduction in lateral 

dimensions, as seen from the cross-sectional profile (Figure 3.2c). However, for longer etch 

durations (25 s) the change in thickness is uneven with bulges at the edges, which might 

result from the bending of unremoved MoO3 due to strong adsorption between the substrate 

and the material, at the edges of the crystals.
16

 

Figure 3.2 (a) Change in MoO3 crystal thickness vs. ratio of the etchant to water, at a fixed etch duration of 

5 s. (b) The etch rate vs. etch duration, at the optimum etchant ratio (1:500). Error bars in both (a) and (b) 

represent a confidence interval of 95%. (c) Atomic force micrographs of a MoO3 crystal before and after 

25 s of etching using the optimum ratio (1:500) of the etchant. The scale bar denotes 1 μm. The 

corresponding thickness profiles of the crystal along the dashed lines reveal the reduction in thickness. 
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The proposed two-step etching mechanism can be described as follows: 
17

 

          – –    
                                                                           (1) 

     – –    
      

                                                                (2) 

There are three distinct oxygen sites in each octahedra: O(1) is the singly-coordinated terminal 

oxygen, O(2) is the asymmetrically-bonded bridging oxygen with the two neighbouring Mo 

atoms, and O(3) is the triply-coordinated asymmetric oxygen with two Mo atoms oriented 

along the (001) plane  and one sublayer Mo atom
18

 (Figure 3.1a, b). The etching process can 

be seen as the breaking of the MoO6 octahedron to form a MoO4 tetrahedron after reacting 

with the hydroxyl group (OH
–
) present in the etchant. The difference in the bonding structure 

of Mo and O along the (100) and (001) planes results in different reactivities towards the 

etchant. The Mo and O atoms are unsaturated in the (100) planes, as the bridging oxygen O(2) 

between two Mo atoms becomes a terminal oxygen on the (100) plane after exfoliation. The 

OH
–
 reacts with these new terminal oxygen atoms forming H–O–MoO3

– 
and eventually 

produces MoO4
2–

. As such, an entire chain of MoO6 octahedron, that shares edges and 

vertices through cross-linking oxygen atoms, can be peeled off sequentially from the plane. 

Raman spectroscopy was employed to characterise the structural integrity of the material 

post-etching. Figures 3.3a-c show spatial map of the dominant Raman peak (820 cm
-1

) 

intensity of a pristine MoO3 crystal, sequentially subjected to the etching process. The 

820 cm
-1

 peak in the Raman spectrum denotes the stretching mode for doubly-coordinated 

oxygen.
8, 19-20

 The results indicate a reduction in Raman peak intensity with the etching 

process, which is attributed to the reducing number of MoO3 layers present in the crystal. 

Full-range Raman spectra (Figure 3.3d) show the other characteristic peaks for MoO3 at 115, 

157, 197, 283, 336, 363, 666, 819, and 995 cm
-1 8 

pre- and post-etching. The sharp nature of 
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the peaks suggests that the corresponding vibrational modes are from a highly-ordered 

structure. No shift in the positions of the peaks is observed post-etching, which suggests that 

the composition of MoO3 crystals is preserved.
9,21

 To verify the consistency and 

reproducibility of aforementioned observations, Raman analyses carried out on multiple 

MoO3 crystals are presented in Figure 3.3e. As seen in Figure 3.3e, a decrease in normalised 

peak intensity is indicative of the reduction in MoO3 crystal thickness,
8
 whereas the average 

peak shift observed (~0.35 cm
–1

) is negligible (being less than the resolution of the equipment 

0.5 cm
–1

). It can be concluded that the compositional integrity of the MoO3 crystal remains 

intact post-etching. 

Figure 3.3 Micro-Raman maps of a (a) pristine and (b) 5 s and (c) 25 s etched MoO3 crystal. Scale bar denotes 

2 µm. Micro-Raman spectra of mechanically-exfoliated a MoO3 crystal before and after etching steps. The 

etching was carried out using the optimum ratio (1:500) of the etchant for 5 s and 25 s. (e) The normalised 

Raman peak (820 cm
–1

) intensity and peak shift observed in multiple crystals subjected to the etch process. 
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High-resolution transmission electron microscopy (HRTEM) was utilised to compare the 

crystallinity of the pristine and etched MoO3 crystals. Figure 3.4a shows a pristine MoO3 

crystal with its corresponding selected-area electron diffraction (SAED) pattern (inset). 

Figures 3.4b and c present MoO3 crystals that were subjected to 5 s and 25 s of chemical 

etching, respectively. The SAED patterns acquired on multiple locations of the etched 

crystals are in agreement with that of the pristine MoO3 crystal. The lattice parameters 

calculated from the SAED patterns of the pristine and etched (5 s and 25 s duration) MoO3 

crystals show identical values, confirming there are no structural defects present initially or 

introduced by the etching process. 

 

To quantify the charge transport properties of the obtained 2D MoO3 (following 25 s of 

etching), field effect measurements were carried out in a back-gate configuration at room 

temperature. Ion intercalation was carried out in order to introduce sub-stoichiometry in the 

channel, making it ideal for FET applications.
9
 Typical drain current vs. voltage (I–V) 

characteristics of a MoO3 FET at an applied gate voltage in the range of −2.6 to 7 V are 

shown in Figure 3.5a. At a channel bias of 300 mV, an ON/OFF ratio of ~4,000 was observed 

(Figure 3.5b). A table including Vds and corresponding Ids of multiple working devices are 

Figure 3.4 Transmission electronic micrographs with SAED patterns (as insets) of the mechanically-

exfoliated and etched MoO3 crystals: (a) pristine, (b) 5 s etched, and (c) 25 s etched. The optimum ratio 

(1:500) etchant was utilised. 
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presented in Appenxdix A. The field effect carrier mobility was calculated using the 

following equation:  

      
    

  
 

     
                                                                              (3) 

where           is the transconductance, l is the channel length, w is the channel width, and 

C (~4.3×10
-8 

F/cm
2
) is the gate capacitance per unit area VDS is the drain–source voltage 

(300 mV). The carrier mobility was calculated to be ~175 cm
2
V

-1
s

-1
. The room temperature 

ON/OFF ratio and carrier mobility values of ~4,000 and 175 cm
2
V

-1
s

-1
, respectively are 

Figure 3.5 The experimental I–V characteristics of a 25 s etched MoO3 FET. (a) IDS vs. VDS 

characteristics of the FET with varying back-gate voltages (VGS) in steps of 0.2 V from −2.6 V to 

+7 V. Inset shows an optical micrograph of the FET. (b) Corresponding IDS–VGS curves of the 

FET acquired at VDS values of 300 mV. 
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comparable to other 2D dichalcogenide-based FETs.
22

 However, by adopting alternate device 

architectures and dielectric capping, carrier scattering can be further reduced, improving the 

carrier mobility. 

3.4 Conclusions 

In conclusion, the adopted wet chemical etching process provides a low-cost and easily 

deployable method to obtain high quality 2D crystals of MoO3. No compositional and 

structural changes in the MoO3 crystal are introduced as a result of the etching process. This 

is also evidenced by the demonstration of FETs which exhibit low-voltage switching ratios 

that are >10
3
. This provides a controllable and simple process to integrate 2D MoO3 as the 

functional and tunable material in 2D electronics. 
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Chapter 4 : REVERSIBLE RESISTIVE SWITCHING 

BEHAVIOUR IN LAYERED MoOx 

Memristors have the potential for use in future-generation memory applications. In this 

chapter, the characterisation of MoO3-based memory cells is presented. MoO3 is a potential 

two-dimensional transition metal oxide with enhanced electronic transport properties, and it 

can be easily tuned via the manipulation of its stoichiometry. Hence, exploiting the planar 

form of sub-stoichiometric MoO3 in its multi-oxidation states has the potential to offer higher 

switching ratio and low power-resistive memory elements.  Extensive characterisation has 

been carried out on the as-grown material to study the chemical composition and crystalline 

structure of the material. The suitability of the material in non-volatile memory applications 

was experimentally assessed via cyclic repeatability and memory retention tests. 

4.1 Introduction  

Existing Si-based technologies for the current computing systems has reached their physical 

limits, as the modern devices demand efficient and high-density electronics.
1
 Resistive 

memory devices or memristors are two-terminal ‘memory resistors’ that can store 

information in the form of resistance states. The resistive states of such a device rely on the 

history of applied voltage and can be reversibly switched.
2
 In theory, non-volatile resistive 

memory technology holds potential,
3-5

 as it possesses superior features; including non-

volatile electrical switching, longer memory retention, high data density and compatibility 

with contemporary complementary metal oxide semiconductor (CMOS) technology.
6-8

 They 
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can also be easily scaled down to less than 10 nm,
6
 and offer ease of fabrication.

9
 Several 

metal oxides such as, TiO2,
10-13

 WO3,
14

 VO2,
15

 STO,
16-19

 ZnO,
20

 TaO2
21

 and HfO2 
22-23

 have 

been used as the active material, which exhibit reversible resistive switching behaviours. 

Among them, high dielectric binary metal oxides such as, TiO2, TaO2, HfO2 have been 

extensively studied as resistive switching layers for CMOS technology. High dielectric oxide 

layers have the potential to suppress sneak path current and undesirable parasitic effects 

during resistive switching performance. However, there are several drawbacks such as high 

electroforming voltage and in other cases; poor memory retention and switching ratios are 

observed.  As the field is still at its infancy, significant progress is yet to be made, in order to 

integrate memristor technology into the existing CMOS based nano-electronics. As such, to 

realise practical resistive memory devices, a versatile material with multiple stable 

stoichiometries that offers high switching ratios is essential.  

Molybdenum oxide (MoOx) is a potential two-dimensional transition metal oxide with 

enhanced electronic transport properties, which can be easily tuned via the manipulation of its 

stoichiometry.
24-25

 MoOx can be obtained in two stable states, MoO2 and MoO3. MoO2 is the 

lowest oxidation state Mo
4+

, which exists as a distorted rutile-type monoclinic structure and 

shows semi-metallic properties. On the other hand, the highest oxidation state of MoO3 is a 

wide bandgap semiconductor that occurs in an orthorhombic-layered structure. In-between 

exists the oxygen-deficient intermediate state MoO3-x, that can be tuned to behave anywhere 

from semi-metallic to insulating. The multitude of stable stoichiometries of MoOx along with 

high thermodynamic stability renders it ideal for resistive memory applications. To date, 

resistive memory behaviour of bulk MoO3 composites have been studied.
26-29

 However, 

exploiting the planar form of non-stoichiometric MoOx in its multi-oxidation states has the 

potential to offer higher switching ratio, and low power resistive memory elements.    
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In this work, CVD grown thin layers (~25 nm) of MoOx has been introduced as a resistive 

switching oxide for non-volatile memory applications, in cross-planar device architecture. 

Extensive characterisation has been carried out on the as-grown material to establish the 

chemical composition and crystalline structure. The suitability of the material in non-volatile 

memory applications has been experimentally assessed via cyclic repeatability and memory 

retention tests. 

4.2 Experimental Section 

4.2.1 CVD growth of MoOx 

MoOx film with thickness of 25-30 nm was deposited on patterned bottom Pt/Ti 

electrodes on SiO2/Si substrates using chemical vapour deposition at 530 °C. The 

precursor (MoO3 powder, 5 mg) was placed in the middle zone (785 °C) of a 

horizontal 3-zone furnace. The growth substrates were placed downstream in the third 

zone, at 530 °C. Argon was used as the carrier gas at a rate of 100 sccm and a chamber 

pressure of 300 mT has been maintained. The furnace was ramped up to the set 

temperatures in 50 minutes and then maintained the set temperatures for 10 minutes 

for the reaction to occur. Thereafter, the furnace was allowed to cool down naturally. 

A table comparing the growth conditions of crystalline MoO3 from existing literature 

is presented in appendix B.   

4.2.2 Material characterisation 

The thickness of MoOx layer was measured using Dimension Icon Bruker atomic force 

microscope under ScanAsyst Air mode. LabRam HR Evolution Raman Spectrometer 
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(laser excitation of 532 nm with a 50× objective) has been utilised to assess the 

composition of the as-grown MoOx, prior to device fabrication. X-ray diffractograms 

were collected using a Bruker D4 Endeavor XRD instrument with monochromatic Cu 

Kα as radiation source, within an angular range 2θ from 20° to 60°. X-ray 

photoelectron spectroscopy was performed using a Thermo Scientific K-alpha X-ray 

Photoelectron Spectrometer with an Al Kα radiation source with energy of 1485 eV. 

Adventitious carbon peak at 284.8 eV has been used as the calibration reference for 

fitting of the core level spectra of the principal elements. A FEI Nova NanoSEM has 

been utilised to characterise the morphology of the devices after patterning top 

electrode. 

TEM lamella samples have been prepared using focused ion beam milling in a FEI 

Scios DualbeamTM scanning electron microscope. Cross-sectional analysis and 

energy-dispersive X-ray spectroscopy are performed on a JEOL 2100F scanning 

transmission electron microscope (STEM) with attached Tridium Gatan image filter.  

4.2.3 Cross-point device fabrication 

MoOx memory devices in cross-point configuration (square overlap areas with sides of 2-40 

µm) were fabricated on SiO2/Si substrates, using a three-step photolithography and lift-off 

process. Metal thin films of 30 nm Pt with a 5 nm Ti adhesion layer were deposited as bottom 

electrodes via electron beam evaporation at room temperature. Subsequently, MoOx was 

deposited over the bottom electrodes using a CVD process. Typically, de-wetting of Pt is 

initiated at temperatures higher than 600 °C,
30 

which is much higher than the deposition 

temperature of MoOx (530 °C) in this work. As such, it is confirmed that the de-wetting does 
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not occur on the bottom electrode. Thereafter, top electrodes of 30 nm Pt (with a 10 nm Ti 

adhesion layer) were deposited via electron beam evaporation. Finally, photolithography and 

selective MoOx etching was utilised to reveal the bottom electrode pads, for electrical 

characterisation. 

 4.2.4 Electrical characterisation 

Two-terminal electrical characterisation was performed using an Agilent B2912A source with 

a micromanipulator probe station.  Bipolar current–voltage (I–V) sweep cycles, memory 

retention and cyclic endurance tests were performed on the fabricated devices. All electrical 

characterisations were performed by applying a bias voltage to the bottom electrode with the 

top electrode being grounded. 

4.3 Results and Discussion 

AFM has been utilised to measure the thickness of the CVD grown oxide films. In order to 

measure the step thickness of the as grown film, photolithography and subsequent selective 

area etching of MoOx, was carried out.
24

 Figure 4.1a shows the AFM image and the thickness 

profile of the as-deposited material. The thickness profile revealed that the as-grown material 

is ~25 nm thick (Figure 4.1a). Raman spectroscopy has been employed to assess the chemical 

composition of the as-grown oxide layer. Figure 4.1b shows the micro-Raman spectrum of 

the CVD grown film, in which Raman signature peaks corresponding to MoOx (MoO2, 

MoO3-x and MoO3) were identified. The low intensity characteristic peaks at 356 cm
-1

 and 

732 cm
-1

 confirm the presence of an intermediate oxidation state (MoO3-x) indicative of 

localised Mo
5+

, produced due to oxygen vacancies.
31-32

 The high intensity peak at 201 cm
-1

 

and relatively lower intensity peaks at 493 cm
-1

 and 567 cm
-1

 suggest the presence of Mo
4+

 in 
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the as-grown material.
31, 33

 Peaks observed at 820 cm
-1

 and 995 cm
-1

 can be correlated to the 

Mo
6+

 oxidation state of α-MoO3.
31, 34

 The Raman analysis indicates that a mixture of 

molybdenum oxide species (Mo
4+

, Mo
5+

, and Mo
6+

) are present in the as-deposited film.  

To further analyse the compositional ratio of the oxide species, high resolution X-ray 

photoemission spectroscopy (XPS) measurements were carried out (Figure 4.1c). 

Adventitious carbon C 1s peak at 284.8 eV has been taken as a reference which shows no 

charge shifting.
35

 The presence of C 1s peak is due to the expected carbon contamination 

from the environment. Typically, a Mo 3d-doublet with a spin-orbit component of Mo 3d5/2 

and Mo 3d3/2 is associated with a single oxidation state in molybdenum oxides. The de-

convolution and the curve fitting of the XPS spectrum reveals that Mo 3d spectrum can be 

well fitted with three sets of 3d doublets in the form of a Gaussian function, which are 

corresponding to three oxidation states of Mo. The peak fitting has been done with a fixed 

energy gap of 3.2 eV for the doublet of spin-orbit coupling peaks. The convoluted peaks also 

show that the ratio of the integral areas between two doublets is 3:2 and have the same full 

width at half maximum (FWHM) values for each doublet.
34, 36

 The binding energy values 

corresponding to 232.7 eV (Mo 3d5/2) and 235.9 eV (Mo 3d3/2) are characteristics of 

oxidation state of Mo
6+

.
37-38

 Whereas, the peaks at 229.4 eV (Mo 3d5/2) and 232.6 eV (Mo 

3d3/2) are assigned to Mo
4+

 oxidation state.
39

 In addition, a third pair of doublets at 231.3 eV 

(Mo 3d5/2) and 234.5 eV (Mo 3d3/2) corresponding to Mo
5+

 are also observed.
40

 Based on the 

XPS analysis, it can be concluded that the as-deposited material is a combination of multiple 

oxidation states of Mo (26% Mo
4+

, 46% Mo
5+

 and 28% Mo
6+

). The calculated atomic mass 

percentages of each oxidation state and their corresponding binding energy values are listed 

in Table 1.  
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Table 4 1 Binding energy values for Mo 3d spin-orbit component of molybdenum oxide at various oxidation 

states 

Oxidation state 

Binding Energy 

value (eV) 
Concentration 

(Atomic%) 

Mo3d5/2 Mo3d3/2 

Mo
4+

 229.4 232.6 26% 

Mo
5+

 231.3 234.4 46% 

Mo
6+

 232.7 235.9 28% 
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To investigate the crystallinity of the as-grown material, X-ray diffraction (XRD) patterns 

were recorded (Figure 4.1d). The diffractogram shows two dominant peaks at 26.1° and 

37.5°, corresponding to (011) and (002) planes, respectively, of monoclinic MoO2 (JCPDS 

No. 78-1070).
41-42

 There are two comparatively low intensity peaks at 38.9° and 40.6° 

correspond to (060) plane of MoO3 (JCPDS No. 05-0508) and (203) plane of MoO3-x (JCPDS 

No. 05-0337), respectively. The XRD patterns indicate a dominant presence of monoclinic 

MoO2 co-existing with MoO3-x and MoO3, further validating the conclusions derived from the 

Figure 4.1 Characterisation of chemical vapour deposition grown MoOx: (a) Atomic force micrograph with the 

cross-sectional thickness profile, (b) micro-Raman spectra, (c) X-ray photoelectron spectra of Mo 3d XPS peaks 

with fitted spin-orbit components, and (d) X-ray diffractogram. 
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Raman and XPS analyses. However, once the material is subject to electric fields (an 

electroforming process), it transforms to predominantly MoO3-x (discussed later). 

Typically, resistive states of the memristors are electrically manipulated by controlling 

conductive filaments that are composed of oxygen vacancies. Since the oxygen vacancies are 

widely dispersed in metal oxides, an application of a large electric field across the material is 

required for the initial formation of conductive filaments (electroforming process). Upon 

electroforming, the material switches from a high resistive state (HRS) to a low resistive state 

(LRS). Subsequently, depending on the polarity of the applied electric field, the oxygen 

vacancies can be scattered to rupture the conductive paths (to achieve HRS) or concentrated 

to re-form conductive filaments (to achieve LRS).
10, 16, 43-45

 Owing to the formation and 

rupture of the conductive filaments, a reversible behaviour in the resistive state of the 

material can be observed. The current–voltage (I–V) characteristics curve of such a device 

exhibits a pinched hysteresis trend, illustrating the reversible switching between the low and 

high resistive states of the material. 

Cross-point memory cells were fabricated on large area CVD grown MoOx (see experimental 

section). Figure 4.2a shows a schematic illustration of the Pt/Ti/MoOx/Pt/Ti cross-point 

memory cell while Figure 4.2b and c, present optical and scanning electron micrographs of an 

as fabricated device, respectively. To electroform the as-fabricated devices, a set of positive 

bias (0 to +5 V) and subsequent negative bias was applied across the bottom and top 

electrodes. A current compliance limit of 800 µA was set to prevent any dielectric breakdown 

of the device. The electroforming process was observed to take place at an applied voltage of 

-2.7 V, where the device resistance was reduced by several orders of magnitude. 
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Following the electroforming process, several cycles of bipolar switching voltage were 

applied, and the devices show reversible resistive switching behaviour over multiple cycles. 

Figure 4.3a shows the electrical characteristics of an electroformed memory cell, when 

subjected to voltage sweeps of -2.0 V to +2.5 V. Minor fluctuations in threshold voltages are 

observed in the pinched hysteresis loops. Such negligible fluctuations are attributed to the 

variations in IHRS, which is caused by the existence of conductive filamentary paths that can 

survive the RESET process, and the stochastic nature of filament formation.
46

 Figure 4.3b 

shows the statistical distribution of the switching voltages (VSET and VRESET), observed in the 

cyclic switching results presented in Figure 4.3a.  The VSET ranges from -0.7 to -1.3 V with a 

mean value of -1.09 V and the VRESET ranges from +2.2 to +2.6 V with a mean value of +2.3 

V. The stability of the resistive states was measured over a long period of time, to acquire the 

memory retention characteristics of the electroformed devices. Figure 4.3c shows the stability 

of the resistive states for durations of over 10
4
 s, at room temperature. Here, the ON/OFF 

ratio was consistently maintained above 10
3
 without any deterioration, at a read voltage of 

500mV. As such the retention test reveals robust non-volatile behaviour of the devices and 

reliability of the material for memory applications. Electrical endurance tests were performed 

at room temperature to evaluate the cycle-to-cycle stability and reproducibility of MoOx-

Figure 4.2 (a) Schematic illustration of the cross-point memristor device architecture. (b) Optical and (c) 

scanning electron micrographs of an as-fabricated memristor. 
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based devices. The current values (ILRS and IHRS) of a memory cell were extracted at a read 

voltage of 500 mV, while the device was subjected to a train pulse of (2 ms pulse width) 

alternating write and erase cycles (Figure 4.3d). The associated energies for SET and RESET 

switching were computed to be 6.7 µJ to 18 nJ range during the pulse. Further details on the 

train pulse during endurance performance and the computed energy consumption are 

presented in Appendix B. The device was observed to have successfully retained the two 

distinct resistance states for >6000 repetitive cycles while maintaining a switching ratio of 

~10
3
. Within the LRS and HRS, the resistance values appear to be dispersive. Such behaviour 

suggests that the switching is caused by several filamentary paths.
46

 Endurance failure in such 

devices is caused by Joule heating and repetitive redox reactions leading to the formation of 

permanent filamentary paths, at which point the devices continue to remain in their LRS. A 

quantitative comparison resistive switching performance of various 2D memristors has been 

presented in Appendix B. Further, a table representing multiple device performance is 

presented in Appendix B.  
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 To understand the charge transfer and switching mechanism in the MoOx memory clearly, I-

V characteristics curves are plotted on a double logarithmic scale. Figure 4a, b show the I-V 

curves for both positive and negative biasing.  The characteristics curve shows Ohmic 

conduction behaviour (I∞V)
47-48

 in LRS region for both positive and negative biasing. The I-

V characteristics curve in HRS during positive biasing, shows I∞V relationship at lower 

voltages and I∞V
≥2

 at higher voltages, indicating a space charge limited conduction (SCLC) 

mechanism.
49

 The HRS region during negative biasing can be divided in to two parts. In the 

Figure 4.3 switching cycles. (b) Statistical analysis of the switching voltages over 100 switching cycles. 

(c) Retention of the resistive state with respect to time. (d) Performance endurance with respect to number 

of switching cycles. (Resistance values obtained at a read voltage of 500 mV). Inset shows the voltage 

pulse train during endurance measurement with duration of 2 ms of each pulse.  
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lower voltage region, the current decreases with an increase in applied voltage, which 

suggests the existence of a reverse built-in electric field.
50-52

 This is attributed to the 

interfacial Ti layer, which has a tendency to oxidise, creating a reverse built in potential near 

the top electrode interface. Once this voltage is breached, the current then increases with an 

increasing bias voltage, which is in good agreement with SCLC mechanism.  

Based on the above results, a physical model of oxygen vacancy migration and filaments 

formation has been developed and a schematic illustration of the resistive switching 

mechanism is presented in Figure 4.4c. The pristine MoOx cells contain randomly distributed 

positively charged oxygen vacancies (the presence of Mo
5+

),
53

 which act as mobile donors in 

the oxide layers.
54

 As the applied voltage increases, the oxygen vacancies present in the oxide 

layers migrate in the direction of applied field and accumulate near the bottom electrode. 

Eventually this oxygen deficient region forms single/multiple conductive filaments between 

the electrodes, leading to LRS of the material. Subsequently, a positive bias at the bottom 

electrode (Pt) repels the oxygen vacancies from the electrode, resulting in the partial rupture 

of the conductive filaments. Consequently, the memory cell reverts back to a HRS between 

the electrodes (RESET). Conversely, a smaller negative bias (relative to the electroforming 

voltage), enables the reformation of the filaments and allow the cell to switch back to a LRS 

(SET). As such, the partial rupture and the reformation of filaments composed of oxygen 

vacancies, result in the resistive switching of layered MoOx.  
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To analyse the structural integrity of the resistive memory cells, cross-sectional high-

resolution transmission electron microscopy (HRTEM) of pristine and electroformed memory 

cells was undertaken (Figure 4.5). The MIM interface can be clearly identified on the 

HRTEM images for both the pristine and electroformed devices. The HRTEM image of a 

pristine memory cell reveals the presence of both polycrystalline and amorphous phases in 

the MoOx stack (inset of Figure 4.5a). For the compositional analysis of the distinct phases, 

Figure 4.4 I-V characteristics curves of both (a) positive and (b) negative bias regions of the MoOx memory 

device, plotted in a double-logarithmic scale. Both LRS and HRS are included on this plot. (c) Schematic 

illustration of electroforming and subsequent switching mechanisms in MoOx memory cells. Bottom electrode 

is biased and the top electrode remains grounded.
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three regions of interest (ROIs) were selected (highlighted in Figure 4.5a). The fast Fourier 

transform (FFT) diffraction pattern of the first ROI shows the amorphous nature of the film. 

In the other two distinct ROIs, (001) plane of α-MoO3 and (002) plane of MoO2 were 

identified. This agrees with the XPS characterisations confirming the existence of multiple 

oxidation states in the metal oxide layer (MoO3, MoO3-x, and MoO2). However, the cross-

sectional HRTEM image of the electroformed device reveals only one type of crystalline 

structure, corresponding to MoO3/MoO3-x (Figure 4.5b). Inset at the top shows the FFT 

diffraction pattern of the selected ROI. The diffraction spots with d-spacing 0.36 nm are 

indexed to (001) plane corresponding to orthorhombic MoO3/MoO3-x. The phase change of 

the material suggests that the process of electroforming predominantly oxidises the Mo
4+

 to 

Mo
5+

/Mo
6+

 states. The diffraction patterns corresponding to (001) are used to generate the 

inverse FFT, which highlights the dominant existence of MoO3/MoO3-x, in the ROI (Figure 

4.5b, bottom right inset). A further analysis on the inverse FFT of the cross-sectional area 

(pre- and post-electroformed cell) is presented in Appendix B. Utilising ImageJ, it is 

determined that the 72.50% of the pristine cell is crystalline MoO3/MoO2 and 94.11% of the 

electroformed cell remains crystalline sub-stoichiometric MoO3. Such a transition is expected, 

as the lower oxidation states (Mo
4+

) get oxidised into higher states (Mo
5+

/Mo
6+

), due to Joule 

heating induced by the localized electrical stress. Based on the TEM analyses, it can be 

conferred that the applied electric field, changes the material composition from its multi-

oxidation state to a sub-stoichiometric form of MoO3.  

To ensure the integrity of the MIM architecture post electroforming, an elemental analysis on 

the cross section of the devices was carried out using energy dispersive spectroscopy (EDS). 

Cross-sectional scanning transmission electron microscopy (STEM) image and the 

corresponding elemental EDS maps carried out on a pristine (Figure 4.5c) and an 
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electroformed device (Figure 4.5d) are presented. The MIM structure was well maintained 

pre- and post-electroforming process, with no diffusion of metal observed through the oxide 

(Pt/Ti/MoOx/Pt/Ti). Slight overlap of the elements in the interfacial region is attributed to the 

localised Joule heating and the resolution of the imaging technique. It is inaccurate to draw a 

conclusion from the oxygen map, as the cross-sectional sample preparation involves high-

energy focussed ion beam milling process, which typically results in oxygen contamination. 

Based on these results, metal diffusion is eliminated as a contributing factor in the switching 

process and the MoOx layer is concluded as the sole contributor to the observed resistive 

switching. 
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 4.4 Conclusions 

In conclusion, resistive switching behaviour has been demonstrated in CVD grown ultra-thin 

MoOx films. The switching performance of cross-point MoOx memory devices are driven by 

the presence of oxygen vacancies, due to the various oxidation states co-existing in the as-

grown material. The composition of the as-grown MoOx films are thoroughly characterised 

Figure 4.5 Structural analyses of a pristine and an electroformed device. (a) The cross-sectional HRTEM image 

of a pristine cell. Insets showing different lattice parameters indicating the co-existence of multi-oxidation state 

of molybdenum oxide (MoO2 and MoO3). (b) HRTEM image of an electroformed cell. Insets are the FFT 

image and inverse FFT of the ROI in (b). The cross-sectional EDS elemental maps of (c) a pristine device cell 

and (d) an electroformed cell.
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through multiple spectroscopic techniques. However, it is found that post electroforming, the 

material composition changes to an oxygen-deficient MoO3-x film. The room temperature 

memory retention tests show high ON/OFF ratios exceeding ~10
3
 for durations over 10

4
 s. 

The cyclic endurance of the memory devices shows that they remain stable over 6000 cycles, 

while maintaining a switching ratio of ~10
3
. The devices also exhibit relatively lower 

electroforming voltages (~2.7 V) in comparison to other high dielectric metal oxides. As 

such, this work showcases the adaptability of MoOx nanofilms, in non-volatile resistive 

memory applications for future integrated two-dimensional electronics. 

4.5 References  

1. Kingon, A. I., et al., Alternative dielectrics to silicon dioxide for memory and logic 

devices. Nature 2000, 406 (6799), 1032-1038. 

2. Waser, R., et al., Redox-based resistive switching memories - Nanoionic mechanisms, 

prospects, and challenges. Adv. Mater. 2009, 21 (25-26), 2632-2663. 

3. Sawa, A., Resistive switching in transition metal oxides. Mater. Today 2008, 11 (6), 

28-36. 

4. Kim, K. M., et al., Nanofilamentary resistive switching in binary oxide system; a 

review on the present status and outlook. Nanotechnology 2011, 22 (25), 254002. 

5. Yoshihisa, F., Review of emerging new solid-state non-volatile memories. Jpn. J. 

Appl. Phys. 2013, 52 (4R), 040001. 



 

 

 

73 

6. Mohammad, B., et al., State of the art of metal oxide memristor devices. Nanotechnol. 

Rev. 2016, 5 (3), 311-329. 

7. Sangwan, V. K., et al., Gate-tunable memristive phenomena mediated by grain 

boundaries in single-layer MoS2. Nat. Nanotechnol. 2015, 10 (5), 403-406. 

8. Cheng, P., et al., Memristive behavior and ideal memristor of 1T phase MoS2 

nanosheets. Nano Lett. 2016, 16 (1), 572-576. 

9. Liang, L., et al., Vacancy associates-rich ultrathin nanosheets for high performance 

and flexible nonvolatile memory device. J. Am. Chem. Soc. 2015, 137 (8), 3102-8. 

10. Pickett, M. D., et al., Switching dynamics in titanium dioxide memristive devices. J. 

Appl. Phys. 2009, 106 (7), 074508. 

11. Xia, Q., et al., Impact of geometry on the performance of memristive nanodevices. 

Nanotechnology 2011, 22 (25), 254026. 

12. Yang, J. J., et al., The mechanism of electroforming of metal oxide memristive 

switches. Nanotechnology 2009, 20(21), 215201. 

13. Huang, J.-J., et al., Transition of stable rectification to resistive-switching in Ti/TiO2/Pt 

oxide diode. Appl. Phys. Lett. 2010, 96 (26), 262901. 

14. Qu, B., et al., Recent progress in tungsten oxides based memristors and their 

neuromorphological applications. Electron. Mater. Lett. 2016, 12 (6), 715-731. 

15. Hota, M. K., et al., Electroforming free resistive switching memory in two-

dimensional VOx nanosheets. Appl. Phys. Lett. 2015, 107 (16), 163106. 



 

 

 

74 

16. Nili, H., et al., Nanoscale resistive switching in amorphous perovskite oxide (a-

SrTiO3) memristors. Adv. Funct. Mater. 2014, 24 (43), 6741-6750. 

17. Nili, H., et al., Donor-induced performance tuning of amorphous SrTiO3 memristive 

nanodevices: Multistate resistive switching and mechanical tunability. Adv. Funct. Mater. 

2015, 25 (21), 3172-3182. 

18. Nili, H., et al., Microstructure and dynamics of vacancy-induced nanofilamentary 

switching network in donor doped SrTiO3-x memristors. Nanotechnology 2016, 27 (50), 

505210. 

19. Ahmed, T., et al., Transparent amorphous strontium titanate resistive memories with 

transient photo-response. Nanoscale 2017, 9 (38), 14690-14702. 

20. Qi, J., et al., Multimode resistive switching in single ZnO nanoisland system. Sci. Rep. 

2013, 3, 2405. 

21. Zongwei, W., et al., Modulation of nonlinear resistive switching behavior of a TaOx-

based resistive device through interface engineering. Nanotechnology 2017, 28 (5), 055204. 

22. He, W., et al., Customized binary and multi-level HfO2-x-based memristors tuned by 

oxidation conditions. Sci. Rep. 2017, 7 (1), 10070. 

23. Chen, Y. S., et al., Well controlled multiple resistive switching states in the Al local 

doped HfO2 resistive random access memory device. J. Appl. Phys. 2013, 113 (16), 164507. 

24. Rahman, F., et al., Two-dimensional MoO3 via a top-down chemical thinning route. 

2D Mater. 2017, 4 (3), 035008. 



 

 

 

75 

25. Balendhran, S., et al., Enhanced charge carrier mobility in two-dimensional high 

dielectric molybdenum oxide. Adv. Mater. 2013, 25 (1), 109-114. 

26. Tan, Z.-H., et al., One-dimensional memristive device based on MoO3 nanobelt. Appl. 

Phys. Lett. 2015, 106 (2), 023503. 

27. Lee, D., et al., Resistance switching of copper doped MoOx films for nonvolatile 

memory applications. Appl. Phys. Lett. 2007, 90 (12), 122104. 

28. M Arita, H. K., T. Fujii, Y. Takahashi, Resistance switching properties of molybdenum 

oxide films. Thin Solid Films 2012, 520, 4762-4767. 

29. Bessonov, A. A., et al., Layered memristive and memcapacitive switches for printable 

electronics. Nat. Mater. 2015, 14 (2), 199-204. 

30. Lee, J.-M.; Kim, B.-I., Thermal dewetting of Pt thin film: Etch-masks for the 

fabrication of semiconductor nanostructures. Mater. Sci. Eng. A 2007, 449-451, 769-773. 

31. Camacho-López, M. A., et al., Micro-Raman study of the m-MoO2 to α-MoO3 

transformation induced by cw-laser irradiation. Opt. Mater. 2011, 33 (3), 480-484. 

32. Pham, D. V., et al., Doping-free bandgap tuning in one-dimensional Magneli-phase 

nanorods of Mo4O11. Nanoscale 2016, 8 (10), 5559-5566. 

33. Spevack, P.; McIntyre, N., Thermal reduction of MoO3. J. Phys. Chem. 1992, 96 (22), 

9029-9035. 

34. Hu, X. K., et al., Comparative study on MoO3 and HxMoO3 nanobelts: Structure and 

electric transport. Chem. Mater. 2008, 20 (4), 1527-1533. 



 

 

 

76 

35. Spevack, P. A.; McIntyre, N. S., A Raman and XPS investigation of supported 

molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 1993, 97 

(42), 11020-11030. 

36. Wang, C., et al., Role of molybdenum oxide for organic electronics: Surface analytical 

studies. J. Vac. Sci. Technol. B 2014, 32 (4), 040801. 

37. Scanlon, D. O., et al., Theoretical and experimental study of the electronic structures 

of MoO3 and MoO2. J. Phys. Chem. C 2010, 114 (10), 4636-4645. 

38. Choi, J. G.; Thompson, L. T., XPS study of as-prepared and reduced molybdenum 

oxides. Appl. Surf. Sci. 1996, 93 (2), 143-149. 

39. Baltrusaitis, J., et al., Generalized molybdenum oxide surface chemical state XPS 

determination via informed amorphous sample model. Appl. Surf. Sci. 2015, 326, 151-161. 

40. Sunu, S. S., et al., Electrical conductivity and gas sensing properties of MoO3. Sens. 

Actuators, B 2004, 101 (1-2), 161-174. 

41. Hao, S., et al., Chemical vapor deposition growth and characterization of drop-like 

MoS2/MoO2 granular films. Phys. Status Solidi B 2017, 254 (4), 1600245. 

42. Kumari, L., et al., X-ray diffraction and Raman scattering studies on large-area array 

and nanobranched structure of 1D MoO2 nanorods. Nanotechnology 2007, 18 (11), 115717. 

43. Ielmini, D., Resistive switching memories based on metal oxides: mechanisms, 

reliability and scaling. Semicond. Sci. Technol. 2016, 31 (6), 063002. 



 

 

 

77 

44. Zongwei, W., et al., Modulation of nonlinear resistive switching behavior of a TaOx-

based resistive device through interface engineering. Nanotechnology 2017, 28 (5), 055204. 

45. Chen, J.-Y., et al., Switching kinetic of VCM-based memristor: Evolution and 

positioning of nanofilament. Adv. Mater. 2015, 27 (34), 5028-5033. 

46. Efeoglu, H., et al., Resistive switching of reactive sputtered TiO2 based memristor in 

crossbar geometry. Appl. Surf. Sci. 2015, 350, 10-13. 

47. Lim, E.; Ismail, R., Conduction mechanism of valence change resistive switching 

memory: A survey. Electronics 2015, 4 (3), 586. 

48. Zhou, G., et al., Coexistence of negative differential resistance and resistive switching 

memory at room temperature in TiOx modulated by moisture. Adv. Electron. Mater. 2018, 

4(4), 1700567. 

49. Wang, S.-Y., et al., Multilevel resistive switching in Ti/CuxO/Pt memory devices. J. 

Appl. Phys. 2010, 108 (11), 114110. 

50. Xu, Z., et al., Low-energy resistive random access memory devices with no need for a 

compliance current. Sci. Rep. 2015, 5, 10409. 

51. Valov, I., et al., Nanobatteries in redox-based resistive switches require extension of 

memristor theory. Nat. Commun. 2013, 4, 1771. 

52. Gao, S., et al., Dynamic processes of resistive switching in metallic filament-based 

organic memory devices. J. Phys. Chem. C 2012, 116 (33), 17955-17959. 



 

 

 

78 

53. Rabalais, J. W., et al., Trapped electrons in substoichiometric MoO3 observed by X-ray 

electron spectroscopy. Chem. Phys. Lett. 1974, 29 (1), 131-133. 

54. Menzel, S., et al., Physics of the switching kinetics in resistive memories. Adv. Funct. 

Mater. 2015, 25 (40), 6306-6325. 

 

 



 

 

 

79 

 

Chapter 5 : DUAL GAS SENSING CHARACTERISTICS OF 

NON-STOICHIOMETRIC 2D α-MoO3 

Environmental pollution due to the emission of various toxic and greenhouse gases is an 

emerging threat to the environment and ecosystem.  Detecting traces of such gases in the 

atmosphere is essential for both human health and environmental safety, as they have a 

severe effect on the nervous system even at significantly low concentrations. In this work, 

non-stoichiometric 2D MoO3 has been employed to develop gas sensors. The non-

stoichiometric layer of MoO3 has been synthesised on mica via the CVD technique. An easy 

and reliable transfer technique has been adopted to transfer the material onto any arbitrary 

substrates. The extensive characterisation of the transferred crystals has been carried out to 

establish the viability of the transfer process. 

5.1 Introduction 

The isolation of the graphene monolayers by mechanical exfoliation of bulk graphite opened 

the field of 2D materials that offers a unique combination of excellent mechanical and 

electronic properties.
1
 However, the absence of intrinsic bandgap in graphene, expanded the 

exploration of other 2D materials, such as molybdenum dichalcogenides and oxides, Boron–

nitride (h-BN), phosphorene.
2
 The absence of interlayer interaction due to the electron 

confinement in single/two atomic layer enables the enhanced electrical properties compared 

to their bulk counterparts.
3
 As such, 2D materials have been employed in a large number of 
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electronic and opto-electronic applications.
4-8

 In addition to that, 2D structure provides large 

lateral size and ultrathin structure, which endow them an ultrahigh surface area with an 

extremely large proportion of surface atoms.
9
 These surface atoms serve as active sites to 

effectively react with gas molecules. Hence, the distinctive structural features and 

outstanding electronic properties of 2D materials are favourable in the field of gas sensing 

applications.
10

  

Environmental pollution due to emission of various toxic and greenhouse gases is an 

emerging threat to the natural balance. Among them, NO2 (produced in combustion chemical 

plants and automobiles) and H2S (produced in sewage plants, coal-mines, oil and natural gas 

industries) are two highly toxic and health hazard gases that make up a significant 

proportion.
11-12

 Detecting traces of such gases in the atmosphere is essential for both human 

health and environmental safety, as even at very low concentrations they cause severe effect 

on the nervous system. The threshold limit for health safety standards of NO2 and H2S are 

<3 ppm and <10 ppm respectively.
11, 13-16

 

Metal oxides are commonly used as gas sensing material due to their low cost and chemical 

stability at elevated temperature.
17-19

 MoO3 is one of the metal oxides that show excellent 

electrochromic and gasochromic properties.
20-23

 Thermodynamically stable orthorhombic α-

MoO3 is a wide bandgap and high dielectric (k) material, which can be resolved into 2D 

layers. The high dielectric value of MoO3 in combination with the 2D nature provides 

enhanced carrier mobility by reducing the Coulomb scattering.
5

 Furthermore, the bandgap of 

the material can be easily tuned by introducing oxygen vacancies in the lattice, thereby 

creating gap states.
10

 Combining all these properties of MoO3, large surface area-to-volume 
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ratio in 2D form have the potential to provide higher sensitivity and lower power 

consumption for gas sensing applications. 

In this work, the CVD has been utilised to grow large area 2D MoO3 on mica. A facile 

transfer technique has been demonstrated, where the as-grown material was transferred onto 

SiO2 via PDMS stamping process. Extensive characterisation of transferred MoO3 crystals 

has been carried out, in order to establish the retention of the material’s compositional 

integrity through the transfer process. These transferred crystals have been utilised to develop 

2D conductometric gas sensors. The performance of the sensors toward H2S and NO2 has 

thoroughly evaluated.  

5.2 Experimental Section  

5.2.1 Chemical Vapour Deposition of non-stoichiometric α-MoO3 

Crystals of non-stoichiometric α-MoO3 (MoO3-x) were deposited on mica using CVD at 

530 °C. MoO3 powder (5 mg) used as a precursor, was placed in the middle zone (785 °C) of 

a horizontal 3-zone tube furnace. The growth substrates were placed downstream in the third 

zone, at 530 °C. 100 sccm Argon used as the carrier gas and the chamber pressure was 

maintained at ~300 mT throughout the whole deposition process. The furnace temperature 

was ramped up to the set temperatures in 60 minutes.  The set temperatures maintained for 10 

minutes for the reaction to occur. Thereafter, the furnace was allowed to cool down naturally. 

5.2.2 Transfer process 

The as grown MoO3-x was transferred from mica to SiO2 substrate via PDMS and 
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deterministic transfer method.
24

  PDMS was spun on the MoO3-x/mica growth surface at 300 

rpm and cured at 120 °C. The PDMS/MoO3-x/mica layers are dipped in to DI water at room 

temperature to allow the water penetrate between the MoO3-x/mica layers. The PDMS/MoO3-

x/mica layer is taken out of the water bath after few minutes and the PDMS/MoO3-x was 

peeled off from mica and blow-dried with N2 gas. The delaminated MoO3 crystals from mica 

were transferred subsequently on to SiO2 substrate using the attached PDMS stamp. A detail 

schematic of the transfer process has been presented in Appendix C. 

5.2.3 Material characterisation 

The thickness of the transferred MoO3 crystals was measured using Dimension Icon Bruker 

atomic force microscope under ScanAsyst Air mode. X-ray diffractogram were collected 

using a Bruker D4 Endeavor XRD instrument with monochromatic Cu Kα as radiation 

source, within an angular range 2θ from 20° to 60°. LabRam HR Evolution Raman 

Spectrometer (laser excitation of 532 nm with a 50× objective) was utilised to assess the 

composition of the as-grown MoO3. X-ray photoelectron spectroscopy (XPS) was performed 

using a Thermo Scientific K-alpha X-ray Photoelectron Spectrometer with an Al Kα radiation 

source with energy of 1485 eV. Adventitious carbon peak at 284.8 eV was used as the 

calibration reference for fitting of the core level spectra of the principal elements. A high 

resolution transmission electron microscope (JEOL 2100F TEM/STEM (2011) operating 

with 200 kV acceleration voltage) was utilized for high-resolution transmission electron 

microscopy (HR-TEM) imaging. 
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5.2.4 Gas sensor fabrication and performance characterisation 

Device fabrication was carried out on the transferred crystals on SiO2/Si substrates by 

adopting standard photolithography. Electrodes (Au 90 nm with Cr 10 nm to promote 

adhesion) were deposited using electron beam deposition. 

Gas sensing performance of the fabricated sensors was measured using Keithley 2001 Series 

multimeter and LabView software. A LINKAM (Scientific Instruments, United Kingdom) gas 

chamber with heating capability (of up to 600 °C) was used to conduct the gas sensing 

measurements. A multichannel mass flow controller (MKS 1479A, U.S.A.) was programmed to 

regulate gas input at a constant flow rate of 200 sccm. A schematic diagram of the gas sensing 

system is presented in Figure 5.1. Test gases were mixed with synthetic air to achieve the desired 

concentration. Various concentrations of NO2 gas (0.5, 1, 5, 10 ppm) and H2S gas (5, 10, 25, 50 

ppm) at different operating temperatures (160 °C to 270 °C) were investigated for determining the 

optimal response. Additionally to establish the selectivity of the gas, H2 (10,000 ppm), CO 

(1200 ppm), CO2 (1000 ppm) and CH4 (10000 ppm) also tested.  

Figure 5.1 Schematic view of multi-channel gas sensing measurement system 
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5.3 Results and Discussion 

Figure 5.2a shows the optical image of as-grown -MoO3-x on mica substrate. Here, mica was 

chosen as a growth substrate, as it provides a dangling-bond-free chemically inert surface that 

enables layered growth of -MoO3-x.
25-27

 Layered -MoO3-x sheets mostly cover the whole 

area of the substrate. AFM was utilised to measure the thicknesses of the as-grown material 

on the edge of the coverage. The cross sectional profile reveals that the thickness of the as-

grown material to be ~11 nm (Figure 5.2b). The optical image of the transferred material on 

to SiO2/Si is presented in Figure 5.2c. The thickness profile of the transferred material shows 

~8 nm of thickness on SiO2 (Figure 5.2d).  

Figure 5.2 (a) Optical image and (b) AFM thickness profile of as-grown MoO3 on mica. (c) 

Optical image and (d) AFM thickness profile of transferred MoO3 on SiO2.     
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In order to avoid contamination/degradation in crystal quality a simple and reliable transfer 

technique is essential. The viscoelastic property of PDMS is utilised to transfer the as-grown 

material from mica to other arbitrary substrates.
28

 Liquid PDMS was spun on MoO3-x/mica 

layers and cured at 120 °C.  Subsequently, the PDMS/MoO3-x/mica stack was submerged in 

DI water.  Due to the hydrophilic nature of mica, water wedging occurs at the mica MoO3-x 

interface, producing a MoO3-x/PDMS stamp.
28

 Consequently MoO3-x/PDMS layer separates 

and releases from mica substrate. In order to transfer MoO3-x on to the other target surface, 

the MoO3-x/PDMS stamp is pressed against the surface of SiO2 for deterministic transfer and 

peeled off slowly.  By peeling off the PDMS stamp from the surface, MoO3-x crystals get 

exfoliated and adhered preferentially on the target SiO2 substrate.  

Preserving the material composition and crystalline structure of the as-grown material are 

important to evaluate the transfer process.  As such a detail characterisation was performed 

on as-grown and post-transferred material. XRD was utilised to characterise the crystalline 

nature of the as- grown and post-transferred material (Figure 5.3a). The diffraction peaks can 

be indexed as (040) at 25.6° and (060) at 38.9° of the orthorhombic -MoO3 crystal (JCPDS 

No 05–0508), which suggests the layered growth of the material perpendicular to the 

substrate. The sharpness of (020) and (040) peaks suggests highly ordered and preferentially 

crystalline nature of the as-grown material. The diffraction peaks of (040) and (060) planes of 

of post-transferred material are identical to -MoO3.  As such, XRD results prove that the 

crystalline nature of the material retains unaltered post-transfer.  
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Raman spectroscopy was utilised to characterise the compositional integrity of the as-grown 

and post-transferred material. Full range Raman spectra (Figure 5.3b) show all the 

characteristics vibrational peaks of -MoO3 at 115, 157, 284, 336,  820 and 996 cm
−1

 on both 

as-grown and post-transferred material.
29-30

 The strong in-plane vibration peak of 820 cm
-1

 

and comparatively weak out-of-plane vibration of 996 cm
-1

 refers to the layered growth of the 

material in 010 directions. In addition, sharp and prominent nature of the Raman peaks 

suggests that the corresponding vibrational modes are from highly ordered structure of the 

material. Additional less intense peaks at 221 and 663 cm
−1

 on both as-grown and post-

transferred material are observed, which correspond to non-stoichiometric MoO3.
27, 28

 As 

such, the Raman analysis suggests the presence of an intermediate oxidation state indicative 

of localized Mo
5+

, produced due to oxygen vacancies. The Raman peaks on the post-

transferred material appearing identical to the as-grown material confirms the preservation of 

compositional integrity and consistency of the material. 

To further analyse the stoichiometry of the material, high-resolution XPS measurements were 

carried out on as-grown and post-transferred material (Figure 5.3c). The de-convoluted XPS 

peaks show two sets of doublets of Mo 3d5/2 and Mo 3d3/2. Binding energy of Mo 3d5/2 and 

Mo 3d3/2 levels are observed at 232.9 eV and 236.09eV respectively, which confirms Mo
6+

 

oxidation state related to MoO3.
31-33

 Further examination of the XPS peaks reveals the 

presence of a second doublet at 231.8 eV and 234.8 eV for Mo 3d5/2 and Mo 3d3/2 confirming 

the existence of Mo
5+

 ions indicating the non-stoichiometric nature of the material.
34

 As such, 

the above-mentioned characterisation results confirm that the as-grown material is non-

stoichiometric (MoO3-x) and that the transfer process does not affect the 

composition/structure of the material.   
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In order to gain further insight into the atomic structure of the as-deposited MoO3-x, high 

resolution transmission electron microscopy (HRTEM) was utilized. CVD grown MoO3-x was 

transferred onto a Carbon TEM grid using the previously described transfer procedure. 

During TEM imaging, ultrathin nano-sheets of MoO3-x crystals are found (Figure 5.4). The 

HRTEM image shows that the grown material is highly crystalline. The crystal lattice spacing 

of 0.18 nm (Figure5.4 inset) represents the (002) plane of α-MoO3-x.
25, 34, 35

 The 

corresponding selected area electron diffraction (SAED) pattern shows clearly 

distinguishable diffraction spots (Figure5.4 inset) representing the (200) and (002) planes of 

orthorhombic α-MoO3-x.
36,

 
37

 As such, the TEM and XRD analyses collectively indicate the 

crystaline growth of the as synthesised material.  

  

Figure 5.3(a) Raman spectra (b) XRD diffractogram and (c) XPS spectra of as grown MoO3 on mica 

substrate and transferred MoO3 on SiO2/Si substrate. * denoted the mica peaks  in a and b. 
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Gas sensing performance of the material was assessed, by developing conductometric gas 

sensors based on transferred MoO3-x. The sensitivity, S has been calculated using the 

following formula,  

  
     

  
     

(1) 

where, Ra is the resistance in air and Rg is the resistance upon exposure to the target gas. It 

was observed that there is no response towards both NO2 and H2S below 160 C, as the 

adsorbed oxygen on the surface does not have sufficient energy to react with the exposed gas 

molecules. As the temperature is increased beyond 160 C, the conductivity of the metal 

oxide started to vary with the gas exposure. The response of the oxide layer towards NO2 and 

H2S was recorded at a range of working temperatures from 160 C to 270 C. The optimum 

temperature for sensing was determined from the sensitivity vs. Temperature relation 

(Figure 5.5a). It shows that the sensitivity of the material towards both gases started to 

Figure 5.4 TEM image of CVD grown MoO3-x. Inset showing HRTEM image and 

corresponding SAED pattern of as grown MoO3-x crystals. 
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increase with temperature until 250 C beyond which point, it was observed to saturate. 

Hence, 250 C has been taken as the optimum working temperature for sensing performance.  

In order to quantify the sensor characteristics, the sensitivity of the device towards varying 

concentrations of the targeted gas (NO2 and H2S) has been measured (Appendix C). Based on 

the results the sensitivity as a function of target gas concentration is presented in Figure 5.5b 

(NO2 from 0.5 ppm to 10 ppm and H2S from 1 pm to 50 ppm). It is evident that the S is 

directly proportional to the gas concentration in both cases, while the S is significantly 

different for the two gases. This aspect allows us to reliably differentiate and identify the 

response between the two gases.  

Selectivity of the material was studied, using both oxidizing and reducing gases such as, NO2 

(10 ppm), H2S (10 ppm), H2 (10,000 ppm) and CO (1200 ppm) CO2 (1000 ppm) and CH4 

(10000 ppm) (Figure 5.5c). A negligible response to H2 (10,000 ppm),CO (1200 ppm) 

CO2 (1000 ppm) and CH4 (10000 ppm) gases were observed, while a response of 56% and 

18% observed when subjected to NO2 (10 ppm) and H2S (10 ppm) respectively. Upon 

exposure to NO2 gas the resistance of the material increases and vice versa, the resistance 

decreases when exposed to H2S.  Thus, it demonstrates that the sensors based on 2D MoO3-x 

exhibits selectivity towards both NO2 and H2S gases. These results indicate that the devices 

only respond towards NO2 and H2S. Being an oxidizing gas NO2 has tendency to accept 

electrons from the oxide surface, which in return increases the resistance of the metal oxide. 

On the contrary, reducing gas such as H2S donates electrons when interacting with metal 

oxide surface, and the conductivity of the oxide increases. 
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Response and recovery rate has been determined from response–recovery curve of NO2 and 

H2S gas (Figure 5.6a and b). Calculated response and recovery rate at 300 s are ~295.0 kΩ/s 

and ~276.0 kΩ/s for NO2 gas, while ~28.5 kΩ/s and 48.0 kΩ/s for H2S gas respectively. As 

such, the sensor shows significant difference in sensing properties towards NO2 and H2S 

gases. Response and recovery data were obtained at optimum temperature using the highest 

concentration of H2S (50 ppm) gas (Appendix C). 

 To investigate the cyclic stability of the sensors, they were exposed to repetitive cycles of the 

target and recovery gases at 250 C (Figure 5.6c and d). The change in resistance (R) was 

measured for 10 repetitive cycles, where an average R ~112 ± 1.64 M and 19.5 ± 1.13 

M were observed for NO2 and H2S respectively. Such a small standard deviation in R 

indicates the excellent cyclic endurance of the devices towards the targeted gases. A table is 

presented in Appendix C to refer the repeatabilty of the working devices. 

  

Figure 5.5(a) Sensitivity of the MoO3-x based sensor upon 300 s of exposure to NO2 (10 ppm) and H2S (10 ppm) 

gases as a function of temperature. (b) Response sensitivity of the sensor towards different concentrations of 

NO2 (10 ppm, 5 ppm, 1 ppm and 0.5 ppm) and H2S (50 ppm, 25 ppm, 10 ppm, 5 ppm and 1 ppm) gases at 

250 ⁰C. (c) Selectivity of the sensors towards different gases upon 300 s of exposure (H2S (10 ppm), NO2 

(10 ppm), CO (1200 ppm), H2 (1000 ppm), CO (1000 ppm) and CH4 (10,000 ppm)).  
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It is known that the sensing mechanism in semiconducting oxides is influenced by the 

chemisorbed oxide ions that modulate the carrier concentration on the surface of the 

material.
35

 The exposed gas causes a change in the oxygen balance of the oxide layer, 

resulting in an increase/decrease of charge carriers, leading to a variation in its resistance. 

However, the gas sensing reaction of MoO3 does not involve the general mechanism 

operating in other semiconducting oxide sensors. Several reports show that MoO3 does not 

chemisorb oxygen due to its crystalline-layered structure, rather it forms shear structure by 

removing lattice oxygen at the surface.
33, 36-37

 The presence of oxygen vacancies in MoO3-x 

material (refer to XPS and Raman analysis above), which works as adsorbing center with 

Figure 5.6 Response/recovery curves of the MoO3-x sensor towards (a) NO2 (10 ppm) and (b) H2S 

(10 ppm) gases at 250 ⁰ C. Cyclic repeatability of the MoO3-x based sensor towards (c) NO2 (10 ppm) 

and (d) H2S (10 ppm) showing repetitive cycles of response and recovery, at 250 ⁰ C. 
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high affinity to gases at high temperature. The oxygen molecules from environment will 

adsorb spontaneously on the surface vacancy sites and such oxygen species trap free 

electrons near the surface area can be written as follows:
38

  

             (2) 

                
  (3) 

 

 

At lower temperatures, these vacancies are not reactive, which results in high resistance of 

the conduction channel. Higher operating temperature provides abundant thermal energy to 

overcome the activation energy barrier to accomplish surface reaction, resulting in increasing 

free charge carrier density near the conduction band.
39

 As such, the sensitivity increases with 

temperature and reaches a saturation point, where it is limited by the number of surface 

vacancy sites.  

NO2 sensing and recovering mechanism can be expressed as follows:  

               
          

  (4) 

        
        

               (5) 

Upon exposure to NO2 gas, oxygen species of MoO3-x interact with NO2 gas molecules and 

are being captured from conduction band of the sensing material. This results in an electron 

depleted charge region at the surface of the material, which results into an increase in 

resistance of the sensor material.
41

 Subsequently when the sensor material comes in contact 
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with air, the ionised oxygen molecules trapped in to the vacancy sites and hence decrease the 

resistance of the sensor.  

 H2S sensing reactions can be written as follows
42

  

          
                    (6) 

Upon exposure to H2S gas, these oxygen species interact with H2S gas molecules and releases 

charge carriers to the conduction band of the material, which reduces the surface depletion 

layer.
43

 As such, the resistance of the sensor decreases, which shows the n-type behaviour of 

MoO3-x towards a reducing gas. Subsequently, with the presence of oxygen these oxygen 

vacancies of MoO3-x are being replenished by re-oxidation of the oxide surface with gaseous 

oxygen. 
44

 

     
 

 
              

(7) 

As discussed above, the α-MoO3-x based sensors respond upon exposure to both NO2 and H2S 

gases. Consequently, to distinguish the response of the device in the presence of both of these 

target gases, membrane coatings can be used as filters to permit the passage of selected gases 

near the surface of the sensors.
45, 46

 Furthermore, artificial neural networking systems can be 

utilized, which can efficiently differentiate the two types of gas response, when both of these 

gases are present.
47, 48

 However, this aspect of the sensor development requires further 

research, which is beyond the limited scope of the current work. 
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5.4 Conclusions  

In conclusion, gas-sensing performances have been demonstrated on 2D MoO3-x after being 

transferred on to SiO2/Si substrates.  The transfer process enables the development of gas 

sensors on any arbitrary substrates. Extensive characterisation has been performed to confirm 

the compositional integrity after being transferred. The transferred material showed excellent 

selectivity and sensitivity to H2S and NO2. Minimum detectable limit of H2S and NO2 were 

observed to be 1 ppm and 0.5 ppm respectively. The calculated response and recovery rate 

are NO2 ~295 kΩ/s and ~276 kΩ/s towards NO2, while ~28.5 kΩ/s and 48 kΩ/s towards H2S 

gas respectively. In addition to that, the sensor material shows stable cyclic repeatability with 

negligible variation in R for several cycles. These results suggest that the sensors based on 

2D MoO3-x crystals provide opportunities to create high performance 2D sensing systems in 

future. 
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Chapter 6 : CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The research presented in this thesis was carried out to address the gaps in the current body of 

knowledge, as described in the previous chapters. This research work was carried out through 

three specific objectives: (a) an investigation to obtain 2D MoO3 crystals in a controllable and 

reliable way using a new chemical etching route and to study the electronic properties of the 

etched crystals in FETs, (b) a study to understand the resistive switching behaviour of large 

area MoO3 and assessing their applicability in memory technology and (c) an investigation of 

the gas-sensing performance of non-stoichiometric 2D -MoO3. The aforementioned 

objectives were completed throughout two published works in journal, and the third one is 

still under review. 

6. 1. 1 Obtaining 2D MoO3 crystals of desired thicknesses and utilising 

them as a high performance channel material in FETs  

Existing synthesis techniques for obtaining 2D MoO3 crystals do not produce crystals of a 

uniform desired thickness efficiently. As such, a novel and easy chemical etching route is 

developed to obtain crystals of desired thicknesses reliably and controllably. A statistical 

analysis was performed to study the reliability and repeatability of the etching technique. The 

post-etching material characterisation confirms the compositional and crystalline integrity of 
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the etched crystals by retaining the intrinsic properties of the material. Hence, a controllable 

and easily deployable chemical etching method is established to thin down bulk MoO3 

crystals in order to obtain them in 2D form and in pristine nature. Subsequently, the study of 

electronic properties of such 2D crystals in FETs, established the viability of this material in 

electronic applications. 

6. 1. 2 Assessing resistive memory characteristics in large area CVD grown 

MoO3 crystals  

A large number of metal oxides with a high dielectric value have been investigated for 

resistive memory applications. However, a knowledge gap exists concerning memory 

behaviour in 2D metal oxides. As such, the reversible resistive memory behaviour in large 

area 2D MoO3 was investigated and the switching mechanism of the material was studied. 

The resistive memory performances of the oxide layer show low power consumption and 

high cyclic endurance. A thorough material characterisation was performed, which reveals 

that the deposited material is a combination of multiple oxidation levels of MoO3, which is 

partially oxygen deficient. The existing oxygen vacancies play a crucial role in resistive 

memory behaviour of the material. The data retention of 10
4
 s and ~6,000 cyclic endurances 

establishes the viability of resistive memory applications of MoO3 layers. Hence, the 

developed reversible resistive memory cells based on large-area MoO3 pave a new path in 

planar memory technology. 

6. 1. 3 Gas sensing characteristics of non-stoichiometric 2D -MoO3 

The gas-sensing performance of non-stoichiometric 2D -MoO3 is investigated.  Considering 

the thermal stability, enhanced carrier mobility and excellent electron affinity of MoO3, a 
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conductometric gas-sensing system was developed. The experimental characterisation of such 

devices shows high selectivity towards toxic and health hazard gases, such as H2S and NO2. 

A thorough material characterisation was performed that confirms the material composition. 

The retention characteristics of the sensors reveal excellent repeatability with a negligible 

variation in sensitivity. The calculated response and recovery rate suggests that these novel 

2D MoO3-based sensors offer great opportunities for future high-performance gas-sensing 

devices. 

6.2 Future work 

The research work carried out in this thesis has yielded a significant amount of insights into 

the synthesis process of 2D MoO3 and the characteristics of novel electronic devices based on 

the 2D MoO3. Still, several aspects remain for further investigation. A few significant 

research topics are listed below: 

 This research work presented the switching performance of FETs based on 2D MoO3 

crystals. The switching performance of such materials can be improved further 

through hetero-structuring with other 2D materials of distinct properties, such as a 

high-mobility charge injection layer and a high dielectric switching layer. There exist 

a large number of layered materials that can be exfoliated and incorporated into such 

stacks. The strong interlayer coupling between the films in such hetero-structured 

layers results in enhanced charge density and energy-band modulation. Future works 

could attempt to address the fabrication of FETs based on hetero-structured 2D MoO3 

with graphene/MoS2 and to understand the switching capabilities of such devices. 
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 Low contact resistance is a prerequisite to realise high performance FETs. Thus, ionic 

liquids are used as gate electrodes in FETs as they provide high ionic conductivity and 

large specific capacitance, which results in enhanced carrier mobility and high on/off 

ratio. Future work could emphasise in addressing the viability of ionic liquid gated 

FETs based on 2D crystals of MoO3. 

 This research work presented the resistive memory behaviour in large-area MoO3 

crystals. Longer retention and low power consumption enables the viability of the 

material for integration into a larger scale memory array. Further reducing the 

thickness of the oxide layer would enhance the performance of such devices in terms 

of switching voltage, retention and endurance. Future work could highlight on the 

investigation of oxide layers’ thickness dependent memory behaviour of such devices. 

 The gas-sensing performance of non-stoichiometric 2D -MoO3 crystals is studied 

and presented in this research. The sensing performances show high selectivity 

towards H2S and NO2 gases with an excellent response and recovery rate. However, to 

improve the selectivity of the sensor additional passive and catalytically active filters 

can be incorporated directly into the sensor. Furthermore, artificial neural network 

based training can be utilized, to selectively differentiate the two types of gas 

responses. As such, future work could focus on the study of improvement of the 

selectivity of such devices. 

 Humidity monitoring is important for industrial processing and environmental control. 

MoO3 adsorbs water molecules to form hydroxyl molecule that helps to change the 

conductivity of the material. In 2D form, large surface area to volume provides a large 

number of reaction sites and thus high responsive humidity sensors can be realised. 
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Hence, future work could emphasise on the investigation of conductometric humidity 

sensors charaterisation based on 2D MoO3 crystals.  

 

 



 

 
 105 

Chapter 7 Appendices 
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Appendix A: Supporting information for Chapter 3 

A1. Table showing the list of IDS value corresponds to VDS for multiple working devices.  

Table A 1 The list of IDS value corresponds to VDS for multiple devices  

 

Sample IDS(nA) VDS(v) VGS(v) 

02072016_B03_01 370 0.3 1 

02092016_B05_04 150 0.3 1 

05122016_B19_02 430 0.3 1 

05112017_B10_02 230 0.3 1 

12022017_B11_01 190 0.3 1 
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Appendix B: Supporting information for Chapter 4 

B1. CVD growth temperature comparison  

Table B 1 A comparison of crystalline MoO3 growth obtained via CVD, from various reports 

 

Authors 

Growth 

temperature/°C 

Pressure/mTorr Phase of MoO3 Reference 

Kalantar-zadeh et al. 400 Ambient α-MoO3 B1 

Balendhran et al. 350-560 Ambient α-MoO3 B2 

Kim  et al.(Plasma 

Enhanced CVD) 

150 100 α-MoO3 B3 

Our work 530 300 α-MoO3
 
/MoO2

 
 

 

B2. Pulse width and Energy consumption 

To assess the cyclic endurance of the devices, a pulse train of width 2 ms was applied. A read 

pulse of 500 mV was applied after each SET and RESET pulse to measure the resistance of 

the device during LRS and HRS. The associated energies for SET and RESET switching 

were computed to be 6.7 µJ to 18 nJ range during the pulse switching. 
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B3. A quantitative performance comparison of various 2D materials 

Table B 2 A Performance comparison of various 2D materials as resistive memory 

 

Author Material 

ON/OFF 

ratio 

Retention 

duration/s 

endurance References 

Cheng et al. MoS2 10
3
 --- 1000 B4 

Shin et al. MoS2 10
2
 10

4
 100 B5 

Sangwan et 

al. 

MoS2 10
3
 --- ------ B6 

Our work MoOx 10
3
 10

4
 ~6000  

 

Figure B 1 A train pulse of width 2 ms was applied to measure the endurance of the device. 
Voltage vs. time and Current vs. time has been plotted to show the input and output curves. 



 

 
 109 

B4. Inverse FFT analysis of the cross-sectional TEM 

In order to highlight the percentage of the crystalline area accurately, the TEM images of 

pristine and electroformed cells are sub-divided into smaller regions of interest (ROIs). 

Diffraction patterns corresponding to (001) plane of MoO3 and (002) plane of MoO2 are used 

to generate inverse fast Fourier transform (iFFT). The results are presented in Fig. A 2a and 

b, where the iFFT of pristine and electroformed cells are presented, respectively. The iFFT 

data is then analysed using ImageJ to determine the percentage crystalline area. The analysis 

indicates that the pristine film is composed of 72.50% of crystalline MoO3 and MoO2 while 

the remainder was observed to be amorphous in nature. After electroforming, 94.11% of the 

film was observed to be crystalline sub-stoichiometric MoO3. 

  

Figure B 2 HRTEM images of (a) a pristine cell and the corresponding iFFT of the ROIs numerically 
labelled from 1 to 4 and (b) an electroformed cell and the corresponding iFFT of the highlighted areas. 
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B5. Table including number of working devices with experimental data   

Table B 3 The list of switching voltage, ON/OFF ratio and number of repetitive cycles are presented for 

multiple samples 

 

Sample SET Voltage (V) RESET Voltage 

(V) 

ON/OFF ratio Repetitive cycles 

010517_01 -1.16 2.45 1000 ~100 

020318_07 -1.52 2.50 1000 ~500 

030318_03 -2.10 1.84 100 ~1500 

040418_02 -1.80 2.76 1000 ~2600 

050518_05 -1.19 2.28 1000 ~1000 

060518_03 -2.80 1.38 1000 ~6000 

 

References 

B1. K. Kalantar-zadeh et al., Synthesis of nanometre-thick MoO3 sheets. Nanoscale, 2010, 

2, 429-433. 

B2. S. Balendhran et al., Enhanced charge carrier mobility in two-dimensional high 

dielectric molybdenum oxide. Adv. Mater., 2013, 25, 109-114. 

B3. U. K. Hyeong et al. , Highly uniform wafer-scale synthesis of α-MoO3 by plasma 

enhanced chemical vapor deposition. Nanotechnology, 2017, 28, 175601. 
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Appendix C: Supporting information for Chapter 5 

C1. A detail schematic of the transfer process: 

 

 

  

Figure C 1 Schematic drawing of the method used to transfer the as-grown MoO3-x crystals from 

mica to SiO2. 
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C2. Table showing various 2D materials for NO2 and H2S sensing 

Table C 1 NO2 and H2S sensing performance reports on various 2D materials in comparison to our work 

 

Structure Synthesis  Concentration/

ppm 

Operating 

Temperature/

⁰C 

% Sensitivity 

  
|     |

  
       

Reference 

2D MoS2 CVD 10 ppm NO2 100 16 C1 

2D WS2 ALD 25 ppm NO2 RT 10 C2 

2D SnS2-

rGO 

Thermal 

reduction 

and wet 

chemical 

11.9 ppm NO2 80 56.8 C3 

2D MoO3-x CVD 10 ppm NO2 250 56 Our work 

quasi-2D 

Cu2O/SnO2 

Electroche

mical 

50 ppm H2S RT 45 C4 

2D MoO3-x CVD 50 ppm H2S 250 81 Our work 
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C3. Response performance of the sensor towards 50 ppm of H2S gas: 

 

The response of the oxide layer towards 50 ppm of H2S was recorded at a range of working 

temperatures from 160 ⁰C to 270 ⁰C. The sensitivity vs. temperature relationship is presented 

in Figure C2a, shows the device sensitivity towards H2S gas. The response and recovery rate 

for 10 repeatable cycles of H2S gas have been calculated, which shows an average response 

rate of 223 ± 2.5 kΩ/s and recovery rate of 126 ± 1.7 kΩ/s towards 50 ppm of H2S.The 

change in resistance (R) was measured for 10 repetitive cycles, where an average R 

81  ± 2.29 MΩ was observed for H2S gas. 

 

C4. Response and recovery at various concentrations of NO2 and H2S gases: 

 

The gas sensing performance of the MoO3-x sensor was assessed towards NO2 and H2S gases 

with concentrations ranging from 0.5 ppm to 10 ppm and 1 ppm to 50 ppm respectively, at 

the optimum temperature of 250 ⁰C. 

 

 

Figure C 2 Gas sensing performance of 50 ppm of H2S gas. (a) Sensitivity as a function of temperature, 

(b) response and recovery curve and (c) the cyclic repeatability of the devices.   



 

 
 115 

 

C5. Table includes multiple working devices response towards NO2 and H2S gases. 

Table C 2 The list of response rate and recovery rate towards NO2 and H2S from multiple samples 

 

Sample NO2 gas H2S gas 

Response rate 

kΩ/s 

 

Recovery rate 

kΩ/s 

Response rate 

kΩ/s 

 

Recovery rate 

kΩ/s 

010618_02_05 296.00 280.00 36.67 56.67 

020718_03_01 293.00 280.00 33.33 49.33 

030818_04_02 285.00 273.00 26.67 50.00 

041118_05_03 303.00 270.00 30.00 53.33 

050119_02_01 297.00 267.00 23.33 50.00 

 

 

 

Figure C 3 Gas sensing response with different concentration of (a) NO2 and  (b) H2S gas. 
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