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Abstract

The next generations of mobile networks 5G and beyond, must overcome cur-

rent networks limitations as well as improve network performance. Some of the

requirements envisioned for future mobile networks are: addressing the massive

growth required in coverage, capacity and traffic; providing better quality of ser-

vice and experience to end users; supporting ultra high data rates and reliability;

ensuring latency as low as one millisecond, among others. Thus, in order for fu-

ture networks to enable all of these stringent requirements, a promising concept

has emerged, self organising networks (SONs). SONs consist of making mobile

networks more adaptive and autonomous and are divided in three main branches,

depending on their use-cases, namely: self-configuration, self-optimisation, and

self-healing. SON is a very promising and broad concept, and in order to enable

it, more intelligence needs to be embedded in the mobile network. As such, one

possible solution is the utilisation of machine learning (ML) algorithms. ML has

many branches, such as supervised, unsupervised and Reinforcement Learning

(RL), and all can be used in different SON use-cases.

The objectives of this thesis are to explore different RL techniques in the

context of SONs, more specifically in self-optimization use-cases. First, the use-

case of user-cell association in future heterogeneous networks is analysed and

optimised. This scenario considers not only Radio Access Network (RAN) con-

straints, but also in terms of the backhaul. Based on this, a distributed solu-

tion utilizing RL is proposed and compared with other state-of-the-art methods.

Results show that the proposed RL algorithm outperforms current ones and is

able to achieve better user satisfaction, while minimizing the number of users in

outage. Another objective of this thesis is the evaluation of Unmanned Aerial

vehicles (UAVs) to optimize cellular networks. It is envisioned that UAVs can be

utilized in different SON use-cases and integrated with RL algorithms to deter-

mine their optimal 3D positions in space according to network constraints. As

such, two different mobile network scenarios are analysed, one emergency and a

pop-up network. The emergency scenario considers that a major natural disaster

destroyed most of the ground network infrastructure and the goal is to provide
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coverage to the highest number of users possible using UAVs as access points. The

second scenario simulates an event happening in a city and, because of the ground

network congestion, network capacity needs to be enhanced by the deployment

of aerial base stations. For both scenarios different types of RL algorithms are

considered and their complexity and convergence are analysed. In both cases it

is shown that UAVs coupled with RL are capable of solving network issues in an

efficient and quick manner. Thus, due to its ability to learn from interaction with

an environment and from previous experience, without knowing the dynamics of

the environment, or relying on previously collected data, RL is considered as a

promising solution to enable SON.
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Chapter 1

Introduction

In the last 10 years, mobile networks have become an essential part of our lives,

due to a broad range of applications and services that have recently become

available. For instance, people are able to do business on the go by perform-

ing teleconferences whenever and wherever needed, watch their favourite videos

and listen to their favourite music on the fly, talk to distant relatives, stream

audio/video whenever a special event happen, instantly upload photos or videos

about their daily lives in social media, and many more [8, 9, 11].

Due to the increasing popularity of mobile services, its traffic is expected to

grow around 10 thousand times, and the number of devices connected to the

network is expected to be around fifty billion by the next few years [12–14].

Because of the exponential growth that is expected in both connectivity and

density of traffic, primarily due to the advances in the Internet of things (IoT),

machine-to-machine (M2M) communications, cloud computing and many other

technologies, the fifth generation (5G) of mobile communications and beyond

will need to push the network performance to a next level. Furthermore, 5G will

also have to address current limitations of long term evolution (LTE) and LTE-

advanced (LTE-A), such as latency, capacity and reliability. As such, some of

the requirements that are recurrent in state-of-the-art literature for 5G networks

are [8, 9, 15–17]:

• Address the growth required in coverage capacity and traffic;

• Provide better quality of service (QoS) and quality of experience (QoE) to

users;

• Support the coexistence of different radio access network (RAN) technolo-

gies;

• Support a wide range of applications;

1
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• Provide peak data rates of over 10 Gbps and at least 100 Mbps at the cell

edge;

• Support radio latency lower than one millisecond;

• Support ultra high reliability;

• Provide improved security and privacy;

• Provide more flexibility and intelligence in the network;

• Reduction of capital and operational expenditures (CAPEX and OPEX);

• Provide higher network energy efficiency (EE).

As it can be seen, these requirements are very stringent. Hence, in order to

meet them, new technologies have to be deployed in all layers of the 5G net-

work. As a result, several breakthroughs have been and are being discussed in

the literature for the past couple of years, the most common ones are: mas-

sive MIMO (multiple-input multiple-output), millimeter-waves (mm-waves), new

physical layer waveforms, network function virtualization (NFV), control and

data plane separation, network densification - deployment of several small cells

(SCs) - and implementation of self organizing networks (SON) functions [8, 16].

Although all of these breakthroughs are important and often considered a ne-

cessity for future mobile networks, the concept of network densification is the one

that requires heavier changes in the network and possibly a change in paradigm in

terms of how network solutions are provided [18]. In addition, the deployment of

several SCs would most likely address the current limitations of coverage, capac-

ity and traffic demand, while also providing higher data rates and lower latency

to end users [8, 16]. However, while network densification will result in all these

benefits, it will also generate several new problems to the operators in terms of

coordination, configuration and management of the network. The dense deploy-

ment of several SCs, will result in an increase in the number of mobile nodes

that will need to be managed by mobile operators. Furthermore, these types of

cells will also collect an immense amount of data in order to monitor network

performance, maintain network stability and provide better services. This will

result in an increasingly complex task to configure and maintain the network in

an operable state if current techniques of network deployment, operation and

management are applied [8, 19].

One possible way of solving these issues is by deploying more intelligence in the

network, through SON. The main objectives of SON can be defined as to provide

intelligence to mobile networks in order to make the work of operators easier, as
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well as provide network resilience, reduce the overall network complexity, CAPEX

and OPEX, and simplify network coordination, configuration, optimization and

healing [8, 9, 11,20].

1.1 Self Organising Networks (SON)

SONs, in contrast to previous generation of mobile networks, envision that future

networks will be coupled with intelligent algorithms in order to keep the network

performance near their optimal point. This is done through the collection and

analysis of data, and will enable future mobile networks to be much more proac-

tive and flexible, as the networks will be able to learn by themselves, without

human’s intervention.

More specifically, SON can be defined as an adaptive and autonomous network

that is also scalable, stable and agile enough to maintain its desired objectives [11].

Hence, these networks are not only able to independently decide when and how

certain actions will be triggered, based on their continuous interaction with the

environment, but are also able to learn and improve their performance based

on previous actions taken by the system. Furthermore, the concept of SON

in mobile networks can also be divided into three main categories, mainly: self-

configuration, self-optimization and self-healing; and together they are commonly

denoted as self-x functions [9, 11].

1.1.1 Self-configuration

Self-configuration can be defined as the ability to execute all the configuration

procedures to make the network operable autonomously, that is, with no human

intervention [8]. Examples of configuration parameters that can be configured

autonomously can be individual base stations (BSs) Internet protocol (IP) ad-

dress, neighbour cell list (NCL), radio and cell parameters, or parameters that

will be applied to the whole network, such as policies. Self-configuration is mainly

triggered whenever a new base station is deployed in the system, but it can also

be activated if there is a change in the network, as a BS failure or change of

service or network policies.

1.1.2 Self-optimization

After the system has been configured, the self-optimization functions are trig-

gered. Self-optimization functions can be defined as procedures that continu-

ously optimize the BSs and network parameters in order to guarantee a near op-
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Figure 1.1: Major use cases of each SON function: self-configuration, self-
optimization and self-healing [8].

timal performance. Self-optimization can occur in terms of backhaul parameters,

caching, coverage and capacity, antenna parameters, interference management,

user mobility, hand over (HO) parameters, load balancing, resource optimiza-

tion, call admission control (CAC), EE, and coordination of SON functions [8].

By monitoring the system continuously, and using reported measurements to

gather information, self-optimization functions can ensure that the network ob-

jectives are maintained and that its overall performance is kept near optimum.

1.1.3 Self-healing

In parallel to self-optimization, the function of self-healing can also be triggered.

Since no system is perfect, faults and failures can occur unexpectedly and it is

no different with mobile systems. Whenever a fault or failure occurs, for what-

ever reason (e.g., software or hardware malfunction), self-healing functions are

activated. Their objective is to continuously monitor the system in order to en-

sure a fast and seamless recovery. Self-healing functions should be able not only

to detect failure events but also to diagnose the failure (i.e., determine why it

happened) and also trigger the appropriate compensation mechanisms, so that

the network can return to function properly. Self-healing in mobile systems can

occur in terms of network troubleshooting (fault detection), fault classification,

and cell outage management [11,21–23].
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1.1.4 SON Use-cases

Each SON function can also be divided into sub-sections, commonly known as use-

cases. Figure 1.1 shows an outline of the most common use cases of each SON task.

As it can be seen from Figure 1.1, future mobile networks are expected to address

several different use-cases and provide many solutions in domains that either do

not exist today or are beginning to emerge [8]. For example, in current networks

whenever a new BS is deployed in the network, hundreds of parameters need to

be manually configured by expert engineers in order for it to become operable.

As such, just the simple task of adding a new BS in a network requires a lot of

expertise and manual work, which represents an increased cost. In addition, most

of these parameters can also be sub-optimally configured, as the radio parameters

of a BS can also affect the total network coverage or its overall topology. One

can think of as an example, if the operator configures the power of the new BS

too high, this will have an impact on nearby BSs, as their coverage area will be

reduced and interference will increase. Thus, a simple miscalculation or change

in network conditions can be disastrous [9].

This simple example also highlights that a static configuration of network pa-

rameters is not necessarily optimal, as the network is constantly changing, thus, it

is also necessary to constantly evaluate and optimize the parameters previously

configured. However, as it is with the configuration process, the optimization

process of a network, nowadays, also relies on manual intervention. Furthermore,

the constant monitor of performance indicators of the network is still required in

order to determine which parameters of a cell need to be updated and by how

much [8, 20]. Lastly, healing of mobile networks also depends on manual inter-

ventions. By constantly monitoring network alarms and network performance,

operators are able to detect whenever network failures occur and send expert

engineers to the field in order to address these problems. However, this process

is not optimal, as it requires a lot of expertise, and constant analysis as well as

monitoring of the network in order to react to a failure, which can be extremely

ineffective and costly. Moreover, certain types of failures also take a long time to

be detected, such as the problem of sleeping cells, for example, which can cause

severe service disruption in an area for days or weeks before the operator has

become aware of the problem, generating a big loss in revenue for operators [8].

In order to address these use-cases, several research groups are implementing

intelligent solutions and also standardizing methods to improve future networks,

as it can be seen from The 3rd Generation Partnership Project (3GPP), Next

Generation Mobile Networks (NGMN) Alliance, mobile operators and many other

research initiatives. Current state-of-the-art algorithms to tackle the aforemen-
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tioned use-cases go all the way from basic control loops and threshold comparisons

to more complex machine learning (ML) and data mining techniques [24]. How-

ever, as the field develops, there is a significant trend of implementing more robust

and advanced techniques which would in turn solve more complex problems [25].

As such, by coupling mobile networks with intelligent algorithms, all of the afore-

mentioned issues can be solved in a more efficient, optimal and cost-effective

way.

1.2 Motivation

The next generations of mobile networks are under heavy pressure in order to

address their expected requirements and also improve upon current network lim-

itations. Such limitations, for example, consist of the rudimentary methods uti-

lized today in the configuration, optimization and healing of mobile networks,

as these methods lack the adaptability and flexibility required to become feasible

solutions for 5G and beyond networks [8,9]. In addition, despite mobile operators

collecting a huge amount of data daily from the network, it has been shown that

most of the collected data is not utilized or even discarded, limiting the potential

of SON and leading to sub-optimal solutions [19]. As such, many of the solutions

implemented today require human intervention, such as expert engineers to anal-

yse data and adjust system parameters manually in order to optimize or configure

the network. Some other solutions also require expert personnel on site in order

to fix certain problems, when detected, wasting a substantial amount of time

and resources. All these solutions are extremely ineffective and costly to mobile

operators [20]. Thus, in order to leverage all the information already collected

by operators and provide the network with adaptable and flexible solutions, it is

clear that a new paradigm is needed, such as SON [8].

1.2.1 Why SON is needed?

In the last decade, with the advance of the technology industry and the Internet,

the ability for people to connect to each other and share their experiences has

become an essential part of our lives [11]. Furthermore, in the last couple of years

we have seen a plethora of new applications and services available through the

Internet, services that a couple of years ago were unimaginable. For example, we

can now talk to distant relatives instantly, share our daily lives and experiences

to all our friends in social media, order food and cars with the touch of a button,

as well as watch our favourite videos and shows anywhere and at anytime we
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want [8, 9, 11].

However, the future of mobile communications will see a great change, due to

other technological advances, such as the IoT, M2M, smart cars and cities, vir-

tual reality (VR) and ultra high definition (UHD) videos, cloud computing and

many more. As such, several other applications that are unimaginable today are

bound to happen, and for that to be possible, a drastic change in mobile network

structure is needed [8]. This change will mainly occur because, in the future, it

is expected that many more use-cases will be enabled by future mobile networks,

demanding very stringent requirements from mobile networks [8, 20]. For exam-

ple, in the case of VR applications, extremely high bandwidth with low latency

is required in order to guarantee the desired QoS to end-users. Another exam-

ple is the use-case of critical machine-type communications (cMTC), in which a

whole industry is connected via wireless networks. In this case, delay and relia-

bility are extremely important so that machines can work properly and keep the

production line going [26]. Another use-case that can be enabled in the future

by mobile networks is the case of vehicle-to-anything (V2X) communications, in

which applications can demand extremely low latencies and ultra high reliability

in order to avoid car accidents, as well as a large capacity in order to provide

infotainment services to users inside the car [26].

However, while these applications and use-cases are only limited by the human

imagination, mobile networks have their own limitations, which are restricted by

physical restrictions as well as financial constraints from network operators, as

higher capacity and QoS comes at the expense of higher costs [20]. Furthermore,

since end-users are not willing to pay higher bills for improved mobile services,

minimizing network costs, while still providing better QoS and capacity to end-

users is crucial in order to make future networks viable [8, 20]. As a result, this

trade-off between providing improved services in a cost effective way has triggered

research to add more intelligence to mobile networks, which is mainly motivated

by the following factors [8, 20]:

1. Current mobile networks lack the adaptability and flexibility necessary in

order to adapt to the variations and fluctuations in the network. Due to

the natural unpredictability of the wireless channel, dynamic requirements

of users and their mobility, current mobile networks suffer either from un-

derutilization (for example during night time or non-peak hours) or overuti-

lization of network resources (such as in hot-spot areas, or whenever events

happen in a city), resulting in a low resource efficiency and congestion, as

well as poor QoS and QoE to end-users, respectively;
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2. 5G networks are envisioned to have a network densification process, in which

the network will be populated by a large number of SCs, that can be de-

ployed not only by the network operators but also by end-users. As such,

this will create a tremendous burden for operators, as they will have to

manage, configure and optimize an astounding number of SC parameters in

order to guarantee the correct operation of the network. As this will not be

humanly possible, more optimized and intelligent approaches are needed;

3. Another consequence of the network densification process is that future

mobile networks are expected to increase exponentially in size, resulting in a

much more complex and challenging network to be managed. As such, given

the huge scale of these systems, the classic approach of manual optimization,

periodic drive tests and inspections will be extremely inefficient. Thus, more

robust and intelligent solutions are preferred;

4. Lastly, SON can also significantly reduce the operational costs of network,

as it can replace the periodic tests and field analysis required by expert

engineers, as well as the analysis and monitoring of the data generated by

the network daily.

As it can be seen, SONs are the only cost effective way to achieve near optimal

performance in future mobile networks, as they are able to automatically config-

ure, optimize, maintain, troubleshoot and recover the network, eliminating the

humans in the loop [8, 11].

In addition to these factors, another motivating aspect is the huge amount of

data that is generated and collected by network operators on a daily basis, due

to the large amount of sensors and monitoring required [8, 19, 20]. However, as

shown in [19], despite mobile networks generating a huge amount of data everyday

in terms of network measurements, control and management interactions, drive

tests and subscriber data, most of this information is not currently being used. In

addition, because storing such a great amount of data is costly, network operators

normally discard most of the data generated after its usage, leading to potential

resource wastage, as this data could be leveraged by intelligent algorithms to

learn network patterns and behaviour in order to provide better solutions [19].

As a result, current state-of-the-art approaches for network operators consist

of collecting and storing only a small amount of information, such as management

information (such as network performance or failures) and customer relationship

information (such as complaints about bad service or churn information) [19]. In

addition, most of the current solutions in mobile networks are done manually, such

as the configuration of a newly deployed BS, periodic drive tests in order to check
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network conditions, intervention of engineers and field personnel in order to fix

network faults, etc. [8, 11, 19]. On the other hand, the small amount of solutions

that are performed autonomously rely on simple and low-complexity solutions,

such as comparing to a threshold, basic feedback controllers, or heuristic and

search algorithms [8, 19].

However, as it can be seen, these solutions are quite costly and inefficient for

network operators. In addition, they also lead to sub-optimal network configu-

rations as the network is constantly changing, and current networks do not have

the capability to dynamically adapt themselves. Furthermore, with the advent of

network densification, the amount of parameters that will need to be configured

will be tremendous and the amount of data generated by future networks will

be even larger, rendering current manual solutions impracticable [8, 11, 19]. As

such, more robust and data oriented solutions, that involve algorithms that can

analyze and find relationships and intrinsic patterns in data, are required. By

combining future mobile networks with intelligent solutions, the next generation

of mobile networks will be able to operate at its full potential, with minimum

resource wastage, while also reducing its costs [8].

1.2.2 Why ML is needed?

Recent advances in technology, such as the miniaturization of electronic devices,

the ever increasing computing power of machines and the instant connectivity

provided by the Internet anywhere and at anytime in the world, has enabled com-

panies to capture trillions of bytes of information everyday, in what is known as

Big Data [27–29]. Such information comes from the billions of sensors connected

to everyday objects, such as our mobile phones, automobiles, home appliances,

and computers that are able to sense, create and communicate data [27]. As such,

due to the massive volume of data generated and collected every second, it was

only natural that companies would try to explore that to their benefit using data

analytics, in order to create better and more profitable solutions that would also

please their customers [27,29].

ML algorithms rely on collecting and analysing data in order to find intrinsic

patterns and relationships between them and produce a model that can relate the

input to the output, instead of trying to develop a complex and complete model of

the system [8]. As a result, these algorithms are able to learn, reason and make

decisions without human intervention. In addition, due to trends such as the

Moore’s Law in computing, its equivalent in digital storage and recent advances

in electronics and cloud computing, the ability to store, process and analyse

data, also contributed to the rise in popularity of ML algorithms in recent years
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[8, 27, 30]. In addition, another clear advantage of ML is that these algorithms

are able to generalise [8, 31, 32]. For example, considering the task of mobile

network optimization, if a model had to be developed for every possible situation

of the network, with users in all possible positions and all BSs with different

power, interference and load levels, it would be impossible. As such, solutions

that analyse data and are able to create a model based on their observations are

much more feasible. This occurs because ML solutions are able to learn from

data and make predictions if new unseen data is fed into the model, being much

more general than analytical approaches, as they do not require the entire model

to be trained again or rebuilt from zero [31,32].

Furthermore, another key advantage of ML algorithms is when dealing with

complex tasks. Similarly to the case above, in which for some applications it

is impossible to create an analytical model for every possible solution, in very

complex domains, traditional approaches would also not work [8,9]. For example,

considering the task of teaching a self-driving car how to drive. The car has

so many sensors, inputs, images from different cameras and also lots of possible

actions, such as accelerating, braking, turning the wheel, changing gears, etc.. As

it can be seen from this example, when tasks are extremely complicated and have

a lot of variables and parameters, traditional analytical approaches or controller

design solutions are not very suitable, as the solutions required to solve these

problems would be too complex and costly [8, 9]. As such, in those cases ML

solutions also excel at, as they are able to learn from the great amount of data

gathered and generated from these complex applications and determine the best

action.

In summary, the main advantages of ML over traditional and analytical meth-

ods are:

• The volume and speed that data is generated today has seen a massive

increase in the last few years, as such, the process of collecting, storing

and analysing data has become infeasible at a human scale. If conventional

data analysis techniques are applied to big data, the process of analysing

and generating adequate responses would possibly be too inefficient, slow

and sub-optimal, due to the sheer complexity and volume of data. As such,

ML algorithms can enable a more efficient data analysis and generate near

optimal results.

• ML algorithms are capable of analysing and processing a huge amount of

previous stored historical data and learn from it. By analysing previous

data, these algorithms are capable of finding hidden patterns and correla-
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tions, generating a model that best represents all the observed data points.

As a result, these algorithms are able to produce very robust solutions that

are capable of generating accurate responses and future predictions about

a model.

• Instead of relying on a fixed model, or having to develop a model for every

possible new situation, ML algorithms enable generalization, or in other

words, its models can be optimized online, constantly being improved and

enhanced in order to learn new trends or drifts in data.

• ML is also able to deal with more complex problems in a much easier way.

Instead of creating complex and intricate models of a particular problem,

ML solutions rely on data analysis in order to fit models to the observed

data set.

• ML algorithms, and more recently deep learning, have shown comparable

human performance in certain tasks, such as image classification or playing

certain games like chess, Go, backgammon, and video games [33–36]. As

such, with the constant development of more robust and powerful computers

and algorithms, the possibilities of what these intelligent algorithms can do

are practically unimaginable.

1.2.3 Why Reinforcement Learning (RL)?

Based on the aforementioned issues, it is clear that analytical approaches are not

ideal to tackle future mobile network use-cases. As such, ML solutions have to be

explored in order to deal with the massive amount of data generated by mobile

networks, as well as its increasing complexity [8].

Although ML has several branches, this thesis focuses on the application of RL

in SON. The idea of learning by experience or by interaction with the environment

is probably the first thought that comes to mind when thinking about the nature

of learning [10]. For example, when a child is learning how to walk, this task has

no explicit teacher, but actually there is a direct sensorimotor connection between

the agent and its environment [10]. By exercising this connection, a huge amount

of information is produced about the consequences of different actions, cause

and effect and what it needs to be done in order to achieve certain goals. From

this simple example, it can be seen that the interaction between agents and an

environment are a major source of knowledge, not only about the environment,

but also about the agent itself. As such, learning from interaction is a fundamental

idea that underlies nearly all theories of learning and intelligence [10].
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RL algorithms try to explore this idea of interaction by learning via a goal-

seeking, or trial and error, approach in order to find its solutions [10]. Because

the agent is inserted in an environment and is experiencing it, the agent is able

to interact with it, learn and adjust their behaviour based on past experiences,

building intelligence over time. Furthermore, because of this trial and error ap-

proach, RL solutions also pose another advantage that they do not require to

know a model of the environment (the RL class of Temporal Difference learning

algorithms) in order to work (these solutions are said to be model-free) [10]. Be-

cause the agent is only concerned on learning what to do, or in other words, only

mapping situations to actions in order to achieve its objective, RL algorithms do

not require previous knowledge about the environment, as it can learn from its

own experience [10].

Another key advantage of RL algorithms is their ability to explicitly consider

the whole problem instead of dividing it into smaller sub-problems. This occurs

because agents in RL have explicit goals that they must follow, given by the

reward function. By doing so, they can interact and sense the environment,

choosing actions that influence the way the environment responds to them [10].

As such, the key features of RL, which motivated its applications in SON use-

cases, can be summarized as follows:

• RL algorithms based on temporal differences do not require a model of the

environment or any previous knowledge about it, as they are able to learn

from experience and interaction with the environment due to their inherit

goal-seeking approach;

• This interaction between agent and environment enables RL agents to ad-

just their behaviour and learn from past experiences, instead of relying in

previous examples and data provided by an external and knowledgeable

supervisor;

• RL agents are programmed with a clear goal in mind (given by the reward

function), as such they are able to tackle the whole problem instead of di-

viding it into smaller sub-problems. This makes RL algorithms particularly

suitable for problems that include a long-term versus short-term reward

trade-off, or optimisation, as is the case of mobile networks.

1.3 Objectives

As previously mentioned, this thesis focuses on the application of RL algorithms

in order to tackle SON use-cases. More specifically, RL algorithms are utilized
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in order to perform self-optimization of future mobile networks. In this realm,

different RL solutions are tested in different scenarios and compared to other cur-

rent state-of-the-art approaches. Albeit different, these scenarios share a common

feature, which is the main issue that this thesis tackles, which is the end-to-end

optimisation of network resources through RL algorithms.

However, before focusing on the application of RL algorithms in SON, the

first objective of this thesis is to present a literature review of ML algorithms

applied in SON. Since SON is a very broad domain, with its three main functions

(self-configuration, self-optimization and self-healing), and the thesis only focuses

on the area of self-optimization, an extensive literature review of this field is pre-

sented. In addition to a literature review in the area of SON, a brief background

on ML covering the areas of supervised and unsupervised learning is presented.

This is followed by a broad overview of RL, the focus of this thesis, in which the

main algorithms are presented and advantages and drawbacks are discussed.

Regarding the application of RL in self-optimization use-cases, another ob-

jective of this thesis is in the context of the optimisation of user-cell association

procedures, considering end-to-end connectivity. As such, in order to deliver

better experiences to end-users and use network resources efficiently, a joint op-

timisation is proposed, in which radio access and backhaul resources are jointly

optimised in order to deliver a better cell association. As it will be seen in the

literature review section, the optimization of the backhaul is an important issue

in future mobile networks, however, despite this fact, not many researchers have

investigated this research topic [8]. As such, one of our objectives is to attempt to

tackle this problem through the utilization of RL algorithms in order to improve

the overall performance of the network.

Another emerging topic in the realm of self-optimization in SON is the uti-

lization of unmanned aerial vehicles (UAVs), as movable BSs, in order to provide

additional coverage or capacity for mobile networks. Due to their mobility and

line-of-sight (LoS) communication capabilities, UAVs are envisioned to play a key

role in future mobile networks, however one of the main issues that still remains

unanswered is how to position multiple UAVs in a mobile network in order to

maximize coverage. In this thesis an attempt to solve this issue by deploying

intelligent UAVs coupled with RL algorithms and limited by network constraints

is proposed. In order to evaluate the proposed solutions, two different simula-

tion scenarios were evaluated. First, an emergency communication scenario was

envisioned. This consists of an area in which part of the communication infras-

tructure was destroyed due to a natural disaster. As such, the deployment of

UAVs is performed to provide the necessary coverage by optimising the 3D posi-
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tion of multiple UAV BSs considering end-to-end user requirements and network

constraints. In this case, UAVs need to be embedded with intelligent algorithms

in order to be deployed in a quick and effective manner, to restore and provide

network service as quickly as possible in order to potentially save human lives.

The second scenario consisted of an event happening in a random part of a city,

which causes network congestion due to the excessive amount of people concen-

trated in a specific area (also known as pop-up networks). As such, in this other

case, UAVs are deployed in order to enhance network coverage and capacity to

provide service to end-users, while avoiding or minimizing interference with the

ground network. In addition, UAVs are also limited by their own resources and

need to jointly optimise their positions considering different user requirements

and aerial and ground network constraints. Based on these two UAV scenarios,

different RL algorithms are tested and the proposed solutions are compared with

other state-of-the-art techniques.

In summary, the objectives of the thesis can be outlined as follows:

• Explore the utilization of RL algorithms in different SON use-cases, with the

focus on self-optimization in future mobile networks, considering scenarios

in which end-to-end connectivity is required and network constraints are

limiting;

• Provide a literature review on the application of ML techniques in the realm

of self-optimization in SON, analysing previous works and classifying them

according to their learning technique and use-case;

• Analyse the impact of RL solutions in a proposed backhaul optimization

use-case considering not only RAN, but also backhaul constraints and users

requirements in order to achieve a better user-cell association;

• Analyse the impact of different RL algorithms in the context of UAVs ap-

plied in mobile networks in two different SON use-cases, one considering

an emergency situation and another consisting of a pop-up network, both

considering UAVs limited by network constraints;

• Provide future trends and research directions as well as conclusions in the

topic of RL and ML applied in SON.

1.4 Research Contributions

Based on the aforementioned objectives, this thesis focus on the application of RL

algorithms in self-optimisation use-cases of mobile networks in which end-to-end
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requirements and network constraints are considered. As such, three different

optimisation scenarios are investigated and the application of different RL al-

gorithms is considered, their performance is evaluated and compared to other

state-of-the-art solutions. Based on that, the contributions of this thesis can be

summarized as follows:

1. Provide an extensive literature review of ML algorithms applied in SON.

This literature review encompasses the last 15 years of research performed

in the area and each work is classified according to their learning type as

well as the SON use-case it tackled. Furthermore, some suggestions and

guidelines of the application of ML algorithms in SON use-cases are given,

as well as potential future research directions in the area of SON. For details

see [8].

2. Perform the optimization of user cell association considering backhaul con-

straints using a two-step Q-Learning algorithm. In this contribution the

optimisation of parameters both from the network and end users is pro-

posed, with the objective of enabling a user-specific cell association. This

association depends on users’ requirements and what each cell of the net-

work had to offer (in terms of backhaul), users would be associated to the

most fitting cell. Results show that the proposed approach performs bet-

ter than conventional state-of-the-art solutions, or utilizing a Q-Learning

solution to optimize only network side parameters.

3. Perform the optimization of coverage and capacity utilizing UAVs coupled

with RL algorithms in an emergency communications scenario. In this case,

it is envisioned that a ground network was destroyed and UAVs are deployed

to provide service for stranded users as well as search and rescue teams.

Based on this, a three dimension (3D) position optimization of multiple

UAVs, based on network constraints and user requirements is developed

utilizing Q-Learning. Results show that the proposed approach is robust,

dynamic and agile, and that it is able to outperform other methods.

4. Similarly to the previous contribution, the next contribution also envisions

the utilization of UAVs in order to optimize network coverage and capac-

ity. However, this time, a pop-up network scenario was investigated, in

which UAVs have to provide service for a large concentration of users that

cannot be supported by the ground network. As such, the problem of 3D

positioning multiple UAVs, constrained by user requirements, as well as in-

terference from the ground network is considered. For this problem, two RL
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techniques were proposed, one based on conventional RL, Q-Learning, and

another one based on the concept of value function approximation (VFA).

Results show that the two intelligent solutions are robust and are able to re-

store the network to its normal performance levels. In addition, results also

show that the solution based on VFA is also able to outperform classic Q-

Learning, highlighting the potential and advantages of VFA over traditional

RL methods.

5. Lastly, this thesis finalises with some conclusions and future research direc-

tions in the realm of RL, as well as SON and ML applied in SON.

In addition to the main contributions, I have accomplished several other par-

allel tasks, which also culminated in other publications and contributions. For

example, the works with Ozturk, et al. involved the self-optimization of mobile

networks in terms of HO parameters and user mobility management (Confer-

ence Proceedings 5–7). These works were performed using another RL technique,

Markov chains (MC), and attempted to reduce the HO cost of mobile networks by

trying to predict to which BSs users would move to next. Furthermore, another

work is (Conference Proceedings 4), in which RL (Q-Learning) is utilized in a

scenario with network slicing in order to reduce HO costs of the network, while

maintaining users QoS requirements. Another work involving Q-Learning is the

one in (Conference Proceedings 1), in which an extension of the (Journal 5) is

proposed and a joint optimisation of UAV position and transmit power is per-

formed. Lastly, in (Conference Proceedings 2), UAVs are utilized in a scenario

of emergency communication networks in order to provide delay tolerant com-

munications. However, because this optimization was performed offline (as the

location of temporary BSs was assumed to be fixed), a genetic algorithm (GA)

approach was preferred instead of RL.

1.5 Thesis Outline

The remainder of this thesis is as follows. Chapter 2 starts by presenting an

overview of current mobile networks and how 5G and future networks are expected

to overcome present drawbacks. Then, an overview of current state-of-the-art

ML techniques applied in SON use-cases is presented, with the focus on the

application of ML in self-optimization. After that, an overview of ML is presented,

focused on RL and its algorithms (that are used in the next chapters in the

optimization of SON use-cases). Chapter 3 presents a use-case of self-optimization

of the backhaul connection utilizing RL algorithms. This chapter starts with
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a brief introduction and motivation for the problem, followed by a literature

review on the topic. After that the system model is presented, followed by the

proposed solution. Results are then assessed, comparing with other state-of-the-

art approaches and conclusions are drawn.

Chapter 4 presents another use-case of self-optimization in SON, but this time

utilizing intelligent aerial platforms (UAVs) in order to optimize the coverage

and capacity of mobile networks in the context of emergency scenarios. This

chapter starts by introducing the problem of coverage in the case when a natural

disaster happens in a certain area. For the proposed scenario, a brief motivation

is presented, followed by a recent state-of-the-art literature review. After that,

the system model and proposed solutions are showcased, followed by their results.

Similarly, Chapter 5 presents the utilization of intelligent UAVs in the context of

pop-up networks, when high population density events, such as music concerts,

open markets or sport events happen. A brief introduction to the problem is

presented, followed by a literature review and a discussion on why analytical

solutions are not practical for pop-up network scenarios. After that, a motivation

is presented and the contributions of the proposed approaches based on RL are

highlighted. Then, the system model, consisting of both the ground and aerial

network is presented and the problem is formulated. The proposed solutions

are then shown, results are showcased and the algorithms convergence properties

analysed. Lastly, conclusions are drawn. Finally, Chapter 6 discusses future

trends in RL and also the application of RL algorithms in SON, and also draws

conclusions about the importance of learning, more specifically RL, in future

mobile networks.



Chapter 2

Background and Literature

Review

2.1 Overview in Current and Future Mobile Net-

works

As previously mentioned, current mobile networks rely heavily on human exper-

tise in order to collect and interpret data to perform basic network functions,

such as configuration, parameter optimisation or healing. This, by its turn, leads

to inefficient and sub-optimal solutions that incur in a lot of costs for mobile op-

erators, reducing revenue and limiting the network performance [8, 11]. As such,

there must be a shift in paradigms in future networks towards a more autonomous

and adaptable design. This should be performed in order to meet future network

requirements and to deal with its increased complexity, as the network scales up,

as well as keep on par with current technologies [8]. In the next few sections, a

brief overview of current mobile networks is presented, followed by an outline of

future technologies that will be a core part of future mobile networks, and which

will need a shift in paradigms in order to be fully functional.

2.1.1 LTE and LTE-Advanced (4G)

Previous and current generations of mobile networks are mostly based on mathe-

matical or statistical models derived from theory or from field measurements [37].

These models range all the way from operators analysing traffic patterns to deter-

mine where to deploy new BSs, analysing call data records to optimise different

BSs, performing period drive tests to determine which BSs need to be fixed or

even utilizing wireless channel models to calculate and determine parameters of

the communication’s link budget [8,37]. Other examples include when operators

18
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want to deploy a new network inside a building, expert engineers are sent in

order to collect data about the scattering of the wireless signal, path loss, LoS,

interference patterns, etc., and build a model of it. After a thorough analysis,

the best location for one (or multiple) hot-spots is (are) chosen and the operator

can go back to the site in order to perform its installation [8, 9].

As it can be seen by this example, mathematical models are at the heart

of mobile communications, playing a significant role in all aspects, such as net-

work design and configuration, network optimization and healing. However, this

conventional approach has several drawbacks, such as [37]:

• Depending on the network complexity, or the complexity of the scenario

being considered, it is really difficult to develop an accurate mathematical

model. In addition, even if it were possible to create a mathematical model

for every situation, there is also the trade-off between the accuracy of the

model and its complexity, in which simplistic models cannot describe the

observations well enough, while more accurate models need to be inherently

more complex;

• The deployment and optimization of fixed network infrastructure might not

be feasible for future use-cases of the future mobile networks, as current

network designs lack the necessary adaptability and flexibility in order to

handle dynamic changes in the environment. As such, the efficiency of

current mobile networks are limited by their static design.

As it can be seen, these two issues can be very limiting for future mobile

networks, specially because 5G and beyond systems are expected to experience

an exponential increase in complexity, due to the massive deployment of SCs and

the massive increase in the number of devices connected to the network [8, 11].

Furthermore, due to the static design of current mobile networks, operators are

usually limited in network design options, and usually end-up designing their

systems for the worst case scenario. If we take the previous example into con-

sideration, the deployment of new network infrastructure in a building, often

network engineers will ask questions such as how many people work in the build-

ing, or what are the peak hours of operation, or what time is lunch time. All

of these questions contribute for network engineers to know what the maximum

capacity of the new network should be, so that they can design and plan the

system accordingly. However, this leads to extremely sub-optimal solutions, as

whenever the building is not crowded or during off-peak hours, several network

resources, as well as revenue, are wasted. If we just consider a simple case of day

and night time, it is clear that this design is far from optimal, as if the deploy-
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ment is happening in a commercial building, for example, the traffic experienced

by the mobile network is usually much greater during the day than during the

night [38].

Another example that clearly highlights the inefficiency of this one-off design

approach is whenever certain one-off or sporadic events happen, such as in the case

of natural disasters [39]. Due to the lack of adaptability and flexibility of current

mobile networks, whenever the majority or even part of the network infrastruc-

ture is destroyed beyond repair, current mobile systems do not have the ability

or the capacity to automatically recover from it, such as a self-reconfiguration or

self-healing phase, for example [8,39]. As such, the remaining infrastructure can-

not cope with the change experienced in the network, nor the affected structure

can autonomously repair itself, leading to several users being without service, un-

til a network operator comes and manually restore the network. Lastly, another

example that clearly highlights the disadvantages of this fixed network design is

when there is a large concentration of users in a single area, which can happen

either in the case of natural disasters, as well as big events, such as music con-

certs, open markets or public holidays. In such cases, despite the network being

configured to operate up to the worst case scenario, whenever one-off events hap-

pen, even in these situations, the current network infrastructure still cannot cope

with the large increase in demand, leading to many users being without coverage.

These last examples also point out to the problem of underprovisioning network

resources, which can happen whenever operators deem that deploying a fixed in-

frastructure to cover a certain area might not be cost-effective to them (such as

in temporary events, hot-spots, or rural areas) [39].

In addition to these issues, which are related to the fixed design of mobile

networks, current solutions to network problems implemented by operators are

also rudimentary [8]. Nowadays most solutions still rely on control loops, feedback

controllers, or even a simple comparison against a threshold. All of these solutions

require the constant collection of data and monitoring, which whenever an event

or anomaly is detected, expert personnel will be deployed in order to try to find

and solve the problem as soon as possible [8, 20]. As such, current methods are

extremely ineffective, which often leads to a waste of network operators’ money

and subscribers [8, 11].

Although operators are slowly integrating SON capabilities in their networks,

with some early SON functions being deployed in current LTE systems, current

SON methods are still designed in a reactive manner [20]. Furthermore, cur-

rent SON solutions generally assume that some information about the network

is available, such as the location of coverage holes, handover ping-pong zones,
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congestion spots or the location of users [20]. This occurs because in classic SON

a delay is assumed, in which operators can observe the situation through alarms

and data from their operations and monitoring centre, diagnose the situation and

then trigger the compensating action utilizing any SON function. However, this

approach cannot deliver the stringent requirements of future mobile networks and

it would also not be suitable to construct dynamic and autonomous models of the

network, nor make future predictions about the network operation [20]. Moreover,

the assumption that operators have partial control or information about network

events is also not completely realistic and do not contribute to the design of an

autonomous and adaptable network, as it would still require human inputs [8,9].

As such, in order to fully enable an autonomous, adaptable and agile network,

other approaches that are capable of automatically analysing incoming real-time

network data, determining what and where the problem is, and triggering specific

actions should be designed, and for that to be possible, more intelligence needs

to be incorporate in all layers of future networks [8].

2.1.2 5G and Beyond

The previous generations of mobile networks were designed with a clear goal in

mind: to provide connectivity to end-users and make them able to communicate

with each other. However, this inherit design of mobile networks has recently

shown its limitations, as, nowadays, the majority of the traffic in mobile networks

is based on video [8, 12–14, 16]. As such, the legacy design of mobile networks

is not able to cope with certain requirements, such as in terms of bandwidth

and capacity, as well as latency and reliability. Furthermore, with the advances

in other technologies, it is expected that not only people will populate the next

generation of mobile networks, but also machines [8]. As such, the legacy design

of previous networks will be even more inefficient if applied to future mobile

networks, as a wide range of requirements, not only based on data rate, will have

to be met in order to enable all the future applications demanded by these new

devices. Consequentially, it is clear that new paradigms are needed in future

networks to address all the different requirements and use-cases. Based on that,

a brief overview of new paradigms that are going to be present in 5G and beyond

mobile networks and that can enable these new technologies is given below.

Ultradense Deployment

Network densification is considered a critical component of future mobile networks

in order for them to cope with the expected exponential increase in traffic and
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capacity. However, network densification will tremendously increase the burden

on operators, as mobile networks will become increasingly more complex, with

the configuration of thousands of parameters per BS, and the generation and

collection of even more data than current networks [8,16]. Furthermore, it is also

expected that the densification process will not be totally under the control of

network operators, with end-users also contributing to the deployment of SCs in

the network, such as in private offices or homes [8]. This, by its turn, will make life

for operators tougher, as it will be harder to track all deployed BSs and configure

them manually. Thus, solutions that can handle this increase in complexity and

also deal with the unknown environments can be extremely advantageous in these

cases.

Internet of Things and Machine-to-Machine Communications

The Internet of things (IoT) paradigm envisions that in the near future, everyday

objects will be equipped with communications devices, which will enable them to

communicate with one another as well as users and the core network, becoming

an integral part of the Internet [40]. Moreover, by making everything connected,

such as home appliances, city infrastructure, sensors, actuators, vehicles, etc.,

IoT and machine-to-machine (M2M) communications will enable a wide range of

applications that are not possible today, such as home and industrial automation,

telemedicine, smart cities and smart grid, and many others [26,40]. As such, with

the exponential increase in the number of devices with Internet access, future

networks will have to support billions of devices, with a variety of requirements

and applications, such as bandwidth, latency and reliability, for example. As a

result, 5G and beyond networks will have to be extremely efficient and diverse in

order to attend all of these heterogeneous demands [41].

Shift from Reactive to Proactive

As seen in previous sections, current mobile networks are reactive instead of

proactive, or in other words, operators wait for inputs from the network in order

to analyse the data and determine if something went wrong in order to fix it

[8]. However, this approach is not the most optimal one, as it can result in

extensive periods of outage, when problems are not detected, poor QoS delivery

and, subsequentially, loss of revenue. As such, a shift in paradigms is needed,

in which future networks should become more proactive. One way of doing this

is by considering more intelligent and robust algorithms, such as ML, in which

previous historical data is analysed and predictions about the future state of the
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network can be made [8].

Network Function Virtualization (NFV)

Another important enabling technology in future mobile networks is the con-

cept of NFV, which aims at decoupling network functions from specific hardware

components. This is done by performing these functions at high-end servers or

in the cloud and then sending the result back to the hardware [8]. By decoupling

functions from hardware, traditional issues encountered in previous generations

of mobile networks can be overcome. Furthermore, centralized solutions, or so-

lutions that would require additional resources, such as the huge amount of data

generated by mobile networks, can more easily be implemented, as everything

can be performed in a single location and then massively distributed to other

devices [8].

Massive MIMO

The concept of massive MIMO aims to explore the current benefits of MIMO (in

terms of capacity, reducing error rate - by diversity, increased spectral efficiency,

etc.) in a much larger scale [42]. With the advances of the electronic industry,

by being able to miniaturize components, according to the Moore’s Law, future

network systems could be coupled with arrays containing hundreds of antennas,

simultaneously serving many user terminals [42]. As such, the concept of massive

MIMO is expected to provide the required capacity enhancement needed, as well

as improve the EE of future networks. However, several issues still remain in

massive MIMO, specially in terms of interference management, downlink channel

estimation, and physical layer challenges, such as waveform modulation and pilot

contamination [43]. As such, adaptable solutions that can change communication

parameters online can be a potential solution to some of these problems. One

example can be the utilization of ML algorithms to overcome interference man-

agement, by dynamically adjusting the power of nearby BSs, or even supervised

learning techniques in order to predict physical layer parameters and minimize

network overhead [8].

Millimetre Waves (mm-Waves)

Lastly, another concept that has seen increased attention recently in future mo-

bile networks, is the area of mm-waves. The utilization of mm-waves for signal

propagation in wireless networks could be used to move away from the already

saturated 700MHz to 2.6GHz radio spectrum bands that are currently widely
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used in mobile communications. In addition to this benefit, moving to higher fre-

quencies would also allow operators to allocate larger bandwidths, which directly

translate to higher data rates and network capacity [44]. Given this significant

jump in bandwidth and other new capabilities offered by mm-waves, future net-

works will be able to handle a much larger capacity than current networks, being

an essential part of future systems. However, issues specially concerning path loss,

LoS and signal attenuation are still being investigated in mm-waves communica-

tions. As such, similarly to massive MIMO, solutions that can adapt themselves

in order to optimise network parameters online and solve these problems while

the network is operational are advantageous in these situations, such as energy

efficiency or beamforming [45,46].

2.2 Machine Learning (ML) as an Enabler of

SON

As it can be seen, all of these new paradigms that will be present in future mobile

networks require some sort of optimization in real time or information from the

network in order to operate at their optimal point. For example, in the case of

the ultradense network deployment, ML can be utilized by network operators in

order to estimate the traffic of certain locations and determine where and how

many new BSs should be deployed in a certain area. Another example is in the

case of IoT and M2M, in which ML can be used in order to learn communication

patterns of machines. This can be done utilizing data from humans, and trying

to predict what the behaviour of M2M will be or simply learning from machines

themselves. Lastly, another example where ML can excel is in making future

mobile networks more proactive, in which historic data from the network can be

collected and analysed by ML models in order to predict what type and where

failures are most likely to occur.

As it can be seen, the application of ML in future mobile networks has a

limitless potential. Due to their inherit property of being able to analyse data,

build models and make future predictions, ML is expected to play a major role in

future mobile networks in order to enable, not only all of these functions, but also

the SON paradigm. This, by its turn, will make future networks more reliable,

efficient, cost-effective and manageable [8].

ML is the science of making computers take decisions without being explicitly

programmed to do so [47]. This is done by programming algorithms that analyse

a given set of data and try to make predictions about it. Or, in other words, the
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Figure 2.1: Block diagram showing the three main branches of ML and some of
its algorithms [9].

goal of ML is to take an input data and learn a model based on a specific set

of instructions (algorithm) that relates the given input with the desired output.

Furthermore, depending on how learning is performed, ML algorithms can be

classified differently, mainly into three categories:

• Supervised Learning;

• Unsupervised Learning;

• Reinforcement Learning (RL).

Below a brief description of each category is presented and Figure 2.1 shows how

ML is divided into the three main branches and some of its algorithms.

2.2.1 Supervised Learning

Algorithms that require a data set that has information about both input and

output data fall into the category of supervised learning. As the name suggests,

this type of learning is similar to having a supervisor, or a teacher, supervising the

learning process. The teacher knows the answers (output) for every input data,

and, as the algorithm iteratively makes predictions during its training process,

the teacher corrects it. More formally, supervised learning can be defined as

algorithms that, based on the input and output relationship of the data, learn a
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model that best represents the data and is able to make predictions for newly,

unseen data examples [31,32].

In addition, supervised learning algorithms are also split into two main cate-

gories, which varies according to the type of the output variable. If the output

variable is a discrete variable, such as a class, for example: Disease and No

disease, or Cat and Dog, the supervised learning problem is referred to as a

classification problem. On the other hand, if the output variable is a real or a

continuous value, such as the value of a house, or the birth rate of a certain region,

then the supervised problem is considered as a regression problem [31]. Examples

of algorithms from supervised learning range from very simple functions, such as

linear regression, logistic regression, k-Nearest Neighbors, decision trees, support

vector machines (SVM), to more complex ones, such as neural networks, and its

variations, like convolutional neural networks and deep neural networks [33].

2.2.2 Unsupervised Learning

On the other hand, unsupervised learning algorithms are useful when the data

set consists of data without information about its output [8, 48]. As such, these

algorithms do not have the luxury of having a supervisor, and their objective

mainly consists of discovering similarities in the data set and forming groups of

similar examples, in what is known as clustering, or to determine the data distri-

bution [31,48]. Due to its nature of trying to estimate a model for data without

labels, unsupervised learning algorithms consist mainly of grouping algorithms

(clustering), such as K-Means, self organizing maps (SOM), anomaly detectors

and mixture models [8].

2.2.3 Reinforcement Learning

RL is a unique type of learning, and quite different than supervised learning,

which learns from previous examples provided by an external supervisor. Al-

though important, supervised learning is able only to learn static models, and

is not adequate for learning from interaction or from interactive problems, as in

this type of problems, generating examples of desired behaviour are quite hard

or even impractical to achieve [10]. As such, in interactive situations and in un-

known territory (where one would expect intelligence to be the most beneficial)

an agent must be able to learn from its own experience with the environment,

thus, RL solutions are the most appropriate [10].

RL is a ML technique based on a goal-seeking approach [10]. In contrast to

other ML techniques, such as supervised learning, in which the system learns
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Figure 2.2: Block diagram of a RL system. The agent takes an action based
on its current state. After taking an action, the agent receives a reward, which
depends on the outcome of its action, and arrives in a new state.

by analysing examples provided by an external supervisor, whereas in RL, the

learner must discover which actions to take by trying them [10,49].

In RL, a system, called an agent, interacts with its surroundings, the envi-

ronment. These interact continuously, with the agent selecting actions and the

environment responding accordingly, by giving the agent a reward and presenting

new situations, as shown in Fig 2.2. Basically, the agent and environment inter-

act continuously at certain time-steps. At each time-step, t, the agent receives

a representation of the environment’s state and selects an action according to a

policy (π). On the next time-step, t+ 1, as a consequence of its action, the agent

receives a reward (rt+1) and arrives in a new state. As such, the goal of an agent

can be defined as to maximize its total cumulative reward. Based on this, a RL

system can be divided into four main components [10]:

1. Policy (π): dictates the behaviour of the agent (how actions will be chosen)

and it can be either deterministic or stochastic.

2. Reward (rt+1): special numerical values given by the environment that the

agent tries to maximize over time.

3. Value function: indicates the expected value of visiting a state, V (s) – state-

value function, or the value of taking an action in a specific state, Q(s, a) –

action-value function.

4. Environment: comprises everything outside the agent. In addition, usually

the agent has some knowledge about the environment, however, sometimes,

a model of the environment is not available.

Furthermore, due to the inherit nature of RL systems of exploring the envi-

ronment and determining which actions to take, it is only natural that a trade-off
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arises. This trade-off, known as the exploration-exploitation trade-off, is a funda-

mental dilemma in RL, in which the agent must not only exploit the best actions

currently known, but also explore new actions, in order to determine if there are

possible actions that lead to a better cumulative reward [10,49]. In addition, RL

algorithms can be divided into three main categories [10]:

1. Dynamic programming (DP): in which the agent has a perfect model of the

environment, given by a Markov decision process (MDP), and the goal is

to learn the optimal policy (in order to choose the best actions).

2. Monte Carlo methods (MCM): in this case, it is not assumed that there is

complete knowledge about the environment. Thus, the agent must learn

either online, by experiencing the environment, or through simulated expe-

riences, in which the environment is represented by a very simple model.

3. Temporal-difference learning (TD learning): which can be defined as a com-

bination of MCM and DP. Just like MCM, TD learning agents can learn

directly from their experience with the environment, without the need of

the complete environment dynamics. Furthermore, similar to DP, TD al-

gorithms update their estimates (either a policy or a value function) based

on other learned estimates (they are capable of bootstrapping).

These algorithms can be further divided into On-Policy or Off-Policy, de-

pending on how learning is performed [10]:

• On-policy learning: the agent updates its value function and estimates the

return (the total discounted future reward) assuming that the current policy

continues to be followed.

• Off-policy learning: the agent updates its value function and estimates the

return assuming a different policy than the one that is being followed.

In addition, one of the most commonly used policies in RL is the ε-greedy

policy, which states that with a probability p = (1− ε) the action that yields the

maximum value known by the agent is chosen, whereas with probability p = ε an

action is chosen at random. Furthermore, when a decaying ε rate is chosen, this

policy exhibits a nice trade-off in terms of exploration and exploitation, in which

in the beginning, because the ε is quite larger, the agent will favour exploring new

actions, while later, due to the decaying ε rate, the agent favours the exploitation

of the best actions [10].
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Q-Learning

One of the most popular algorithms in RL is Q-Learning. First proposed by

Watkins, in [50], Q-Learning is a TD Learning method that learns an action-

value function, Q(s, a), which represents the expected value of an agent being

in a certain state and taking a specific action. Q-Learning is a method that, at

each step at a state st, chooses an action at that maximizes its value function.

This function, Q(st, at), indicates how good is taking an action at a specific state

according to a reward r. More formally, Q-Learning can be defined as [10,49,50]:

Q(st, at)← Q(st, at) + α[rt+1 + γ ·max
a
Q(st+1, a)−Q(st, at)], (2.1)

where Q(st, at) is the current action-value function, α is the learning rate, rt+1

is the expected reward at the next time step, γ is the discount factor and

max
a
Q(st+1, a) is an estimate of the optimal future action-value function at the

next time step, over all possible actions, a. In (2.1), the back-up, which is de-

fined as what the algorithm stores in memory, is represented by the right side

of the equation. Furthermore, the target is defined as rt+1 + γ · max
a
Q(st+1, a),

in which it represents the estimated value and the error is represented by rt+1 +

γ · max
a
Q(st+1, a) − Q(st, at), which is the value that was previously stored in

memory subtracted with the target value [10].

Because Q-Learning utilizes two different policies, one to generate its be-

haviour (ε-greedy for example) and another one that is evaluated and improved

(fully greedy policy), it is considered to be an off-policy algorithm. One advantage

of this separation is that the policy that is estimated can be deterministic, while

the policy that controls the agent’s behaviour can continue to sample all possible

actions [10]. As it can be seen from (2.1), Q-Learning always evaluates the greedy

policy (as it is the policy chosen to estimate the value of the action-function in

the next time step), but as a behaviour policy, any policy can be chosen.

SARSA

Another commonly found algorithm in RL is SARSA, which stands for state-

action-reward-state-action (SARSA). Similar to Q-Learning, SARSA also learns

an action-value function, Q(s, a), however, instead of choosing the next action

based on the maximum expected value, SARSA chooses the next action according

to the same policy used to choose the current action [10]. On the contrary to

Q-Learning, SARSA utilizes the same policy to generate its behaviour and to

evaluate and estimate the value of the action-function, thus SARSA is considered
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to be an on-policy learning algorithm. Formally, SARSA can be defined as [10]:

Q(st, at)← Q(st, at) + α[rt+1 + γ ·Q(st+1, at+1)−Q(st, at)]. (2.2)

Similarly to Q-Learning, in (2.2), the back-up is represented by the right side

of the equation, its target is defined as rt+1 + γ · Q(st+1, at+1) and the error is

represented by rt+1 + γ ·Q(st+1, at+1)−Q(st, at) [10]. As it can be seen, the only

difference between SARSA and Q-Learning is the target value, in which in Q-

Learning a the next action is chosen following a greedy policy, whereas in SARSA

it is chosen according to the current policy being followed [10].

An example comparing the performance of Q-Learning and SARSA, as well

as highlighting their differences, can be found in Appendix A.

Limitations in Conventional RL

In conventional RL, the task of learning value functions is often assumed to be the

task of learning the values in a table with entries for different state-action pairs

(also known as the Q-Table). However, despite this assumption working well

in practice, the application of conventional RL algorithms are often limited to

tasks with a small number of states and/or actions [10]. This occurs because RL

algorithms rely on periodically updating lookup tables (the action-value function,

for example) to determine which actions to take, which can be infeasible when

the number of states or actions is too large [10].

Another issue commonly found in conventional RL algorithms is generaliza-

tion, in which the algorithms are not capable of learning or estimating the value

of the table between two very similar states. This happens because the basic

idea behind many of the RL algorithms is to estimate the value function by using

the Bellman equation as an iterative update [10]. Thus, the value-function is

estimated separately for each sequence of states and actions, not being able to

generalize for any given sequence. This is a severe problem, as in many tasks

involving RL, most states encountered will never have been experienced before,

specially in cases of continuous or complicated environments [10].

Thus, in order to overcome these issues, RL algorithms can be combined with

generalization methods, such as function approximation, which aim to estimate

the values of the tables by a function. By doing so, the tables can be represented

by a particular function, in what is known as value function approximation (VFA).
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Value Function Approximation (VFA)

VFA techniques aim to represent the value function of a RL problem not as a

table, but as a parametrized function with a parameter vector ~θ. This means

that the value of the function depends only on ~θ, varying from time steps as ~θ

varies. Typically, the number of parameters in ~θ is much less than the number of

states in a RL problem, as such, representing states become much less memory

consuming [10]. Furthermore, because now the value function solely depends on ~θ,

whenever a component of ~θ changes, a change of estimates for many state-action

pairs is triggered, consequently generalization is achieved [10]. As an example,

one can think of the approximation function being a polynomial. Thus, whenever

the parameters of the function (the coefficients, for example) change, it triggers

a change in all estimated values. Furthermore, it is easy to see that if states

with similar ~θ inputs are input to the function, similar outputs are obtained. As

such, it can be said that VFA brings generalization to RL, one key advantage

that conventional RL does not provide.

In summary, the main idea behind VFA is to estimate the value function

by experiencing and gathering examples from the environment. This can be

achieved by interpreting the problem as a supervised learning problem, in which

each backup of RL algorithms are seen as training examples, and the output is

the observed target value for each point in the value function [10]. By doing

this RL algorithms are able to use any existing function approximation meth-

ods for predicting the values of the value-function. Some examples of function

approximators are: decision trees (DTs), linear or logistic regression, neural net-

works, as well as deep neural networks, which recently started the field of deep

RL [34,51–54]. This function is learned on-line by the agent interaction with the

environment, and enables RL algorithms to generalize and estimate the values

of new unseen states, while also addressing the problems related to memory re-

quired to fill in and update their tables [10]. However, despite these advantages,

VFA introduces more complexity to the system, as now additional computation

is necessary in order to estimate the value of the tables.

In order to perform learning in VFA, a certain function must have its pa-

rameters minimized, in order to update the learned weights, ~θ. As such, one

technique that can be used to update these values is the gradient-descent (GD).

GD methods are widely used in all function approximations and are particularly

well suited for RL problems [10]. GD is an iterative optimization algorithm that

finds the minimum of a function. In the case of RL, the function to be minimized

can be expressed as the mean square error (MSE) between the target and the

observed value function (or in other words, the error). For SARSA, for example,
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the MSE can be defined as:

MSE(~θt) =
∑
s∈S

[rt+1 + γ ·Q(st+1, at+1)−Q(st, at)]
2 . (2.3)

In GD, it is usually assumed that the parameter vector ~θt has a fixed number

of real components, as in ~θt = (θt(1), θt(2), ..., θt(n)), and that the value function

is a differentiable function with respect to the parameter ~θt [10]. As it can be seen

from (2.3), it is also assumed that as the agent interacts with the environment, on

each time-step t, a new example Q(st, at) is observed. However, even if the agent

knows the exact values of the value function, a difficult problem still remains,

due to the limited resolution and resources of the function approximator. One

such issue that arises is that it is generally impossible to find a parameter vector
~θt that matches all the observed examples of the value function [10]. Moreover,

even if such parameter vector existed, it would overfit to the observed distribution

and it would not be able to generalize to examples that were not observed. As

such, one strategy in order to overcome this issue is to minimize the error on the

observed examples. This can be done by utilizing GD methods and updating the

parameter vector ~θt by a small amount in the direction that reduces the error the

most on that example [10]. Considering SARSA, ~θt can be updated as in [10]:

~θt+1 = ~θt −
1

2
· λGD · ∇~θt

[
rt+1 + γ ·Q(st+1, at+1)−Q(st, at, ~θt)

]2

. (2.4)

By utilizing the chain-rule, (2.4) becomes

~θt+1 = ~θt −
1

2
· λGD ·

(
−2∇~θt

Q(st, at, ~θt)
[
rt+1 + γ ·Q(st+1, at+1)−Q(st, at, ~θt)

])
,

(2.5)

which can be re-written as

~θt+1 = ~θt + λGD [rt+1 + γ ·Q(st+1, at+1)−Q(st, at)] · ∇~θt
Q(st, at), (2.6)

where λGD is the GD learning rate, [rt+1 + γ ·Q(st+1, at+1)−Q(st, at)] is the error

in SARSA, and ∇~θt
f(~θt) is the gradient for any function f , which is the vector

of partial derivatives and is defined as [10]

∇~θt
f(~θt) =

(
∂f(~θt)

∂~θt(1)
,
∂f(~θt)

∂~θt(2)
, ...,

∂f(~θt)

∂~θt(n)

)
. (2.7)

This partial derivative vector with respect to ~θ points in the direction of the

greatest rate of increase in any function, however, because the overall step in ~θt



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 33

is proportional to the negative gradient of the squared error, it will point to the

direction that the error falls the most rapidly [10].

SARSA with VFA

VFA is a really powerful technique that enables RL algorithms to generalize and

avoid the finite memory limitation of the system. One example of the application

of VFA is in SARSA. Although SARSA and Q-Learning are very similar, because

SARSA is an on-policy method, VFA has better convergence properties than Q-

Learning, which is an off-policy method (in other words, off-policy algorithms

tend to have convergence issues when VFA is applied). Based on the workflow of

SARSA, an algorithm that showcases how VFA can be implemented is shown in

Algorithm 1 [10].

Algorithm 1: SARSA with VFA [10]

1 for Every episode do
2 Initialize current state
3 for All actions do
4 Get features present in current state and action
5 Estimate value of Q-Table with VFA

6 end
7 Choose action according to policy
8 for Each iteration do
9 Take action

10 Observe reward
11 Move to next state
12 for All actions do
13 Get features present in next state and action
14 Estimate value of Q-Table with VFA

15 end
16 Choose next action according to policy
17 Update weights by GD
18 Current state receives next state
19 Current action receives next action

20 end

21 end

2.3 State-of-the-Art in SON

In this section a literature review, covering state-of-the-art solutions that apply

different ML techniques in the self-optimization function of SON, is presented.

However, before that, a brief introduction to the functions of self-configuration

and self-healing is given, and its main use-cases are highlighted. Due to the
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broadness of such areas, and since the main focus of this thesis is in the application

of RL algorithms in the context of self-optimization of SONs, a complete literature

review covering these two areas is out of the scope of this thesis. However, for

interested readers that would like to read a complete review on ML techniques

applied in each use-case of every self-x function, as well as some suggestions on

which ML algorithm to use depending on the use-case, please see [8].

2.3.1 Learning in Self-configuration

Self-configuration can be defined as the process of automatically configuring all

parameters of network equipment, such as BSs, relay stations and femtocells.

In addition, self-configuration can also be deployed after the network is already

operable. This may happen whenever a new BS is added to the system or if the

network is recovering from a fault and needs to reconfigure its parameters [11].

In order to perform self-configuration, several learning techniques are being

applied to configure, not only basic operational parameters, but also to discover

BSs neighbours and perform an initial configuration of radio parameters. How-

ever, due to the increasingly complexity of BSs, which are expected to have

thousands of different parameters that can be configured (many with dependen-

cies between each other) and the possibility of new BSs joining the network or

existing ones failing and disappearing from their neighbours’ lists, the process of

self-configuration still provides quite a challenge for researchers.

Based on these steps, three major use cases of self-configuration can be defined

and are divided into:

1. Configuration of operational parameters;

2. Determination of new BS neighbours and creation of neighbour cell list;

3. Configuration of the remaining radio related parameters and adjustment of

network topology.

2.3.2 Learning in Self-healing

Current healing methods not only rely on manually interventions and inspection

of cells, but also on reactive approaches, that is, the healing procedures are trig-

gered only after a fault has occurred in the network, which degrades the network’s

overall performance and also results in a loss of revenue to operators [8].

The self-healing function in SON is expected not only to solve eventual fail-

ures that might occur, but also to perform fault detection, diagnosis and trigger
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automatically the corresponding compensation mechanisms. In addition, it is

expected that future mobile systems also move from a reactive to a proactive

scenario, in which faults and anomalies can be predicted and the necessary mea-

sures taken before something actually happens. Due to this change in paradigm

in current mobile networks, self-healing solutions are extremely challenging and

rely heavily on previous gathered data in order to build models and try to predict

whenever a fault might occur in the network [8].

From a learning perspective, several ML algorithms can be applied, depending

on the type of data that operators have and its nature. In some scenarios, it is easy

to label certain types of data, such as in fault classification, in others, however,

such as in outage cases, in which outage measurements appear to be normal

or only deviate a slight amount from normal, it might be more suitable not to

label the data and work with unsupervised algorithms. Based on the collected

references and also from [21], which defines the major use cases for self-healing,

the following use-cases for self-healing could be defined as:

1. Fault Detection;

2. Fault Classification;

3. Outage Management.

2.3.3 Learning in Self-optimization

In SON, the concept of self-optimization can be defined as a function that con-

stantly monitors the network parameters and its environment and updates its

parameters accordingly in order to guarantee that the network performs as effi-

ciently as possible [11]. Since the environment in which the network is inserted is

not static, changes might occur and the BSs might need to adjust its parameters

in order to accommodate the demands of the users. Changes can be in terms of

traffic variations, due to an event happening in a certain part of a city for ex-

ample, coverage, due to a network failure, capacity, because of a change in users

mobility patterns, such as a road block or an accident, and many others [8].

Due to this fact, some of the initial parameters configured in the self-configuration

phase might not be suitable any more and a change in can be required in order to

optimize the network’s performance. Since there are several different optimiza-

tion parameters in the network, many ML algorithms can be applied. In addition,

mobile operators also collect lots of data during network operation, which further

enables the application of intelligent solutions in order to optimize the network.

However, despite the huge amount of data collected, self-optimization is still a
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challenging task, as many parameters have dependencies between them and a

change in one of them can alter operation of the network as a whole [8].

Based on the use cases defined by [22] and the literature reviewed, SON use-

cases in terms of self-optimization can be defined as:

1. Backhaul;

2. Caching;

3. Coverage and Capacity;

4. Antenna Parameters;

5. Interference Control;

6. Mobility Management;

7. Handover Parameters;

8. Load Balancing;

9. Resource Optimization;

10. Call admission control (CAC);

11. Energy efficiency (EE);

12. Coordination of SON functions.

Below, an overview of how ML algorithms are applied in each of these use-cases

is presented.

Backhaul

One important aspect of future mobile network systems is the backhaul con-

nection, or in other terms, the connection between the BSs and the rest of the

network. Current mobile systems only evaluate the quality of the connection be-

tween the end-user and the BS. In the future, however, as systems will require to

support a wider range of applications and heterogeneous requirements from users,

this approach might not be suitable and a more end-to-end approach, considering

the whole link between the user and the core network might be better [8]. With

that in mind, some researchers developed solutions in order to solve the back-

haul problem in future networks in terms of QoS and QoE provisioning [1–3,55],

congestion management [17,56] and also topology management [57].
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Solutions such as [17, 56] propose a backhaul solution involving flexible QoS

schemes, congestion control mechanisms, load balancing and management fea-

tures. In these solutions, the authors demonstrate a test-bed involving a network

consisting of twenty nodes and with separated control and data plane. Another

possible solution for backhaul optimization is proposed in [57], in which the au-

thors utilize a fuzzy logic controller (FLC) to arrange the network topology in

response to changes in traffic demand.

Other backhaul optimization solutions are the works proposed by Jaber et al.

in [1–3,55]. In these works the authors used Q-Learning to intelligently associate

users with different requirements, in terms of capacity, latency and resilience, to

SCs depending on the backhaul connection that they offered. If the backhaul and

the user needs match, then the user would be allocated to that cell, otherwise

a new cell is searched. Results showed that the proposed solutions are able to

achieve better QoE for all users at the cost of decreasing overall throughput.

Caching

During the last couple of years, the fast proliferation of smart-phones and the ris-

ing popularity of multimedia and streaming services led to an exponential growth

in multimedia traffic, which has very stringent requirements in terms of data rate

and latency. In order to address these requirements and also reduce network

load, specially during peak hours, future mobile networks must be coupled with

caching functions. Some problems that arise, however, are the decision of what,

where and how to cache, in order to maximize the hit-ratio of the cached content

and provide gains to the network.

In [58], Wang et al. provide a good overview of why caching is necessary in

future networks, what might be the gains of caching at different locations within

the network and also presents some of the current challenges encountered. In

terms of caching solutions, several approaches are being considered, such as in [59–

64]. In [59], the authors explore various ways of integrating big data analytic with

network resource optimization and caching deployment. The authors propose a

big data-driven framework, which involves the collection, storage and analysis of

the data and apply it to two different case studies. The paper concludes that big

data can bring several benefits in mobile networks, despite of some issues and

challenges that still need to be resolved.

Other caching solutions, like in [63], analyse the role of proactive caching

in mobile networks. In this paper, the authors analyse and propose two solu-

tions. First, the authors develop a solution to alleviate backhaul congestion, in

which files are cached during off-peak periods based on popularity and correla-
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tions among users and file patterns using collaborative filtering (CF). The second

solution analyses a scenario that explores the social structure of the network

and tries to cache content in the most relevant users, allowing a device-to-device

(D2D) communication framework. These influential users, as they are called,

would then have content cached into their devices and disseminate it to other

nearby users. By using K-means algorithm, this second approach can cluster

users and determine the set of influential users and which users can connect to

them.

Another approach from the same authors as in [63] is shown in [61]. In this

work the authors apply a new mechanism based on transfer learning (TL) in

order to overcome the problems of data sparsity and cold-start problems that can

be encountered in CF. In this new solution, the authors assume that they have

gathered data and built a model for a source domain, composed of a D2D based

network. After that, the proposed TL solution smartly borrows social behaviours

from the source domain to better learn the target domain and builds a model

that can smartly cache contents into the BSs.

Other solutions for caching optimization include the work in [60,64], where the

caching problem is modelled as a game theory problem. In [64], the authors model

the system as a many-to-many matching game and propose an algorithm that is

capable of storing a set of videos at BSs in order to reduce delay and backhaul

load. On the other hand, Blasco et al., in [60], tackle the optimization problem of

storing the most popular contents in order to relieve backhaul resources. Another

work that researched the impact of caching in mobile networks is [62]. In this

solution the authors propose the optimization of caching in SC networks and

divide it into two sub-problems. First, a clustering algorithm (spectral clustering)

was utilized in order to group users with similar content preferences. After that,

RL is applied so that the BSs can learn which contents to cache and optimize

their caching decisions.

Coverage and Capacity

Another challenging issue in future network systems is the optimization of cover-

age and capacity, in which the network tries to optimize itself in order to achieve

the best trade-off between coverage and capacity. Based on this, several authors

are proposing intelligent solutions to tackle this problem [8].

In [65], for example, the authors apply SOM (unsupervised learning) to opti-

mize the number of cells inside a cluster and also antenna parameters in order to

achieve a better coverage. Two different scenarios are proposed, the first one aims

to change only cluster sizes, while the second one changes both cluster sizes and
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antenna parameters. On top of that, two SOMs are considered to perform cluster

optimization. It is shown that the first scenario provides a gain of around 5%,

while the second one achieves a gain in the order of 13%. Other approaches, such

as in [66–68], utilize feedback controllers in order to optimize the coverage and

capacity of the network. In [66], a coverage adaptation mechanism for femtocell

deployments that utilizes information about mobility events of passing-by and

indoor users to optimize femtocell coverage is developed. Fagen et al., in [67],

propose a method to simultaneously maximize coverage while minimizing the in-

terference for a desired level of coverage overlap. On the other hand, Engels et

al., in [68], develop an algorithm that tunes transmit power and antenna down-

tilt angle in order to optimize the trade-off between coverage and capacity via a

traffic-light based controller.

Furthermore, the work in [69] considers a novel multi-objective optimization

(MOO) model and proposes a meta-heuristic approach in order to perform cov-

erage optimization. The solution simulated a LTE network scenario and aimed

to maximize the performance of users in a given cell in terms of fairness and

throughput. Other solutions, such as in [70, 71], attempt to optimize the cover-

age of femtocells by using GAs. In both solutions, the authors tried to perform

a multi-objective evaluation and the algorithm would try to satisfy three rules

simultaneously: minimize coverage holes, perform load balancing and minimize

pilot channel transmit power. In the end, the solution returns the best individual

of all populations and changes the pilot power of femtocells accordingly.

Antenna Parameters: Another set of parameters that also have an impact on

coverage and capacity of the network are antenna parameters, mainly: antenna

down-tilt and azimuth angles, and transmit power. In particular, the optimization

of antenna parameters often requires tuning after the initial operator’s configura-

tion and are very delicate, requiring not only expertize, but also a lot of precision

to perform. Hence, it can be quite costly for the operators to perform this opti-

mization and that is why several papers are trying to automatically optimize the

antenna’s parameters.

In [72], the authors propose four different methods in order to optimize traffic

offload of macrocells to microcells. The first two solutions utilize only micro-

cell measurements, while the third method is based on minimization of drive

test (MDT) measurements and the last method is a hybrid of all three previous

solutions. All methods, however, aim to maximize capacity offload from macro-

cells, or in other terms, maximize microcells’ coverage. By changing the antenna

down-tilts and transmission powers according to the measurements collected via a
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feedback loop mechanism this offload is achieved. In [73], the authors develop an

optimization algorithm to find the best settings for antenna down-tilt angle and

common pilot channel power of BSs. The solution begins by performing an eval-

uation of the network and analysing the obtained results. After that, an iterative

process formed by a control loop begins. In this process, parameters are changed

according to certain rules and how far the parameters are from optimal until an

accepted level is reached. Other works, such as in [74–76] aim to optimize the

down-tilt angle of the antennas by applying fuzzy Q-Learning (FQL) in a LTE

network scenario in order to achieve better coverage. While in [77], Eckhardt

et al., propose an algorithm for antenna down-tilt angle optimization in order to

optimize the spectral efficiency of users. The approach considered a LTE network

scenario and is based on heuristics to find the best antenna parameters.

Interference Control: interference has always been a problem affecting the

performance of communications systems and in future networks this will not be

different. Hence, several intelligent approaches are being considered in order to

cope and control this limiting factor.

In [78], for example, the authors propose a distributed self-organizing fem-

tocell management architecture in order to mitigate the interference between

femtocells and macrocells. The solution consists of three feedback controllers, in

which the first loop controls the maximum transmit power of femtocell users, the

second determines each femtocell user’s target signal to interference plus noise

ratio (SINR) and the third attempts to protect the users uplink communication.

Another approach is [79], which proposes a feedback controller to perform intercell

interference cancellation (ICIC). The proposed solution consists of two phases:

in the initial phase, each cell attempts to assign resources by itself and, in the

second phase, cells optimize themselves by resolving sub-optimal assignment of

the resources. It is shown that the algorithm is capable of achieving good results

and also assign resources reliably.

Mehta et al., in [80], develop two solutions in order to address the prob-

lem of co-layer interference (interference between neighbours) in a heterogeneous

macrocell and femtocell network scenario. The two schemes attempt to mitigate

co-layer interference while also improving the minimum data rate achieved by

femtocell users and ensuring fairness to them. The first scheme proposes a mod-

ification to the technique of adaptive frequency reuse (AFR) by adding power

control, while the second scheme applies a self-organized resource allocation solu-

tion based on a feedback controller in order to allocate resources and manage the

interference. In [81], the authors also build a self-configuration and optimization
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scheme for a network of femtocells overlaid on top of a macrocell network. The

algorithm automatically configures the femtocells transmit power and promotes

self-optimization via a feedback controller to automatically control when to turn

on or off femtocells in order to reduce interference between macro and femtocells.

Other approach to interference mitigation is the work in [82]. In this work,

the authors model the coexistence of a macrocell and femtocell network and de-

velop a distributed algorithm for femtocells to mitigate their interference towards

the macrocell network. The authors divide the problem into two sub-problems

of carrier and power allocation. The carrier allocation problem is solved via Q-

Learning, while the second sub-problem, of power allocation, is solved using a

gradient method. Another solution that utilizes the concept of RL, is the work

in [83], in which a solution to the problem of ICIC in the downlink of mobile or-

thogonal frequency-division multiple access (OFDMA) systems is proposed. The

problem is posed as a cooperative multi-agent control problem and its solution

consists of a fuzzy inference system (FIS), which later is optimized using Q-

Learning. The solution is based on the concept of adaptive soft frequency reuse

and the ICIC concept is presented as a control process that maps system states

into control actions, which can be modelled as a RL system. Lastly, another so-

lution comes from Aliu et al., in [84], in which the authors adopt a novel fraction

frequency reuse (FFR) based on GA for ICIC in OFDMA systems. The main

difference of this solution is that it not only attempts to use a new technique,

but also considers a non-uniform distribution of users and characterizes it by

determining its centre of gravity.

Mobility Management

Another important aspect of future mobile network systems is the ability to

predict user’s movement in order to better manage resources and reduce the

cost of network functions, such as HO. Mobility management can be defined

as the process in which the network is able to identify in which cell the user

currently is [85]. Current location techniques involve databases that store the

locations of the users and every time the user changes position these databases

need to be updated [86], however, this method is not very efficient. If the network

could predict a user’s next cell or even the path it will traverse, several gains in

the network performance could be observed, hence, different solutions are being

developed to this challenging problem.

Some papers, such as in [85–92] use back propagation neural betworks (BPNNs)

in order to predict the next cell a user can be. The basic idea behind all these

papers is to use the concept of NN to learn a mobility-based model for every user
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in the network and then make predictions of which cell the user is most likely

to be next. In [89], for example, the authors develop a method consisting of two

cascaded ML models. The first model performs clustering via K-means while the

second does classification. In classification, the authors compare the performance

of three different methods, mainly, NN, DTs and naive Bayes. Results show that

the proposed model achieves better accuracy than performing only classification

alone and also that the classifier that performed the best was the DT classifier.

Despite using NNs as primary intelligent strategies, some papers also use differ-

ent learning techniques. Akoush et al., in [88], combine the concept of NN with

Bayesian learning in order to perform classification tasks and predict a user’s next

cell and show that Bayesian networks outperform standard NN by 8% to 30%.

Another supervised learning technique that can be found in the mobility use-

case is the support vector machine (SVM). In [93] Chen et al. build a model

that uses only channel state information (CSI) and HO history to determine

a user’s mobility pattern. Their algorithm defines an user trajectory based on

the previous and next cell it traversed and, given the input data (previous cell

and CSI sequence), the next cell can be predicted. In addition, the solution

considers multiple classifiers, one for each possible previous cell, and trains several

non-linear SVM classifiers with Gaussian kernels. On the other hand, authors

from [94] consider the problem of estimating not only the location of mobile

nodes in an indoor wireless network, but also channel noise. The solution uses a

Hierarchical SVM model, composed of four different levels and is able to maintain

good accuracy for speeds up to 10m/s. Other approaches to mobility prediction

are the works in [95, 96], in which the authors propose a movement prediction

and a resource reservation algorithm, which uses MC and hidden Markov models

(HMMs), respectively. In [95], the authors considered a discrete-time MC in order

to represent cell transitions and determine a user’s path. This approach does not

require any training and optimization is done online. On the other hand, the

solution of [96], models the network as a state-transition graph and converts the

problem into a stochastic problem. HMM is then applied, so that it learns the

mobility parameters and, later, makes its predictions. Lastly, another solution

that relies on the use of MC is the work in [97], in which the authors propose

a movement prediction and a resource reservation algorithm. The movement

prediction algorithm is done via distributed MC while bandwidth management is

done in a statistical way.

In another set of solutions, this time from Sas et al., in [98, 99], the problem

of users that have high mobility and experience frequent HOs is addressed. The

algorithm shown in [98] consists of three major components, a trajectory classifier,
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trajectory identifier and a traffic steerer. The objective of the algorithm is to

classify and match current trajectory of users with previous trajectories stored

in a database. After that, the steerer is activated so it can decide if it is better

to keep the user in the current cell or to perform a HO. The solution in [99]

builds upon that and adds a mobility classifier module before the steerer makes

a decision. By implementing this classifier, the algorithm becomes more generic

and can determine in which categories users fall into, e.g.: slow, medium or high

mobility, before deciding if they need to be steered or not.

On the other hand, Yu et al., proposed a novel approach based on activity

patterns for location prediction in [100]. Instead of predicting directly a user’s

next location, the solution attempts to, first, infer what the user’s next activity

is going to be, to, later, predict the location. The approach consists of three

phases. The first phase tries to infer the current activity that the user is doing,

the second attempts to infer the next activity and the third predicts the location.

The proposed algorithm uses a supervised model to build an activity transition

probability graph, which also takes into account the variation of time, so at

different times of the day, the activities predicted by the model might be different,

as it should be.

The work proposed in [101] attempts to use semi-supervised or unsupervised

techniques to reduce the effort of gathering labelled data to perform location

prediction. To perform this, the authors build a discrete model and assign a

Gaussian distribution to model the signal strengths of received signals by users

for every location. After that, two different approaches are taken. In the first

approach, the authors label only part of the data, making it a semi-supervised

model, while in the second approach a data set with no label is considered. After

that, the authors learn a model and use it to compute the estimate of location for

each test sample. The authors conclude that there is significant opportunity to

explore semi-supervised and unsupervised learning techniques since even without

any labelled data (fully unsupervised model), a reasonably accuracy could be

obtained.

Recently, a work by Farooq et al., in [102], proposes the use of a semi-Markov

model together with participatory sensing in order to predict mobility pattern

of users in the network. Lastly, another recent work, is the work proposed by

Mohamed et al., in [103], in which the authors build upon the previous model

presented in [95]. By using an enhanced MC to predict next cell locations for

users of the network, the authors demonstrate that by predicting a user’s next

location HO signalling costs can be reduced.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 44

Handover Parameters Optimization

The process of changing the channel (frequency, time slot, spreading code or a

combination of them) associated with a connection while a call is in progress is

known as hand over (HO). HO are of extreme importance in mobile networks due

to the nature of mobility of its users. Without this procedure, mobility could

not be supported as connections would not survive the process of changing cells.

HO can be divided into two categories, there can be horizontal HO (HHO), in

which a user switches between BSs of the same network or vertical HO (VHO),

in which a user switches between BSs of different networks. The optimization

of HO parameters is crucial in many aspects of the network, as it can affect not

only the mobility aspect, but can also affect coverage, capacity, load balancing,

interference management, and energy consumption to name a few [8].

Furthermore, the tuning of HO parameters also has an influence in several

other metrics used by operators which are important to determine if the network

is performing well, such as ping-pong rate, call dropping probability, call blocking

probability, and early or late handovers [104]. Due to its importance, a substantial

amount of research is being done in this area and several ML approaches are being

considered. In [105], for example, the authors discuss the impact that changing

the A3-offset, and time to trigger (TTT) parameters or the application of certain

techniques, such as mobility estimation or cell range extension offsets (CREOs)

can have in the HO procedure. The authors also propose a solution for the

mobility robustness optimization (MRO) case and demonstrate the performance

gains of CREO in a heterogeneous network scenario. Other authors, such as

Soldani et al., in [106], propose a generic framework for self-optimization and

evaluate the impact of pruning NCL in terms of HO.

One possible solution to the optimization of HO parameters, can be in terms

of NN, as seen in [107–109]. In [107], for example, the authors develop a new HO

algorithm based on probabilistic NNs and compare it with the current hysteresis

method. Results show that the NN reduces the number of HOs performed, re-

ducing the cost of signalling of the whole network. On the other hand, authors

from [108,109], propose algorithms to optimize the HO procedure and better de-

termine when an user needs a HO. Another technique utilized in order to optimize

the HO procedure is SOM. In [110], Sinclair et al. develop a method to optimize

two HO parameters, hysteresis and TTT, and achieve a balance between unnec-

essary HOs and call drop rate. The proposed algorithm has a different view from

the main solutions, as it is more interested in which cell to tune the parameters,

rather than how to tune them. Also, their model is based on a modified version of

SOM, XSOM, which allows for a kernel method to replace the distance measure-



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 45

ments of SOM, allowing a non-linear mapping of inputs to a higher dimensional

space. Results show that the XSOM solution is able to reduce the number of

dropped calls and unnecessary HOs by up to 70%.

On the other hand, Stoyanova et al., in [111], propose two different methods

to solve VHO optimization. The first method is based on a FLC and involves

measuring certain metrics, like: signal strength, bit error rate, latency and data

rate in order to vote pro or against the HO for each mobile terminal. While the

second approach involves the use of SOM, in which a few parameters (same as

previous method) are periodically measured and, each of them, independently,

can cause a HO initiation. Results show that the fuzzy solution performs really

well and allows a simultaneous evaluation of different HO criteria. Unfortunately,

the same cannot be said for the SOM solution. The authors conclude that SOM

might not be appropriate for HO decision-making.

Another class of algorithm that is widely used in HO optimization is the class

of feedback controllers, as can be seen from [41, 104, 112–122]. All of these so-

lutions aim to change HO parameters, such as hysteresis, TTT, A3-offset, HO

margins, cell offsets or stability periods based on the measure of performance

metrics and how far they are from optimal. FLCs are also widely used in the

context of HO optimization, as it can be seen in the works of [18, 123–130]. All

of these algorithms consists of gathering certain network related metrics, fuzzi-

fying them and making decisions in order to optimize HO margins, thresholds,

hysteresis, TTT, or other attributes, so that the network can make better HO

decisions.

Other solutions proposed for the optimization of HO parameters are in the

context of RL. Mwanje et al., in [131], develop a distributed Q-Learning solution

for the MRO use case. The contribution of the paper lies on the fact that their

solution is able to adjust HO settings (hysteresis and TTT) in response to mobility

changes in the network. The solution in [132] also relies onQ-Learning. This time,

however, the authors consider both MRO and mobility load balancing (MLB)

use cases. In the MRO solution, the primary goal is to determine optimal HO

settings, while in MLB the objective is to redistribute load between cells. Another

solution to the HO optimization problem is the work of Quintero et al. in [133].

In this paper, a hybrid GA solution is considered in order to solve the problem

of assigning BSs to radio network controllers (RNC) in a third Generation (3G)

network scenario. Another approach that uses GAs, is the work in [134], in which

the authors propose a solution that enables every cell of a LTE network to adjust

its HO parameters (HO margin, A3-offset and TTT), in order to minimize call

drop and unnecessary HOs. In [135], Bouali, et al., propose an algorithm based
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on a FLC combined with a fuzzy multiple attribute decision making methodology

in order to choose which network should a user connect to, depending on the the

users’ application and its requirements.

Another solution to HO management is proposed in [136], in which the au-

thors utilize two NNs in order to determine which cell should an user handover

to based on the user’s perceived QoE in terms of successful downloads and aver-

age download time. Dhahri et al., in [137], propose a cell selection method for a

femtocell network. In this work three different approaches for cell selection are

considered, first a distributed solution is proposed, secondly, a statistical solution

is presented and the third solution relies on game theory. By determining which

cell users should connect, the algorithm is able to maximize the capacity and min-

imize the number of HOs for every user of the network. Another work, [138], also

by Dhahri et al., proposes two different approaches for a cell selection mechanism

in dense femtocell networks. The algorithms rely on Q-Learning and FQL and

try to optimize, based on previous data, the best performing cell in the future for

each user in the system. Results show that the enhanced FQL outperforms con-

ventional Q-Learning and that the algorithms are capable of reducing the number

of HOs while also maximizing capacity.

Load Balancing

In order to cope with the unequal distribution of traffic demand and to build a

cost-efficient and flexible network, future networks are expected to balance its load

intelligently [8]. One solution, proposed in [139], aims to enable a heterogeneous

LTE network to learn and adjust dynamically the CREO of SCs according to

traffic conditions and to balance the load between macro and femtocells. The

algorithm utilizes a regression method in order to learn its parameters and then

uses its model to adjust the CRE offsets.

Another approach involves the use of feedback controllers, such as in [140,141].

In [140], the authors propose a solution to modify HO thresholds in order to

decrease the served area of overloaded cells and increase the area of underloaded

cells and hence, achieve load balance. Similarly, in [141], the authors also develop

a solution based on the control of HO parameters. This time, the goal is to find

the best HO offset values between an overloaded cell and a possible target cell.

Rodriguez et al., on the other hand, propose the use of a fuzzy controller to

achieve load balancing in LTE networks, in [142]. The authors also implement

a FLC in order to auto-tune the HO margins to balance traffic and reduce the

number of calls blocked. Muñoz et al., also propose the optimization of HO

parameters to achieve load balancing in [143] by combining the concepts of FLC
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and Q-Learning in a second generation (2G) network scenario. Another similar

work, is shown in [144]. This time, however, the authors investigate the potential

of different load balancing techniques, by tuning either transmission powers or

HO margins, to solve persistent congestion problems in LTE femtocells. The

paper proposes solutions based only on FLC and also FLC combined with Q-

Learning. Results show that the strategy that considered Q-Learning performed

better and also performance gains were larger when Q-Learning was applied to

optimize transmission power instead of HO margins. Another approach that

uses the concept of Q-Learning is the work by Mwanje and Thiel in [145], in

which CREOs are adjusted between a source cell and all its neighbours by a fixed

step. Then, a Q-Learning is applied to determine the best step value for every

situation. The authors show that the new method performs better than a fixed-

step solution. Another work that explores Q-Learning is [146], in which a scheme

is built so that every user learns to which cell to send a service request in order

to reduce the number of outages and also achieve load balancing.

Other solutions, such as in [147–149], attempt to solve the load balancing

problem in a heuristic way. In [147], the authors develop an algorithm to balance

unequal traffic load while also improving the system performance and minimizing

the number of HOs. The algorithm relies in a greedy distributed solution and

considers a LTE network scenario. In [148], the authors propose a load balancing

method by creating clusters dynamically via two different methods, centralized

and decentralized heuristics. Lastly, the work of Al-Rawi, in [149], studies the

impact of dynamically changing the range of low power nodes, by applying CRE.

The solution aims to enable femtocells to take users from macrocells by adding a

CRE offset to the received signal power of the users. Results show that dynamic

CRE benefits the majority of users in the network, but does this by trading-off

gains from picocell to macrocell users.

In [150], the authors propose a dynamic sector tilting control scheme by using

GAs to achieve load balancing. The solution aims to optimize sector antenna

tilting to change both cell size and shape to maximize the system capacity. An-

other solution is the work in [151], in which an approach is considered to balance

load among neighbouring cells of the network. The algorithm consists of five

different parts in which it analyses and determines which BS needs to have its

traffic handled and determines to which neighbour to switch it to. The proposed

method analyses historical data collected by the algorithm, if available, and pre-

dicts which neighbour should have its antenna down-tilt angle changed and by

how much. Otherwise, if no data is available, a heuristic search for the best

neighbour is performed. Lastly, a recent work proposed by Bassoy et al., in [152],
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present an unsupervised clustering algorithm in a control/data separation plane.

Results show that the proposed solution is able to offload traffic from highly

loaded cells to neighbour cells and that the algorithm can work in a high dense

deployment scenario, making it suitable for future mobile networks.

Resource Optimization

Another important aspect of future networks is the optimization and provisioning

of resources. One example is the work in [59], in which the authors explore various

ways of integrating big data in the mobile network. In this paper, the authors

propose a big data-driven framework and analyse use cases in terms of resource

management, caching and QoE. All solutions are based on the collection and

analysis of data in order to better determine how the network can change its

parameters. The authors conclude by stating that big data can bring several

benefits to future networks, however there are still significantly challenges that

need to be solved.

Some solutions, like the ones proposed in [153–159] rely on the use of NNs

in order to optimize network resources. In [153], Sandhir and Mitchell develop

a scheme that predicts a cell demand after every 10 measurements taken by

the system. At each prediction interval, the predicted resource usage in each

cell is compared with the number of free channels available and channels are

reallocated between cells, with the ones having more channels giving to the ones

having less channels. In [154] user mobility is predicted by using two NN models

in order to reserve network resources in advance. In [159], Adeel et al. build a

cognitive engine that analyses the throughput of mobile users and suggests the

best radio parameters. The solution relies on the application of a random NN and

three different learning strategies are investigated: GD, adaptive inertia weight

particle swarm optimization (AIW-PSO) and differential evolution (DE). The

authors show that AIW-PSO performs better and also converges faster. Zang et

al., in [155], propose a method based on spatial-temporal information of traffic

flow using K-means clustering, NN and wavelet decomposition to predict traffic

volumes on a per cell basis and allocate network resources accordingly. Another

solution that applies NN, is the work in [158]. This time, however, the authors

use a regression based NN and aim to predict the path loss of a radio link, in order

to optimize the BSs transmission power. Another solution is shown by Railean et

al. in [156], in which an approach for traffic forecasting is proposed by combining

stationary wavelet transforms, NN, and GA. The paper adopts several different

approaches based on similarity between days and also training of the NN and

results show that when GAs were applied the performance decreased. Similarly,
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the work in [157], also develops a traffic forecasting solution and has as primary

goal to determine voice traffic demand in the network.

In [160], Binzer et al. builds a self-configuration mechanism that determines

the number of BSs needed in the network and also a self-optimization technique in

order to optimize BSs location and antenna parameters. The algorithm relies in

a SOM solution in order to move BSs accordingly and minimize the total number

of under and oversupplied points in the network. Kumar et al., in [161], propose

a game-theoretic approach in order to optimize the usage of resource blocks in a

LTE network scenario. The solution uses a harmonized Q-Learning concept and

attempts to share resource blocks between BSs. Savazzi and Favalli, in [162], build

two novel approaches for downlink spatial filtering based on K-means clustering

algorithm. The first method groups users in clusters using K-means algorithm

and then computes beam widths by considering the power level of edge users.

The second method also uses K-means clustering, but after that, it compares for

each user the best BSs available. Based on this, users might be reassigned to

different BSs and overall system capacity can be increased. Another approach

is the work in [163]. In this work, a Q-Learning based algorithm is proposed

in order to adjust femtocells power, so that the capacity of the network was

maximized maximize while interference levels were maintained within certain

limits. In addition to Q-Learning, the paper also develops a TL solution between

macrocells and femtocells, in which macrocells would communicate their future

intended scheduling policies to femtocells. By doing this, the femtocells can reuse

the expert knowledge already learned for a certain task and apply it to a future

task.

In [164], the authors propose a cluster and feedback loop algorithm to perform

bandwidth allocation. This algorithm explores user and network data in order to

increase overall throughput. Kiran et al., in [165] develop a Fuzzy controller com-

bined with big data in order to find a solution for bandwidth allocation in RAN

for LTE-A and 5G networks. On the other hand, Liakopoulus et al., in [166],

build an approach to improve network management based on distributed moni-

toring techniques. Their solution monitors specific parameters in each network

BS and also considers that BSs interact with each other. Due to this interaction,

BSs can take self-optimizing actions based on feedback controllers and improve

network performance. In [167], the authors propose a framework for fractional

power control (FPC) for uplink transmission of mobile users in a LTE network.

The solution utilizes a FLC combined with Q-Learning in order to reduce block-

ing rate and file transfer times. Another solution that also utilizes Q-Learning

is [168], in which the authors develop a scheme to maximize resource utilization
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while constrained by call dropping and call blocking rates. Their solution can

achieve performances comparable to other classical methods, but has the advan-

tage of not requiring explicit knowledge of state transition probabilities, like in

Markov solutions.

Call Admission Control (CAC): CAC is a function of network systems that

tries to manage how many calls there can be at a certain time in the system.

Basically, if a new call comes to the network, either by someone making a new

call or by transferring a call from another cell (via HO), this function determines

if that call can be admitted or not in the system based on how many resources are

available at that current time. Based on this, it can be said that CAC regulates

access to the network and tries to find a balance between number of calls and the

overall QoS provided, while also trying to minimize the number of dropped and

blocked calls.

Several works have been published covering the optimization of CAC, such

as: [169–177]. In [170], for example, the authors propose a CAC function that

relies not only on information about the system resources, such as available band-

width, but also on predictions made regarding system utilization and call drop-

ping probability. By constantly monitoring these parameters and using a feedback

controller, the authors are able to predict if a call should be accepted or rejected

by the system for two different type of traffic classes, voice traffic and multimedia

traffic.

Other authors, such as [172–177] rely on the use of FLCs in order to perform

their CAC algorithm. Most of these solutions rely on estimating a set of parame-

ters, such as effective bandwidth and mobility information in [173,176], cpu load

in [177], or queue load in [175], to determine whether to accept or reject a call.

On the other hand, the work in [171], propose a different approach to solve the

CAC problem. In this work, the authors utilize a generic predictor scheme (in

this case a Markov-based scheme) integrated with a threshold based statistical

bandwidth multiplexing scheme in order to perform CAC for both active and

passive requests. Based on the predictions given in terms of user mobility and

time of arrival and permanence time, the algorithm then makes its decision.

Another approach to CAC is developed in [169], in which a RL solution is built

in order to tackle the problem in a code division multiple access (CDMA) network.

The solution involves four steps in order to work. First, data is collected and

calls are either accepted or rejected based on any CAC scheme available. After

that, the RL network is trained and then the trained network is applied to the

simulated scenario. Lastly, the fourth step consists of updating the network via
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a penalty/reward mechanism. Results show that the proposed method achieves

better performance in terms of grade of service (GoS).

Energy Efficiency (EE): another problem that arises with the network densi-

fication process is the increase in energy consumption of the network. To overcome

this issue, which would cut operators costs and also enable a greener network,

several intelligent solutions are being developed [8].

One possible solution is proposed by Alsedairy et al., in [18], in which a

network densification framework is introduced. However, instead of deploying

regular SCs, the authors exploit the notion of cloud SCs and fuzzy logic. These

cloud cells are smart cells that underlay the coverage area of macro cells and,

instead of being always on, they communicate with the macrocells to become

available on demand. As such, by optimizing the availability of SCs, the network

can reduce its overall energy consumption.

Zhao and Chen in [81] also propose a mechanism to promote EE in the net-

work. Their solution relies on a feedback controller in order to determine when

to turn on or off a femtocell. Similarly, in [178], the authors build a scheme

to dynamically activate or deactivate modular resources at a BS, depending on

the network conditions, such as traffic or demand. The approach involves a RL

algorithm, based on Q-Learning, that continuously adapt itself to the changes in

network traffic and makes decisions of when to turn on an additional BS module,

turn off an already activated module or to maintain the same condition. The

proposed solution can achieve a very high energy saving, with gains of about 80%

without increasing user blocking probability.

In [179], Peng and Wang apply an adaptive mechanism to increase the stan-

dardized energy saving mechanism (ESM) quality. The framework relies on ad-

justing sleep intervals of cells based on network load and traffic. The algorithm

relies on the concepts of MC and can save network power and also guarantee spec-

tral efficiency. The solution divides the energy saving process in three scenarios,

heavy, medium and light loads, and, for each scenario, the adaptive solution is

investigated. The authors conclude that the proposed adaptive solution is better

than standard solutions, specially in light loads scenarios, while in higher loads,

both schemes achieve similar performances. Another solution is presented in [180],

in which the issues of improving traffic load and network planning are tackled.

Their solution first builds supervised prediction models in order to predict traffic

values and then applies the information gathered from external planned events in

order to improve prediction quality. Based on the traffic demand prediction, the

framework is then able to turn on or off certain cells in the network, achieving
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EE.

Recent work by Jaber et al., in [55], tried to intelligently associate users

with different BSs depending on their backhaul connections. In the proposed

scenario, each BS had multiple backhaul connections and an energy optimization,

in terms of which backhaul links to turn on and off, was performed. Another

recent solution is the work proposed in [181] by Miozzo et al., in which Q-Learning

was used in order to determine which BSs to turn on or off and to improve the

energy usage of the network. Lastly, the work in [182] utilizes big data, together

with supervised learning (polynomial regression), in order to optimize the energy

of ultra dense mobile networks. The authors show that the proposed solution

can achieve the highest cell throughput while maintaining EE, when compared

to conventional approaches.

Coordination of SON functions

Another important issue that arises with the advent of SON is how to coordinate

and guarantee that two or more distinct functions will not interfere with each

other and try to optimize or adjust the same parameters at the same time [183].

One simple example of this can be a hypothetical scenario where the network

tries to minimize its interference level, but at the same time it tries to maximize

its coverage. To avoid this type of situation, it is essential that SON functions

are coordinated to ensure conflict-free operation and stability of the network.

Lateef et al., in [183], develop a framework based on DT and policies in

order to avoid conflicts related to the mobility functions of MLB and MRO.

Another important contribution of the paper is that it classifies the possible SON

conflicts into five main categories, mainly: key performance indicators (KPIs)

conflicts, parameter conflicts, network topology mutation, logical dependency

conflicts and measurement conflicts. Another approach that tries to resolve the

SON conflict management is proposed in [184]. The authors consider a distributed

coordination scenario between SON functions and analyse the case in a LTE

network scenario. Each SON function can be viewed as a feedback loop and

are modelled as stochastic processes. The authors were able to conclude that

coordination is essential and that it can provide gains to the system.

Other solutions involving feedback controllers, can be seen in [185, 186]. In

[185], the authors start by presenting a hybrid classification system of SON con-

flicts. The authors state that, since many SON conflicts can fall into more than

one category, this hybrid approach is better and propose a fuzzy classification

to accomplish that. The authors also evaluate some use-cases of SON conflicts

and present distributed solutions based on feedback controllers, in which mea-
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surements are gathered, evaluated and the parameters changed accordingly. Sim-

ilarly, in [186], Karla also classifies SON parameters, but his classification is only

based on the parameters impact on the mobile radio system, resulting in only two

classes of parameters. Karla also presents a proof of concept scenario, in which a

simplified LTE-A scenario is simulated and coordination is evaluated. First, the

system performs a set of offline computations in order to find good configuration

parameters and then the system uses a feedback controller to update itself in an

online manner.

Table 2.1 shows a summary of the reviewed papers for the self-optimization

use cases and how they are distributed in terms of ML techniques.
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Chapter 3

Backhaul Optimization using RL

3.1 Introduction

As previously mentioned, 5G networks will have to accommodate a huge amount

of users with a wide range of requirements. This can be an issue in future net-

works, specially in terms of user-cell association, as current association approaches

are centred in two major assumptions:

• The radio interface is the bottleneck of mobile networks;

• There is little variation in user requirements.

As such, these two assumptions will render static association approaches in 5G

networks completely ineffective. Thus, due to the rising challenges of 5G net-

works and heterogeneous demands of multiple users, a new paradigm must be

designed for the association of users and BSs. Furthermore, new technologies,

such as network densification and new air interfaces, are shifting the bottleneck

of future mobile networks to the backhaul [1,187–189]. However, due to the sub-

optimality of current cell association methods, the backhaul of the associated cell

might not be sufficient to satisfy specific user needs, and as such, more intelligent

approaches that consider the end-to-end connection (RAN and backhaul) and

users requirements is needed [1].

As such, a user-specific cell association algorithm is envisioned in order to

tackle the problem of allocating users with distinct requirements to the best fit-

ting SCs with different backhaul parameters. Based on that, a solution which

considers an end-to-end approach and attempts to associate specific users with

specific cells is proposed. The framework aims to tune both SCs cell range ex-

tension offsets (CREOs) and user requirements weights, with the objective of

determining the best combination that satisfy each user. If that is not possi-

ble, however, the algorithm attempts to find the best combination that minimize

55
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users’ dissatisfaction. Users can have different needs in terms of network param-

eters, such as throughput, latency, resilience, energy efficiency, or security, while

each SC has certain attributes associated with these parameters as well. The

main idea and innovation behind the proposed RL based algorithm is, to perform

two different optimizations, one at the network level, in which the algorithm

optimizes the CREO of SCs via Q-Learning, followed by another optimization

at the user level, in which the algorithm determines the best weights for each

user, also via Q-Learning. Combining both Q-Learning solutions and optimizing

of both network and user parameters, the proposed solution is able to provide

user-specific allocation and achieve better results in terms of user satisfaction and

QoS.

3.1.1 Related Work

Since the main bottleneck of future mobile networks is expected to shift from

the RAN to the backhaul, its optimization and the BS association problem have

gained increased attention recently. In [188], the authors optimize the backhaul

and BS assignment problem using a novel heuristic algorithm. However, only

user throughput was considered as a QoS metric. Moreover, due to its heuristic

nature, the proposed solution might not be computationally feasible, as it must

determine for every network configuration, the parameters of all users and BSs.

Olmos et al., in [189], build upon [188], and consider a more generic model based

on Markov chains to solve the problem of cell selection with backhaul constraints.

Despite being more general, the authors do not consider user QoS requirements

and both [188, 189] do not consider a heterogeneous network scenario, in which

BSs have different transmit powers and backhaul characteristics.

In [190], a method to balance network load of BSs backhaul based on their

geometric location is proposed. In [191], the authors aim to optimize the user-cell

association in a decoupled uplink and downlink heterogeneous network scenario.

However, both [190,191], do not consider user QoS requirements when performing

cell association. In [190], for example, the authors attempt to perform backhaul

load balancing, while in [191] the reference signal received power (RSRP), cell

load and backhaul capacity were regarded as limiting factors in cell association.

In [192], the authors optimize the network backhaul throughput by improving the

cell association process. However, as the authors mention, conventional search

algorithms would not work for this problem, as the cell association problem is non-

deterministic polynomial-time hard (NP-hard), becoming infeasible for a large

number of users an BSs. Thus, they propose a heuristic centralized algorithm to

associate users. However, [192] also does not consider users with different QoS
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requirements, nor cells with different backhaul links. Pantisano et al., in [193],

address the the cell association issue by considering that SCs can cache content in

order to overcome backhaul capacity limitations and improve users QoS. However,

for the proposed solution to work, user location must be known (or estimated)

and only user throughput was considered as a QoS requirement.

Han et al., in [194], aim to optimize user association and resource allocation

in a heterogeneous network considering radio resource consumption, energy and

backhaul constraints. However, because the problem is NP-hard, the authors

propose decomposition methods to reduce the problem to a smaller version, and

to build an online solution. Also, the authors considered optimizing only the

resource allocation and utility of the network via cell association and did not

attempt to improve user QoS. In [195], network frame design, resource allocation

and user association optimization in a heterogeneous massive MIMO network

scenario is proposed. Although this solution can adapt to different network sce-

narios, it does not investigate user QoS requirements and only optimizes total

network sum rate.

Ma et al., [196], investigate the user association and resource allocation in a

massive MIMO heterogeneous network scenario and attempt to maximize net-

work utility. The authors develop an analytical solution and despite considering

a heterogeneous network scenario, users QoS requirements is not considered. On

the other hand, Lee, et al., in [197] address the user cell association problem con-

sidering backhaul load balancing and minimizing user call blocking probability.

The problem is formulated as 0-1 integer problem, but due to its complication it

is relaxed to become a convex optimization problem. Lastly, works by Jaber et

al., [1–3], propose an algorithm based on Q-Learning to solve the cell association

problem by considering backhaul limitations. The proposed distributed solution

aims to tune the CREO of SCs so that users can connect to the SCs with the

backhaul that would better match their needs.

However, due to the analytical or heuristic aspect of these solutions, [188–197]

may not be adaptable enough in order to enable future mobile network paradigms,

such as SONs, as they often require unrealistic assumptions. Most of these works

require the knowledge of how many users and BSs or SCs are in the network, or

user positions and requirements, for example. Also, as it could be seen, almost

none of the reviewed works consider user QoS requirements or the utilization

of different applications and backhaul links. Furthermore, as these works often

depend on searches or analytical expressions, periodical optimizations are often

required and no network or user data is utilized, not fully exploiting the potential

of SON. Moreover, as future networks are expected to be much more intelligent
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and adaptable, by using historical or online data, solutions that do not require

lots of assumptions and that can learn intrinsic patterns in data as the network

changes are preferred. Thus, more general solutions that can analyse data and

take online decisions, such as machine learning, should be designed [8].

Thus, a distributed RL based solution is proposed. Due to the inherit nature

of RL solutions, a machine learning technique based on a goal-seeking approach

[10], a model-free solution to the problem of user-cell association is proposed.

In this case, differently from [188–197], no assumptions or prior knowledge are

necessary, as all the data needed for the algorithm to learn is generated online

by the network and its users. As such, the proposed method is more robust

and generic, as it can adapt to different network conditions, while the previously

reviewed literature require previous knowledge about their environment and are

limited by the specific application designed to fit the solutions.

Other works, such as [1–3], also utilize RL to perform cell association, how-

ever the main drawback of these solutions is that only network parameters are

optimized and user parameters and requirements are assumed to be random,

achieving a sub-optimal solution. In [1–3], for example, it is assumed that users

weights are binary random and do not depend on users QoS requirement. As

such, the weights associated for each user and its requirements would not always

conform with its demands leading to a limited optimization. Furthermore, this

assumption can lead to network resource wastage, as users that did not have a

stringent demand, could end up having high weights, while more demanding users

could be assigned low weight. As such, the works in [1–3] do not optimize user

parameters, but only network parameters (SCs CREOs), leading to a network

centric (or BS-specific) solution and are not capable of solving the problem for

each user individually. In addition, in [1–3], the proposed solutions are denoted as

user-centric because the metrics evaluated are considered from a user perspective,

but they do not actually perform any user optimization.

Thus, unlike [1–3], in which user weights are assumed to be random, the en-

visioned solution proposes an optimization of both network and user parameters,

so that user-specific cell association can be achieved, leading to better network

resource consumption and user satisfaction. Moreover, as future mobile networks

are expected to be more user-oriented and deal with several applications with

different requirements, it is only natural that solutions which try to optimize in-

dividual user and network parameters are developed. In addition, not only will

different types of users need to be addressed, but also the same user could have

different requirements at different times of the day, as it utilizes different appli-

cations. Hence, a solution that can adapt itself to different user needs and that
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can treat users differently based on their current requirements is needed, and, for

that to be possible, an intelligent user-specific approach is necessary.

3.1.2 Objectives and Contributions

As seen from the literature review, backhaul-aware cell association has been a

focal topic of research in the recent years. However, solutions in this area still

remain network-centric and agnostic to the diversity of user requirements. On

the other hand, BS-centric association has been studied in the past in the works

of Jaber et al. [1–3], which endows the cell association process with the ability

to distinguish and prioritize users requirements. However, these efforts are still

limited by the network parameter tuning and do not account for the users’ ability

to improve its choice. The proposed solution is the first to address this issue of

both tuning network and user parameters and also to develop a two-step asso-

ciation scheme that outperforms prior state-of-the-art solutions with minimum

added complexity.

The solution is based on RL, more specifically Q-learning, and it is shown

to be robust and flexible to enable an autonomous cell association, enabling the

stringent requirements needed for future mobile networks in a heterogeneous and

diverse environment. By optimizing both network and user parameters, the pro-

posed solution is able to allocate to each user what it needs without wasting

network resources and making other users suffer. This, in its turn, enables more

users to be allocated to the network while also satisfying their needs, improving

individual and, by consequence, overall QoS. The contributions can be summa-

rized as follows:

• To provide an end-to-end paradigm in terms of downlink user-cell associ-

ation, considering the radio access network, backhaul conditions and users

QoS requirements;

• To optimize the user-cell association process by delivering to each user only

what was requested, minimizing network resource wastage;

• To perform both network and user parameters optimization, considering

both network constraints and user requirements to achieve user-specific cell

association, in an adaptable and intelligent manner via RL (Q-Learning).



CHAPTER 3. BACKHAUL OPTIMIZATION USING RL 60

Macro Cell

Small Cell

Original Coverage Area

Artificially Extended Coverage Area

1

Figure 3.1: Example of how applying CREO can change the cell association of
users in the network.

3.2 Background

3.2.1 Cell Range Extension Offset (CREO)

Current downlink cell association methods rely solely on radio interface param-

eters, such as the RSRP or SINR, to determine which cell a user should be

associated to. In the future, however, as the next generation of mobile networks

are expected to be much more diverse and heterogeneous by nature, the bottle-

neck of mobile networks will shift from the RAN to the backhaul and current

association methods will probably not be adequate [1, 2, 188, 189, 198]. Since

the transmit power of a macro BS and a SC are very different, much in favour

of the macro BS, the problem of load imbalance in the network is created. If

only the RSRP or SINR is considered, most users would prefer to connect to the

macro BS, as it has a higher transmit power, overloading it and leaving the SCs

underloaded [199,200].

To solve this issue, a technique known as CREO was developed, in which SCs

artificially extend their coverage area by adding an artificial offset to the user

perceived RSRP in the association process [201]. Figure 3.1 shows an example,

in which, a SC is overlaid on top of a macro cell. Initially, the SC covers only

the light blue area, however, when CREO is applied, the SC’s coverage area is

artificially extended to the darker dotted area. Hence, users within this greater

coverage area will now prefer to connect to the SC instead of the macro cell.

Although adding a CREO can provide several benefits, such as enhanced



CHAPTER 3. BACKHAUL OPTIMIZATION USING RL 61

uplink data rates, increased capacity (by means of load balancing), and improving

network robustness, by making SCs less sensitive to their deployment location,

only artificially increasing the perceived transmit power of SCs is not enough to

improve the performance of the network [201]. If a fixed CREO was applied to all

SCs, for example, the problem of load balance would be solved, but the problem

of backhaul congestion would be created. Also, since tuning SCs CREOs only

considers the problem from a RAN perspective, this would not completely attend

different users requirements and would not be able to provide enough QoS, nor

meet the requirements for future networks [1–3].

Hence, it is clear that optimizing only the radio interface is not enough, and

that a joint optimization between the radio interface and the backhaul is needed.

In addition, SCs should also adjust their CREOs more efficiently and intelligently,

so that users with different requirements can connect to the SCs that best fit

their needs. Also, if only the parameters from the network side are tuned, only

a group of users can be satisfied, as those with the highest priority to a specific

requirement [1,2]. Thus, in order to provide a user-specific cell association, which

attends to a wide range of user requirements, it is clear that an optimization at

the user side must also be done, so that users can be intelligently associated to

the best fitting SC.

3.3 System Model

A downlink heterogeneous network scenario is considered. In this scenario, a

single macro cell is positioned in the center and is divided in m sectors, denoted

as M = {M1, ...,Mm}. On top of each sector, n SCs, S = {SM1,1, SM2,1, ..., SMm,n},
are randomly distributed, and the set with all cells in the system is defined as

C = M ∪ S. Also, each SC has a single non-ideal last-mile connection, while the

backhaul connection between the macro BS and the core network is assumed to

be ideal. In addition, each SC is assumed to have η adjustable CREOs, one for

each backhaul parameter. These offsets are defined as O = {O1,1, ..., Oc,η}, with

c ∈ [1, |C|], and each CREO can assume values from V = {V1, V2, ..., Vmax}.
On top of this network, U users are distributed and each sector is considered to

have k users, with higher concentration near the SCs, U = {u1,1, um,2, ..., um,k},
and p = m · k is the total number of users. Furthermore, each user has µ re-

quired parameters (µ = η), which can be seen as QoS parameters that a user

is concerned about. In addition, users QoS requirements are represented by

E = {Eu,1, ..., Eu,µ}, and, for each requirement, each user has an associated

weight to it (defined by the application, for example), denoted as W = {Wu,1, ...,Wu,µ}.
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These weights are adjustable, and can assume values in G = {G1, G2, ..., Gmax}
and the network monitors the QoS of users, represented by E′ =

{
E ′u,1, ..., E

′
u,µ

}
.

It is assumed that each user can connect to a single cell at a time and cells

have limited radio and backhaul resources. Whenever a user is allocated to a BS,

it consumes one resource block (RB) and both macro and SCs have a limited

amount of RBs. This assumption is made for comparison purposes and, as such,

the resulting gains are not defined by the number of RBs each user has, but by

finding a more suitable cell association1. Regarding interference, it is assumed

that macro and SCs share the same frequency band, and a frequency reuse factor

of one is considered. In addition, enhanced intercell interference coordination

(eICIC), a technique in which two BSs communicate with each other to mitigate

the effects of interference, is also assumed.

Based on this eICIC framework, almost blank subframes (ABS) are imple-

mented. ABS is a technique introduced in 4G, to enable the coexistence of differ-

ent BSs. In this technique, system that share spectrum band negotiate parame-

ters in order to guarantee a fair coexistence [1–3, 7]. In this case, a time-sharing

mechanism is implemented, in which whenever the macro BS is transmitting the

small cells are assumed to be silent and vice-versa. Lastly, as per 3GPP current

standards, the CREO of serving and neighbouring cells are broadcast to users in

the vicinity using common control channels.

3.3.1 Cell Association

In order to associate users to cells, the received signal power from each cell is

computed. The RSRP, Ru,c, (in dB) of user u and cell c, can be expressed as

Ru,c = Pc − 10 · log10(Nsc)−Hu,c − L, ∀ c ∈ C , (3.1)

where Pc is the transmit power of cell c, Nsc is the total number of sub-carriers2

in cell c, Hu,c is the path loss between user u and cell c, and L is the penetration

loss.

A log-distance path loss is assumed and is defined as [202]

Hu,c = Ψ + 10γ · log10

(
du,c

)
+Xσ , (3.2)

where Ψ is a propagation constant, γ is the propagation exponent, du,c is the

distance between the user u and cell c, and Xσ is defined as the log normal

1This is assumed for the sake of simplicity, but, in practice, RB allocation could be done
dynamically.

2Sub-channels in a specific time-slot are considered (definition of a RB).
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shadowing component.

Based on the received power from each cell, users are then going to decide

which cell to associate with. This is done by a ranking system, which takes into

account only the perceived RSRP, if the user is trying to connect to the macro

cell, or the RSRP combined with the SC’s CREO and user weights, in case it is

a SC. The cell ranking can be expressed as

Ku,c =


Ru,c , if c ∈M.

Ru,c + 1
η

η∑
i=1

Wu,i ·Oc,i , if c ∈ S.
(3.3)

After each user ranks every cell, the cell association process begins. If a BS

has enough space to accommodate a user request, and the user’s SINR is above a

certain threshold, then the user connects to the desired cell. The perceived SINR

of user u, and cell c, can be calculated as

SINRu,c =


Ru,c

N+ζABS
n∑

i=1,i 6=c
ωiRu,i

, if c ∈M.

Ru,c

N+ζABS
n∑

i=1,i 6=c
ωiRu,i+(1−ζABS)Ru,M

, if c ∈ S.
(3.4)

where N is the noise power, ζABS corresponds to the fraction of ABS time that

the SCs transmit (in percentage — between 0 and 1), ωi is the load of SC i,
n∑

i=1,i 6=c
Ru,i is the RSRP from other SCs belonging to the sector that the user is

connected to and (1 − ζABS)Ru,M is the interference from the macro cell sector

that the user belongs to, scaled down by the percentage of time that the macro

cell is not transmitting due to ABS.

If the BS does not have enough RBs or if the SINR is not high enough, then

the user tries to connect to the next best cell. This process is repeated for the

next four BSs until a connection can be established, or if that is not possible, the

user is then assumed to be out of coverage in that time slot [1]. If however, a BS

has more than enough RBs to serve its users, the remaining RBs are assumed to

be unused during that time slot. If a user is connected, then the maximum user

throughput is estimated as

Tu,c = B · log2

(
1 + SINRu,c

)
, (3.5)

where B is the bandwidth occupied by one RB. In addition, the amount of back-
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haul throughput required for all users connected to a cell is computed as

λc = ρc ·
Uc∑
u=1

Tu,c , (3.6)

where ρc > 1 represents the backhaul overhead [1], and Uc denotes the total

number of users connected to the cell.

Since SCs have limited backhaul capacities, whenever their required backhaul

throughput exceeds its total capacity, the effective throughput of all users con-

nected to that cell is reduced. The effective throughput of users is expressed as

T
′

u,c =


Tu,c , if λc ≤ Cc ,

Tu,c − Cc−λc
Uc

, if λc > Cc ,
(3.7)

where Cc is the maximum backhaul capacity of cell c.

The throughput of each cell, c, can be calculated as

Tc =
Uc∑
u=1

T
′

u,c , (3.8)

and the total throughput of the system can be determined by

T =

|C|∑
c=1

Uc∑
u=1

T
′

u,c. (3.9)

3.4 Proposed Scheme

The objective of the proposed system is to maximize the total effective cumulative

throughput of all users, given a set of constraints. This can be done by tuning both

CREOs of SCs and user weights in a centralized manner. However, centralized

solutions can be impractical, as it would require an extra layer of communication

between the SCs, users, and the centralized unit in order to disseminate changes

in the network, increasing signalling overhead. In addition, synchronization would

become an issue, due to the centralized entity not being updated all the time. As

such, using an outdated values fetched from the centralized unit could impact the

performance of the system. Based on that, a distributed approach is preferred.

The proposed solution aims to divide the global optimization problem of

maximizing the total system throughput into smaller sub-problems. These sub-

problems can be defined as maximizing the throughput of each individual cell of

the system, given certain backhaul constraints. More formally, the optimization
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objective can be formulated as

maximize
O,W

Tc (O,W) (3.10a)

subject to RBc ≤ RBmax, (3.10b)

Cc ≥ λc, (3.10c)

Uc∑
u=1

E ′u,µ − Eu,µ
Eu,µ

≤ θµ, Cc ≥ λc, ∀ µ, (3.10d)

E ′u,µ − Eu,µ
Eu,µ

≥ 0, ∀u ∈ U, ∀ µ. (3.10e)

where θµ represents a threshold that determines how much over satisfaction, on

average, is allowed for each parameter µ. Note that constraints (3.10d) and

(3.10e) have their signal changed when latency is considered (latency value is

minimized, while the other parameters are maximized).

As it can be seen, maximizing the throughput of each individual cell of the

network, in (3.10), is subject to four different constraints. The first constraint

(3.10b) states that each cell c is limited by a maximum number of RBs, or in other

words is limited to the number of users it can serve. The second one, (3.10c),

states that each cell has a maximum backhaul capacity and if the total capacity

required by the users associated to cell c exceeds it, then the throughput of all

users associated to that cell is reduced, as defined in (3.7). In addition to this con-

straint, each SC keeps track of how many RBs it has, so the CREO optimization

takes into account both radio and backhaul parameters. The third constraint,

(3.10d), states that the average satisfaction level of users connected to a cell must

be below a certain threshold, given that there are backhaul resources available in

the SC. This constraint attempts to limit the amount of over-satisfaction users

can have and aims to distribute backhaul resources better. By respecting this

constraint, the system perceives allocating few users with too much of a certain

resource as a bad manoeuvre, as more users would be left starving. Hence, the

system will try to find a better user-cell association in order to reduce this over-

satisfaction and distribute the backhaul resources better. It is also important to

note that this constraint does not deal with resource allocation, it only attempts

to satisfy users by changing the cell each user is associated with, specially in

idle mode. For example, if a user requires 5ms latency, but is associated with

a SC that provides 1ms of latency, this association is not very efficient, as this

user is over-satisfied and is wasting resources that could serve other users that

require lower latency. Thus, changing association of this user to a SC with higher

latency would be more efficient, as the user could still be satisfied and the pre-
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cious latency resource is freed for a more demanding user. Based on that, the

value of θµ can then be chosen as a system parameter, which determines how

much over-satisfaction, on average, is allowed at the expense of less satisfaction

of other users. However, by considering only these two constraints, as in [1–3],

only the aggregate performance of users connected to a certain cell is optimized,

making the system not able to track individual user performance.

Based on these issues of dealing only with the aggregate performance of users,

a fourth constraint, (3.10e), is proposed. This constraint states that each user

should be allocated more than its target QoS (each user should be satisfied). It

should be noted that constraints (3.10d) and (3.10e) have opposing optimiza-

tion objectives. Consequently, satisfying both constraints results in a solution

where each user measures a QoS value that is as close as possible to its target

E ′u,µ → Eu,µ. In other words, each user should be allocated only enough of each

resource, so that it is satisfied. By doing this, the system guarantees that each

user is satisfied, while enabling more backhaul resources to be shared, avoiding the

limitation of being constrained by the aggregate performance of users as in [1–3],

and achieving a user-specific solution.

In order to accomplish the objective defined in (3.10), a formulation based

on RL is proposed, consisting of two different optimization processes. First, an

optimization from the network perspective of SCs CREOs is performed. In this

optimization, the SCs learn the best set of CREOs, Oc,η, that satisfies the ma-

jority of their users (this optimization addresses constraints (3.10c) and (3.10d)),

similar to the optimization performed in [1–3]. After that, each user will opti-

mize its own weights, Wu,µ, also via a RL formulation, and as highlighted in the

introduction, this is the main contribution of the paper, achieving a user-specific

cell association.

3.4.1 SCs Learning

In order to solve the optimization problem in (3.10), an intelligent and distributed

solution based on Q-Learning is proposed. The SCs belonging to S have a set

of η adjustable CREOs, that can be learned in order to maximize the perceived

throughput of each SC. Hence, each SC is considered to be an agent and the

network is the environment.

The actions, ac, that each SC can take are defined by the changes in their

CREO values, Oc,η, described by V. In addition, each SC is considered to have η

attributes, and one adjustable CREO for each attribute. Each CREO is learned

and adjusted independently from one another (each SC considers independent

state-action pairs for each parameter, η). The policy that the agents follow in
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order to take actions is a completely greedy one, in which the best action is chosen

at every iteration. In terms of states, each SC can be in one out of three possible

states:

• State 1, if constraint (3.10c) is not satisfied (the backhaul is currently over-

loaded).

• State 2, if constraint (3.10c) is satisfied and (3.10d) is not (the backhaul

has resources available, but users have not been associated in an optimal

way, as there are users over-satisfied).

• State 3, if both constraints (3.10c) and (3.10d) are satisfied — the SC

can accommodate more users (its backhaul is not overloaded) and the user

association is good enough.

More formally, the states, υc, that each SC can be are

υc =



1, if λc > Cc ,

2, if
Uc∑
u=1

E′
u,µ−Eu,µ
Eu,µ

> θµ | Cc ≥ λc ,

3, otherwise.

(3.11)

For each state-action pair a reward, rυc,ac , is associated, and it can be seen as

a value corresponding to the consequence of taking certain action and ending up

in a specific state [10]. The reward in this case is defined as

rυc,ac =



A1, if υc = 1 ,

Uc∑
u=1

E′
u,µ−Eu,µ
Eu,µ

, if υc = 2 ,

A2 · Cc−λcCc
, if υc = 3.

(3.12)

In State 1, as a cell should always try to avoid having its backhaul overloaded,

a low reward (e.g. A1 = −1000) is defined. In State 2, however, despite the back-

haul of the SC not being overloaded, the association performed is not the best,

as some users are over-satisfied (indicating that other users might be starving).

Since this state is also not ideal, but not as bad as State 1, a low reward based

on the percentage difference between what the majority of users achieved and re-

quested is assigned. Lastly, in State 3, which is the best possible state a cell can

be, the reward is defined as the percentage difference between a cell’s maximum

and current backhaul capacity, multiplied by a constant (e.g. A2 = 100), and
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represents how many more users are able to fit in cell c. A constant is added so

that whenever a cell moves from one state to state 3, the algorithm will yield a

high reward value.

Based on that, for each state-action pair and its reward, each agent learns and

updates its η Q-Tables. Since these tables depend only on the state-action pairs,

each Q-Table, Qc,η is an [ac × υc] matrix, and, for each iteration of the algorithm,

they are updated following the formulation in (2.1). Lastly, since the algorithm

operates in an iterative manner, it is only natural that a stopping criteria is

devised to guarantee the convergence of the proposed solution. In this case, two

stopping criteria are formulated. The first guarantees that the optimization is

not perform indefinitely, as such, the SCs adjust their CREOs for a maximum

number of iterations (Msc), while the second states that if the reward does not

improve from one iteration to the other more than a threshold, (rth), it is also

accepted that the algorithm has converged.

3.4.2 User Weights Learning

After the SCs learn their CREOs, which represent the best offset that will please

the majority of the users connected to each cell, the user weights learning begins.

Each user learns the weights, Wu,µ, given to each parameter, µ, also using a

Q-Learning formulation. In this learning problem, each user is considered an

agent of the system and the network represents their environment. Each user can

take certain actions, au, represented by changes in their weights Wu,µ, described

by G and the same greedy policy from the SCs learning is assumed. For each

parameter, µ, each user can be in one of two states:

• State 1, if the user is not satisfied with respect to parameter µ (constraint

(3.10e) is violated).

• State 2, if the user is satisfied with respect to parameter µ (constraint

(3.10e) is satisfied) 3.

Hence, the states that a user can be, υu, are represented by

υu =


1, if E ′u,µ < Eu,µ ,

2, if E ′u,µ ≥ Eu,µ.

(3.13)

In terms of reward, rυu,au , for both states the reward is given as the relative

difference between what was achieved and what was requested. The reward is

3Since a lower value of latency is preferred, (3.13) will have its signal changed when the
latency parameter is considered.
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defined as

rυu,au =
E ′u,µ − Eu,µ

Eu,µ
, (3.14)

and represent how far away each user is from being satisfied or how much a user

is over satisfied.

For each state-action pair and reward, each agent updates its µ Q-Tables

independently for each parameter, resulting in a change of weights for each user.

In this case, each Q-Table is represented by a matrix [au × υu] and for each

time-step of the algorithm, they are updated via (2.1). Lastly, similar to the

SC learning, the same two stopping criteria were devised for the user weights

learning, in which the algorithm stops either after a fixed number of maximum

iterations (Muw) or after its reward did not improve more than a threshold from

one iteration to the other.

3.4.3 Proposed Algorithm

Based on the system model and learning phases, an iterative algorithm for the

proposed solution can be elaborated, in which the optimization of SCs CREOs

and users weights is performed. The proposed solution is distributed, in which

SCs update their CREOs independently from other cells and users also update

their weights independently from one another. Furthermore, the algorithm is

composed of two different parts, the first, SC learning, deployed in every SC

of the network, performs an optimization of CREOs. The second, user weights

learning, is deployed in all users devices, and optimizes user weights in order to

achieve user-specific cell association.

In terms of the network optimization, each algorithm in every SC needs to

have certain parameters initialized, such as backhaul characteristics (load and η

parameters, mainly: capacity, latency and resiliency). In addition, SCs CREOs,

Q-Tables, and the number of users connected to it are all initialized as zero when

the cells are turned on. In terms of users requirements, they could be initialized

by different applications, such as whenever an audio/video stream application is

open, a higher preference for high throughput and low latency could be requested.

It is envisioned that the SC learning takes place whenever the network de-

tects that its performance is below a threshold, for example, if the total network

throughput is below a certain value. As such, whenever this condition is triggered,

each SC learns the best CREOs that satisfy the majority of the users connected

to them. These offsets depend not only on the state the cell is currently in, and

environment conditions, such as shadowing, backhaul load and the number of

available RBs, but also on user’s requirements and weights. Based on that, each
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cell selects the best action, according to what it knows, for each time-slot. In

addition, due to the way the problem is formulated and the way that the states

are given by the constraints defined in (3.10), the SCs will always be in only one

of the possible three states. Hence, for that time-slot, depending on the current

SCs states, they will try to find the optimal CREO that maximizes the system

total reward, as given by the RL formulation. In other words, the RL optimiza-

tion problem can be seen as a system that tries to maximize its total reward,

by dividing its goal (total cumulative reward) into smaller micro goals (maxi-

mize the reward of each iteration). As such, in every iteration, independently of

the state a SC is, it will always try to find the best solution for that time slot.

In addition, since there is a certain correlation between successive time slots in

the network, the SCs keep their Q-Tables between time slots, in order to utilize

previous gathered knowledge in order to find better actions in the future.

At the end of this stage, the new CREOs are communicated to the users via

the control channel. For the user learning, it is planned that users can change their

weights whenever their perceived QoS is below a target. This can happen due

to several reasons, such as changes in SCs CREOs, network failures or outages,

or network congestion. If a user triggers its learning, the best weights that are

assigned to each of its µ parameters are going to be learned. Similar to the

learning of SCs, each user evaluates the best actions that it can take based on its

current state for that time-slot, which depends on parameters such as the RSRP,

the user’s position, and the SCs’ CREOs. Then, for each parameter, the users

choose the best available weight, while keeping µ Q-Tables between time-slots.

Similar to the SCs scenario, the Q-Learning of user weights can also be seen as

each agent trying to maximize their total cumulative reward (being satisfied with

respect to each parameter), but by dividing it into iterations, instead of each

agent trying to maximize just one global goal, smaller goals at every iteration

are pursued. After the user update its weights, the network association process,

according to (3.3) is performed in order to decide if the user stays in the same

cell or is handed over to a better more fitting cell.

Because of this iterative process, it is inevitable that ping-pongs occur in

the network. However, due to the way the system is modelled, ping-pongs can

only occur whenever a cell does not have enough resources to accommodate a

user or if the user channel conditions are not good enough, resulting in a poor

SINR. However, if any of these conditions are true, the user should be reallocated

to a better cell anyway, independently of the proposed algorithm. In addition,

because the proposed algorithm only occurs whenever certain thresholds are met,

meaning that the network is not operating at its optimal point or that users are
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not satisfied, users should also attempt to connect to another cell, resulting in no

number of increased connections.

Furthermore, it is envisioned that the weights learned by each individual user

are kept in his device and can depend on the type of application being utilized.

As such, the proposed solution presents no issues regarding the utilization of

different applications. On one hand, regarding mobility management, the pro-

posed algorithm presents the same issues as current solutions for heterogeneous

networks, in which user devices in idle mode are continuously ranking potential

serving cells. On the other hand, the proposed framework is more robust and can

adapt to changes faster, as user devices have the advantage of performing a use-

centric selection based on learned weights, while also utilizing previous historical

data and gathered knowledge.

Algorithms 2 and 3 show an implementation of the SCs and users learning,

respectively, while Figure 3.2 shows a diagram of the overall proposed solution.

In Figure 3.2 it can be seen that both users and SC keep monitoring their per-

formance in order to decide when to trigger the proper algorithm. The diagram

shows that user 1 (UE1), in active mode, keeps monitoring the network at certain

time instants (which can be defined according to application, for example) and

when it detects that the performance is below a threshold it triggers Algorithm

3, updating its weights. After that UE1 then changes SC and re-evaluates the

network, determining that its condition is back to the desired level. It can also be

seen that the SC monitors the network performance and whenever the network

conditions are below a threshold it triggers Algorithm 2 resulting in a change

of CREOs. These new CREOs are then broadcast to all users, independently if

they are in idle or active mode and also of Algorithm 3. Lastly, the diagram also

shows what happens if a user is in idle mode (UE2). In this case, when UE2

joins the network, it first performs an initial cell selection, to determine which to

camp on and then, after new CREOs are received, it re-evaluates the cell selec-

tion procedure to determine if it will remain or HO to a new SC. When UE2 is in

idle mode it only needs to reselect cells when new CREOs are broadcast and no

user weights optimization is performed in this stage. Only after UE2 has moved

from idle to active mode that it starts monitoring the network and performing

Algorithm 3, if necessary.

3.4.4 Complexity, Convergence and Overhead Analysis

The proposed solution is analyzed in terms of computational complexity, con-

vergence and signaling complexity to highlight its feasibility and practical imple-

mentation.
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Algorithm 2: Small Cells Q-Learning

inputs : backhaul conditions, cell load, E, W
output: O

1 for all small cells do
2 for each parameter η do
3 for all iterations do
4 Measure λc and θµ
5 Determine SC current state using (3.11), υc
6 Choose action: select new CREO value, Oc,η

7 Determine reward using (3.12), rυc,ac
8 Perform action: change SC CREO value
9 Measure new λc and θµ

10 Update SC state
11 Update Q-Tables according to (2.1)
12 if Stopping Criteria is met then
13 Stop
14 end

15 end

16 end

17 end
18 Return O

Algorithm 3: User Weights Q-Learning

inputs : RSRP, E, E′, O
output: W

1 for all users do
2 for each parameter µ do
3 for all iterations do
4 Measure user (dis)satisfaction
5 Determine current user state using (3.13), υu
6 Choose action: select new weight, Wu,µ

7 Determine reward using (3.14), rυu,au
8 Perform action: change user weight
9 Measure new user (dis)satisfaction

10 Update user state
11 Update Q-Tables according to (2.1)
12 if Stopping Criteria is met then
13 Stop
14 end

15 end

16 end

17 end
18 Return W
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Figure 3.2: Diagram showing how the proposed solution can work. In this dia-
gram, only 2 users are shown for convenience, but it is assumed that more users
are connected to the SC. Both users and SC monitor the network and change
their parameters if the performance is below a threshold.

Complexity Analysis

It is shown in [203] that for the worst case scenario, the Q-Learning complexity

scales linearly with the number of states and actions, assuming a computational

complexity of O(s · a), where s denotes the total number of possible states, and

a represents the total number of possible actions. For the proposed algorithm,

since the η CREOs and µ weights optimizations can run in parallel, the increase

in complexity for each SC is given by O(υc · ac), and each user would also require

an extra computation of O(υu · au).
When compared to the fixed CREOs solutions, the proposed solution is slightly

more complex, however, this extra complexity at both the network and user sides

translate to extra QoS gains (around 10%). When compared to the BS-centric

solution, the proposed method adds only an additional level of complexity at the
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user side, but as the results show, this increase in complexity is traded-off by

gains in user satisfaction.

Convergence Analysis

Q-Learning has already been shown to converge independently of the policy cho-

sen in [10, 50]. As previously mentioned, the RL optimization problem can be

seen as a system that tries to maximize its total reward by dividing the problem

into smaller micro goals. Hence, from a convergence perspective, it can be said

that the algorithm converges at every episode4 (network snapshot), while also

maintaining its Q-Tables in between episodes. In other words, the proposed solu-

tion attempts to find, for the current network configuration, the best CREO and

weights settings. In addition, although the network changes in between episodes,

there is a quite strong correlation between successive time instants, hence the al-

gorithm is able to take future actions based on previous knowledge and maximize

its total reward.

Overhead Analysis

The proposed scheme can be implemented in current LTE networks with minimal

modifications to the standards. One possible modification may be a small change

in the current CREO settings supported by LTE, in which the optimized CREO

values of each cell are broadcast using different frequencies and a cell identifier

[204]. In this case, the frequency of broadcasting the optimized CREO values

would remain unaltered, whereas the frequency in which UEs in idle mode access

this information may be changed as it depends on specific implementation. It

may also be beneficial that users in idle mode change the frequency in which

they access the CREO information, although it is not necessary. As such, the

proposed changes would be to associate multiple offsets with every neighboring

cell, requiring only n ·η · b extra overhead, where n represents the number of SCs,

η is the number of extra parameters, and b is the number of bits currently used

for one offset. One possible alternative to deal with this is to design a system in

which the CREOs are broadcast one after the other repetitively in such a way

that users are signaled the number of offsets to expect and how often they should

get an update. If that is the case, then no additional signaling for broadcasting

the CREOs is required.

4Whenever there is a notion of time steps in RL algorithms, the agent-environment interac-
tion can be broken into subsequences. These subsequences are called episodes and are composed
of repeated interactions between the agent and the environment, until a terminal state, or a
stopping criteria has been met [10].
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Another source of overhead increase is the need to continuously inform all

neighbors of all dynamically optimized CREOs (over the X2 or the S1 interface).

This additional overhead has the same cost as before, as n · η · b. However,

despite the increase in overhead, the user-specific scheme is advantageous from

a signaling perspective when compared to a user-QoS or backhaul constraint

agnostic association policy. The reason is that, in the latter, the probability of a

user associating with an unsuitable cell is higher, leading to HOs being triggered

to improve user QoS. Hence, by reducing the number of HOs in the network,

providing a better user-cell association should be advantageous. Compared to

current systems, the proposed scheme increases the signaling proportional to

the number of cells, but reduces the overhead in proportion to the number of

users, so the cumulative overhead is expected to reduce considerably. Lastly, the

user weights optimization does not require that users send their weights to the

network, as each user will perform its own optimization, and this optimization

can be implementation specific, depending on vendors or applications, and does

not require any changes in current standards.

3.5 Simulation Results

3.5.1 Simulation Scenario

In order to provide a proof of concept, an illustrative simulation scenario was

set up in MATLAB. For this scenario, a single macro cell, with m = 3 sectors

was considered, and, on top of each sector, n = 7 SCs were overlaid in a random

manner. Each SC is considered to have one backhaul link, which can be of one

of four types: optical fibre, mmWave, microwave or copper wire. Each backhaul

has η = 3 attributes that define its performance, as seen in Table 3.1, in terms of:

capacity, the total data rate that each backhaul is able to support; latency, the

delay that users experience if connected to that link5; resilience, the reliability of

the connection.

In each sector k = 315 users are distributed. A third of the users were dis-

tributed uniformly and randomly all over the sector, while the other two thirds

were uniformly and randomly distributed near the SCs. It is also considered that

each user has µ = 3 requirements based on throughput, latency and resilience. In

the simulated environment these requirements were generated randomly, assum-

ing that users had an equal probability of requesting either a low or high value

5It is assumed that other latencies, such as queuing delay, or the delay caused by different
ABS patterns can be dealt with other state-of-the-art algorithms, and that the backhaul latency
is the minimum latency that can be achieved, bounded by the fixed link.



CHAPTER 3. BACKHAUL OPTIMIZATION USING RL 76

Table 3.1: Backhaul Parameters [1, 2]

Capacity (Mbps) Latency (ms) Resilience (%)
Fibre 500 1 99.999
mmWave 500 3 90
Microwave 100 5 99.999
Copper 50 10 99.999
Macro ∞ 1 100

Macro BS

Macro Cell Sectors

Optical Fibre

mmWave

Microwave

VDSL

Users in Sector 1

Users in Sector 2

Users in Sector 3

Figure 3.3: Simulation scenario. The macro BS in the centre (in grey) covers an
m = 3 sectored area (dark blue circles). On each sector, n = 7 SCs, with different
backhauls (represented by different colors), and k = 315 users are randomly
distributed, with higher concentration near the SCs.

for each requirement, however, in a real situation, these could be dictated by the

application. Figure 3.3 shows one possible configuration of the scenario, in which

the macro cell, represented by the grey dot in the centre, covers a three sectored

area represented by the dark blue circles. On top of each sector, 7 SCs are ran-

domly positioned, each with a different backhaul connection, and 315 users are

overlaid. Table 3.2 shows the simulation parameters, which conform to 3GPP

specifications as proposed in [6].

The system is evaluated for a total of ten independent runs, with different

starting conditions, such as user requirements and positions, SC locations and

backhaul links. At the beginning of each run the η and µ Q-Tables of SCs and

users, respectively, are initialized to zero, but as previously mentioned, the corre-

sponding matrices will be maintained in between episodes, being reset only after
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another episode begins. Also, other parameters such as channel conditions (fad-

ing and shadowing), backhaul loads, and user positions vary from one episode to

another. In each run, a total of fifty episodes are performed and the metrics are

computed and averaged out. In addition, for the first episode of the algorithm,

an allocation process based only on the RSRP is done, so that a real network

scenario with users already allocated to the cells of the system can be simulated.

During the other episodes of the algorithm, the user-specific solution, based on

Q-Learning, is evaluated. The computed metrics are then averaged out, in order

to measure the performance of the system and evaluate the robustness of the

proposed solution. Moreover, each episode is assumed to be one snapshot of the

network, in which network conditions remain static and the SCs and users per-

form their optimization process over a certain amount of iterations (according to

their stopping criteria). For example, in every episode it is assumed that channel

and network conditions, such as RAN and backhaul, as well as user mobility re-

main the same. This is performed for the sake of simulation and in a real system,

this optimization would be done in real time. Lastly, for the mmWave backhaul

an outage probability is assumed and it is evaluated in every iteration of the

algorithm. When an outage occurs, users perceive a very low RSRP from that

SC (e.g. -500dBm) and no connections to that cell are allowed in that iteration.

3.5.2 Performance Metrics

The proposed solution is compared to the BS-Centric approach [2] and both 6dB

and 12dB fixed CREO. The performance is measured in terms of four metrics:

cumulative throughput; total number of users in outage; percentage of unsatisfied

users for each parameter; dissatisfaction rate for each parameter. The dissatis-

faction is defined as the percentage difference between what was requested and

what was allocated, considering only unsatisfied users, as

Dµ =

|C|∑
c=1

|Uc|∑
u=1

Eu,µ − E ′u,µ
Eu,µ

, ∀u ∈ U|Eu,µ < E ′u,µ, (3.15)

where µ ∈ {T, L,R}, T denotes throughput, L corresponds to latency, and R

to resiliency. In addition, the penalty incurred in throughput due to ABS is

considered in the results. Lastly, the relative gain of the proposed solution with

respect to the other methods, Gus, is also measured and is calculated as

Gus = 100 · Fus − Fbase

Fbase

, (3.16)
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Table 3.2: Simulation Parameters [3–7]

Parameters Value

Number of Sectors (m) 3
SCs per Sector (n) 7
Users per Sector 315
Ratio of Users in SCs 2/3
Sector Radius 250 m
SC Radius 50 m
Macro BS EIRP 20 dBW
SC EIRP 7 dBW
Macro Cell Shadowing 4 dB
SC Shadowing 5 dB
Receiver Noise Figure 7 dB
Penetration Loss 18 dB
RBs per Cell (RBmax) 50
Backhaul Overhead Factor (ρ) 1.3
Bandwidth of 1 RB (B) 180 kHz
Number of sub-carriers (Nsc) 600
mmWave Outage 16%
ABS pattern (ζABS) 40%
Satisfaction Threshold (θµ) 0
Throughput req.† (low / high) 0.2 / 1 Mbps
Latency req.† (low / high) 5 / 10 ms
Resiliency req.† (low / high) 90 / 99.999%
Learning Rate (αc, αu) 0.5
Discount Factor (φc, φu) 0.9
Macro Cell Path Loss 128.1 + 37.6 · log10 (d) dB
SC Path Loss 140.7 + 36.7 · log10 (d) dB
CREO Maximum Value (Vmax) 12 dB
User Weights Maximum Value (Gmax) 1
Total number of episodes 50
Max. iterations (Muw/Msc) 30 / 50
Reward threshold (rth) 10%

†Requirement per RB.

where Fus is the performance metric with respect to the proposed user specific

solution, and Fbase is the performance metric with respect to the other baseline

solutions.

3.5.3 Numerical Results

Figure 3.4a shows the results for the cumulative throughput of the network. As it

can be seen, the cumulative throughput is largest when a fixed CREO is applied,

performing better for a 12dB CREO. This works as expected, as by artificially
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Figure 3.4: System performance in terms of total network throughput (a), number
of users in outage (b), percentage of unsatisfied users for each parameter (c) and
dissatisfaction rates for each parameter (d).

increasing the range of SCs, more users are pushed to the SCs, achieving better

reuse of the spectrum (more RBs being available). Hence, the 12dB CREO

solution achieves the highest cumulative throughput. When comparing the BS-

Centric and user-specific solutions, it can be seen that their performance approach

the fixed 6dB CREO, with the user-specific solution slightly outperforming both

approaches. This also works as expected, as in some cases it is better to apply

large CREOs attracting more users to certain SCs, while in others is best to

apply smaller CREOs, making users associate with the macro BS more often.

Furthermore, because the reward of the intelligent solutions (BS-Centric and user-

specific) is not only composed of the cumulative throughput but also depends on

other QoS metrics, such as throughput, latency and resiliency, it is natural that
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a trade-off is achieved.

Figure 3.4b presents the total percentage of users in outage for each solution.

Also as expected, the 12dB CREO is able to minimize the number of users in

outage, as it is able to attract more users, due to the larger artificially extended

coverage area. In addition, it can be seen that the user-specific solution lies in

between the fixed 6dB and 12dB CREO approaches and that the BS-Centric

approach has the worst performance of all. This highlights the gains of the

proposed approach, in which tuning user side parameters enables more users to

be covered rather than just tuning the CREOs of SCs.

Regarding users satisfaction, Figure 3.4c illustrates the percentage of unsat-

isfied users in the network with respect to each parameter. It can be seen that

fixed CREO solutions do not perform as well as the intelligent solutions, both BS-

centric and user-specific. Furthermore, it can be seen that tuning only CREOs of

SCs can achieve a better global performance than fixed solutions, but by tuning

both CREOs and user weights this optimization can be enhanced. This can be

explained by the fact that when both CREOs and weights are considered, to-

gether with the proposed constraints, the system tends to deliver what the users

have requested, minimizing network resource wastage. This enables more users

to be allocated to that SC backhaul, provided that it has enough radio resources

available. It can also be seen that tuning both CREOs and weights achieves a

better performance with respect to all parameters. Figure 3.4d shows the total

proportion of dissatisfaction of users regarding each parameter, which are ob-

tained according to (3.16). As it can be seen, the BS-Centric solution slightly

outperform the fixed approaches in all metrics, however in the case of the pro-

posed user-specific approach, the dissatisfaction with respect to all parameters

can be mitigated even further.

Table 3.3 shows the relative gain of the user-specific solution with respect to

other methods. As it can be seen, by optimizing both network and user parame-

ters, the proposed solution is able to reduce the number of unsatisfied users and

their dissatisfaction rates by around 10%. Furthermore, when compared with the

BS-Centric approach in terms of throughput, it can be seen that both solutions

achieve a similar value, indicating that both approaches are able to find near-

optimal values for this metric. As it can be seen, Table 3.3 emphasizes that the

proposed method is able to better allocate the backhaul resources, reducing the

number of unsatisfied users as well as their dissatisfaction rates. By delivering for

each user only what is requested, E ′u,µ → Eu,µ, the amount of resources allocated

to over satisfied users is reduced, freeing backhaul resources and reducing the

number of unsatisfied users and their dissatisfaction rates. However, this comes
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percentage, per episode (SC Learning).
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in percentage, per episode (User Weights
Learning).

Figure 3.5: Analysis of the convergence properties of the proposed algorithm.

at a slightly expense in terms of cumulative throughput and number of users in

outage (when compared to the fixed 12dB CREO solution).

Lastly, Table 3.4 shows how users associated to the macro cell and SCs in

and out of the CREO regions contribute to the total of unsatisfied users and

dissatisfaction rates. As it can be seen, the proposed solution is able to achieve

the minimum dissatisfaction amongst CREO users, at the expense of a higher

dissatisfaction rate of users connected to the SCs. Also, the user-specific solution

associates the second most amount of users to SCs (when accounting both SC

and CREO regions), only behind the 12dB approach. However, the user-specific

solution associates more users to the macro cell than the fixed 12dB solution.

This highlights the objective of the proposed solution, in which depending on the

combination of CREOs, user weights and requirements, users are redirected to

the most fitting cell, minimizing network resource wastage.

Regarding the algorithm convergence, Figs. 3.5a and 3.5b show the average

number of iterations of SCs learning and user learning per episode, respectively.
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As it can be seen and as expected, in the beginning, as both algorithms do

not know enough about the environment, they start by performing plenty of

iterations in order to find the optimal network and user settings. However, as the

number of episode increases, this number decreases and both solutions converge

to around 10 and 5 iterations in case of SC learning and user weights learning,

respectively. Moreover, it can be seen that the optimization of user weights is

more stable because they operate after the SCs have optimized their CREOs. On

the other hand, the optimization of CREOs is slightly more unstable, although it

still converges, due to network changes and user mobility, which varies from one

episode to the other. It can also be seen that the proposed solution converges

rather fast, as both algorithms converge after around 5 episodes.

Figures 3.5c and 3.5d show the average number of users handed over per

episode after performing each algorithm (in percentage). As it can be seen, when

SC learning is performed an average and constant number of 4% of total users is

reallocated every time, while when users learn their weights, this number starts

relatively high at around 16% and then converges, after around 20 episodes, to

around 3%. This not only shows the convergence of the proposed methods, but

also further emphasizes that by only tuning CREOs a constant rate of users is

handed over to SCs, while by tuning both CREOs and user weights the algorithm

can learn which users to HO and only change the association of the users that it

needs to.

3.6 Summary

In order to achieve the requirements of future mobile networks, such as the ever

increasing user demands and also to enable a wide range of applications, it is

clear that intelligent and robust solutions need to be deployed. With that in

mind, new paradigms of user-cell association need to be considered, in which the

end-to-end connectivity is contemplated, instead of current radio interface based

solutions. In addition, solutions must also optimize not only parameters of the

network, but also user parameters, to achieve user-specific cell association.

As such, a RL approach, in which both SC CREOs and user weights are op-

timized, using Q-Learning is proposed. Results show that the proposed method

outperforms fixed CREO solutions and another BS-centric approach. Results also

demonstrate the importance of tuning both network and user side parameters, as

this enables the proposed algorithm to allocate only enough for each user in order

for it to be satisfied, while also allowing more backhaul resources to be shared

among other users. Thus, by optimizing both network and user parameters a re-



CHAPTER 3. BACKHAUL OPTIMIZATION USING RL 85

duction of around 10% in the total number of unsatisfied users and dissatisfaction

rates could be achieved, highlighting the potential that intelligence can bring to

future networks in terms of user satisfaction and network resource optimisation.



Chapter 4

Intelligent UAVs for Emergency

Mobile Networks

4.1 Introduction

Although sporadic, natural large-scale disasters, such as earthquakes, hurricanes,

and tsunamis produce a profound impact in human society, not only in terms

of the infrastructure that is destroyed, but most importantly, in terms of human

lives that are lost. Whenever a disaster occurs, it is crucial that search and

rescue teams are deployed in a very quick and effective manner, as the first

48 to 72 hours after a disaster, also known as the golden hours, are the most

critical [205, 206]. However, one major problem that arises during this period is

the lack of communication infrastructure, as most of the existing network can be

destroyed during a disaster, degrading the rescue team’s effectiveness and ability

to find isolated people. Hence, in order to overcome a disaster situation, it is

also vital that an emergency communication network (ECN) is deployed as fast

as possible, so that communication can be restored quickly, preventing additional

casualties.

In general, ECNs must be extremely adaptable, flexible, and intelligent in

order to adjust themselves to the environment and situations that they can be

inserted in. Hence, conventional solutions that are found today in wireless mobile

networks may not be applicable, as deploying a completely new network from the

very beginning can take several days. This can occur either due to the conditions

in which the environment is, such as a city being completely devastated, limiting

the accessibility to certain areas, and by consequence, limiting network coverage,

or due to the complex process of configuring and setting up all new BSs param-

eters. Thus, more robust solutions, involving networks that are capable of self

organization and that can be deployed quickly and effectively to the exact area

86
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where coverage is needed should be designed. In this sense, algorithms that can

adapt themselves, such as artificial intelligence and machine learning, should be

deployed [8, 205–207], to enable a fully autonomous network.

One possible solution for a rapid deployment of an ECN that can provide

the desired flexibility, quickness and intelligence is the utilization of drones with

wireless capabilities [205, 206, 208–210]. These UAVs, also known as UAV base

stations (UAV-BSs), would be equipped with a small BS, and would serve as

radio access points in the network. In addition, since after a disaster reaching

certain locations of the affected area can be problematic, due to debris blockage

or flooding, for example, positioning conventional BSs can be a rather difficult

task for network operators. Thus, because of their flexibility and mobility, drones

can perform a crucial role in emergency situations, by flying to the affected area

and providing service exactly where it is needed.

Based on this, a positioning algorithm for UAV-BSs in an emergency situation

is proposed. The solution aims at finding the best position of multiple drones in

a scenario where the old mobile network infrastructure was completely destroyed

and users are in need of coverage. The UAV-BSs are considered to have limited

resources in both radio access network (RAN) and backhaul. In addition, users

could have different requirements in terms of throughput and different mobility

characteristics, depending if the user is from a rescue team or a regular user. As

such, a distributed algorithm, based on RL, more specifically Q-Learning, is pro-

posed, so that the drones can explore the affected area and find the best possible

position. This way, the main objective, to maximize total network coverage (or

minimize the number of users in outage), can be achieved. The proposed solution

is compared to different positioning strategies, such as deploying the drones in

fixed random positions, fixed around a circle centred in the middle of the area at

evenly spread angles, and deploying the drones in the locations of hot spots of the

previous destroyed network and the results show that the intelligent Q-Learning

solution outperforms all of them in all considered metrics.

4.1.1 Related Work

Aerial platforms, such as drones, are expected to have an important role in the

next generation of mobile networks. Because of their flexibility, adaptability

and mobility capabilities, these platforms can be deployed in a wide range of

situations, ranging from providing extra coverage and capacity whenever a big

event takes place, supplying the necessary communication infrastructure in case

of an emergency, or bringing service in rural and isolated areas, to name a few.

Because of these reasons, the deployment of drones in mobile communication
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networks has seen an increased attention recently [205,207–218]. In addition, the

deployment of machine learning solutions in mobile networks, more specifically

self organizing mobile networks, has also seen an increase in recent years and

research groups all over the world are developing intelligent solutions in order to

tackle the various challenges of mobile networks [8].

Erdelj et al., in [205], present a survey of the advances in drone technology fo-

cused on wireless sensor networks and disaster management. The survey divides

a disaster into three main stages, mainly: pre-disaster preparedness; disaster as-

sessment; and disaster response and recovery; and presents drone applications

and challenges for each one of them. In [211], the authors show key aspects of

the design and implementation of future aerial communication networks, how-

ever instead of focusing on small drones, the authors focus on tethered balloon

platforms.

Other works, such as [212–214], attempt to find the best position of UAV-BSs

analytically. In [212], for example, the authors attempt to find the best position

for low altitude platforms (LAPs) in order to maximize their coverage range.

The authors develop an analytical solution to determine the best altitude of a

LAP and end up concluding that the optimum altitude is strongly dependent on

the environment. Mozaffari et al., in [213], derive the optimal altitude of UAV-

BSs which gives the maximum coverage, while minimizing the transmit power.

The system is investigated in two different scenarios, one considering interference

between drones and another being interference-free. Results showed that, when

interference is considered, there is an optimal separation distance between drones

in order to maximize the network coverage. In [214], Alzenad et al. present

an optimal placement algorithm for UAV-BSs that maximize the coverage while

minimizing the transmit power of the drones. In addition, the authors decouple

the problem in two, considering the placement of the drones as two separate

problems in both horizontal and vertical dimensions. Results show that their

system is able to save a significant amount of power, while also increasing the

number of covered users.

Kalantari et al., in [207], propose to find the best position of UAV-BSs, but

instead of determining it analytically, they utilize a particle swarm optimization

(PSO). Their results show that PSO is capable of adapting to different scenarios

and that the drones are able to find by themselves the best positions in order to

maximize the number of users being covered. Ahmadi et al., in [208], propose

a novel mobile network architecture, considering drones as a core part of the

network. Their work formulates the optimum placement of drones, while also

presenting some challenges and future research directions. Also regarding the
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positioning of drones, Merwaday et. al. show in [215] that, in an emergency

scenario, finding the optimal position for temporary UAV-BSs via exploiting the

mobility of the drones yields improvements in network throughput and spectral

efficiency.

Another work by Kalantari et al., in [216], investigates the usage of flying base

stations considering different types of backhaul links. The authors introduce two

different approaches, mainly a network-centric approach and a user-centric ap-

proach, and determine the best three dimension (3D) position of UAV-BSs. Their

results show that the network-centric approach is able to maximize the number of

covered users, and that the user-centric solution maximizes user throughput. An-

other paper which considers backhaul limitations is the work in [214], by Alzenad

et al., wherein the authors study the feasibility of a novel backhaul framework con-

sidering aerial platforms and free space optics point-to-point links. Their results

demonstrate that this type of backhaul is capable of delivering higher data rates

than others, but it is also very sensitive to the environment, including clouds and

fog. In [210], the authors consider the utilization of drones as a complementary

approach to future terrestrial mobile networks. The authors present some design

opportunities and challenges, and also develop a case study on the positioning of

UAV-BSs.

Mozaffari et al., in [209], present the deployment of a drone network on top

of an already existing device-to-device network. The authors evaluate the system

in two different scenarios, considering static and mobile drones. The authors

derive the outage and coverage probabilities for each case and show that the

mobile strategy performs better than the static one in terms of coverage and

energy efficiency. Azari et al., in [217] propose a framework for the analysis

and optimization of air to ground systems considering altitude and cooperation

diversity. The authors consider drones as relays and develop analytical solutions

for the drones height in order to maximize its reliability and coverage range.

Lastly, Shah et al., in [218] propose a new solution to the problem of user cell

association considering flying BSs with backhaul constraints. The authors present

a distributed solution based on a greedy search algorithm and show that the

proposed approach has better results than other baseline approaches and it is

less computational complex.

Despite some works covering the deployment of drones in emergency situa-

tions [205, 211], other works covering the deployment of drones with backhaul

limitations [214, 216, 218], and others considering the positioning of aerial plat-

forms [207–210,212–214,217], only [207] proposes an intelligent solution in order

to determine the best position of UAV-BSs. Also, as it can be seen from the
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reviewed literature, most studies address the drone positioning problem analyt-

ically, through the development of closed-form equations. These methods, al-

though important, require several assumptions, such as the knowledge about how

many users are in the network and their positions. In addition, most of these

works also do not take into account user mobility and perform the drone place-

ment optimization for a specific, static scenario. Hence, these types of solutions

might not be suitable for real situations, in which the environment is constantly

changing, users can move at different speeds and even network parameters, such

as cell load and backhaul conditions, can change as well.

In addition, as previously mentioned, the only work that proposes an intel-

ligent solution to the problem of drone positioning optimization is the work of

Kalantari et al., in [207]. However, the proposed work utilizes a PSO algorithm,

which can be viewed as a branch of GAs or heuristic methods (in contrast to GAs,

PSO does not perform selection in between generations) [219,220]. Although able

to solve the proposed problems in a simulated environment, solutions such as GA,

heuristics, and PSO, due to their inherit nature of having to search for the best

possible solution amongst a family of available ones, are not suitable for applica-

tions that require continuous interaction between the system and its environment.

This occurs because any change in the initial original set of solutions, would re-

quire the whole computation to be performed again. For instance, PSO is not

able to perform an online optimization of the problem.

As the authors show in [207], the approach is tested in two fixed scenarios,

without considering user mobility. Because PSO performs an offline computation,

this solution is also not capable of adapting itself to real time changes in the

network. For example, if mobility was taken into account, the proposed PSO

algorithm would have to run again, every time a user would move, in order to

determine the best new solution for this new network configuration, resulting in

an impractical system. Additionally, due to the vast search space that the PSO

solution has to evaluate, a centralized unit would be required in order to perform

all the required computations and determine the best configuration. Again, in real

systems this is not practical, as this would result in an increase in communication

signalling between the centralized unit and the drones, as well as the need of

synchronization. Lastly, due to the heuristic nature of PSO, this approach would

also not be scalable as well as computationally efficient due to the vast search

space that it must compute in order to find the best possible configuration. In

a real environment, for example, in which network conditions and user positions

change frequently, PSO would not be able to cope with these changes, becoming

an impractical solution in real scenarios.
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Based on the issues mentioned above, it is clear that the development of a novel

solution that is capable of adapting itself online and that is also able to analyse

the environment and determine the best possible actions to be taken is needed.

Based on that, RL algorithms can be a suitable approach since, independently

of the environment they are inserted in, they can explore the possibilities and

determine the best actions to be taken.

4.1.2 Objectives and Contributions

The main objective is to provide a distributed and intelligent solution to the prob-

lem of positioning multiple UAV-BSs in order to maximize the number of covered

users in an emergency situation. As previously mentioned, this problem is of high

importance in emergency situations, since the fastest a communication network

can be established, more human lives can be saved. This optimization problem

also poses a difficult challenge, due to the varying conditions of the environment,

such as users moving with different speeds, users having different requirements

and the UAV-BSs being limited in both RAN and backhaul resources. In addi-

tion, as the deployment of conventional BSs might not be possible, either due

to the infrastructure being destroyed or parts of a city not being accessible, the

deployment of drones is considered to be a good solution in case of emergency

situations.

In order to provide a solution to the problem of drone 3D placement, the

development and evaluation of an adaptable and flexible solution based on RL

using Q-Learning is proposed. The developed algorithm is shown to be robust

enough in order to adapt itself to different network conditions, such as the po-

sition of other UAV-BSs, interference between UAV-BSs, user movements and

requirements. To the best of the author’s knowledge, there are no other works

that consider the optimization of drone positioning using RL in an emergency

communication scenario, whilst also considering user mobility, user requirements

and network constraints.

The main novelty of this work can be described as the development of an

intelligent solution based on RL, in order to tackle the problem of user coverage

in an emergency situation. As discussed before, most of the current state-of-

the-art solutions do not provide the needed flexibility or adaptability in order

to cope with a changing environment, hence the development of an intelligent

solution that is capable of providing coverage exactly where and when needed is

essential. The proposed solution utilizes Q-Learning in every UAV-BS, which will

attempt to find the best position in the environment so that the global reward,

given by the total number of users covered, is maximized. Results show that the



CHAPTER 4. INTELLIGENT UAVS FOR EMERGENCYMOBILE NETWORKS92

proposed solution achieves better levels of outage and user satisfaction than fixing

the drones either in random positions, in a circular manner, or in the location of

the previous hot spots.

4.2 System Model

The problem of maximizing coverage in an emergency situation scenario, via the

deployment of a temporary network is considered. This network is composed of

a truck BS, along with movable UAV-BSs. The objective of the proposed system

is to find the best possible positions of UAV-BSs, given that users with different

requirements and mobility characteristics are distributed in the scenario and that

both the truck BS and the UAV-BSs have limited resources in terms of RAN and

backhaul.

4.2.1 Urban Model

The International Telecommunication Union-Radio (ITU-R) defines in [221] three

parameters to characterize any urban environment, which are defined as:

• α, the ratio of build-up land area to the total land area;

• β, the average number of buildings per square kilometre;

• γ, scale parameter for the heights of the buildings.

Following [221], the urban scenario in this paper is modelled considering these

parameters, and a building disposition following a Manhattan grid layout, as in

Figure 4.1, in which squares of a given width (W ) are separated by a distance

(S) [222]. The height of the squares is obtained following a Rayleigh distribution

with scale parameter γ, whereas W and S are assumed equal across all buildings

and are determined via [223]

W = 1000 ·
(
α

β

) 1
2

, (4.1)

and

S =
1000√
β
−W. (4.2)
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Figure 4.1: Manhattan grid urban layout.

4.2.2 Users

The scenario considers a total of Nu users spread across an L by L square area.

A portion of the users is assumed to be concentrated near hot spots randomly

distributed around the hot spot coverage area, while the rest of the users is

uniformly randomly distributed in the square area.

In addition, two types of users are considered: either users that belong to an

emergency team, or regular users. Regardless of their type, the most important

requisite for all of them is to be connected (to have coverage). Aside from that,

rescue team users can have different throughput requirements, depending on their

needs, while normal users are all assumed to have low throughput requirements.

Furthermore, different mobility levels are assumed between users. Regular users,

for example, are considered to have low mobility, whereas rescue team users are

assumed to have higher mobility.

4.2.3 Temporary Network

The scenario considered assumes that there is a fully functional network in a

certain location, but due to a natural disaster, it has been completely destroyed.

In this particular case, however, it is assumed that either part of the original

backhaul of the previous network is accessible or that a backhaul link could be

deployed after the emergency happened, and could be used by network operators

in order to establish a connection to their servers. In other situations, in which
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the original backhaul links of the previous network are also destroyed, a solution

can be developed first, to deal with the backhaul connections issue, and then the

proposed solution, involving the deployment of drones, can be installed.

Truck Base Station

In order for operators to access the original backhaul of the network, a fully

equipped truck with a macro BS powered either by fuel or solar energy is consid-

ered, such as in [224]. This truck could be placed in a position similar to where

the original BS was positioned and, by connecting to the available backhaul link,

it can enable the connection between the truck BS and the network operator.

The path loss from the macro BS to the users follows the Okumura-Hata

model, which is applicable for frequencies in the range of 150MHz to 1920MHz,

but can be extrapolated to frequencies up to 3GHz [202]. The macro BS path

loss is defined as

PLm = 69.55 + 26.16 · log10 (fc)− 13.82 · log10 (hB)− CH+

+ [44.9− 6.55 · log10 (hB)]log10 (dm) , (4.3)

where fc is the carrier frequency, hB is the height of the macro BS and CH is the

antenna height correction factor, which is given by

CH = 0.8 + (log10 (fc)− 0.7) · hu − 1.56 · log10 (fc) , (4.4)

where hu is the height of users’ mobile devices.

UAV Base Stations

Additionally to the truck BS, it is also considered that UAV-BSs are deployed

in the network in order to provide the additional needed coverage. Each drone

is considered to have a dedicated out of band backhaul link, composed of a mi-

crowave link, which is able to contact the truck BS in order to connect to the

network operator. The traffic from the drones are routed to the truck BS and then

to the network operator, as the truck BS is the only one with a direct backhaul

connection to the operator. Also, it is assumed that the drones use a dedicated

spectrum slice of their band to perform this connection to the macro BS. Fur-

thermore, since the drones are flying at relatively high altitudes and the antenna

from the macro cell is positioned higher than nearby buildings, it is assumed

that the link between drones and macro BS has very large capacity, similarly to

what is considered in [215]. Moreover, as recently shown in [225], the noise and
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Figure 4.2: UAV-BS flying at a height, hd, and with an antenna with aperture
angle of φap.

LoS characteristics of the channel affect the link between ground BS and drones

far less than when considering the communication between the ground BS and a

ground user, further supporting this assumption.

It is also considered that the antenna of each UAV-BS has strong directivity,

such that its major lobe1 (defined as the region in which the antenna gain is the

highest) has an aperture angle of φap, as in Figure 4.2. Therefore, the signal

irradiated from its antenna is considered highly attenuated outside its coverage

radius ρ defined by

ρ = hd · tan

(
φap
2

)
, (4.5)

where hd is the drone flight altitude.

The path loss between UAV-BSs and users (PLd) follows the model presented

by Al-Hourani et al., in [223], wherein PLd is split between a free-space path loss

and an additional loss, which depends on whether there is LoS between the drone

and the user or not [213]

PLd = 20log10

(
4πfcdd

c

)
+ ξ, (4.6)

where dd is the distance between drones and users, c is the speed of light and ξ

is the additional loss which assumes different values for LOS or non-line-of-sight

(NLOS) links. Figure 4.3 presents the scenario considered in this paper, with a

UAV-BS covering regular users and rescue team in a post-disaster urban scenario.

1In practical antennas [226], there is one major lobe, which concentrates the majority of its
power and can be defined using 2 angles named elevation and horizontal angle. It is assumed
in this work that both have the same value, φap.
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Figure 4.3: Considered scenario. A UAV-BS providing coverage to a certain
amount of users, both regular and rescue team users, in an emergency situation.

4.2.4 User Allocation

Considering the set of all users U = 1, 2, . . . , Nu and the set of all BSs B =

1, 2, . . . , Nb, with Nb as the total number of BSs, the received signal power, in

dBW, for user i ∈ U, from BS j ∈ B, is denoted by RSRPi,j and can be computed

as

RSRPi,j =

EIRPm − PLm, if j is a macro BS,

EIRPd − PLd, if j is a UAV-BS,
(4.7)

where EIRP represents the transmitted power combined with its antenna gain,

in dB. According to that, EIRPm and EIRPd represent the total transmit power

from the macro BS and the UAV-BSs, respectively. PLm represents the path loss

between the macro BS and users, calculated according to (4.3), and PLd is the

path loss between drones and users as given in (4.6).

Next, the SINR, for a BS/user pair, SINRi,j, is given by

SINRi,j =
RSRPi,j

N +
Nb∑

k=1,k 6=j
RSRPi,k

, (4.8)

where N is the additive white Gaussian noise (AWGN) power and the RSRPs

are expressed in linear form.

The throughput T for a user, is determined following Shannon’s channel ca-

pacity formula, given by (3.5) [227]. As in [2], the amount of throughput that the

user consumes from the backhaul is considered to be 30% higher than its actual

throughput, because of overhead signals. In addition, if the sum of the backhaul

throughput of any BS exceeds its capacity, i.e. if the backhaul is overloaded,
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the throughput of all users connected to that cell is reduced equally by taking

the amount of overloaded capacity and dividing it by the total number of users

connected to that cell. This guarantees that the total throughput of the cell does

not exceed its capacity, while also penalizing cells having its backhaul overloaded.

Lastly, users are then allocated to the best BS according to their SINR. If

the SINR of a user is above a certain threshold, and the BS has enough space

in its RAN, then a user is allocated to that BS in that time slot. However, if

that BS has no resource blocks available or the user SINR is too low (below the

connection threshold), the next BSs are tried, in order of highest SINR. After

all BSs are tried, if a user is still unable to be associated with a BS, the user is

considered to be out of coverage (in outage) for that time slot.

4.3 Proposed Solution

The goal of this work is to propose and evaluate an intelligent algorithm, based on

RL, to find the best positions of multiple UAV-BSs, which maximize the number

of served users in an urban area where a disaster has occurred.

4.3.1 Positioning Algorithm

The proposed algorithm is based on Q-Learning and a distributed approach is

assumed. Each UAV-BS is considered an agent, and the disaster scenario (com-

posed of the buildings, user distribution and movement, and macro cell location)

is the unknown environment that the agents are inserted in. The states of the

UAV-BSs are defined as their three dimensional position in the environment, and

each drone can take any of seven possible actions, namely: move up, down, left,

right, forward, backward, or not move at all. In addition, the drones follow an

ε-greedy policy [10] to choose their actions, with a decaying ε, depending on the

number of iterations.

Since the main target of the proposed solution is to maximize the amount of

covered users, the reward experienced by each drone is the total of users allocated

by the system. The total number of users allocated is chosen as a reward metric,

instead of considering the number of users allocated by each drone, so that drones

would have a better incentive to allocate more users instead of each drone being

greedy and trying to maximize their own reward. If the individual number of users

allocated per UAV-BS was used as reward, this could result in a drone allocating

users from other drones, so that its reward would be maximized at the expense of

the reward of the others, leading to a sub-optimal (or local) optimization. Thus,
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a reward that represented a global metric, in this case the total number of users

allocated, was chosen. A summary of the Q-Learning parameters is provided next

and Algorithm 4 summarizes the proposed solution.

Agents

Agents correspond to the UAV-BSs. Each agent has a different action-value

function, which describes the value of a drone taking an action for every given

state.

States

A state s is the three dimensional position of a UAV-BS in space. In addition,

for the considered model, the space is divided into a grid, such that the set of

possible states a drone can be in is finite.

Actions

Each drone can take seven possible actions. These actions are: moving one

step in any direction (up, down, left, right, forward, backward), or to stay still.

Furthermore, if an action would take the UAV-BS out of the grid, it has the same

effect as staying still.

Reward

Since the goal is to maximize the number of served users, the reward, r, is given

by the total number of allocated users. For that to be possible, the UAV-BSs and

the macro cell are assumed to share the information of the number of allocated

users with each other, via the connection with the macro BS. More formally, the

reward of the system can be defined as:

r =

Nb∑
j=1

Uj, (4.9)

where Uj is the number of users allocated to BS j.

Update strategy

Each UAV-BS updates its action-value function according to (2.1) The UAV-BSs

also keep track of the state which yielded the best reward.
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Initialization

At the start, all the UAV-BSs are positioned at random locations and with their

action-value functions set to zero in all entries.

Stopping criteria

The stopping criteria is based on three conditions. The drones have moved for a

maximum number of iterations Maxit, the value of the reward has not improved

in a certain number of iterations Maxit,r, or the drone has used all its resource

blocks and has explored for a minimum number of iterations Minit. When one of

them is met, the UAV-BS moves to the state which yielded the best reward and

stops until the next episode.

Episode

In the context of the proposed problem, an episode can be defined as a snapshot

of the environment, or in this case, the emergency communication network. In

each episode, the UAV-BSs take actions based on their current state and evaluate

their reward. This process is repeated for a certain number of iterations until one

of the three stopping criteria is met.

In addition, during each episode of the network, the users are considered to

be static, so that the drones can evaluate and determine the best actions for

that snapshot of the network. After all drones have moved and found the best

possible positions for that episode, the current episode ends, users eventually

move according to their mobility levels and a new episode begins. Furthermore,

since there is a high correlation between episodes, whenever a new episode begins,

the UAV-BSs start at the previous position of the last episode. Also, the UAV-BSs

keep their Q-Tables between episodes, in order to explore the previous knowledge

gathered from previous episodes of the network.

In a real scenario, however, as there is no notion of episodes, the UAV-BSs

could perform the position optimization every certain time intervals, for exam-

ple, whenever the global reward of the system is below a certain threshold. By

analysing the network at certain time slots, and moving according to the user

positions of that time slot, the UAV-BSs would still be able to find on the fly

an optimal solution. In addition, this interval (the frequency that the algorithm

is run in each UAV-BS) could also be tuned in order to have a higher or lower

resolution, at the trade-off of energy and complexity at each UAV-BS as well as

based on the assumed user mobility model.
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Algorithm 4: Proposed Solution

1 Initialize UAV-BS locations
2 Initialize Q-Tables
3 for Every episode do
4 while Stopping criteria not met do
5 UAV-BS selects action with largest Q value (ε-greedy)
6 Allocate Users
7 Observe reward, rt+1

8 Update next state
9 Update Q-Tables, via (2.1)

10 end
11 if UAV is not in best position then
12 Move to best observed reward
13 end
14 else
15 UAV stay in the same position
16 end
17 Allocate users
18 Record metrics

19 end

4.3.2 Metrics

In order to evaluate the proposed strategy, the metrics considered are the per-

centage of users in outage Du and the average user throughput dissatisfaction Dτ

per total number of users. The percentage of users in outage is given by

Du = 100 · No

Nu

, (4.10)

where No is the total number of users in outage and is defined as

No = Nu −
Nb∑
j=1

Uj. (4.11)

By its turn, Dτ is computed considering all the users which have a throughput

below his/her requirement, τ , such that

Dτ =
1

Nu

∑
y∈Ψ

τy − Ty
τy

, (4.12)

where Ty and τy are the allocated and required throughput of user y, respectively,

and Ψ is the set of users with Ty < τy. In addition, if a user has not been

allocated to any cell, it is considered dissatisfied and his/her perceived throughput
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is assumed to be Ty = 0.

4.4 Results

4.4.1 Simulation Scenario

In order to showcase the effectiveness of the proposed solution, a simulation

scenario in MATLAB has been built. It is considered that a network operator

has a previously fully functional network in the area, composed of a macro and

several small cells. However, a disaster happens and the previous network has

been fully destroyed, with only parts of its original backhaul connection available,

so the operator has to choose other means in order to restore connectivity as fast

as possible.

For this scenario, it is considered that the operator chose to deploy a macro

cell in a temporary fixed infrastructure, as for instance in a truck, in a position

similar to the original one. Since it might be difficult for the operator to deploy

the macro BS in its original position, either due to debris or blockages, in the

simulations the truck containing the macro BS is positioned at its initial position

added to an offset depending on a random distribution. In addition, drones are

also deployed in the network to perform the role of the previous small cells. Re-

garding the drones positioning, several approaches are tested, such as fixing the

drones in random positions, fixing the drones in a circular manner around the

macro cell, fixing the drones in the previous location of the small cells, and, lastly,

deploying movable and intelligent drones using the proposed Q-Learning solution.

The proposed solution is compared to those baselines as there are no other meth-

ods, to the best of the author’s knowledge, that perform the optimization of drone

positioning in an emergency scenario, considering both RAN and backhaul con-

straints. The only other similar approach, the PSO based scheme in [207], would

not be a feasible and appropriate solution to the proposed scenario, as it is not

able to cope with the changes in the environment, nor scalable enough to be an

adequate solution to a real situation. A summary of the simulation parameters

is shown in Table 4.1 and Figures 4.4 and 4.5 show the simulation scenario setup

in MATLAB.

The Environment

The simulated scenario consists of an urban area of 1km2 (L = 1 km), following

the model and parameters described in [223]. In this area, 768 users are scattered,

some belonging to rescue teams and others consisting of regular users. Further-
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Figure 4.4: Top view of the simulation scenario. The macro cell, in orange, is
positioned near the centre of the area, while the drones, are shown as coloured
diamonds. The UAV-BSs coverage radius is represented as the coloured circles
and users served by the BSs (either truck BS or UAV-BSs) are displayed with
different colours.

more, different users have different characteristics in terms of both mobility and

throughput requirements. As the throughput can be calculated in terms of the

perceived SINR, as in (4.8), user requirements are modelled as SINR require-

ments instead of throughput requirements. Table 4.2 presents the different types

of users, requirements and mobility levels.

User Distribution

A third of the users is randomly distributed in the entire 1km2 area, whereas the

other two thirds are randomly assigned to hot spots. In order to generate the hot

spots, a defined number of hot spots are artificially created, and every hot spot

has the same amount of users.

Frequency Bands and Antenna

Regarding frequency bands, it is assumed that both drones and macro cell would

share the same frequency band, meaning that drones and macro cell would in-

terfere with each other and a frequency reuse factor of 1 is considered. However,

in order to mitigate the interference between drones, it is also considered that
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Figure 4.5: Isometric view of the simulation scenario. UAV-BSs adjust their
3D position in order to maximize the amount of users covered. As it can be
seen, different UAV-BSs prefer different heights, in order to minimize interference
between UAV-BSs while also maximizing their coverage.

each drone has a single antenna with an elevation and horizontal plane apertures

of φap = 60°, which is a good approximation of commercially available anten-

nas [226]. This means that each drone has a fixed radius of coverage, varying

with its altitude, and that users out of that radius of coverage would perceive a

very low signal coming from that drone.

RAN and Backhaul

In addition, the scenario also assumes that both macro and UAV-BSs are limited

in both RAN and backhaul resources. Both macro cell and UAV-BSs are assumed

to share a 10MHz bandwidth, which correspond to a capacity of 50 RBs, according

to LTE parameters. Moreover, it is considered that the macro cell has an ideal

backhaul [2,3] and that the UAV-BSs have a microwave link that connects to the

macro cell.

Simulation

In order to implement the Q-Learning solution to the problem, first, a discretiza-

tion of the proposed environment is performed. In terms of user mobility, it is
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Table 4.1: Simulation Parameters

Parameters Value

Ratio of build-up to total land area, α 0.3 [221]
Average number of buildings, β 500 buildings/km2 [221]
Scale parameter for building heights, γ 15m [221]
ξ LOS 1 dB [223]
ξ NLOS 20 dB [223]
Side of the square area, L 1km
Drone X-axis step 50m
Drone Y -axis step 50m
Drone Z-axis step 100m
Minimum Drone height 200m
Maximum Drone height 1, 000m
Low mobility Users X-axis step 3m
Low mobility Users Y -axis step 3m
Low mobility Users Z-axis step 0m
High mobility Users X-axis step 10m
High mobility Users Y -axis step 10m
High mobility Users Z-axis step 0m
Number of users, Nu 768 [2, 3]
User height, hu 1.5m
Ratio of rescue team users 20%
Number of hot spots 16
Number of UAV-BSs 16
Ratio of users in near hot spots 2/3 [2, 3]
Macro BS EIRP 0 dBW [2,3]
Macro BS height, hB 20m
UAV-BS EIRP -3 dBW [225]
UAV-BS antenna directivity angle, φap 60° [226]
RBs in Macro Cell 50 [2, 3]
RBs in UAV-BSs 50 [2, 3]
Macro cell backhaul capacity 100Gbps [2, 3]
Microwave backhaul capacity per drone 37.5Mbps/drone [2, 3]
Bandwidth of one RB 180kHz [2,3]
Carrier frequency, fc 1GHz
High SINR requirement 5dB
Low SINR requirement 0dB
Total number of episodes 100
Number of independent runs 100
Max iterations per episode, Maxit 1, 000
Max iterations, same reward, Maxit,r 100
Min iterations per episode, Minit,r 200
Learning Rate (λ) 0.9
Discount Factor (φ) 0.9
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Table 4.2: User characteristics

User Types

Rescue team Regular

Mobility (metres/iteration) 10 3

SINR (dB) 0 or 5 0

considered that users could move in steps of 1 meter in any direction. It is also

considered that the user mobile phone distance to the ground is of 1.5 meter

height. Regarding the UAV-BSs movements, the aerial space is discretized in

steps of 50 meters in the horizontal plane (X and Y dimensions) and in steps of

100 meters in the vertical domain (Z dimension). Drones could then either move

in this space in all three dimensions or stay still.

The simulation is ran for 100 independent runs, each with a total of 100

episodes (snapshots of the network). First, however, before the drones start mov-

ing and determining their best positions, an initialization process is performed.

Before the simulation begins, user positions, requirements and mobility levels are

generated. Then, a certain number of hot spots are generated with an equal

amount of users per hot spot and a fixed number of drones is also positioned in

the system, according to the scenario being evaluated. In addition, the backhaul

of the drones is also initialized according to the microwave backhaul parameters

and each drone is assumed to have a random initial backhaul load, of up to 10%

of its initial capacity, due to control channels.

The proposed solution is compared to 3 different positioning strategies, mainly:

1. Deploying the drones in fixed random positions;

2. Deploying the UAVs in a fixed circular formation centred around the macro

BS at evenly spread angles;

3. Deploying the drones in the locations of the previous hot-spots of the de-

stroyed network.

For the fixed position scenarios, the drones remain in their locations for all

episodes, while users move around according to their mobility behaviours. On

the other hand, for the Q-Learning approach, the UAV-BSs try to find the best

possible position for every episode. For this to be possible, however, each episode

is also divided into iterations. For every iteration the drones move around the

environment looking for the best positions in the system, and during this process

the users are considered to be static. Every drone performs a certain amount

of iterations, according to the stopping criteria of the algorithm and determines
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the best position for that episode. After all drones stop moving, the episode

is finished, all metrics are recorded and user positions are updated, so that the

mobility of users can be taken into account between episodes. Lastly, whenever

a new episode begins, the UAV-BSs start from the previous learned position and

with the previous computed Q-Tables, in order to explore the correlation between

different snapshots of the network. This process is then repeated and the results

are averaged out between different runs of the algorithm.

4.4.2 Numerical Results

Figure 4.6 shows the average number of users in outage per episode for each of the

considered strategies. As it can be observed, the Q-Learning approach yields the

best results, resulting in around 2% of users in outage after 100 episodes and down

to less than 5% after only 10 episodes. In addition, it can also be seen that both

the random fixed positioning strategy as well as the circular positioning strategy

yield very poor performance in terms of covered users, having more than 50% of

users in outage at any given episode. Additionally, as the metrics are computed

at the end of the episodes (after the UAV-BSs have performed their movements)

it is natural that the Q-Learning and random positions curves start at different

values, as in the former case, the UAV-BSs move, while in the latter they do

not. Keeping the drones fixed at the location of the hot spots also results in a

poor performance, albeit better than the random and circular strategies. This

result emphasizes the importance of having a movable solution, because as users

move through the network, the proposed solution is able to detect and track user

movement, learning the best positions to be in for every episode. In addition, the

proposed Q-Learning solution also shows that it is able to provide coverage and

service whenever and wherever it is needed.

Figures 4.7 and 4.8 show the RAN load of the drones (averaged over all drones)

and the macro cell, respectively, per episode. Regarding the Q-Learning strategy,

the RAN load of the drones increases from below 80% up to almost 90%, as can

be seen in Figure 4.7. This indicates that the stopping criteria being reached is

not the one related to having full capacity, but rather the one in which the reward

does not improve after a certain number of iterations. Moreover, this happens

mainly because there are more RAN resources than the minimum required to

serve all users in the network, such that the reward does not vary for longer than

100 iterations. In addition, looking at Figure 4.8, it is possible to observe that the

load on the macro cell almost does not vary as the UAV-BSs find better positions

in terms of reward (served users overall). Although not being completely loaded

as the other approaches, Figure 4.8 shows that the UAVs try not to serve users



CHAPTER 4. INTELLIGENT UAVS FOR EMERGENCYMOBILE NETWORKS107

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

Episode Number

%
of

U
se

rs
in

O
u

ta
ge

Q learning
Random Positions
Circular Positions
HotSpot Positions

Figure 4.6: Average number of users in outage per episode.

already served by the macro cell, despite the UAVs “stealing” a couple of users.

This indicates that the drones are finding, in their majority, users in outage that

could not be served by the macro cell.

This behaviour of following and allocating users that would be in outage can

also be deducted from Figures 4.6 and 4.7, by comparing the trend of the curves

for users in outage and drone load. Note that both curves have inverted trends,

indicating that the UAV-BSs are using their spare capacity to provide coverage to

a wider number of users. On the other hand, Figures 4.7 and 4.8 also show that

the other positioning strategies have almost no variation in the curves of drone

RAN load, since they do not adapt to the mobility patterns of users. Furthermore,

because the RAN load on the UAV-BSs is relatively low, the macro cell is always

operating at full RAN capacity in these cases.

Figures 4.9 and 4.10 show the average dissatisfaction per user in terms of

throughput for users with low and high requirement, respectively. As it can be

seen, the Q-Learning solution, despite not being explicitly programmed to miti-

gate user dissatisfaction, is the best performing strategy by a large margin. This

is mainly due to the fact that users out of coverage are considered 100% dissatis-

fied. The performance regarding throughput satisfaction could even be improved

if the reward considered this metric, however since this is not the main goal of

the proposed solution (nor the main requirement for the type of application), the

Q-Learning approach does not optimize user satisfaction.

Figure 4.11 shows the average backhaul throughput for the UAV-BSs. As it

can be seen, there is not a large variation of the parameters in different episodes

but the important thing to note is that the backhaul capacity of the UAV-BSs
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Figure 4.7: Average UAV-BS RAN load per episode.
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Figure 4.8: Average macro cell RAN load per episode.

is not being exceeded, showing that the throughput bottleneck is the SINR. In

addition, when comparing to the maximum possible backhaul capacity of each

drone, it can be seen that the Q-Learning strategy is the one that best utilizes

the backhaul resources of the system, while the other strategies do not use the

backhaul resources very well, leaving more capacity unused.

Lastly, the impact of different learning rates, λ, is also investigated and their

influence is illustrated in Figure 4.12. As expected, the learning rate exerts some

influence in the convergence rate of the algorithm, as higher λ leads to better

results, as can be observed. For instance, considering λ = 0.1 results in 4% of

the users being in outage after 100 episodes, whereas increasing the value of λ
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Figure 4.9: Average dissatisfaction of users with low throughput requirement.
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Figure 4.10: Average dissatisfaction of users with high throughput requirement.

gradually improves performance. This difference can be explained due to the fact

that the drones learn less from the environment when smaller λ are considered,

and thus are less able to adapt to the changes in the environment, such as user

mobility. Hence, a value of λ = 0.9 is chosen.

4.5 Summary

In order to provide service whenever large-scale natural disasters happen, it is

crucial that network operators have adaptable and intelligent solutions at hand.
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Figure 4.11: Average backhaul throughput for the drones per episode.

0 10 20 30 40 50 60 70 80 90 100

4

6

8

10

12

Episode

%
of

U
se

rs
in

O
u

ta
ge

λ = 0.9
λ = 0.5
λ = 0.1

Figure 4.12: Users in outage per episode considering different learning rates for
the Q-learning positioning strategy.

With that in mind, new solutions have to be created, as conventional approaches

and regular BSs might not be suitable or fast enough in order to provide service in

such emergent situations. Hence, one possible enabler for ECNs is the deployment

of intelligent drone BSs, as they can provide coverage whenever and wherever

needed, due to their mobile characteristics.

Based on the advantages that UAV BSs can provide for future emergency

mobile networks, in this chapter a RL based approach was envisioned and devel-

oped to jointly optimise the position of multiple UAV BSs limited by network

constraints. The proposed algorithm works in real-time in order to determine
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the 3D positions of each UAV and it is based on a distributed implementation of

Q-Learning, with each UAV having its own Q-Table. Results show that the intel-

ligent based solution outperforms other methods in terms of coverage (minimizing

the number of users in outage) and user satisfaction, while also utilizing better

network backhaul resources. These results showcase the importance that mobile

BSs can provide in future emergency networks, as they are capable of learning

3D positions without any knowledge of the underlying environment, only based

on network constraints.



Chapter 5

Intelligent UAVs for Pop-up

Networks

5.1 Introduction

The fifth generation, 5G, and beyond are expected to overcome limitations of

current networks, and also push their performance to a next level enabling new

applications that are unimaginable today [8]. For this to be possible, however,

5G is expected to see various improvements in all network layers. One such

improvement that has seen increased attention in recent years is the utilization

of UAVs as aerial BSs. As aforementioned in Chapter 4, due to their mobility,

flexibility and LoS communication characteristics, UAVs are envisioned to play a

key role in future communications, making mobile networks much more flexible,

adaptable and agile [209, 211, 228, 229]. However, as demonstrated in [228, 230,

231], despite recent extensive research, several issues still remain, such as:

• Finding the optimal deployment of multiple UAV BSs;

• How to handle the interference created by UAVs;

• Seamless (dis)integration of aerial BSs to core network;

• Resource allocation and management in heterogeneous air-ground networks;

• UAV backhaul and HO management.

As such, in this chapter a solution to the problem of determining the optimal

3D deployment of multiple UAVs constrained by network conditions is proposed.

In this context, a pop-up network scenario is investigated. Pop-up networks

consist of networks that can form spontaneously, or randomly and can consist

of several users concentrated in a relatively small areas. These networks are

112
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quite common when certain events take place, such as musical concerts, sporting

events, or during national holidays. Although sometimes predictable, such as in

the cases of scheduled events, in other occasions these networks might ”pop-up“

in a completely random manner, hence the name. Nevertheless, pop-up networks

are usually a problem for mobile operators, since deploying fixed infrastructure

just for the duration of the events might not be cost-effective nor feasible [8].

This, by its turn, causes several problems, specially in terms of congestion and

user satisfaction, as the ground network is not capable of handling the excessive

capacity required.

Thus, in this chapter a solution to the problem of coverage and capacity

provisioning in the case of pop-up networks is investigated. This is done by

utilizing UAVs coupled with RL algorithms, in order to provide the necessary

service whenever and wherever needed. Differently than the previous chapter

in which a ground network is assumed to be completely destroyed, with only

a backhaul connection remaining, in this chapter a more complex scenario is

investigated, in which a ground network is still present, composed of a macro

cell and several hot-spots, which, by its turn cause additional interference in the

flying network and vice-versa. In addition, both aerial and ground networks have

limiting constraints, such as in terms of RAN and backhaul and users present

different requirements as well as different levels of mobility. Thus, due to the

relative simplicity of the scenario considered in Chapter 4, when compared to the

scenario investigated in this Chapter, the utilisation of simpler RL algorithms

to position multiple UAVs were enough. In addition, VFA could also have been

studied in Chapter 4, however despite VFA being really powerful, it also adds

more complexity to the system, in terms of the function that needs to be learnt as

well as in terms of convergence properties [10]. As such, based on the complexity

of the proposed scenario evaluated in this chapter, the utilisation of RL combined

with VFA is proposed. The proposed solution, utilises SARSA with VFA, and

its results are compared to the baseline of the traditional Q-Learning. Results

show that despite Q-Learning performing well, its limitations in terms of memory

and generalization capability hinder its performance. Thus, when compared to

SARSA with VFA, it can be clearly seen that VFA is more robust and can

outperform traditional RL in all metrics considered.

5.1.1 Literature Review

Although some issues related to the deployment of UAVs in mobile networks have

been addressed in recent publications, [39, 205, 207–209, 211–216, 223, 229–246],

most of the solutions involving UAVs as aerial BSs are scenario specific, consisting
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of analytical or heuristic approaches to a particular problem. This is a huge issue,

as future networks are expected to be flexible, autonomous and adaptive [8].

For example, the authors in [230] develop an aerial BS deployment frame-

work to overcome network overload based on three different scenarios alongside

a prediction scheme to solve the positioning problem, by gathering data from the

network and users. In [233], the authors attempt to position multiple UAVs based

on network demand and develop two different cost functions to match UAVs to a

specific area based on user demands and positions. On the other hand, authors

in [211,231], present reviews on challenges and opportunities in UAV-based net-

works, while [231] also investigates the performance of a multi-tier UAV network

in terms of spectral efficiency and connected users. In [234], two mathematical

models are developed to determine the performance of UAV networks in terms

of data rate and resource allocation when flight-time constraints are considered.

In [235], a novel 3D mobile network architecture and mathematical models for

UAV deployment and cell association considering minimal latency are developed.

Mozaffari et al. in [236] also develops a mathematical model that utilizes UAVs

as an aerial antenna array to minimize user service time and improve spectral effi-

ciency. In [237] the deployment of aerial BSs in the presence of a ground network

is investigated and a model is developed to determine how many UAVs are nec-

essary and where to position them. In [239] a mathematical model to determine

the best 3D position of a single UAV is developed with the objective of maxi-

mizing network revenue, while in [240] the authors mathematically determine the

best 3D position of a UAV by an exhaustive search using a novel low-complexity

algorithm.

In [241] UAVs are used as relays to assist in emergency scenarios. In [242], a

mathematical model to find the optimal position of a UAV, which leads to the

lowest power consumption is proposed. Al-Hourani et al., in [212], present an

analytical approach to determine the optimal altitude of a UAV, providing max-

imum coverage ground radius and in [213] the authors develop a mathematical

framework to optimize downlink coverage and transmit power considering the al-

titude of a UAV. In [209] an analytical framework when UAVs are deployed in a

device-to-device network is developed. The coverage and throughput impacts are

analysed and tests in static and mobile UAV scenarios are considered. Ahmadi

et al., in [208], propose a novel network architecture with multiple UAVs in dif-

ferent altitudes and mathematically formulate the optimal placement of multiple

UAVs, whereas in [216] the authors optimize UAV placement considering back-

haul constraints. Moreover, in [243] the authors also evaluate the performance of

UAV backhaul, by considering a novel Free-Space Optics backhaul link for aerial
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BSs. Furthermore, in [214], an optimal placement algorithm for aerial BSs is pro-

posed, such that the number of users covered is maximized, while using minimum

transmit power.

On the other hand, other solutions such as [39, 207, 229, 232, 238, 244–246]

utilize machine learning in order to optimize aerial network parameters. For

example, in [229], a Gaussian mixture model is proposed to determine the optimal

placement of UAVs considering minimum UAV power consumption. In [39] a RL

solution to position multiple UAVs in an emergency communication scenario, in

which the previous network infrastructure is destroyed, is investigated with the

primary objective of allocating as many users as possible. Chen et al., in [232],

propose an echo state network to position UAVs and determine which contents

to cache at each aerial BS. In [207], a particle swarm optimization is used to find

the 3D placement of multiple UAVs so that all users are served. Ghanavi et al.,

in [244], propose a RL solution to place a single UAV in order to enhance users’

QoS. Lastly, [245] proposes a neural network to provide reliable connectivity and

secure UAV links, whereas [246] proposes an echo state network for path planning

of a single UAV along a fixed network.

Issues with Current Solutions

Although analytical solutions are important, in order to provide the necessary

flexibility and adaptability for current and future mobile networks and to fully

enable the concept of SON, analytical and scenario specific methods are not

enough, and, more flexible and intelligent solutions are needed [8]. This occurs

because several analytic methods rely on strong assumptions, such as the knowl-

edge about how many users are connected to the network at a given point and

their positions. In addition, the 3D placement problem of multiple aerial BSs is a

NP-hard problem, due to the complexity of channel model, interference between

multiple UAVs and ground BSs, and movement of users [237,239]. Furthermore,

if exhaustive search methods are utilized, the complexity is O(2n) [243], in which

n is the number of users in the network, which is also not feasible for typical

networks with hundreds of users.

On the other hand, intelligent methods found in the literature also have gaps.

For example, [229] utilizes a Gaussian mixture model based on previous network

information (number and position of users at previous time-steps and network

traffic). Chen et al., in [232], consider a neural network that needs to be fed

with certain inputs, which rely on having a lot of information about the network.

Similarly, Challita et al., in [245], also require user context information in order

to train a neural network based UAV solution. The proposed approach in [207],
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due to its inherit heuristic nature, is also not suitable and might not be able to

cope with a dynamic changing environment. Another work, [246], utilizes deep

RL to perform path planning in a fixed ground network, in which the UAV must

find the best path to traverse and reach a destination. However, for this case a

simple model of a fixed ground network, with fixed users was considered and the

objective was only to minimize the interference along the path.

Motivation

Based on the aforementioned issues, it is clear that analytical solutions are not

suitable for the on-line deployment and positioning of UAVs. This occurs because

analytical solutions require extensive knowledge about the environment and the

network, such as the number of users connected to the network, user-cell associa-

tion, user requirements and positions. As such, whenever one of these parameters

changes, analytical solutions need to evaluate the whole system again in order to

determine the new optimal solutions.

Furthermore, not only analytical solutions suffer from their drawbacks, most

of the intelligent state-of-the-art solutions also have their own limitations, as

they rely on training data or information that might not be easily available [232,

245, 246]. Moreover, recent regulations regarding privacy may hinder the use of

specific user information without consent, even when it is available. This fact

highlights again that solutions that do not depend on a specific model or that

do not require the collection of training data beforehand are preferred. In this

sense, model-free solutions, i.e. approaches that interact with the network and

determine by themselves the optimal or best solution by experience, such as those

based on RL are needed.

For example, in our previous work, in [39], a model-free RL approach was

utilized in order to determine the best position of multiple aerial BSs and achieve

optimal UAV 3D placement. It was shown that UAVs were capable of quickly

adapting and finding optimal positions to deliver almost 100% coverage without

any knowledge about the underlying network (only based on the reward of how

many users were covered in total). However, [39] also has its limitations, as no

interference between UAVs and ground BSs were considered and the mobility of

users was assumed to be random. In addition, in real situations, conventional RL

algorithms, as in [39], might not be suitable for complex problems, due to their

memory limitations and lack of generalization abilities. As such, more efficient

RL approaches are also necessary [10].
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5.1.2 Objectives and Contributions

The utilization of UAVs as mobile BSs coupled with RL algorithms in order to

determine their optimal positioning is proposed. The problem of coverage and ca-

pacity enhancement in a scenario of pop-up networks, such as when events happen

and the ground network cannot cope with the increased demand, is investigated.

A network model consisting of both terrestrial and aerial BSs is considered and

the goal is to provide coverage to as many users as possible. Two model-free RL

techniques are explored: Q-Learning and SARSA with VFA. In this scenario it is

shown that the two intelligent solutions for the deployment of UAVs are highly

beneficial, as they can learn by themselves the best positions without any infor-

mation or previous knowledge from the network, such as how many users there

are at a given time, their positions or their association, highlighting the appli-

cability of RL solutions in real situations. Results show, that both RL solutions

can minimize network outage and user dissatisfaction levels. Lastly, results also

show that more robust RL algorithms, those based on VFA, are able to outper-

form conventional RL solutions, while also being more flexible and requiring less

memory.

In addition, a small simulation scenario is also developed in order to demon-

strate that RL solutions are able to perform as well as analytical approaches. In

this small scale scenario, both proposed RL algorithms are evaluated and com-

pared against an exhaustive search approach, and the results clearly show that

RL based solutions are able to provide significant gains with respect to complex-

ity and computational time, while achieving near-optimum solutions. This small

scenario also shows the clear advantage of VFA when compared to conventional

RL, independently of the approximation function being utilized, as even a lin-

ear function is able to outperform conventional RL strategies. Lastly, this small

scenario also enables the analysis of the proposed RL algorithms complexity and

convergence properties. The contributions of this scenario can be summarized as:

• Implementation of two RL algorithms in a pop-up network scenario, show-

ing that they are suitable for UAV positioning, while providing coverage

and minimizing user dissatisfaction;

• Analysis of the convergence and complexity of conventional and VFA based

RL algorithms;

• The deficiencies and limitations present in conventional RL algorithms, such

as their constraints in terms of memory and generalization ability are dis-

cussed and results show that VFA is able to achieve more robust and better

solutions.
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5.2 System Model

Based on the aforementioned applications envisioned for UAVs, the problem of

coverage and capacity enhancement in a pop-up network scenario is investigated.

Whenever unexpected events happen, such as fairs or open markets, there is

usually a large concentration of people in a relatively small area, resulting in

many users being out of coverage as the network becomes congested. Given that

these events are temporary, operators often consider long-term or fixed solutions

infeasible or cost-ineffective, leading many users to experience a poor QoS [228,

230]. Hence, the deployment of intelligent aerial BSs is envisioned to provide the

additional network coverage necessary when unexpected big events or crowded

situations happen. By coupling UAVs with intelligent algorithms, autonomous

positioning can be achieved requiring minimal human intervention, while also

attaining the desired flexibility and agility needed for self-organizing network

solutions [8].

5.2.1 Baseline Network Model

Similar to the previous scenario, a Manhattan grid of a city was considered (an

L by L square area representing a city with buildings uniformly distributed),

based on the ITU-R parameters and following the model presented in [223]. In

this squared area, a heterogeneous network scenario is considered, in which a set

M containing m three-sectored macro BSs, M = {M1,M2, ...,Mm}, is positioned

and a set K containing k small cells, K = {K1, K2, ..., Kk}, is randomly and

uniformly distributed in the area. In addition, u users are randomly and uniformly

distributed, with 2/3 being randomly and uniformly positioned in the vicinity of

of the k small cells and the other 1/3 randomly and uniformly positioned across

the entire squared area [2].

In addition to the ground network, a set V containing v UAVs is deployed

in order to enhance the capacity of the mobile network, V = {V1, V2, ..., Vp}.
Similarly to the previous scenario, UAVs are assumed to have a directional an-

tenna pointing downwards with an aperture angle of φap, which is responsible

for providing connectivity to ground users. Lastly, a microwave backhaul, which

connects the UAVs to the ground macro BS to provide network service to the

aerial platforms, is also assumed.
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5.2.2 Pop-Up Network Model

Considering the pop-up network scenario, it is assumed that an event happens in

a random part of a city at a given time, and that a random percentage of users,

between 60% to 80%, attends the event. Whenever the event starts, it is assumed

that this random percentage of users moves towards a randomly assigned position

in the event, whereas the remaining users are assumed to have random mobility.

The event is assumed to be in a circular area of radius Re and once the users get

to the event it is assumed that they move freely and randomly inside the event

area. In terms of mobility, it is also considered that users have different mobility

levels, with some users moving faster and others slower. Moreover, users can also

have two different throughput requirements, being able to request either high or

low data rates from the network.

5.2.3 Channel Models

The path loss of the macro BSs (Hu,m) is defined according to the Okumura-Hata

model (as defined in (4.3)), and the path loss of small cells is given by [4]

Hu,k = 140.7 + 36.7 · log10du,k. (5.1)

where du,k is the distance between a user and a small cell.

Lastly, the path loss of the aerial BSs is given according to [223], following

the same model as in (4.6).

5.2.4 User-Cell Association

For a user to be associated to a BS and allocated resources, the same formulation

as in Chapter 4 is followed, in which the RSRP, in dB, of user u and any BS b,

with b ∈ B = {M ∪K ∪ V}, is given by

Ru,b = EIRPb −Hu,b ∀b ∈ B, (5.2)

where EIRPb is the equivalent isotropically radiated power and Hu,b is the path

loss, both with respect to BS b.

The SINR of user u at BS b (in dB) is calculated as

SINRu,b = Ru,b −

(
N +

n∑
i=1,i 6=b

Ru,i

)
. (5.3)

If the user has successfully connected to a BS (its SINR was above a certain
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Figure 5.1: Model of the pop-up network scenario considered, with m = 1 macro
BS, k = 6 small cells, v = 4 UAVs and u = 70 users.

threshold and a RB was available) its throughput, Tu,b, is estimated according to

Shannon’s capacity, as in (3.5) and the backhaul throughput demanded by users

allocated to a specific BS b is given by

τu,b = ρ · Tu,b, (5.4)

where ρ represents a backhaul overhead factor [2].

Figure 5.1 shows a representation of the model of the heterogeneous network

considered in this work, including the three sectored macro BS, the small BSs

and the aerial BSs, as well as a stadium that hosts temporary events from time

to time.

5.3 Problem Formulation

The application of two different RL algorithms is envisioned in order to posi-

tion multiple UAVs in a pop-up network scenario. The objective of the proposed

schemes is to maximize the total number of users covered by both the ground

BSs as well as aerial BSs. This could be done in a centralized manner, however

this would require an additional layer of control and synchronization, which could

not be feasible due to the increase in latency, control and network overhead. As

such, a distributed approach is preferred, in which each UAV, v, is an agent of the
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RL framework, and the network is the environment. In the case of a distributed

solution, the global optimization problem is divided into smaller sub-problems of

trying to allocate the maximum number of users per UAV. Since UAVs interfere

with each other, as well as the ground network, this approach is valid, as if UAVs

position themselves too close to each other or to other ground BSs, interference

will increase, minimizing the number of users allocated to the network. Further-

more, if UAVs also position themselves too close to the ground BSs, the UAVs

will “steal” users from the ground network, leading to poor resource allocation

(as most ground BSs would end up with their RAN underutilized). As such,

a strategy to maximize the total amount of users connected to both networks

(ground and aerial) is adopted.

A distributed approach to the problem of positioning multiple UAVs in a

scenario of pop-up networks is formulated. The goal of the system is to maximize

the number users allocated to the network (either ground or aerial). Thus, the

problem can be formulated as:

maximize
ub

n∑
i=1

ub (5.5a)

subject to xv,min ≤ xv ≤ xv,max, ∀ v ∈ V, (5.5b)

yv,min ≤ yv ≤ yv,max, ∀ v ∈ V, (5.5c)

zv,min ≤ zv ≤ zv,max, ∀ v ∈ V, (5.5d)

EIRPb ≤ EIRPb,max, ∀ b ∈ B, (5.5e)

RBb ≤ RBb,max, ∀ b ∈ B, (5.5f)

SINRu,b ≥ SINRu,b,req, ∀ u, b ∈ U,B, (5.5g)
n∑
i=1

τi,b ≤ Cb,max, ∀ b ∈ B. (5.5h)

where xv, yv, and zv are the X, Y, Z coordinates of UAV v, respectively, Rb is

the number of RBs of BS b, and Rb,max is the maximum number of RBs a BS can

have.

As it can be seen, maximizing the total number of users allocated in the

network, in (5.5), is subject to 7 different constraints. The first three, (5.5b),

(5.5c), (5.5d) are responsible for restricting the UAVs movements in the square

area and at certain heights. Due to simulation constraints, these values are

assumed to be discrete and have fixed steps on each axis xv,step, yv,step, zv,step. The

fourth constraint, (5.5e), states that both aerial and ground BSs should not have a

transmit power more than their maximum power, given by EIRPb,max. Constraint,

(5.5f), concerns the RAN of the BSs. It states that any BS b should not allocate
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more users than they are allowed to, given by RBb,max. On the other hand, (5.5g)

guarantees that users will only be associated to a BS if their perceived SINR,

SINRu,b is greater or equal than the required SINR, SINRu,b,req. In other words,

users have certain requirements in terms of throughput and the BSs need to attend

those requirements. Lastly, (5.5h) guarantees that the backhaul throughput of

any BS b does not exceed the maximum throughput allowed, Cb,max.

5.4 Proposed Solution

In order to solve (5.5), two model-free approaches based on RL are proposed to

find the 3D positions of multiple UAVs in the context of pop-up networks. The

first approach considers the Q-Learning algorithm. However, as it as previously

highlighted, conventional RL have problems in terms of memory and generaliza-

tion capabilities, as such, in order to overcome this issues, SARSA with linear

VFA is also proposed.

5.4.1 Reinforcement Learning (RL) Model

In this work, a distributed RL algorithm is considered, where v independent

agents are deployed. Below a description of each component of the RL model is

presented.

Environment

The heterogeneous network, its users and the buildings (which directly impact

the path loss between users and UAVs). The environment is responsible for

generating information which will be utilized by the agent, such as: the movement

of users; user-cell association; LoS and NLoS conditions; RSRP and SINR of users;

interference between ground-ground BSs and ground-aerial BSs;

Agents

The UAVs, which leads to a multiple agent RL system.

States

Each agent makes its decision based on a signal coming from the environment,

called the state, st. In this context, the states of each UAV are their 3D positions

in space.
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Actions

Each UAV can choose one action, at, out of seven possibilities. The action takes

UAVs from their current state to the next and consist of moving in any direction

(right, left, up, down, forward, backward) or do not move at all.

Policy

The UAVs utilize an ε-greedy policy with a decaying ε. This policy states that

with a probability p = (1 − ε) the action that yields the maximum value known

by the agent is chosen, whereas with probability p = ε a random action is chosen.

This allows the UAVs to explore in earlier stages, and later on to exploit the

information collected from the environment [10].

Reward

Since the main objective is to address the lack of coverage in a pop-up network

scenario, the reward is defined as the total number of users connected to the net-

work. Because the reward is based on user-cell associations, it ensures that each

user perceives a minimum SINR, guaranteeing the desired QoS. Mathematically,

the reward is expressed as

rt+1 =
n∑
i=1

ub. (5.6)

5.4.2 RL Methods

Q-Learning

The Q-Learning solution is similar to the one in Chapter 4 and the agents learn

to move around in the environment using the update in (2.1).

SARSA with Linear VFA

Mathematically, SARSA’s update is expressed as in (2.2). However, instead of

utilizing a memory fixed action-value table, instead SARSA combined with VFA

is proposed, so that generalization and more robustness can be achieved [10]. In

terms of VFA, a linear function was chosen, such that

Q(st, at, ~θ ) = F · ~θ, (5.7)

where F are features of the model, represented by a row vector of dimensions

[1× nf ], nf is the number of features, and ~θ are the weights learned by the
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algorithm to represent the Q-Function, given by a column vector of dimensions

[nf × 1].

In addition, for the algorithm to be capable of learning the best weights to

represent its function, a GD approach was considered, in which the error is ad-

justed by a small amount in the direction of the gradient. The error in this case

is given as in (2.3) and the GD update can be computed as in (2.6). However,

since the action-value function is represented by a linear function, its gradient is

equal to the features themselves, and thus (2.6) becomes

~θ = ~θ + λGD · et · F. (5.8)

Furthermore, in terms of features, properties or characteristics of the network

can be selected, such as the average RSRP or SINR of connected users, the total

number of users connected to the network, the distance from one UAV to the

others, etc. However, designing features is a difficult task and often varies for

different problems, thus it is a good approach to experiment and try different

features depending on the task being performed [10]. By including features in

the model, the new improved RL algorithm can learn intrinsic patterns in the

environment and translate them to values of the action-value function, learning

which states are better to be in and which actions are better to take. This will

translate in the algorithm learning better policies, as well as a better estimate for

the action-value function [10].

5.4.3 Proposed Framework

Based on the aforementioned scenario, an intelligent distributed framework to

position multiple UAVs in the case of a pop-up network setting was designed.

Each UAV is considered to be an independent agent of the system and it is

equipped with an intelligent algorithm (either Q-Learning or SARSA).

Due to the nature of the simulated environment, a discretization process is

performed, in which UAVs choose between a finite number of 3D positions so

that a limited number of states are evaluated and stored in the table, for the case

of Q-Learning. In addition, simulation steps are considered, and are divided into

three categories: runs, episodes, and iterations.

1. Runs correspond to different realizations of the environment, in which en-

vironment parameters are generated, such as initial user positions, mobility

pattern, user requirements, small cell locations, which users and how many

are attending the event. In every run all metrics and learning parameters

are reset, so that the average performance of the system can be measured
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and computed at the end, or in other words, runs are completely indepen-

dent realizations of the environment;

2. Episodes correspond to different snapshots of the network, in which v UAVs

move for a certain number of iterations, according to a stopping criteria.

Since snapshots of the network are correlated, the parameters learned by

the UAVs, such as the action-value functions and the weights θ, are kept

between consecutive episodes, so that UAVs can exploit what they have

learned in the past in future episodes;

3. Iterations correspond to the movements or actions of each UAV. It is as-

sumed that UAVs move from the set of possible positions in every iteration.

Lastly, each UAV can perform a different number of iterations based on its

actions and the stopping criteria.

Moreover, since two slightly different intelligent approaches are being considered,

each approach has to have some parameters initialized. In the case of Q-Learning,

for example, each UAV needs to have its action-value function initialized with ze-

ros before beginning to explore the environment, and the exploration and learn-

ing rates (ε and λ, respectively) need do be defined as well. SARSA on the other

hand, because it uses a linear VFA, needs to known a priori which features will be

measured and considered in order to estimate the Q-Table. In terms of features,

each UAV considers three features: the number of users allocated per UAV; the

mean of SINR all users; the UAV total backhaul throughput. These features were

chosen because they provide a good balance between coverage and throughput

(minimizing users’ dissatisfaction), as they represent parameters both from the

RAN (number of users allocated per UAV), as well as QoS, such as the mean

SINR of users and backhaul throughput. Lastly, it is considered that ground

BSs and UAVs exchange information about how many users they have allocated,

so that the global reward can be computed by each UAV. Algorithm 5 shows

an implementation of the Q-Learning framework, while Algorithm 6 shows the

implementation considering SARSA with VFA.

5.5 Numerical Results

5.5.1 Simulation Scenario

Figure 5.2 shows the simulation scenario at different snapshots (episodes) of the

network. In this figure, a square urban area is simulated, in which grey squares

represent buildings with different altitudes. A three-sectored macro BS (orange
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Algorithm 5: Proposed framework - Q-Learning

1 for Every Run do
2 Initialize network and user parameters
3 for Every episode do
4 for Every UAV do
5 Initialize UAV current 3D position, st
6 for Each iteration do
7 Choose action at, according to π
8 Take action (move UAV)
9 Get reward rt+1 (total users allocated)

10 Move to next 3D position, st+1

11 Update action-value funciton according to (2.1)
12 st ← st+1

13 if Stopping criteria met then
14 Stop UAV
15 end

16 end
17 Communicate reward, rt+1, to other BSs

18 end
19 Decay exploration rate, ε

20 end

21 end

triangle) is positioned in the middle, while five small BSs are randomly positioned

(coloured squares). Users allocated to any BS are coloured according to that BS’s

colour and are represented by circles, whereas black Xs represent users out of

coverage. From Figs. 5.2b and 5.2c, it is clear that once the users start moving to

the event the ground network is incapable of handling this large concentration of

users in a specific sector. Also, because both the location as well as the amount

of users attending the event is unknown a priori, the deployment of UAVs at

predetermined locations is not efficient.

Figure 5.3 shows a snapshot of the network when intelligent UAVs are de-

ployed. In this figure, the UAVs are represented by the coloured diamonds flying

above the area, and the path of one UAV for that episode is shown by the dashed

line. It can be seen that the UAVs explore the area looking for the position that

would yield the best reward, and that in the end, it goes to the best possible

position for that episode. In addition, UAVs learn to be in different altitudes, as

by changing their height, UAVs are able to provide coverage to a greater area,

whereas in lower heights, a smaller area is covered, but a higher SINR can be

achieved. Furthermore, UAVs also tend to stay away from both the macro and

small BSs, in order to reduce interference and also allocate users that are out of

coverage or in crowded areas. Regarding the position between UAVs, it can also
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Algorithm 6: Proposed framework - SARSA with VFA

1 for Every Run do
2 Initialize network and user parameters
3 for Every episode do
4 for Every UAV do
5 Initialize current 3D position, st
6 for All actions do
7 Get features of current state-action, F
8 Estimate action-value funciton according to (5.7)

9 end
10 Choose action at, according to π
11 for Each iteration do
12 Take action (move UAV)
13 Get reward rt+1 (total users allocated)
14 Move to next 3D position, st+1

15 for All actions do
16 Get features of next state-action, F
17 Estimate action-value funciton according to (5.7)

18 end
19 Choose next action at+1, according to π

20 Update weights ~θ according to (5.8)
21 st ← st+1

22 at ← at+1

23 if Stopping criteria met then
24 Stop UAV
25 end

26 end
27 Communicate reward, rt+1, to other BSs

28 end
29 Decay exploration rate, ε

30 end

31 end

be seen that UAVs tend to be spaced out from each other to avoid interference.

5.5.2 Simulation Results

In this section, simulation results for conventional Q-Learning and SARSA with

VFA are presented. The intelligent solutions are compared with a scenario where

no UAVs are deployed and the metrics considered are:

• Total number of users in outage;

• Macro BS, small cells and UAV average RAN load;

• Average backhaul throughput of the UAVs;
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(a) Initial scenario (episode 1). (b) Users moving towards event (episode 80).

(c) Users at the event (episode 150).

Figure 5.2: Snapshots of the network at different moments. Colored circles repre-
sent users associated with the respective BS, while black X’s are users in outage.

• Total user dissatisfaction rates for both high and low throughput require-

ments

User dissatisfaction can be defined as

Su =
Tu,x − Tu,req

Tu,req

, (5.9)

where Tu,req corresponds to the required throughput of user u, while Su,H and

Su,L represent the dissatisfaction rate for users with high and low throughput

requirements, respectively.

A three-sectored macro cell, m = 1, was positioned in the centre of the area,

k = 10 small cells were randomly deployed and u = 600 users were scattered.

The ground network was assumed to have an ideal backhaul, while UAVs are
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Figure 5.3: Snapshot of the network when UAVs are deployed. The UAVs,
coloured diamonds, are seen flying above the event area, providing coverage to
users.

assumed to have an out-of-band microwave backhaul with a limited capacity and

fixed delay. In addition, a fixed number of v = 9 UAVs was evaluated for both

conventional Q-Learning and SARSA with VFA. A total of 30 different runs of

the simulation were performed, with different small cell and event locations, so

that the performance of both RL solutions are averaged out. Table 5.1 shows the

simulations parameters.

Figure 5.4 shows the total percentage of users in outage. As it can be seen,

initially the network operates with low levels of outage, around 1% to 2%, as

expected. However, when the event condition triggers, users start moving to

the event location and the outage slowly increases, reaching a peak of about

57%. After a certain threshold is reached (30% of users in outage), the UAVs are

deployed, and after that, the outage returns back to its original level, around 1

to 2%, just after around 20 episodes. This emphasizes that UAVs are able to find

users out of coverage of both the macro and small cells and connect such users.

In addition, since by the time the UAVs are deployed the users are still moving to

the event, the behaviour observed in Figure 5.4 tells us that the UAVs are able to

track the movements of users in the area from their initial positions through to the

event. When comparing the RL solutions, it can be seen that their performance

is very similar, as both solutions are able to quickly restore the outage levels back

to normal. This works as expected, as both solutions should converge to the same
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Table 5.1: Simulation Parameters
Parameters Value

Ratio of build-up to total land area, α 0.3 [221]
Average number of buildings per km2, β 500 [221]
Scale parameter for building heights, γ 15m [221]
Side of the square area, L 1km
Number of macro BS, m 1
Number of small cells, k 10
Number of UAVs, v 9
Total number of users, u 600
Ratio of users near small cells 2/3
Ratio of users attending the event (60%, 80%)
Event radius, Re 150m
User mobility (slow / fast) 4/10m/s
Ratio of slow/fast users 70/30%
Throughput requirement (low / high) 200/600kbps [2]
Ratio of users with high/low requirement 50/50%
UAV antenna directivity angle, φap 60° [226]
Carrier frequency, fc 1GHz
Macro BS height, hm 20m
Users height, hu 1.5m
Additional loss (LoS), ηLoS 1 dB [223]
Additional loss (NLoS), ηNLoS 20 dB [223]
Macro BS EIRP, EIRPm 10dBW
Small Cell EIRP, EIRPk 3dBW
Aerial BS EIRP, EIRPv 3dBW
RBb,max 50 [2]
Bandwidth of 1 RB, B 180kHz
Backhaul overhead factor, ρ 1.3 [2]
xv,step, yv,step 50m
zv,step 100m
Cv,max 100Mbps [2]
UAV heights (200, 1000)m
Total number of episodes 200
Number of independent runs 30
Max iterations per episode 1, 000
Max iterations, same reward 100
Learning Rate, λ 0.5
Discount Factor, ψ 0.9
Gradient Descent learning rate, λGD 1e-6
Exploration rate, ε {0.8,...,0.1}

learned parameters, as they utilize the same reward metric. The great advantage

of VFA, however, is the needlessness of the lookup tables, which allows the UAVs

to be more independent and to adapt themselves to any environment. Because

now the action-value function is replaced by a linear function, it also reduces the

memory requirement, as the UAVs only need to remember the learned weights,
~θ, instead of a table with all possible states and actions.
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Figure 5.4: Percentage of users in outage.

Figures 5.5 (a)—(c) show the average macro cell, small cells and UAV RAN

load, respectively. When the event happens, users start moving away from the

small cells towards the event, causing the macro cell to be completely loaded,

and users to be in outage. After this brief overload period the load of the macro

cell starts to drop, as more and more users are going to the sector that the event

is happening, increasing the number of users in outage, leading to the result in

Figure 5.4. When comparing the RL solutions with the no UAV scenario, the

macro and small cells loads do not change much. This works as expected, as

the UAVs are more concerned in providing coverage to users out of coverage,

rather than “stealing” users that are already allocated to a ground BSs. In

addition, the average UAV RAN load is around 80% for Q-Learning and 87% for

SARSA with VFA, meaning that the UAVs are performing well in terms of user

allocation. Furthermore, it can also be seen that SARSA with VFA has better

average UAV RAN load. This can be explained due to the features chosen by

the VFA algorithm, which also attempts to prioritize user satisfaction. Thus,

as it can be seen from Figure 5.5, SARSA with VFA does “steal” some users

from both the macro cell as well as small cells, in order to provide them a better

service. On the other hand, because conventional Q-Learning is only concerned

about allocating users, the same behaviour cannot be observed.

Figures 5.6a and 5.6b, show the total average percentage of dissatisfaction

per user for users that have high and low requirements of throughput. In terms

of dissatisfaction, it can be seen that whenever UAVs are deployed in the net-
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(a) RAN load of the macro cell.
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(b) Average small cell RAN load.
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(c) Average UAV RAN load.

Figure 5.5: Percentage of RAN load of the macro cell, small cells and UAVs.

work both users with high and low requirements have their average dissatisfaction

rates mitigated. In addition, SARSA with VFA is capable of reducing the av-
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(a) Average dissatisfaction per user for users with high throughput
requirement.
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(b) Average dissatisfaction per user for users with low throughput
requirement.

Figure 5.6: Average dissatisfaction per user, in %, for users with high and low
throughput requirements.

erage dissatisfaction when compared to conventional Q-Learning. This happens

because the features selected also prioritize the mean SINR of users allocated,

thus, another advantage of VFA can be observed. Not only VFA is able to reduce

the memory needed by conventional RL algorithms, but it also enables them to

add supplementary metrics to the objective function (reward), making the sys-

tem learn to prioritize other parameters as well. In other words, VFA can deal

with multiple features with reasonable complexity, while conventional RL cannot.
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Figure 5.7: Average backhaul throughput of the UAVs.

Lastly, Figure 5.7 shows the average backhaul throughput of UAVs. As it can

be seen, SARSA with VFA outperforms conventional Q-Learning by about 40%.

This occurs because in VFA the backhaul throughput of UAVs was considered as

a feature, which allowed the algorithm to prioritize not only allocating users, but

also occupying more efficiently the backhaul.

5.6 Complexity and Convergence Analysis

In order to evaluate the complexity and convergence of the RL solutions, a small

simulation scenario is developed. This is performed because it is easier to prove

the convergence of the algorithms at a smaller scale, and to evaluate and compare

the complexity of RL approaches with an exhaustive search method. The reason

for this is to demonstrate that RL solutions are able to find the optimal position

without any knowledge of the environment.

In this scenario, u = 20 static users are placed in a fixed configuration and

the ability of a single UAV (v = 1) to find the best possible path and 3D position

in this grid is evaluated. The grid consists of a 10 by 10 by 5 m3 area, with steps

of 0.5 metre (a total of 2,000 positions), with the UAV being able to position

at a minimum and maximum height of 10 and 12 metres, respectively. Both

Q-Learning and SARSA with linear VFA are tested and the same framework

as described in Sub-Section 5.4.1 is considered. The intelligent solutions are

compared to an exhaustive search approach. Figure 5.8 shows the small scenario,

where the UAV, represented by a blue diamond, with its coverage radius shown
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Figure 5.8: Isometric view of the small simulation scenario.

as a blue circle, flies around and learns autonomously the best positions and path

towards the users. White circles represent users covered by the UAV, black Xs

represent users out of coverage and a heat-map of the RSRP strength at ground

level is also shown.

In terms of simulation parameters, 100 episodes are considered. An episode

is defined as the moment that the agent is deployed until it gets to the point

of maximum reward (in this case, when all users are covered). In addition, in

each episode the UAV could perform up to 2,000 iterations (stopping earlier if

it reaches the goal). For both Q-Learning and SARSA, with λ = 0.8, φ = 0.9

and ε = 0.8, with ε decaying by 0.05 every 20 episodes (until it reaches a value

of 0.1). In terms of VFA, a GD learning rate of λGD = 1e-4 is considered and

three different features nf = 3 are chosen, in order to achieve a balance between

allocating users and providing them with a better RSRP. The features are:

• Total number of users allocated to UAV;

• Sum of RSRP of all users;

• Mean RSRP of all users.

For the small scenario, the UAV starts in a random position every episode

(after it has reached the goal, the UAV’s position is reset to a random state) and
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(a) Average reward per episode.

0 10 20 30 40 50 60 70 80 90 100
14

15

16

17

18

19

20

21

Episodes

M
ax

im
u

m
R

ew
ar

d

Q-Learning
SARSA
Exhaustive Search

(b) Maximum reward per episode.
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(d) Learned Q(st, at, ~θ ) by VFA for zv = 10.

Figure 5.9: Small scenario showing the performance of Q-Learning and SARSA
when compared to an exhaustive search method.

a total of 30 independent Monte-Carlo runs are performed, so that the results can

be averaged out. Both Q-Learning and SARSA with VFA are compared with an

exhaustive search approach, and the results can be seen in Figs. 5.9a, 5.9b, and

5.9c. Figure 5.9a shows the average reward (number of users covered by the UAV)

per episode, which is calculated by summing all the cumulated rewards of one

episode and dividing it by the total number of iterations that the UAV performed

in that episode. As it can be seen, the exhaustive search needs to inspect all

possible positions (all 2,000 values) in order to determine the best placement of

the UAV, thus its average reward is very low (near zero). Q-Learning, on the

other hand, starts with a relatively low reward (because it has not explored the

environment and filled the Q-Table enough) and later on converges to a value near

the maximum reward of 20. Contrarily, SARSA with VFA learns much quicker

and converges much faster. This is due to the representation of the Q-Table by

features, which allows VFA to generalize across different states and actions, as

well as learn the best parameters to optimize.
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Figure 5.9b shows the maximum reward per episode. As it can be seen, the

exhaustive search always achieves the maximum reward, but this comes at the

price of having to evaluate all possible positions at every episode. On the other

hand, Q-Learning starts with a relative low value of maximum reward, but after

around 30 episodes it converges to the maximum and oscillates between 19 and

20. Lastly, SARSA with VFA performs really well, starting with a value below

19 and having the same performance of the exhaustive search for the remaining

episodes. Figure 5.9c shows the minimum number of movements necessary for

the UAV to reach the maximum reward. As expected, the exhaustive search

needs the most movements, while the intelligent methods outperform it by a large

margin. It can be seen that Q-Learning converges to around 60 movements per

episode and SARSA to around 30 movements per episode. This also highlights

the advantages and huge potential of VFA, as it is able to learn much faster, due

to the inclusion of features in the model, being able to learn better paths and

actions to take reducing the number of UAV movements. In addition, despite not

being considered in this work, this also shows the potential advantages of using RL

in terms of energy consumption of UAVs, as intelligent methods are much more

efficient than exhaustive search. Lastly, Figure 5.9d shows the learned action-

value function Q(st, at, ~θ ) by SARSA. As it can be seen, SARSA learns that

being near users has a better function value, and being away leads to worse values.

Furthermore, it can also be seen that the peak of the action-value function occurs

when the number of users covered is the maximum. It can be concluded that

both intelligent methods, Q-Learning and SARSA, achieve the optimal solution

with a considerable lower number of movements, indicating that RL is a suitable

strategy for this problem. Lastly, it can also be seen that RL is highly suitable

and desirable to perform model-free tasks, in which previous knowledge about the

network, such as knowing the users positions or requirements is not necessary. As

such, RL approaches can achieve optimal solutions requiring almost no previous

information, unlike other methods.

5.7 Summary

UAVs are expected to play a crucial role in future mobile networks, enabling

many applications that are unimaginable today. However, for that to be pos-

sible, an intelligent deployment of UAVs is essential, in order to guarantee the

aerial network both adaptability and autonomy. As such, a use-case of intelligent

UAVs deployed in the context of pop-up mobile networks was envisioned and

two different algorithms (based on Q-Learning and SARSA) were proposed to



CHAPTER 5. INTELLIGENT UAVS FOR POP-UP NETWORKS 138

determine the optimal 3D positions of multiple UAVs.

In addition, simulations in a pop-up network scenario were performed, in or-

der to test the scalability of the proposed framework. It was shown that both Q-

Learning and SARSA are able to determine the optimal trajectories of UAVs and

reduce the outage levels of the network back to its regular performance while also

minimizing user dissatisfaction rates. In addition, SARSA with VFA slightly out-

performed conventional Q-Learning due to its inclusion of features in the model,

which make RL solutions more robust and generic. After that, experiments in a

small simulation scenario were conducted, in which it was shown that approaches

based on RL can converge to optimal solutions with limited complexity and with-

out any previous knowledge about the network or users positions. This clearly

shows the suitability of intelligent approaches for this kind of problem.



Chapter 6

Conclusions, Future Trends and

Open Issues

In this section conclusions are drawn in terms of SON, as well as for each use-case

investigated in this thesis. In addition, an overview on future trends expected

to be seen in RL is presented. This covers trends in both conventional RL, as

well as the more recent field of deep RL, which has gained increased attention

in the recent years. After that, an overview of future trends expected in SON

is presented, covering general ML techniques. However, since the focus of this

thesis is the application of RL in SON, a summary of future trends in RL applied

in SON is also presented. Last, some potential future research directions are

identified, with the focus on the use-cases investigated in this thesis.

6.1 Conclusion

In order for future networks to keep updated and on par with state-of-the-art

intelligent systems a change in paradigm needs to be developed and this will

most likely require the use of intelligent solutions, mainly ML algorithms. Future

networks will also require a change in the way the network is perceived. In the

future, thousands of parameters will need to be configured, thousands of cells

will need to be monitored and optimized at the same time and a huge amount of

data will be collected, not only from humans, but also from machines. Since it is

impossible for humans to deal with this amount of tasks and data, ML solutions

will need to be applied in order to learn models in a relative short amount of time

and to enable an autonomous and intelligent network. As such, ML is expected

to play a vital role in future mobile networks in order to enable them to achieve

their full potential. In this context, RL solutions are considered to be highly

suitable for future mobile network scenarios, specially because of their ability to

139
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learn in real time and with their interaction with the environment. Furthermore,

deep RL with its inherit ability to learn directly from raw data complex patterns

will also play an important role in future mobile networks, by enabling the design

of autonomous systems with a higher level of understanding.

Based on this, this thesis covers some applications of RL algorithms in self-

optimization use-cases of SON. First, a literature review covering the areas of ML

applied in SON was presented. In this review, the three main areas of SON were

presented (self-configuration, self-optimisation and self-healing), and its use-cases

were presented. In the context of self-optimisation, the focus of this thesis, an

analysis of how different ML techniques were applied in self-optimisation use-

cases was presented, together with which problem they aimed to tackle. After

that, the use-case of user-cell association involving the optimisation of network

and user parameters was investigated. In future mobile networks, it is expected

that the backhaul will become the bottleneck, instead of the RAN, as such, cur-

rent and future mobile networks are in need of cell association procedures that

consider end-to-end connectivity and backhaul constraints. Based on that, a two-

step Q-Learning solution was proposed, in order to, first optimize SC parameters

(CREO), and then, after the CREOs are communicated to users and depending

on individual user requirements, optimise the user weights. Results have shown

that our proposed approach, user-specific cell association, outperforms three other

state-of-the-art solutions, highlighting that optimising both network and user pa-

rameters yield better results than only network ones. This enhanced performance

in terms of user QoS parameters, such as throughput, latency and reliability, how-

ever, comes at the expense of a minor reduction in overall throughput. However,

as the results have indicated, the proposed solution is flexible enough in order to

find a balanced trade-off between these metrics, as well as to adapt to changes in

the network, while still converging in a relatively quick manner.

After that, this thesis investigated the use-case of coverage and capacity op-

timization in SON, through the utilization of intelligent UAVs coupled with dif-

ferent RL solutions. First, an emergency communication scenario was presented,

in which UAVs were utilized as access points in order for isolated people, as

well as search and rescue teams, to communicate to each other. In this scenario,

the problem of determining the optimal 3D placement of multiple UAVs based on

user requirements and network constraints was considered. As such, a distributed

solution based on Q-Learning was proposed and it was compared to three other

schemes. Results have shown that given enough time the UAV BSs were capable

of learning user mobility and to track users that were not associated to any BS,

as well as to adapt to different user mobility patterns and requirements. Fur-
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thermore, when comparing the the proposed approach to the other schemes, the

Q-Learning proposed solution achieved a better performance in terms of all con-

sidered metrics, mainly: users covered, user throughput satisfaction, as well as

better network resource utilisation (in terms of the backhaul).

Lastly, the deployment of UAVs was also investigated in order to provide ad-

ditional capacity to overloaded mobile networks, more specifically in the context

of pop-up networks, such as when big events happen. In this context the prob-

lem of optimising the 3D positioning of multiple UAVs considering different user

requirements, mobility, as well as interference from the ground network and both

ground and flying network constraints was studied. Due to the complexity of the

proposed network model, in this problem two intelligent approaches were inves-

tigated, one, based on conventional RL, Q-Learning, and another one, based on

VFA, SARSA. Results have shown that both proposed approaches were able to

restore the network to its previous levels of users connected and user satisfaction

rate, with SARSA having a slightly better performance than Q-Learning. This

occurs mainly due to the problems that conventional RL has when the state space

becomes too large, since traditional RL algorithms encounter issues in terms of

memory and generalization to new unseen states. As such, the gains presented by

SARSA translate not only in terms of performance, but also regarding memory

and generalization, due to its combination with VFA, which allows the table to

be represented by any function.

6.2 Future Trends in RL

6.2.1 Conventional RL

Reward Design

One challenge that has attracted the attention of researchers in the field of RL for

many years is the problem of reward design. More specifically, how to create an

objective function that represents the problem accurately enough and that will

guarantee that the agent is capable of producing desirable results, while avoiding

undesired solutions [10, 247]. As such, the design of the reward signal is crucial

for RL systems, as the reward is the only feedback signal that the agent has on

how well it is performing in the environment, thus, a tiny change in the reward

function can sometimes lead to completely different solutions [10].
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Transfer Learning

Transfer learning is a new research area that has emerged in the context of RL

which focuses on the development of algorithms that are capable of transferring

the knowledge from an agent which was trained on certain source tasks to a target

task [248]. The idea is to transfer knowledge between similar tasks so that the new

learning agent can use previous knowledge of the source tasks in order to solve the

target task in a more quick and effective manner, by for example, reducing the

number of steps needed for it to achieve a near optimal performance. This would

be extremely useful, because current RL algorithms need a lot of samples to learn

a near optimal solutions, which, sometimes, can be prohibitive, such as in cases of

real world applications. As such, transfer algorithms should be able to build prior

knowledge from different, but related tasks and improve the performance of the

RL agent [10,248]. However, despite these benefits, several challenges still remain

in the transfer learning domain, such as which parameters should be transferred

(which parameters are relevant in both domains, for example), and also in terms

of theoretical proofs [248].

Exploration-Exploitation Trade-Off

Another common challenge in RL is the trade-off in exploration and exploitation,

more specifically in how to handle the exploration of an agent. In complex tasks,

for example, in which rewards are sparsely available, it can be nearly impossible

for an agent to learn, without any prior knowledge, the considered task (as it

would be extremely rare for the agent to discover which states and actions lead

to rewards) [248]. As such, concepts like imitation learning have started to emerge

in RL, in which the agent is, first, presented with some examples of good policies

and behaviours, so that the agent can learn and try to imitate what was previously

observed.

Function Approximators

Lastly, another topic that has seen some discussion in recent years is which func-

tion approximators to use in RL tasks. Traditionally, RL algorithms have used a

table in order to represent its states or state-action pairs, however, as previously

seen, for these algorithms to be able to scale up to bigger and more complex tasks

and to be able to generalize, function approximation techniques are needed [10].

In order to represent the value functions any regression algorithm from the ML

field can be used, but one question that has intrigued researchers for quite some

time was for what type of problem which function approximation is the best



CHAPTER 6. CONCLUSIONS, FUTURE TRENDS AND OPEN ISSUES 143

one [248]. Recently, however, the research community seems to have converged

to a common approximator, with the development of a new field in RL, deep RL,

in which deep NNs are utilized as functions to represent the value function of RL

algorithms [34, 51–54]. However, despite this common denominator, still several

trends and open problems are present in deep RL, as it will be seen next.

6.2.2 Deep RL

Recent advances in deep learning, more specifically in deep NNs, in which several

layers are utilized to build abstract representations of raw input data, have made

it possible for these NNs to learn complex concepts, such as categorizing objects,

recognising human speech or diagnosing diseases [34]. As such, it was only natural

that these algorithms were combined into RL, in what has become, recently, the

new field of deep RL. Although several breakthroughs have been achieved by deep

RL in recent years, several areas still need to be explored and open issues still

remain, as it will be seen next.

Although Deep RL also suffers from some of the problems encountered in

conventional RL, such as the exploration-exploitation trade-off, the amount of

samples needed to solve a certain problem, how to design a meaningful reward for

complex tasks and also how to transfer knowledge across different domains, deep

RL also has its own problems due to the differences in the algorithms structure

[247,249].

Deep Neural Network Architecture Design

As seen in recent years, deep NNs have become a powerful tool as it enables

algorithms to learn directly from its raw input data, requiring almost no human

intervention. However, these type of NNs, due to their size and complexity can

have various parameters that need to be tuned and considered in its design in

order to achieve its goal. These parameters can be numerous, and consist of basic

design parameters, such as the number of network layers, the number of hidden

neurons in each layer, learning rate, dropout rate, the activation function that

will be used, or the initial weight initialization, to name a few [33].

As such, in order to design a deep RL problem, the same issues are encoun-

tered, in which the NN parameters must be carefully tuned in order to achieve a

near optimal solution for a specific task. Moreover, the parameters of the deep

NN must be even more carefully tuned in the case of deep RL, as most conven-

tional algorithms do not support non-linear function approximators. This occurs

due to the correlations present in the sequences of observations performed by the
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agent, as well as the correlation between action-values and target values, and

also the fact that small changes in the value function can significantly change the

policy being followed [34].

Imperfect Information Environments

Another trend that has seen increased attention in deep RL is the concept of

imperfect information games. Many real world applications can actually be mod-

elled as a game of imperfect information, in which an agent only knows a portion

of the state of the game and must infer the the other portions based on the infor-

mation of other players actions, such as in a card game, where each player’s card

are hidden from the rest of the players. [250]. Although several ML algorithms

have achieved near optimal solutions to classical, perfect information games, these

algorithms fail to converge when imperfect information environments are consid-

ered [250].

Although solutions to imperfect games would be a Nash equilibrium, methods

that attempt to find it lack the ability to learn intrinsic patterns and generalize

for new situations, or in other words, they lack generalization capabilities. As

such, solutions that attempt to find the Nash equilibrium analytically are limited

by the complexity of the problem. Thus, similar to the case of VFA, solutions that

are capable of abstracting information, providing generalization across different

conditions, such as deep RL, are preferred [250].

6.3 Future Trends in SON

In order for future mobile networks to overcome current network limitations, it is

clear that a shift in paradigms is needed and that different solutions to common

problems need to be found. However, despite current work being done in the area

of SON, with an increase of maturity and robustness in the area, with more and

more different ML algorithms being explored and applied in different contexts,

there are still open issues and challenges that need to be addressed in order

to enable a fully intelligent network in the near future. As such, in the next

paragraphs a brief overview of future trends and open issues in the context of ML

applied in SON is presented.

6.3.1 Machine Learning in SON

In order for the concept of SON to be fully enabled, it is clear that more in-

telligence needs to be added to mobile networks. In addition, with the already
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extensive collection and monitoring of network data by network operators, ML

algorithms have truly an unimaginable potential to shine in future mobile net-

works, enabling applications and services that are unimaginable today. However,

despite this fact, not many ML solutions have been explored in the realm of

SON. Although not every algorithm is recommended to be applied to every self-x

function, further exploration of ML solutions still need to be done in order to

investigate their performance and determine if these methods can really work or

not.

On top of that ML algorithms really have a great opportunity to excel in

future mobile networks, as the amount of data collected and generated by future

networks are going to be enormous, providing virtually an infinite dataset for

algorithms to train. However, depending on the type of data collected and the

necessary learning, different types of ML solutions are more suitable for different

problems. Below, a brief overview on how supervised, unsupervised learning, and

deep learning can play an essential role in future networks is presented.

Supervised Learning

As previously mentioned, supervised learning requires information both from in-

put and output data in order to learn a model and make predictions about the

future. Due to their natural characteristic of learning based on the output feed-

back, supervised learning algorithms are limited in the amount of applications

that they can cover in future mobile networks. This occurs because it can be ex-

tremely hard for operators to generate labelled data for certain network use-cases.

For example, in the case of self-healing, operators might not have in real-time in-

formation about complete network status, or where exactly the failure happened.

Thus, in those cases other ML algorithms are more suitable to solve these prob-

lems. On the other hand, supervised learning can excel at other use-cases for

future mobile networks, where labelled data is available and real-time informa-

tion is not necessary. Some future envisioned applications for supervised learning

could be in the area of mobility management, resource allocation, self-healing (in

terms of fault detection and classification), etc. However, despite all of these ap-

plications, supervised learning still has to be further explored in different contexts

of future mobile networks.

Deep Learning: moreover, one area that has seen a lot of growth in recent

years is the concept of deep learning. Deep learning has already proved to to be

really powerful algorithms which were able to improve state-of-the-art solutions

in speech recognition, object detection and genomics, for example [33]. In the
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context of mobile networks, deep learning has seen an increased attention in

recent years, more notably in its application at the physical layer level [251,252],

security [253, 254], mm-Wave communications [46, 255], and resource allocation

[256, 257]. As such, due to its ability to learn features directly from raw input

data and its performance above human level, deep learning is expected to play

an important role in future mobile networks and to solve an even larger number

of applications and use-cases.

Unsupervised Learning

Unsupervised learning on the other hand is able to deal with unlabelled data

very well. As such, unsupervised learning algorithms are expected to play a

vital role, in grouping or clustering applications, such as in fault management

[258–261] or resource optimization [155, 161], for example. However, similarly to

supervised learning, unsupervised techniques still has to be further considered in

different network scenarios, such as in scenarios that consider massive MIMO,

ultradensification of the network, the new network structure of 5G new radio, or

even M2M communications, such as in the case of V2X.

6.3.2 RL in SON

In addition to the other ML techniques, one technique that can play an extremely

important role in future mobile networks is RL. Due to their inherit nature of

being a goal-oriented approach, which interacts with the environment, generates

samples from it and learn from previous conditions, RL algorithms are capable of

online learning without any human intervention. As such, these algorithms are

ideally suited to solve dynamic problems in a heterogeneous and changing envi-

ronment, such as mobile networks, specially in the use-cases of self-optimization

and self-healing, as they are able to constantly sample the network and determine

the best actions to take online. However, despite RL being extensively applied in

several other domains, such as in computer science or gaming [10], RL has still

not seen a great number of applications in mobile networks.

However, it is envisioned that RL will be a crucial part in future mobile net-

works, due to their innate ability to learn online and by constant interaction

with the environment, which is they key difference from other conventional ML

techniques. As such, RL solutions, specially those based on value function ap-

proximation and deep RL, are expected to see an increased number of applications

in future mobile networks.
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6.3.3 Deep RL in SON

Deep RL is quite a recent area which has emerged and gained popularity recently,

due to their powerful ability to combine deep learning methods with RL. This, by

its turn, is able to generate really powerful algorithms that are able to learn and

extract information directly from raw input data, and convert into actions that

can be taken by an agent in the real world. As such, deep learning enables RL

to scale to decision-making problems that were previously considered impossible,

due to the their complexity or the high number of possible states and actions.

However, despite the recent boom in deep RL, specially in the are of computer

science, not many issues in mobile networks have seen its application. Some

applications that have seen the utilization of deep RL consist of resource allocation

[262,263], interference management [?, 246], and content caching [264,265].

However, because deep learning is enabling RL to tackle problems that were

unimaginable a couple of year ago, deep RL is considered to revolutionize the

filed of artificial intelligence, by building agents that are able to develop a higher

understanding of real world applications with basic to almost none previous in-

formation, albeit at the expense of a lot of data. As such, because future mobile

networks are expected to generate a huge amount of data every day, deep RL can

play a vital role in developing online solutions.

6.3.4 Backhaul Optimisation

As previously seen in Table 2.1, the issue of backhaul optimisation is not addressed

enough by the research community, despite the important impact that it can have

in future wireless communications, as it is deemed to be the bottleneck of next

generation networks. As such, if the backhaul issue is not addressed, specially if

the network densification occurs, the expected targets of latency, reliability and

capacity for future generations may not be achieved.

In light of that, several optimisation procedures of the backhaul can be con-

sidered as extensions of the framework proposed in Chapter 3. One possible

extension of the current scenario could be the investigation of a similar scheme,

but considering SCs with multiple backhauls with different characteristics. The

system could then learn either to choose the best backhaul for each situation or

to connect different users to different types of backhauls in order to maximize not

only user QoS requirements, but also EE of the network. Another possible future

work can consider the case when different contents are being requested by differ-

ent users. In this scenario, a caching optimization could also be included, in which

SCs with contrasting backhaul solutions would learn to cache different contents
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depending on their demands. In this situation, then SCs that have backhauls

with poor latency conditions could then learn to cache more popular contents

in order to minimize the latency experienced by users, whereas SCs with better

latency constraints could cache less popular contents, in order to serve specific

users.

6.3.5 Intelligent UAVs in Future Mobile Networks

UAVs are expected to be the next breakthrough in wireless networks, mainly

due to their flexibility, agility and LoS communication capabilities. As such, the

integration of UAVs in mobile network environments has seen a great number of

applications in recent years. However, despite several research efforts focusing

in the area, several issues still remain in the topic, as highlighted in Chapters

4 and 5, such as finding the optimal trajectory and placement of UAVs, how to

manage the interference from the ground network in UAVs and vice-versa, how

to perform resource allocation between aerial and ground networks, and how to

connect UAVs to the core network (backhaul), to name a few.

Since this is a relatively new area, the 3D placement optimization problem

of UAV-BSs constrained by network requirements can have several possible ex-

tensions. One extension of the works proposed in Chapters 4 and 5 can be the

consideration of other more robust RL algorithms, such as the ones based on

deep RL. This would enable UAVs to learn better policies and more complex

and intrinsic patterns in the environment. In addition, the consideration of other

deep RL frameworks would also allow a better learning model to be built, which

eventually can lead to the autonomous deployment of aerial BSs in real world

applications.

Another interesting possibility of future work is to consider additional require-

ments from the network, such as users having demands in terms of latency and

resiliency as well. Then, in such cases, optimization would have to be performed

considering not only on the connectivity of each user, but also with respect to

their satisfaction levels regarding each parameter. Another future topic of re-

search consists of including additional constraints in the UAV-BSs, such as the

flight time and the total energy consumption from the UAV-BS’s movements.

This would enable the algorithm to find a trade-off between moving and cover-

age, in order to maximize both the amount of users and the flight time of each

UAV-BS. Lastly, another topic that can be considered is a non-ideal backhaul

link between UAVs and ground BSs, with losses depending on the distance for

example. As such, similar to the previous case, a similar trade-off could arise, in

terms of distance between the ground BS that provides the backhaul link to the
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UAV and the satisfaction level of end-users connected to the aerial platform.



Appendix A

Example Comparing Q-Learning

and SARSA

One very common and academic example that can be found in the literature in

order to illustrate the differences between off-policy (Q-Learning) and on-policy

(SARSA) is the gridworld task of cliff walking [10]. In this example, a world

consisting of tiles (or grids) is generated. An agent is inserted in the environment

and is able to select between four possible actions, mainly: up, down, left or right.

Moreover, in this scenario, it is considered that an agent follows a fixed behaviour

policy, ε-greedy, with a constant value of ε = 0.1 (10% chance of choosing a

random action). In addition, specific starting and goal states are set and, the

objective of the agent is to reach the goal in the minimum number of movements.

The reward of every tile, with the exception of the cliff tiles are equal to -1, while

the cliff region has a reward of -100 and also sends the agent instantly back to

its starting position. The top part of Fig. A.1 shows the considered example

scenario, adapted from [10], in which both Q-Learning and SARSA agents are

tested, while the results obtained are shown below.

As it can be seen, the off-policy learning algorithm, Q-Learning, is able to

learn values for the optimal policy (which says that the agent should travel on

the edge of the cliff). However, due to the randomness in selecting actions, this

also results in the unfortunate events of the agent falling of the cliff occasionally.

On the other hand, SARSA takes the action selection into account (due to its

on-policy behaviour) and, as such, it is able to learn a longer, albeit safer path

towards the goal.
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S GT h e C l i f f

Safe Path

(SARSA)

Optimal Path

(Q-Learning)

R=-1

R=-100

Figure A.1: The cliff walking task, adapted from [10]. As it can be seen, Q-
Learning learns the optimal path, however, due to random actions, its reward is
lower. On the other hand, SARSA learns a safer path, which accounts for the
randomness in choosing actions, achieving a higher reward.
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