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Summary 

The massive global release of halogenated hydrocarbons (organohalides) over the last 

century caused severe detrimental effects on human and environmental health by 

contaminating many different ecosystems. Research on the biological degradation of 

organohalides revealed the discovery of several bacteria able to dehalogenate and thus 

detoxify these pollutants by utilizing them as terminal electron acceptors in organohalide 

respiration. 

The organohalide-respiring ε-proteobacterium Sulfurospirillum multivorans was extensively 

studied for its tetrachloroethene (PCE) reductive dehalogenase PceA and has become a 

model organism for organohalide respiration. However, the hydrogen metabolism which 

might be involved in the respiratory chain and possible syntrophic interactions of this 

organism with bacteria in its natural habitat has never been characterized and are the focus 

of this study. Four [NiFe] hydrogenases have been identified in the genome, of which one 

membrane-bound H2-oxidizing (MBH) and one H2-producing (Hyf) enzyme were found to 

be expressed. Biochemical characterization of a MBH-enrichment implicate the enzyme as 

possible electron donating system of the organohalide respiratory chain. The other 

hydrogenase was transcribed during pyruvate fermentation and screening of different 

Sulfurospirillum spp. revealed a fermentative hydrogen production of these bacteria for the 

first time. Fermentation balance experiments and comparative proteomics were performed 

to elucidate the metabolic pathways of pyruvate fermentation and a remarkable 

upregulation of the Hyf hydrogenase and other pyruvate-metabolizing enzymes was 

observed.  

Co-cultivation of S. multivorans with another organohalide-respiring bacterium, 

Dehalococcoides mccartyi, introduced the organism as a hydrogen-producing syntrophic 

partner and uncovered a new ecological role. An interspecies hydrogen and cobamide 

transfer enabled a fast and complete dechlorination of the prominent groundwater pollutant 

PCE to ethene which is of high interest for bioremediation processes. 
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Zusammenfassung 

Die massive weltweite Freisetzung von halogenierten Kohlenwasserstoffen im letzten 

Jahrhunderthat gefährdende Auswirkungen auf Mensch und Umwelt, hervorgerufen durch 

die Kontamination vieler verschiedener Ökosysteme. Untersuchungen zum biologischen 

Abbau dieser Schadstoffe führten zur Entdeckung von Bakterien die in der Lage sind Diese 

Verbindungen zu entgiften und als terminale Elektronenakzeptoren in der Organohalid-

Atmung zu nutzen. 

Das organohalid-respirierende ε-Proteobakterium Sulfurospirillum multivorans wurde 

hinsichtlich seiner Tetrachlorethen(PCE)-reduktiven Dehalogenase intensiv untersucht. Der 

an der Atmungskette beteiligte Wasserstoffmetabolismus und die ökologischen 

Interaktionen des Organismus (z.B. Syntrophie) wurden dagegen nie charakterisiert, und 

waren daher Fokus dieser Arbeit. Im Genom wurden vier [NiFe] Hydrogenasen detektiert, 

von denen eine membrangebundene H2-oxidierende (MBH) und eine H2-produzierende 

(Hyf) Hydrogenase transkribiert wurden. Die biochemische Charakterisierung einer MBH-

Anreicherung ergab eine mögliche Beteiligung der MBH an der Organohalid-Atmungskette. 

Die andere Hydrogenase ist vermutlich in der Pyruvatfermentation involviert und 

Wachstumsexperimente zeigten erstmals eine fermentative Wasserstoffproduktion von 

verschiedenen Sulfurospirillum Arten. Mit Hilfe von Fermentationsbilanzen und 

vergleichenden Proteomstudien wurden die Stoffwechselwege dieser Fermentation 

aufgeklärt und es konnte eine Hochregulation der Hyf-Hydrogenase und anderer 

assoziierter Enzyme gezeigt werden. 

Die Ko-Kultivierung von S. multivorans mit einem anderen organohalid-atmenden 

Bakterium, Dehalococcoides mccartyi, stellte den Organismus erstmals als 

wasserstoffproduzierenden syntrophen Partner vor und wies der Gattung eine neue 

ökologische Rolle zu. Der interspezies Wasserstoff- und Corinoidtransfer zwischen beiden 

führte zu einer schnellen und vollständigen Dechlorierung der Grundwasserkontaminante 

PCE, welche für Bioremediationsprozesse von großem Interesse ist. 
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1 Introduction 

1.1  Syntrophic relationships among prokaryotes 

The interspecies electron transfer within syntrophic relationships in microbial communities 

is an intermediary key step in the anaerobic degradation of complex organic matter. In this 

special type of symbiotic cooperation, microorganisms exhibiting various metabolic 

lifestyles fulfill the degradation of a certain compound that cannot be carried out alone by 

one of the involved prokaryotes (McInerney et al., 2009). For example, the complete 

degradation of complex organic compounds such as cellulose, polysaccharides, lipids and 

proteins to methane and carbon dioxide requires the interaction of at least four metabolically 

different groups of bacteria (Fig. 1). Primary fermenters break down the compounds to 

smaller molecules like pyruvate, lactate, propionate, butyrate and ethanol or directly to 

substrates for methanogenesis as hydrogen, formate, acetate, and carbon dioxide. The 

intermediate products such as pyruvate and lactate are further degraded by secondary 

fermenters into substrates which can be utilized by methanogens and iron- and sulfate-

reducers (McInerney et al., 2008; Schink, 2002; Schink, 1991; Schink and Stams, 2013; 

Stams, 1994). The basis of these various degradation processes is the exchange of 

metabolites between the community members including an extracellular transport of 

electrons which can be achieved by chemical compounds itself such as hydrogen, formate 

and acetate or organic shuttles like humic acids, quinones and riboflavins. Hydrogen plays 

a key role in this interspecies hydrogen transfer, which is often described as the 'heart of 

syntrophy' (McInerney et al., 2011). Many syntrophic relationships in methanogenic, sulfate 

or iron reducing and denitrifying environments are described with hydrogen as electron 

carrier (Morris et al., 2013). However, the interspecies electron transfer is not exclusively 

achieved by a hydrogen transfer. A co-culture of Syntrophobacter fumaroxidans and 

Methanospirillum hungatei was shown to prefer an interspecies formate transfer rather than 
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a hydrogen transfer, and similarly, acetate serves as the electron carrier in methanogenic 

associations (de Bok et al., 2002; Platen et al., 1994; Platen and Schink, 1987). Depending 

on the metabolic lifestyles of the organisms, syntrophic relations can be grouped into 

facultative or obligate associations. The latter associations depend directly on the hydrogen-

consuming partner maintaining a low hydrogen partial pressure which favours endergonic 

substrate oxidation. Electrons gained from oxidation are bound either to NADH or ferredoxin 

and used for proton reduction. Formation of hydrogen from NADH is only feasible at low 

hydrogen levels since the redoxpotental of this reaction is unfavourable and would hamper 

growth at high hydrogen levels. Instead, ferredoxins of the Allochromatium vinosum type 

are more favourable electron carriers due to their low redox potential (Moulis et al., 1996). 

In contrast, facultative syntrophs are still able to oxidize NADH at high hydrogen 

concentrations and bypass hydrogen production by reducing internal metabolites. This was 

reported for Ruminococcus flavefaciens and Selemomonas ruminatium, which ferment 

glucose at high hydrogen levels additionally to succinate and lactate (Chen and Wolin, 

1977; Latham and Wolin, 1977).  

 

 
 
Figure 1: Schematic overview of catabolic food webs and syntrophic interactions in microbial 
communities containing organohalide-respiring bacteria (OHRB). Key physiological groups are 
framed in boxes and the exchanges of metabolites between these groups are indicated by arrows. 
Color code; orange: H2-producer, green: H2-consumer. 
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In syntrophic associations, these organisms benefit from a higher ATP yield as shown for 

Ruminococcus albus which higlights the importance of removing hydrogen when NADH 

oxidation is restricted to proton reduction. (Stams and Plugge, 2009). 

Syntrophy is often at the thermodynamic limit of life since Gibbs free energy changes are 

at the minimum energy gain required for ATP synthesis (Schink and Stams, 2006). The 

generation of ATP under the conditions in a living cell including the heat loss requires +70 

kJ mol-1 (Schink, 1990). Peter Mitchell postulated in 1966 a vectorial transport of three 

protons necessary for ATP formation (Mitchell, 2011). Therefore, the minimum Gibbs free 

energy needed is about -20 kJ mol-1 which is equivalent to one third ATP (Schink, 1990; 

Schink and Thauer, 1988). The stoichiometry of proton translocation and ATP synthesis is 

not restricted to 3:1 and has been reported in the recent years as 4:1 or even 5:1 which 

lowers the minimum energy needed to translocate one proton across the cytoplasmic 

membrane to -15 - -10 kJ mol-1 (Seelert et al., 2000; Stock et al., 1999). 

Syntrophic interactions are widespread in nature and can be found in various habitats 

including methanogenic and sulfidogenic environments, and even hyperthermophilic 

habitats. A unique syntrophic association between Nanoarchaeum equitans and Ignicoccus 

hospitalis, identified in hot submarine vents, led to the discovery of a new archaeal phylum. 

Additionally, the relationship demonstrates another common feature of syntrophic 

interactions, namely, the formation of cell aggregates and the reduction of intermicrobial 

distances. A tight physiological association and physical contact between both organisms 

was reported. At the attachment sites, the periplasmic space of I. hospitalis cells was 

narrow, resulting in a close contact between the outer membrane and cytoplasmic 

membrane of N. equitans cells (Huber et al., 2002; Jahn et al., 2008). The advantages of 

cell-to-cell contact were previously reported by Schink and Thauer in 1988 (Schink and 

Thauer, 1988). According Fick's law, the diffusion rates of metabolites like hydrogen or 

formate are increased at low distances, which is of high importance for growth kinetics and 

substrate consumption rates. Cell aggregation is an optimal interaction for an enhanced 
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interspecies hydrogen and metabolite transfer. Despite the hyperthermophilic association, 

densely packed granules were also obtained in high-rate methanogenic bioreactors for 

efficient waste water treatment (Hulshoff Pol et al., 2004; Lettinga et al., 1980).  

A more detailed understanding of these metabolic and physiological cooperations in the 

future might enable the isolation and cultivation of currently uncultured microorganisms 

based on a syntrophic co-culture approach. 

1.2 Catabolic food webs and syntrophy in OHRB communities 

Chlorinated hydrocarbons were widely used for different industrial processes as solvents 

(e.g. tetrachloroethene (PCE, trichloroethene (TCE), chloroform), polymers (e.g. 

polyvinylchloride) and pesticides including herbicides, fungicides and insecticides (e.g. 

Bromoxynil, Pentachloronitrobenzene [PCNB], Trichlorphenol [TCP]) and were released for 

many years in high quantities into the environment despite their toxicity (Mohn and Tiedje, 

1992). In addition to this massive anthropogenic release, halogenated organic compounds 

are produced and released naturally from abiotic sources including geological processes 

like wildfires, rock disruptions, and volcanoes and biotically by lignin-degrading fungi, 

marine sponges, algae and lichens (Abrahamsson et al., 1995; Gribble, 2012; Harper and 

Hamilton, 2003; Jordan et al., 2000; Swarts et al., 1998). The ongoing pollution, high 

environmental persistence and bioaccumulation of carcinogenic organohalides in food 

chains can have severe detrimental effects on human health (Henschler, 1994). Many 

biotechnological and geotechnological processes have been developed and already 

applied for the remediation of contaminated environments. Due to its ecological 

compatibility, bioremediation processes based on organohalide-respiring bacteria (OHRB) 

are promising approaches and the application of these consortia into contaminated soil was 

recently started. These bacteria, especially Dehalococcoides mccartyi, use a wide range of 

organohalides as electron acceptor and enables the degradation of a wide range of 

chlorinated organic compounds such as PCE, polychlorinated biphenyls (PCB), dioxins 
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(PCDD) and furans (PCDF) (Bunge and Lechner, 2009). Organohalide-respiring 

communities are characterized by a heterogenic structure and multitude of potential food 

webs among their members. Besides OHRB, fermenting bacteria, methanogens, 

homoacetogens, sulfidogens, denitrifiers and aerobes shape the community structure (Fig. 

1). Also, OHRB populations show a heterogeneous composition and form distinctive 

groups: facultative organohalide respirers found in the Firmicutes (Desulfitobacterium spp.) 

and δ- and ε-Proteobacteria (Desulfomonile spp. and Sulfurospirillum spp.); and obligate 

organohalide respirers also found in the Firmicutes (Dehalobacter spp.) and Chloroflexi 

(Dehalococcoides spp. and Dehalogenimonas spp.). The facultative OHRB exhibit a 

versatile metabolism and utilize numerous electron acceptors, whereas obligate OHRB are 

restricted to organohalides as electron acceptors and hydrogen as electron donor (Maphosa 

et al., 2010). Fermenting bacteria degrade more complex organic matter to organic acids 

(e.g. pyruvic, lactic, butyric, formic), alcohols, CO2 and H2 which in turn can be used by 

obligate OHRB as electron donors and corbon sources. Different studies showed the 

presence of fermenting bacteria like Desulfovibrio spp., different Bacteroidetes and 

Clostridiales, homoacetogens and acetoclastic methanogens beeing responsible for 

hydrogen and acetate production (Diekert and Wohlfarth, 1994; Grostern et al., 2009; 

Grostern and Edwards, 2006a; Heimann et al., 2006; Lee et al., 2011; Lovley and Ferry, 

1985). For example, the sulfidogen Desulfovibrio fructosovorans fermented fructose to 

hydrogen which was subsequently used as electron donor for dechlorination of PCE to cis-

1,2-dichloroethene (cDCE) by the co-cultivated Desulfitobacterium hafniense strain TCE1 

suggesting a hydrogen transfer (Fig. 2A) (Drzyzga and Gottschal, 2002). Another mixed 

culture containing Syntrophomonas wolfei and Dehalococcoides mccartyi strain 195 

revealed an efficient and complete dechlorination of PCE to ethene (Fig. 2B) (Mao et al., 

2015). In a 3-chlorobenzoate degrading tri-culture, the methanogen Methanospirillum sp. 

consumed hydrogen and stimulated in turn benzoate fermentation of BZ-2 which was 

produced by Desulfomonile tiedjei (Fig. 2C).  
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Figure 2: Syntrophic interactions between dechlorinating and non-dechlorinating bacteria. (A) 
Syntrophic lactate fermentation by Desulfovibrio fructosivorans (Df) and PCE-to-cDCE dechlorinator 
Desulfitobacterium hafniense strain TCE1 (DhTCE1) (Drzyzga and Gottschal, 2002). (B) Complete 
dechlorination of PCE to ethene by Syntrophomonas wolfei (Sw) and Dehalococcoides mccartyi 
strain 195 (Dhc 195) (Mao et al., 2015). (C) Dechlorination of 3-chlorobenzoate (3CB) to benzoate 
(B) and exchange of growth factors/vitamins in a tri-culture of the benzoate-fermenting bacterium 
BZ-2, Desulfomonile tiedjei (DT) and Methanospirillum sp. (MPM-1) (Mohn and Tiedje, 1992; Tiedje 
and Stevens, 1988). (D) Interspecies hydrogen and corrinoid transfer in a TCE-to-ethene 
dechlorinating tri-culture of Desulfovibrio vulgaris Hildenborough (DVH), Pelosinus fermentans R7 
(PfR7) and D. mccartyi strain 195 (Dhc 195) (Men et al., 2014). Interspecies hydrogen transfer is 
indicated by a red box and interspecies corrinoid by a yellow box. PCE - tetrachloroethene, TCE - 
trichloroethene, cDCE - cis-1,2-dichloroethene.  
 

Methanospirillum sp. was also shown to produce growth stimulating vitamins used by D. 

tiedjei (Mohn and Tiedje, 1992; Tiedje and Stevens, 1988). Besides hydrogen, also acetate 

and formate are additional energy sources in syntrophic communities and can also be used 

as the sole electron donor for reductive dechlorination.  

The presence of only a few electron donors and low concentrations of these, and the 

occurance of multiple alternative electron acceptors such as nitrate, sulfate and iron, in 

sometimes high concentrations, lead to competition between methanogens, acetogenes, 

sulfate and nitrate reducers with dechlorinating bacteria for electron donors (Fennell and 

Gossett, 1998; Smatlak et al., 1996). At exceeding electron donor concentrations, various 

electron-accepting processes will simultaneously occur, while at limiting conditions, 
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organisms possessing the highest hydrogen affinities and higher energy-yielding 

metabolism will outcompete the less effective organisms. However, dechlorinating bacteria 

are reported to exhibit extremely low hydrogen affinities below the thresholds for 

methanogenesis, acidogenesis and sulfate reduction. Therefore, obligate OHRB are well-

adapted competitors for hydrogen among other community members and will thrive-in 

anaerobic environments as long as chlorinated electron acceptors are available (Löffler et 

al., 1999; Lovley and Goodwin, 1988; Smatlak et al., 1996; Yang and McCarty, 1998).  

In addition to the transfer of energy sources and metabolites, transport and supply of growth 

factors (e.g. vitamins) in syntrophic relationships has been reported. The most important 

growth factors in OHRB communities are corrinoids, since organohalide respirers use 

corrinoids (e.g. vitamin B12) as co-factor for the key enzyme in OHR, the reductive 

dehalogenase. Several obligate OHRB, e.g. D. mccartyi, are dependent on corrinoids due 

to missing genes for de novo corrinoid biosynthesis. Different co-culture experiments 

revealed an interspecies cobamide transfer between the corrinoid producing 

Acetobacterium, Sporomusa, Geobacter or Methanosarcina and different D. mccartyi 

strains (He et al., 2007; Yan et al., 2013; Yan et al., 2012). For example, an exchange of 

corrinoids between Methanospirillumsp. and Desulfomonile tiedjei was shown (Fig. 2C) 

(Mohn and Tiedje, 1992; Tiedje and Stevens, 1988). 

The syntrophic associations among OHRB and other members of microbial communities 

play a crucial role in supporting the detoxification and bioremediation of contaminated 

groundwater and soils. Additionally, these associations enable highly effective cooperations 

producing rapid and complete dechlorination of organohalides. This finding shows 

signifciant potential for environmental applications.  
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1.3  Hydrogenases and their roles in syntrophic microbial communities 

Key enzymes involved in microbial hydrogen metabolism and thus in interspecies hydrogen 

transfer are hyrogenases catalyzing the reversible conversion of molecular hydrogen:            

H2 ↔ 2H+ + 2e-. In presence of a terminal electron acceptor, organisms oxidize hydrogen and 

provide reducing equivalents for respiratory processes which can be coupled to energy 

conservation in respiratory chains. In case of a low potential electron donor and a missing 

electron acceptor, hydrogen is produced by proton reduction and enables dispose of excess 

reductants (Vignais and Billoud, 2007; Vignais et al., 2001). Based on the metal content of 

their active sites containing either a Ni and Fe atom or one or two Fe atoms, they can be 

classified into three phylogenetic distinct groups: [NiFe], [FeFe] and [Fe] hydrogenases, 

whereas [Fe] enzymes are restricted to methanogens. The [FeFe] hydrogenases are 

primarily found in H2-producing organisms including fermenting bacteria, and sulfate-

reducers and [NiFe] hydrogenases are mainly present in H2-utilizing organisms. The [NiFe] 

are the most divers class and were therefore further classified into four groups based on 

phylogeny, function, cellular localization, and composition (Schwartz et al., 2013). Briefly, 

periplasmic faced membrane-bound hydrogenases catalyzing respiratory hydrogen oxidation 

linked to quinone reduction are classified into group 1. Group 2 resembles sensory 

hydrogenases and cytoplasmic cyanobacterial uptake hydrogenases playing a role in 

nitrogen fixation. Group 3 represents multimeric enzymes interacting with cofactors (e.g. F420, 

NAD) in the cytoplasm of which some function bidirectional. Hydrogenases which evolve 

hydrogen and generate a proton gradient during proton reduction and thus conserve energy 

are arranged in group 4. 

Fermenters like Clostridium pasteurianum, Syntrophomonas wolfei or Thermotoga maritima 

often harbor [FeFe] hydrogenases and produce hydrogen during sugar fermentation. 

Hydrogen production in Pyrococcus furiosus, E. coli and Sporomusa ovata is achieved by 

a membrane-bound [NiFe] hydrogenase (Adams, 1990; Breznak, 2006; Dubini et al., 2002; 

McTernan et al., 2015; Schut and Adams, 2009; Sieber et al., 2010).  
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Figure 3: Schematic overview of hydrogenases and their roles in key microbial groups. 
Representatives include fermenting bacteria, acetogens, methanogens, iron-/sulfate-/nitrate-reducer 
and organohalide-respiring bacteria. [NiFe] hydrogenases are indicated by a green square and 
[FeFe] hydrogenases by a brown square. The direction of the interspecies hydrogen transfer is 
indicated by a grey arrow from H2-producer to H2-consumer. Reactions are stoichiometrically not 
balanced.  
 

[FeFe] enzymes are reported not to function bidirectional and show a catalytic bias towards 

hydrogen oxidation in vitro, the [FeFe] hydrogenases of C. pasteurianum preferentially 

oxidize hydrogen (Therien et al., 2017). Hydrogen is the electron donor and energy source 

for physiological divers organisms. [NiFe] hydrogenases catalyze hydrogen uptake for 

nitrate reduction in Wolinella succinogenes and Geobacter sulfurreducens, or CO2 

reduction in Methanosarcina barkeri and Methanothermobacter thermoautotrophicus 

(Coppi, 2005; Meuer et al., 2002; Tanner and Paster, 1992). Bacteria harboring H2-oxidizing 

and H2-producing hydrogenases can switch between both functions enabling a versatile 

metabolism. For example, Desulfovibrio vulgaris Hildenborough produces hydrogen during 

lactate fermentation via a [FeFe] hydrogenase and oxidizes hydrogen in the presence of 

sulfate (Fauque et al., 1988). Sulfurospirillum multivorans was shown to utilize hydrogen 

with tetrachloroethene or nitrate as electron acceptor and is therefore considered as a 

hydrogen consumer (Scholz-Muramatsu et al., 1995). However, a total of four [NiFe] 

hydrogenases suggests a more complex hydrogen metabolism. 
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1.4 Organohalide respiration, [NiFe] hydrogenases and ecology of 

Sulfurospirillum multivorans 

The gram-negative Epsilonproteobacterium Sulfurospirillum multivorans was isolated from 

dechlorinating and methanogenic enrichment cultures obtained from the activated sludge 

of a wastewater treatment plant in Stuttgart (Germany). It utilizes pyruvate as an electron 

donor and the highly persistent groundwater pollutant tetrachloroethene (PCE) as an 

electron acceptor (Scholz-Muramatsu et al., 1995). Isolation attempts were based on the 

ability of S. multivorans to use PCE as an electron acceptor in an anaerobic respiration 

process. In this, the reductive dechlorination of PCE to cDCE is coupled to energy 

conservation by electron transport phosphorylation, and ATP synthesis is driven by a proton 

motive force. The key enzyme for the dechlorination of PCE is the tetrachloroethene 

reductive dehalogenase (Rdh) PceA, which has a periplasmic orientation, and is anchored 

to the cytoplasmic membrane via a small hydrophobic protein PceB (John et al., 2006; 

Neumann et al., 1996; Neumann et al., 1998). PceA harbors two [4Fe4S] clusters and a 

corrinoid cofactor, and both are essential for the intramolecular electron transport. The 

corrinoid is located at the active site and directly involved in the reaction mechanism 

(Bommer et al., 2014; Kunze et al., 2017). The corrinoid cofactor is a norpseudo-B12 with 

adenine as lower ligand and an ethanolamine-phosphate moiety in the nucleotide loop. 

Production and utilization of that special type of corrinoid is only known for S. multivorans 

so far, but occurs most likely also in other PCE-dechlorinating Sulfurospirillum spp. (Fig. 4 

A, B) (Butler et al., 2006; Buttet et al., 2018; Kräutler et al., 2003). In general, complete de 

novo corrinoid biosynthesis involves more than 25 enzymes and was shown until now 

exclusively in prokaryotes. The last step in the cobamide biosynthesis is the incorporation 

of the lower ligand via a nucleotide loop assembly pathway which is variable among different 

microorganisms and can be either a purinyl, benzimidazolyl or a phenolyl moiety (Chan et 

al., 2014; Claas et al., 2010; Hazra et al., 2013). In addition to endogenously synthesized 

bases, exogenously provided lower ligand bases can also be incorporated into the 
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cobamide (Cheong et al., 2001; Renz, 1999; Stupperich et al., 1988). This 'guided 

biosynthesis' and the ability to exchange the lower ligand enables higher flexibility towards 

the occurence and availability of these bases in nature. Furthermore, it leads to a 

functionalization of corrinoids in D. mccartyi which will be discussed extensively in the next 

chapter. S. multivorans was shown to exchange adenine by 5,6-dimethylbenimidazole 

(DMB) when amended (Keller et al., 2014; Reinhold et al., 2012). All genes essential for the 

de novo 'anaerobic pathway' of corrinoid biosynthesis cluster together with pceA and pceB 

and accessory genes referred to as the organohalide respiration gene region (Appendix 

Fig. 2, Appendix Tab. 1) (Goris et al., 2014; Gruber et al., 2011). 

The reductive dehalogenase PceA is the electron-accepting system in the organohalide 

respiration chain and receives the electrons from menaquinone. The involvement of 

menaquinone was shown in inhibition experiments with the semiquinone analogon 2-n-

heptyl-hydroxychinolin-n-oxide (HQNO), which led to a complete inhibition of PCE 

dechlorination (Krauter, 2006; Scholz-Muramatsu et al., 1995). When utilizing pyruvate as 

electron donor, the electron donating system of the respiration chain might be either a 

pyruvate:ferredoxin oxidoreductase (PFOR) or a quinol-dependent pyruvate 

dehydrogenase (PoxB) as both enzymes were found in the proteome of cells grown with 

pyruvate (Goris et al., 2015; Goris et al., 2014). In the case of hydrogen or formate as 

electron donor, presumably a membrane-bound and periplamically orientated hydrogenase 

or formate dehydrogenase provide the electrons (Miller et al., 1996; Schmitz and Diekert, 

2004; Schmitz and Diekert, 2003).  

The genomes of Sulfurospirillum spp. harbor genes encoding different sets of [NiFe] 

hydrogenases which can be grouped either into hydrogen oxidizing or hydrogen producing 

hydrogenases. The marine species S. carboxydovorans and S. arcachonense show less 

variation, while S. cavolei exhibits an additional [FeFe] hydrogenase gene cluster unique to 

that organism (Tab. 1). In S. multivorans, four [NiFe] hydrogenases were found by genome 

sequencing and annotation which is discussed in depth in chapter 2.1 (Goris et al., 2014). 
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Briefly, a membrane-bound hydrogenase (MBH) presumbed catalyzes the oxidation of H2 

and transfers the electrons via a membrane-integral cytochrome b (HydC) to the 

menaquinone pool of a respiratory chain as shown for the close related MBH of Wolinella 

succinogenes (Dross et al., 1992; Gross et al., 2004). The second enzyme, HupSL, is 

closely related to the uptake hydrogenase 3 of Aquifex aeolicus and might be also involved 

in the reductive tricarboxylic acid (TCA) cycle by delivering low potential electrons or 

recycling hydrogen generated during nitrogen fixation mediated by a nitrogenase (Guiral et 

al., 2005; Ju et al., 2007). The third and fourth enzymes show similarities to energy-

converting membrane-bound hydrogen-producing [NiFe] hydrogenases (group 4). One 

(EchEDFC) is related to the CO-induced membrane-bound hydrogenase of 

Carboxydothermus hydrogenoformans which receives electrons from CO oxidation 

catalyzed by a CO dehydrogenase and reduces protons to H2 (Soboh et al., 2002). The 

fourth hydrogenase, Hyf, is related to Hyd3 (Hyc) and Hyd 4 (Hyf) of E. coli and to other 

epsilonpoteobacterial group 4 hydrogenases found in Arcobacter nitrofigilis and 

Campylobacter consicus (Appendix Fig. 1A, B).  

Table 1: Habitats, metabolic features and hydrogenase gene clusters of selected 
Sulfurospirillum isolates.  

Sulfurospirillum 
spp. 

Habitat Metabolism 

Hydrogenases 

[NiFe]  [FeFe] 

H2 oxidation  H2 production 

MBH Hup  Ech Hyf   

S. multivorans 
PCE-contaminated 

groundwater 

Versatile, 
organohalide 
respiration  

+ +  + +  - 

S. halorespirans + +  + +  - 

S. cavolei 
Petroleum-

contaminated 
groundwater 

Versatile 

+ +  + +  + 

S. deleyianum Pond sediment + -  + +  - 

S. arsenophilum 
Arsenic-contaminated 

sediments 
+ +  + +  - 

S. carboxydovorans 

Marine sediments 

+ -  - +  - 

S. arcachonense Sulfur 
reducer 

+ -  - +  - 
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The Hyc is a central component of the formate hydrogenlyase (FHL) complex and was 

shown to be involved in the mixed acid fermentation (Fig. 6A) (Doberenz et al., 2014; 

Knappe and Sawers, 1990; Sargent, 2016; Sawers, 1994). A second FHL complex (FHL-

2) in E. coli might be formed by the Hyf which is supported by the presence of genes coding 

for accessory proteins needed for formate oxidation (Fig. 6B, Appendix Fig. 1A) 

(Bagramyan and Trchounian, 2003; Pinske and Sawers, 2016; Sargent, 2016). The 

physiological role of the Hyf complex of S. multivorans remains unclear, since a PFL is not 

encoded in the genome. Instead of forming a FHL complex, the Hyf could dispose reducing 

equivalents it was reported for the group 4 hydrogenase of Pyrococcus furiosus (McTernan 

et al., 2015; Schut et al., 2013).  

Several studies revealed the presence of Sulfurospirillum spp. up to high abundancies (one-

third of the total bacterial population) in D.mccartyi-containing microbial communities and 

stated dechlorination and hydrogen utilization as the ecological role within these consortia 

(Dugat‐Bony et al., 2012; Rossetti et al., 2008; van der Zaan et al., 2009; Yohda et al., 

2015). Furthermore, the association of Sulfurospirillum and Dehalococcoides was already 

described in an enrichment culture obtained from PCE-contaminated groundwater (SL2) in 

which both were the predominant bacteria fulfilling a concerted PCE-to-ethene 

dechlorination (Maillard et al., 2011). In addition to the utilization of chlorinated 

hydrocarbons as electron acceptors, S. multivorans is able to utilize various other electron 

acceptors including fumarate, nitrate, sulfur, thiosulfate, arsenate, selenate or 5% oxygen 

(Goris and Diekert, 2016; Goris et al., 2014; Luijten et al., 2004; Scholz-Muramatsu et al., 

1995). This versatile metabolism enables S. multivorans and also other Sulfurospirillum spp. 

to participate in more diverse ecological cycles than the halogen cycle. The organisms are 

globally distributed and have been identified in marine and river sediments, 

hyperthermophilic deep-sea hydrothermal vents, groundwater aquifers, soil and even 

arsenate- and selenate-contaminated environments (Tab. 1) (Ahmann et al., 1994; Finster 

et al., 1997; Jensen and Finster, 2005; Luijten et al., 2003; Maillard et al., 2011; Stolz et al., 
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1999). Epsilonproteobacteria are ubiquitous and play significant roles in the global carbon, 

sulphur and nitrogen cycles (Campbell et al., 2006; Corre et al., 2001; Gevertz et al., 2000; 

Nakagawa et al., 2005). In such roles, they are known to utilize hydrogen exclusively as 

electron donors in addition to sulphur and formate (Campbell et al., 2006). Cultivation 

experiments, molecular methods (e.g. FISH) and genome sequencing in combination with 

phylogenetical 16S rRNA gene analysis gave first insights into the phylogenetic diversity 

and ecophysiology of this phylum. However, the physiological properties and metabolic 

flexibilities raise additional questions about their interaction with other microorganisms in 

microbial communities, and further studies are needed to improve our understanding of the 

symbiotic and especially syntrophic relationships of these organisms. 

1.5  The obligate organohalide respiring Dehalococcoides mccartyi 

The genus Dehalococcoides, within the phylum Chloroflexi, comprises the only known 

organisms so far to completely dechlorinate the carcinogenic PCE to the benign ethane and 

are classified as the same species, Dehalococcoides mccartyi (Löffler et al., 2013b). In 

contrast, other OHRB are only capable of dechlorinating PCE to cDCE (Fig. 4) (Futagami 

et al., 2008; Lorenz and Löffler, 2016). In the past 15 years, several other Dehalococcoides 

strains have followed the original isolation of strain 195 exhibiting different dechlorination 

characteristics (He et al., 2005; Maymó-Gatell et al., 2001). Additionally, Dehalococcoides-

containing enrichments and mixed cultures were shown to completely dechlorinate PCE to 

ethene (Fig. 4). Strain BTF08 was enriched with PCE up to >98% from the heavily polluted 

megasite in the Bitterfeld region (Germany). The residual population was identified by 16S 

rRNA gene clone libraries to be closely related to Sulfurospirillum spp. (99%) (Cichocka et 

al., 2010; Pöritz et al., 2013). Despite the different dehalogenation spectrum, all 

Dehalococcoides strains described so far are restricted to organohalide respiration and 

exclusively utilize hydrogen as an electron donor (Maymó-Gatell et al., 1997). 
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Figure 4: Comparison of PCE dechlorination capabilities among different bacterial genera. 
Solid arrows indicate a coupling of dechlorination to growth and energy conservation. Dashed arrows 
represent a cometabolic degradation. 
 

Another common feature of all strains is an unusual cell morphology and electron 

microscopic analysis exhibiting small, disc-shaped cells (0.4 – 0.5 µm in diameter and 0.1 

to 0.2 µm thickness) with irregular biconcave emarginations on both flat sides (Löffler et al., 

2013b). The cell surface sometimes exhibits filamentous attachments which might play a 

role in cell aggregation and could enable a cell-to-cell contact (Lendvay et al., 2003). On 

thin-section electron micrographs, no peptidoglycan layer were visible and the cell wall 

ultrastructure resembled the S-layer structure of archaeal cell walls (Albers and Meyer, 

2011). The lack of peptidoglycan enables a resistance to antibiotics and also permits growth 

in the presence of vancomycin and ampicillin which is used to enrich Dehalococcoides 

mccartyi (Löffler et al., 2013b; Maymó-Gatell et al., 1997).  

The high degree of specialization and restriction to organohalide respiration is also reflected 

in the highly streamlined Dehalococcoides genomes, containing 5 to 38 different rdhA 

genes (McMurdie et al., 2009; Seshadri et al., 2005; Türkowsky et al., 2018). Elucidation of 

2[H] H+ Cl- 2[H] H+ Cl- 2[H] H+ Cl- 2[H] H+ Cl-

Tetrachloroethene
(PCE)

Trichloroethene
(TCE)

cis-1,2-
Dichloroethene

(cDCE)
Vinyl chloride

(VC)
Ethene

Cl

ClCl

Cl

H

ClCl

Cl H

ClCl

H H

ClH

H

H

HH

H

ε-/δ-Proteobacteria, Firmicutes

Sulfurospirillum multivorans, S. halorespirans

Desulfitobacterium hafniense strains Y51 & DCB-2

Dehalobacter restrictus

Geobacter lovleyi

Dehalococcoides mccartyi strain 195

Dehalococcoides mccartyi strains VS & GT

Dehalococcoides mccartyi strain BAV1

Chloroflexi

Dehalococcoides mccartyi strain BTF08



INTRODUCTION 

 

 
16 

 

the RDase substrate spectra remains due to the low biomass production a challenging aim 

and needs more biochemical studies. Up to date, only a few RDases with distinct functions 

assigned have been identified by micro array, transcriptional studies and analysis of 

proteins loaded onto native PAGEs (Krajmalnik-Brown et al., 2004; Kublik et al., 2016; 

Magnuson et al., 2000; Parthasarathy et al., 2015). Even the prediction of the substrate 

range from the amino acid sequence cannot be applied, since orthologs with up to 99% 

sequence identity show no transcription on the desired substrates compared to their 

counterparts (Türkowsky et al., 2018). Despite their dependence on corrinoids as cofactors 

for RDases, the de novo vitamin B12 biosynthesis is incomplete and the corrin ring cannot 

be synthesized in D. mccartyi. Although, all genes necessary for corrinoid salvaging and 

remodeling are clustered with a duplicate in strain 195 and a single gene cluster in BTF08 

(Appendix Tab. 1, Appendix Fig. 2) (Seshadri et al., 2005). Salvaging of exogenous 

corrinoids includes the uptake by a corrinoid specific ABC transporter (BtuFCD) and their 

modification (Fig. 5). Only three types of B12 are functional for D. mccartyi strain 195 and 

can be directly used for incorporation into the RDases: cobalamin (with DMB as lower 

ligand), 5-methylbenzimidazolyl-cobamide ([5-MeBza]Cba) and 5-methoxybenzimidazolyl-

cobamide ([5-OMeBza]Cba) (Fig. 5 A,B) (Escalante-Semerena, 2007; McMurdie et al., 

2009; Yi et al., 2012). Non-functional B12 types are modified and remodeled by CbiBZ and 

CobCDSTU. The original lower ligands are replaced by 5,6-dimethylbenzimidazol (DMB), 

5-methylbenzimidazol (5-MeBza) or 5-methoxybenzimidazol (5-OMeBza) catalyzed by the 

cobinamide amidohydrolase CbiZ, which was shown to remove the nucleotide loop and 

lower ligand of the non-functional adeninylcobamide in Rhodobacter sphaeroides (Fig. 5C) 

(Gray and Escalante-Semerena, 2009a). Even the functional [5-MeBza]Cba was remodeled 

into cobalamin in the presence of DMB suggesting a high preference for DMB as lower 

ligand (Yi et al., 2012). 
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Figure 5: Salvaging and remodeling pathways of different corrinoids in D. mccartyi. (A) 
Complete cobamide (Cba) is shown with 5,6-dimethylbenzimidazole (DMB) as lower ligand (in box) 
and structures of cobinamide (Cbi) and cobyric acid (Cby) are indicated by brackets. (B) Possible 
upper ligands of corrinoids and linker found in S. multivorans and D. mccartyi. Depiction of lower 
ligands functional in corrinoids of RDases in D. mccartyi (framed in coloured boxes) and adenine, 
the lower ligand also found in norpseudo-B12 of S. multivorans. (C) Salvaging and remodeling of 
corrinoids in D. mccartyi. Complete corrinoids or derivatives are imported by BtuFCD and salvaging 
occurs by cbiZ- and cbiB-dependent pathway or the cobU-dependent pathway. CobA fuses 
deoxyadenosine (Ado) as upper ligand to the cobalt. Remodeled cobamides (without lower ligand 
and nucleotide loop) receives the aminopropanol nucleotide loop and an imported and activated 
lower ligand. DMB - 5,6-dimethylbenzimidazol, 5-MeBza - 5-methylbenzimidazol, 5-OMeBza - 5-
methoxybenzimidazole.  
 

Due to their nutritional requirements, relying on hydrogen as electron donor, acetate as 

carbon source and corrinoids as cofactors of RDases, D. mccartyi strains are highly 

dependent on their surrounding microbial community providing all of these substrates and 
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growth factors (Fig. 1 & 2). Several studies revealed the interspecies hydrogen transfer and 

the exchange of other metabolites and growth factors between D. mccartyi strains and 

fermenting bacteria. In these studies, the interspecies hydrogen transfer and the exchange 

of other metabolites and growth factors were observed. The association with potential 

fermenting bacteria, such as Desulfovibrio desulfuricans, Desulfovibrio vulgaris 

Hildenborough, Acetobacterium woodii or Syntrophomonas wolfei was shown to be highly 

beneficial for D. mccartyi, and co-cultivation with one of these bacteria enabled faster 

dechlorination, higher growth rates and biomass production compared to pure cultures (He 

et al., 2007; Mao et al., 2015; Men et al., 2014). In addition to metabolite exchanges, 

different types of corrinoids are provided by the microbial community. For example, 

Desulfovibrio, Acetobacterium, Clostridium, Sporomusa and methanogenic archaea often 

found in Dehalococcoides-containing communities are reported to produce corrinoids with 

different lower ligand bases (Guimarães et al., 1994; Stupperich et al., 1988; Stupperich 

and Kräutler, 1988; Yan et al., 2012). An interspecies cobamide transfer was demonstrated 

in a co-culture of D. mccartyi strains BAV1 and FL2 with Geobacter lovleyi, the 

methanogenic Methanosarcina barkeri strain Fusaro and the acetogen Sporomusa ovata 

(Yan et al., 2013; Yan et al., 2012).  

The high adaptation to a large variety of organohalides as electron acceptors and the unique 

characteristic to completely dechlorinate PCE to ethene, makes D. mccartyi a promising 

candidate for in situ bioremediation technologies. The introduction of Dehalococcoides-

containing mixed cultures into contaminated groundwater and soil is currently being 

performed as the subject of several on-going research projects. Long-term field studies 

have already demonstrated a successful and promising outcome of this special type of 

bioaugmentation (McCarty, 2010; Stroo et al., 2013). 
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1.6  Aims of the study 

Besides the putative involvement of the membrane-bound hydrogenase in hydrogen 

oxidation, little was known about the hydrogen metabolism of Sulfurospirillum multivorans, 

which is a model organism for organohalide respiration. Especially the detection of four 

[NiFe] hydrogenase gene clusters in its genome suggest a more complex hydrogen 

metabolism than restricted to organohalide respiration. The presence of a potential 

hydrogen-evolving hydrogenase, also in other Sulfurospirillum spp., might allow hydrogen 

evolution under certain growth conditions. However, experimental evidence for these 

functions is pending. 

First, biochemical characterization as well as transcriptional analysis should reveal the 

hydrogen metabolism and the physiological roles of the four hydrogenases of S. 

multivorans. An enrichment and proteinbiochemical analysis of the uptake hydrogenase 

could provide insight into the subunit composition of these enzymes and activity assays with 

quinone analogous might suggest an interaction with the organohalide respiratory chain. 

Hydrogen production mediated by one or both of the putative hydrogen-evolving enzymes 

should be elucidated in fermentative cultivation experiments and in comparative proteomic 

studies  

Furthermore, the presumed hydrogen production could represent a novel ecological role of 

Sulfurospirillum spp, since the organisms are hitherto exclusively recognized as hydrogen 

consumers. A co-culture approach with hydrogen-consuming bacteria would proof the 

ability of Sulfurospirillum spp to act as a hydrogen-producing syntrophic partner in microbial 

food webs. Finally, possible syntrophic relations could be characterized when the syntrophic 

interactions within OHRB communities could be unraveld when co-cultivating the organism 

with another organohalide-respiring bacterium, Dehalococcoides mccartyi. An interspecies 

hydrogen transfer between both based on an obligate relationship might enable a complete 

dechlorination of PCEat higher rates compared to the pure cultures.  
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2.1 The NiFe Hydrogenases of the Tetrachloroethene-Respiring 

Epsilonproteobacterium Sulfurospirillum multivorans: Biochemical 

Studies and Transcription analysis 

 

  Kruse S*, Goris T*, Wolf M, Wei X, Diekert G (2017) Frontiers in Microbiology 

8:444 

 
 *These authors contributed equally to this work. 
 
 
 
Genome sequencing of the organohalid-respiring epsilonproteobacterium Sulfurospirillum 

multivorans revealed genes coding for four different NiFe hydrogenases of unknown 

physiological function. The involvement of these enzymes in the hydrogen metabolism and 

their regulation in this organism was investigated for the first time. Quantitative real-time 

PCR analysis of hydrogenase transcript levels showed a transcription of only two 

hydrogenases: a putative uptake hydrogenase and a putative hydrogen producing 

hydrogenase. Enzyme activity assays and protein biochemical analysis of an enrichment of 

the uptake hydrogenase suggested a periplasmic membrane-bound enzyme being the 

electron donating system for the organohalide respiratory chain.  

 

 

My own contributions to this publication covers about: 45%. 

All quantitative real-time PCR experiments, enzyme assays, enrichments and biochemical 

analysis presented in this publication were performed by myself. Tobias Goris and Gabriele 

Diekert initiated and supervised the study. Design of the experiments, analysis of data and 

drafting of the manuscript were done by Tobias Goris and Stefan Kruse. Initial biochemical 

experiments and initial transcription analysis were done by Xi Wei and Maria Wolf. 

 

 

Supplementary information is given in appendix, pp. v - ix 
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2.2 Hydrogen production by Sulfurospirillum spp. enables syntrophic 

interactions of Epsilonproteobacteria 

 
 Kruse S*, Goris T*, Lorenz A, Westermann M, Diekert G 
 

 *These authors contributed equally to this work. 
 
 submitted to Nature Communications 
 
 available on bioRxiv since December 22, 2017 
 
 
 
 
Based on the previous study investigating the hydrogen metabolism of Sulfurospirillum 

multivorans, the hydrogen production capacity and metabolism of several Sulfurospirillum 

spp. and an involvement of the putative hydrogen producing hydrogenase was elucidated. 

Cultivation experiments on a fermentative growth condition revealed a hydrogen production 

of Epsilonproteobacteria for the first time which were described and characterized as 

hydrogen consumers exclusively. Enzyme assays, comparative proteomics and genomics 

showed two different pyruvate fermentation pathways among the tested Sulfurospirillum 

spp. and a multisubunit, membrane-bound hydrogenase was identified being responsible 

for the hydrogen production. Furthermore, the hydrogen production capacity of S. 

multivorans allocated a new ecological role as a syntrophic partner in microbial 

communities and an interspecies hydrogen transfer with a hydrogen consuming 

methanogen in a co-culture experiment was observed. 

 

My own contributions to this publication covers about: 50%. 

All growth experiments and enzyme assays were conducted by myself. The mass 

spectrometric measurements were done in cooperation with Lorenz Adrian (Centre for 

Environmental Research, Leipzig). Electron microscopy was done in cooperation with 

Martin Westermann (University Hospital Jena). Tobias Goris and Gabriele Diekert initiated 

and supervised the study. Design of the experiments, analysis of data and drafting of the 
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Abstract 

Hydrogen-producing bacteria are of environmental and biotechnological importance in anoxic 

environments, since hydrogen is an important electron donor for prokaryotes and of interest as an 

alternative energy source. Epsilonproteobacteria, inhabiting ecologically, clinically or 

biotechnologically relevant environments, are currently considered to be hydrogen-oxidizing bacteria 

exclusively. Here, we report hydrogen production upon pyruvate fermentation for a genus of free-

living Epsilonproteobacteria, Sulfurospirillum spp., which inhabit e.g. sediments, wastewater plants, 

bioelectrodes, oil reservoirs, contaminated areas, and marine habitats. The amount of hydrogen 

production was largely different in two subgroups of Sulfurospirillum spp., represented by S. cavolei 

and S. multivorans. The former is shown to be the more potent hydrogen producer and excretes 

acetate as sole organic acid, while the latter exhibited a more flexible fermentation, producing 

additionally lactate and succinate. The observed hydrogen production could be assigned to a group 

4 hydrogenase similar to hydrogenase 4 (Hyf) in E. coli. We propose that Sulfurospirillum spp. 

produce molecular hydrogen with electrons derived from pyruvate oxidation by pyruvate:ferredoxin 

oxidoreductase and reduced ferredoxin. This hypothesis is supported by comparative proteome 

data, in which both PFOR and ferredoxin as well as hydrogenase 4 are up-regulated in fermentatively 

cultivated cells. A co-culture experiment with S. multivorans and Methanococcus voltae cultivated 

with lactate as sole substrate shows a syntrophic interaction between both organisms, since the 

former cannot grow fermentatively on lactate alone and the latter relies on hydrogen as electron 

donor. This opens up new perspectives on microbial communities, since Epsilonproteobacteria could 

play a yet unrecognized role as hydrogen producers in anoxic microbial communities.  

 

Introduction 

Hydrogen gas (H2), an important energy substrate for many bacteria and archaea, plays a crucial 

role in the anaerobic food web, e.g. in syntrophic interactions. It is produced by fermenting bacteria 

as a result of the disposal of excess reducing equivalents. Other prokaryotes may use it as an 

electron donor for e.g. sulfate respiration or methanogenesis. In syntrophic interactions, the H2-

producing bacterium is dependent on the H2 uptake by its syntrophic partner, which sustains a low 

H2 partial pressure and thus enables H2 production, which would otherwise thermodynamically be 

unfavorable1-3. For example, butyrate, propionate or acetate-oxidizing anaerobic bacteria that form 

H2 as fermentation product are dependent on H2-oxidizing microorganisms such as methanogenic 

archaea4-6. It was shown that the interspecies H2 transfer becomes more efficient when syntrophs 

and methanogens are in close physical contact7,8. The syntrophic degradation of propionate by a 

co-culture of Pelotomaculum thermopropionicum and Methanothermobacter thermoautotrophicus as 

well as butyrate degradation coupled to organohalide respiration by Syntrophomonas wolfei and 

Dehalococcoides mccartyi 195 resulted in aggregate formation and cell-to-cell contact of the involved 

organisms9,10. In addition to the importance of H2 in microbial food webs, H2 is considered to be an 
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alternative energy source and biohydrogen production by microorganisms is discussed as one way 

to generate environmentally compatible fuels11. 

Epsilonproteobacteria are hitherto considered to be H2-consuming organisms exclusively and 

H2-oxidizing enzymes of only a few Epsilonproteobacteria are characterized so far, e.g. the 

membrane-bound uptake hydrogenases of Helicobacter pylori and Wolinella succinogenes12,13. H2 

production has never been shown to be performed by any Epsilonproteobacterium so far, although 

in recent years several Epsilonproteobacteria, especially marine, deep vent-inhabiting species, were 

reported to encode putative H2-evolving hydrogenases in their genomes14-22. Sulfurospirillum spp. 

are free-living, metabolically versatile Epsilonproteobacteria, many of which are known for their 

ability to respire toxic or environmentally harmful compounds such as arsenate, selenate or 

organohalides (e.g. tetrachloroethene - PCE)23,24. The anaerobic respiration with PCE, leading to the 

formation of cis-1,2-dichloroethene (cDCE), was studied in detail in S. multivorans (formerly known 

as Dehalospirillum multivorans)26,27. Several Sulfurospirillum spp. were found in contaminated 

sediments, wastewater plants, marine environments or on biocathodes19,23,27,28. The role of 

Sulfurospirillum in such environments is unclear.  

In previous studies, four gene clusters, each encoding a [NiFe] hydrogenase, were found in the 

genome of S. multivorans20 and most other Sulfurospirillum spp.23. Two of these appear to be 

H2-producing, the other two are potential H2-uptake enzymes as deduced from sequence similarity 

to known hydrogenases. Of these four hydrogenases, one of each type, H2-oxidizing and H2-

producing, were previously detected in S. multivorans26,29. The periplasmically oriented H2-oxidizing 

enzyme is very similar to the characterized W. succinogenes and H. pylori membrane-bound 

hydrogenase (MBH). It comprises three subunits, the large subunit, harboring the NiFe active site, a 

small subunit for electron transfer with three FeS clusters, and a membrane-integral cytochrome b. 

The putative H2-producing, cytoplasmically oriented enzyme (Hyf) is a large, complex enzyme with 

eight subunits, four of them presumably membrane-integral. Regarding amino acid sequence and 

subunit architecture, this hydrogenase is similar to hydrogenase 4 of E. coli, part of a putative second 

formate hydrogen lyase (FHL)44. However, in S. multivorans, Hyf is unlikely to form an FHL complex 

since the corresponding gene cluster does not encode any formate-specific proteins as is the case 

for the FHL complexes in E. coli (Supplementary Figure 1). 

Here, we show that several Sulfurospirillum spp. produce H2 upon pyruvate fermentation. S. cavolei 

was observed to produce more H2 than other Sulfurospirillum spp., which is caused by a different 

fermentation metabolism. To unravel the metabolism and the hydrogenase equipment of both 

organisms, label-free comparative proteomics was carried out. A co-culture experiment of S. 

multivorans with the methanogenic archaeon Methanococcus voltae revealed an interspecies H2 

transfer between both organisms suggesting a hitherto undiscovered contribution of Sulfurospirillum 

spp. and other Epsilonproteobacteria to the microbial anaerobic food web as H2 producers.  
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Methods 

Cultivation of bacteria 

S. multivorans (DSMZ 12446) was cultivated under anaerobic conditions at 28°C in a defined mineral 

medium30 without vitamin B12 (cyanocobalamin). Pyruvate (40 mM) was used as electron donor and 

fumarate (40 mM) as electron acceptor. For fermentation experiments, all cultivations were 

performed with pyruvate (40 mM) or lactate (40 mM) as sole energy source in the absence of an 

electron acceptor and without yeast extract. Bacteria were grown in serum bottles with a ratio of 

aqueous to gas phase of 1:1. If not stated otherwise, the gas phase was N2 (150 kPa). For the 

cultivation with 100% H2 in the gas phase, nitrogen was completely removed after autoclaving by 

flushing with H2 and an overpressure of 50 kPa was applied. Fermentation balance experiments 

were performed at 28°C in 1 L Schott bottles placed in a Fermentation apparatus to allow for the 

expansion of the gases during the cultivation and to determine the stoichiometry of dissolved and 

gaseous fermentation products (Supplementary Figure 2). For CO2 quantification, the gas phase of 

the Schott bottle was connected via a tube to a washing flask filled with 200 mL 4 M KOH to bind 

produced CO2 as carbonate. Downstream, the gas phase of the washing flask was further connected 

to a water-filled measuring cylinder placed up-side down in a water bath. The amount of H2 was 

determined volumetrically viathe displaced volume of water in the measuring cylinder that correlates 

with the amount of H2 produced. The concentration was calculated using the ideal gas equation. The 

adaptation experiment included a transfer in the next sub-cultivation step every 48 h with 10% 

inoculum. Clostridium pasteurianum W5 was cultivated in anoxic media composed of 1 L basal 

medium (autoclaved) supplemented with the following anoxic solutions: 100 mL phosphate buffer 

(142 g L-1 K2HPO4, 15 g L-1 KH2PO4) and 5 mL iron solution (10 g L-1 FeSO4 · 7 H2O). The basal 

medium contained per L 142 mg NaCl, 1.42 g NH4Cl, 284 mg MgSO4· 7 H2O, 14.2 mg 

Na2MoO4 · 2 H2O, 28.4 mg D(+) biotin and 1.42 mg 4-aminobenzoate. Cells were grown in rubber-

stoppered serum bottles with a ratio of aqueous to gas phase of 1:4. Pyruvate (40 mM) and glucose 

(20 mM) were used as substrates. Desulfitobacterium hafniense DCB-2 was cultivated in medium 

described previously31. The medium composition of the co-culture of S. multivorans and 

Methanococcus voltae DSMZ 1537 was identical to that described by Whitman et al.32, except that 

5 g L-1 NaCl were added. Electron donor was 15 mM lactate. C. pasteurianum W5, D. hafniense 

DCB-2 and E. coli JM109 were taken from the strain collection of our laboratory and M. voltae was 

obtained from the German Collection of Microorganism (DSMZ, Braunschweig, Germany). 

Cell harvesting and preparation of cell suspensions and subcellular fractions 

S. multivorans, S. cavolei and C. pasteurianum W5 cells were harvested in the mid-exponential 

growth phase in an anoxic glove box (COY, 134 Laboratory, Grass Lake, Michigan, USA) by 

centrifugation (12,000 x g, 10 min at 10°C). For the preparation of cell suspensions, the obtained cell 

pellets were washed twice in anoxic 100 mM MOPS-KOH-buffer (pH 7.0) and resuspended in two 

volumes (2 mL per g cells) of the same buffer. Subcellular fractionation was done by washing the 

cell pellet twice in 50 mM Tris-HCl (pH 8.0) and resuspension (2 mL per g cells) in the same buffer 
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containing DNaseI (AppliChem, Darmstadt, Germany) and protease inhibitor (one tablet for 10 mL 

buffer; complete Mini, EDTA-free; Roche, Mannheim, Germany). The resuspended cells were 

disrupted using a beadmill (10 min at 25 Hz; MixerMill MM400, Retsch GmbH, Haan, Germany) with 

an equal volume of glass beads (0.25–0.5 mm diameter, Carl Roth GmbH, Karlsruhe, Germany). 

The crude extracts were separated from the glass beads by centrifugation (14,000 x g, 2 min) under 

anaerobic conditions and ultracentrifuged (36,000 x g, 45 min at 4°C). The obtained supernatants 

were considered as soluble fractions (SF). The pellets were washed twice with 50 mMTris-HCl (pH 

8.0) including protease inhibitor (one tablet for 10 mL buffer; cOmplete Mini, EDTA-free; Roche, 

Mannheim, Germany) and resuspended in the same buffer. The suspension was stated as 

membrane fraction (MF).  

Measurement of hydrogenase activity 

H2 oxidizing activity was measured in H2-saturated buffer (50 mMTris-HCl, pH 8.0) with 1 mM benzyl 

viologen (BV) or methyl viologen (MV) at 30°C as artificial electron acceptors. The reduction of the 

redox dyes was followed at 578 nm using a Cary 100 spectrophotometer (Agilent Technologies, 

Waldbronn, Germany). H2-evolving activities of cell extracts were determined gas 

chromatographically with 1 mM MV as electron donor: MV was reduced with 20 mM sodium dithionite 

in an anoxic buffer system (50 mMTris-HCl, pH 8.0). Protein concentration was determined 

according to the method of Bradford33. Hydrogenase enzyme activities are given in nanokatal units 

(1 nmol H2 evolved per second). 

Analytical methods 

Liquid samples were taken anaerobically, filtered with 0.2 µm-syringe filters (MiniSart RC4, Sartorius, 

Göttingen, Germany) and acidified with concentrated H2SO4 (2.5 µL mL-1 sample volume). Organic 

acids were separated by HPLC at 50°C on an AMINEX HPX-87H column (7.8 x 300 mm,BioRad, 

Munich, Germany) with a cation H guard pre-column using 5 mM H2SO4 as mobile phase at a flow 

rate of 0.7 mL min-1. The injection volume was 20 µL per sample. All acids (e.g. pyruvate, acetate, 

lactate, succinate and fumarate) were monitored by their absorption at 210 nm. Retention times were 

compared to known standards and concentrations were calculated using calibration curves. H2 was 

measured gas chromatographically with 99.999% argon as the carrier gas using a thermal 

conductivity detector (AutoSystem, Perkin Elmer, Berlin, Germany). Samples for gas analysis were 

taken from the gas phase with gas-tight syringes (Hamilton, Bonaduz, Switzerland). Concentrations 

were calculated using calibration curves. CO2 formed during the cultivation was determined 

gravimetrically. To 15 mL of the solution of the CO2 trap 7.5 mL NH4Cl (1 M) and 15 mL BaCl2 (1 M) 

were added and the pH was adjusted to 9 with concentrated HCl (37%). After stirring for 2 h at room 

temperature, the precipitated barium carbonate was filtered with filter circles and dried over night at 

80°C. 
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Isolation of RNA, reverse transcription (RT) and polymerase chain reaction (PCR) 

Total RNA from three independent S. cavolei cultures was isolated from cells in the mid-exponential 

growth phase using the RNeasy minikit (Qiagen, Hilden, Germany). Residual genomic DNA (gDNA) 

in the RNA samples was removed with DNase I (RNase free; Roche, Mannheim, Germany). RNA 

quality was checked by visual inspection after agarose gel electrophoresis using distinct rRNA bands 

as control. Synthesis of cDNA was done with 1 µg RNA as starting material in the RevertAid First 

Strand cDNA Synthesis kit (Thermo Scientific, Schwerte, Germany). The RT-PCE mixture contained 

1 µg RNA, 2.5 µL reverse primer, 2 µL 10 mM dNTP mix and 3.5 µL 5x reaction buffer and PCR-

grade water (Fermentas, St. Leon Rot, Germany) was added to a final volume of 17.5 µL. ReverseAid 

Reverse transcriptase (RT, 0.5 µL, 200 U mL-1) was added to 10.5 µL of the mixture (positive control), 

residual 7 µl of the reaction mixture without RT were used as negative control. Reaction mixtures 

were incubated for 1 h at 42°C, the reaction was stopped for 5 min at 72°C. PCR was performed 

with each 1 µL of positive and negative reactions, 2.5 µL forward and reverse primer, 1 µL 10 mM 

dNTP mix, 2.5 µL 10x reaction buffer, 14.5 µL PCR-grade water (Fermentas, St. Leon Rot, Germany) 

and 1 µL Taq polymerase (0.1 U µL-1, Thermo Scientific, Schwerte, Germany) in a thermocycler 

(Mastercycler, Personal, Eppendorf, Hamburg) with the following program: 95°C for 5 min, 30 cycles 

of 95°C 1 min, 52°C for 30 s, 72°C for 1 min and final elongation at 72°C for 10 min. S. halorespirans 

gDNA was isolated using the innuPREP Bacteria DNA kit (Analytik Jena AG, Jena, Germany) 

according to the manufactorer’s instructions. Quality of the extracted DNA was confirmed by gel 

electrophoresis. The PCR reaction mixture contained 1 µg DNA, 2.5 µL forward and reverse primer, 

1.5 µL 10 mM dNTP mix, 5 µL HF reaction buffer and 0.5 µL Phusion DNA polymerase (2 U µL-1, 

Thermo Scientific, Schwerte, Germany). The mix was filled up to 25 µl with PCR-grade water 

(Fermentas, St. Leon Rot, Germany). The PCR program included following steps: 96°C for 5 min, 

30 cycles of 96°C 1 min, 60°C for 30 s, 72°C for 30 s and final elongation at 72°C for 10 min in a 

thermo cycler (Mastercycler, Personal, Eppendorf, Hamburg). Used primer pairs are listed in 

Supplementary Table 4. 

Field emission-scanning electron microscopy (FE-SEM) 

Field emissionscanning electron microscopy (FE-SEM) was performed with co-cultures of 

S. multivorans and Methanococcus voltae. After incubation of 3 mL culture in 2.5% glutaraldehyde 

for 15 min, the cells were pre-fixed for 2 h on poly-L-lysin coated cover slides (12 mm, Fisher 

Scientific, Schwerte, Germany). Washing of cover slides was done using 0.1 M sodium cacodylate 

(pH 7.2) (>98% purity, Sigma Aldrich, Steinheim, Germany) for three times. Subsequently, cells were 

post-fixed with 1% osmium tetroxide in the same cacodylate buffer and dehydrated with different 

ethanol concentrations. Critical point drying was done in a Leica EM CPD200 Automated Critical 

Point Dryer (Leica, Wetzlar, Germany) and the samples were coated with 6 nm platinum in a BAL-

TEC MED 020 Sputter Coating System (BAL-TEC, Balzers, Liechtenstein). They were visualized at 

different magnifications using a Zeiss-LEO 1530 Gemini field emission scanning electron microscope 

(Carl Zeiss, Oberkochen, Germany).  
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Sample preparation, mass spectrometry and proteome data analysis 

Protein concentration of extracted proteins was determined using a Bradford reagent (Bio-Rad, 

Munich, Germany) with bovine serum albumin as standard. For protein identifications 20 µg of crude 

extracts were first cleaned from cations and cell debris by running shortly into an SDS gel. For this, 

the gel was run at 13 mA until the proteins entered the separating gel at a depth of about 3-5 mm. 

Then the protein band was cut out, reduced, alkylated and proteolytically digested with trypsin 

(Promega, Madison, WI, USA) and subsequently desalted with C18 ZipTips as described34. 

Mass spectrometry was performed using an Orbitrap Fusion (Thermo Fisher Scientific, Waltham, 

MA, USA) coupled to a TriVersa NanoMate (Advion, Ltd., Harlow, UK). 5 µL of the peptide solution 

were separated with a Dionex Ultimate 3000 nano-LC system (Dionex/Thermo Fisher Scientific, 

Idstein, Germany) using a 15 cm analytical column (Acclaim PepMap RSLC, 2 µm C18 particles, 

Thermo Scientific) at 35°C.. Liquid chromatography was done with a constant flow of 300 nL min-1 

with a mixture of solvent A (0.1% formic acid) and B (80% acetonitrile, 0.08% formic acid) in a linear 

90 min gradient of 4% to 55% solvent B.  

MS1 scans were taken with a cycle time of 3 s in the Orbitrap mass analyzer between 350 and 

2,000 m/z at a resolution of 120,000, automatic gain control (AGC) target 4×105, maximum injection 

time 50 ms. Data-dependent acquisition (DDA) was employed selecting for highly intense ions 

(>5×104) and charge state between +2 and +7 with a precursor ion isolation windows of 1.6 m/z. 

Fragmentation was done via higher energy dissociation (HCD) at 30% energy, and also measured 

in the Orbitrap analyzer at a resolution of 120,000 with an AGC target of 5×104 and a maximum 

injection time of 120 ms. Fragmentation events were done within the 3 s of cycle time until the next 

MS1 scan was done excluding the same mass (±10 ppm) for further precursor selection for 45 s. 

Mass spectrometric data were analyzed with Proteome Discoverer 1.4 (Thermo Scientific) against 

the NCBI S. multivorans database (CP007201.1) with the search engines SequestHT and MS 

Amanda. Oxidation of methionine was set as dynamic, carbamidomethylation of cysteine as static 

modification; two missed cleavages were accepted, mass tolerance of MS1 and MS2 measurements 

were set to 5 ppm and 0.05 Da, respectively. A percolator false discovery rate (FDR) threshold of 

<0.01 was set for peptide identification. Label-free quantification of proteins was done with the area 

of the three most abundant peptides of each protein. The values were logarithmized (log10) and 

normalized (see Supplementary Dataset 1) and a two-tailed T-test was applied. Significance values 

(p-values) of <0.05 were considered to indicate statistical significance. Only proteins identified in at 

least two of the three replicates were quantified, otherwise, proteins were considered to be identified 

but were not quantified 
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Results 

1. Adaptation of Sulfurospirillum multivorans to pyruvate-fermenting conditions 

In previous studies, S. multivorans and other Sulfurospirillum spp. were shown to grow fermentatively 

on pyruvate23,30,35. Only few data on growth behavior are available in the literature, but S. multivorans 

was reported to exhibit poor growth on pyruvate as sole energy source compared to respiratory 

growth with pyruvate and fumarate or tetrachloroethene (PCE) as electron acceptor30. However, we 

observed an adaptation of S. multivorans to fermentative growth on pyruvate. After about twenty 

transfers with 10% inoculum each, a growth rate of 0.09 h-1 was determined (growth rate on 

pyruvate/fumarate, 0.19 h-1, Figure 1). During the adaptation to pyruvate fermentation, the growth 

rate increased on average by 0.02 h-1 with each transfer (Supplementary Figure 3). In addition, the 

lag phase duration decreased from initially 40h to 5h. After 18 transfers, no further significant 

increase of the growth rate was observed. This adaptation process was also observed for S. cavolei, 

S. delyianum and S. arsenophilum. For S. barnesii and S. halorespirans, no growth on pyruvate 

alone was detected, even after several subcultivation steps. 

 

Figure 1: Adaptation of S. multivorans to pyruvate-fermenting conditions. A) Growth curves with pyruvate 
as sole growth substrate after three and twenty-five transfers; A culture with pyruvate/fumarate after three 
transfers is shown for comparison. B) Growth during continuous transfer on pyruvate without electron acceptor. 
Each transfer (10% inoculum) was done after 48 hours cultivation. Data were obtained from at least two 
independent biological replicates and are representatives. T - number of transfer step, Pyr - pyruvate, Fum - 
fumarate, OD578 - optical density at 578 nm. 
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2. Fermentative growth and H2 production by Sulfurospirillum spp.  

To get deeper insight into the fermentation pathways and H2 production capabilities of 

Sulfurospirillum spp., several species were cultivated with pyruvate as sole substrate. Six species 

were tested for pyruvate fermentation, of which S. barnesii and S. halorespirans were not able to 

grow even after cultivation for several months. S. cavolei, S. deleyianum and S. arsenophilum were 

able to grow on pyruvate alone and showed the same adaptation behavior as S. multivorans, albeit 

they grew at slower rates (0.03 h-1, 0.06 h-1, and 0.004 h-1, respectively). H2 production was 

measured for all fermentatively growing Sulfurospirillum spp., but the produced amount differed, 

depending on the species. S. cavolei produced the highest amount of H2 followed by S. 

arsenophilum. S. deleyianum and S. multivorans produced about 100 µmol H2 per 100 mL culture. 

D. hafniense DCB-2, a known pyruvate-fermenting organohalide-respiring bacterium grows similar 

to Sulfurospirillum spp. (Figure 2A) but produced only minor amounts of H2 (20 µmol) (Figure 2b). 

Fermentative growth on lactate was not observed for any of the organisms including D. hafniense 

DCB-2 even after cultivation for several months. 

Figure 2: Growth (A) and H2 production (B) by Sulfurospirillum spp. and D. hafniense strain DCB-2 
during fermentative growth on 40 mM pyruvate after adaptation. The graph is a representative of three 
independent replicates. S.m. - S. multivorans, S.d. - S. deleyianum, S.c. - S. cavolei, S.a. - S. arsenophilum, 
D.h. - D. hafniense DCB-2. 
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3. Fermentative metabolism of S. multivorans and S. cavolei 

To unravel the fermentative metabolism of two Sulfurospirillum spp. showing different H2 production 

patterns during growth on pyruvate, S. multivorans and S. cavolei were cultivated in a fermentation 

apparatus in which the gas phase of the Schott bottle was connected to CO2 and H2 traps (see 

Supplementary Figure 2) to avoid increasing gas partial pressures and hence a possible product 

inhibition on H2 production or growth (see also next chapter). Enhanced H2 evolution was measured 

when compared to the serum bottle experiment, with up to hundred times more H2 produced, while 

the growth was slower than in the previous setup (Figure 3A). After consumption of 40 mM pyruvate, 

27 mM acetate, 10 mM lactate, 3 mM succinate,10 mM H2 and 28 mM CO2 were measured as 

fermentation products of S. multivorans (Figure 3A). S. cavolei showed slower growth than S. 

multivorans and a much higher amount of H2 evolved. During growth, which took 8 to 10 days, 

pyruvate (40 mM) was used up completely and 38 mM acetate, 36 mM H2 and 38 mM CO2 were the 

only products detected (Figure 3B). No other organic acids or alcohols were dected for both. S. 

deleyianum showed similar fermentation products as observed with S. multivorans (Supplementary 

Figure 4). The stoichiometry of the fermentation was verified by calculating the carbon recovery and 

an oxidation/reduction balance (Supplementary Table 1, Eqns (I) and (II)). In S. multivorans, the 

amount of reducing equivalents generated from pyruvate oxidation was calculated to be 54 [H], which 

fits to the amount of used reducing equivalents for the production of molecular hydrogen, lactate and 

succinate (52 [H], Supplementary Table 1). In S. cavolei, pyruvate oxidation leads to the generation 

of 76 [H], which were almost exclusively (72 [H]) used for proton reduction to H2. In addition, the 

carbon recovery is in agreement with the theoretical values and is 102.5% for S. multivorans and 

95% for S. cavolei. The anabolic assimilation of the carbon source is minor with approximately 2.5 

mM for S. multivorans and 2 mM for S. cavolei as calculated from OD and dry weight. 

Figure 3: Fermentation balance of S. multivorans (A) and S. cavolei (B) during fermentative growth on 
40 mM pyruvate measured in the fermentation apparatus.  

 

Eqn. (I) 1 Pyruvate → 0.7 Acetate + 0.25 Lactate + 0.075 Succinate + 0.25 H2 + 0.7 CO2 

Eqn. (II) 1 Pyruvate → 0.95 Acetate + 0.9 H2 + 0.95 CO2 
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4. Product inhibition by H2 on fermentative growth in S. cavolei and S. multivorans 

The different amount of H2 produced in the growth experiments in serum bottles and the fermentation 

apparatus imply a product inhibition of H2 on H2 production. To investigate the effect of H2 in the gas 

phase on the fermentative growth of S. multivorans and S. cavolei, both organisms were cultivated 

in serum bottles with a gas phase of 100% H2 or 100% nitrogen (Figure 4). With nitrogen as gas 

phase, S. multivorans and S. cavolei showed similar growth and production rates of organic acids 

as observed in the fermentation apparatus. A strong negative effect on growth was observed with 

100% H2 in the gas phase. S. multivorans was still able to ferment pyruvate but showed an inhibited 

growth and a lower cell density compared to the culture without H2 in gas phase, while S. cavolei 

was almost completely inhibited (Figure 4A). The restricted growth is also reflected by a lower 

pyruvate consumption rate (Figure 4B). In addition, the formation of fermentation products shifted 

from acetate production to lactate and succinate formation in S. multivorans (Figure 4C-E). S. cavolei 

produced neither lactate nor succinate and only minor amounts of acetate. 

Figure 4: Growth and formation of fermentation products during cultivation under 100% nitrogen (N2) 
and 100% H2 atmosphere with pyruvate as sole energy source. Growth curve (A), pyruvate consumption 
(B) and acetate (C), lactate (D) and succinate (E) production are shown. Organic acids were measured via 
HPLC. Each cultivation was conducted in three biological replicates. S.m. - S. multivorans, S.c. - S. cavolei, N2 
- nitrogen, H2 - hydrogen, NC - negative control (cell-free medium). 
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5. Hydrogenase activities by cell suspensions of Sulfurospirillum spp.  

The H2 production and oxidation capability of cell suspensions of S. multivorans and S. cavolei was 

analyzed to obtain further evidence about the hydrogenase involved in the production and oxidation 

reaction. Transcriptional and proteomic studies revealed the presence of two [NiFe] hydrogenases 

in S. multivorans29: a hydrogen-oxidizing periplasmic membrane-bound hydrogenase (MBH) and a 

putative H2-producing cytoplasmic membrane-bound hydrogenase (Hyf). These two hydrogenases 

might be distinguished by their different subcellular localization and thus their accessibility to redox 

mediators like viologens in hydrogenase acitivity assays. Photometrically measured H2-oxidizing 

activity was detected in whole cell suspensions as well as in membrane and soluble fractions 

(Table 1). In contrast, H2-producing activity, as monitored by GC, was only measured with membrane 

fractions but not in whole cell suspensions of S. multivorans and S. cavolei with approximately 1.5-

fold higher activity in S. cavolei (Table 1). The membrane fractions of S. multivorans and S. cavolei 

cells grown on pyruvate as sole energy source were about 2-fold more active in H2-production than 

those of cells cultivated under respiratory growth conditions with pyruvate plus fumarate, while the 

latter exhibited slightly more H2 oxidation activity. Clostridium pasteurianum W5, which is known to 

harbor a cytoplasmic soluble H2-producing hydrogenase, exhibited hydrogenase activity only in the 

soluble fractions and showed no H2 producing activity in cell suspensions with methyl viologen as 

electron donor (Supplementary Table 2), thus serving as a control for the hydrogenase localization 

experiment.  

 

Table 1: Hydrogen-producing and oxidizing activities of cell suspensions and cellular fractions of 
S. multivorans and S. cavolei cultivated with pyruvate or with pyruvate/fumarate. Data are derived from 
three independent biological replicates and show means ± standard deviation. 

Cellular fraction Hydrogenase activity (nkat mg-1) 

 S. multivorans  S. cavolei 

 MV → H2 H2  → BV H2  → MV  MV → H2 H2  → BV H2  → MV 

Cell suspensions        

Pyr < 0.01 4.1 ± 0.5 0.7 ± 0.3  < 0.01 5.5 ± 0.6 1.4 ± 0.3 

Membrane fractions        

Pyr 12.3 ± 2.4 23.5 ± 2.1 n.d.  20.6 ± 3.7 10.1 ± 0.5 n.d. 
Pyr + Fum   5.7 ± 1.5 36.6 ± 3.3 n.d.  10.1 ± 2.4 13.5 ± 1.6 n.d. 

Soluble fractions        

Pyr < 0.01 n.d. n.d.  < 0.01 n.d. n.d. 
Pyr + Fum < 0.01 2.3 ± 0.3 n.d.  < 0.01 1.9 ± 0.3 n.d. 

MV → H2 indicates H2 formation activity, H2 → BV/MV indicates H2 oxidation. MV - methyl viologen, BV - benzyl 
viologen. Pyr - pyruvate , Fum - fumarate, n.d. - not determined 
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6. Comparative genomics and proteomics  

To unravel the cause of the different fermentative metabolisms of the two Sulfurospirillum sp., a 

comparative genomic analysis was done with the RAST sequence comparison tool36. Additionally, 

proteomes of S. cavolei NRBC109482 and S. multivorans cultivated under fermenting and respiring 

conditions with fumarate as electron acceptor were analyzed. Bidirectional blast hits with more than 

50% amino acid sequence identity were considered as orthologs, proteins putatively fulfilling the 

same functions in both organisms. The genomes were overall similar, with 2057 of 2768 of the 

encoded proteins in S. cavolei being orthologs. Only few of the non-orthologous proteins in S. cavolei 

could be considered to play a role in the fermentation based on their annotation and putative 

involvement in one of the pathways connected to fermentative catabolism. Among the proteins 

encoded in the S. cavolei genome (annotated RefSeq WGS accession number NZ_AP014724), 

which do not have an ortholog in S. multivorans, we found a cluster encoding an [FeFe] hydrogenase 

known to contribute to fermentative H2 production in many bacteria, e.g. Clostridia (Supplementary 

Figure 5). A nearly identical gene cluster is found in the other two genomes of S. cavolei strains 

UCH003 and MES, the latter of which was assembled from a metagenome19. The large [FeFe] 

hydrogenase catalytic subunit gene, hydA, is disrupted by a stop codon resulting from a nucleotide 

insertion only in S. cavolei strain NRBC109482. The mutation was confirmed by PCR and Sanger 

sequencing. RT PCR analysis suggested that hydA was transcribed under pyruvate-fermenting 

growth conditions (Supplementary Figure 6). However, the [FeFe] hydrogenase was not identified in 

the proteome of S. cavolei. 

Of the proteins related to pyruvate metabolism, a pyruvate,water dikinase (phosphoenolpyruvate 

[PEP] synthetase) is encoded in the genome of S. multivorans (encoded by SMUL_1602), but not in 

S. cavolei. This enzyme is responsible for the ATP-dependent synthesis of phosphoenolpyruvate 

from pyruvate in gluconeogenesis (Supplementary Figure 7). The PEP synthetase was found in 6.3-

fold higher abundance (p-value 0.02) in the proteome of fermentatively cultivated S. multivorans cells 

(Supplementary Table 3). In S. cavolei, PEP might be formed from pyruvate via oxaloacetate by two 

reactions catalyzed by pyruvate carboxylase and PEP carboxykinase. These two enzymes are 

encoded in one gene cluster (SCA02S_RS02520 and SCA02S_RS02525, respectively, 

Supplementary Figure 8). In S. multivorans these proteins (SMUL_0789 and SMUL_0791) cluster 

with a gene encoding a subunit similar to the membrane subunit of a putative Na+-translocating 

oxaloacetate decarboxylase (SMUL_0790), of which an ortholog is not encoded in S. cavolei 

(Supplementary Figure 8). Both pyruvate carboxylase/oxaloacetate decarboxylase and PEP 

carboxykinase were found in the proteomes of both organisms in slightly higher amounts in cells 

grown with pyruvate only (Supplementary Dataset 2). Similar to S. cavolei, also S. arsenophilum, 

producing larger amounts of H2 than S. multivorans (Figure 2), lacks the putative oxaloacetate 

decarboxylase subunit gene. 
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The Hyf hydrogenase was found in high abundancies especially in the proteome of S. multivorans 

cultivated with pyruvate alone. Here, four out of eight of the structural subunits were found in the 

10% of the most abundant proteins, while none were found in the top 10% under respiratory 

conditions. In S. cavolei, the hydrogenase-4 subunits were not as abundant as in S. multivorans with 

only two out of six quantified subunits in the top 20% (Supplementary Dataset 2). In both organisms, 

a significantly higher amount of Hyf subunits was quantified under fermentative growth conditions 

(S. multivorans: 4- to 27-fold for the structural subunits HyfA-HyfI, all p-values are <0.001, S. cavolei: 

2- to 5-fold for HyfA-HyfI, all p-values are <0.05; Figure 5, Supplementary Table 3, Supplementary 

Dataset 2). Interestingly, the Hyf gene cluster is disrupted at one site in S. halorespirans, which 

cannot grow on pyruvate alone. Genome sequencing37 revealed a transposase insertion at hyfB 

which might result in a non-functional gene S. halorespirans. The transposon insertion was 

confirmed by PCR using hyfB-specific primers flanking the transposase (Supplementary Figure 9). 

The membrane-bound subunits HyfE and HyfF were found in fermenting cells of S. multivorans 

exclusively. Sequence comparison of the Hyf hydrogenase of S. multivorans shows similarities to 

the proton-pumping complex I of Thermus thermophilus (Supplementary Figure 10). An analysis 

regarding the potential proton pumping capabilities of the S. multivorans Hyf deduced from 

conserved amino acids which are responsible for proton pumping in complex I of T. thermophilus 

and a comparison to the E. coli FHL is given in the Supplementary information (Supplementary 

Note 1, Supplementary Table 6 and Supplementary Figures 11 - 13).  

A search for the hyf gene cluster in genomes of Epsilonproteobacteria shows that it is ubiquitous in, 

but not limited to, Sulfurospirillum spp (Supplementary Table 5). Four out of 15 Sulfurospirillum sp. 

genomes harbor a second hyf gene cluster co-located with genes encoding a formate transporter 

and a formate dehydrogenase (Supplementary Figure 1). In Arcobacter spp. and the marine species 

Caminibacter mediatlanticus and Lebetimonas spp., only the latter gene cluster encoding a putative 

FHL complex is found. In several Campylobacter spp. including C. concisus, a hyf gene cluster with 

a formate transporter gene was identified (Supplementary Figure 1), while a second group of 

Campylobacter (including C. fetus) does not encode any formate-related proteins (Supplementary 

Table 5).  

A pyruvate:ferredoxin oxidoreductase (PFOR) and a ferredoxin (Fd) showed also a higher 

abundance in both Sulfurospirillum sp. under fermenting conditions (S. multivorans: PFOR 2-fold, 

Fd 6-fold, S. cavolei: PFOR 4-fold, Fd 2-fold, all p-values are <0.01; Figure 5, Supplementary Table 

3). A second pyruvate-oxidizing enzyme, a quinone-dependent pyruvate dehydrogenase encoded 

exclusively in the genome of S. multivorans, was significantly lower abundant during pyruvate 

fermentation (7-fold, p-value 0.02). The enzymes responsible for ATP generation via substrate-level 

phosphorylation, phosphotransacetylase and acetate kinase, are slightly higher abundant during 

pyruvate fermentation in both Sulfurospirillum sp. (approximately 2-fold for both enzymes in S. 

multivorans, p-values are <0.01 and approximately 3-fold in S. cavolei, p-values are <0.001; Figure 

7, Supplementary Table 3). The malic enzyme is higher abundant during fermentation in S. 

multivorans (3.7-fold, p-value <0.001, Supplementary Table 3) and not quantified in any proteome 
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of S. cavolei (Supplementary Table 3). The subunits of the membrane-bound hydrogenase (MBH) 

were quantified in either unsignificantly lower amounts (HydAB, approximately 2-fold, p-values 0.40 

and 0.07) or slightly higher amounts (HydC, approximately 2-fold, p-value 0.01) under fermenting 

conditions for S. multivorans. In contrast, HydABC were found in significantly lower amounts in S. 

cavolei when grown fermentatively. Of the cytoplasmic H2-producing hydrogenase (Ech-like), only 

one subunit (present in the lower 50% abundant proteins) was quantified in S. multivorans grown 

with pyruvate alone. In S. cavolei, five of six Ech-like hydrogenase subunits were quantified in cells 

cultivated with pyruvate alone and two of six subunits in pyruvate/fumarate-cultivated cells, all of the 

them in the lowest third abundant proteins. No subunit of the cytoplasmic uptake hydrogenase 

(HupSL) was found in any of the proteomes.  

A putative lactate dehydrogenase (SMUL_0438, SCA02S_RS08360) with 35% amino acid 

sequence identity to a characterized lactate-producing lactate dehydrogenase from Selenomonas 

ruminantium38 was not detected in any proteome. This is in accordance to the lack of pyridine 

dinucleotide-dependent lactate-oxidizing or pyruvate-reducing activities in cell extracts of S. 

multivorans (data not shown, methods described in the Supplement). Several candidates for pyridine 

dinucleotide-independent lactate dehydrogenases (iLDH) are encoded in the genome of 

S. multivorans. Since S. deleyianum shows also lactate production during pyruvate fermentation, 

only genes present as orthologs in both genomes were considered to be responsible for lactate 

production in Sulfurospirillum spp. Functionally characterized iLDHs are flavin and FeS-cluster-

containing oxidoreductases40 or enzymes related to malate:quinone oxidoreductase40. Only two 

candidates of the former class were identified in the genome, encoded by SMUL_1449 and 

SMUL_2229. Of these, only the latter gene product was detected in the proteome, however, not in 

altered amounts under fermentative conditions when compared to respiratory cultivation.  
   

 

Figure 5: Comparative proteomics of proteins possibly involved in pyruvate fermentation of 
S. multivorans and S. cavolei. Comparison of cells grown with pyruvate alone was done with cells grown with 
pyruvate/fumarate. For quantified proteins the protein intensity ratio is given as colored squares. Non-
significantly altered proteins levels are marked with an equal sign (p-values >0.05). Proteins exclusively found 
in pyruvate fermenting cells are colored purple. All data were obtained from 3 independent biological replicates. 
Hyf-like - Hyf hydrogenase (SMUL_2383-2392; SCA02S_RS01920-RS01965), MBH - membrane-bound 
hydrogenase (SMUL_1423-1425; SCA02S_RS01350-RS01360), Fd - ferredoxin (SMUL_0303; 
SCA025_RS12260), PFOR - pyruvate:ferredoxin-oxidoreductase (SMUL_2630; SCA02S_RS04525). Pyr - 
pyruvate, Fum - fumarate.  
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7. Sulfurospirillum multivorans as a syntrophic partner for Methanococcus voltae 

To unravel the potential role of S. multivorans in a syntrophic partnership as H2 producer, a co-

culture with Methanococcus voltae was prepared. M. voltae is a methanogenic archaeon dependent 

on either H2 or formate as electron donor and CO2 as electron acceptor32. To investigate the 

syntrophic interaction of the two organisms, the co-culture was cultivated with lactate, which could 

not serve as a fermentation substrate for pure S. multivorans cultures. A syntrophic, hydrogen-

consuming partner keeping H2 concentration at a low level in co-cultures might render lactate 

fermentation by S. multivorans thermodynamically feasible in a co-culture. In the corresponding co-

culture, 15 mM lactate was consumed in approximately two weeks while methane was formed, 

indicating lactate fermentation by S. multivorans and H2 transfer to M. voltae as syntrophic partner 

(Figure 6 A,B). Electron microscopic analyses of the co-culture revealed cell aggregates with sizes 

between 50 and 600 µm (Figure 6C, Supplementary Figure 14). These aggregates showed a 

compact network of the rod-shaped S. multivorans and coccoidal M. voltae with net-forming 

flagellum-like structures surrounding the organisms. The cells in the aggregates were embedded in 

extracellular polymeric substances (EPS)-like structures, which might aid cell-to-cell contact. 
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Figure 6: Syntrophic co-culture of S. multivorans and Methanococcus voltae. (A) scheme of syntrophic 
interactions and exchange of metabolites and (B) lactate concentration in S. multivorans pure culture and 
co-culture of S. multivorans and M. voltae. (C) Electron microscopic  images of aggregates, Magnifications, 150 
x (whole aggregate, upper row left), 5,000 x (upper right), 10,000 x (lower images). Sections of the lower images 
were obtained from different areas of the aggregate. White arrows indicate EPS-like structures. Cultivation 
experiments included three biological replicates in which similar aggregates were formed. S.m. - S. multivorans. 

 

Discussion 

In this study, production of H2 was observed for several Sulfurospirillum species during pyruvate 

fermentation, which is the first evidence of H2 production for Epsilonproteobacteria, which hitherto 

were generally regarded as H2 oxidizers14,35,41,42. Specifically, we report H2 production for 

S. multivorans, S. cavolei, S. arsenophilum and S. deleyianum during fermentative growth on 

pyruvate. Sequential subcultivation on pyruvate alone revealed a continuous adaptation of 

Sulfurospirillum spp. to a fermentative metabolism. The mechanisms behind this long-term 

adaptation process in Sulfurospirillum spp. remain unresolved for now and might include genomic 

rearrangements and/or population dynamics, but also a long-term regulatory effect similar to the one 

observed for S. multivorans after continuous transfer without PCE as electron acceptor43 might play 

a role. The basis for the latter effect is also unknown to date.  

Two different fermentation balances were observed for the different Sulfurospirillum spp. tested. 

While S. cavolei showed the highest H2 production rate and produced, besides hydrogen, acetate 

and CO2, S. deleyianum and S. multivorans, displaying lower H2 production, additionally produced 

succinate and lactate. Pyruvate is most likely oxidized to acetate by the pyruvate:ferredoxin 

oxidoreductase, which showed an upregulation in the proteome of fermentatively cultivated 

compared to fumarate-respiring cells in both, S. multivorans and S. cavolei. In contrast, the quinone-

dependent pyruvate dehydrogenase (PoxB) which could transfer electrons generated upon pyruvate 

fermentation to menaquinone, is downregulated in fermenting cells and therefore most likely does 

not contribute significantly to pyruvate oxidation under this condition. A pyruvate formate lyase is not 

encoded in any Sulfurospirillum spp., which, in addition to the low protein abundance of a cytoplasmic 

formate dehydrogenase in S. multivorans and S. cavolei, argues against the role of the Hyf in a 

formate hydrogen lyase complex as opposed to the suggested function for Hyf in E. coli44. The 

generated acetyl-CoA is used to generate acetate and one mol ATP per mol pyruvate via substrate-

level phosphorylation.  

Electrons generated upon pyruvate oxidation are most likely transferred in both organisms to a 

ferredoxin of the Allochromatium vinosum-type, which is known for the very negative redox potentials 

of its two [4Fe4S] clusters45. The proteome data and biochemical experiments presented in our study 

strongly suggest that the Hyf (hydrogenase 4) of Sulfurospirillum spp. accepts electrons from the 

reduced ferredoxin to reduce two protons to hydrogen. Hyf is significantly upregulated, whereas the 

other hydrogenases are either detected only in low amounts in the proteome data or are unaltered 

or downregulated under fermentative cultivation. Furthermore, reduced methyl viologen served as 

electron donor for H2 production only with crude extract and not with intact cells, suggesting a 
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cytoplasmic localization of the hydrogen-producing hydrogenase since methyl viologen should not 

have access to the cytoplasm. A cytoplasmic localization was also suggested previously for Hyf of 

S. multivorans based on the lack of a signal peptide in any of the corresponding subunit amino acid 

sequences 20,29. The involvement of a Hyf in H2 production via pyruvate oxidation was also observed 

for a group 4 hydrogenase from Pyrococcus furiosus 46 and a genetically modified E. coli strain47. 

The structure and subunit composition of several group 4 hydrogenases suggested their involvement 

in the generation of a proton motive force, thereby contributing to ATP formation48,49. A thorough 

alignment analysis of the subunits of Sulfurospirillum spp. Hyf indicated that most of the important 

residues in the membrane helices are conserved, thus making a role in energy conservation of this 

hydrogenase a possible scenario. The difference in the amount of H2 produced with S. cavolei 

producing more H2 than S. multivorans can be explained by two different fermentation metabolism 

types. Opposed to S. cavolei, reducing equivalents can be channelled into the production of lactate 

and succinate by S. multivorans (as was also observed for S. deleyianum) upon pyruvate 

fermentation. Succinate might be produced from fumarate (fumarate reductase) via malate 

(fumarase), which could be formed from pyruvate via reductive decarboxylation to malate by the 

malic enzyme. This enzyme, which often functions in the reverse direction e. g. in C4 plants, is 

upregulated in S. multivorans under fermentative conditions. This finding supports the involvement 

of the malic enzyme in conversion of pyruvate to malate. The malic enzyme was not detected in the 

proteomes of S. cavolei, which might at least partially explain the different fermentation balances.  

The origin of lactate in S. multivorans is not clear. An NAD+-dependent lactate dehydrogenase was 

not detected in any of the proteomes and no NAD(P)+-dependent lactate production could be 

measured. Most likely, the lactate dehydrogenase is misannotated in the genome of S. multivorans, 

as reported for a related protein of Campylobacter jejuni50. A possible source of lactate could be the 

reduction of pyruvate via an unknown, NAD+-independent lactate dehydrogenase (iLDH). Some of 

these are characterized to be functional in the direction of lactate oxidation51,52 and could act in the 

reverse direction to produce lactate in Sulfurospirillum spp., possibly with reduced ferredoxin as 

electron donor. Several candidates of iLDHs are encoded in the genome of S. multivorans, but only 

one of them shows a slight upregulation on pyruvate alone. A homolog of the corresponding gene 

cluster is not encoded in the lactate-producing S. deleyianum, making it an unlikely candidate for 

lactate production. A glycolate oxidase was shown to be responsible for lactate oxidation in 

Pseudomonas putida39,53 and a homolog is encoded in both lactate-producing Sulfurospirillum spp. 

This protein, however, is not upregulated upon pyruvate fermentation and further studies are needed 

to identify the lactate-producing enzyme in S. multivorans.  

The different disposal of excess reducing equivalents during fermentation enables S. multivorans to 

grow with pyruvate even with 100% H2 in the gas phase, whereas the growth of S. cavolei was nearly 

completely abolished under these conditions. This correlates with a shift towards a higher production 

of lactate and succinate and a lower acetate and H2 production of S. multivorans under these 

conditions. H2 production via Hyf is obviously subject to product inhibition and S. multivorans is able 

to circumvent this by using alternative cytoplasmic electron sinks upon fermentation. The inability of 

Sulfurospirillum spp. to use lactate as sole substrate in pure cultures is most probably due to the 
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thermodynamically unfavorable lactate oxidation to pyruvate upon H2 production. However, a 

syntrophic partnership of S. multivorans with a hydrogen-consumer, Methanococcus voltae, enabled 

lactate utilization by S. multivorans and led to the formation of large cell aggregates of the two 

organisms presumably via the formation of EPS.  

These findings confirm our suggested role of Sulfurospirillum spp. as H2 producers in anaerobic food 

webs. Additionally, this role as a potential H2 producer is most likely not limited to this genus. In a 

genome mining approach, hyf gene clusters were found among several genera of 

Epsilonproteobacteria inhabiting a wide range of habitats. Some Campylobacter spp. known to be 

opportunistic or foodborne pathogens encode the same Hyf as Sulfurospirillum spp., while hyf gene 

clusters containing either a formate channel gene in different Campylobacter spp. or additionally a 

cytoplasmic formate dehydrogenase in other phyla might indicate the formation of a formate 

hydrogen lyase complex. Since a PFL is missing in these bacteria, it might be presumed that 

extracellular formate might aid growth in these bacteria as reported for Thermococcus spp.54. Some 

Sulfurospirillum spp. even encode for both, a FHL-independent Hyf and one presumably forming an 

FHL complex, pointing towards separate regulation and roles of both hydrogenases and thus for 

even more physiological diversity in this genus.  

 

Figure 7: Tentative scheme of pyruvate fermentation metabolism in S. multivorans and S. cavolei. 
Reactions represented by solid arrows belong to the core pyruvate metabolism and are catalyzed by both 
organisms. Reactions with dashed arrows are solely catalyzed by S. multivorans, fumarate hydratase and 
fumarate reductase are also present in S. cavolei. Hyf might pump protons via its membrane-integral subunits 
(Supplementary Note 1, Supplementary Table 6 and Supplementary Figures 10 - 13) which could lead to 
additional ATP production via a chemiosmotoQuestion marks indicate enzymes not identified. Fermentation 
products are highlighted in light blue boxes. Protein abundance ratios (pyruvate alone versus 
pyruvate/fumarate) are indicated by colored squares (S. multivorans) and circles (S. cavolei) at the protein 
abbreviations. Color code of the ratios is given in the box at the lower right. Hyf - Hyf-like hydrogenase 
(SMUL_2383-2392; SCA02S_RS01920-RS01965), PFOR - pyruvate:ferredoxin oxidoreductase (SMUL_2630; 
SCA02S_RS04525), PTA - phosphotransacetylase (SMUL_1483; SCA02S_RS00245), AK - acetate kinase 
(SMUL_1484; SCA02S_RS00240), ME - malic enzyme (SMUL_3158; corresponding enzyme in S. cavolei is 
not present), FH - fumarate hydratase (SMUL_1459, SMUL_1679-1680; SCA02S_RS00615-RS00620), FR - 
fumarate reductase (SMUL_0550-0552; SCA02S_RS07735-RS07740). 
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Conclusion 

Taken together, our results show that several Epsilonproteobacteria have to be considered as H2 

producers and serve as syntrophic partners in e.g. the presence of lactate, which is a widely 

distributed organic electron donor in natural habitats. H2 production in Sulfurospirillum spp. under 

the tested conditions relies on Hyf, a multisubunit, membrane-bound and cytoplasmically oriented 

group 4 NiFe hydrogenase similar to the one used in a second E. coli formate hydrogen lyase 

complex and probably functioning as a proton pump. Adaptation to fermentative conditions seems 

to be common in S. multivorans and related strains, although the underlying mechanism of this 

process is still unclear. Two seperate clades of Sulfurospirillum spp. have different fermentation 

pathways, the S. cavolei clade producing more H2 and exclusively one organic acid, namely acetate, 

in comparison to S. multivorans, which additionally produces lactate and succinate. All these findings 

imply an even higher versatility for Epsilonproteobacteria than previously thought and a new 

ecological role for Sulfurospirillum spp., which inhabit a large range of environmentally or 

biotechnologically important habitats such as wastewater plants, oil reservoirs, bioelectrodes, 

contaminated sediments or marine areas. 
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2.3 Syntrophy between Dehalococcoides and Sulfurospirillum leads to 

rapid and complete dechlorination of tetrachloroethene 

  
Kruse S, Türkowsky D, Matturro B, Franke S, Birkigt J, Nijenhuis I, Westermann M, 

Rossetti S, Jehmlich N, Adrian L, Diekert G, Goris T 

 
 in preparation for submission to ISME Journal 
 
 
The ability to produce hydrogen shed new light on the ecological role of S. multivorans and 

Sulfurospirillum spp. as syntrophic partners. To get more insights into possible syntrophic 

interactions with hydrogen consuming microorganisms in organohalide-respiring microbial 

communities, the organism was co-cultivated with another an obligate dechlorinator 

Dehalococcoides mccartyi, which are often found in these consortia and restricted to 

hydrogen as energy source and electron donor. An interspecies hydrogen transfer between 

both organisms enabled a complete dechlorination of tetrachloroethene to ethene at much 

higher rates compared to the single cultures. Additionally, an interspecies cobamide 

transfer was observed and D. mccartyi was shown to salvage and remodel a corrinoid 

produced by S. multivorans. The syntrophic relation between both led to the formation of 

cell aggregates. Electron microscopic analysis and FISH staining of these flocs revealed 

cells embedded in extracellular polymeric substances and in close physical contact which 

might aid in an enhanced exchange of metabolites. The established co-culture is a potential 

candidate for bioremediation and bioaugmentation processes by applying it to organohalide 

contaminated sites. 

 

My own contributions to this publication covers about: 65%. 

All growth experiments and analytic determinations of metabolites were conducted by 

myself. Following experiments were done in cooperation: Isotope fractionation with Steffi 

Franke and Ivonne Nijenhuis, vitamin B12 analysis with Jan Birkigt, Proteomic analysis with 

Dominique Türkowsky and Nico Jehmlich (all at Centre for Environmental Research, 

Leipzig). FISH analysis with Bruna Matturro and Simona Rossetti (CNR-IRSA, Rome, Italy), 

Electron microscopy with Martin Westermann (University Hospital Jena). Tobias Goris and 

Stefan Kruse initiated the study and Tobias Goris and Gabriele Diekert supervised the 

study. Stefan Kruse drafted the manuscript and Tobias Goris and Gabriele Diekert revised 

the draft. 
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Abstract 

Sulfurospirillum multivorans was recently introduced as a syntrophic partner for the 

methanogen Methanococcus voltae by producing hydrogen during fermentative growth. 

Although, its ecological role in dechlorinating microbial communities remains elusive. First 

insights into syntrophic interactions of S. multivorans with other organohalide-respiring 

bacteria were gained in a co-culture with Dehalococcoides mccartyi strain BTF08 and 195 

with tetrachloroethene (PCE) as electron acceptor. Lactate was used as electron donor and 

enabled an obligate syntrophic relation between both, since S. multivorans showed no 

growth on lactate alone and relies on D. mccartyi maintaining low hydrogen partial 

pressures. PCE was rapidly dechlorinated to cis-1,2-dichloroethene (cis-DCE) by S. 

multivorans as confirmed by carbon stable isotope analysis (CSIA) and subsequent 

interspecies hydrogen transfer led to complete conversion to ethene. Co-cultures exhibited 

3- fold higher dechlorination rates (Sm/Dhc BTF08: 4.1 ± 0.2 µmol day-1; Sm/Dhc 195: 4.8 

± 0.2 µmol day-1) compared to the pure cultures and increased after refeeding of PCE (11.8 

µmol day-1). Additionally, dechlorination acitivity was restored in co-cultures amended with 

5,6-dimethylbenzimidazole (DMB) indicating an interspecies cobamide transfer. MS analysis 

confirmed the remodeling of the nonfunctional norpseudovitamin-B12 produced by S. 

multivorans into cyanocobalamin supporting D. mccartyi growth. Formed cell aggregates 

were analyzed using field-emission scanning electron microscopy and FISH staining 

showed an equal distribution of both organisms within the aggregates. On electron 

micrographs, cells were surrounded by flagellum-like filaments and embedded in 

extracellular polymeric substances (EPS)-like structures. In contrast to the single culture, 

D. mccartyi showed an unusual cell morphology in the co-culture which is supported by the 

cell division protein FtsZ found to be downregulated in the proteome. This study provides 

the first in-depth analysis of the syntrophic interactions between two organohalide respiring 

bacteria, S. multivorans and D. mccartyi.  

 

Introduction 

Bacterial communities are characterized by various microbial interactions based on an exchange of 

metabolic products. Hydrogen, for example, is an important energy carrier in syntrophic 

communities, in which the gas is produced by fermenting bacteria and taken up by a hydrogen-

consuming partner. This interspecies hydrogen transfer allows otherwise thermodynamically 

unfavorable reactions to proceed by shifting the reaction out of equilibrium. Therefore, the involved 

bacteria are physiologically dependent on each other (Morris et al., 2013; Schink and Stams, 2013; 

Stams and Plugge, 2009). The prominent and potential carcinogenic groundwater pollutant 

tetrachloroethene (PCE) is often only completely dechlorinated to ethene in communities involving 
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interspecies hydrogen transfer (Henschler, 1994). The key step in this process is the reductive 

dehalogenation of the organohalide, e.g. PCE, hexachlorobenzene or polychlorinated biphenyls, 

which is used as terminal electron acceptors and coupled to energy conservation via electron 

transport phosphorylation. This anaerobic respiration is termed organohalide respiration (OHR) 

(Leys et al., 2013). Key player in detoxification and bioremediation of PCE contaminated 

environments is the exclusively hydrogen-oxidizing  Dehalococcoides mccartyi, Several strains of 

this species are currently the only known bacteria capable of complete dechlorination of PCE to non-

toxic ethene (Maymó-Gatell et al., 1999; Maymó-Gatell et al., 1997; Maymó-Gatell et al., 2001) 

However, these bacteria are characterized by low growth yields when cultivated in pure cultures, 

resulting in low dechlorination rates (Löffler et al., 2013b). Additionally, the organisms are restricted 

to specific nutrient and vitamin requirements in their habitats (Zinder, 2016). Besides being restricted 

to hydrogen as electron donor, D. mccartyi uses only acetate as carbon source and organohalides 

as electron acceptors (Seshadri et al., 2005). Additionally, these bacteria are not able to synthesize 

corrinoids de novo (Löffler et al., 2013b; Schipp et al., 2013). Corrinoids are cofactors of the key 

enzymes for organohalide respiration, reductive dehalogenases (RDases). While proteins for 

complete corrinoid biosynthesis are not encoded in the genomes of D. mccartyi, different studies 

revealed the bacterium's ability to salvage and remodel corrinoids (Kube et al., 2005; McMurdie et 

al., 2009). The corresponding pathways enable D. mccartyi to scavenge incomplete corrinoids and 

exchange the lower ligand to render the corrinoid functional leading to better growth and 

dechlorination (Men et al., 2014; Seshadri et al., 2005). The functionality of the corrinoid and thus 

the reductive dehalogenase is directly dependent on the type of the lower base in D. mccartyi. Only 

three types of corrinoids were shown to be functional in D. mccartyi strain 195: 5,6-

dimethylbenzimidazolyl-cobamide ([DMB]-Cba), 5-methylbenzimidazolylcobamide ([5-MeBza]Cba) 

and 5-methoxybenzimidazolylcobamide ([5-OMeBza]Cba). Nonfunctional corrinoids e.g. 5-

hydroxybenzimidazolyl-cobamide ([5-OHBza]Cba) or 7-adeninyl-cobamide ([Ade]Cba) can be 

converted into functional ones by replacement of the lower ligand when 5,6-dimethylbenzimidazole 

(DMB) is present (He et al., 2007; Men et al., 2014; Yi et al., 2012). Different studies on dechlorinating 

communities containing D. mccartyi in association with fermenting, acetogenic and methanogenic 

bacteria revealed higher dechlorination and growth rates than those of pure cultures (DiStefano et 

al., 1992; He et al., 2003a; He et al., 2003b; Maymó-Gatell et al., 1997). It is assumed that cross-

feeding and a constant supply of growth factors such as corrinoids and biotin enhance growth 

(Richardson, 2016). In the syntrophic interactions of this communities, non-dechlorinating fermenting 

bacteria provide hydrogen, acetate and CO2 from e.g. lactate or butyrate fermentation and are 

dependent on hydrogen consumers which keep the hydrogen partial pressure low (Cheng et al., 

2010; Mao et al., 2015; Men et al., 2012; Richardson et al., 2002). For example, co-culture 

experiments revealed an interspecies hydrogen transfer between Desulfovibrio desulfuricans 

fermenting lactate and D. mccartyi (He et al., 2007). Additionally, acetogens like Acetobacterium 

woodii, Sporomusa ovata or Desulfovibrio and methanogenic archaea like Methanococcus voltae 

are able to produce a broad range of different types of corrinoid cofactors (Duhamel and Edwards, 

2007; Guimarães et al., 1994; Stupperich et al., 1988; Stupperich and Kräutler, 1988). An 
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interspecies cobamide transfer was also shown between Geobacter lovleyi and D. mccartyi strain 

BAV1 and FL2 and Methanosarcina barkeri strain Fusaro and D. mccartyi strain BAV1, GT and FL2 

when DMB was present (Yan et al., 2013; Yan et al., 2012). All these studies showed more robust 

growth of D. mccartyi in co-cultures, resulting in higher dechlorination rates and cell yields. However, 

one single organism providing hydrogen, acetate and corrinoid to D. mccartyi in a co-culture was not 

found so far. Such a syntrophic partner could aid in optimization of bioremediation and 

bioaugmentation using D. mccartyi-containing cultures (Major et al., 2002). Recently, the PCE to cis-

DCE-respiring Epsilonproteobacterium Sulfurospirillum multivorans, capable of de novo corrinoid 

production of norpseudo B12 (Kräutler et al., 2003; Neumann et al., 1994), was shown to produce 

hydrogen and acetate under fermentative growth conditions and might therefore be of interest for 

co-cultivation with D. mccartyi.  

In this study, we report the syntrophic relation between D. mccartyi strains BTF08 in co-culture with 

S. multivorans. It was of interest, whether S.multivorans is able to supply D. mccartyi with the 

aforementioned supplements. These co-cultures showed an enhanced PCE to ethene dechlorination 

rate compared to pure cultures. Additionally, Interspecies cobamide transfer was detected. Electron 

microscopic and FISH analysis of co-cultures showed formation and association of both organisms 

in aggregates. The co-culture could be a potential candidate for bioremediation of PCE-contaminated 

sites and to study microbial interaction between different OHRB. 

 

Materials and Methods 

Growth conditions of pure cultures 

D. mccartyi pure cultures BTF08 and 195 (received from Steffi Franke, UFZ Leipzig) were cultivated 

in 200 ml serum bottles containing 100 ml bicarbonate-buffered mineral salt medium with 5mM 

acetate and 148 nM vitamin B12 (cyanocobalamin, ca. 200 µg/L), reduced by Na2S (Maymó-Gatell 

et al., 1999). Anoxic atmosphere was established by 30 cycles gasing and degassing with nitrogen 

and final atmosphere of N2:CO2 (25:75 v/v). The composition of the basal medium was described 

previously. After autoclaving, hydrogen [150 kPa] was applied. PCE (>99% purity, Sigma Aldrich, 

Steinheim, Germany) and cis-DCE (97% purity, Sigma Aldrich, Steinheim, Germany) served as 

electron donors and were added with a microliter syringe (Hamilton, Bonaduz, Switzerland) to a final 

concentration of 0.35 mM (aqueous-phase concentration). Re-feeding of the cultures was done with 

the same dose of PCE or cis-DCE. After maximally three re-feeding steps, cultures were transferred 

[10% (v/v)] into fresh medium. To evaluate the effect of different types and concentrations of B12 on 

dechlorination activities, Dhc pure cultures received 54 nM or 54 pM norpseudo-B12 ([Ade]Cba) and 

5-OMeBza-B12 ([5-OMeBza]Cba). Norpseudo-B12 was extracted according Keller et al. (Keller et al., 

2014) from 6L of S. multivorans grown anoxically with 40 mM pyruvate and 10 mM PCE as described 

elsewhere (Kruse et al., 2017a). 5-OMeBza-B12 was obtained from 6L of Desulfitobacterium 

hafniense DCB2 grown anoxically with 40 mM pyruvate and 10 mM ClOHPA (3-chloro-4-hydroxy-
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phenylacetate) with the addition of 25 µM 5-OMeBza (unpublished). Pure cultures of S. multivorans 

(DSMZ 12446) were maintained in the same mineral salt medium without the addition of acetate and 

hydrogen. All cultivation experiments were performed statically at 28°C in the dark and in biological 

triplicates. 

 

Growth of co-cultures of S. multivorans and Dehalococcoides 

Co-cultures of S. multivorans and D. mccartyi strain BTF08 or 195 were maintained in the same 

mineral salt medium as the pure cultures without the addition of acetate and hydrogen. The medium 

contained 25 mM lactate as the electron donor for S. multivorans and 0.35 mM PCE (aqueous-phase 

concentration) as the electron acceptor. Re-feeding of lactate and PCE was done in the same 

concentration as the initial dose. The B12-dependance of the co-cultures was tested with 148 nM 

vitamin B12 serving as the positive control and without vitamin B12 additions. Additionally, cultures 

without vitamin B12 received 1 µM DMB (>99% purity, Sigma Aldrich, Steinheim, Germany). For 

isotope fractionation experiment, S. multivorans and Sm/Dhc BTF08 co-culture were cultivated in 50 

ml serum bottles with 25 ml medium. Different replicate bottles were inoculated at the same time and 

stopped at different time points during the dehalogenation process by addition of 3 ml 2 M Na2SO4 

(pH 1.0). 

 

qPCR analysis of cell growth 

DNA was extracted from 1 ml co-culture taken from different time points during the cultivation 

experiment using the NucleoSpin Tissue DNA extraction kit (Macherey-Nagel, Düren, Germany). 

Extraction procedure was according manufacturer’s instructions. Quantitative PCR (qPCR) was 

applied to enumerate Sulfurospirillum and Dehalococcoides 16S rRNA gene copies. qPCR reaction 

mixture contained 1 µl of gDNA or standard, 6.25 µl 1x KAPA SYBR Fast master mix (Sigma Aldrich, 

Steinheim, Germany) and 0.208 µM forward and reverse primer. Primer used were Dhc_sp_16S_fw 

(5’-GTATCGACCCTCTCTGTGCCG-3’) and Dhc_sp_16S_rev (5’-

GCAAGTTCCTGACTTAACAGGTCGT-3’) for Dehalococcoides sp. and Smul_16S_fw (5’-

AGRGCTAGTTTACTAGAACTTAGAG-3’) and Smul_16S_rev (5’-CAGTCTGATTAGAGTGCTCAG-

3’) for S. multivorans. The conditions of the PCR program were as followed: 95°C for 2 min (initial 

denaturation) followed by 40 cycles of 55°C (S. multivorans primer) or 60°C (D. mccartyi primer) for 

20s (annealing), 72°C for 30s (elongation) and 95°C for 10s (denaturation). Each PCR included a 

melting curve for verification of specific target DNA amplification. Standard curves were done from 

extracted gDNA from different cell number preparations of S. multivorans and D. mccartyi strains 

BTF08 and 195. For this, each dilution step contained the same cell number of both organisms from 

which genomic DNA was isolated. The obtained CT values were compared with the standard curve 

to determine the different cell numbers. All samples were conducted in three biological replicates 

with two corresponding technical replicates and three technical replicates were done for the 

calibration curve. 

 



2.3 Syntrophic relations of Sulfurospirillum multivorans 

 

 
65 

 

Analytical methods 

Ethene and chlorinated ethenes were quantified gas chromatographically with a flame ionization 

detector (Clarus 500, Perkin Elmer, Rodgau, Germany) and a CP-PoraBOND Q FUSED SILICA 25 

m x 0.32 mm column (Agilent Technologies, Böblingen, Germany). A headspace sample from 1 ml 

culture as well as from 1 ml gas phase was taken using a gas-tight syringe (Hamilton, Bonaduz, 

Switzerland ) was analyzed. Separation of chlorinated ethenes was as followed: 4 min at 60 to 280°C 

in 10°C/min steps. The injector temperature was fixed at 250°C and detector temperature at 300°C. 

Standard curves of ethene and each chlorinated ethene were performed for peak area quantification 

and retention times were compared to known standards. Hydrogen was measured using a thermal 

conductivity detector (AutoSystem, Perkin Elmer, Rodgau, Germany). Organic acids were analyzed 

by HPLC and separated on an AMINEX HPX-87H column (7.8x300mm; BioRad, Munich, Germany). 

 

Compound Specific Stable Isotope Analysis 

Determination of the carbon isotope composition of the chlorinated ethenes in pure culture of S. 

multivorans and in co-culture of S. multivorans and D. mccartyi strain BTF08 was done using gas 

chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS, Thermo GC Trace 1320 

combined with Thermo-Finnigan MAT 253 IRMS, Bremen, Germany) according to Schmidt et al. 

(Schmidt et al., 2014). All samples were analyzed in technical triplicates. 2 ml liquid phase were 

taken from the respective sample and transferred to a He-flushed 10 ml crimped vial. Therefore, 1 

ml headspace was taken via an autosampler (Thermo TriPlus RSH Autosampler) and injected in a 

gas chromatograph with a split ratio of 1:5. Chromatographic separation of chloroethenes was done 

using a DB-MTBE column (60 m x 0.32 mm x 1.8 µm, J&W Scientific, Waldbronn, Germany) 

according to following temperature program: 40°C for 5 min, increase to 250°C by 20°C min-1 and 

hold for 5 min utilizing helium as carrier gas at a flow rate of 2.0 ml min-1 (Injector at 250°C).  

The carbon isotope composition is given in the δ-notation (‰) relative to the Vienna Pee Dee 

Belemnite standard (Coplen et al., 2006). Carbon isotope fractionation was calculated using the 

Rayleigh equation (eq 1) where R0 and Rt represents the isotope values and C0 and Ct the 

concentrations at time 0 and t (Elsner, 2010; Elsner et al., 2008).  

��
��

��
 = �	 ∗ 	��

��

��
  (1) 

�	= 
�	 − 1�       (2) 

The carbon isotope enrichment factor (εC) is defined in equation 2 and was determined with the 

carbon isotope fractionation factor αC which relates changes in the concentration of the isotopes to 

changes in their isotope composition. The 95% confidence interval was defined as the slope of the 

linear regression of the Rayleigh equation. Standard deviations were obtained from at least triplicate 

measurements (< 0.5 ‰). 
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B12 extraction and MS analysis 

The B12 content of the whole serum bottle including supernatant and cells was analyzed. Therefore, 

the culture volume was reduced to 20 ml using a vacuum concentrator and subsequently 0.1 M 

potassium cyanide was added. After boiling of the samples for 20 min, cell debris was removed by 

centrifugation (10 min, 6700 x g, 8°C). The supernatant was applied onto a C-18 column 

(CHROMABOND C-18 ec, Macherey-Nagel, Düren, Germany) equilibrated with 5 mL 100% (v/v) 

methanol and 5 mL ultra pure water (UPW). Washing of the column was done with 5 mL UPW twice 

and B12-types were eluted with 5 mL 100% (v/v) methanol. The eluate was completely dryed in a 

vacuum dryer.  

 

Scanning Electron Microscopy and fluorescence in situ hybridization 

Field emission-scanning electron microscopy (FE-SEM) was performed with co-cultures of S. 

multivorans and D. mccartyi strain BTF08 and 195. Cells of 5 ml culture were incubated for 15 min 

with 2.5% glutaraldehyde and pre-fixed for 2 h on Poly-L-Lysin coated coverslides (12 mm, Fisher 

Scientific, Schwerte, Germany). Coverslides were washed three times with 0.1 M sodium cacodylate 

(pH 7.2) (>98% purity, Sigma Aldrich, Steinheim, Germany) and post-fixed for 1 h with 1% osmium 

tetroxyde in the same cacodylate buffer. After fixation, samples were dehydrated using different 

ethanol concentrations. Critical point drying was done in a Leica EM CPD200 Automated Critical 

Point Dryer (Leica, Wetzlar, Germany), followed by coating with 6 nm platinum in a BAL-TEC MED 

020 Sputter Coating System (BAL-TEC, Balzers, Liechtenstein). Imaging of the samples was done 

with a Zeiss-LEO 1530 Gemini field emission scanning electron microscope (Carl Zeiss, 

Oberkochen, Germany) at different magnifications. Fluorescence in situ hybridization (FISH) was 

performed as described previously (Fazi et al., 2008; Matturro et al., 2013). In brief, samples were 

fixed with 10% (v/v) formaldehyde for 2 h at 4°C and the addition of one volume 96% (v/v) ethanol. 

Cells were filtered on polycarbonate membrane filters (47 mm diameter, 0.2 µm pore size, 

Nucleopore) and washed with Milli-Q water. FISH detection of D. mccartyi strain BTF08 and 195 was 

done with Cy3-labeled DHC1259t and DHC1259c probes and S. multivorans detection with FITC-

labeled probes SULF F220ab (Rossetti et al., 2008). Finally, filters were fixed on a microscope slide 

and stained with DAPI (4,6-diamidino-2-phenylindole). Imaging of un-aggregated cells was done with 

an epifluorescence microscope (Olympus, BX51) combined with an Olympus XM10 camera. Images 

were analyzed via Cell-F software. Aggregates were visualized using a confocal laser scanning 

microscopy (CSLM, Olympus FV1000). 
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SDS-PAGE and proteolytic digestion 

Protein concentration was determined after protein extraction using the Bio-Rad Bradford reagent 

(Bio-Rad, Munich, Germany) and bovine serum albumin as protein standard. Crude extracts were 

loaded onto a SDS-PAGE. In total, 20 µg of protein lysates were applied. The gel was run until the 

samples entered the seperating gel. Afterwards, a 3-5mm protein band from each sample was cutted 

out and prepared for proteolytic cleavage using trypsin (Promega, Madison, WI, USA). Peptide 

lysates were extracted and desalted using C18 ZipTips (Merck Millipore, Darmstadt, Germany). 

 

Mass spectrometry and proteome data analysis 

Separation of tryptic peptides was performed using an Ultimate 3000 nanoRSLC instrument (Thermo 

Scientific, Germering, Germany) coupled to an Orbitrap Fusion mass spectrometer (Thermo 

Scientific, San Jose, CA, USA). A sample volume of 1 µL was loaded onto a trapping columnwith 

300 µm inner diameter, packed with 5 µm C18 particles (µ-precolumn, Thermo Scientific) and 

separatedvia a 15cm analytical column (Acclaim PepMap RSLC, 2µm C18 particles,Thermo 

Scientific).The column oven temperature was constantly set to 35°C. During LC run, a constant flow 

of 300 nL/min (solvent A: 0.1% formic acid) was applied for a linear gradient of 4% to 55% solvent B 

(80% acetonitrile, 0.08% formic acid) in 90 min. Full MS scans were measured in the Orbitrap mass 

analyzer within the mass range of 400-1,700 m/z at 60,000 resolution using an automatic gain control 

(AGC) target of 4x105 and maximum fill time of 50 ms. The MS instrument measured in data-

dependent acquisition (DDA) mode using the highest intense ion and positive ion charge state ≥2 

and ≤7 were selected for MS/MS. An MS/MS isolation window for MS ions in the quadrupole was 

set to 1.6 m/z. MS/MS scan events were repeated within 3 s of cycle time (Top Speed) using the 

higher energydissociationmode (HCD) at normalized collision induced energy of 35%, activation time 

of120 ms, and minimum of ion signal threshold for MS/MS of 5x104counts. The exclusion time to 

reject masses from repetitive MS/MS fragmentation was set to 30 s. 

LC-MS/MS data wereanalyzed using Proteome Discoverer (v1.4.1.14, Thermo Scientific). MS/MS 

spectra were searched against the S. multivorans database containing 3,191 different protein-coding 

sequence entries (downloaded February 17th 2014 from NCBI Genbank accession number 

CP007201) using the SEQUEST HT and MS Amanda algorithms with the following settings: trypsin 

as cleavage enzyme, oxidation on methionine as dynamic and carbamidomethylation on cysteine as 

static modification, up to two missed cleavages, MSmass tolerance set to 10 ppm and MS/MSmass 

tolerance to 0.05 Da, respectively. Only peptides with a false discovery rate (FDR)<0.01 were 

considered as identified (Supplement information Table S1). Quantification of proteins was 

performed using the average of TOP3 peptidearea. After log10 transformation, the protein values 

were mean normalized and bioinformatic analysis was applied by ANOVA and T-test statistics 

(GraphPad). 
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Results 

Growth and dechlorination in Sulfurospirillum-Dehalococcoides co-cultures 

To ensure optimal cultivation conditions for both organisms in the co-culture, S. multivorans was 

tested for its ability to grow with lactate and PCE in a medium previously optimized for D. mccarty 

and showed the same growth in this medium when compared to the original medium. With lactate 

as electron donor and PCE as electron acceptor, co-cultures of S. multivorans and D. mccartyi 

BTF08 dechlorinated 32.8 ± 2.6 µmol PCE completely to stoichiometric amounts of ethene within 8 

days (4.1 ± 0.2 µmol/bottle/day, Figure 1A, Table 1). The culture was re-fed with 35 µmol PCE at 

day 8 and day 12. A complete dechlorination of PCE occurred in three days (Figure 2A, table 1). 

After re-feeding, the dechlorination rate increased 2.8-fold to 11.6 µmol/bottle/day. PCE was 

dechlorinated to cis-DCE already within one day and can be assigned to high dechlorination activities 

of S. multivorans. This was confirmed by elucidating the stable carbon isotope fractionation of PCE 

by growing cells of the co-culture compared to the pure culture of S. multivorans. No significant 

differences in the fractionation of PCE were found. The isotope signature of the co-culture slightly 

changed 0.7δ units, from about -30.2 to -29.5‰ (Supplementary Figure 1A). A similar fractionation 

was measured in the pure culture of S. multivorans (1.6δ units, from about -29.2 to -27.6‰). 

Additionally, the enrichment factor was calculated using the Rayleigh equation and the isotope 

slopes of both cultures were in the same range (Sm/BTF08 co-culture: εC = -0.4 ± 0.3 ‰; S. 

multivorans pure culture: εC = -2.0 ± 0.4 ‰, Supplementary Figure 1B). The fast dechlorination of 

PCE to cis-DCE was also reflected in a fast increase of the cell number from 1.6 ± 0.4 x 108 to 6.9 ± 

0.2 x 108 cells/ml as analysed by qPCR (Figure 1C). The cell number of D. mccartyi BTF08 increased 

from 6.1 ± 0.6 x 107 to 1.5 ± 0.2 x 108 cells/ml. Both organism show a correlation between 

dechlorination and growth. The ratio between S. multivorans and D. mccartyi strain BTF08 changed 

from initially 2.6:1 to 4.6:1 after 15 days and two re-feeding steps. After 12 days, the initial lactate 

(2.4 ± 0.1 mmol/bottle) was completely consumed after the second dose of PCE was completely 

dechlorinated to ethene and was subsequently re-fed. Acetate production occurred continuously 

during the whole dechlorination process (up to 0.8 ± 0.01 mmol/bottle, Figure 1E) and no hydrogen 

was measured in the gas phase (not shown). The PCE to ethene dechlorination rate of the Sm/Dhc 

BTF08 co-culture is 4.5-fold faster compared to the D. mccartyi strain BTF08 culture. In the latter, 

PCE was completely reduced to ethene a rate of 0.9 ± 0.03 µmol/bottle/day which increased after 

re-feeding to 1.4 µmol/bottle/day (Table 1, Supplementary Figure 2A). 

Similar growth characteristics and dechlorination behavior was observed in the Sm/Dhc 195 co-

culture cultivated under the same conditions, except that VC was the major dechlorination product. 

A first dose of PCE (34.2 ± 1.2 µmol) was dechlorinated within 7 days in stoichiometric amounts to 

VC (4.8 ± 0.1 µmol/bottle/day, Figure 1B, D and F). The increase of cell number is slightly lower for 

S. multivorans (1.9 ± 0.3 x 108 to 6.1 ± 0.3 x 108) and slightly higher for D. mccartyi 195 (3.8 ± 1.1 x 

107) to 1.5 ± 0.02 x 108 in this co-culture (Figure 1D). A low amount of ethene was produced starting 

at day 10 after the second dose of PCE was dechlorinated to VC, reaching 10.4 µmol/bottle after 

day 15. The Sm/Dhc 195 co-culture reduced PCE to VC 3.5-fold faster compared to the D. mccartyi 
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strain 195 pure culture (1.5 ± 0.04 µmol/bottle/day) increasing after a re-feeding of PCE to 3.3 

µmol/bottle/day in the pure culture (Supplementary Figure 2B).  

 

 

 

Table 1: Dechlorination rates of different co-culture set-ups of S. multivorans and D. mccartyi 
strains BTF08 or 195. n.d. - a 2nd or 3rd re-feeding step was not done. 

  Dechlorination rate (µmol day-1 bottle-1) 

 

Organism(s) 

 

Electron 
donor 

1st dose PCE 2nd dose PCE 

(1st re-feeding) 

3rd dose PCE 

(2nd re-feeding) 

     
With amendment of vitamin B12 

Dhc strain BTF08 H2 0.9 ± 0.03 1.4 n.d. 
Dhc strain 195 H2 1.5 ± 0.04 3.3 n.d. 
Sm + Dhc strain BTF08 Lactate 4.1 ± 0.2 11.6 11.6 
Sm + Dhc strain 195 Lactate 4.8 ± 0.1 11.6 11.6 
     
Without amendment of vitamin B12 

Sm + Dhc strain BTF08 Lactate ∞ n.d. n.d. 
Sm + Dhc strain 195 Lactate 0.9 ± 0.004 3.6 3.6 
     
Without amendment of vitamin B12 + DMB 

Sm + Dhc strain BTF08 Lactate 3.6 ± 0.2 8.0 8.0 
Sm + Dhc strain 195 Lactate 0.8 ± 0.05 4.3 4.3 
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Figure 1: PCE dechlorination, growth and metabolite analysis of S. multivorans and D. mccartyi strains 
BTF08 or 195 co-cultures. (A) PCE dechlorination of Sm/Dhc BTF08 and (B) Sm/Dhc 195. (C) Growth curve 
of Sm/Dhc BTF08 and (D) Sm/Dhc 195. (E) Lactate consumption and acetate production of Sm/Dhc BTF08 and 
(F) Sm/Dhc 195. Arrows indicate the time points of re-feeding the culture with PCE or lactate. Please note the 
secondary y-axes for D. mccartyi cell numbers in C and D. Negative controls were run with autoclaved cells 
(abiotic controls). Standard deviation of three independent biological replicates are represented by error bars. 
C - abiotic negative control. 
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2. Corrinoid transfer in co-cultures and the effect of the lower ligand 

D. mccartyi strains rely on externally provided corrinoids produced by the microbial community. 

Therefore, it was of interest if S. multivorans is able to provide functional corrinoids for D. mccartyi 

strains BTF08 and 195 when co-cultivating both organisms. In Sm/Dhc BTF08 co-cultures without 

the amendment of vitamin B12, a stoichiometric dechlorination of PCE to cis-DCE was obtained (~30 

µmol/bottle/day) (Figure 2A). No further dechlorination of cis-DCE to VC or ethene was measured, 

indicating that S. multivorans was responsible for the dechlorination.  

The non-dechlorinating Sm/Dhc BTF08 co-culture was supplemented with 1 µM 5,6-

dimethylbenzimidazole (DMB) resulting in a restored dechlorination (Figure 2C). cis-DCE produced 

by S. multivorans is completely reduced to stoichiometric amounts of ethene in 10 days (3.6 ± 0.2 

µmol/bottle/day) which is similar to the corresponding co-culture with amended vitamin B12 (4.1 ± 0.2 

µmol/bottle/day). The dechlorination rate increased after a re-feeding with PCE to 8 µmol/bottle/day.  

In contrast to the Sm/Dhc BTF08 co-culture, the Sm/Dhc 195 co-culture without vitamin B12 

amendment (-B12) dechlorinated PCE to VC, although at low rates before the re-feeding of PCE at 

day 35 (0.9 ± 0.004 µmol/bottle/day, Figure 2D). After 35 days, cis-DCE was dechlorinated to VC 

faster, at a 4-fold higher dechlorination rate (3.6 µmol/bottle/day) (Supplementary Figure 3). 

D. mccartyi BTF08 and 195 pure cultures without the addition of vitamin B12 showed no 

dechlorination activity over more than 100 days (Figure 2B, E). The Sm/Dhc 195 co-culture showed 

no significant increase in dechlorination when adding 1 µM DMB (Figure 2F). Produced cis-DCE is 

reduced to VC in 35 days (0.8 ± 0.05 µmol/bottle/day) which is similar to the co-culture without DMB 

supplementation. Additionally, PCE was faster reduced to VC after a second and third dose of PCE 

(4.28 µmol/bottle/day). Mass spectrometric analysis revealed the detection of [Ade]NCba produced 

by S. multivorans and additionally [DMB]NCba and [DMB]Cba (Supplementary Figure 4).  
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Figure 2: Dechlorination activity of D. mccartyi strains BTF08 and 195 in co-culture with S. multivorans 
without addition of vitamin B12.  (A) Sm/Dhc BTF08 with PCE as the electron acceptor. (B) Strain BTF08 with 
cis-DCE as electron acceptor (negative control). (C) Sm/Dhc BTF08 with PCE as electron acceptor and 
amendment of 1 µM DMB. (D) Sm/Dhc 195 with PCE as the electron acceptor. (E) Strain 195 with cis-DCE as 
electron acceptor (negative control). (F) Sm/Dhc 195 with PCE as electron acceptor and amendment of 1 µM 
DMB. Please not the different time scales. All growth experiments were conducted in independent biological 
triplicates. Arrows indicate re-feeding of PCE. ∑ = mass balance; sum of PCE, TCE, cis-DCE, VC and ethene. 

 

3. Electron microscopy and FISH analysis of formed cell aggregates 

During cultivation and approximately 25 to 30 transfers on lactate and PCE, the co-cultures showed 

a formation of large spherical aggregates already visible to the naked eye and reached a size of 1 

to 2 mm in diameter (Figure 3A). Field emission-scanning electron microscopy was applied (FE-

SEM) to get detailed insights into the composition and putative microbial interactions in these 

aggregates. After preparation for SEM, the aggregates showed sizes ranging from 30 to maximally 

200 µm (Figure 3B and C, Supplementary Figure 5). Electron micrographs of both co-cultures 

showed a compact network of S. multivorans and D. mccartyi cells coiled around by net-forming 

filament-like structures. Additionally, the cells are embedded in an extracellular matrix (extracellular 

polymeric substance (EPS)-like structure) which might enable cell-to-cell contact (Figure 3D). FISH 

(fluorescence in situ hybridization) with specific oligonucleotide probes targeting 16S rRNA was 

performed to distinguish between S. multivorans and the D. mccartyi strains in the aggregates. 3-

dimensional imaging showed a spatial organization and an equal distribution of both species within 

the aggregates (Figure 3E, Supplementary Figure 6). Additionally, the high resolution of the confocal 

laser scanning microscopy enabled visualization of single cell structures and revealed the same 

morphologies as in the electron micrographs. The sizes of the aggregates ranged from 50 to 100 µm 

in diameter. At magnifications of around 10.000x and 20.000x, S. multivorans showed a helical rod 
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shaped cell structure with a single flagellum and a length of 2 to 5 µm and a diameter of around 0.5 

µm as described previously (Scholz-Muramatsu et al., 1995) (Supplementary Figure 2). However, 

D. mccartyi showed an untypical cell morphology when co-cultivating with S. multivorans. 

Microscopic analysis of the pure culture revealed a disc-shaped irregular coccus of 0.5 µm in 

diameter, whereas the co-culture showed 0.5 µm large barrel-like cells with a flattened cell pole at 

one side and a ring-shaped septum (Figure 4) (Löffler et al., 2013b). Although, FISH analysis of un-

aggregated cells in the co-culture identified both organisms and clarified the presence of D. mccartyi 

(Supplementary Figure 7). 

 

Figure 3: Microscopic analysis of formed cell aggregates in co-cultures of S. multivorans and D. 
mccartyi strain 195 and BTF08. (A) Serum bottle of a Sm/Dhc BTF08 co-culture. (B-D) Scanning electron 
micrographs of an aggregate of Sm/Dhc 195 (B) and Sm/Dhc BTF08 (C,D). (E) Confocal laser scanning image 
of FISH stained aggregates of Sm/Dhc BTF08. red: S. multivorans, green: D. mccartyi.  

 

Figure 4: Different cell morphologies of D. mccartyi strain BTF08 cells in pure culture (A) and co-culture with 
S. multivorans (B).  
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Proteomics of pure and co-cultures 

To get a picture of the physiological response of S. multivorans and D. mccartyi BTF08 to the 

dechlorination of PCE in pure and co-cultures and to see the effect of corrinoid supply from S. 

multivorans, we collected proteome data of several different cultures. D. mccartyi BTF08 was 

cultivated with hydrogen as electron donor and either PCE ('P') or cis-DCE ('C') as electron acceptor, 

S. multivorans was cultivated with lactate as electron donor and PCE as electron acceptor ('S'), co-

cultures were cultivated with lactate and PCE and with either cyanocobalamin supplied ('L') or without 

externally provided corrinoids, but with the lower ligand DMB amended ('D') (for an overview of all 

conditions, see Supplemental Table X). To better compare the protein values among all conditions, 

we decided to calculate indicator proteins for co-culture vs. pure cultures (Supplementary Table XY).  

PART - NMDS plots of each of the four replicates of each conditions are shown in Fig. SXX. The 

data of one of each cultivation conditions from the D. mccartyi pure cultures were removed because 

they were outliers.  

First of all, we noticed that only two RdhA proteins from BTF08 were detected among all samples, 

the gene products of btf_1393 and btf_1407 (VcrA). The two reductive dehalogenases PceA and 

TceA, putatively involved in degradation of PCE to cis-DCE were not identified under any condition. 

While VcrA was one of the most abundant proteins under any of the tested conditions, regardless of 

the electron donor, the gene product of btf_1393 was more abundant in the two co-culture conditions. 

A BLAST against the NCBI nr database revealed that the btf_1393 amino acid sequence was nearly 

identical (99% or 497/498 amino acid sequence identity over the whole length) to an RdhA from D. 

mccartyi 11a5, encoded by 11a5_1355 and characterized as a novel PCE reductive dehalogenase, 

PteA. Another set of indicator proteins more abundant in the co-cultures were proteins related to cell 

division.  

  

Discussion 

In this study, we investigated the dechlorination of PCE to ethene (or vinyl chloride) in co-cultures of 

S. multivorans and Dehalococcoides mccartyi strains 195 or BTF08. The syntrophic relationships 

include the generation of hydrogen and acetate during lactate-fermentation and synthesis of 

corrinoids by Sulfurospirillum and maintaining low hydrogen levels by hydrogen consumption and 

therefore favoring endergonic lactate oxidation by Dehalococcoides. The latter one relies on 

hydrogen as electron donor and utilizes acetate as sole carbon source. Produced corrinoids could 

be salvaged by Dehalococcoides and remodeled into functional corrinoid cofactors for the reductive 

dehalogenases.  

Similar to other co-cultures, PCE was dechlorinated to mainly VC or ethene in Sm/195 and 

Sm/BTF08, respectively faster when compared with pure D. mccartyi cultures (He et al., 2007; Mao 

et al., 2015; Men et al., 2012).PCE was required as a co-substrate for VC dechlorination and ethene 

production only started when PCE was converted to VC (Maymó-Gatell et al., 2001). The same 
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process was found in association with Desulfovibrio vulgaris Hildenborough and Syntrophomonas 

wolfei, although TCE was the electron acceptor (Mao et al., 2015; Men et al., 2012). The fast 

dechlorination of PCE to cis-DCE with electrons from lactate oxidation is achieved mainly by S. 

multivorans alone as seen in the carbon stable isotopic fractionation pattern (Supplementary Figure 

1). Enrichment factor of Sm/Dhc BTF08 co-culture are in the same range as the S. multivorans single 

culture which is additionally supported by PCE-fractionation pattern of crude extracts and purified 

PceA enzyme of S. multivorans (Cichocka et al., 2007; Nijenhuis et al., 2005; Renpenning et al., 

2014). cis-DCE is subsequently available for D. mccartyi as electron acceptor and presumably 

converted by VcrA to ethene 

Dehalococcoides spp. are characterized by an incomplete de novo vitamin B12 biosynthesis and 

possesses corrinoid salvaging and remodeling pathways (Men et al., 2014; Yan et al., 2012; Yi et 

al., 2012). Corrinoids required for the assembly of the various Rdh’s have to be scavenged from the 

environment and therefore D. mccartyi strains rely directly on corrinoid production of other bacteria 

which highlights the importance of the microbial community. Despite the restriction to organohalide 

respiration and the dependence on corrinoid salvaging, only three different benzimidazolyl 

cobamides are known to be functional in D. mccartyi 195: cobalamin ([DMB]Cba), [5-OMeBza]Cba 

and [5-MeBza]Cba (Yi et al., 2012). In contrast, S. multivorans exhibits all enzyme necessary for de 

novo biosynthesis and was shown to produce a special type of corrinoid restricted to this organism, 

norpseudovitamin B12 ([Ade]NCba) (Keller et al., 2014; Kräutler et al., 2003). The Sm/Dhc BTF08 

co-culture was not capable of complete dechlorination of PCE to ethene without amendment of 

vitamin B12, only PCE to cis-DCE dechlorination occurred, suggesting that S. multivorans assembled 

a cobamide with a lower ligand not functional in D. mccartyi BTF08. Complete dechlorination to 

ethene was restored by the addition of DMB indicating a remodeling of nonfunctional [Ade]NCba into 

functional cobalamin by D. mccartyi BTF08. DMB was shown to have a negative effect on S. 

multivorans and was chosen in concentrations allowing growth and dechlorination (Keller et al., 

2018). However, an inhibiting effect resulting in decreased dechlorination activity can be excluded 

since PCE-to-cis-DCE dechlorination rates were similar with and without the addition of DMB. 

Opposed to Sm/Dhc BTF08, the Sm/Dhc 195 co-culture showed an accumulation of VC without 

amendment of vitamin B12 indicating cis-DCE to VC conversion 195 which is in contrast to previous 

studies showing adenine-containing B12 as nonfunctional in D. mccartyi. The cofactor usage of the 

multiple RDases which might have a different is not completely understood so far and only a few 

RDases were found and could be clearly assigned for conversion of a certain organohalide. 

Moreover, transcription of the different RDases is dependent on the electron acceptor present and 

previous studies were conducted with TCE (Yi et al., 2012). The presence of cis-DCE in the Sm/Dhc 

195 co-culture might induce a RDase preferentially using [Ade]NCba. Addition of DMB was not 

enhancing the dechlorination rate. MS analysis of this culture revealed the presence of three different 

types of vitamin B12 which are available for D. mccartyi 195: [Ade]NCba, [DMB]NCba and [DMB]Cba. 

Lower base adenine was replaced by DMB and [Ade]NCba was converted through guided 

biosynthesis into [DMB]NCba by S. multivorans, since the organism is able to incorporate several 

benzimidazoles and generate the corresponding corrinoids. The ratio of modified [DMB]NCba to 
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[Ade]NCba is in accordance with previous studies (Keller et al., 2014). [DMB]Cba was produced 

during salvaging and remodeling of available [Ade]NCba and [DMB]NCba by D. mccartyi 195. The 

usage of both B12-types for the production of [DMB]Cba seems possible as the organism shows a 

general remodeling activity regardless of the provided cobamide being functional or nonfunctional 

(Yi et al., 2012). Besides DMB, two other benzimidazoles are known to be attached to cobamide 

precursors or exchanged with the lower ligand of a nonfunctional cobamide by D. mccartyi 195: 

DMB, 5-OMeBza, 5-MeBza, and additionally benzimidazole (Bza) used by D. mccartyi BAV1 and 

GT (Men et al., 2014; Yi et al., 2012). The different benzimidazole-types are not functionally equal 

and DMB was added due to highest dechlorination rates among the others (Yan et al., 2016). 

Remodeling of a complete cobamide includes the exchange of the nucleotide loop and lower ligand 

done by cbiZ as shown in Rhodobacter sphaeroides (Gray and Escalante-Semerena, 2009a; Gray 

and Escalante-Semerena, 2009b). CbiZ is predicted to fulfill the same role in D. mccartyi but no 

experimental data are available so far. The conversion of norpseudo-B12 or nor-B12 into 

cyanocobalamin, and hence the exchange of the ethanolamine linker into aminopropanol indicates 

an involvement in removing the nucleotide loop. This is the first experimental evidence of the 

physiological role of cbiZ in D. mccartyi, since guided biosynthesis was exclusively shown with 

aminopropanol-containing B12 and only the exchange of the lower ligand could be observed.  

The cultivation of D. mccartyi in association with S. multivorans lead to the formation of cell 

aggregates which is a characteristic feature of obligate syntrophic interactions found in different 

acetogenic and methanogenic communities (Hulshoff Pol et al., 2004; Ishii et al., 2005; Stams et al., 

2012). FISH staining confirmed the close association of both organisms and provided first insights 

into the organization and spatial distribution of the organisms within aggregates of a dechlorinating 

mixed culture. Electron microscopic analysis of the co-cultures revealed cells in close physical 

contact embedded in extracellular polymer substances (EPS)-like structures and surrounding 

flagellum-like filaments. Decreasing of intermicrobial distances and establishing a cell-to-cell contact 

enables increased metabolite fluxes. According Fick's law, diffusion rates of hydrogen and formate 

are higher the lower the distances between cells which enhances growth and dechlorination rates 

(Schink and Thauer, 1988). The advantages of clustering and therefore a close physical contact was 

shown during syntrophic propionate oxidation of Pelotomaculum thermopropionicum SI and 

Methanothermobacter thermoautotrophicus ∆H. Interspecies hydrogen transfer was calculated 

being optimal during coaggregation (Ishii et al., 2006). EPS-like substances might aid in exchanging 

metabolites and flagella could contribute to a stabilization of the aggregate by adhesion and 

attachment of the cells (Grotenhuis et al., 1991; Ishii et al., 2005). The role of pili in direct interspecies 

electron transfer (DIET) by acting as conductive nanowires was discussed recently as seen in 

Geobacter spp. co-cultures (Reguera et al., 2005; Shrestha et al., 2013). A pili formation was shown 

for  D. mccartyi strain DCMB5 during organohalide respiration (Pöritz et al., 2015). However, 

conductive analysis of S. wolfei/D. mccartyi 195 aggregates revealed low conductibility and suggests 

an electron transfer via hydrogen rather than DIET (Mao et al., 2015). The involvement of S. 

multivorans flagella in DIET remains unclear and need more molecular and biochemical analysis. D. 

mccartyi showed in association with S. multivorans a barrel-like morphology with a septum-like 
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structure which is in contrast to the irregular disc-shaped coccus as found in single culture. This 

observation might be caused by the down-regulation of proteins involved in cell division in the co-

culture. One of these proteins, FtsZ, localized at the cell division site, was shown to play a key role 

in cytokinesis in E. coli. It was shown to be responsible for septal invagination of the cell wall and 

cytoplasmic membrane by forming a ring-shaped septum following subsequent cell division (Bi and 

Lutkenhaus, 1991; de Boer et al., 1992; Lutkenhaus, 1993). The down-regulation might hamper a 

complete membrane constriction resulting in slower cell division and therefore the observed barrel-

like cell morphologies. However, the reason for this difference in cell division is subject to speculation 

and needs more investigation. Since electron micrographs of co-cultures with D. mccartyi are scarce, 

it is not possible to state whether the unusual cell morphology is specific for the partnership with S. 

multivorans or whether it is found frequently associated with co-cultures. With S. wolfei as syntrophic 

partner, D. mccartyi strain 195 was found to form cell structures typical for D. mccartyi in general 

(Mao et al., 2015).  

This study provided first insights into the syntrophic interactions of S. multivorans in association with 

other organohalide-respiring bacteria. Studies on the composition of dechlorinating microbial 

communities showed the presence of S. multivorans although in lower abundancies which might 

explain an unclear ecological of the organism and potential syntrophic relations with other OHRB 

could be overlooked so far. The ability of S. multivorans to produce hydrogen during fermentation 

and a complete de novo cobamide biosynthesis makes him an ideal syntrophic partner for D. 

mccartyi. An interspecies hydrogen and cobamide transfer was observed in the 

Sulfurospirillum/Dehalococcoides co-culture resulting in complete and rapid dechlorination of PCE 

to ethene compared to single cultures. Furthermore, S. multivorans supplied all growth requirements 

to the highly restricted D. mccartyi: hydrogen, cis-DCE, acetate as carbon source and corrinoids 

(Figure 5). It is the first study in which the syntrophic partner was shown to provide all nutrients 

required for growth of D. mccartyi. This is of high interest for bioremediation attempts using 

Dehalococcoides-containing mixed cultures since electron donor and cobalamin limitations often 

detract Dehalococcoides dechlorination activities. The here established co-culture capable of an 

efficient detoxification of PCE to ethene is a potential candidate for bioaugmentation processes.  

 
Figure 5: Syntrophic interactions between Sulfurospirillum multivorans and Dehalococcoides mccartyi. 
PCE is rapidly dechlorinated to cis-DCE by S. multivorans with reducing equivalents gained from lactate 
oxidation. After the depletion of the electron acceptor S. multivorans switches to lactate fermentation favoured 
by D. mccartyi consuming hydrogen and maintaining low hydrogen levels. cis-DCE serves subsequently as 
electron acceptor and is further dechlorinated to ethane by D. mccartyi. The interspecies cobamide transfer 
enables supply of the corrinoid cofactor. 
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3 Discussion 

While Sulfurospirillum multivorans has become a model organism for organohalide 

respiration, the research focus was on the reductive dehalogenase and the associated 

proteins of the organism. For example, the first solved crystal structure of a reductive 

dehalogenase was obtained from PceA of S. multivorans and gave new insights into the 

catalytic reaction mechanism of this group of enzymes. However, the hydrogen metabolism 

of the organism has never been investigated. Genome analyses revealed four different 

hydrogenase gene clusters which raised the question whether the organism has a more 

complex hydrogen metabolism and is presumably capable of hydrogen production. 

Additionally, the role of Sulfurospirillum spp. in the environment and especially in 

organohalide-respiring microbial communities is poorly understood. In the following 

chapters, the hydrogen metabolism and the impact of S. multivorans and in general of 

Sulfurospirillum spp. as a hydrogen-producing syntrophic partner in these communities will 

be discussed. Furthermore, an outlook on future application of mixed cultures containing 

organohalide-respiring bacteria for bioaugmentation and bioremediation processes will be 

given. 

3.1 Hydrogen metabolism of Sulfurospirillum multivorans 

The physiological roles of the four [NiFe] hydrogenases of S. multivorans were elucidated 

using quantitative real-time PCR and biochemical investigations. For the quantification of 

the transcript levels, each hydrogenase gene cluster was detected by their catalytic subunit 

The organism was cultivated with a broad range of different electron donor and acceptor 

combinations to cover most possible metabolic scenarios in which each hydrogenase gene 

cluster is more likely to be expressed. All in all, only two of the four catalytic subunit 

transcripts were found among the tested growth conditions: hydB of hydrogen-oxidizing 
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membrane-bound hydrogenase and hyfG of membrane-bound hydrogen-producing 

hydrogenase while transcripts of the cytoplasmic hydrogen-uptake hydrogenase (hupL) 

and the putative soluble cytoplasmic hydrogen-producing hydrogenase (echE) were not 

detected. Transcripts of the catalytic subunit hydB were detected regardless of the electron 

donor like hydrogen, pyruvate or formate. While an upregulation of the MBH gene 

expression only with hydrogen as electron donor would be useful, given the costly 

maturation of NiFe hydrogenases which use an array of maturation proteins responsible for 

correct synthesis of the complex NiFe active site with its non-proteinogenous ligands, this 

was not observed in S. multivorans. This is in contrast to the situation in Ralstonia eutropha 

and Rhodobacter capsulates, where an upregulation of an MBH was observed (Buhrke et 

al., 2005; Duche et al., 2005). The sensing of hydrogen in these organisms is achieved by 

a signal cascade composed of a response regulator HoxA, a histidine kinase HoxJ and a 

regulatory hydrogenase (Friedrich et al., 2005). Hydrogen causes increased transcription 

levels and 10-fold higher activity (Toussaint et al., 1997). Since S. multivorans lacks H2 

sensors and regulatory proteins adjacent to the hydrogenase gene clusters, a constitutive 

expression of the MBH is suggested. This is in accordance also on the protein level as 

enzyme activity assays with membrane extracts revealed similar H2-oxidizing activities 

regardless of the growth condition. Moreover, hydrogen as electron donor had no inducing 

effect and enzyme activities were not significantly altered. The constitutive expression was 

already suggested in a proteomic study in which the MBH was detected in membranes of 

cells grown with pyruvate or formate as electron donor and PCE; fumarate or nitrate as 

electron acceptor in high abundance (Goris et al., 2015). However, hydrogen was not tested 

as substrate and cultivation were limited in this study. 

The S. multivorans MBH is closely related to the well characterized membrane-bound 

hydrogenase of Wolinella succinogenes (amino acid sequence identity of approximately 50 

to 76%) which consists of a large subunit harbouring the [NiFe] catalytic site, a small subunit 

with three [FeS] cluster acting as an electron transfer relay and a cytochrome b subunit 
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(Dross et al., 1992; Fritsch et al., 2013; Fritsch et al., 2011). In W. succinogenes, electrons 

gained from hydrogen oxidation at the [NiFe] catalytic centre are transferred via three [FeS] 

cluster of the small subunit to the membrane-integral subunit and enter the respiratory chain 

via the cytochrome b (Bernhard et al., 1997; Frielingsdorf et al., 2011; Gross et al., 2004). 

The subunit composition of the MBH was elucidated by native polyacrylamide gel 

electrophoresis and revealed the same oligomeric structure. The presence of cytochrome 

b in the S. multivorans MBH was confirmed with UV/Vis difference spectra revealing 

characteristic cytochrome b absorption peaks as found in the W: succinogenes enzyme 

(Eguchi et al., 2012; Unden and Kröger, 1981; Volbeda et al., 2013). Additionally, hydrogen 

oxidation activity was only measured with the menaquinone analog 2,3-dimethyl-1,4-

napthoquinone (DMN) suggesting a menaquinone as the physiological electron acceptor. 

This is supported by genes present in the genome encoding the futalosine pathway 

responsible for menaquinone biosynthesis and the detection of menaquinone in quinone 

analysis of membranes (Goris et al., 2014; Hiratsuka et al., 2008; Scholz-Muramatsu et al., 

1995). These findings strongly point towards the MBH mediating hydrogen oxidation in the 

organohalide respiration chain (Fig. 6).  

The second hydrogenase detected at both, transcript and protein level, was the Hyf-like 

hydrogenase. A slight upregulation was seen in cells cultivated fermentatively on pyruvate 

and transcripts were preferently detected with pyruvate as the electron donor. This is in 

accordance with a previous proteomic study in which the Hyf enzyme was found in higher 

abundancies with pyruvate as electron donor (Goris et al., 2015). The enzyme shares 

similarities with Hyd3 and Hyd4 of E. coli, forming the formate hydrogenlyase (FHL) 

complex together with a formate dehydrogenase (FdhF) in case of Hyd3 and Hyd4 

presumably participates in a second FHL complex (FHL-2) with the FdhF homolog YdeP 

(Pinske and Sawers, 2016; Sawers, 1994; Sawers et al., 2004). However, no experimental 

evidence confirmed this role, since the hyf operon is silent and therefore allows no 

biochemical analysis (Self et al., 2004; Skibinski et al., 2002). 
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Figure 6: Hydrogen metabolism of Sulfurospirillum multivorans. The MBH is presumably 
involved in PCE respiratory chain by oxidizing electrons and the Hyf putatively produces hydrogen 
with electrons gained from pyruvate oxidation. Physiological roles of Hup and Ech hydrogenase 
remain unclear and therefore drawn transparent and in dashed boxes. Routes of electrons within the 
MBH and Hyf are shown by arrows. MBH - membrane-bound hydrogenase, Rdh - reductive 
dehalogenase, Hyf - Hyf-like hydrogenase, Ech - cytoplasmic hydrogen evolving hydrogenase, Hup 
- cytoplasmic uptake hydrogenase, MK/MKH2 - menaquinone/reduced menaquinone, PCE - 
tetrachloroethene, TCE - trichloroethene, PFOR - pyruvate ferredoxin:oxidoreductase, Fd - 
ferredoxin,          - [4Fe4S] cluster,         - [3Fe4S] cluster,        - heme b,         - [NiFe] active site,  

,   - norpseudovitamin B12. 
 

A role in fermentative hydrogen production is discussed but not clarified so far (Mirzoyan et 

al., 2017; Redwood et al., 2008; Trchounian and Gary Sawers, 2014; Trchounian and 

Trchounian, 2014). The absence of a pyruvate formate lyase and a formate dehydrogenase 

showing only 30% amino acid sequence identity to FdhF of E. coli makes a participation of 

the Hyf in formate metabolism and formate oxidation unlikely (Goris et al., 2015). 

Additionally, proteome studies and transcriptional analysis revealed an upregulation of the 

Hyf suggesting an involvement in disposing reducing equivalents rather than in formate 

metabolism (Fig. 6). The physiological roles of the other two hydrogenases remain elusive 

due to almost silent transcription levels among all tested groth conditions. Neither a role of 

the cytoplasmic uptake hydrogenase (Hup) in delivering low-potential electrons for the 

reductive TCA cycle nor recycling hydrogen generated by a nitrogenase seems to be the 

Co Ni 
Fe 
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case. A hydrogen production of the Ech hydrogenase from CO oxidation as in 

Carboxydothermus hydrogenoformans can be excluded, since a gene coding for a CO 

dehydrogenase is lacking. 

In S. multivorans, the hydrogen metabolism involved in organohalide respiration is rather 

simple with the MBH being the main hydrogen-oxidizing enzyme and presumably the 

electron donating system in the PCE respiratory chain. This simplicity might be based on a 

general versatile metabolism not restricted to organohalide respiration and the utilization of 

also other electron donors besides hydrogen. Opposed to that are obligate OHRB for which 

hydrogen oxidation is an essential and central metabolic feature, since they rely on 

hydrogen as electron donor. In these organisms, a high number of RDase genes often 

correlate with a complex hydrogen metabolism and various [NiFe] and [FeFe] 

hydrogenases. The genome of D. mccartyi comprises genes encoding four [NiFe] 

hydrogenases and one [FeFe] hydrogenase (Kube et al., 2005; Seshadri et al., 2005). Of 

the four [NiFe] hydrogenases, three are membrane-bound of which only one (HupSL, 

referred to as ‘Hup-type’ in Table 2) is periplasmically oriented and therefore assumed to 

be responsible for delivering electrons into the organohalide respiratory chain. This is 

supported by several proteome studies showing highest transcript levels for HupSL among 

the other hydrogenases and the presence of a Tat signal peptide (Hartwig et al., 2015; 

Rahm and Richardson, 2008; Türkowsky et al., 2018). Moreover, the Hup hydrogenase is 

predicted to directly interact with the RDase by forming a supercomplex together with the 

RDase and formate dehydrogenase-like iron-sulfur molybdoenzyme (CSIM), due to missing 

cytochromes. Evidence for that was gained by isolating the complex from D. mccartyi strain 

CBDB1 and analyzing proteins of on native polyacrylamide gel electrophoresis (Hartwig et 

al., 2017; Kublik et al., 2016; Schubert et al., 2018). A similar periplasmic [NiFe] uptake 

hydrogenase (HyaABC) was found in Dehalobacter restrictus strain PER-K23, harboring in 

total eight different hydrogenases which underscores the high specialization of the 

hydrogen metabolism assigning a central role for hydrogen in its metabolism. HyaABC 
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resembles a ‘standard-type’ membrane-bound hydrogenase containing a membrane-

integral cytochrome b, unlike the Hup of D. mccartyi. It was the only hydrogen-oxidizing 

hydrogenase detected in the proteome of all strains suggesting it as the main hydrogen-

oxidizing enzyme in D. restrictus. Besides [NiFe] hydrogenases, three [FeFe] were 

identified of which two were detected at the protein level although in not significantly altered 

abundancies during respiration. They are assumed to generate reducing equivalents by 

reduing NAD and FAD needed in the anabolism (Jugder et al., 2016; Kruse et al., 2013; 

Rupakula et al., 2013). Opposed to these multiple sets of hydrogenases are the less 

complex hydrogenase sets of versatile OHRB containing several [NiFe] although often only 

one of the Hup-type (Tab. 2). Geobacter lovleyi strain SZ and Anaeromyxobacter 

dehalogenans strain 2CP-C harbor only one membrane-bound periplasmically oriented 

hydrogenase similar to S. multivorans and S. halorespirans (Butler et al., 2010; Goris et al., 

2017; Neumann et al., 1996; Thomas et al., 2008). 

 

Table 2: Overview of rdhA genes and hydrogenase sets of obligate and versatile 
organohalide-respiring bacteria. The ‘Hup-type’ resembles periplasmically oriented hydrogen 
uptake hydrogenase delivering electrons for organohalide respiration as the HupSL of D. mccartyi.  

Organisma 

Number 

of rdhA 

genes 

[NiFe] hydrogenases [FeFe] hydrogenases 

Hup-type others  

obligate OHRB     

D. mccartyi strain 195 17 1 3 1 
D. mccartyi strain CBDB1 32 1 3 1 
D. mccartyi strain BTF08 20 1 3 1 
D. alkenigignens 27 1 3 1 
D. restrictus strain PER-K23 20 3 2 3 

versatile OHRB     

D. hafniense strain Y51 1 4 1 4 
D. hafniense strain DCB-2 5 4 1 4 
G. lovleyi strain SZ 2 1 2 1 
A. dehalogenans strain 2CP-P 2 1 1 - 
S. multivorans 2 1 3 - 
S. halorespirans 2 1 3 - 

aD. mccartyi - Dehalococcoides mccartyi, D. alkenigignens - Dehalogenimonas alkenigignens, D. restrictus - 
Dehalobacter restrictus, D. hafniense - Desulfitobacterium hafniense, G. lovleyi - Geobacter lovleyi, A. 

dehalogenans - Anaeromyxobacter dehalogenans, S. multivorans/halorespirans - Sulfurospirillum 

multivorans/halorespirans. 
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An exception are Desulfitobacterium hafniense strains Y51 and DCB-2 which possess 

genes encoding nine hydrogenases (five [NiFe] and four [FeFe]) even though they are not 

restricted to hydrogen and utilize a broad range of electron donors (Kruse et al., 2017b; 

Kruse et al., 2013). Four of the five [NiFe] hydrogenases are membrane-bound and faced 

to the periplasm (Hup-type) of which only one (HydABC) was detected in the proteome 

under respiratory growth. Also here, the large subunit HydB is linked to the quinone-pool of 

the membrane by a membrane-integral cytochrome b (Kruse et al., 2015; Türkowsky et al., 

2018). The other [NiFe] hydrogenase is similar to Hyd4 (Hyf) of E. coli, whereas an 

involvement in fermentation metabolism rather than in formate oxidiation is suggested since 

formate-related genes are not present in this operon. Experimental evidence for this is 

pending and protein detection failed so far which might be based on insufficient extraction 

of the membrane subunits. A role of the [FeFe] hydrogenases in the hydrogen metabolism 

can also be excluded due to missing maturation genes in D. hafniense strains Y51 and 

DCB-2 (Kruse et al., 2017b). 

Taken together, the hydrogen metabolism among the different OHRB differs in the 

complexity depending on an obligate organohalide respiring lifestyle or a versatile 

metabolism. Research on the hydrogenases of these organisms, especially of the obligate 

ones, is still at the beginning and needs more biochemical and enzymatic characterization. 

In this thesis, we provided deeper insights into the hydrogenase mainly responsible for 

delivering electrons for organohalide respiration and into the general hydrogen metabolism 

of the model OHRB S. multivorans. 

3.2 Hydrogen production by Sulfurospirillum spp. 

The MBH of S. multivorans was shown to be the primary hydrogen oxidizing hydrogenase 

and might be the electron donating system by delivering electron into the menaquinone 

pool of the organohalide respiration chain. The second hydrogenase found to be 

transcribed was the Hyf-like hydrogenase showing especially with pyruvate as electron 
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donor a transcription which was higher during pyruvate fermentation pointing towards an 

involvement the pyruvate and additional fermentation metabolism. To get deeper insights 

into the fermentation capabilities and to verify this role, S. multivorans and also other 

Sulfurosprillum spp. were tested for their ability to ferment pyruvate and to produce 

hydrogen via the Hyf hydrogenase. Scholz-Muramatsu and colleagues stated in 1994 that 

the organism was able to grow with pyruvate in the absence of the electron acceptor PCE 

resulting in the formation of the same products as with PCE and that hydrogen and/or 

lactate formation served as an electron sink for pyruvate oxidation. However, no data on 

growth curves or fermentation balances were shown (Scholz-Muramatsu et al., 1995). We 

continued these studies and screened different Sulfurospirillum spp., namely S. 

multivorans, S. cavolei, S. arsenophilum and S. deleyianum, for their capabilities to ferment 

pyruvate and dispose electrons by hydrogen production. Initial cultivation experiments 

showed only weak growth during first transfers on pyruvate alone as already described by 

Scholz-Muramatsu. Sequential subcultivation and transfers of the cultures lead to a 

continuous adaptation of all tested Sulfurospirillum spp. and gas chromatographic analysis 

of the gas phase revealed a significant hydrogen production. This was the first evidence of 

H2 production of Epsilonproteobacteria, which are described and recognized as hydrogen 

consumers exclusively (Campbell et al., 2006; Nakagawa et al., 2005; Nakagawa and 

Takaki, 2001). The mechanisms behind this long-term adaptation process are unknown so 

far. A similar long-term regulatory effect was observed during continuous transfers without 

PCE. Transcript levels and enzyme activity of PceA were completely absent and not 

detectable after 35 transfers which corresponds to approximately 105 generations. Also 

here, the molecular basis for the long-term regulation of gene expression is not known so 

far (John et al., 2009).  

Screening of the four Sulfurospirillum spp. revealed two different pyruvate fermentation 

metabolisms. Highest hydrogen production rates were measured for the non-organohalide 

respiring S. cavolei, followed by S. deleyianum and S. multivorans. Hydrogen is a common 
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fermentation product and used as an electron sink by a broad range of fermentatively 

growing bacteria which can be classified into either strict anaerobes such as Clostridium 

and Desulfovibrio or into facultative anaerobes as Enterobacter, Escherichia and Bacillus 

(Axley et al., 1990; Ren et al., 2007; Thauer et al., 1977; Wijffels and Janssen, 2003). The 

Hyf hydrogenase was identified being responsible for hydrogen production with electrons 

gained from pyruvate oxidation via pyruvate:ferredoxin oxidoreductase (PFOR) and 

transported by the low potential electron carrier ferredoxin (Fig. 7). Evidence for this function 

was found in proteome data in which all Hyf subunits, PFOR and ferredoxin showed a 

remarkable upregulation in cells of S. multivorans and S. cavolei grown fermentatively on 

pyruvate. A similar role of a group 4 hydrogenase was shown for the MBH in Paracoccus 

furiosus catalyzing proton reduction with electron from reduced ferredoxin and thereby 

generating a sodium ion gradient (McTernan et al., 2015; Silva Pedro et al., 2001). The 

same function was observed with Hyd3 of E. coli. An attachment of the enzyme to ferredoxin 

from Thermotoga maritima linked to PFOR resulted in hydrogen production with pyruvate 

as electron donor (Lamont et al., 2017). Structural comparison of the Hyf-like hydrogenase 

of S. multivorans show high similarities to complex I of Thermus thermophiles and to the 

formate hydrogen lyase complex (FHL-1) forming Hyd-3 (Hyc) and Hyd-4 (Hyf), which might 

form a second FHL complex (FHL-2) in E. coli (Fig. 7) (Pinske and Sawers, 2016; Sargent, 

2016). The homology of membrane subunits of group 4 hydrogenases to Na+/H+ or K+/H+ 

antiporters of complex I and therefore acting as a proton pump has been widely discussed 

(Brandt et al., 2003; Hedderich, 2004; Hedderich and Forzi, 2005; Marreiros et al., 2013; 

Pinske and Sawers, 2016). The high conservation grade of key amino acid residues in the 

membrane subunits found in an alignment with their counterparts of hydrogenase 3 (Hyc) 

and 4 (Hyf) of E. coli and complex I of Thermus thermophilus renders the involvement of 

Sulfurospirillum spp. Hyf in generating a proton gradient a possible scenario. A detailed 

discussion dealing with the hydrogen metabolism in S. multivorans and the Hyf as potential 

proton pump can be found in chapter 2.2 and Appendix 2.2 Supplementary information. 
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Figure 7: Architecture and comparison of homologous subunits of different group 4 [NiFe] 
hydrogenases. (A) Hyd3 of E. coli, (B) Hyd4 of E. coli, (C) Hyf-like hydrogenase of S. multivorans 
and (D) complex I of Thermus thermophilus. Color code resembles homologo+us subunits. Purple 
subunits represents catalytic subunits. Blue subunits represents [FeS] cluster containing subunits. 
Proton translocating sites are indicated by arrows. PFOR - pyruvate ferredoxin.oxidoreductase, FdhF 
- formate dehydrogenase H, YdeP - homolog to FdhH, Q - quinone, FMN, - Flavin mononucleotide.  
         -  [4Fe4S] cluster,       - [2Fe2S] cluster,          - [NiFe] active site,          -  molybdenum cofactor. 
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The Hyf hydrogenase was shown to be responsible for hydrogen production in S. 

multivorans and S. cavolei. Genomes of several other Epsilonproteobacteria contain also 

hyf gene clusters. In some Arcobacter spp. and Campylobacter spp., the hyf is co-located 

either with a formate dehydrogenase or a formate channel indicating an involvement in 

formate metabolism by forming a formate hydrogen lyase complex (FHL). However, a 

pyruvate formate lyase is missing in these genomes which makes a participation of the Hyf 

in hydrogen production more likely than in forming a FHL and hydrogen producing 

capabilities of also other Epsilonproteobacteria cannot be excluded.  

3.3 Sulfurospirillum multivorans as a hydrogen and corrinoid producing 

syntrophic partner 

The genus Sulfurospirillum and Epsilonproteobacteria in general, inhabit different 

ecological niches ranging from marine sediments and hydrothermal vents to terrestrial 

systems including sulfur- and nitrate-rich environments, limestone caves, sulphidic springs 

and organohalide-contaminated groundwater (Barton and Luiszer, 2005; Elshahed et al., 

2003; Engel et al., 2003; Engel et al., 2004; Gevertz et al., 2000; Goris and Diekert, 2016; 

Voordouw et al., 1996). Additionally to natural environments, Helicobacter pylori and 

Campylobacter jejuni, both belonging to the Epsilonproteobacteria, are pathogenic and 

colonize the intestine of the human body (Parkhill et al., 2000; Tomb et al., 1997). Despite 

the different metabolic features, all members are described to utilize hydrogen as electron 

donor so far and are considered as hydrogen consumers in microbial food webs exclusively 

(Campbell et al., 2006; Nakagawa et al., 2005; Nakagawa and Takaki, 2001). The ability of 

Sulfurospirillum spp. to produce hydrogen during fermentative growth sheds new light on 

the ecological role of Epsilonproteobacteria which was overlooked so far. 

To get more insights into the possible roles of Sulfurospirillum spp. as hydrogen producer 

and syntrophic partner in microbial communities different co-cultures with hydrogen 

consuming bacteria were set up. In a first co-culture, S. multivorans was cultivated together 
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with the methanogen Methanococcus voltae (Fig. 8A). Lactate fermentation in pure cultures 

of S. multivorans was not possible and occurred only in the presence of a hydrogen 

consumer. This indicates an obligate syntrophic interaction in which M. voltae maintained 

low hydrogen levels favouring endergonic lactate fermentation by S. multivorans and 

received in turn hydrogen as electron donor. Aditionally, the fermentation product acetate 

served as carbon source and CO2 was utilized as electron acceptor for methanogenesis in 

M. voltae.  

The unrecognized role as syntrophic partner and the ability to interact also with other 

bacteria and to contribute to whole microbial communities as a hydrogen producer was 

supported in a second co-cultivation experiment with the obligate organohalide-respiring D. 

mccartyi (Fig. 8B). S. multivorans generated hydrogen and acetate during lactate 

fermentation and produced de novo corrinoids. Hydrogen and acetate were subsequently 

utilized by D. mccartyi since the organism relies on hydrogen as electron donor and acetate 

as carbon source due to an incomplete reductive acetyl-CoA pathway and the inability to 

fix CO2 (Zinder, 2016).  

The syntrophic interaction of S. multivorans and D. mccarty strain BTF08 led to a complete 

dechlorination of PCE to ethene with up to 5-fold higher rates compared to D. mccarty single 

cultures. Additionally, these observations are independent from the electron donor used 

during cultivation since amended hydrogen instead of lactate results in similar enhanced 

dechlorination rates which suggests also other stimulating and yet to be undiscovered 

growth factors or signals exchanged between both organisms. A positive effect on growth 

and dechlorination when co-cultivating D. mccartyi in association with fermenting bacteria, 

acetogens or methanogens was reported in several studies. The syntrophic association of 

D. mccartyi with butyrate-fermenting Syntrophomonas wolfei or lactate-fermenting 

Desulfovibrio vulgaris Hildenborough resulted in faster dechlorination and cell yields (He et 

al., 2007; Mao et al., 2015; Men et al., 2012). The advantage of S. multivorans being the 

syntrophic partner for D. mccartyi compared to other fermenters is its ability to rapidly 
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dechlorinate high concentrations of PCE to cDCE. Carbon stable isotope analysis (CSIA) 

confirmed the conversion of PCE to cDCE exclusively done by S. multivorans. Under 

laboratory conditions, the organism is able to degrade 10 mM PCE in approximately 12 

hours, which highlights its potential for bioremediation processes (Neumann et al., 1996; 

Scholz-Muramatsu et al., 1995). Other co-cultures with D. mccartyi were either conducted 

with non-dechlorinating partners (e.g. S. wolfei, D. vulgaris Hildenborough) or slow PCE 

degraders like Geobacter sulfurreducens or G. lovleyi which need several days to convert 

40 µmol PCE to cDCE, while S. multivorans needed only several hours (Mao et al., 2015; 

Men et al., 2012; Yan et al., 2013; Yan et al., 2012). In addition, co-cultures with Geobacter 

species need additional amendment with hydrogen, since this genus is not known for 

hydrogen production. Besides the interspecies hydrogen transfer, an interspecies 

cobamide transfer was observed. Vitamin B12-free cultures of D. mccarty strain BTF08 and 

S. multivorans showed an accumulation of cDCE indicating dechlorinating activity of only 

S. multivorans which assembled a corrinoid not functional in D. mccartyi resulting in no 

further dechlorination. Complete conversion to ethene can be restored by the addition of 

DMB. This phenomenon was also observed in co-cultures with Geobacter spp., Pelosinus 

fermentans strain R7, Sporomusa ovata strain KB-1 and Methanosarcina barkeri strain 

Fusaro. These organisms produced a corrinoid not functional in D. mccartyi: 5-

hydroxybenzimidazolyl-cobamide (G. sulfurreducens, M. barkeri), phenolyl- and p-cresolyl-

cobamide (S. ovata, P. fermentans), and dechlorination was restored when DMB was 

amended (Hazra et al., 2015; Stupperich et al., 1990; Stupperich et al., 1989; Yan et al., 

2013).  

In both, methanogenic and dechlorinating co-cultures, a formation of cell aggregates was 

observed which is a common feature of cells of an obligate syntrophic interaction and was 

already reported for different acetogenic and methanogenic mixed cultures (Hulshoff Pol et 

al., 2004; Ishii et al., 2005; Stams et al., 2012). 
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Figure 8: Overview of syntrophic interactions of S. multivorans in co-culture with M. voltae 
and D. mccartyi. Mechanisms of oxygen scavenging are unknown so far. S. multivorans - 
Sulfurospirillum multivorans, M. voltae - Methanococcus voltae, OHRB - organohalide-respiring 
bacteria. 
 

Reduction of intermicrobial distances quarantee higher diffusion of metabolites which can 

directly influences growth and dechlorination rates (Schink and Thauer, 1988). Aggregation 

of OHRB with other bacteria was already reported. A bioreactor experiment revealed 

bioflocculation of D. mccartyi with Desulfovibrio, Geobacter and Clostridia forming 

microcolonies able to dechlorinate trichloroethene (TCE) to ethene at high rates (Delgado 

et al., 2017; Delgado et al., 2014). In addition, metabolite diffusion rates were calculated 

being optimal in a D. mccartyi/S. wolfei co-culture when forming aggregates. The close 

physical contact was for an efficient syntrophic butyrate fermentation required, since the 

cell-cell distances of dispersed cells would be to large for achieving an optimal hydrogen 

transfer (Mao et al., 2015). 

A further advantage of S. multivorans is the ability to grow also with oxygen as electron 

donor which makes him another ideal partner for strict anaerobic bacteria by eliminating 

toxic oxygen and corresponding radicals. One major challenge for strict anaerobes is the 

introduction of oxygen through geological or anthropogenic processes in their habitats. 

Especially D. mccartyi is characterized by an extremely low oxygen tolerance. Traces of 

oxygen and even a brief exposure to oxygen causes an immediate loss of dechlorination 

activity and inactivates the organism irreversible in pure culture (Adrian et al., 2007; Amos 

et al., 2008; Löffler et al., 2013b). Metagenomic analysis of enrichment cultures revealed 

the presence of two oxygen free-radicals (ROS) scavenging mechanisms in D. mccartyi: 
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an [Mn]-superoxide dismutase (SOD) and a putative ruberythrin/rubredoxin system (Hug et 

al., 2012). Multiple scavenging mechanisms including cytochrome c oxidases, catalases, 

peroxidases and different SODs and ruberythrin/rubredoxin systems to mitigate toxicity of 

oxygen were found in the metagenome and were assigned to non-dechlorinating 

community members (e.g. α/β/δ/γ-Proteobacteria, Firmicutes, Euryarchaeota, 

Actinobacteria). Especially the facultative anaerobic bacteria, which are capable of oxygen 

respiration, might therefore be involved in protection of D. mccartyi, since they diminish the 

oxygen and ROS. A D. mccatyi-containing microbial consortium was still able to 

dechlorinate trichloroethene to ethene when exposed to 20% oxygen (corresponds to 7.2 

mg/L of dissolved oxygen in water) in the gas phase with increased lag phases before 

dechlorination started and reduced dechlorination rates compared to controls without the 

addition of oxygen (Liu et al., 2017). The main oxygen scanvenging organisms in this 

community were identified to belong to the Proteobacteria and Bacteroidetes. Similar 

scavenging systems were found in S. multivorans (e.g. a cbb3-type cytochrome oxidase as 

the key enzyme for oxygen respiration, a SOD, superoxide reductase (SOR), catalase and 

cytochrome c551 peroxidase) which enable the organism to grow in the presence of 15% 

oxygen (Goris et al., 2014). An upregulation of these enzymes during exposure to 5% 

oxygen was observed by comparative proteomics, while the cytochrome oxidase seems to 

be constitutively expressed (Gadkari et al., 2018). From these findings it can be concluded 

that S. multivorans is also able to mitigate toxicity of ROS which is of advantage for D. 

mccartyi when grown in the corresponding co-culture.  

The ability to completely dechlorinate PCE to ethene renders the co-culture as a potential 

candidate for bioaugmentation processes. The application of Dehalococcoides-containing 

mixed cultures for in situ bioremediation processes and the research still needed before 

applying the established D. mccartyi/S. multivorans co-culture on organohalide-

contaminated sites will be discussed in the next chapter. 
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3.4 Application of Dehalococcoides-containing mixed cultures for 

bioaugmentation 

The anthropogenic-caused environmental pollution with chlorinated hydrocarbons and 

other types of xenobiotics harmful to human and environmental health has become a globe-

spanning problem over the last years. Industrial processes (e.g. dry cleaning of textiles, 

degreasing of metals) led to the release of enormous amounts of PCE into the atmosphere. 

The 2006 World Health Organization report documented an annual PCE production of 

170.000 tons for the US and EU in the mid-90s (WHO, 2006). According estimates of the 

Agency for Toxic Substances and Disease Registry from the U.S. Department of Health 

and Human Services, 80 - 85% of the annually used PCE was released into the atmosphere 

at that time (ATSDR, 1997). These facts unambiguously highlight the importance of 

remediation processes to protect the environment for further pollution and a reduction of 

pollutant levels. Different strategies including physical, chemical and biological 

technologies have been developed, while bioremediation processes applying bacterial 

mixed cultures obtained from natural environments or artificially constructed in vitro are the 

most reliable strategies (Stroo et al., 2013). Research on bioaugmentation strategies using 

dechlorinating cultures started in the late 1990s as a result of the massive release of 

chlorinated hydrocarbons into the environment. The discovery of the D. mccartyi with its 

unique capabilities was a breakthrough and made effective bioremediation possible 

(Duhamel et al., 2002). In situ bioaugmentation using Dehalococcoides-containing cultures 

bears a remarkable high potential for further bioremediation attempts due to the facts that 

the organisms are able to completely degrade chlorinated solvents to benign ethene even 

at concentrations close to the limit of solubility. Several studies already demonstrated 

successful and promising bioremediation approaches. For example, complete 

dechlorination of TCE and cDCE to ethene in an organohalide-contaminated aquifer was 

achieved only after the injection of an ethene-forming microbial enrichment culture which 

was stable and survived more than 500 days. Additionally, the groundwater flow transport 
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the culture through the whole contaminated site (Ellis et al., 2000). The application of 

microbial consortia has become a suitable practice and several inocula targeting different 

hydrocarbons (e.g. aromatic/poly aromatic, halogenated, BTEX, fuel oils) are commercially 

available so far which were already used at several hundred sites in North America and 

Europe (Lyon and Vogel, 2013). All dechlorinating mixed cultures have a complex 

community structure in common and contain different bacterial and archaeal genera. This 

complexity is of high importance for restricted OHRB (e.g. Dehalococcoides, Dehalobacter) 

which are dependent on other community members contributing to dechlorination by 

providing hydrogen as electron donor and other growth requirements (e.g. corrninoids). 

One of the best studied microbial inocula regarding bacterial composition and substrate 

spectrum including used electron donors and organic solvents is the KB-1® culture (SiREM 

lab, Guelph, Ontario, Canada, Fig. 9A). The consortium was originally obtained from a TCE-

contaminated site and contains two Dehlacoccoides spp. as the main population and 

Geobacter, Methanosarcina, Syntrophobacter, Syntrophus and Sulfurospirillum in a minor 

portion (Duhamel and Edwards, 2006). The culture covers a broad range of chlorinated 

ethenes (e.g. PCE, TCE, all DCE isomers, VC), ethanes (e.g. 1,2-dichloroethane, 1,1,1-

trichloroethane), methanes (e.g. chloroform, dichloromethane), chlorofluorocarbons (e.g. 

trichlorofluoromethane) and several chlorobenzenes (e.g. hexachlorobenzene, 

polychlorinated biphenyl and dioxins) and can be therefore applied for various 

decontamination purposes (Duhamel and Edwards, 2007; Duhamel et al., 2004; Duhamel 

et al., 2002; Grostern and Edwards, 2006b; Löffler et al., 2013a). Additionally, the diverse 

community structure enables growth with many commonly used electron donors including 

sugars (e.g. glucose, molasses), organic acids (e.g. lactate, propionate), alcohols (e.g. 

methanol, ethanol) and oils (Aziz et al., 2013; Duhamel et al., 2002). The culture was 

already successfully in a number of field-scale studies via injection wells or push injection 

techniques applied (Fig. 9B, C). 
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Fig. 9: KB-1® canister (A) and its application into an injection well (B) and via push injection 

into the contaminated soil (B). Picture courtesy and copryright by SiREM lab (with permission of 
Peter Dollar, SiREM lab, Guelph, Ontario, Canada). 
 

For example, PCE-contaminated groundwater (1 mg/L) of an Air Force Base was almost 

completely bioremediated within 200 days (5 µg/L) with ethene as the end product (Major 

et al., 2002). Another study at the Cape Canaveral Air Force Station reported a significant 

increase in ethene formation when using KB-1® for bioaugmentation and revealed a 

conversion of 98% TCE in 52 days. Furthermore, dechlorination and growth of the 

organisms was not inhibited even at high TCE concentrations (155 mg/L) (Hood et al., 

2008). 

These examples demonstrate a remarkable progress of the field of bioaugmentation over 

the last 30 years which became a cost- and time-effective strategie for in situ remediation. 

Additionally, basic research investigating the biochemistry, physiology and ecology of 

microorganisms capable of organohalide respiration and the discovery of new organisms 

able to degrade PCE contributed enormous to the success of this technology. 

Bioaugmentation is still a young field and requires ongoing research in different areas: i) 

the molecular scale enabling a better understanding of gene regulation and enzymatic 

mechanisms, ii) the organismic scale, characterizing organohalide respiration capabilities 

of an isolate, iii) the community scale, identification of food webs, interspecies connections 

and signals for elucidation of the community dynamics and iv) the ecosystem scale 

combining the interaction of the community with the chemical and physical conditions of the 
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environment. Moreover, state of the art technologies such as metagenome sequencing and 

proteomic analysis enabling metabolic reconstruction and modelling will aid in the 

development of more efficient bioaugmentation processes and more accurate predictions 

of the success of bioremediation. 

In contrast to KB-1®, the here established co-culture of S. multivorans and D. mccartyi is at 

a very early stage for considering being applied for bioremediation and needs much more 

characterization in terms of optimizing growth and dechlorination rates also in large-scale 

bioreactors and elucidating the substrate spectrum and the ability to degrade (poly-

)chlorinated ethanes, aromatics, phenols and biphenyls. Another important feature to verify 

is the stability of the community which addresses the questions of how stable is the 

syntrophic interaction when other microorganisms like fermenters and/or methanogens 

come as competitors into play and how high the in situ survival rate is. This could be initially 

tested in constructed wetlands already used for the treatment or organohalide-

contaminated groundwater (Imfeld et al., 2010; Stottmeister et al., 2003; Vymazal, 2011). 

A third community member would probably broaden the substrate spectrum of the electron 

donor by producing lactate from more complex organic substrates. This is a disadvantage 

of the co-culture utilizing only lactate and other short-chained organic acids compared to 

KB-1®.  

However, advantageous is the simplicity of the co-culture with S. multivorans providing all 

nutrients required for growth and dechlorination of D. mccartyi. This makes an elucidation 

of the syntrophic relationship between S. multivorans and D. mccartyi much easier than in 

highly heterogenous mixed cultures which was the main focus of this doctoral thesis. These 

first insights could be used for the prediction of the general role of Sulfurospirillum spp. in 

OHRB-containing microbial communities and might be the basis for further investigations 

on the ecological role of the genus Sulfurospirillum. 
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Appendix Table 1: Summary of genes involved in corrinoid biosynthesis in S. multivorans 

(Sm), D. mccaryti strain 195 and D. mccaryti strain BTF08. 

Gene 
EC 
number 

Annotation Function 
present in 

Sm 195 BTF08 

btuC1 
3.6.3.11 corrinoid ABC transporter, permease 

component 
corrinoid 

ABC 
transport 

x x x 
btuC2  x x 
btuD1 

3.6.3.11 corrinoid ABC transporter, ATPase 
component 

x x x 
btuD2  x x 
btuF1 

3.6.3.11 corrinoid ABC transporter, corrinoid-
binding protein 

x x x 
btuF2  x x 

cbiA 6.3.5.11 cobyrinic acid A,C-diamide synthase 

corrin ring 
modifications 

  x 
cbiC 5.4.1.2 cobalt-precorrin-8x methylmutase x   
cbiD 2.1.1.195 cobalt-precorrin-6 synthas x   
cbiE 2.1.1.132 cobalt-precorrin-6y C5-methyltransferase x   
cbiF 2.1.1.133 cobalt-precorrin-4 C11-methyltransferase x   
cbiG 3.7.1.12 cobalamin biosynthesis protein x   
cbiH 2.1.1.131 cobalt-precorrin-3b C17-methyltransferase  x   
cbiJ 1.3.1.54 cobalt-precorrin-6x reductase x   
cbiK 4.99.1.3 sirohydrochlorin cobaltochelatase x   
cbiL 2.1.1.130 cobalt-precorrin-2 C20-methyltransferase x   
cbiT 2.1.1.196 cobalt-precorrin-6y C15-methyltransferase x   
cobB 6.3.5.9 cobyrinic acid a,c-diamide synthase x x  
cobQ 6.3.5.10 cobyric acid synthase x x  
cysG 

1.3.1.76 precorrin-2 oxidase / Sirohydrochlorin 
ferrochelatase /  x   

sirC 1.3.1.76 precorrin-2 dehydrogenase x   

cbiB1 
6.3.1.10 adenosylcobinamide-phosphate synthase 

lower ligand 
synthesis 

x x x 

cbiB2  x x 
cbiP 6.3.5.10 cobyric acid synthase x   
cbiZ1 

3.5.1.90 adenosylcobinamide amidohydrolase 

 x x 
cbiZ2  x x 
cbiZ3  x  
cbiZ4  x  
cbiZ5  x  
cobA1 

2.5.1.17 cob(I)alamin adenosyltransferase 
 x x 

cobA2  x x 
cobA3  x  
cobC1 

3.1.3.73 cobalamin-5´-phosphate phosphatase  
x x x 

cobC2  x  
cobD1 

4.1.1.81 threonine-phosphate decarboxylase  

x x x 
cobD2  x  
cobD3  x  
cobD4  x  
cobS1 

2.7.8.26 cobalamin synthase 
x x x 

cobS2  x  
cobT1 

2.4.2.21 
nicotinate-nucleotide-
dimethylbenzimidazole 
phosphoribosyltransferase 

x x x 
cobT2  x  

cobU1 
2.7.1.156 cobinamide kinase/adenosylcobinamide 

phosphate guanylyltransferase 
x x x 

cobU2  x  

msbA-
like 

3.6.3.25 lipid A export ATP-binding/permease 
protein 

sulfate ABC 
transport x   
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 24 

Supplementary Figure 1: Transcription pattern of hydrogenase catalytic subunit genes of S. 25 

multivorans with N2 as sole N-source (A) and O2 (B) as electron acceptor and under pyruvate 26 

fermentation (C). Transcript levels are normalized to the 16S rRNA gene. All data were obtained 27 

from three biological replicates and three technical replicates. When amplification was detected only 28 

in one biological replicate, the hydrogenase gene was designated as not detected (n.d.).hydB - 29 

membrane-bound hydrogenase (MBH), hupL - cytoplasmic uptake hydrogenase, hyfG - Hyf-30 

hydrogenase, echE - Ech-like hydrogenase. Pyr - pyruvate; Fum - fumarate; NH4Cl - with ammonium 31 

chloride; N2 - N2 as sole N-source.  32 

 33 

 34 
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 40 

 41 
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 42 

Supplementary Figure 2: Analysis of fractions obtained after FPLC purification according 43 

enrichment and oligomeric organization of the hydrogen oxidizing enzyme of S. multivorans. 44 

(A) Silver stained SDS polyacrylamide gel electrophoresis of cell extracts and FPLC fractions. 10 45 

µg of protein was applied. Specific activities of fractions with BV and DMN are depicted in the table 46 

below. Arrows are indicating sizes/bands of the predicted MBH subunits, from top to bottom: HydB, 47 

HydA, HydC. HydB and HydA could be detected via MS in a different purification not shown here. 48 

(B) Non denaturing PAGE of FPLC fractions. 5 µg protein was applied. (C) Hydrogenase activity 49 

stained Blue Native PAGE of cell extracts and FPLC fractions. Marker band was cut off and silver 50 

stained. 1 µg of protein was applied. MF: membrane fraction, ME: membrane extract, M: marker 51 

lane, BV: benzyl viologen, DMN: 2,3-dimethyl-1,4-naphthoquinone, n.d.: not determined. 52 
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 53 
 54 

Supplementary Figure 3: Absorption spectra (A) and difference spectra (B) of the enriched 55 

MBH of S. multivorans. Cells were grown with pyruvate and fumarate. Spectra were obtained from 56 

fraction 20. 57 

  58 
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Supplementary Table 1: Bacterial strains, plasmids and oligonucleotides used in this study.Kmr 59 

- kanamycin resistance, DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen. 60 

Strain, 

oligonucleotides 
Characteristics or sequence (5’-3’) Source or reference 

Strain 
 

  

Sulfurospirillum 

multivorans 

Wild type 

  DSMZ 12446 

Oligonucleotides    

  Amplicon 

size (bp) 

 

hydB_fw GTT GAA GAT GCG CTT GGA 
234 

This work 

hydB_rev TTT GGG TTG CAA CAA GAT This work 

hupL_fw GCG TTT GGA AGA GTT ATT GGA G 
214 

This work 

hupL_rev TAC GTA TTT GAC ATC CGC ACT C This work 

echE_fw AGC GTT GAT GAC CCA GTT T 
249 

This work 

echE_rev ATA GCT CAA AAC GCC CAC This work 

hyfG_fw TGA CGT GCC TCT AGG ACC TT 
205 

This work 

hyfG_rev CAT GGG CAT AAC CAC AGA TG This work 

recA_fw TAA AGT GGC ACC TCC GTT TC 
266 

This work 

recA_rev CGC CAC ATG TCA TAA CCA TC This work 

16S rRNA_fw GAG ACA CGG TCC AGA CTC CTA C 
255 

This work 

16S rRNA_rev CTC GAC TTG ATT TCC AGC CTA C This work 

 61 

 62 

 63 

 64 

 65 

Supplementary Table 2: Hydrogen oxidizing activity of S. multivorans crude extract with 66 

different electron acceptors.Cells were grown on Pyr/PCE. 67 

Electron Acceptor 

Redox potential 

(mV) 

Wavelength 

(nm) 

Specific activity (nkat 

mg-1) 

Benzylviologen1 (BV) -374 578 56.2 ± 5.2 

Methylviologen1 (MV) -446 578 19.6 ± 4.6 

NAD+2 -320 365 <0.01 

Methylene blue1 (MB) +11 570 8.6 ± 1.1 

Nitroblue tetrazoliumchloride2 (NBT) +50 593 <0.01 

Phenazine methosulfate2 (PMS) +65 388 <0.01 

1Enzyme activity assays with BV, MV and MB are described in Materials & Methods 68 

2NAD+, NBT and PMS were prepared in concentrations of 0.2 mM in 50 mM Tris-HCl (pH 8.0) 69 

 70 

 71 
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Supplementary Figure 1: Comparison of the S. multivoranshyf gene cluster to those encoding 
Hyd-3 and Hyd-4 of E. coli (A) and to other epsilonprotobacterial hyf clusters (B). Genetic 
organization and flanking genes around the operons are depicted. C. concisus - Campylobacter 
concisus, A. nitrofigilis - Arcobacter nitrofigilis. NiFe - catalytic subunit, - hypA - NiFe hydrogenase 
maturation protein, ascB - β-glucosidase, bcp - putative thiol peroxidase, yfgO - putative permease 
(PerM), gca - diguanylate cyclase, gta - putative β-glucosyltransferase, romA - outer membrane 
protein, irsa - putative membrane protein, crp/fnr - putative transcriptional regulator, unk - unknown 
protein. 
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Supplementary Figure 2: Scheme (A) and image (B) of the experimental setup of the 
fermentation apparatus. The washing flask with 4 M KOH is placed outside of the waterbath. 
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Supplementary Figure 3: Adaptation to pyruvate fermentation of S. multivorans. Increase of 
growth rate during continuous transfer to pyruvate medium without an electron acceptor. Data are 
representatives of two biological independent replicates. T - transfer step. 
 
 

 

Supplementary Figure 4: Growth, substrate concentration and fermentation products of S. 
deleyianum during fermentative growth on pyruvate. Organic acids were measured via HPLC 
and H2 was determined volumetrically (for details see materials and methods). 

 



APPENDIX 2.2 Supplementary Information 

 

 
xiv 

 

 



APPENDIX 2.2 Supplementary Information 

 

 
xv 

 

Supplementary Table 2: Hydrogen production and oxidizing activities of cell suspensions 
and subcellular fractions of C. pasteurianum W5 grown with glucose. Data are derived from 
three independent biological replicates. MV - methyl viologen, BV - benzyl viologen, n.d. - not 
determined. 

Cellular fraction Hydrogenase activity (nkat/mg) 

 MV → H2 H2→ BV H2→ MV 

Cell suspensions < 0.01 3.5 ± 0.7 0.8 ± 0.1 

Membrane fraction 40.3 ± 3.9 38.4 ± 0.1 n.d. 

Soluble fraction 241.3 ± 25.7 314.3 ± 12.6 n.d. 

 

 

 

 

 

Supplementary Figure 5: [FeFe] hydrogenase gene cluster of S. cavolei. Point mutation in hydA 
leads to disruption of the gene into hydA’ and hydA’’. Locus tags of genes are given above the genes. 
* - hydA is annotated as pseudogene. Orange – [FeFe] hydrogenase structural genes, green - 
hydrogenase maturation genes, grey - not related to hydrogenase. 
 
 
 
 
 
 
 
 
 
 
 

hydA’ hydA’’ hydB hydC hydG aspA hydE hydF
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Supplementary Figure 6: Transcriptional analysis of catalytic subunits of [NiFe] 
hydrogenases in S. cavolei.hydB - membrane-bound hydrogenase (MBH), hupL - cytoplasmic 
uptake hydrogenase, echE - Ech-like hydrogenase, hyfG - Hyf hydrogenase, [FeFe] - [FeFe] 
hydrogenase hydA, 16S - 16S rRNA, + with reverse transcriptase, - without reverse transcriptase 
(negative control), gD - genomic DNA, M - DNA marker. 
 

 

Supplementary Table 4: Oligonucleotides used for transcriptional analysis of hydrogenase catalytic 
subunits in S. cavolei (Supplementary Figure 6) and PCR of hyfA and hyfB of S. multivorans and S. 
halorespirans (Supplementary Figure 8). 

Primer Sequence (5’ – 3’) Amplicon size (bp) 

S. cavolei   

hydB_fw GTATAAGTTAACGCCTGAGCAA 
402 

hydB_rev CCACTCACGAGATTAATGACG 
hupL_fw GGATTTGATTCCGCCGTA 

324 
hupL_rev TCCCTCTTTGGCTACCATC 
echE_fw ACCGACGAGATCAAACGTATC 

339 
echE_rev GAGTTTGAGGGCATCTTCATAC 
hyfG_fw CGCTTGGTCTTAAGCGAC 

398 
hyfG_rev GGAATTTCCAAGTTGATCGC 

[FeFe]_fw CTAACAAATGCGTCGCGT 
504 

[FeFe]_rev TCCATACAAACTCCGCCG 
16S_fw GAGACACGGTCCAGACTCCTAC 

334 
16S_rev CACCAATTCCATCTACCTCTCCC 

S. multivorans   
hyfA_fw CCCAACCAGTGTCGTCAA 285 

hyfA_rev CGTGTATAGCGTAAACTACC 
hyfB_fw ATGACATTAATATCCGCACT 672 

hyfB_rev CATATCGCGTGTTTTGGTTG 
S. halorespirans   

hyfA_fw CCCAACCAGTGTCGTCAA 285 
hyfA_rev CGTGTATAGCGTAAACTACC 
hyfB_fw ATGACATTAATATCCGCACT 1585 

hyfB_rev CATATCGCGTGTTTTGGTTG 
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Supplementary Figure 7: Biosynthetic reactions including gluconeogenesis from pyruvate in 
(A) Sulfurospirillum multivorans and (B) Sulfurospirillum cavolei. Pyruvate carboxylation via 
pyruvate carboxylase in S. cavolei proceeds presumably in the reverse direction via oxaloacetate 
decarboxylase in S. multivorans, since an oxaloacetate decarboxylase subunit is encoded in S. 
multivorans (see also Supplementary Figure 8). PEP-S - PEP-synthetase, PEP-CK - PEP- 
carboxykinase, PYR-CT - pyruvate carboxylase, OAD - oxaloacetate decarboxylase, PFOR - 
pyruvate:ferredoxin oxidoreductase, Fd - ferredoxin. 
 

 

 

 

Supplementary Figure 8: Cluster of genes related to pyruvate metabolism in (A) S. 
multivorans* and (B) S. cavolei*. Locus tags of genes are given above the genes. PC - pyruvate 
carboxylase, OAD - oxaloacetate decarboxylase, PEPC - phosphoenolpyruvate carboxykinase ASL, 
- argininosuccinate lyase. A*: Identified in S. deleyianum, S. halorespirans, S. sp. SCADC, S. 
barnesii, S. sp. UBA12182, S. sp. UBA11407, S. arcachonense, S. sp. AM-N. B*: Identified in S. 
UCH001, S. cavolei strains MES and UCH003, S. arsenophilum, S. sp. JPD-1.  
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Supplementary Table 5: Distribution of the hyf operon among different Epsilonproteobacteria 
and possible formation of a formate dehydrogenase lyase complex. FHL-co - hyf operon  
associated with a formate dehydrogenase, Hyf-foc - hyf operon associated with a formate channel 
(focB). For an overview of the organization of different hyf operons see Supplementary Figure 1. 
 

 FHL-co Hyf-Foc Hyf 

Sulfurospirillum multivorans    
S. cavolei1    
S. arsenophilum    
S. halorespirans2    
S. arcachonense    
Candidatus S. diekertiae3    
S. sp. JPD-1    
S. barnesii    
S. deleyianum    
S. cavolei MES    
S. sp. UCH001    
S. sp. UBA11407    
S. sp. UBA12182    
S. sp. SCADC    
S. sp. AM-N    
Arcobacter nitrofigilis    
A. marinus    
A. molluscorum    
A. sp. F138-33    
Campylobacter concisus    
C. curvus    
C. gracilis    
C. mucosalis    
C. pinnipediorum    
C. showae    
C. sp. FOBRC14    
C. sp. 10_1_50    
C. fetus     
C. hyointestinalis    
C. iguaniorum    
C. sputorum    
Wolinella succinogenes    
Caminibacter mediatlanticus    
Lebetimonas spp.    
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Supplementary Figure 9: Hyf-like hydrogenase gene cluster of S. multivorans (A) and S. 
halorespirans (B) and confirmation of transposon integration in hyfB of S. halorespirans (C). 
(A, B)  Locus tags are given above the genes and primer binding sites are indicated by red arrows. 
Transposase in hyfB of S. halorespirans coloured dark blue. Structural genes are coloured orange. 
(C) PCR with primers binding in hyfA and hyfB of S. multivorans and S. halorespirans. M - marker 
lane, S.m. - S. multivorans, S.h. - S. halorespirans, NiFe - catalytic subunit. Primer used are listed in 
Supplementary Table 4. 
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Supplementary Figure 10: Comparison of Hyf-like hydrogenase of S. multivorans to complex 
I of Thermus thermophilus. (A) Schematic representation of genetic organization. Subunits of 
complex I (Nqo) are directly compared to subunits of Hyf-like hydrogenase (hyf). Nqo5 and Nqo4 are 
fused to HyfG. (B) Hypothetical scheme of the structural organization of both complexes. Arrows 
indicate putative proton-translocation channels in T. thermophiles complex I. Color code resembles 
corresponding homologues. 

 

SUPPLEMENTARY NOTE 1 

Hyf-like hydrogenase of Sulfurospirillum spp. as a proton pump 

The relationship of the subunit composition and amino acid sequences of group 4 hydrogenases to 

the respiratory complex I and the possible involvement of these membrane-bound hydrogenases in 

energy conservation via the generation of a proton motive force has been discussed previously. In 

S. multivorans and other Sulfurospirillum spp., the eight subunits of Hyf (HyfABCEFGHI) are 

homologs to the subunits of complex I (Supplementary Figure 10, Supplementary Table 6). The most 

likely candidate for potential H+-transport HyfF, four putative key amino acids for proton transfer, 

Glu148, Lys237, Lys268, and Glu424 are present (Supplementary Figures 11-13). The high 

conservation grade of key amino acid residues possibly involved in proton transfer especially in HyfB 

renders the involvement of Sulfurospirillum spp. Hyf in energy conservation via a chemosmotic 

generation of ATP a possible scenario. 
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Supplementary Table 6: Comparison of complex I subunits to homologs in bacteria. 

Gene 
order 

Complex I 
(Eukaryotes) 

E. coli 
complex I 

T. 
thermophilus 

complex I 

S. multivorans 
(Hyf) 

E. coli 
(Hyf/Hyc) 

1 ND3 NuoA Nqo7 - - 
2 IP21K NuoB Nqo6 HyfI HyfI/HycG 
3 IP30K NuoC Nqo51 

HyfG HyfG/HycE 
4 IP49K NuoD Nqo41 
5 IP24K NuoE Nqo2 - - 
6 IP51K NuoF Nqo1 - - 
7 IP75K NuoG Nqo3 HyfA HyfA/HycB 
8 ND1 NuoH Nqo8 HyfC HyfC/HycD 
9 IP23K NuoI Nqo9 HyfH HyfH/HycF 
10 ND6 NuoJ Nqo10 - - 
11 ND4L NuoK Nqo11 HyfE HyfE/- 
12 ND5 NuoL Nqo12 HyfB HyfB/HyfD/HycC 
13 ND4 NuoM Nqo13 HyfF HyfF/HycC 
14 ND2 NuoN Nqo14 - - 

1Nqo5 and Nqo4-similar proteins are fused to HyfG. 
 

 
 
Alignment HyfB/Nqo12/ND5 
 
 
              10        20        30        40        50        60        70              
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    ------MQTIYTLFLLTSLLSLALYKKPLLAQKIGFG---LSSLISLYAAIFFFSHLG-ETMTWQLPGNF  
E. coli4  MDALQLLTWSLILYLFASLASLFLLGLDRLAIKLSGITSLVGGVIG-IISGITQLHAGVTLVARFAPPFE  
E. coli3  MSAISLINSGVAWFVAAAVLAFLFSFQKALSGWIAGIGGAVGSLYT-AAAGFTVLTGAVGVSG----ALS  
T. ther   ------MALLGTILLPLLGFALLGLFGKRMREPLPGVLASGLVLASFLLGAGLLLSGGARFQAEWLPGIP  
B. tau    MNMFSSLSLVTLLLLTMPIMMMSFNTYKPSNYPLYVKTAISYAFITSMIPTMMFIHSGQELIISNWHWLT  
O. aries  MNLFSSLTLVTLILLTMPIAAINFNTHKFTNYPLYVKTTISCAFITSMIPTMMFIHTGQEMIISNWHWLT  
 
              80        90       100       110       120       130       140         
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    ISSPLFRLDSIEMFFSFLVSLIAFAVSLFSFDYAKFYEKKAN-LAVFASLFNAFILSMLLVIASDNVFSF  
E. coli4  FADLTLRMDSLSAFMVLVISLLVVVCSLYSLTYMREYEGKGAAAMGFFMN--IFIASMVALLVMDNAFWF  
E. coli3  LVSYDVQISPLNAIWLITLGLCGLFVSLYNIDWHRHAQVK---CNGLQIN--MLMAAAVCAVIASNLGMF  
T. ther   FS---LLLDNLSGFMLLIVTGVGFLIHVYAIG----YMGGDPGYSRFFAYFNLFIAMMLTLVLADSYPVM  
B. tau    IQTLKLSLSFKMDYFSMMFIPVALFVTWSIMEFSMWYMYSDPNINKFFKYLLLFLITMLILVTANNLFQL  
O. aries  IQTLKLSLSFKMDFFSMMFVPVALFVTWSIMEFSMWYMHSDPNINQFFKYLLLFLITMLILVTANNLFQL  
 
             150       160       170       180       190       200       210       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    MLLWEMMTLISALLILINDGEGAGKKVMIYLGIA-QIGASCLMVALLIMASFAGSFEFSKFADLNIGFGM  
E. coli4  IVLFEMMSLSSWFLVIARQDKTSINAGMLYFFIA-HAGSVLIMIAFLLMGRESGSLDFASFRTLSLSPGL  
E. coli3  VVMAEIMALCAVFLTSNSKE------GKLWFALG-RLGTLLLAIACWLLWQRYGTLDLRLLDMRMQQLPL  
T. ther   FIGWEGVGLASFLLIGFWYKNPQYADSARKAFIVNRIGDLGFMLGMAILWALYGTLSISELKEAMEGPLK  
B. tau    FIGWEGVGIMSFLLIGWWYGRADANTAALQAILYNRIGDIGFILAMAWFLTNLNTWDLQQIFMLNPSD--  
O. aries  FIGWEGVGIMSFLLIGWWYGRTDANTAALQAILYNRIGDIGFILAMAWFLINLNTWDLQQIFMLNPND--  
 
             220       230       240       250       260       270       280       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    SITLFTLL----LVGLGSKAGMFPFHVWLPLAYCQSPSNASALMSGVMIKVALFAFIKFSLLLPQFA---  
E. coli4  ASAVFLLA----FFGFGAKAGMMPLHSWLPRAHPAAPSHASALMSGVMVKIGIFGILKVAMDLLAQTGLP  
E. coli3  GSDIWLLG----VIGFGLLAGIIPLHGWVPQAHANASTPAAALFSTVVMKIGLLGILTLS--LLGGN-AP  
T. ther   NPDLLALAGLLLFLGAVGKSAQIPLMVWLPDAMAGPTPVSALIHAATMVTAGVYLIARSSFLYSVLP---  
B. tau    SNMPLIGL----ALAATGKSAQFGLHPWLPSAMEGPTPVSALLHSSTMVVAGIFLLIRFYPLTENNK---  
O. aries  SNLPLMGL----ILAATGKSAQFGLHPWLPSAMEGPTPVSALLHSSTMVVAGIFLLIRFYPLTENNK---  
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             290       300       310       320       330       340       350       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    -QFGYILLFMGALSCIFGIIYALASNDYKASIAYSSCENVGIIFLGLGGAFYGLGINSPMIALMGFIAAF  
E. coli4  LWWGILVMAIGAISALLGVLYALAEQDIKRLLAWSTVENVGIILLAVGVAMVGLSLHDPLLTVVGLLGAL  
E. coli3  LWWGIALLVLGMITAFVGGLYALVEHNIQRLLAYHTLENIGIILLGLGAGVTGIALEQPALIALGLVGGL  
T. ther   -DVSYAIAVVGLLTAAYGALSAFGQTDIKKIVAYSTISQLGYMFLAAGVGAY--------------WVAL  
B. tau    -YIQSITLCLGAITTLFTAMCALTQNDIKKIIAFSTSSQLGLMMVTIGINQP--------------YLAF  
O. aries  -FGQSIMLCLGAMTTLFTAMCALTQNDIKKIIAFSTSSQLGLMMVTIGINQP--------------HLAF  
 
             360       370       380       390       400       410       420       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    FHILNHAVFKSLLFMLSGNVFTATK-TRDMDALGGLHKKMPITSIIFFVAAISICALPPLNGFASEWVIY  
E. coli4  FHLLNHALFKGLLFLGAGAIISRLH-THDMEKMGALAKRMPWTAAACLIGCLAISAIPPLNGFISEWYTW  
E. coli3  YHLLNHSLFKSVLFLGAGSVWFRTG-HRDIEKLGGIGKKMPVISIAMLVGLMAMAALPPLNGFAGEWVIY  
T. ther   FHVFTHAFFKALLFLASGSVIHALGGEQDVRKMGGLWKHLPQTRWHALIGALALGGLPLLSGFWSKDAIL  
B. tau    LHICTHAFFKAMLFMCSGSIIHSLNDEQDIRKMGGLFKAMPFTTTALIVGSLALTGMPFLTGFYSKDLII  
O. aries  LHICTHAFFKAMLFMCSGSIIHSLNDEQDIRKMGGLFKAMPFTTTALIIGSLALTGMPFLTGFYSKDLII  
 
             430       440       450       460       470       480       490       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    KTMVMGGIDEGVASRFFFTLAIIALSITGAMAIMAFSKMYGSVFLGIARNTKCVEEAKEVSFIRLLPLGL  
E. coli4  QSLFSLSRVEAVALQLAGPIAMVMLAVTGGLAVMCFVKMYGITFCGAPR-STHAEEAQEVPNTMIVAMLL  
E. coli3  QSFFKLSNSGAFVARLLGPLLAVGLAITGALAVMCMAKVYGVTFLGAPR-TKEAENATCAPLLMSVSVVA  
T. ther   AATLT--------YPFGGVGFYVGALLVAVLTAMYAMRWFVLVFLGEER---GHHHPHEAPPVMLWPNHL  
B. tau    EAAN---------TSYTNAWALLMTLIATSFTAIYSTRIIFFALLGQPR-FPTLVNINENNPLLINSIKR  
O. aries  ESAN---------TSYTNAWALLMTLVATSFTAIYSTRIIFFALLGQPR-FPTLININENNPFLINSIKR  
 
             500       510       520       530       540       550       560       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    LASLCVGIG-IFMSDVVG-----------MLSKIVLTLIPQTSQSVFGLISMPIIIMIMLLCAIIPFVFL  
E. coli4  LAALCVLIA-LSASWLAPKIMHIAHAFTNTPPATVASGIALVPGTFHTQVTPSLLLLLLLAMPLLPGLYW  
E. coli3  LAICCVIGG-VAAPWLLP---------------MLSAAVPLPLEPANTTVSQPMITLLLIACPLLPFIIM  
T. ther   LALGSVLAGYLALPHPLPN---------VLEPFLKPALAEVEAHHLSLGAEWGLIALSAAVALLGLWAGF  
B. tau    LLIGSLFAG-YIISNNIP-----------------PTTIPQMTMPYYLKTTALIVTILGFILALEISNMT  
O. aries  LLIGSLFAG-FIISNNIP-----------------PMTIPQMTMPHYLKMTALTVTILGFILALEISNTT  
 
             570       580       590       600       610       620       630       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    YLLKAN-HKEVRVTEPWACGFLYNKNMQIGSNSFTGDIRKALSFILRHEQEIKIDGYFS-----KAVYTQ  
E. coli4  LWCRSRRAAFRRTGDAWACGYGWENAMAPSGNGVMQPLRVVFSALFRLRQQLDPTLRLNKGLAHVTARAQ  
E. coli3  AICKGDRLPSRSRGAAWVCGYDHEKSMVITAHGFAMPVKQAFAPVLKLRKWLNP----------------  
T. ther   VFFQRKVFPAWYLAFEAASREAFYVDRAYNALIVNPLKALAEALFYGDRGLLSGYFGLG-----------  
B. tau    KNLKYH-YPSNAFKFSTLLGY-FPTIMHRLAPYMNLSMSQKSASSLLDLIWLEAILP-------------  
O. aries  HYLKFN-YPSNTFKFSNLLGY-YPTIMHRLTPYMNLTMSQKSASSLLDLIWLETILP-------------  
 
             640       650       660       670       680           
          ....|....|....|....|....|....|....|....|....|....|....|... 
S. mul    KVHDLFWDKLYAPVIHSVMVIADKIGIFQNGRTNLYAGYILIYLCFVLIFGYYYL---  
E. coli4  STEPFWDERVIRPIVSATQRLAKEIQHLQSGDFRLYCLYVVAALVVLLIAIAV-----  
E. coli3  --------------VSLVPGWQCEGSALL---FRRMALVELAVLVVIIVSRGA-----  
T. ther   ---------------GAARSLGQGLARLQTGYLRVYALLFVLGALLLLGVMRW-----  
B. tau    ---------------KTISLAQMKASTLVTNQKGLIKLYFLSFLITILISMILFNFHE  
O. aries  ---------------KTISLAQMKMSTTITSQKGLIKLYFLSFLITILISTTLLNFHE  

 
 
Supplementary Figure 11: Amino acid sequence alignment of HyfB/Nqo12/ND5. S. mul - S. 
multivorans AHJ13630.1 Hyf-like hydrogenase, membrane subunit B, E. coli4 - E. coli AAB88564.1 
Hyf hydrogenase, membrane subunit B, E. coli3 - E. coli CAA35548.1 - Hyc hydrogenase, membrane 
subunit 3, T. ther - T. thermophilus Q56227.1 NADH-quinone oxidoreductase subunit 12 (Nqo12), 
B. tau - Bos taurus P03920.2 NADH-ubiquinone oxidoreductase chain 5 (ND5), O. aries - Ovis aries  
O78756.1 NADH-ubiquinone oxidoreductase chain 5 (ND5). Amino acid color code: green - 
hydrophobic, red - charged, blue - polar/uncharged. Key charged residues are highlighted in yellow. 
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Alignment HyfF/Nqo13/ND4 
 
 
              10        20        30        40        50        60        70              
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    ------MDILVLILTVPFVFGVIMFCMP----LHFKLLQSLHIVLSVAVSILLLSAVGKVVNGEELSIFH  
E. coli4  --------MFALLLLTPLLFSLLCFACRKRGLSATCTVTVLHSLGITLLLILALWVVQTAADAGEIFAAG  
E. coli3  MSAISLINSGVAWFVAAAVLAFLFSFQKALSGWIAGIGGAVGSLYTAAAGFTVLTGAVGVSGALSLVSYD  
T. ther   --------MVVLAVLLPVVFGALLLLGLPR--ALGVLGAGLSFLLNLYLFLTHPGGVAHAFQAPLLPGAG  
B. tau    --------MLKYIIPTIMLMPLTWLSKN----NMIWVNSTAHSLLISFTSLLLMNQFGDNS-----LNFS  
O. aries  --------MLKYIIPTMMLMPLTWLSKN----SMIWINTTLHSLLISLTSLLLLNQFGDNS-----LNFS  
 
              80        90       100       110       120       130       140         
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    NYIFL--DSLGAIFLSLIAITGLLVNVYATTYMKWELEDGHIDIKEVKNYFALSFIFTWTMSLSVVCNNI  
E. coli4  LWLHI--DGLGGLFLAILGVIGFLTGVYSIGYMRHEVAHGELSPVTLCDYYGFFHLFLFTMLLVVTSNNL  
E. coli3  VQISP----LNAIWLITLGLCGLFVSLYNIDWHRHA--------QVKCNGLQINMLMAAAVCAVIAS-NL  
T. ther   VYWAFGLDGLSALFFLTIALTVFLGALVAR---------------VEGRFLGLALLMEGLLLGLFAARDL  
B. tau    LLFFS--DSLSTPLLILTMWLLPLMLMASQHHLSKE------NLTRKKLFITMLISLQLFLIMTFTAMEL  
O. aries  LTFFS--DSLSTPLLILTMWLLPLMLMASQHHLSKE------NLARKKLFISMLILLQLFLIMTFTATEL  
 
             150       160       170       180       190       200       210       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    AFMWAAIEATTLASVFLVAVKKDKKSTESGYKYIVLCSIGLAFALYATILLFS--AANGKIDGEAMLYTN  
E. coli4  IVMWAAIEATTLSSAFLVGIYGQRSSLEAAWKYIIICTVGVAFGLFGTVLVYANVASVMPQAEMAIFWSE  
E. coli3  GMFVVMAEIMALCAVFLTSN------SKEGKLWFALGRLGTLLLAIACWLLWQR------YGTLDLRLLD  
T. ther   LVFYVFFEAALIPALLMLYLYGGEGRTRALYTFVLFTLVG-SLPMLAAVLGAR-----LLSGSPTFLLED  
B. tau    ILFYILFEATLVPTLIIITRWGNQTERLNAGLYFLFYTLAGSLPLLVALIYIQN-----TVGSLNFLMLQ  
O. aries  IFFYIMFEATLVPTLIIITRWGNQTERLNAGLYFLFYTLAGSLPLLVALIYIQN-----TMGSLNFLILQ  
 
             220       230       240       250       260       270       280       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    LLANAANLDSVALKLVFIFALIGFGTKAGLAPTHTWLPDVHAEGPAPTSALLSGILLKCAMLGLIRYYAI  
E. coli4  VLKQSSLLDPTLMLLAFVFVLIGFGTKTGLFPMHAWLPDAHSEAPSPVSALLSAVLLNCALLVLIRYYII  
E. coli3  MRMQQLPLGSD----IWLLGVIGFGLLAGIIPLHGWVPQAHANASTPAAALFSTVVMKIGLLGILTLSLL  
T. ther   LLAHP--LQEEAAFWVFLGFALAFAIKTPLFPLHAWLPPFHQENHPSGLADALGTLYKVGVFAFFRFAIP  
B. tau    YWVQP-VHNSWSNVFMWLACMMAFMVKMPLYGLHLWLPKAHVEAPIAGSMVLAAVLLKLGGYGMLRITLI  
O. aries  YWVQP-MPNSWSNTFMWLACMMAFMVKMPLYGLHLWLPKAHVEAPIAGSMVLAAILLKLGGYGMMRITLL  
 
             290       300       310       320       330       340       350       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    VANGVGFDFVQTVMVVSGTLTLFISAFFLIRQHNVKRMFAYHSVAHMGVIAFGLGVGGA-----------  
E. coli4  ICQAIGSDFPNRLLLIFGMLSVAVAAFFILVQRDIKRLLAYSSVENMGLVAVALGIGGP-----------  
E. coli3  GGNAP--LWWGIALLVLGMITAFVGGLYALVEHNIQRLLAYHTLENIGIILLGLGAGVTGIALEQPALIA  
T. ther   LAPEG-FAQAQGLLLFLAALSALYGAWVAFAAKDFKTLLAYAGLSHMGVAALGVFSGTP-----------  
B. tau    LNPMT--DFMAYPFIMLSLWGMIMTSSICLRQTDLKSLIAYSSVSHMALVIVAILIQTP-----------  
O. aries  LNPIT--DFMAYPFIMLSLWGMIMTSSICLRQTDLKSLIAYSSVSHMALVIVAILIQTP-----------  
 
 
             360       370       380       390       400       410       420       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    IGLFAALFHCAAHSFTKALAFCSTGNIARIYGTKDMTKMGGMIRIAPLTAVLFG--IAICSLVGVPGFAI  
E. coli4  LGIFAALLHTLNHSLAKTLLFCGSGNVLLKYGTRDLNVVCGMLKIMPFTAVLFGGGALALALAGMPPFNI  
E. coli3  LGLVGGLYHLLNHSLFKSVLFLGAGSVWFRTGHRDIEKLGGIGKKMPVISIAML--VGLMAMAALPPLNG  
T. ther   EGAMGGLYLLAASGVYTGGLFLLAGRLYERTGTLEIGRYRGLAQSAPGLAALAL--ILFLAMVGLPGLSG  
B. tau    WSYMGATALMIAHGLTSSMLFCLANSNYERIHSRTMILARGLQTLLPLMATWWL--LASLTNLALPPTIN  
O. aries  WSYMGATALMIAHGLTSSMLFCLANSNYERVHSRTMILARGLQTLLPLMAAWWL--LASLTNLALPPSIN  
 
 
 
             430       440       450       460       470       480       490       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    FVSEFLIFKAAAIGEQY----------LLMGIFAVALAIIFIADFSHFFLASFGKVEGEVVHNSEMKFSE  
E. coli4  FLSEFMTITAG-LARNH----------LLIIVLLLLLLTLVLAGLVRMAARVLMAKPPQAVNRGDLGWLT  
E. coli3  FAGEWVIYQSFFKLSNSGAFVARLLGPLLAVGLAITGALAVMCMAKVYGVTFLGAPRTKEAENATCAPLL  
T. ther   FPGEFLTLLGA-YKASP----------WLAALAFLSVIASAAYALTAFQKTFWEEGGSGVKDLAGAEWGF  
B. tau    LIGELFVVMST-FSWSN----------ITIILMGVNMVITALYSLYMLIMTQRGK-YTYHINNISPSFTR  
O. aries  LIGELFVVMST-FSWSN----------ITIILMGLNMVITALYSLYMLITTQRGK-HTHHINNILPSFTR  
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             500       510       520       530       540       550       560       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    NFPLIALAILIVAFGIWQFDSFTFLLDESVKSIMKK----------------------------------  
E. coli4  TSPMVILLVMMLAMGTHIPQPVIRILAGASTIVLSGTHDLPAQRSTWHDFLPSGTASVSEKHSER-----  
E. coli3  MSVSVVALAICCVIGGVAAPWLLPMLSAAVPLPLEPANTTVSQPMITLLLIACPLLPFIIMAICKGDRLP  
T. ther   ALLSVLALLLMGVFPGYFARGLHPLAEAFAKLLGGGA---------------------------------  
B. tau    ENALMSLHILPLLLLTLNPKIILGPLY-------------------------------------------  
O. aries  ENALMSLHMLPLLLLSLNPKIILGPLY-------------------------------------------  
 
 
 
             570       580       590       600       610       620       630       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    ----------------------------------------------------------------------  
E. coli4  ----------------------------------------------------------------------  
E. coli3  SRSRGAAWVCGYDHEKSMVITAHGFAMPVKQAFAPVLKLRKWLNPVSLVPGWQCEGSALLFRRMALVELA  
T. ther   ----------------------------------------------------------------------  
B. tau    ----------------------------------------------------------------------  
O. aries  ----------------------------------------------------------------------  
 
             640  
          ....|....|. 
S. mul    -----------  
E. coli4  -----------  
E. coli3  VLVVIIVSRGA  
T. ther   -----------  
B. tau    -----------  
O. aries  -----------  

 
Supplementary Figure 12: Amino acid sequence alignment of HyfF/Nqo13/ND4. S. mul - S. 
multivorans AHJ13633.1 Hyf-like hydrogenase, membrane subunit F, E. coli4 - E. coli CTT40508.1 
Hyf hydrogenase, membrane subunit F, E. coli3 - E. coli CAA35548.1 Hyc hydrogenase, membrane 
subunit 3, T. ther - Thermus thermophilus Q56228.2 NADH-quinone oxidoreductase subunit 13 
(Nqo13), B. tau - Bos taurus P03910.1 NADH-ubiquinone oxidoreductase chain 4 (ND4), O. aries - 
Ovis aries O78755.1 NADH-ubiquinone oxidoreductase chain 4 (ND4). Amino acid color code: green 
- hydrophobic, red - charged, blue - polar/uncharged. Key charged residues are highlighted in yellow.  
 

Alignment HyfC/Nqo8/ND1 
 
 
              10        20        30        40        50        60        70              
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    -----------MDFFYLLLQLISAILVAPLFDGISRKLRAKFQSRVGP------SIFQTYRDLLKLLKRG  
E. coli4  ---MRQTLCDGYLVIFALAQAVILLMLTPLFTGISRQIRARMHSRRGP------GIWQDYRDIHKLFKRQ  
E. coli3  -----------MSVLYPLIQALVLFAVAPLLSGITRVARARLHNRRGP------GVLQEYRDIIKLLGRQ  
T. ther   MTWSYPVDPYWMVALKALLVVVGLLTAFAFMTLIERRLLARFQVRMGPNRVGPFGLLQPLADAIKSIFKE  
B. tau    -----------MFMINILMLIIPILLAVAFLTLVERKVLGYMQLRKGPNVVGPYGLLQPIADAIKLFIKE  
O. aries  -----------MFMINVLTLIIPILLAVAFLTLVERKVLGYMQFRKGPNVVGPYGLLQPIADAIKLFIKE  
 
              80        90       100       110       120       130       140         
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    RTKSHSTS-YIYQIAPYVLFVSAAAMFCALPIAYDIR-----SSVLSQFSDIFVLLYLGALFRFMFIIAG  
E. coli4  EVAPTSSG-LMFRLMPWVLISSMLVLAMALPLFITV-------SPFAGGGDLITLIYLLALFRFFFALSG  
E. coli3  SVGPDASG-WVFRLTPYVMVGVMLTIATALPVVTVG-------SPLPQLGDLITLLYLFAIARFFFAISG  
T. ther   DIVVAQADRFLFVLAPLISVVFALLAFGLIPFGPPGSFFGYQPWVINLDLGILYLFAVSELAVYGIFLSG  
B. tau    PLRPATSSASMFILAPIMALGLALTMWIPLPMPYP---------LINMNLGVLFMLAMSSLAVYSILWSG  
O. aries  PLRPATSSISMFILAPILALTLALTMWIPLPMPYP---------LINMNLGVLFMLAMSSLAVYSILWSG  
 
             150       160       170       180       190       200       210       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    IDTANPFAGVSASREGTLGFYTEEIAVICLVVVMMGTGSTNLAYITNLVQEGQYGYAFPSFSIAATAFLW  
E. coli4  LDTGSPFAGVGASRELTLGILVEPMLILSLLVLALIAGSTHIEMISNTLAMG-WNSPLT-TVLALLACGF  
E. coli3  LDTGSPFTAIGASREAMLGVLVEPMLLLGLWVAAQVAGSTNISNITDTVYHWPLSQSIP-LVLALCACAF  
T. ther   WASGSKYSLLGSLRSSASLISYELGLGLALLAPVLLVGSLNLNDIVNWQKEHGWLFLYA--FPAFLVYLI  
B. tau    WASNSKYALIGALRAVAQTISYEVTLAIILLSVLLMSGSFTLSTLITTQ-EQMWLILPA--WPLAMMWFI  
O. aries  WASNSKYALIGALRAVAQTISYEVTLAIILLSVLLMNGSFTLSTLIITQ-EQVWLIFPA--WPLAMMWFI  
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             220       230       240       250       260       270       280       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    VMYVETGRKPYDLAEAEQELQEGVLGEYCGKDLAIIDVAILLKQFTMLGFFLVIFIPW------SFENPI  
E. coli4  ACFIEMGKIPFDVAEAEQELQEGPLTEYSGAGLALAKWGLGLKQVVMASLFVALFLPFGRAQELSLACLL  
E. coli3  ATFIEMGKLPFDLAEAEQELQEGPLSEYSGSGFGVMKWGISLKQLVVLQMFVGVFIPWGQMETFTAGGLL  
T. ther   ASMAEAARTPFDLPEAEQELVGGYHTEYSSIKWALFQMAEYIHFITASALIPTLFLGGWTMPVLEVPYLW  
B. tau    STLAETNRAPFDLTEGESELVSGFNVEYAAGPFALFFMAEYANIIMMNIFTAILFLGTSHNPHMPELYTI  
O. aries  STLAETNRAPFDLTEGESELVSGFNVEYAAGPFALFFMAEYANIIMMNIFTTTLFLGAFHNPYMPELYTI  
 
             290       300       310       320       330       340       350       
          ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
S. mul    LSLIAFLAEVGFLYVMGVFIDNFGPRFTVNNGIKRTMLFALA--------------------ISCTSLLL  
E. coli4  TSLVVTLLKVLLIFVLASIAENTLARGRFL-LIHHVTWLGFS--------------------LAALAWVF  
E. coli3  LALVIAIVKLVVGVLVIALFENSMARLRLD-ITPRITWAGFG--------------------FAFLAFVS  
T. ther   MF-LKIAFFLFFFIWIRATWFRLRYDQLLRFGWGFLFPLALLWFLVTALVVALDLPRTYLLYLSALSFLV  
B. tau    NFTIKSLLLTMSFLWIRASYPRFRYDQLMHLLWKNFLPLTLA------------------LCMWHVSLPI  
O. aries  NFTIKSLLLSITFLWIRASYPRFRYDQLMHLLWKNFLPLTLA------------------LCMWHVSLPI  
 
 
             360       370 
          ....|....|....|... 
S. mul    YIMGI-------------  
E. coli4  WLTGL-------------  
E. coli3  LLAA--------------  
T. ther   LLGAVLYTPKPARKGGGA  
B. tau    LTSGIPPQT---------  
O. aries  LLSSIPPQT---------  

 
Supplementary Figure 13: Amino acid sequence alignment of HyfC/Nqo8/ND1. S. mul - S. 
multivorans AHJ13631.1 Hyf-like hydrogenase, membrane subunit C, E. coli4 - E. coli AAB88565.1 
Hyf hydrogenase, membrane subunit C, E. coli3 - E. coli CAA35549.1 Hyc hydrogenase, membrane 
subunit 4, T. ther - Thermus thermophilus Q60019.1 NADH-quinone oxidoreductase subunit 8 
(Nqo8), B. tau - Bos taurus P03887.1 NADH-ubiquinone oxidoreductase chain 1 (ND1), O. aries - 
Ovis aries O78747.1 NADH-ubiquinone oxidoreductase chain 1 (ND1). Amino acid color code: green 
- hydrophobic, red - charged, blue - polar/uncharged. Key charged residues of the connection of the 
two half-channels are highlighted in yellow. Key charged residues from the first-half channel are 
highlighted in dark blue. 
 

 

 

SUPPLEMENTARY NOTE 2 

 

Determination of lactate dehydrogenase activity in crude extracts of S. multivorans 

Lactate-producing and lactate-oxidizing enzyme activity was measured anoxically in quartz cuvettes 

using a Cary 100 spectrophotometer (Agilent Technologies, Waldbronn, Germany) with NADH and 

NAD+ as electron donor/acceptor. Lactate-producing activity was followed by the decrease of 

absorbance at 340 nm of NADH. The assay mixture contained: 50 mM Tris-HCl (pH 7.5), 0.2 mM 

NADH, 1 mM KCN and 30 mM sodium pyruvate (pH 7.5). The reaction was started by the addition 

of crude extracts to 1 ml of the reaction mixture and the assay was incubated at room temperature. 

Lactate oxidation activity with NAD+ was monitored by the increase of absorbance at 340 nm in a 

hydrazine-containing buffer; hydrazine was applied to trap pyruvate and thus shift the equilibrium of 

the normally thermodynamically unfavorable LDH-catalyzed oxidation of lactate with NAD+ towards 

pyruvate formation. In addition, an excess of NAD+ was applied to aid in overcoming the 
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thermodynamic barrier. The reaction mixture contained 50 mM Tris-HCl (pH 9.0), 0.5 mM NAD+, 1 

mM KCN, 30 mM sodium pyruvate (pH 7.5) and 30 mM hydrazine. Commercially available lactate 

dehydrogenase (~95% purity, 1.100 U/mg, Sigma Aldrich, Steinheim, Germany) served as positive 

control. No NAD+- or NADH-dependent enzyme activity was measured in crude extracts. 

Additionally, artificial electron donors such as sodium dithionite, methyl viologen and duroquinone 

(2,3,5,6-Tetramethyl-1,4-benzoquinone) were tested for enzyme-mediated lactate formation from 

pyruvate. NADH was replaced by 20 mM sodium dithionite, 10 mM reduced (with sodium dithionite) 

methyl viologen (98% purity, Sigma Aldrich, Steinheim, Germany) or 10 mM duroquinol (midpoint 

redox potential E°’ = -240 mV) (97% purity, Sigma Aldrich, Steinheim, Germany). Lactate was 

measured by HPLC (AMINEX HPX-87H column, 7.8x300 mm, BioRad, Munich, Germany).  

 

 

 

Supplementary Figure 14: Syntrophic co-culture of S. multivorans and M. voltae.  Field 
emission scanning electron microscopic (FE-SEM) analysis of the formed aggregates. Different 
areas and magnifications are depicted in the images. 
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Supplementary Figure 1: Change in carbon isotope composition (A) and stable 
isotope fractionation (B) during reductive dechlorination of PCE by growing cells of 
S. multivorans and Sm/BTF08 co-culture. (A) SD was calculated from three technical 
replicates and is for <0.5 δ-units smaller than the symbols. (B) Correlation of stable isotope 
fractionation is R2 = 0.859 for S. multivorans and R2 = 0.684 for Sm/BTF08 co-culture.  

 

 

 

Supplementary Figure 2: Dechlorination of PCE with H2 as electron donor by pure 
cultures of (A) D. mccartyi strain BTF08 and (B) D. mccartyi strain 195. Arrow 
indicates refeeding of PCE. ∑ = mass balance; sum of PCE, TCE, cis-DCE, VC and 
ethene. 
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Supplementary Figure 3: Mass spectrometric analysis of corrinoids extracted from 
Sm/Dhc 195 co-culture grown on Lac/PCE without DMB and without amendment of 
vitamin B12. Arrow indicates zoom-in and numbers in brackets represent theoretical mass 
values of corrinoids according calculated isotope pattern (see Supplementary Table 1). RT 
- retention time. 
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Supplementary Figure 5: A detailed view and zoom-in an aggregate of S. multivorans 
and D. mccartyi strain 195. Arrows are indicating nets of flagellum-like filaments. 
Micrographs were taken from different parts of the aggregate. Primary magnifications are 
given in upper left corner of each micrograph 
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Supplementary Figure 7: FISH stained co-cultures of S. multivorans and D. mccartyi 

strain BTF08 (A) and 195 (B). red: S. multivorans, green: D. mccartyi. 
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