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Abstract

Direction of Arrival (DOA) estimation of plane waves impinging on an array of sensors

is one of the most important tasks in array signal processing, which have attracted

tremendous research interest over the past several decades. The estimated DOAs are

used in various applications like localization of transmitting sources, massive MIMO

and 5G Networks, tracking and surveillance in radar, and many others. The major

objective in DOA estimation is to develop approaches that allow to reduce the hardware

complexity in terms of receiver costs and power consumption while providing a desired

level of estimation accuracy and robustness in the presence of multiple sources and/or

multiple paths.

Compressive sensing (CS) is a novel sampling methodology merging signal acquisition

and compression. It allows for sampling a signal with a rate below the conventional

Nyquist bound. In essence, it has been shown that signals can be acquired at sub-

Nyquist sampling rates without loss of information provided they possess a sufficiently

sparse representation in some domain and that the measurement strategy is suitably

chosen. CS has been recently applied to DOA estimation, leveraging the fact that a

superposition of planar wavefronts corresponds to a sparse angular power spectrum.

This dissertation investigates the application of compressive sensing to the DOA esti-

mation problem with the goal to reduce the hardware complexity and/or achieve a high

resolution and a high level of robustness. Many CS-based DOA estimation algorithms

have been proposed in recent years showing tremendous advantages with respect to the

complexity of the numerical solution while being insensitive to source correlation and

allowing arbitrary array geometries. Moreover, CS has also been suggested to be applied

in the spatial domain with the main goal to reduce the complexity of the measurement

process by using fewer RF chains and storing less measured data without the loss of any

significant information.

iii



In the first part of the work, we investigate the model mismatch problem for CS

based DOA estimation algorithms off the grid. To apply the CS framework a very com-

mon approach is to construct a finite dictionary by sampling the angular domain with a

predefined sampling grid. Therefore, the target locations are almost surely not located

exactly on a subset of these grid points. This leads to a model mismatch which deterio-

rates the performance of the estimators. We take an analytical approach to investigate

the effect of such grid offsets on the recovered spectra showing that each off-grid source

can be well approximated by the two neighboring points on the grid. We propose a

simple and efficient scheme to estimate the grid offset for a single source or multiple

well-separated sources. We also discuss a numerical procedure for the joint estimation

of the grid offsets of closer sources.

In the second part of the thesis, we study the design of compressive antenna arrays

for DOA estimation that aim to provide a larger aperture with a reduced hardware

complexity and allowing reconfigurability, by a linear combination of the antenna out-

puts to a lower number of receiver channels. We present a basic receiver architecture of

such a compressive array and introduce a generic system model that includes different

options for the hardware implementation. We then discuss the design of the analog com-

bining network that performs the receiver channel reduction. Our numerical simulations

demonstrate the superiority of the proposed optimized compressive arrays compared

to the sparse arrays of the same complexity and to compressive arrays with randomly

chosen combining kernels.

Finally, we consider two other applications of the sparse recovery and compressive

arrays. The first application is CS based time delay estimation and the other one is

compressive channel sounding. We show that the proposed approaches for sparse recove-

ry off the grid and compressive arrays show significant improvements in the considered

applications compared to conventional methods.
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Zusammenfassung

Die Schätzung der Einfallsrichtungen (Directions of Arrival/DOA) mehrerer ebener Wel-

lenfronten mit Hilfe eines Antennen-Arrays ist eine der prominentesten Fragestellungen

im Gebiet der Array-Signalverarbeitung. Das nach wie vor starke Forschungsinteresse in

dieser Richtung konzentriert sich vor allem auf die Reduktion des Hardware-Aufwands,

im Sinne der Komplexität und des Energieverbrauchs der Empfänger, bei einem vorge-

gebenen Grad an Genauigkeit und Robustheit gegen Mehrwegeausbreitung.

Diese Dissertation beschäftigt sich mit der Anwendung von Compressive Sensing

(CS) auf das Gebiet der DOA-Schätzung mit dem Ziel, hiermit die Komplexität der

Empfängerhardware zu reduzieren und gleichzeitig eine hohe Richtungsauflösung und

Robustheit zu erreichen. CS wurde bereits auf das DOA-Problem angewandt unter der

Ausnutzung der Tatsache, dass eine Superposition ebener Wellenfronten mit einer win-

kelabhängigen Leistungsdichte korrespondiert, die über den Winkel betrachtet sparse

ist. Basierend auf der Idee wurden CS-basierte Algorithmen zur DOA-Schätzung vorge-

schlagen, die sich durch eine geringe Rechenkomplexität, Robustheit gegenüber Quellen-

korrelation und Flexibilität bezüglich der Wahl der Array-Geometrie auszeichnen. Die

Anwendung von CS führt darüber hinaus zu einer erheblichen Reduktion der Hardware-

Komplexität, da weniger Empfangskanäle benötigt werden und eine geringere Daten-

menge zu verarbeiten und zu speichern ist, ohne dabei wesentliche Informationen zu

verlieren.

Im ersten Teil der Arbeit wird das Problem des Modellfehlers bei der CS-basierten

DOA-Schätzung mit gitterbehafteten Verfahren untersucht. Ein häufig verwendeter An-

satz um das CS-Framework auf das DOA-Problem anzuwenden ist es, den kontinuier-

lichen Winkel-Parameter zu diskretisieren und damit ein Dictionary endlicher Größe

zu bilden. Da die tatsächlichen Winkel fast sicher nicht auf diesem Gitter liegen wer-

den, entsteht dabei ein unvermeidlicher Modellfehler, der sich auf die Schätzalgorithmen

auswirkt.
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In der Arbeit wird ein analytischer Ansatz gewählt, um den Effekt der Gitterfehler

auf die rekonstruierten Spektra zu untersuchen. Es wird gezeigt, dass sich die Messung

einer Quelle aus beliebiger Richtung sehr gut durch die erwarteten Antworten ihrer

beiden Nachbarn auf dem Gitter annähern lässt. Darauf basierend wird ein einfaches

und effizientes Verfahren vorgeschlagen, den Gitterversatz zu schätzen. Dieser Ansatz ist

anwendbar auf einzelne Quellen oder mehrere, räumlich gut separierte Quellen. Für den

Fall mehrerer dicht benachbarter Quellen wird ein numerischer Ansatz zur gemeinsamen

Schätzung des Gitterversatzes diskutiert.

Im zweiten Teil der Arbeit untersuchen wir das Design kompressiver Antennenar-

rays für die DOA-Schätzung. Die Kompression im Sinne von Linearkombinationen der

Antennensignale, erlaubt es, Arrays mit großer Apertur zu entwerfen, die nur weni-

ge Empfangskanäle benötigen und sich rekonfigurieren lassen. In der Arbeit wird eine

einfache Empfangsarchitektur vorgeschlagen und ein allgemeines Systemmodell disku-

tiert, welches verschiedene Optionen der tatsächlichen Hardware-Realisierung dieser Li-

nearkombinationen zulässt. Im Anschluss wird das Design der Gewichte des analogen

Kombinations-Netzwerks untersucht. Numerische Simulationen zeigen die Überlegenheit

der vorgeschlagenen kompressiven Antennen-Arrays im Vergleich mit dünn besetzten

Arrays der gleichen Komplexität sowie kompressiver Arrays mit zufällig gewählten Ge-

wichten.

Schließlich werden zwei weitere Anwendungen der vorgeschlagenen Ansätze disku-

tiert: CS-basierte Verzögerungsschätzung und kompressives Channel Sounding. Es wird

demonstriert, dass die in beiden Gebieten durch die Anwendung der vorgeschlagenen

Ansätze erhebliche Verbesserungen erzielt werden können.
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Chapter 1

Introduction

The introduction of mobile and wireless communication systems in the late 20th cen-

tury has radically changed the life of human beings. In a few years time, the wireless

communications industry has grown to become one of the largest in the world. The

markets show significant growth, and the volumes are high. According to the Ericsson

mobility report 2017 [14], the estimated amount of subscribers in 2017 is 7.8 billion,

while the expected amount of subscribers for 2023 is 9.1 billion. Moreover, the total

mobile data traffic is expected to increase to almost seven times. In addition to the

more traditional services such as speech, texting, and video, wireless communication

systems can also provide other services to improve the quality of life, including health

care, home automation, emergency services and many others.

Since the early days of wireless communication, the simple single antenna has been

used to transmit and receive wireless signals. In order to improve the effectiveness of

a wireless communication system, an array of antennas can be used to transmit and

receive. An antenna array consists of a set of antennas that are located at different

points in space with reference to a common reference point. These sensors listen to the

incoming signals and provide a means of sampling these signals in space. Compared

to single sensor systems, array systems have some crucial advantages. A significant

advantage is signal enhancement over noise by appropriate processing of the received

signals. Moreover, it allows spatial selection of where to transmit power. This boosts the

range of the communication link by focusing the power toward a certain user rather than

radiating energy in all directions. Spatial selection also enables frequency reuse, which

means that the same frequency can be used by multiple nodes by spatially discriminating

between them [15]. Similarly, sensor arrays can be used to monitor the position of a

source by tracking its signature as it moves in space.
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Chapter 1 Introduction

The sensor array data is then processed to extract useful information. This corre-

sponds to either the content of the signal itself as often found in communications or some

parameters related to the recorded data. Array signal processing is used in several appli-

cation areas such as radar, sonar, wireless communications, radio astronomy, seismology,

acoustics, and medical imaging [16,17]. Early contributions to this field have been made

mostly in the context of wireless communications and radar systems in the first half of

the 20th century. In the second half of the 20th century, the tremendous progress of

digital processing hardware led to numerous new developments and applications [18].

A typical objective of array signal processing is to estimate the direction-of-arrival

(DOA) of an incoming signal. Through the collection of received time samples and by

processing of spatial signals, detection of multiple incoming sources and estimation of

their DOAs can be realized [19]. The estimated DOAs are used in various applications

like localization of transmitting sources, for direction finding [20,21], massive MIMO and

5G Networks [21,22], channel sounding and modeling [23–26], tracking and surveillance

in radar [27], and many others. The major objective in DOA estimation is to develop

approaches that allow minimizing the hardware complexity in terms of receiver costs and

power consumption while providing a desired level of estimation accuracy and robustness

in the presence of multiple sources and/or multiple paths.

Research on DOA estimation using array processing has largely focused on uniform

arrays (e.g., linear and circular) [28] for which many efficient parameter estimation

algorithms have been developed. The main goal is to locate closely spaced signals

in angle, in the presence of high-variance noise and a low number of snapshots. To

perform well, all such algorithms require to fulfill certain conditions on the sampling of

the wavefront of the incident waves in the spatial domain. Namely, the distance between

adjacent sensors should be less than or equal to half a wavelength of the impinging planar

wavefronts; otherwise it leads to grating lobes (sidelobes) in the spatial correlation

function which correspond to ambiguities in the array manifold. At the same time,

to achieve DOA estimation with a high resolution, the receiving arrays should have a

relatively large aperture. This implies that arrays with a large number of antennas are

needed to obtain a high resolution, which is not always feasible.

It was shown in [29] that if the field is modeled as a superposition of a few planar

wave-fronts, the DOA estimation problem can be expressed as a sparse recovery problem

and the Compressed Sensing (CS) framework can be applied. Compressive Sensing (CS)

[30–32] is a novel paradigm in sampling theory that provides an analytical framework

for the sampling of signals below the Shannon-Nyquist sampling rate. In essence, it has

been shown that signals can be acquired at sub-Nyquist sampling rates without loss of
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information provided they possess a sufficiently sparse representation in some domain

and that the measurement strategy is suitably chosen. In particular, guarantees for

recovering the signal from a certain number of linear measurements have been derived

which have also led to insights on how to determine applicable measurement designs.

Recently, compressive sensing has been widely studied and applied to various fields, such

as imaging [33,34], magnetic resonance imaging [35,36], video processing [37,38], radar

[39–41], analog-to-information conversion [42], sensor networks [43,44], array processing

[45], communications [46, 47], astronomy [48, 49] and biology [50].

Many powerful CS-based DOA estimation algorithms have been proposed in recent

years showing tremendous advantages with respect to the hardware complexity of the

receiving arrays and the complexity of the numerical solution while being insensitive

to source correlation and allowing arbitrary array geometries. However, they all face

a common problem. Although the model is sparse in a continuous angular domain, to

apply the CS framework we need to construct a finite dictionary by sampling this domain

with a predefined sampling grid i.e., the angle space is divided into a large number of

grids where the source directions of interest are assumed to exactly lie on some of the

grids. However, the target locations in practice are almost surely not located exactly

on a subset of these grid points. This leads to a model mismatch that results in the

degradation of the performance.

Compressed sensing has also been suggested to be applied in the spatial domain

(e.g., array processing and radar) with the main goal to reduce the complexity of the

measurement process by using fewer RF chains and storing less measured data without

the loss of any significant information. In particular, the CS paradigm can be applied

in the spatial domain by employing N antenna elements that are combined using an

analog combining network to obtain a smaller number of M < N receiver channels.

Since only M channels need to be sampled and digitized, the hardware complexity

remains comparably low (e.g., consuming less energy and storing less data) while a

larger aperture is covered which yields a better selectivity than a traditional, Nyquist

(λ/2) spaced M-channel antenna array.

The objective of this dissertation is threefold. Firstly, CS based DOA estimation

methods exploring sparsity will be studied with the main goal to lift the off-grid model

mismatch. We study the problem analytically and propose an efficient CS based DOA

estimation technique that works with off-grid sources. Secondly, we propose a com-

pressive array for DOA estimation with a lower hardware complexity and an optimized

design for the compressive network. Thirdly, we consider two other applications of the

sparse recovery and compressive arrays. The first application is CS based time delay

3



Chapter 1 Introduction

estimation and the other one is compressive channel sounding. We show that the pro-

posed approaches for sparse recovery off the grid and compressive arrays show significant

improvements in the considered applications compared to conventional methods.

Overview and Contributions

The work in this thesis is organized as follows:

Chapter 2 provides the theoretical background for the main topics covered in this

thesis namely, compressed sensing (CS) and direction of arrival (DOA) estimation. It

starts with a review of the CS theory and its fundamentals, with the aim of providing

a summarized, yet a standalone background to this thesis. The fundamentals of DOA

estimation are then presented where first the array design essentials are reviewed and

then parameter estimation techniques are discussed and summarized. While no novel

material is presented in this chapter, its role is essential in agreeing on the notation and

concepts addressed in the rest of this work.

Chapter 3 deals with the problem of applying CS techniques to DOA estimation

off the grid. We take an analytical approach to investigate the effect of recovering the

spectrum of sources not lying on the grid. Unlike earlier works that have provided

a quantitative analysis of the approximation error, we examine the specific shape of

the resulting spectrum. We show that for one off-grid source the recovered spectrum

is not sparse but it can be well approximated by the closest two dictionary atoms on

the grid and their coefficients can be exploited to estimate the grid offset. We then

extend our model to consider multiple sources. In the second part of the chapter, a full

polarimetric CS based DOA estimator (also off the grid) is proposed. Almost all CS

based DOA estimation techniques consider a non-polarimetric model which can lead to

entirely useless estimation results. We show that our polarimetric CS based model can

estimate both the DOA and the polarization state of each individual path with very

high accuracy. The results shown in this chapter have been published in [1–3].

Chapter 4 discusses the design and the performance of compressive arrays employ-

ing linear combinations in the analog domain by means of a network of power splitters,

phase shifters, and power combiners. We present a basic receiver architecture of such a

compressive array and introduce a generic system model that includes different options

for the hardware implementation. Importantly, the model reflects the implications for

the noise sources. Based on the generic system model we then discuss the design of the

combining matrix, with the goal to obtain an array that is suitable for DOA estimation

(i.e., minimum variance of DOA estimates and robustness in terms of low side lobe levels

4



or low probability of false detections). We propose two design approaches. The first is

based on the spatial correlation function which is a low-complexity scheme that in cer-

tain cases even admits a closed-form solution. The second is based on the minimization

of the Cramér-Rao Bound (CRB). We show by numerical simulations that both of the

proposed design approaches have a significant performance improvement compared to

the state of the art, namely an array with a randomly chosen combining matrix and a

sparse array with optimized sensor positions. The results proposed in this chapter are

published in [4–9].

Chapter 5 extends the ideas from the previous chapters applying them to time delay

estimation (TDE) and synchronization. We first treat the special case of estimating the

delay of a signal with a known pulse shape from a noisy superposition of several delayed

copies. The main contribution of the first part of the chapter is an optimization based

design for the measurement kernels of the CS based TDE architectures. We demonstrate

numerically that the proposed optimized CS kernels outperform a randomly chosen

one in terms of the delay estimation accuracy. In the second part of the chapter, we

turn our attention to synchronization of the TDE network. We proposed a CS based

reference broadcast synchronization where the reference signal is an opportunistic signal

already in the system (e.g., FM or TV signals). We show that using CS, the correlation

can be calculated in the compressed domain, yet achieving a correlation characteristics

comparable to the high bandwidth correlation obtained with opportunistic signals. The

ideas discussed in this chapter have been published in [10–12].

Chapter 6 exploits the application of CS to the double-directional channel sounder

in the spatial domain that includes joint DOA/DOD estimation. Extending the ideas

of compressive arrays discussed in Chapter 4, a compressive spatial channel sounder is

proposed and evaluated based on real scenarios showing superior advantages in terms of

time, hardware complexity and resolution. In particular, the proposed approach reduces

the total number of switching periods, which implies a reduced channel acquisition time

and thus an improved Doppler bandwidth. On the other hand, the compressive approach

reduces the number of RF chains, which is a very relevant advantage in terms of the

overall receiver complexity, the amount of data to be processed in the digital domain

(e.g., FPGA), power consumption, as well as RF hardware calibration. Alternatively, for

the same measurement time and/or hardware complexity, one can increase the number

of array elements to cover a larger aperture and so achieving better performance in

terms of resolution. The ideas presented in this chapter are published in [13].

Chapter 7 concludes the work presented and summarizes the main contributions of

this thesis providing directions for future work.
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Chapter 2

Background

This chapter overviews some background of the two main topics related to the research

contributions presented in this thesis: Compressive Sensing (CS) and Direction of Arrival

(DOA) estimation. In Section 2.1, the CS theory is first reviewed where the underlying

principles are presented and the main concepts are explained. Afterwards, we turn our

attention to the DOA estimation problem using antenna arrays in Section 2.2. We start

by deriving the array signal model and then the main parameter estimation techniques

used for DOA estimation are discussed and compared. Due to the large volume of

existing literature, the chapter here is only directly related to the current thesis and is

by no means a complete treatment of all past work.

2.1 Compressive Sensing

We live in an analog world. Most natural phenomena are the representation of vari-

ations in physical quantities in any given time. These parameters include electricity,

temperature, light, sound and pressure among others. With the invention of transistors

and microprocessors around 1950, the digital revolution started and it was reported in

2014 that more than 99% of the world’s technologically stored information is in digital

format [51]. Digital technology allows information to be copied and replicated precisely.

It is due to digital technology that our society is now so defined by computers, smart-

phones, internet access, and cell phone communication. The Digital Revolution, in fact,

marks the beginning of a new age: the Information Age [52].

To go from analog to digital, we rely on two main principles: sampling and quanti-

zation. This conversion is achieved via an Analog-to-Digital Converter (ADC), which is

an electronics component present in any digital device that processes an analog input

signal. The ADC converts an analog signal to a discrete time signal and a discrete
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amplitude signal. Through sampling, the ADC transforms the continuous signal with

an infinite number of possible values to a finite number of samples. Furthermore, the

ADC must quantize the input signal, meaning that every sample must be represented

by a value from a finite set of possible values [53].

Sampling theorems provide conditions required for lossless conversion between the

continuous and the discrete-time worlds for digital signal processing. For many years,

signal processing has been relying on the well-known Nyquist/Shannon sampling theo-

rem [54,55], stating that the sampling rate must be at least twice as high as the highest

frequency to avoid losing information while capturing the signal.

Such strategy faces difficulties in the acquisition of wideband signals where the re-

quired sampling rates exceed the limits of state-of-art commercial ADC systems. The

hardware implementation of devices to obtain such high resolution (in image acquisition

for example) requires very complex designs with very high costs. Moreover, it might not

be possible to store all the data because of limited storage, or the data amount might

be too large to be processed so that it becomes necessary to apply compression methods

to get rid of the redundant information and keep the minimum information required

for almost perfect reconstruction [56]. This means that very complex ADC devices are

deployed to acquire samples of the signal and then compression techniques are applied

to dump most of these samples since only a few of them are significant for recovery.

In [57] the authors show that it is possible to lower the necessary sampling rate and

still attain a desired level of information if the information rate is much lower than the

actual signal dimensionality. For example, an image of a million pixels has a million

degrees of freedom. However, a typical image is very sparse or compressible over the

wavelet basis, namely, very likely only a small fraction of wavelet coefficients, say, one

hundred thousand out of a million wavelet coefficients, are significant in recovering the

original images, while the rest of wavelet coefficients are discarded in many compression

algorithms.

In the last decade, a new theory of compressive sensing (CS), also known under the

terminology of compressed sensing or compressive sampling, has considerably drawn the

attention of researchers. It builds a fundamentally novel approach to data acquisition

and compression which overcomes drawbacks of the traditional method. In his famous

paper [30], Donoho posed the ultimate goal of merging compression and sampling. In-

stead of acquiring all the signal data to through it away afterwards, it was suggested to

directly measure the part that will not end up being thrown away. This was the funda-

mental idea for which the field of compressive sensing has emerged. In 2006, Donoho,

Candès, Romberg and Tao [30–32] conducted a series of in-depth research based on the
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2.1 Compressive Sensing

discovery that a signal may still be recovered even though the number of data is deemed

insufficient by Shannon’s criterion, and built the theory of compressive sensing. Instead

of acquiring this large number of samples and then compressing them, obtain only these

few non-zero coefficients directly. In other words, compress the data while sampled.

Recently, compressive sensing has been widely studied and applied to various fields,

such as imaging [33, 34], magnetic resonance imaging [35, 36], video processing [37, 38],

radar [39–41], analog-to-information conversion [42], sensor networks [43,44], array pro-

cessing [45], communications [46, 47], astronomy [48, 49] and biology [50].

In this section, we will display the main theoretical results of the compressive sens-

ing paradigm together with the main underlying principles. We start in Section 2.1.1

by briefly describing the traditional sampling approach. Afterwards, we discuss the

three main principles underlying the CS theory: sparsity in Section 2.1.2, incoherent

measurements in Section 2.1.3 and sparsity based non-linear recovery in Section 2.1.4.

2.1.1 Conventional Sampling

Figure 2.1 shows the process of conventional Nyquist-Rate sampling. A source emits a

signal x ∈ C
N×1 which is an N dimensional complex signal. In the noiseless case, N

linear measurements y ∈ CN×1 are taken using an N × N measurement ensemble Φ,

i.e.,

y = Φ · x. (2.1)

Afterwards, the obtained signal y can be analyzed and processed digitally where

traditional compression techniques (e.g., JPEG [58]) can be applied to get rid of the

redundancy and keep only the M < N significant coefficients sufficient for the signal’s

recovery.

PSfrag replacements

x ∈ RN

Source Nyquist-Rate
Sampling

y ∈ RN
Analysis &
Compression

y ∈ R
M

Figure 2.1: Conventional Nyquist-Rate Sampling

Conventional Nyquist-Rate sampling suggests that N linearly independent measure-

ments are required for the exact recovery of an arbitrary signal x. The matrix Φ should

be a square matrix that has a full rank, i.e., its columns are linearly independent and

span an N dimensional subspace. Therefore, it can be used to represent all possible

signals in CN and each signal has one unique representation. In such a case, if y and
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Φ are given and Φ has full rank, x can be obtained by solving the system of linear

equations, which is equivalent to multiplying y with the inverse of Φ denoted Φ−1.

If M < N measurements are taken, the problem becomes underdetermined and the

measurement cannot be uniquely inverted. This is where the CS theory comes into play

suggesting the possibility to solve such an ill-posed, underdetermined problem promising

to reconstruct a signal accurately and efficiently from a set of a few non-adaptive linear

measurements M ≪ N . Figure 2.2 shows the CS scheme. The compressed signal

y ∈ RM can be directly acquired from the signal of interest x ∈ RN via an M × N

compressive measurement ensemble Φ. To get back the original signal x from the

compressed signal y, non-linear recovery techniques are employed.

PSfrag replacements

s(t)
Source Compressive

Sampling

y ∈ RM
Non-Linear
Recovery

x ∈ RN

Figure 2.2: Compressive Sensing Architecture

In this sense, the CS theory counts on three key elements: sparsity (Section 2.1.2),

incoherent measurements (Section 2.1.3) and non-linear recovery (Section 2.1.4). Spar-

sity screens out the signal of interest, while incoherence restricts the sensing schema.

Specifically, a large but sparse signal s(t) is encoded by a relatively small number of

incoherent linear measurements y ∈ RM . Using non-linear recovery algorithms, the orig-

inal signal can be reconstructed from the encoded sample by finding the sparsest signal

from the solution set of an underdetermined linear system. Each of these principles is

comprised of a dense, rapidly evolving literature of which only the fundamentals are

reviewed in the following sections of this chapter as a basic background for this thesis.

2.1.2 Sparsity

Sparsity is the signal structure behind many compression algorithms that employ trans-

form coding and is the most famous signal structure used in CS.

Definition 1. The ℓp-norm of a vector signal x is defined as

‖x‖p =
( N∑

n=1

‖xn‖p
)(1/p)

for p ≥ 1. (2.2)

At times a quasinorm such as ℓ0 is also used, which cannot be used in the above

10
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formula, but which corresponds only to counting all the non-zero entries in the vector

x.

Definition 2. A signal x ∈ CN×1 is said to be K-sparse for some K ∈ N, if at most K

of its entries are non-zero, i.e., if ‖x‖0 ≤ K.

The use of sparsity as a model for signal processing dates back to Donoho and

Johnstone’s initial works in the early 1990s [59], where wavelet-sparse signals and images

were denoised by assuming that the noiseless version of the signal is sparse. Since then,

many mathematicians, applied mathematicians, and statisticians have employed sparse

signal models for applications that include signal enhancement and super resolution,

signal deconvolution, and signal denoising [60].

Sparse representations are the core tenet of compression algorithms based on trans-

form coding. In transform coding, a sparse signal x is compressed by obtaining its

sparse representation s in a suitable basis Ψ and encoding the values and locations of

its nonzero coefficients. Transform coding is the foundation of most commercial com-

pression algorithms; examples include the JPEG image compression algorithm, which

uses the discrete cosine transform [58], and the JPEG2000 algorithm, which uses the

discrete wavelet transform [61].

While transform coding algorithms are able to encode sparse signals without distor-

tion, the signals that we observe in nature are not exactly sparse, but rather compress-

ible.

Definition 3. For a signal x ∈ CN×1, some K ∈ N and some p ≥ 1, we define the

K-term approximation error of x with respect to the p-norm as

σK(x)p := min
x̂∈ΣK

‖x− x̂‖p, (2.3)

where Σ denotes the set of all K-sparse vectors ∈ CN×1.

A signal is called compressible if there exists a good K-term approximation xK

with a fast decaying approximation error σK for some p ≥ 1, i.e., most of its energy is

concentrated around no more than K entries.

While a widely accepted standard, the sample-then-compress ideology behind trans-

form coding compression suffers from three inherent inefficiencies: First, we must start

with a potentially large number of samples N even if the ultimate desired K is small.

Second, the encoder must compute all of the N transform coefficients s, even though it

will discard all but K of them. Third, the encoder faces the overhead of encoding the

locations of the large coefficients.
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One would think intuitively to acquire just a few linear measurements proportional

to the signal sparsity K. This is indeed correct, but the difficulty is determining in

which lower dimensional subspace such a signal lies [62]. That is, we may know that the

signal has a few non-zero coordinates, but we do not know which coordinates those are.

It is thus clear that we may not reconstruct such signals using a simple linear operator,

and that the recovery requires more sophisticated techniques.

2.1.3 Incoherent Measurements

Assume now that x is sparse in a domain Ψ, where Ψ is an N ×N basis matrix. This

means that x has only K non-zero elements with K ≪ N . If the positions of the

non-zero coefficients of x were known in advance, we could reconstruct it from exactly

K linear measurements, i,e, each row of Φ can be set to zero everywhere but at the

position of a non-zero entry of x.

This is exactly where the theory of CS comes into play. It introduces measurement

and reconstruction strategies so that M ≪ N linear measurements are sufficient for

exact reconstruction of K-sparse signals where K ≤ M . The CS measurement process

can be described as a linear projection of the signal vector into a set of carefully chosen

projection vectors that gathers all (or most of) the information contained in the signal.

Each measurement of a signal should give some global information. With incoherent

measurements, every measurement gives a little bit of information that adds up to give

the whole information content of the signal of interest [63].

The measurement matrix Φ is then a “fat” matrix with much fewer rows than

columns, and the system(2.1) is massively underdetermined with infinitely many so-

lutions. The matrix does not constitute an isometry for all input vectors x. However,

near-isometry is possible if only a subset of input vectors is allowed, which is the case

when assuming only sparse signals.

Definition 4. A matrix Φ ∈ CM×N is said to satisfy the restricted isometric property

(RIP) of order K ∈ N, if there exists a constant 0 ≤ δ < 1 such that

(1− δK)‖x‖22 ≤ ‖Φ · x‖22 ≤ (1 + δK)‖x‖22 (2.4)

holds for every K-sparse x ∈ ΣK.

The smallest such constant is denoted by σK , and is called the restricted isometric

constant (RIC) of Φ. If the RIC of a matrix Φ is small (i.e., as close to 0 as possible),

the restriction of Φ to any subset of K columns behaves analogously like an isometry.
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This theorem is very important because it means that if a matrix Φ can be found that

satisfies the RIP of order 2K, it will approximately preserve the distance between any

pair of K-sparse input vectors with respect to some constant σK .

It is important to mention that testing this property for a generic sensing matrix

requires the computation of the singular values of all its
(
N
K

)
-column submatrices, and

is non-deterministic polynomial-time (NP)-hard [64], which makes it practically not

feasible to design an appropriate measurement matrix based only on this criteria.

Another method to assess the information-preserving properties of sensing matrices

is the coherence (also mutual coherence) which can be defined as follows [65]

Definition 5. The coherence of a matrix Φ, µ(Φ), is the largest inner product between

any columns φi,φj of Φ:

µ(Φ) = max
1≤i<j≤N

∣
∣φH

i · φj

∣
∣

‖φi‖2 · ‖φj‖2
. (2.5)

In fact, it is possible to relate the RIP property and the coherence [66], but they

can give different insights about the measurement ensemble. Coherence is essentially

an index of linear dependence between the columns of Φ and should be made as small

as possible as to guarantee the recoverability of sparse vectors. Contrarily to the RIP,

coherence, however, has the benefit of being computable on any instance of Φ, and is

also related to the performances of many signal recovery algorithms [65]. It is therefore

recommended as a figure of merit that should be made as small as possible to guarantee

that a generic Φ allow for the recovery of a sparse vector x.

The next question therefore is, which matrices satisfy the RIP and/or the coherence

conditions to ensure informative sensing. Such matrices should be non-adaptive, i.e.,

independent of the sparse dictionary Ψ. In 2006 though, the groundbreaking work of

Candés, Romberg and Tao [31, 32] and Donoho [30] came to the rescue. By using the

concept of randomness, they were able to define a class of matrices that, with very

high probability, will satisfy the RIP and enjoy low coherence properties. Since then,

many such classes of matrices have been identified and proven to satisfy the required

conditions [67, 68].

For example, consider Gaussian random matrices, i.e. matrices where the entries

are identically and independently distributed Gaussian random variables with mean

0 and variance 1/M , or Bernoulli random matrices, where the entries take the value

+1/
√

(M) or −1/
√

(M) with equal probability. It can be shown that such matrices

satisfy the RIP of some order K with small RIC σK with very high probability if the

number of rows is chosen large enough [67]. In many of the theory-building work in
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CS, Gaussian or Bernoulli random matrices are used. In practice, though, they are

of limited use for several reasons. For example, in some applications, the design of

the measurement matrix is constrained by physical or other conditions. Also, these

matrices do not allow a fast matrix multiplication, which typically has to be performed

quite often in practical applications. Therefore, structured random matrices are often

preferred [44, 69]. In the following subsection, we review state-of-the-art measurement

matrix design for compressive sensing.

2.1.3.1 Measurement Matrix Design

So far many of the CS schemes employ the Gaussian or Bernoulli matrix for their

measurement matrix design or optimization. However, as proposed in [70], the Gaussian

random matrix, typically used in the CS problems, is not necessarily the best choice for

a given basis matrix in terms of the coherence of column pairs in the sensing matrix.

Furthermore, in many applications, it is difficult for designers to generate and control a

perfect Gaussian random matrix in physical electric circuit with its randomness being

well guaranteed. Moreover, there is no efficient algorithm testing the RIP of a random

matrix, even though it does satisfy the RIP with overwhelming probability. The question

to be asked next, therefore, is whether we can do better than random. Do there exist

principled and mathematically founded ways to find matrices that are ’optimal’, in some

sense, for recovery using compressive sensing methods?

Compared with random sensing matrices, deterministic ones can get rid of these

drawbacks. They can be generated on the fly to save storage space and the RIP is often

easy to verify. In addition, by exploiting specific structures of deterministic matrices,

fast algorithms can be designed to enhance the efficiency of recovery. Many efforts

indeed have been excelled to model the way the samples are acquired in practice, which

leads to sensing matrices that inherit their structure from the real world.

Early efforts were trying to implement such random measurement ensembles practi-

cally. An early trial to implement random compressive measurements is the so called

random filter [71]. The approach captures a signal by convolving it with a random-tap

FIR filter and then downsampling the filtered signal to obtain a compressed represen-

tation. The random filter is generic enough to summarize many types of compressible

signals. At the same time, the random filter has enough structure to accelerate mea-

surement and reconstruction algorithms.

One of the earliest works to address the matrix design question is the work of Elad [72]

attempting to iteratively decrease the average mutual coherence using a shrinkage op-

eration followed by a singular value decomposition (SVD) step. Another method [73]
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involved a design of sensing matrix entries by minimizing the Frobenius norm of the de-

parture of the Gram matrix of the effective dictionary from the identity matrix. There

have been many efforts for compressive sensing design since, all using the coherence as

a goodness criterion for sensing matrices. In [74], the authors apply non-uniform sam-

pling, by segmenting the input signal and taking samples with different rates from each

segment. In a following work [75], they propose a gradient based method to optimize a

randomly selected measurement matrix to decrease the coherence. The proposed algo-

rithm aims at minimizing a cost function in an alternating scheme. Overall, the results

of these methods show enhancement in terms of both reconstruction accuracy and the

maximum allowable sparsity that CS can recovery.

In [76], DeVore uses polynomials over finite fields to construct binary sensing matrices

with a prime power that satisfy the RIP. Connection to coding theory has been similarly

exploited in [77] proposing a deterministic compressive sensing matrix that comes by

design with a very fast reconstruction algorithm, in the sense that its complexity depends

only on the number of measurements and not on the signal dimension. The matrix

construction is based on the second order Reed-Muller codes and associated functions.

This matrix does not have RIP uniformly with respect to all K-sparse vectors, but it

acts as a near isometry on K-sparse vectors with very high probability. It was shown

in [78] that such constructions satisfy the statistical RIP. The statistical RIP is weaker

than the RIP and guarantees recovery of all but an exponentially small fraction of

sparse signals. In [79], binary matrices are constructed by exploiting hash functions and

extractor graphs. In [80–82], it was shown how random dense matrices could be replaced

by the adjacency matrices of an optimized family of expander graphs, thereby reducing

the space complexity of matrix storage and, more important, the time complexity of

recovery to a few very simple iterations. In [83], a new connection between orthogonal

optical codes and the RIP have been introduced, towards the construction of binary

sampling matrices. A design for bipolar matrices has been proposed using linear binary

correction codes, especially BHC codes. Another work proposed chirp sensing codes

towards obtaining a deterministic CS measurement matrix with recovery guarantees

and fast decoding [84].

In [35], which is an application to magnetic resonance imaging (MRI), the authors

define an incoherence criterion based on point spread functions (PSF) and propose a

Monte Carlo scheme for random incoherent sampling of this type of data. In [85], they

propose a variable density sampling strategy by exploiting the prior information about

the statistical distributions of natural images in the wavelet domain. Their proposed

method is computationally efficient and can be applied to several transform domains. [86]
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applies coherence minimization to design structured matrices for the Coded Aperture

Snapshot Spectral Imaging (CASSI) system [87,88]. [89] and [90] apply coherence based

design to environmental sounds and electromagnetic compressive sensing applications

respectively.

In [91–93], the use of Toeplitz and circulant structures as CS matrices was proposed

inspired by applications in communications where a sparse prior is placed on the signal

to be estimated, such as a channel response or a multiuser activity pattern. When

compared with generic CS matrices, subsampled circulant matrices have a significantly

smaller number of degrees of freedom due to the repetition of the matrix entries along

the rows and columns. However, it is was shown that it is possible to employ different

probabilistic tools to provide guarantees for subsampled circulant matrices. The results

still require randomness in the selection of the entries of the circulant matrix.

In the context of Radar and MIMO Radar, an adaptive computational framework

for optimizing the transmission waveform and Gaussian random measurement matrix

separately and simultaneously was introduced in [94], incorporating the target scene in-

formation for optimization. The framework leads to smaller cross-correlations between

different target responses but has to bear great computation load when the scene is

varying fast. The work in [70] proposed two approaches: the first one minimizes a per-

formance penalty which is a linear combination of the coherence of the sensing matrix

(CSM) and the inverse signal-to-interference ratio (SIR). It aims at improving the SIR

and reducing the coherence of the sensing matrix at the same time. The second one,

aiming at improving SIR only, imposes a structure on the measurement matrix and de-

termines the parameters involved. It requires carefully chosen waveforms to guarantee

the desired CS performance. Their simulation showed that the two measurement ma-

trices with the proper waveform could improve detection accuracy as compared to the

Gaussian random measurement matrix (GRMM).

In this thesis, we are interested in deterministic as opposed to random sampling

(sensing) matrices. Practically, deterministic sampling matrices are useful because the

sampler has to be a deterministic matrix; although random matrices perform quite

well on the average, there is no guarantee that a specific realization works. Moreover,

by proper choice of the matrix, we might be able to improve some features such as

computational complexity, compression ratio and estimation quality. We propose design

methodologies for constructing measurement matrices and compare them to random

ones.

16



2.1 Compressive Sensing

2.1.4 Non-Linear Recovery

Restricting ourselves to the case of sparse signals, and using the proposed informative,

incoherent measurement ensembles, there are still infinitely many solutions to our acqui-

sition problem y = Φ · x. Classically one solves this type of inverse problem by finding

the least squares solution to this equation, i.e., solving the problem

min ‖x‖2 subject to Φ · x = y, (2.6)

which has a convenient closed form solution given by x̂ = (Φ ·ΦH)−1 ·ΦH ·y. However,
the solution is always wrong as it is almost never sparse.

Alternatively, an intuitive strategy would be to simply choose the sparsest vector that

is consistent with the measurements, i.e., to solve the ℓ0-norm minimization 1 problem

min ‖x‖0 subject to Φ · x = y. (2.7)

Unfortunately, the ℓ0-norm is not convex and the problem is NP hard [95] and cannot

be solved in a tractable amount of time. The CS way of getting around is to study the

convex relaxation of that problem, i.e., solve the ℓ1-norm minimization problem (the

closest convex p-norm) [96]

min ‖x‖1 subject to Φ · x = y, (2.8)

which is a convex problem that is widely used and computationally tractable. It is

widely known as the basis pursuit (BP) [97, 98].

The incentive for using this norm, rather than e.g., the ℓ2-norm is because it is also

sparsity enforcing. BP utilizes the geometry of the octahedron to recover the sparse

signal. It is clear in Figure 2.3 that the ℓ1 constraint, which corresponds to the diamond

shape, is more likely to produce an intersection with the solution space (i.e., the black

line in our case) that has one component of the solution is zero (i.e., the sparse model).

This is not the case for the circular ℓ2 ball.

In the more practical case, the measurements are subject to noise sources and so the

measurement vector can be written as y = Φ·x+n, where n represents an additive noise

vector. This suggests relaxing the equality condition y = Φ·x to an inequality constraint

admitting some uncertainty between the measurements and the actual solution. This

1Although this is known as the ℓ0-norm, it is not a real norm.
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Figure 2.3: Geometric Comparison of ℓ2 and ℓ1- minimization for a 2 dimensional sparse signal
recovery.

strategy is usually called basis pursuit denoising (BPDN) defined as

min ‖x‖1 subject to ‖Φ · x− y‖2 ≤ ǫ, (2.9)

where ǫ is an upper bound on the noise level. It can also be further relaxed and formu-

lated as a least absolute shrinkage and selection operator (LASSO) [99]

min ‖Φ · x− y‖2 subject to ‖x‖1 ≤ ǫ. (2.10)

The recoverability of a signal from incomplete and incoherent (i.e., random) mea-

surements using the aforementioned recovery algorithms, i.e., (2.8) and (2.9), has been

discussed thoroughly in literature and many recovery guarantees in terms of the coher-

ence [100] and RIP [101, 102] have been provided.

By now there are many different algorithms solving (2.8) and (2.9) at a feasible com-

putational complexity and acceptable runtime [103,104]. In general, the ℓ1-minimization

approach provides uniform guarantees over all sparse signals and also stability and ro-

bustness under measurement noises and approximately sparse signals, but relies on

optimization which has relatively high complexity. For example, with standard linear

programming, the complexity of grows cubic in the problem dimension N . In many

applications which involve very large dimension processing, these approaches are not

optimally fast.

Another family of algorithms is the greedy types which have obtained a lot of at-

tention for sparse recovery and compressive sensing. Here, the support of the unknown
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signal is recovered iteratively. One calculates the support of the signal and it makes

the locally optimal choice at each time to build up an approximation. This is repeated

until the criterion is fulfilled. Once the support of the signal is computed correctly, the

pseudo-inverse of the measurement matrix restricted to the corresponding columns can

be used to reconstruct the actual signal [105]. The clear advantage of such approaches

are speed and ease of implementation. The most prominent examples are the matching

pursuit (MP) [65], the orthogonal matching pursuit (OMP) [106, 107], the stagewise

orthogonal matching pursuit (SOMP) [108] and the compressive sampling matching

pursuit (CoSaMP) [109]. A special class of greedy algorithms is the one with iterative

thresholding performing some thresholding function on each iteration [110, 111].

The drawback of greedy algorithms is that they are not as easy to derive general

performance bounds for. However, they are most often significantly faster and may rival

the recovery performance of ℓ1-norm minimization algorithms in many cases. Further-

more, it is fairly easy to incorporate further structure, beyond dictionary-based sparsity,

into the reconstruction with greedy algorithms than it is to do so with convex opti-

mization algorithms [112]. Another significant difference is that greedy algorithms often

assume known sparsity K. The sparsity may be estimated or assumed known, but this

is nonetheless a drawback.

In this thesis, both families are used and explicitly specified (and sometimes com-

pared) where needed.

2.1.4.1 Recovery off the Grid

In a standard CS framework, signal recovery is often performed on a discrete sampling

grid. Thus, to apply the CS framework we need to construct a finite dictionary by

sampling the required domain with a predefined sampling grid. That also implies that

the target signal under investigation is assumed to have entries only on the grid points.

In reality, the positions can never be exactly at the computational grid points. No matter

how large the size of the grid is, the actual field will not place its sources on the center of

the grid points. This means the signal is actually not sparse in the basis defined by the

grid. This leads to a model mismatch causing a degradation of the performance. That

is one of the main challenges towards applying sparse signal recovery for compressive

sensing.

In [113, 114] the effect of the basis mismatch problem on the reconstruction perfor-

mance of CS has been analyzed and the resultant performance degradation levels and

analytical norm error bounds due to the basis mismatch have been investigated. The

work of [114] describes the grid mismatch problem and proposes a model for it. The
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authors also illustrate the effect for the discrete Fourier transform (DFT) matrix and

discuss the bounds on the errors for the basis pursuit (BP) solution. In [113], the au-

thors propose the errors in variables (EIV) model for modeling the error in the model

matrix and also give error bounds for the BP solution.

One natural solution to such a problem is to improve the sampling to provide a

sufficiently “dense” grid and so reducing the offgrid error as much as possible. However,

relative to the gained accuracy, the additional computational burden is high and the

classical convex methods are frequently reported to run into numerical problems. On

the other hand, aiming for an increasingly dense sampling of the parameter space in-

troduces performance issues in sparsity-leveraging algorithms. In particular, increasing

the resolution of the parameter sampling worsens the coherence of the dictionary that

provides sparsity for relevant signals [115]. This both prevents certain algorithms from

finding the sparse representation successfully and introduces ambiguity on the choice of

representations available for a signal in the dictionary.

Many grid-based methods have been proposed to alleviate the drawbacks of the

finite discretization with affordable computational workloads. In [116], the dictionary

is extended to several dictionaries and solution is pursued not in a single orthogonal

basis, but in a set of bases using a tree structure, assuming that the given signal is

sparse in at least one of the basis. In the Continuous Basis Pursuit approach [117],

perturbations are assumed to be continuously shifted features of the functions on which

the sparse solution is searched for, and ℓ1 based minimization is proposed. Also in this

method, perturbations are assumed to have structures that are modeled with a first order

Taylor approximation or polar interpolators. In [118], ℓ1-minimization based algorithms

are proposed for linear structured perturbations on the sensing matrix. In [119], a

total least square (TLS) solution is proposed for the problem, in which an optimization

over all signals x, perturbation matrix P and error vector spaces should be solved. To

reduce complexity, suboptimal optimization techniques have been proposed. In [120], the

perturbed orthogonal matching pursuit (POMP) algorithm is presented where controlled

perturbation mechanism is applied on the selected columns of each OMP iteration. The

selected column vectors are perturbed in directions that decrease the orthogonal residual

at each iteration. Proven limits on perturbations are obtained. In [121], an algorithm

based on the off-grid model from a Bayesian perspective for CS based DOA estimation

is proposed with a reduced computational complexity of the signal recovery process and

a lower sensitivity to noise.

Since the gridding introduces significant complications and has no proper physical

justification, it would be highly desirable to eliminate it and work with a grid-free
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continuous representation. In fact, recent developments in the mathematical literature

have addressed sparse recovery in the continuous domain without introducing a grid

[122]. The first gridless sparse method for frequency estimation is introduced in [123]

where the authors sidestep the issues arising from discretization by working directly on

the continuous parameter space. They propose estimating the continuous frequencies

and amplitudes of a mixture of complex sinusoids from partially observed time samples

based upon atomic norm minimization [124]. They show how the atomic norm for

moment sequences can be derived either from the perspective of sparse approximation

or rank minimization and prove that atomic norm minimization achieves nearly optimal

recovery bounds. The noiseless complete data case is studied where it is shown that the

frequencies can be exactly recovered provided that they are appropriately separate. The

bounded energy-noise case is then studied in [125]. An atomic norm soft thresholding

(AST) method is presented in [126] in the presence of stochastic noise which is then

generalized in [127] where also a gridless version of sparse iterative covariance-based

estimation SPICE [128] is proposed.

2.2 Direction of Arrival Estimation

Direction of arrival (DOA) estimation has been an active field of research for many

decades [19]. Estimated DOAs are used in various applications like localization of trans-

mitting sources, for direction finding [20, 21], massive MIMO and 5G Networks [21, 22],

channel sounding and modeling [23–26], tracking and surveillance in radar [27], and

many others.

The main objective of the DOA estimation or source localization problem is to esti-

mate the spatial energy spectrum and therefore determine the location of the sources of

energy. To do this, temporal and spatial information is first obtained by sampling the

wave field with sensor arrays and then processed with the aim to reveal the directions of

the emitting sources that form this wave field. Its origins date back to the 1940s when

the first attempt on spectral analysis using spatio-temporally sampled data was con-

ducted [15]. From then onwards, there has been ongoing research in the field of source

localization with the goal of developing methods that do not only yield accurate esti-

mates under ideal conditions, but more importantly are robust to non ideal conditions

such as noisy measurements, limitations on the number of measurements, the aperture

size of the array or the number of sensors.

What follows serves as a brief introduction to the problem of DOA estimation of

sources that impinge on a linear array of sensors. After the formal description of the
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conventional array signal model in Section 2.2.1, an overview of the most popular DOA

parameter estimation methods from the field of array processing is given in Section 2.2.2.

2.2.1 The Array Signal Model

In the section, we develop the model used to describe the signals received at an array of

sensors with distinct spatial locations, due to the emission or reflection of signal energy

from certain sources.

Consider an arbitrary array (i.e., arbitrary locations and arbitrary directional char-

acteristics) of M sensors with inter-element spacing d. The sensors sample spatially the

wave field, which is assumed to be generated by a finite number of emitting sources. The

sources are assumed to have negligible extent relative to the aperture size of the array

so that they can be modeled as point sources. The medium is considered homogeneous

and therefore the propagating speed is constant. The propagating waves corresponding

to the emitters are considered either spherical or planar waves, depending on the dis-

tance between the array and the location of the emitting sources [19]. In the former

case, which is known as the near-field case, the sources are located relatively close to the

array; while in the latter case, known as the far-field propagation model, the location of

the sources is far with regards to the aperture size of the array.

We start with one plane wave propagating from the far-field impinging on the array

from an unknown direction. It is also assumed that the signal is narrowband. That is,

the carrier frequency is fairly large compared to the bandwidth of the signal and so the

signal can be treated as quasi-static during time intervals of order τ . A narrowband

source is modeled as a complex envelope (or complex bandpass signal)

x̂(t) = x(t)ejwct, (2.11)

where wc = 2πfc is the carrier frequency and x(t) is the baseband signal [28]. Each

sensor captures the incoming signal with a time delay. In the noiseless case, the signal

received by the m-th sensor is given by

ym(t) = x(t− τm)e
jwc(t−τm). (2.12)

The narrowband assumption implies that the spectrum of the narrowband signal is

band-limited to the region

‖wL‖ ≤ πBs, (2.13)

where wL := w − wc and πBs specifies the maximum signal bandwidth. If it happens
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that the bandwidth of the signal is much less than 1/πm(Bsτm ≪ 1), then one can

make use of the narrowband approximation, which allows ignoring the delay τm from

the baseband signal x(t − τm) ≈ x(t). This is because in that case, the signal changes

very slowly relative to the travel time across the aperture of the array. Taking this

approximation into account, (2.12) becomes

ym(t) ≈ x(t)ejwcte−jwcτm , for m = 1, 2, ..., M. (2.14)

In practice, the dependence on the term ejwct is usually dropped (i.e., the signal is

usually down-converted to baseband before sampling). It follows that the sensors will

capture

y1(t) = x̂(t− τ1) ≈ x(t)e−j2πfcτ1

y2(t) = x̂(t− τ2) ≈ x(t)e−j2πfcτ2

...

yM(t) = x̂(t− τM) ≈ x(t)e−j2πfcτM , (2.15)

where τm = (m− 1)d cos(θ)/c if the first sensor of the array is the phase reference, c is

the propagation speed and m represents the sensor index.

Therefore the sensor array output can be modeled as

y(t) =











e−j2πfcτ1

e−j2πfcτ2

...

e−j2πfcτM











x(t) + n(t) = a(θ)x(t) + n(t), (2.16)

where n(t) = [n1(t), n2(t), · · · , nM(t)]T is theM×1 vector corresponding to the additive

noise at the sensors and a(θ) is the linear array response (usually called the array steering

vector) to the impinging plane wave that can be expressed as

a(θ) =
[

e−j2πfcτ1 , e−j2πfcτ2 , · · · , e−j2πfcτM

]T

. (2.17)

Equation (2.16) can be then generalized for K multiple directions of arrival corre-
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sponding to multiple propagating plane waves

y(t) =
K∑

j=1

a(θj)xj(t) + n(t) = A(θ)x(t) + n(t), (2.18)

where

A(θ) =
[

a(θ1), a(θ2), · · · , a(θK)
]T

. (2.19)

is the M × K array steering matrix (also called array manifold) containing the array

responses to all impinging plane waves,

x(t) =
[

x1(t), x2(t), · · · , xK(t)
]T

(2.20)

is the K × 1 vector that contains the K plane waves impinging on the array and

θ =
[

θ1, θ2, · · · , θK

]T

(2.21)

is the K × 1 vector that contains the DOAs of the incoming signals.

A very important design parameter is the inter-sensor spacing d. It should be chosen

properly to avoid the undesirable effects of spatial aliasing. This type of aliasing is

identical to the problem of aliasing in time series analysis and can introduce ambiguities

to the non-trivial task of DOA estimation, which may make localization impossible [28].

More specifically, the spatial sampling theory suggests that the phase difference should

be restricted to π

2πfc∆τ ≤ π, (2.22)

where δτ = d cos(θ)/c. This yields

d ≤ 1

2

c

fc

1

cos(θ)
. (2.23)

The denominator of the right hand side of the above inequality takes its maximum

value at θ = 2kπ, where k = 0, 1, 2, · · · . Therefore, substituting cos(θ) = 1 and the

wavelength λ = c/fc, (2.23) reduces to the following inequality

d ≤ λ/2, (2.24)

24



2.2 Direction of Arrival Estimation

which means that the inter-sensor spacing should not exceed half the wavelength of the

narrowband signal in order to avoid spatial aliasing.

2.2.2 Array Processing DOA Estimation Methods

Sensor array signal processing emerged as an active area of research and was centered

on the ability to fuse data collected at several sensors in order to carry out a given

estimation task (space-time processing) [19].

Array processing DOA estimation methods can be classified into two main cate-

gories, namely spectral-based and parametric approaches. In the former, one forms

some spectrum-like function of the parameter(s) of interest, e.g., the DOA. The loca-

tions of the highest (separated) peaks of the function in question are recorded as the

DOA estimates. Parametric techniques, on the other hand, require a simultaneous

search for all parameters of interest.

Parametric approaches include deterministic maximum likelihood (DML) and stochas-

tic maximum likelihood (SML), where the signal waveforms are treated as deterministic

and stochastic processes respectively. After the likelihood function has been obtained,

the unknown parameters corresponding to the unknown DOAs are estimated so that

the likelihood function is maximized. The parametric approaches result in accurate

estimates at the price of high computational complexity [129–133].

On the other hand, non-parametric methods are computationally attractive and can

be divided into two main subcategories; the beamforming techniques and the subspace

based methods. The beamforming techniques attempt to steer the array in one direction

at a time and measure its output power at the specific direction. Therefore, the loca-

tions that yield the maximum power are the DOA estimates. In contrast, spectral based

methods employ subspace analysis and exploit the fact that the noise subspace is orthog-

onal to the signal subspace. These methods basically make use of the eigen-structure of

the covariance matrix of observed signals from the sensor array. Subspace methods are

very well known for their high performance and relatively low computational cost.

All DOA estimation methods (to be presented) require that K < M , which is there-

fore assumed throughout the development. It is interesting to note that in the noiseless

case, the array output is then confined to an M-dimensional subspace of the complex

M-space, which is spanned by the steering vectors. This is the signal subspace, and this

observation forms the basis of subspace-based methods.

In this section, we briefly review the most popular DOA estimation methods. We

first introduce spectral-based subspace algorithmic solutions to the signal parameter es-

timation problem. We then contrast these suboptimal solutions to parametric methods.
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2.2.2.1 Spectral Estimation

Spectral-based methods which are discussed in this section can be classified into beam-

forming techniques and subspace-based methods.

Beamforming

Initial trials of signal source localization using arrays were through beamforming tech-

niques. The idea is to form a beam in the direction of waves coming from only one

particular direction. The steering directions which result in maximum signal power

yields the DOA estimates [134]. The conventional beamforming technique is the sim-

plest one which relays on the Fourier-based spectral analysis to antenna array output.

The task of DOA estimation is accomplished by steering the array at different locations

through the appropriate weighting (or shifting) of the waveforms captured by each sen-

sor of the array. The purpose is to maximize the output power of the beamformer from a

certain signal propagation direction. Conventional beamformers show poor performance

when resolving power of two sources spaced closer than a beamwidth. They suffer from

the Rayleigh resolution limit, as they cannot resolve two closely spaced sources and its

performance is limited by the aperture size of the ULA.

However, a well-known method called Capon’s beamforming proposed in [135] (also

known as the Minimum Variance Distortionless (MVDR) beamformer), attempts to

alleviate this limitation offering the ability of better focusing in the directions where

there are multiple sources. In contrast to the conventional beamformer, which attempts

to maximize the output power in the look direction θ, the MVDR beamformer attempts

to minimize the noise power and the power contributed by signals impinging on the

array from other directions than θ with the constraint of unit gain in the look direction

θ. In other words, it uses every available degree of freedom to concentrate the received

energy in one direction, namely the bearing of interest. Capon’s beamformer reduces the

spectral leakage caused by closely spaced sources that limits the resolution capability of

the conventional beamformer. It can be viewed as an optimal beamformer and this is why

it has found extensive use in practical applications [19]. Despite that, its performance

is still dependent on the aperture size and the noise level.

Subspace-Based Methods

The introduction of subspace-based estimation techniques [136, 137] marked the begin-

ning of a new era in the sensor array signal processing literature. The subspace based

approach relies on certain geometrical properties of the assumed data model, resulting in
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a resolution capability which (in theory) is not limited by the array aperture, provided

the data collection time and/or SNR are sufficiently large and assuming the data model

accurately reflects the experimental scenario.

The most commonly used technique in this family is the MUSIC (MUltiple SIgnal

Classification) technique [137]. MUSIC initially obtains an estimate of the covariance

matrix of the observations. This is followed by a subspace analysis, in which the covari-

ance matrix is firstly decomposed and the space spanned by the received data is then

partitioned into the signal and the noise subspace.

Similar to the beamforming methods, the algorithm requires a one dimensional

search. However, there is an additional computational cost associated with the eigen-

value decomposition of the data covariance matrix. MUSIC provides a significant im-

provement in terms of estimation accuracy over the beamforming methods and when the

time samples captured by each sensor of the array are sufficiently long, the algorithm

provides statistically consistent estimates.

However, the main limitation of MUSIC appears in the so-called coherent source

scenario. When some of the incoming signals happen to be highly correlated, then the

algorithm’s performance degrades dramatically. This is to be expected, as in that case,

the eigenvalue decomposition tends to underestimate the number of sources resulting in

signal subspace estimate of reduced dimension. Similar issues can arise when the num-

ber of time snapshots is not sufficient enough. This problem is usually referred to as the

rank-deficient case [138]. Spatial smoothing [139, 140] was then proposed to solve the

correlation problem. The main idea is to split the array into a number of overlapping

subarrays with identical steering vectors. The subarray covariance matrices can there-

fore be averaged after the spatial smoothing induces a random phase modulation which

in turn tends to decorrelate the signals that caused the rank deficiency. The drawback

with spatial smoothing is that the effective aperture of the array is reduced, since the

subarrays are smaller than the original array. However, despite this loss of aperture,

the spatial smoothing transformation mitigates the limitation of all subspace-based es-

timation techniques while retaining the computational efficiency of the one-dimensional

spectral searches.

Other subspace-based DOA estimation methods have been proposed, which provide

a significantly improved performance as compared to the traditional spectral MUSIC

algorithm. Among the most popular algorithms are root-MUSIC [141,142] and ESPRIT

(estimation of signal parameters via rotational invariance technique) [143]. Since these

methods avoid any spectral search, their computational complexity is often lower than

that of the spectral MUSIC algorithm. However, root-MUSIC and ESPRIT can be
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applied only in the case of specific array geometries. In particular, root-MUSIC is

applicable only if the sensors are located on a uniform grid, whereas ESPRIT requires

that the array consists of two identical and identically oriented subarrays. Several

extensions of root-MUSIC and ESPRIT to circular and rectangular arrays can be found

in [144–146]. However, the array geometries considered are still rather specific. In

particular, these methods cannot be applied in the case of arbitrary array configurations.

One important observation of subspace based methods is that the number of sources

K needs to satisfy K < M . Beamforming algorithms also have this assumption implic-

itly. This indicates that the number of sources K that can be resolved is upper bounded

by the number of sensors M .

2.2.2.2 Parametric Estimation

While the spectral-based methods presented in the previous section are computationally

attractive, they do not always yield sufficient accuracy. In particular, for scenarios in-

volving highly correlated (or even coherent) signals, the performance of spectral-based

methods may be insufficient. An alternative is to fully exploit the underlying data

model, leading to so-called parametric array processing methods. As we shall see, co-

herent signals impose no conceptual difficulties for such methods. The price to pay

for this increased efficiency and robustness is that the algorithms typically require a

multidimensional search to find the estimates.

The parametric approach assumes a probabilistic model for the underlying signal

and applies Maximum Likelihood (ML) estimation to extract the unknown parameters

of the distribution. Two different assumptions about the source signals x(t) lead to

different ML approaches. They are known as deterministic ML (DML) and stochastic

ML (SML) algorithms.

For the deterministic model, the source signals are modeled as unknown deterministic

quantities and the randomness of y(t) in (2.16) is entirely due to the noise with unknown

variance σ2
n. It therefore appears natural to model the noise as a stationary Gaussian

white random process whereas the signal waveforms are deterministic (arbitrary) and

unknown.

The other stochastic ML technique models the signal waveforms as Gaussian random

processes. This model is reasonable, for instance, if the measurements are obtained

by filtering wideband signals using a narrow bandpass filter. Indeed, the SML signal

parameter estimates have been shown to have a better large sample accuracy than the

corresponding DML estimates [132, 133], with the difference being significant only for

small numbers of sensors, low SNR and highly correlated signals. The SML algorithm
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also attains the Stochastic Cramér-Rao lower bound (CRB) for Gaussian signals whereas

the DML cannot consistently estimate the source parameters and they do not attain

the deterministic CRB [147].

Many parametric subspace based methods that have the same statistical performance

(both theoretically and practically) as the ML methods have been developed [131, 132,

148, 149]. Such techniques achieve comparable performance to the ML based ones at a

much lower complexity.
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Chapter 3

Compressive Sensing Based DOA

Estimation off the Grid

This chapter studies the problem of offgrid sources in compressive sensing (CS) based

direction of arrival (DOA) estimation. A polarimetric extension is also presented for the

proposed approach.

After the motivation and the problem formulation in Section 3.1, Section 3.2 de-

scribes an analytical approach to investigate the effect of recovering the spectrum of

offgrid sources based on examining the specific shape of the resulting spectrum. Sec-

tion 3.3 suggests that the spectrum of the offgrid source can be well approximated by

the closest two dictionary atoms on the grid and their coefficients can be exploited to

estimate the grid offset.

In Section 3.3.1 we propose a simple scheme to estimate the grid offset for a single

source and then extend our model to consider multiple sources in Section 3.3.2.

In Section 3.4, we extend our CS based DOA estimation model to its full polarimet-

ric description for arbitrary antenna arrays. We show that our CS based model can

estimate both the DOA and the polarization state of each individual path on the grid

(Section 3.4.2) and off the grid (Section 3.4.3).

Section 3.5 evaluates the proposed approaches via numerical simulations followed by

a summary in Section 3.6.
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3.1 Motivation

ConsiderK narrow-band planar waves impinging on an array ofM elements from sources

lying in the far-field. At the array side, the observations are given by

y(t) =

K∑

k=1

a(θk) · sk(t) + n(t), (3.1)

where a(θ) ∈ C
M is the array manifold, θk is the DOA vector, sk(t) are the amplitudes

of the impinging waves at time t, and n(t) is the additive white Gaussian noise (AWGN)

contaminating the observations.

One way to interpret the scenario in (3.1) is that the power received at the array

sensors concentrates at few locations θk from all possible DOAs θ, which means that

the received power is “sparse” in the angular domain. This sparsity motivates the use

of compressed sensing for DOA estimation. It was shown by the authors of [29] that if

the field is modeled as a superposition of a few planar wave-fronts, the DOA estimation

problem can be expressed as a sparse recovery problem and the Compressed Sensing

(CS) framework can be applied.

The CS based DOA estimation problem is formulated as

y(t) = A · s(t) + n(t), (3.2)

where A ∈ CM×N is the sampled array manifold (dictionary). The number of grid

points is given as N = M · P , P > 1 where P is the oversampling factor representing

how fine the grid is. Note that P is sometimes also referred as the “super resolution

factor” [122]. We consider this term misleading since increasing P does not actually

improve the resolution (which is limited by M , as also shown in [122]).

We first assume a uniform linear array (ULA) of isotropic sensors. We will show an

extension to a practical scenario with a circular array under a polarimetric setting later

on. Moreover, in order to achieve a uniform mutual coherence between columns of A,

we sample the manifold uniformly in the spatial frequency domain instead of the angular

domain. For a ULA with half-wavelength inter-element spacing, the spatial frequency µ

is defined as µ = π · sin θ. The dictionary is then sampled at the points µn = ∆ · (n− 1),

n = 1, 2, . . . , N , where ∆ = 2π
N
.
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Many powerful CS-based DOA estimation algorithms have been proposed in recent

years [150–152] showing tremendous advantages with respect to the hardware complexity

of the receiving arrays and the complexity of the numerical solution (compared to Max-

imum Likelihood algorithms) while being insensitive to source correlation and allowing

arbitrary array geometries (as opposed to most subspace-based estimators). However,

they all face one common problem. Although the model is sparse in a continuous an-

gular domain, to apply the CS framework we need to construct a finite dictionary by

sampling this domain with a predefined sampling grid i.e., the angle space is divided into

a large number of grids where the source directions of interest are assumed to exactly

lie on some of the grids. However, the target locations in practice are almost surely not

located exactly on a subset of these grid points. This leads to a model mismatch that

results in a degradation of the performance.

It may seem that the solution is to make the grid as fine as possible. However, this

increases the correlation between the adjacent steering vectors and deteriorates the CS

recovery process. Early approaches for CS based DOA estimation suggest tackling this

off-grid problem by simply refining the grid adaptively around the candidate targets

found with an initial, mismatched grid [29] or taking centroids of the dominant coeffi-

cients as the exact location [153]. One type of more sophisticated solutions models the

mismatch error explicitly and fits it to the observed data statistically [119, 121]. Other

approaches deal with the continuous problem directly and propose some modifications

to the recovery algorithm to deal with such scenario, i.e., interpolating between grid

points [117], atomic norm minimization [123], or perturbed OMP [120]. Note that this

typically increases the computational complexity significantly.

In this chapter, we take an analytical approach to investigate the effect of recovering

the spectrum of sources not contained in the dictionary. Unlike earlier works that have

provided a quantitative analysis of the approximation error [113, 114], we examine the

specific shape of the resulting spectrum. We show that for one off-grid source the

recovered spectrum is not sparse but it can be well approximated by the closest two

dictionary atoms on the grid and their coefficients can be exploited to estimate the

grid offset. We then extend our model to consider multiple sources. When they are

sufficiently separated, the offset estimation strategy can be applied separately. For

closely spaced sources we propose an efficient joint estimation strategy and demonstrate

its performance in numerical simulations.
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3.2 Analytical Study of the Problem

As mentioned earlier, no matter how fine the grid is, there will always be sources that

do not lie exactly on one of the grid points. In this section, we analyze this problem

both qualitatively and quantitatively. For simplicity, let us start by one source off the

grid. In the absence of noise, this simplifies (3.1) into y = ã ·s, where ã = a(µL+ ǫ ·∆).

Here, L ∈ N, i.e., µL represents the next “left” grid point. Moreover, 0 ≤ ǫ < 1 is the

grid offset, expressed as a fraction of ∆.

In general, y is not 1-sparse in A. In fact, an exact representation of y in A requires

M non-zero coefficients. Moreover, an arbitrary subset of M out of N coefficients could

be used to find such a representation.

In the CS framework, we often employ an ℓ1-type regularization to find a sparse

solution. For instance, the Basis Pursuit method [97] solves the following problem

min ‖α‖1 s.t. y = A ·α. (3.3)
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Figure 3.1: Recovered spectrum for one source off the grid (M = 8, P = 4, ǫ = 0.3) using BP

The purpose of this regularization is to concentrate the energy on as few coefficients

as possible. This suggests that the solution to (3.3) chooses the closest neighboring

atoms on the grid to represent the off-grid source. To support this intuition, Figure 3.1

demonstrates the resulting spectrum when solving (3.3) using BP [97] forM = 8, P = 4

(i.e., N = 32), and ǫ = 0.3. We observe that, as expected, most of the energy is

concentrated on the two closest grid points.
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3.3 An Approximation Scheme for offgrid Sources

3.3.1 Single Source

Motivated by this finding, we investigate the approximation of ã using the two neigh-

boring atoms on the grid, i.e.,

a(µL + ǫ ·∆) =
[

a(µL),a(µL+1)
]

·




α1

α2



+ aRes, (3.4)

where aRes is the residual that is not representable by the neighbors. The coefficients

α1 and α2 are found by solving

min
α1α2

∥
∥
∥
∥
∥
∥

ã−
[

a(µL),a(µL+1)
]

·




α1

α2





∥
∥
∥
∥
∥
∥

2

2

. (3.5)

The least squares (LS) solution was found to be

α1(ǫ) =
1

M2 − sin2(M∆
2

)

sin2(∆
2
)

·
(

M · sin(
M∆
2

· ǫ)
sin(∆

2
· ǫ) − sin(M∆

2
)

sin(∆
2
)

· sin(
M∆
2

· (ǫ− 1))

sin(∆
2
· (ǫ− 1))

)

, (3.6)

α2(ǫ) =
1

M2 − sin2(M∆
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)

sin2(∆
2
)

·
(

M · sin(
M∆
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· (ǫ− 1))
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− sin(M∆
2
)

sin(∆
2
)

· sin(
M∆
2

· ǫ)
sin(∆

2
· ǫ)

)

, (3.7)

which can then be expressed in terms of ǫ and P as

α1(ǫ) =
1

M2 − sin2( π
P
)

sin2( π
M·P

)

·
(

M · sin( π
P
· ǫ)

sin( π
M ·P · ǫ) −

sin( π
P
)

sin( π
M ·P )

· sin( π
P
· (ǫ− 1))

sin( π
M ·P · (ǫ− 1))

)

, (3.8)

α2(ǫ) =
1

M2 − sin2( π
P
)

sin2( π
M·P

)

·
(

M · sin( π
P
· (ǫ− 1))

sin( π
M ·P · (ǫ− 1))

− sin( π
P
)

sin( π
M ·P )

· sin( π
P
· ǫ)

sin( π
M ·P · ǫ)

)

. (3.9)

This can be expressed in a more compact form as

α1(ǫ) =
D(0) ·D(ǫ)−D(1) ·D(1− ǫ)

D(0)2 −D(1)2
· e·ǫ·π

(M−1)
M·P , (3.10)

α2(ǫ) =
D(0) ·D(1− ǫ)−D(1) ·D(ǫ)

D(0)2 −D(1)2
· e−·(1−ǫ)·π (M−1)

M·P , (3.11)

where D(x) =
sin
(
π·x
P

)

sin
(

π·x
M ·P

) . (3.12)
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Figure 3.2 shows the behavior of the calculated coefficients with varying the offset ǫ

for P = 2 and 4. It can be shown that

lim
P→∞

α1(ǫ) = 1− ǫ, (3.13)

lim
P→∞

α2(ǫ) = ǫ, (3.14)

i.e., as P increases (and so N), α1 and α2 becomes more linear with ǫ.
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Figure 3.2: Behavior of the approximation coefficients α1 and α2 for M = 8.

To assess the accuracy of our two term approximation, the relative approximation

error (AE) has been examined. We define

AE(ǫ,M, P )
.
=

‖aRes‖22
‖ã‖22

. (3.15)

Figure 3.3 shows the approximation error as a function of ǫ. The AE is convex and

symmetric in ǫ and that AE(ǫ,M, P ) ≤ AE(1/2,M, P ), i.e., as expected, the worst case

error is at ǫ = 0.5.
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Figure 3.3: Behavior of the approximation error as a function of ǫ for M = 8.

Moreover, a closed form expression for this worst case error is given by

AE(1/2,M, P ) = 1− 4 sin2
(

π
2P

)
cot
(

π
2MP

)

M2 sin
(

π
MP

)
+M sin

(
π
P

) , (3.16)

which we depict in Figure 3.4. In fact, Figure 3.4 shows that (3.16) increases mildly

with M and decreases rapidly with increasing P (0.01 at P = 2 and 0.001 at P = 3).

In the limits we have

lim
P→∞

AE(1/2,M, P ) = 0, (3.17)

lim
M→∞

AE(1/2,M, P ) = 1− 4
(
1− cos

(
π
P

))
P 2

π
(
P sin

(
π
P

)
+ π
) . (3.18)

From the results of (3.10) and (3.11), we were inspired 1 to define a simple estimator

for ǫ given by

ǫ̂ =
α2

α1 + α2

. (3.19)

1Note that similar estimators are used in the literature for frequency interpolation [154, 155]. How-
ever, they have been derived in a completely different context and it was not expected that such
techniques are applicable to a spectrum recovered by ℓ1-minimization.
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Figure 3.4: Worst-case approximation error AE(1/2,M, P ) vs. M and P .

Note that in the absence of noise we have from (3.13) and (3.14)

lim
P→∞

ǫ̂ = ǫ. (3.20)

To use such scheme in practice, we solve (3.3) to get the coefficients at the neighboring

grid points that are close to the α1 and α2 we got from the LS fit. This means that we

take the estimated amplitudes after solving (3.3) and use them directly in (3.19). If we

choose another sparse recovery scheme (e.g., OMP), then we have to compute the LS

fit manually before being able to apply the estimator.

3.3.2 Multiple Sources

So far, we have discussed a single source only. When multiple sources are present, their

mutual influence depends on the correlation between the array steering vectors. As long

as the distance between the sources is ≫ P grid points, they are almost orthogonal and

hence the mutual influence is very low. In this case, they can be treated independently

and the estimator (3.19) can be applied separately. This is exemplified in Figure 3.5
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Figure 3.5: Recovered spectrum for two far sources (M = 8, P = 4, ǫ1 = ǫ2 = 0.3).

which depicts such a case (M = 8, P = 4, µ1 = 6.3∆, µ2 = 15.3∆).

This strategy fails for any pair of sources that has a distance which is close to (or

even below) P grid points. Note that it has been shown that the CS-based recovery

of the correct support can only be guaranteed when the sources have a spacing that is

≥ P grid points [122]2. Let us assume that the support has been estimated correctly,

i.e., for two sources located at µk = (Lk − 1 + ǫk) · ∆, k = 1, 2 we have found the left

neighboring grid points L1 and L2. Then, the best two-term approximation for one

source shown in (3.5) can be extended to the joint estimation of the grid offsets for two

sources by considering the four neighboring grid points L1, L1+1, L2, and L2+1. These

provide four coefficients α = [α1, α2, α3, α4]
T ∈ C

4×1 which depend on both offsets ǫ1

and ǫ2. Although we have not found a closed-form solution like (3.19), we propose a

simple numerical procedure to estimate ǫ1 and ǫ2 from α.

The noiseless DOA estimation problem in case of two sources can be written as

y =
[

a
(

(L1 + ǫ1) ·∆
)

a
(

(L2 + ǫ2) ·∆
)]

·




s1

s2



 = Ã · s. (3.21)

A four-term approximation using the neighboring on-grid points L1, L1 + 1, L2, and

2In fact, a spacing of P grid points corresponds to a distance in spatial frequency of 2π/M radians,
which is referred to as the “Rayleigh resolution limit” [19].
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L2 + 1 can be written as

y ≈
[

a
(

L1 ·∆
)

a
(

(L1 + 1) ·∆
)

a
(

L2 ·∆
)

a
(

(L2 + 1
)

·∆)
]

·











α1

α2

α3

α4











= A(S) ·α.

(3.22)

Solving for α that minimizes the approximation error, a least-square solution is given

as

αLS(ǫ1, ǫ2, s1, s2) = A
(S)+ · Ã · s =

(

A(S)H ·A(S)
)−1

·A(S)H · Ã · s, (3.23)

where

(

A(S)H ·A(S)
)−1

=











Γ(0) Γ(1) Γ(d) Γ(d+ 1)

Γ(−1) Γ(0) Γ(d− 1) Γ(d)

Γ(−d) Γ(−d+ 1) Γ(0) Γ(1)

Γ(−d− 1) Γ(−d) Γ(−1) Γ(0)











−1

, (3.24)

A(S)H · Ã =











Γ(ǫ1) Γ(d+ ǫ2)

Γ(ǫ1 − 1) Γ(d− 1 + ǫ2)

Γ(−d+ ǫ1) Γ(ǫ2)

Γ(−d− 1 + ǫ1) Γ(ǫ2 − 1)











, (3.25)

with Γ(x) =
sin(π·x

P
)

sin( π·x
M·P

)
· e·π·xM−1

M·P and d = L2 − L1.

This means that

αLS =











Γ(0) Γ(1) Γ(d) Γ(d+ 1)

Γ(−1) Γ(0) Γ(d− 1) Γ(d)

Γ(−d) Γ(−d+ 1) Γ(0) Γ(1)

Γ(−d− 1) Γ(−d) Γ(−1) Γ(0)











−1

·











Γ(ǫ1) Γ(d+ ǫ2)

Γ(ǫ1 − 1) Γ(d− 1 + ǫ2)

Γ(−d+ ǫ1) Γ(ǫ2)

Γ(−d − 1 + ǫ1) Γ(ǫ2 − 1)











·




s1

s2



 .

(3.26)
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Recalling D(x) =
sin(π·x

P
)

sin( π·x
M·P

)
and using it to simplify (3.26)

αLS = ΦH ·D−1
0 ·D1(ǫ1, ǫ2) ·




eǫ1π

M−1
M·P · s1

e(ǫ2+d)πM−1
M·P · s2



 . (3.27)

To this end, let d(x) = [D(x), D(x − 1), D(x − d), D(x − d − 1)]T ∈ R4×1, D0 =

[d(0),d(1),d(d),d(d+1)] ∈ R4×4, andD1 = [d(ǫ1),d(ǫ2+d)] ∈ R4×2, where d = L2−L1.

Moreover, we define ᾱ = D0·Φ·α, whereΦ = diag
{[

1 eπ
M−1
M·P eπd

M−1
M·P eπ(d+1)M−1

M·P

]}

.

Then it can be shown that in the absence of noise, ᾱ is a linear combination of d(ǫ1)

and d(ǫ2 + d). Therefore, we can obtain ǫ1 and ǫ2 by minimizing the cost function

‖α̂−αLS‖22 =

∥
∥
∥
∥
∥
∥

α̂−ΦH ·D−1
0 ·D1(ǫ1, ǫ2) ·




eǫ1π

M−1
M·P · s1

e(ǫ2+d)πM−1
M·P · s2





∥
∥
∥
∥
∥
∥

2

2

, (3.28)

=

∥
∥
∥
∥
∥
∥

ΦH ·D−1
0 ·



D0 ·Φ · α̂−D1(ǫ1, ǫ2) ·




eǫ1π

M−1
M·P · s1

e(ǫ2+d)πM−1
M·P · s2









∥
∥
∥
∥
∥
∥

2

2

. (3.29)

This can be simplified to

J(ǫ1, ǫ2) =
∥
∥ᾱ−D1 ·D+

1 · ᾱ
∥
∥2

2
, (3.30)

i.e., tuning ǫ1, ǫ2 such that the overlap of ᾱ with the column space of D1 is maximized.

For more than two sources, the extension is straightforward. From a first CS-based

recovery with N grid points, we obtain an initial coarse estimate of the sources’ locations.

Based on it we identify clusters of sources that are closely spaced where the different

clusters are sufficiently far apart so that they can be treated independently. For each

cluster, we apply a joint estimation of the grid offsets using the single-source strategy

shown in (3.19), the two-source strategy from (3.30), or an appropriately extended K-

source strategy, depending on the number of sources per cluster.

3.4 Polarimetric Extension

The actual polarimetric model of DOA estimation takes into account the sensitivity

of the receiving antenna array to the polarization state of the incoming wave, i.e., the

relative strength and the phase offset between the vertical and horizontal electromagnetic

wave components. Nevertheless, in the DOA estimation literature, it is still very common
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to consider a non-polarimetric model since this simplifies the mathematical model and

the estimation problem. However, it ignores the physics of practical antennas which are

always to some degree sensitive to both polarizations. In fact, it has been shown that

ignoring the polarization can lead to entirely useless estimation results [156]. Therefore,

a full polarimetric data model consisting of the two radiation patterns should always be

used [26]. Almost all CS based DOA estimation techniques consider a non-polarimetric

model. An exception is given by [157]. However, [157] is specific to vector-sensor arrays

and the authors assume on-grid sources only and do not consider the off-grid problem

which makes it unrealistic. In this section, we extend our CS based DOA estimation

model to its full polarimetric description for arbitrary antenna arrays. For efficient

storage and fast interpolation of arbitrary array manifolds, we leverage the Effective

Aperture Distribution Function (EADF) [158]. We show that our CS based model can

estimate both the DOA and the polarization state of each individual path and that we

achieve an accuracy close to the Cramér-Rao Bound.

3.4.1 Polarimetric CS based DOA Estimation

Consider K narrow-band planar waves impinging on an array of M antennas. At the

array side, the observations are given by

y(t) =

K∑

k=1

[

aV(θk) aH(θk)
]

· pk · sk(t) + n(t),

=
K∑

k=1

A(θk) · pk · sk(t) + n(t), (3.31)

where A(θk) =
[

aV(θk) aH(θk)
]

∈ CM×2 is the polarimetric array manifold as a func-

tion of the azimuth angle θ, consisting of the array manifold for vertical and horizontal

excitation aV(θ) and aH(θ), respectively. Moreover, θk and sk(t) denote the direction

of arrival angle and the amplitude for the k-th source, and pk = [pk,1, pk,2]
T ∈ C2×1 is

the Jones vector [159], describing the state of the polarization. Finally, n(t) represents

the additive white Gaussian noise (AWGN) contaminating the observations.

The CS based DOA estimation model can be extended to the polarimetric model

using the same model of (3.2)

y(t) = A · s(t) + n, (3.32)
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whereA =
[

A(θ
(G)
1 ) A(θ

(G)
2 ) . . . A(θ

(G)
N )
]

∈ CM×(2N) contains the polarimetric array

manifold A(θ) sampled at a pre-defined N -point sampling grid θ
(G)
n , n = 1, 2, . . . , N .

Again we consider uniform sampling such that θ
(G)
n = (n− 1) ·∆, where ∆ = 2π

N
is the

width of the grid. Moreover, s ∈ C
2N×1 is a block-sparse vector: it contains the vectors

pk · sk(t) at the indices 2n− 1 and 2n if θk = θ
(G)
n , i.e., the k-th source falls exactly onto

the n-th grid point. Therefore, if all sources are “on-grid”, s has up to 2K non-zero

entries corresponding to the K impinging wavefronts and zeros elsewhere.

3.4.2 Polarimetric CS based DOA Estimation on the Grid

If all sources are exactly on the grid, the model in (3.32) is fulfilled exactly. Therefore, we

can use an arbitrary sparse recovery algorithm, e.g., the Basis Pursuit (BP) method [97]

or the Orthogonal Matching Pursuit (OMP) method [106] to find the estimated sparse

vector ŝ from the observations y. Note that the odd entries of s correspond to the

vertical polarization state and the even entries of s to the horizontal polarization state,

respectively. Since the polarization is unknown, we propose to compute a reduced-size

vector s̃ ∈ RN , where the n-th entry of s̃ is given by s̃n = |ŝ2n−1|2 + |ŝ2n|2. Under ideal
conditions, s̃ is K-sparse and its K non-zeros correspond to the DOAs θk.

Not only is our signal sparse in nature, but also it exhibits a structure in its sparsity.

From (2), the signal s(t) has 2 successive non zero entries at each direction of arrival θk.

Such signals are referred to as block sparse signals [160]. There exist sparse recovery

algorithms that take such a block-sparse structure into account to achieve a superior

recovery performance. For instance, for ℓ1-type algorithms like BP, a structured-sparsity

extension called ”Group BP” was proposed in [161]. Moreover, for greedy algorithms

like the OMP, a ”Block OMP” (BOMP) algorithm is introduced in [162]. We compare

the performance of ℓ1 and greedy recovery algorithms in the numerical results shown in

Section 3.5.

3.4.3 Polarimetric CS based DOA Estimation off the Grid

As mentioned earlier throughout this chapter, the assumption that all DOAs are on the

predefined sampling grid is not realistic. A more realistic model for an off-grid source

as described in Section 3.3 can be written as

θk = θ
(G)
Lk

+ ǫk · (θ(G)
Lk+1

− θ
(G)
Lk

), (3.33)
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where Lk ∈ Z+ is the index of the “left” neighboring grid point and ǫk ∈ [0, 1) models

the grid offset. For the special case of the N−point uniformly sampling grid, (3.33)

simplifies to

θk = (Lk − 1 + ǫk) ·∆. (3.34)

Alternatively, we can define the off-grid model via

θk = (Ck + ǭk) ·∆, (3.35)

where Ck ∈ Z+ is the closest grid point for the k−th source and ǭk ∈ [−0.5, 0.5).

As mentioned earlier, CS-based recovery algorithms aim at concentrating the energy

in ŝ at as few coefficients as possible. It is therefore reasonable to assume that most

of the energy will be found in the two adjacent grid points Lk and Lk+1 for the k-th

source. In Section 3.3.1, we have computed the best representation of one off-grid source

in terms of the closest two grid points explicitly and exploited the resulting amplitudes

to obtain a simple and yet efficient estimator for the grid offset given by

ǫ̂k =
αk

αk + αk+1
, (3.36)

where αk and αk+1 are the coefficients of the recovered amplitude vector belonging to

the grid points Lk and Lk+1.

For the polarimetric model, we could apply (3.36) to s̃ defined in Section 3.4.2.

However, since this estimator was derived assuming a uniform linear array composed

of isotropic elements, it is expected that it does not work well when the array is more

irregular. Also, the OMP spectrum does not return the two neighboring coefficients but

rather one coefficient which is the nearest on the grid.

We therefore propose an alternative strategy to find ǭk from equation (3.35) similar

to the one proposed in Section 3.3.2 in case of multiple sources. First, we obtain an

estimate for the closest grid point Ĉ, e.g., as the index of the largest element in s̃. We

then choose a set S = {S1, · · · , SNS
} which consists of NS ≥ 2 indices in the vicinity of

Ĉ, e.g., S = {Ĉ − 1, Ĉ, Ĉ + 1} for NS = 3. Next, we find a representation of y in the

subspace spanned by the dictionary atoms in S and compare it to the representation of

a wavefront from the azimuth angle (Ĉ + ǭ) ·∆ in the same subspace. The grid offset ǭ

which provides the best match is chosen as the final estimate.

More precisely, let U (S) ∈ CM×2NS be an orthonormal basis for the subspace spanned
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by the dictionary atoms in S, i.e., U (S) = A(S) ·
(

A(S)H ·A(S)
)− 1

2
.

A(S) = [A(S1 ·∆), · · · ,A(SNS
·∆)] ∈ C

M×2NS . (3.37)

Then, a representation of y in the subspace spanned by the dictionary atoms in S
is given by α = U (S)H ·y ∈ C2NS×1. A wavefront with the azimuth angle θ = (C + ǭ ·∆,

the polarization state p and the amplitude s is expanded in U (S) via

α̂(ǭ) = U (S)H ·A((C + ǭ) ·∆) · p · s =D(ǭ) · p · s, (3.38)

where D(ǭ) = U (S)H ·A((C + ǭ) ·∆) ∈ C2NS×2.

To compare α̂(ǭ) with α, we need to eliminate the unknown polarization state p and

amplitude s. To this end, note that α̂(ǭ) is a linear combination of the columns of the

matrix D(ǭ). Therefore, we can find ǭ by maximizing the overlap between α and the

column space of D(ǭ), which eliminates the unknown polarization state and amplitude.

We therefore propose the following cost function for finding the grid offset

ˆ̄ǫ = argmin J1(ǭ),

where J1(ǭ) = ‖α−D(ǭ) ·D(ǭ)+ · α‖22. (3.39)

Multiple Sources

For deriving (3.39), we have assumed that there is a single source only. In the presence

of multiple sources, the search strategy depends on their angular distance. Similar to

Section 3.3.2, if the sources are sufficiently far apart (i.e., more than the spatial band-

width of the array), the estimator (3.39) can be applied to each source independently.

If they are closer, then we should switch to a joint estimation strategy. For instance,

for two sources located at θ1 = (C1 + ǭ1) ·∆ and θ2 = (C2 + ǭ2) · ∆ we form the set S
to contain NS ≥ 3 indices in the vicinity of the estimated Ĉ1 and Ĉ2. As in the single

source case, let U (S) ∈ C
M×2NS be an orthonormal basis for the space spanned by the

dictionary atoms contained in S. Then the cost function (3.39) becomes

ǫ1, ǫ2 = argmin ‖α̃−D(ǫ1, ǫ2) ·D(ǫ1, ǫ2)
+ · α̃‖22, (3.40)

where α̃ = U (S)H · y ∈ C2NS×1 and D(ǫ1, ǫ2) ∈ C2NS×4 is given by

D(ǫ1, ǫ2) = U
(S)H · [A((Ĉ1 + ǭ1) ·∆),A((Ĉ1 + ǭ1) ·∆)].
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For more than two sources, the extension is straightforward (similar to Section 3.3.2).

From a first CS-based recovery with N grid points, we obtain an initial coarse estimate

of the sources’ locations. Based on it we identify clusters of sources that are closely

spaced where the different clusters are sufficiently far apart so that they can be treated

independently. For each cluster, we apply a joint estimation of the grid offsets using

the single source strategy shown in (3.39), the two-source strategy from (3.40), or an

appropriately extended K-source strategy, depending on the number of sources per

cluster. Note that for the joint estimation of K sources in one cluster, we need a set S
with at least NS ≥ K + 1 indices.

3.4.4 The Cost Function and its Implementation

To solve the cost function presented throughout the chapter (e.g., (3.39)) we resort to

iterative methods, such as gradient-descent algorithms. According to our experience,

the cost function is well-behaved around its minimum, i.e., it is a smooth and locally

convex surface.

A typical realization of the cost function J1(ǭ) is shown in Figure 3.6. We observe

that it is a smooth and convex function, which is comparably simple to minimize, e.g.,

via a gradient descent algorithm. In fact, we have observed that it can often be very

well approximated by a quadratic function, which then permits a closed-form solution

for finding the minimum. For such a solution, it is already sufficient to sample three

points, i.e., the cost function J1(ǭ) needs to be evaluated only three times.

Depending on the type of solver that is used, it has to be evaluated a number of

times, where the largest fraction of the computational complexity is spent in computing

D(ǫ1, ǫ2). We therefore discuss now how to obtain this matrix efficiently and how many

multiplications this step requires.

Computing the matrix D(ǫ1, ǫ2) requires evaluating the array manifold A(θ) at the

points (Ĉk + ǭk) · ∆ for k = 1, 2. In practice, the array manifold is usually obtained

by performing measurements in an anechoic chamber. As a result, we have the array

manifold at the sampling points that are chosen for the measurement. To find A(θ) for

an arbitrary angle θ, we need to perform interpolation. It has been shown in [163] that

the Effective Aperture Distribution Function (EADF) provides an accurate and efficient

description of the polarimetric beam pattern and allows for a computationally efficient

interpolation based on the DFT. In essence, the polarimetric array response A(θ) is
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Figure 3.6: A typical realization of the cost function J1(ǭ)

computed as

A(θ) = [GV · d(θ),GH · d(θ) ∈ C
M×2], (3.41)

where GV ∈ CM×NC and GH ∈ CM×NC contain the NC coefficients for the interpo-

lation of the vertical and the horizontal beam patterns of each port (which are ob-

tained from the measurement of the antenna array) and d(θ) = exp−jθµT ∈ CNC×1 with

µ =
[
−NC−1

2
, · · · , NC−1

2

]
represents the interpolating DFT vector.

Based on (3.41), we find D(ǫ1, ǫ2) via

D(ǫ1, ǫ2) = [G̃V · d
(

(Ĉ1 + ǭ1) ·∆
)

, G̃H · d
(

(Ĉ1 + ǭ1) ·∆
)

,

G̃V · d
(

(Ĉ2 + ǭ2) ·∆
)

, G̃H · d
(

(Ĉ2 + ǭ2) ·∆
)

],
(3.42)

where G̃V = U (S)H · GV ∈ C2NS×NC and G̃H = U (S)H · GH ∈ C2NS×NC . Based on

(3.42), the matrix D(ǫ1, ǫ2) can be computed via 8NS × NC complex multiplications3.

3The computational complexity required for this step can be additionally reduced by exploiting the
symmetry of the complex exponentials as in [163]
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The subsequent calculations that are necessary to compute the cost function (3.39) are

significantly less complex since they are independent of NC (and M) and only depend

on the (much smaller) NS. Overall this demonstrates that our proposed cost function

can be calculated very efficiently based on the EADF which leads to an estimator with

an overall low computational complexity.

3.5 Numerical Results

3.5.1 CS based DOA Estimation off the Grid

In this section, we evaluate our algorithm for CS-based DOA estimation off the grid

without considering the polarization. We consider M = 8 sensors and a single snapshot

t. The noise samples are drawn from a zero mean circularly symmetric complex Gaussian

distribution with variance PN. The symbols sk are generated according to sk = eϕk ,

where ϕk are i.i.d. uniformly distributed random variables in [0, 2π]. We depict the mean

square estimation error of the spatial frequencies vs. the SNR = 1/PN.

We compare the following strategies: “Nearest”, “2-term single” and “2-term joint”

refer to choosing the nearest grid point, applying (3.19), and solving (3.30), respectively,

where the support has been estimated using the BP algorithm [97]. For reference, we

depict the performance of the OGSBI algorithm [121] and the ℓ1-SVD [29] using three

refinement steps. Note that the computational complexity of both reference schemes is

higher than our proposed solutions. We also show the deterministic Cramér-Rao Bound

(CRB).

Figure 3.7 shows the performance for a single source at 7.1·∆ and P = 6. We observe

that the estimator (3.19) successfully finds the grid offset and the resulting estimator

achieves the CRB.

In the case of two sources, Figure 3.8 shows the MSE vs. SNR for a case where the

spatial separation µ2 − µ1 = 2 ·P ·∆, i.e., the sources are relatively far from each other.

In this case, applying the estimator (3.19) separately provides accurate estimates with

a small bias becoming visible only at very high SNRs. Moreover, the solution of (3.30)

achieves the CRB.

Figure 3.9 depicts the MSE vs. the spatial separation ∆µ where the SNR is fixed

to 30 dB and we have µ1 = 0.75 ·∆, µ2 = µ1 +∆µ. We observe that the single-source

approximation scheme works reasonably well until a separation of P · ∆ which is the

lower limit derived in [122]. Below it, the mutual influence becomes too strong. On the

other hand, the joint estimator still works very well for distances below this limit and

outperforms the more complex ℓ1-SVD and the OGSBI algorithm.
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Figure 3.7: MSE vs. SNR for P = 6, one source at µ = 7.1 ·∆
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Figure 3.8: MSE vs. SNR for P = 8, two sources at µ1 = 12.4 ·∆, µ2 = 28.4 ·∆, i.e., µ2 − µ1 =
2 · P ·∆
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Figure 3.9: MSE vs. ∆µ for P = 4, µ1 = 0.75 ·∆, µ2 = µ1 +∆µ

3.5.2 Polarimetric CS DOA Estimation off the Grid

We now turn our attention to assess the performance of the CS-based polarimetric

DOA estimation approach. We employ an 8-element (16-port) Polarimetric Uniform

Linear Patch Array (PULPA) and a 48-element (96- port) Stacked Polarimetric Uniform

Circular Patch Array (SPUCPA) which consists of four rings of 12-element uniform

circular arrays. The polarimetric array manifold A(θ) was measured in an anechoic

chamber for both antenna arrays by our Electronic Measurement Lab in Ilmenau. Based

on the measured manifolds, we create synthetical measurement data according to (3.31),

where θk, pk and sk are chosen manually and the noise samples n(t) are drawn from

an i.i.d. circularly symmetric complex Gaussian random process with zero mean and

variance σ2
n.

Impact of the Sparse Recovery Algorithm

We first study the impact of the sparse recovery scheme used in the first step of our

proposed estimator. To this end, we compare four different approaches: the ℓ1-type

BP algorithm [97], its group sparsity extension ”Group BP” (GBP) [161], the greedy

OMP algorithm [106] and its structured sparsity version ”Block OMP” (BOMP) [162].
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Figure 3.10: MSE vs. the SNR for two sources

For reference, we also show the MSE resulting from an estimator that selects the DOA

corresponding to the grid point with the largest amplitude (”Nearest”) as well as the

single-source closed-form estimator shown in (3.36) (”2-term CF”) and the Deterministic

Cramér-Rao Bound (CRB).

We start by using the PULPA and consider two wavefronts at θ1 = 3.94◦ and θ2 =

24.19◦, both diagonally polarized (p1 = p2 = [1, 1]T/
√
2). The amplitudes are chosen

according to s1 = 1 and s2 = j. Moreover, we set P = 4, i.e., we discretize the manifold

using N = 64 grid points. Therefore, the grid offsets are given by ǫ1 = 0.3 and ǫ2 = 0.7.

The MSE vs. the Signal to Noise Ratio4(SNR = σ−2
n ) is shown in Figure 3.10.

The results show that all versions of our proposed estimator achieve the CRB in the

high SNR regime. They also demonstrate an enhanced behavior of the BOMP compared

to OMP for low SNRs. The difference between BP and GBP is not very significant.

We observe that the BOMP algorithm performs almost identically well as the ℓ1-type

algorithms. Taking into account that the computational complexity of BOMP is very

low, we use it for all the subsequent simulation results. We additionally observe that,

4This is the SNR before the antenna array, i.e., it does not include the gain of the antenna elements.
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Figure 3.11: MSE vs. the polarization angle α for one source

while the two-term CF strategy still achieves a significant improvement over the initial

grid-based estimate (”Nearest”), it does not provide an efficient estimate. Therefore, we

do not consider it in the subsequent simulations.

Performance of the Proposed Estimator

For the following simulation results, the set of curves labeled ”Proposed” refers to the

solution of the cost functions (3.39) and (3.42) combined with the BOMP for the sparse

recovery step. We choose NS = K + 1. For the first set of simulation results we

use the 8-element PULPA and set P = 4. For the scenario shown in Figure 3.11, we

consider one wavefront at θ1 = 3.94◦ with an amplitude of s1 = 1. We fix the noise

variance to σ2
n = 0.1. To demonstrate that our estimator is capable of handling arbitrary

polarization states, we choose the Jones vector according to p1 = [cos(α), sin(α)]T and

vary α from 0 to π/2. Figure 3.11 shows the mean square estimation error (MSE) vs. the

polarization angle α. We observe that the ”Proposed” estimator significantly improves

over the initial grid (”Nearest”) and attains the CRB for all polarization states.

To investigate the effect of the phase offset between two coherent wavefronts, in the

next experiment we choose the amplitudes of K = 2 sources as s1 = 1 and s2 = ejφ
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Figure 3.12: MSE vs. the polarization angle α for two sources

and vary φ between 0 and π. The azimuth angles are fixed to θ1 = 3.94◦ and θ2 =

7.88◦. Figure 3.12 shows that our proposed algorithm still follows the CRB. Moreover,

it demonstrates that the phase offset affects the performance, since it leads to either

constructive or destructive interference for coherent sources.

To demonstrate that our proposed algorithm finds the grid offset for any value of ǫ,

we consider a single-source case with amplitude one, diagonal polarization, and a fixed

SNR of 10 dB and vary the grid offset ǫ by choosing θ = ǫ · ∆ for ǫ from 0.1 to 0.9.

Figure 3.13 shows that our proposed algorithm always achieves the CRB independent

of the grid offset.

Another important aspect is the resolution capability of our proposed algorithm

which we investigate by considering two closely spaced sources. We fix one source at

θ1 = 3.94◦ and vary the distance of the second source by choosing θ2 = θ1 +∆θ for ∆θ

between 1 deg to 30◦. Note that the spatial bandwidth of the array is approximately

equal to 30◦. Figure 3.14 shows that our algorithm follows the CRB even for very close

sources.

We now switch to the 48-element (96-port) Stacked Polarimetric Uniform Circular

Patch Array (SPUCPA) and set P = 2, i.e., we discretize the manifold using N = 192

grid points. We consider a scenario with two wavefronts at θ1 = 1.087◦ and θ2 = 6.672◦,
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Figure 3.13: MSE vs. the grid offset ǫ for one source
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Figure 3.14: MSE vs. the angular separation for two sources
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Figure 3.15: MSE vs. the SNR for two sources for the SPUCPA

both diagonally polarized (p1 = p2 = [1, 1]T/
√
2). The amplitudes are chosen according

to s1 = 1 and s2 = j. Again, the grid offsets are given by ǫ1 = 0.3 and ǫ2 = 0.7. The

MSE vs. the SNR = σ−2
n is shown in Figure 3.15. Our proposed algorithm attains the

CRB in the high SNR regime.

3.6 Summary

In this chapter, we address the problem of CS-based DOA estimation for off-grid sources.

We study the spectrum in the case of off-grid sources qualitatively and find that most of

the energy of the off-grid source after reconstruction is concentrated in the two neighbor-

ing grid points. Based on this observation, we derive the best two-term approximation

coefficients explicitly and show that the approximation error is very small for N > M .

Moreover, based on the asymptotically linear behavior of the coefficients with the

grid offset, we propose a very simple scheme to estimate the grid offset based on the

observed coefficients. For multiple sources, we show that this simple scheme still works

well when they are sufficiently spaced. For closely spaced sources, we propose a numerical

procedure for the joint estimation of their offsets from the recovered spectra at their

neighboring grid points. Numerical simulations demonstrate the effectiveness of the

proposed schemes.
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We show that the CS-based formulation of the DOA estimation problem can be ex-

tended to the polarimetric model, which gives rise to an amplitude vector that possesses

a structured sparsity (with non-zero blocks of size ×1 for each source). We discuss the

off-grid problem in the polarimetric setting and propose an estimator for the grid offset

of one source (or an isolated source) as well as a joint estimator for the grid offsets of

two closely-spaced sources. We show that its cost function can be efficiently calculated

based on the EADF, leading to an overall low computational complexity. Numerical

results demonstrate that the estimators can recover the DOA regardless of the polar-

ization state of the incoming wave and is applicable to arbitrary arrays. Moreover, it

is capable of resolving even very closely-spaced sources and it achieves the Cramér-Rao

Bound.
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Chapter 4

Compressive Antenna Arrays for

Direction of Arrival Estimation

This chapter deals with the analysis and design of compressive arrays for DOA estima-

tion. Section 4.1 motivates the concept of compressive array and reviews the state of the

art. In Section 4.2 we present a basic receiver architecture for compressive arrays and

introduce a generic system model that includes different options for the hardware imple-

mentation. Based on the generic system model, Section 4.3 deals with the design of the

combining matrix, with the goal to obtain an array that is suitable for DOA estimation.

In Section 4.4, we extend the design approach and propose a design methodology that

focuses the array towards a specific area of interest. The optimized design approaches

proposed are all in 1D DOA estimation (i.e., azimuth). Section 4.5 provides an analysis

of the achievable performance of the proposed compressive arrays for DOA estimation

based on two estimation quality measures: the achievable estimation accuracy, and the

resolution capabilities. Section 4.6 evaluates the proposed approaches via numerical

simulations followed by a summary in Section 4.7.

4.1 Motivation

In general, DOA estimation addresses the problem of locating sources which are radi-

ating energy that is received by an array of sensors with known spatial positions [28].

A major goal in research on DOA estimation is to develop approaches that allow min-

imizing hardware complexity in terms of receiver costs and power consumption while

providing a desired level of estimation accuracy and robustness in the presence of mul-

tiple sources and/or multiple paths. Furthermore, the developed methods shall be ap-

propriate for realistic antenna arrays whose characteristics often significantly vary from
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commonly considered ideal models [156].

In the last few decades, research on narrow-band DOA estimation using array pro-

cessing has largely focused on uniform arrays (e.g., linear and circular) [28] for which

many efficient parameter estimation algorithms have been developed. Some well-known

examples are ESPRIT [164], MUSIC [137] and Maximum Likelihood (ML)-based meth-

ods [25, 165]. Note that ML-based methods are particularly suitable for realistic, non-

ideal antenna arrays since they can easily account for the full set of parameters of

the antenna array (e.g., antenna polarization, non-ideal antennas and array geometries,

etc.). However, to perform well, the algorithms require to fulfill certain conditions on

the sampling of the wavefront of the incident waves in the spatial domain.

Namely, the distance between adjacent sensors should be less than or equal to half

a wavelength of the impinging planar wavefronts, otherwise it leads to grating lobes

(sidelobes) in the spatial correlation function which correspond to near ambiguities in

the array manifold. At the same time, to achieve DOA estimation with a high resolution,

the receiving arrays should have a relatively large aperture [28]. This implies that arrays

with a large number of antennas are needed to obtain a high resolution, which is not

always feasible.

This limitation has triggered the development of arrays with inter-element spacing

larger than half the impinging wave’s wavelength combined with specific constraints to

control the ambiguity problem in DOA estimation. Such arrays are usually called sparse

arrays. In [166], it was proposed to constitute a non-uniform sparse array with elements

spaced at random positions. However, using such random arrays will often result in

unpredictable behavior of the sidelobes in the array’s spatial correlation function. As a

result, it is necessary to optimize the positions of the antenna elements in order to achieve

a desired performance. An early approach towards that goal was the Minimum Redun-

dancy Linear Array (MRLA) [167], where it is proposed to place the antenna elements

such that the number of pairs of antennas which have the same spatial correlation prop-

erties are as small as possible. However, it is very difficult to construct an MRLA when

the number of elements is relatively large [168]. Some non-linear optimization methods

like genetic algorithms [169] and simulated annealing [170] have been regularly used to

find optimum configurations for these sparse arrays. Moreover, it is shown in [171] that

the optimization of the array aperture with respect to the Cramér-Rao Bound leads to

V-shaped arrays. Recently, it was shown that with co-prime arrays [172], and nested

arrays [173] it is possible to resolve O(N2) of uncorrelated sources with O(N) sensors,

when observed over a large window in time.

Recently, compressive sensing (CS) has been widely suggested for applications that
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exhibit sparsity in time, frequency or space to reduce the sampling efforts. The usage

of sparse recovery in narrow-band DOA estimation has been considered for applications

like localization of transmitting sources [174], channel modeling [153], tracking and

surveillance in radar [40], and many others. As mentioned earlier in the previous chapter,

if the electromagnetic field is modeled as a superposition of a few plane waves, the DOA

estimation problem can be expressed as a sparse recovery problem. The main focus

there was to use the sparse recovery algorithms that became popular in the CS field

for the DOA estimation problem as an alternative to existing parameter estimation

algorithms [151, 175–177].

Compressed sensing has also been suggested to be applied in the spatial domain

(e.g., array processing and radar) with the main goal to reduce the complexity of the

measurement process by using fewer RF chains and storing less measured data without

the loss of any significant information. Hence, the idea of sparse random arrays with

increased aperture size has been revisited recently and proposed to perform spatial

compressed sensing [178–181].

An alternative approach that attempts to apply CS to the acquisition of the RF

signals that are used for DOA estimation has recently been proposed in [45, 150]. In

particular, the CS paradigm can be applied in the spatial domain by employing N

antenna elements that are combined using an analog combining network to obtain a

smaller number ofM < N receiver channels. Since onlyM channels need to be sampled

and digitized, the hardware complexity1 remains comparably low (e.g., consuming less

energy and storing less data) while a larger aperture is covered which yields a better

selectivity than a traditional, Nyquist (λ/2) spaced M-channel antenna array.

Note that equipping every antenna with an RF chain may imply a prohibitive hard-

ware complexity (in terms of cost as well as power consumption) in certain applications

where reconfigurable arrays with a high gain call for hundreds [182] or even several

thousands of antenna elements [183]. Moreover, using a tunable analog combining net-

work, CS-arrays allow to reconfigure the array on the fly without any change in receiver

hardware. This advantage in flexibility can be crucial in many applications. A recent

example is millimeter wave radio, where one of the major challenges is to solve the gain-

resolution dilemma. In order to account for the high pass loss, a high gain is needed

while at the same time the full angular domain needs to be scanned [184]. A similar

1The hardware complexity (as well as the power consumption) depends on the frequency range, sam-
pling rate/bandwidth, array application, exact realization of the antenna array and its elements, real-
ization of the phase-shifter network, used RF amplifiers and ADC/DAC components, TX/RX switches,
filters, etc. As an exact quantization of the hardware cost savings depends on so many factors and our
approach is applicable to a wide range of scenarios, we avoid to give concrete numbers in this work.
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problem occurs during the target acquisition and high resolution target tracking phases

in radar [185]. Because of its flexibility, the compressive hardware architecture is partic-

ularly suitable for these applications (see for example [186] for more precise details on

the practical implementation of such architectures).

In baseband, the operation of the combining network can be described by complex

weights applied to the antenna outputs with a subsequent combination of the received

signals from the antennas. The combining (measurement) matrix that contains the

complex weights and the antenna array form an effective “compressive” array whose

properties define the DOA estimation performance.

In the field of “CS-DOA” it is usually advocated to draw the coefficients of the

measurement matrix from a random distribution (e.g., Gaussian, Bernoulli) [45, 150].

Random matrices have certain guarantees for signal recovery in the noise-free case and

provide some stability guarantees in the noisy case [66,67,187]. However, since no crite-

rion is used to design them, it is likely that they provide sub-optimal performance [4].

In this chapter, we discuss the design and the performance of compressive arrays

employing linear combinations in the analog domain by means of a network of power

splitters, phase shifters, and power combiners. We present a basic receiver architecture

of such a compressive array and introduce a generic system model that includes different

options for the hardware implementation. Importantly, the model reflects the implica-

tions for the noise sources.

Particularly, a well-known source of the receiver noise is the low noise amplifier

(LNA) that is usually placed at the antenna outputs to account for the power losses of

the following distribution/combining network. Depending on the frequency range, the

components of the analog combining network (power combiners, power splitters, phase

shifters) will induce additional losses which also have to be compensated by the LNAs.

To name an example, some typical commercially available phase shifters for phased

array radar applications can induce insertion losses between 5 to 10 dB depending on

the frequency range [188] while architectures based on waveguides promise a loss as low

as 3 dB [183]. This motivates the need for the signal amplification prior to the combining

network.
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Based on the generic system model we then discuss the design of the combining

matrix, with the goal to obtain an array that is suitable for DOA estimation (i.e.,

minimum variance of DoA estimates and robustness in terms of low side lobe levels or

low probability of false detections). We consider two design approaches. The first is

based on the spatial correlation function which is a low-complexity scheme that in certain

cases even admits a closed-form solution. The second is based on the minimization of the

Cramér-Rao Bound (CRB). Our numerical simulations demonstrate that both proposed

design approaches have a significant performance improvement compared to the state of

the art, namely an array with a randomly chosen combining matrix and a sparse array

with optimized sensor positions.

Furthermore, the compressive array is not only superior to the random and sparse

arrays with respect to its estimation capabilities but also in terms of its ability to alter its

weights on demand and thus facilitate signal-adaptive measurements. The comparison

between the proposed designs demonstrates a trade-off between the minimization of the

CRB and the increase in the sidelobe level. In the proposed design, the trade-off “CRB

vs. sidelobe level” can be controlled by varying the parameters during the optimization.

This provides an additional degree of freedom for the system design that is unavailable

in case of random and sparse arrays.

It is worth mentioning that similar efforts in spatial domain processing exist in the

context of beam space array processing [189–196] and hybrid beamforming [197–199].

In contrast to the element space processing, where signals derived from each element

are weighted and summed to produce the array output, the beam space processing is

a two-stage scheme. The first stage takes the array signals as an input and produces

a set of multiple outputs, which are then weighted and combined to form the array

output. These multiple outputs may be thought of as the output of multiple beams.

The weights applied to different beam outputs are finally optimized according to a

specific optimization criterion [200].

In hybrid beamforming, the main idea is to apply beamforming techniques in both,

the analog and the digital domain [201]. This technique has attracted significant research

attention in millimeter wave (mmWave) applications [202] for the next-generation indoor

and mobile wireless networks [22, 203].

While the overall goal in these areas is similar (reducing the number of digitally pro-

cessed receiver channels), the actual design criterion for the antenna is entirely different

from the one we consider in this work. We aim to obtain an array that is ideally suited

for DOA estimation in the sense that it achieves an accurate estimate (by minimizing

the CRB) while controlling the sidelobe characteristics.

61



Chapter 4 Compressive Antenna Arrays for Direction of Arrival Estimation

4.2 Compressive Arrays

Consider K narrowband plane waves impinging on an array of N antenna elements. At

the antenna output, the received (baseband) signal can be expressed as

y(t) =
K∑

k=1

a(γk) · sk(t) + n(t), (4.1)

where y(t) ∈ CN×1 is a vector of antenna outputs, n(t) ∈ CN×1 is an additive noise

vector, t indicates the continuous time, and a(γ) denotes the antenna response as a

function of the parameter vector γ with γT = [θ, ψ,pT] where θ and ψ are the azimuth

and elevation angles and p ∈ C2×1 represents the Jones vector that describes the po-

larization state of the incident plain wave at the receiver. Additionally, sk(t) in (4.1)

denotes the amplitude of the kth source, whereas γT
k = [θk, ψk,p

T
k ] is the vector con-

taining its azimuth (θk) and elevation (ψk) angles of arrival along with its Jones vector

pTk = [pk,1, pk,2]. Similar to the previous chapter, it is often useful to write (4.1) in a

matrix form as

y(t) = A · s(t) + n(t). (4.2)

Here, A = [a(γ1),a(γ2), · · · ,a(γK)] ∈ CN×K is the array steering matrix and s(t) =

[s1(t), s2(t), · · · , sK(t)]T ∈ CK×1 is a vector containing the complex amplitudes of the

K sources.

The model in (4.2) presumes a dedicated radio frequency (RF) receiver chain for

each individual antenna element including a low-noise amplifier (LNA), filters, down-

conversion, analog-to-digital (ADC) conversion, etc. For specific applications, however,

such separate RF chains for each antenna element may come at a high cost in terms of

the overall receiver complexity, the amount of data to be processed in the digital domain

(e.g., FPGA) and power consumption.

To further illustrate our point, we show an example from [186] with some realistic

design parameters for a phased antenna array for aeronautical applications at Ka-band

(Rx-direction) in Table 4.1. Considering a typical array gain of 40 to 45 dBi, the

number of required elements of the array is larger than 20,000. Considering the practical

implementation of the RF chain including the low noise amplifier and ADC associated

with each antenna element and all the baseband connections, it turns out that a fully

digital realization of the beamforming network for such an array would not be possible.

In order to reduce the hardware complexity, analog or hybrid combining/beamforming

networks like the one we investigate here are typically considered for such arrays.
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Antenna Size 0.75 m (edge size of squared phased array)

Frequency 19.7 GHz (Ka band)

Antenna Efficiency 0.7

Antenna Elements 21609 (assuming λ/2 spacing)

Element gain 2.5 dB (per radiating element, e.g., patch) (assuming λ/2 spacing)

Antenna Gain 44.3 dBi (as a function of effective area)

Table 4.1: Realistic design parameters for a phased antenna array for aeronautical applications
at Ka-band [186].

In order to reduce the number of RF channels without a loss in the array aperture, we

apply the compressive approach, where the antenna outputs are first linearly combined

in the analog domain and then passed through a lower number of RF chains to obtain

the digital baseband signals as illustrated in Figure 4.1. In this way, M RF receiver

channels (fewer than the N antenna elements) are used for signal processing in the

digital domain. Such a compressive architecture allows reconfiguring the array on the

fly without any change in the receiver hardware which can be very advantageous in

many applications.

The signal combining can be done at different stages within the receiver, e.g., on

the RF (Radio Frequency) signal or at the IF (Intermediate Frequency) stage. The

particular choice on where to place the combining network highly depends on the appli-

cation, especially the considered frequency. In any case, additional signal losses will be

introduced by the power splitters and combiners as well as the phase shifters inside the

combining network. The actual losses’ value will depend on multiple parameters includ-

ing frequency, bandwidth and adaptability of the phase shifters. However, these losses

need to be compensated by LNAs placed in each receiver chain as shown in Figure 4.1.

To this end, let Φ ∈ CM×N denote the analog combining matrix of a compressive

array which compresses the output of N antenna elements to M active RF channels.

Then, the complex (baseband) antenna output (4.2) after combining can be expressed

as

ỹ(t) = Φ (A · s(t) + v(t)) +w(t), (4.3)

where [Φ]m,n = αm,ne
ϕm,n, αm,n ∈ [0, 1], ϕm,n ∈ [0, 2π], m = 1, 2, · · ·M,n = 1, 2, · · · , N ,

whereas v(t) ∈ CN×1 and w(t) ∈ CM×1 are noise vectors with covariance matrices Rvv

and Rww that represent additive noise sources which act before and after the combining

network, respectively.
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For example, LNAs placed ahead the combining network contribute to v(t) (sig-

nal noise), whereas the ones placed behind the combining network contribute to w(t)

(measurement noise).

Figure 4.1: Compressive array hardware architecture [8]

Let Ã = Φ · A be the effective array steering matrix after combining, then (4.3)

becomes

ỹ(t) = Ã · s(t) + ñ(t), (4.4)

where

ñ(t) = Φ · v(t) +w(t) (4.5)

is the effective noise vector with covariance Rnn = ΦRvvΦ
H + Rww. Assuming that

v(t) and w(t) are white with elements that have variance σ2
1 and σ2

2, respectively, the

covariance of ñ(t) becomes Rnn = σ2
1ΦΦH + σ2

2IM . Finally, we define the input SNR as

ρ =
Ps

E {‖Rnn‖22}
=

Ps

σ2
1‖ΦΦH‖F +Mσ2

2

, (4.6)

where Ps = E {‖s(t)‖22} and ‖ · ‖F denotes the Frobenius norm.

Given (4.4), we aim to design Φ in a way that allows for robust and efficient esti-

mation of the DOAs of the K sources sk(t) from the set of measurements ỹ(t). Hence,

our main design goal includes the minimization of the number of the receiver chains

while providing a minimum variance of the DOA estimates and a reduced probability

of spurious and/or ghost path estimates (i.e., lower sidelobes in the spatial correlation

function).
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4.3 Design of the Combining Matrix

4.3.1 Generic Design Approach

Consider the receiver architecture from Figure 4.1 where the combining network is re-

alized by: (i) splitting the analog RF signal of each of the N antennas into L ≤ M

branches; (ii) applying phase shifts in each of the branches; (iii) adding the branches to

form each of theM outputs, which are then passed to theM RF chains. Mathematically,

we model this structure by a matrix Φ with elements given by

[Φ]m,n =







1√
L
· η · eϕm,n if (m,n) are connected

0 otherwise,
(4.7)

where the connections between antennas and ports are such that Φ has L nonzero

elements per column. In (4.7), the factor 1√
L

represents the power splitting of each

antenna’s signal to L branches and η ∈ (0, 1] is a scalar parameter that attributes for

the fact that each analog branch (consisting of a power splitter, a phase shifter, and

a combiner) is non-ideal and incorporates losses. A lossless combining network would

correspond to the special case η = 1.

From (4.7), the combining matrix Φ has MN elements that provide MN degrees

of freedom for its design. In the CS literature, a typical approach for choosing Φ

would be to draw ϕm,n randomly. This, however, only gives little control over the array

characteristics. Furthermore, it might result in unwanted effects as high sidelobes and

blind spots [4].

Here, we aim at a design of Φ that results in an effective array that has desired

properties depending on the application scenario, e.g., uniform sensitivity and low cross-

correlation for direction finding, adaptive spatial selectivity for parameter estimation

during beam tracking, etc. Generally, the design task can be formulated as the following

constrained optimization problem

Φopt = argmin
Φ

J(Φ) s.t. c(Φ, α, β, · · · ), (4.8)

where J(Φ) is some objective function defined by the scenario and c(Φ, α, β, · · · ) rep-

resents the set of optimization constraints. In the following, we propose two particular

formulations of (4.8) for direction finding applications: based on the spatial correlation

function (SCF) and the Cramér-Rao Lower Bound (CRB).
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For the SCF-based approach, we build our design on the spatial correlation function

defined as

ργ(γ1,γ2) = ã(γ1)
H · ã(γ2), (4.9)

where ã(γ) = Φ · a(γ) represents the effective array manifold after combining. The

main idea is to design Φ such that the spatial correlation function ργ(γ1,γ2) follows as

close as possible some pre-specified target T (γ1,γ2). By defining an appropriate target

function, we can provide the desired properties in the spatial correlation function as

discussed in the following.

We then compare the SCF based approach to another optimization approach that is

based on the specific requirements on the estimation accuracy. More specifically, it aims

at improving the accuracy of DOA estimation by designing Φ such that it minimizes the

CRB while keeping the probability of detecting a false direction at a certain (desired)

level.

4.3.2 Design Based on the SCF

For the sake of simplicity, we start by assuming that the sources are located in the

azimuthal plane of the antenna array. Furthermore, the impinging waves are co-polarized

with the antenna array which is assumed to have perfectly matched antennas. Hence,

the effective array manifold depends on the azimuth angle θ only, i.e., ã(γ1) = ã(θ1).

Under these assumptions, an ideal generic array for direction finding would satisfy

the conditions

ργ(θ1, θ2) = ã(θ1)
H · ã(θ2) =







const θ1 = θ2

0 θ1 6= θ2
. (4.10)

The first condition guarantees that the array gain is constant over all azimuth angles

and makes the array uniformly sensitive, whereas the second condition forces optimal

cross-correlation properties to tell signals from different directions apart. However, this

is an example for a generic direction finder. For particular applications, the design goal

may differ, i.e., constraining on a certain sector of angles only or allowing certain values

for the residual cross-correlation. We denote the target function as T (θ1, θ2), where

T (θ1, θ2) = const · δ(θ1 − θ2) represents the ideal generic array (4.10).

Due to the finite aperture of an N -element array, the target in (4.10) can only be

achieved approximately. This allows us to define a criterion for the optimization of Φ
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according to the cost function

e(Φ, θ1, θ2) =
∣
∣ã(θ1)

H · ã(θ2)− T (θ1, θ2)
∣
∣ (4.11)

=
∣
∣a(θ1)

H ·ΦH ·Φ · a(θ2)− T (θ1, θ2)
∣
∣ .

We can approximate the continuous variables θ1 and θ2 by considering the P -point

sampling grid θ
(G)
p , p = 1, 2, . . . , P and define the P ×P matrices E and T according to

E(i,j) = e(Φ, θ
(G)
i , θ

(G)
j ) and T(i,j) = T (θ

(G)
i , θ

(G)
j ). Note that since the array manifolds

are smooth functions, it is sufficient to choose the sampling grid slightly above Nyquist,

i.e., P = c ·N where c > 1. We typically choose c between 2 and 4 in our experiments.

After insertion into (4.11), we obtain

E =
∣
∣AH ·ΦH ·Φ ·A− T

∣
∣ . (4.12)

Based on (4.12), the quality of Φ can be assessed by a suitable norm of E. As a first

step, let us consider the Frobenius norm, i.e., we optimize Φ according to

Φopt = argmin
Φ

‖E‖2F . (4.13)

In the special case2 where A ·AH = C · IN , with C being a constant, the optimization

problem in (4.13) admits a closed-form solution as shown in the following theorem.

Theorem 1. Let S = A·T ·AH and let SM be a rank-M-truncated version of S obtained

by setting its P −M smallest eigenvalues to zero. Then the set of optimal solutions to

(4.13) is given by the set of matrices Φ that satisfy ΦHΦ = SM .

Proof. To prove the theorem, we use the fact that for a unitary matrix U and an

arbitrary square matrix X we have ‖X ·U‖F = ‖U ·X‖F = ‖X‖F . Since A satisfies

A·AH = N ·IM we can find a matrix Ā ∈ C(M−N)×N such that V
.
= 1/

√
N ·[AT, ĀT]T ∈

CN×N is a unitary matrix. Therefore, we have V ·AH =
[√

N · IM , 0M×N−M

]T

.

2This condition is, e.g., fulfilled for an ULA if the sampling grid is chosen to be uniform in the spatial
frequencies (direction cosines). Moreover, for many arrays the condition is approximately fulfilled (e.g.,
for UCAs). In this case, the closed-form solution can still be applied as a heuristic method.
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The cost function (4.13) can then be rewritten as

‖E‖2F =
∥
∥V ·E · V H

∥
∥
2

F

=

∥
∥
∥
∥
∥
∥





√
NIM

0N−M×M



ΦHΦ
[√

NIM , 0M×N−M

]

− V TV H

∥
∥
∥
∥
∥
∥

2

F

=

∥
∥
∥
∥
∥
∥




NΦH ·Φ 0M×N−M

0N−M×M 0N−M×N−M



−N ·




A

Ā



T
[

AH, ĀH

]

∥
∥
∥
∥
∥
∥

2

F

=

∥
∥
∥
∥
∥
∥

N ·




ΦH ·Φ−A · T ·AH −A · T · ĀH

−Ā · T ·AH −Ā · T · ĀH





∥
∥
∥
∥
∥
∥

2

F

= N2 ·
∥
∥ΦH ·Φ− S

∥
∥
2

F
+ const, (4.14)

using the short-hand notation S = A · T ·AH. Equation (4.14) demonstrates that the

optimization problem is equivalent to finding the best approximation of the matrix S by

the matrix ΦH ·Φ. Since Φ is an m×M matrix, the rank of the M ×M matrix ΦH ·Φ
is less than or equal to m < M . Therefore, (4.14) represents a low-rank approximation

problem. According to the Eckart-Young theorem, its optimal solution is given by

truncating the M −m smallest eigenvalues of S.

In other words, Theorem 1 states that we can find an optimal Φ by computing a

square-root factor of the best rank-M approximation of S. Moreover, the following

corollary can be found from Theorem 1:

Corollary 1. Under the conditions of Theorem 1, any matrix Φ is optimal in terms

of the “ideal” target from (4.10) if and only if the rows of Φ have equal norm and are

mutually orthogonal.

Proof. The sampled version of (4.10) is given by a scaled identity matrix, i.e., T = C ·IN .
Since A is row-orthogonal, it follows that S = A ·T ·AH = C ·N ·IM . As all eigenvalues

of S are equal to C · N , its eigenvalue decomposition can be written as S = U · (C ·
N · IM) ·UH, where U ∈ CM×M is an arbitrary unitary matrix. Truncating the M −m

“smallest” eigenvalues, we obtain Sm = C · N · Um · UH
m, where Um ∈ CM×m contains

the first m columns of U . Invoking Theorem 1, we have ΦH
optΦopt = C · N · Um · UH

m

and therefore Φopt is a scaled version of UH
m, which proves the claim.

Corollary 1 agrees with the intuition that the measurements (i.e., the rows of Φ)

should be chosen such that they are orthogonal in order to make every observation as
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informative as possible. In addition, the corollary shows that this choice also minimizes
∥
∥ΦHΦ− C · P · IM

∥
∥
F
which contains the correlations between all pairs of columns in Φ

as well as the deviation of the columns’ norms (therefore, in a sense, this choice minimizes

the “average” mutual correlation). On the other hand, this also demonstrates that

the optimization in (4.13) is not sufficiently selective since all row-orthogonal matrices

achieve the same minimum of the cost function.

The cost function (4.13) assigns equal weight to the error for all pairs of grid points

θ
(G)
1 , θ

(G)
2 , i.e., it tries to maintain the resemblance to the target spatial correlation func-

tion T in the mainlobe area with the same weight as in the certain off-diagonal regions

that contain the sidelobes. In practice, however, it is often desirable to have more con-

trol over the shape of the spatial correlation function. There are many ways additional

constraints could be incorporated in the optimization, e.g., maximum constraints on

the magnitude of cross-correlation in some region and interval constraints on the auto-

correlation inside the mainlobe. For numerical tractability, we follow a simpler approach

by introducing a weighting matrix W ∈ R
P×P into (4.13). The modified optimization

problem is given by

Φopt = argmin
Φ

‖E ⊙W ‖2F , (4.15)

where ⊙ represents the Schur (element-wise) product. The weighting matrix allows

to put more or less weight on the main diagonal certain off-diagonal regions, or even

placing zeros for regions that remain arbitrary. Thereby, more flexibility is gained and

the solution can be tuned to more specific requirements.

The drawback of (4.15) is that it does not admit a closed-form solution in general.

However, it can be solved by numerical optimization routines that are available in mod-

ern technical computing languages.

4.3.3 Design Based on the CRB

For the case of a single source, a correlation-based DOA estimator amounts to find the

DOA that corresponds to the global maximum in the beamformer spectrum D(θ)

D(θ) = |ãH(θ)ỹ(t)|2, (4.16)

with ã(θ) ≡ Φ · a(θ). Note that in this case, (4.16) is equivalent to the maximum

likelihood (ML) cost function, and therefore, the correlation-based DOA estimator is

equivalent to the ML estimator. We define then the false detection as the event where
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the global maximum in the beamformer spectrum D(θ) is outside the mainlobe area

(either 3-dB or null-to-null beamwidth). The error probability Pd is hence given by

Pd ≡ Prob
(
∃θ ∈ U : D(θ0) < D(θ)

)
, (4.17)

where U denotes the set of DOAs corresponding to the directions in the beamformer

spectrum outside the mainlobe area while θ0 /∈ U is the true DOA that corresponds to

the mainlobe peak.

A direct evaluation of (4.17) is analytically intractable. In [204], an analytic expres-

sion for the false detection probability has been derived and given as

Pd ≤
1

2G

L∑

q=1

G∑

g=1

Ψ̂q

(

(2g − 1)π

2G

)

(4.18)

The analytic expression for the false detection probability can now be used to opti-

mize the combining matrix Φ with the objective to improve the CRB while keeping the

probability of false detection below some desired level ǫ0 for a given input SNR ρ0.

This said, for detection of a single source, we can formulate it as

Φopt =argmin
Φ

max
θ0

CRB(Φ, θ0) (4.19)

s. t. Pd(Φ, θ0, ρ0) < ǫ0.

To derive CRB(Φ, θ0), we use the expression in [28] for the receiver model shown

in Figure 4.1 where the noise vectors v(t) and w(t) are assumed to be white with

covariances Rvv = σ2
1IN and Rww = σ2

2IM , respectively. The associated CRB matrix is

then found to be

CRB(Φ, θ) = σ2
1

(
2Re

{
F ⊙RT

s

}
)−1, (4.20)

where ⊙ denotes Schur (element-wise) matrix product, Rs = s(t)sH(t) is the signal

covariance matrix, and F is a matrix that depends on the array beam pattern and the

combining matrix Φ as

F = DHΦHZΦD. (4.21)

Substituting in (4.21),

Z = Q
(

IN − Ã
(

ÃHQÃ
)−1

ÃHQ
)

,

D =
[
∂a(θ0)/∂θ0, ∂a(θ1)/∂θ1, ..., ∂a(θK−1)/∂θK−1

]
,
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and Q = (ΦΦH + βIN)
−1 where β =

σ2
2

σ2
1
. Since we consider only a single source

for solving the optimization problem in (4.19), F reduces to a scalar F and Rs to

Rss = ‖s(t)‖2. Therefore, for a single source (4.20) becomes

CRB(Φ, θ0) = σ2
1

(

2FRss

)−1

=
1

2Fζ
, (4.22)

where ζ = Rss

σ2
1
is the input SNR.

Both the constraint and the objective in (4.19) are non-convex functions with respect

to (Φ, θ0). The optimization problem is thereby a non-convex problem exhibiting a

multi-modal cost function, where the optimal (global) solution can only be found by an

exhaustive search strategy. Therefore, we apply a local minimizer to the above problem

using an algorithm based on the interior-reflective Newton method [205], [206]. However,

by using this algorithm the obtained solution strongly depends on the initialization of

the parameters (Φ, θ0). Moreover, there is no guarantee that the global optimum is

found.

One way of addressing this issue is to apply the algorithm several times, where for

each run the initialization of the parameters (Φ, θ0) is different. In doing so, the obtained

solution to (4.19) is likely to be sufficiently close to the optimal solution. However, it

might be time consuming due to the complexity of the optimization problem at hand.

Another way of tackling this problem is to first obtain a solution for Φ by the SCF

approach described above and then use it for the initialization in (4.19).

So far, we have discussed the case of a single source’s wave impinging on the antenna

array. However, we can easily extend the CRB design approach to account for the

presence of multiple signal sources by applying the full CRB given by (4.20) in (4.19) and

modifying the false detection probability expression in (4.18). Particularly, assuming a

correlation-based DOA estimator, we need to compute the false detection probability of

the strongest source being falsely detected in the presence of K − 1 weaker ones (see [8]

for more details).

4.4 Adaptive Focusing Design

In (4.8), our target is a static combining matrix that yields an array with certain prop-

erties, such as uniform sensitivity and low sidelobe level, which is a good choice if no

prior knowledge of the targeted sources is available. However, we can extend this ap-

proach towards an adaptive design that makes use of the fact that for a slowly changing

scene, the estimates from the previous snapshots provide prior information about the
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source locations in the next snapshots. This fact can be utilized for adaptive focusing

of the array’s sensitivity towards regions of interest where the targets are expected [7].

In doing so, the SNR and the effective resolution in these directions of interest can

be further improved, resulting in a superior DOA estimation performance. To achieve

this, we adopt a sequential measurement strategy which starts with a combining matrix

designed for uniform sensitivity and then gradually refine it towards the directions of

interest that have been identified in the observations collected so far [7].

The main idea is to design Φ such that the spatial correlation function r(θ1, θ2)
.
=

ã(θ1)
H · ã(θ2) follows as close as possible to a prespecified target T (θ1, θ2), i.e., a matrix

Φ that minimizes

e(Φ, θ1, θ2) = |r(θ1, θ2)− T (θ1, θ2)| (4.23)

The target T (θ1, θ2) is adapted to the current knowledge of the scene. A uniform target

function is used when no prior knowledge is available. When regions of interest have been

specified (e.g., via an estimate of the angular power spectrum or a previous reconstructed

scene), the target can be adapted to focus on these regions in order to provide a superior

estimate (e.g., improved SNR and/or resolution).

To this end, an ideal uniform target function can be described by

Tuni(θ1, θ2) =







const θ1 = θ2

0 θ1 6= θ2
, (4.24)

where the first condition guarantees that the array gain is constant for all angles (to

make the array uniformly sensitive in all directions) and the second condition asks for

good cross-correlation properties to tell signals from different directions apart.

On the other hand, a target function that focuses in an interval Θ is given by

TΘ(θ1, θ2) =







const θ1 = θ2 ∈ Θ

0 θ1 6= θ2
, (4.25)

where the interval Θ can for instance be describe by a center cθ and a width wθ via

Θ =
[
cθ − wθ

2
, cθ +

wθ

2

]
.

In order to find a matrix Φ that minimizes (4.23), we utilize the mechanism intro-

duced earlier in Section 4.3.2 which we restate here for convenience. It is based on the

following steps: First, to eliminate the continuous variables θ1 and θ2, we consider the

N -point sampling grid θ
(G)
n , n = 1, 2, . . . , N used for CS and define the N ×N matrices
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R and T according to R(i,j) = r(θ
(G)
i , θ

(G)
j ) and T(i,j) = T (θ

(G)
i , θ

(G)
j ). Note that R

can be written as R = AH · ΦH · Φ · A. The deviation between the sampled spatial

correlation function R and its target T can then be measured via a suitable norm of

the error matrix E
.
= R−T . A closed-form solution for Φ can be obtained if we choose

the Frobenius norm of E. In particular, if we let

Φopt = argmin
Φ

‖E‖2F . (4.26)

we can obtain Φopt via the following procedure: Let S = A · T ·AH and let Sm be a

rank-m-truncated version of S obtained by setting its N − m smallest eigenvalues to

zero. Then every square-root factor of Sm (i.e., any Φ satisfying ΦHΦ = Sm) is an

optimal solution to (4.26) [4].

Since Φopt can be obtained in closed form with a very low computational complexity,

it is feasible to adapt it during the observations, i.e., the target can be refined to the

current knowledge of the scene.

The adaptation mechanism proceeds as follows:

1. We begin by scanning the scene with a matrix Φ designed according to (4.13) or

(4.15), designed for a uniform target T or according to (4.19) for the full angular

range θ0 ∈ (0, 2π].

2. Identify regions of interest based on an estimate of the angular power spectrum

obtained from the initial observation(s).

3. Define a focusing region Θ as the union of all regions of interest.

4. Modify Φ by solving (4.26) for a target designed for the focusing region Θ in the

SCF-based approach or solving (4.19) with a restricted angular range.

5. As the sources are assumed to change their position gradually, track sources by

repeating steps (2) to (4) sequentially, moving the regions of interest along with

the currently identified source locations.

6. Every S snapshots, rescan the scene with a matrix Φ designed for a uniform

sensitivity in order to detect newly appearing sources. If new sources are found,

incorporate their location into the set Θ.

The parameter S represents a design parameter that determines how quickly the system

reacts to sources appearing outside the current direction of interest.
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4.5 Estimation Quality

In this section, we provide an analysis of the achievable performance of the proposed

compressive arrays for DOA estimation. In the noisy case, there are two main estimation

quality measures: the achievable estimation accuracy, and the resolution capabilities.

Estimation Accuracy

For a fixed aperture, the achievable accuracy is mainly determined by the effective SNR

at the antenna output. For this reason, we compare the SNR of a compressive array

and a sparse array3 at the same number of active channels M .

We express the output signal for a single source via (4.3) as

ỹ(t) = Φ · a(γ1) · s1(t) + ñ(t), (4.27)

where the elements of Φ are given by (4.7) and the covariance of ñ(t) is given by

Rnn = σ2
1ΦΦH + σ2

2IM . The SNR of the compressed array can then be computed as

ρc =
E
{
‖Φ · a(γ1) · s1(t)‖2

}

trace {Rnn}

=
‖Φ · a(γ1)‖2 · Ps

trace {ΦHΦ}σ2
1 +Mσ2

2

=
trace

{
Φ · a(γ1) · aH(γ1) ·ΦH

}
· Ps

trace {ΦHΦ}σ2
1 +Mσ2

2

, (4.28)

where Ps = E {|s1(t)|2} is the source power.

As evident from (4.28), the SNR is dependent on the parameter vector γ, i.e., on the

DOA. It is therefore meaningful to consider the average SNR over all possible source

directions. This requires to compute the average of g(γ) = ‖Φ · a(γ)‖2 over γ which

is not possible without further assumptions either about the array or about Φ. Let ḡ

be the average of g(γ) over γ, i.e., ḡ = Γ−1
∫
g(γ)dγ with Γ =

∫
1dγ. Moreover, let us

define the matrix J = Γ−1
∫
a(γ) ·a(γ)Hdγ so that ḡ = trace

{
Φ · J ·ΦH

}
. To proceed,

we would like to replace ḡ by trace
{
ΦΦH

}
. We can always do so when J = IN which

implies that the beam patterns of all antennas are orthogonal over the entire parameter

space. This is, e.g., fulfilled for an ULA if it is parametrized by spatial frequencies

3By sparse arrays we mean here any array that is capable of providing a larger aperture than a
“traditional” array with λ/2-spaced elements, while having a dedicated receiver channel for each antenna
element. Examples of sparse arrays include arrays with randomly positioned elements [178–181] as well
as nested and co-prime arrays [172, 173].

74



4.5 Estimation Quality

µ = cos(θ). Furthermore, for J 6= IN one can show that EΦ {ḡ} = EΦ

{
trace

{
ΦΦH

}}

for any random ensemble of Φ where its elements are i.i.d. Note that in our case, due

to (4.7), trace
{
ΦΦH

}
is not random but deterministic. Hence, the expectation on the

right-hand side is not needed. In light of this assumption, we can express the average

SNR ρ̄c (averaged over γ) as

ρ̄c =
trace

{
ΦΦH

}
· Ps

trace {ΦHΦ} σ2
1 +Mσ2

2

=
‖Φ‖2F · Ps

‖Φ‖2F σ2
1 +Mσ2

2

(4.29)

Using (4.7) it is easy to see that ‖Φ‖2F =
(

η√
L

)2

·N ·L = η2 ·N . Therefore, the average

SNR becomes

ρ̄c =
η2 ·N · Ps

η2 ·Nσ2
1 +Mσ2

2

=
PS

σ2
2

· η2 ·N
η2 ·N · σ2

1

σ2
2
+M

(4.30)

To compare this SNR to the one that can be achieved with a sparse array we model

the observed signal as as(γ1) · s1(t) +ws(t), where the elements of ws(t) are i.i.d. with

variance σ2
2 .

We then obtain for the SNR of a sparse array

ρ̄s =
M · Ps

Mσ2
2

=
Ps

σ2
2

. (4.31)

Therefore, the ratio of the SNRs becomes

ρc
ρs

=
η2 ·N

η2 ·N · σ2
1

σ2
2
+M

(4.32)

Overall, this shows that if there is significant signal noise (i.e., σ2
1 ≫ σ2

2) in the com-

pressed arrays, their achieved SNR degrades linearly with the ratio of signal to mea-

surement noise power compared to sparse arrays. On the other hand, for dominating

measurement noise (i.e., σ2
1 ≪ σ2

2), the SNR ratio approaches η2 N
M

which means an SNR

improvement if the efficiency of the lossy components satisfies η >
√

M
N
. In practice,

the compression ratio N
M

can be quite high and therefore, the SNR improvement of the

compressive arrays can be very significant.

Note that another particular advantage of the proposed compressive arrays is their

reconfigurability, as discussed in Section 4.4. If we follow this idea, the array performs

beamforming towards the already detected targets. In this case, the SNR is further

improved by the beamforming gain which is a factor on the order of N .
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Resolution

The ability to distinguish closely spaced sources is an important characteristic of an

antenna array. The achievable resolution of the array mainly depends on its aperture,

i.e., the largest distance between pairs of antenna elements. For ULAs, the aperture is

equal to (N−1)λ/2 since the elements are spaced in half-wavelength distance from each

other. For compressive arrays as well as sparse arrays, this distance can be increased

further. As a result, the array’s correlation function becomes sharper, at the price

of an increase in sidelobes (grating lobes). We can control the height of the grating

lobes by proper design of the antenna placement (in the case of sparse arrays) as well

as the analog combining network (in the case of compressive arrays). In general, we

expect that at the same covered aperture and the same number of active RF chains, the

compressive arrays will have lower sidelobes (since the many degrees of freedom in the

analog combining network allow to suppress the sidelobes significantly). As it is difficult

to quantify the achievable sidelobe suppression analytically, we will focus on this aspect

in the numerical results in Section 4.6.

4.6 Numerical Results

In this section, we evaluate the performance of the compressive array with an optimized

combining network and compare it to its closest counterparts in terms of the aperture

and hardware complexity, namely random and sparse arrays. We also evaluate the

performance of the adaptive focusing design showing its advantages over the uniform

one.

4.6.1 Performance Analysis of the SCF Based Design

We start first by examining the SCF- based design. To this end, we consider an M =

12 element ULA that is reduced to m = 8, 6, 4 channels via an m × 12 combining

matrix Φ. This matrix is chosen according to [Φ](m,n) = eϕm,n , where ϕm,n are the

optimization variables in the proposed approach and drawn from a uniform distribution

for the random approach.

It is certainly possible to include the amplitude in the design process as well. Of

course, this requires additional analog components, since in addition to phase shifters

we will also need attenuators to adjust the amplitudes. These do not only increase

the complexity of the combining network but also introduce additional losses and noise.

For this reason, it is very common to consider only phase shifters in these networks,

76



4.6 Numerical Results

which already provide a lot of flexibility. This is one of the baseline assumptions in the

mmWave hybrid beamforming community (see e.g., [203] and references therein) and in

SatCom applications (see e.g., [184]).

Figure 4.2: SCF-approach: phase-only optimization (left) vs. optimization of amplitude and
phase (right) for two different weight matrices.

Nevertheless, to give an example of performance loses due to considering the phase

only instead of amplitudes and phases we have conducted an experiment which is shown

in Figure 4.2. Here we compare the SCF-based optimization forM = 12, m = 8, P = 48,

using the SCF of the uncompressed 12-ULA as a target T . The weight matrix is chosen

such that it is equal to one for the mean beam (i.e., four points to the left and the right

of the main diagonal) and w for all other points, such that higher values of w put more

emphasis on the side lobes. For w = 0.1 (top two plots) and w = 0.5 (bottom two

plots), we compare optimizing only the phase of Φ (left) with optimizing magnitude

and phase of Φ) (right). Each graph displays the mean of the average SCF (solid blue

line) as well as the 10/90 percentiles (shaded area) over 1000 random initializations of

the SCF-based optimization method. We observe that for w = 0.1 there is barely any
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visible change, whereas for w = 0.5 the side lobes are suppressed slightly stronger, at

the expense of a reduction of the main lobe peak. In general, the difference between

optimizing only phase or magnitude and phase is not very pronounced since satisfactory

results can be already achieved by optimizing the phase.

To find an optimized design Φopt, we solve the weighted optimization problem (4.15)

via Matlab’s numerical optimization features. We run fmincon with 100 random

initializations and pick the solution with the smallest value of the cost function. As a

target we set T = AH ·A which is the correlation function we would achieve with anM-

ULA. The weighting matrix is chosen according to [W ](n1,n2) = ρ|n1−n2| where ρ ∈ (0, 1]

is a parameter that controls the decay of the weights. Essentially, smaller values of ρ

put significantly more weight at the main lobe and its quick decay and less weight on

the side-lobes that are far from the main lobe. The limiting value ρ = 1 represents the

unweighted case.

Figure 4.3 demonstrates the advantage of using a measurement matrix Φ that is

optimized according to our proposed methodology as compared to choosing Φ randomly.

The SCF of the random design (Figure 4.3a) suffers many blind spots and high side lobes

whereas the optimized design enjoys a smooth main lobe and relatively low side lobe

level.
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(b) Optimized SCF

Figure 4.3: SCF comparison for an SCF optimized design versus random ones for M = 12 and
m = 8.

Figure 4.4 depicts the normalized spatial correlation function (SCF) defined as

ϕ(µ1, µ1 +∆µ) =
ã(µ1)

Hã(µ1 +∆µ)

ã(µ1)Hã(µ1)
(4.33)

for µ1 = π. For reference, the black line indicates the 12-ULA whereas the blue line
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represents the result of the optimization for ρ = 0.95. We observe that the optimized

design comes close to the M-ULA except for slightly higher sidelobes. Figure 4.4 also

shows the SCFs that are obtained when we draw Φ randomly without any optimization.

We depict the average SCF (solid line), the 5-th and the 95-th percentile (shaded area)

and one example realization (dash-dotted line). As evident from the figure, randomly

chosen measurement matrices lead to significantly higher spatial correlations. In partic-

ular, every realization shows sidelobes that are sometimes even higher than the main

lobe.

PSfrag replacements

Figure 4.4: Spatial correlation function ϕ(µ1, µ1 + ∆µ) for µ1 = π. We compare the M = 12
element ULA with an 8× 12 CS array. To show the variability of choosing Φ randomly, we depict
the average correlation (solid line), the 5-th and 95-th percentile (shaded area) and one example
realization (dash-dotted line).

Figure 4.5 demonstrates the DOA estimation performance if we use the OMP algo-

rithm for the sparse recovery stage. We consider a noise-free scenario with two sources

that are located on the N = 48 point uniform sampling grid, i.e., µ1,2 = (n0 ± d/2) ·∆
where n0 ∈ [1, N ] and d is the inter-source spacing in grid points. For each value of

d, the mean square error MSE = 1
2

∑2
k=1(µk − µ̂k)

2 is averaged over all values of n0.

An estimate of the Complementary Cumulative Distribution Function (CCDF) of this

average MSE obtained from 1000 realizations of Φ is shown. As evident from the figure,

the average MSE exceeds the source spacing d with a probability of 95 % for d = 2, 80 %

for d = 4, and 30 % for d = 8. For the same scenario, our optimized design (choosing

w = 0.7) achieves an MSE very close to zero (shown with the dashed lines), i.e., 0.72∆

for d = 2, 0.13∆ for d = 4, and 0.03∆ for d = 8.
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Figure 4.5: Mean square estimation error for randomly drawn Φ, using OMP for the sparse
recovery step. We consider two sources positioned at µ1,2 = (n0 ± d/2) ·∆. The MSE is averaged
over all values n0 ∈ [1, N ] and a histogram over this average MSE is estimated for three values of
the source distance d = 2, 4, 8. MSE and source distance are shown in units of the grid spacing
∆ to facilitate their comparison. The average MSE of our optimized design is indicated with the
dashed lines.
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Figure 4.6: The same scenario as shown in Figure 4.5 but this time including noise at an SNR
of 10 dB.
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To investigate the effect of additive noise, we have repeated the experiment from Fig-

ure 4.5 with additive noise. In particular, we have drawn the noise vector w (cf. (5.12))

from a zero mean circularly symmetric complex Gaussian distribution with a variance

of 0.1, which corresponds to an SNR of 10 dB. The result is shown in Figure 4.6. Once

more, the optimized design achieves a significantly lower average MSE compared to the

randomly chosen measurement matrices.

Though the main concern for optimizing Φ has been put on correlation-based re-

covery algorithms such as the OMP, we have tested it on the Basis Pursuit (BP) algo-

rithm [97] as well and found that it also offers some advantages there. To this end, we

have repeated the previous simulation with the same parameters, using BP instead of

OMP for the recovery stage. The result is shown in Figure 4.7. The figure shows the

CCDF of the average MSE over 1000 random realizations of Φ. Our proposed design

is not shown since it achieves an exact reconstruction result (MSE=0) for all values of

d. As expected, BP is more reliable and less sensitive to sidelobes compared to OMP.

In fact, for each value of d there is a non-zero chance to draw a matrix Φ randomly

that achieves an exact reconstruction as well. However, these “lucky” choices are not

very stable in the sense that changing the grid size N or the source spacing d results in

estimation errors to occur.
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Figure 4.7: The same scenario as shown in Figure 4.5, this time using Basis Pursuit (BP) for the
recovery stage. Our proposed design achieves an average MSE of zero for d = 2, 4, and 8.
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4.6.2 Comparison to the CRB Based Design and Sparse

Arrays

We now compare the SCF based design to the CRB based one and also to sparse arrays.

The latter can be obtained by varying the element positions of a “traditional” antenna

array to achieve a high resolution (low CRB). Via a careful design of the element po-

sitions, the level of the resulting grating lobes can be controlled (cf., e.g., [171]). Note

that we do not compare our design to nested or co-prime arrays [172,173]. While these

approaches in theory allow to construct O(M2) virtual sensors from O(M) antennas,

this is only possible if we observe the scene over a large number of snapshots in time

(during which it must remain static) and all sources are mutually uncorrelated. Since

the proposed array as well as optimized sparse arrays can operate on an arbitrary num-

ber of snapshots (down to the single snapshot case) and have no restrictions in terms

of the source correlation, a comparison of the achievable accuracy and resolution with

nested or co-prime arrays would not be fair.

We change our scenario to reduce the optimization complexity for the CRB based

design and use UCAs instead of ULAs. We perform the numerical study based on a

uniform circular array (UCA) with N = 9 elements that are compressed to M = 5

receiver channels (this amounts to ≈ 1.8 times reduction in the number of receiver

channels). Note that for a UCA with isotropic elements the response of the nth antenna

element as a function of the azimuth angle θ can be written as

an(θ) = e2πR̃ cos(θ−ϑn), (4.34)

where ϑn = 2π(n−1)/N with n = 1, 2, · · · , N and R̃ = R
λ
is the array radius normalized

to the wavelength. For both proposed designs, the radius R̃ was fixed and set to 0.65.

The combining matrix Φ is chosen according to [Φ](m,n) = eϕm,n , where ϕm,n are

the optimization variables in the proposed approaches. This implies that the role of

the efficiency η is not considered, implicitly assuming η = 1. Note that this is not

uncommon in the related literature [203, 207]. Moreover, for η < 1, the sidelobe level

(and thus the false detection probability) are unaffected while the CRB scales linearly

with η2. Therefore, for low values of η, sparse arrays may outperform the proposed

compressive arrays. On the other hand, the latter are reconfigurable and can hence

perform beamforming in the directions of interest, to partially compensate the analog

combining losses.

To find an optimized design Φopt, we solve the weighted optimization problems (4.15)

and (4.19) via Matlab’s numerical optimization features. Since run-time is not a
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concern for an off-line design, and in order to avoid local minima, we run fmincon and

fminimax to solve (4.15) and (4.19), respectively, with 100 random initializations and

pick the solution with the smallest value of the cost function. In the following, we

refer to the design obtained by the SCF optimization approach from (4.15) as Opt SCF,

whereas the design obtained as a result of the CRB minimization from (4.19) is referred

to as Opt CRB. For the Opt SCF approach, we set T = AH · A as a target which

is the correlation function we would achieve with an M-element (uncompressed) UCA.

The weighting matrix is chosen according to [W ](n1,n2) = w|n1−n2| where w ∈ (0, 1] is a

parameter that controls the decay of the weights. Essentially, smaller values of w put

significantly more weight at the main lobe and its quick decay and less weight on the

side-lobes that are far from the main lobe. The limiting value w = 1 represents the

unweighted case. For the Opt CRB approach, the threshold false detection probability

ǫ0 is set to 0.05 to be achieved at an input SNR of ρ0 = 0dB.

We begin by examining the performance of the optimized compressive arrays with

respect to the attainable CRB and the sidelobe level in the case of a single source as

discussed in Sections 4.3.2 and 4.3.3.
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Figure 4.8: Comparison of the CRBs of the optimized compressive arrays versus the random
ones. The CCDF of the CRB for 5000 random realizations are shown together with that of the
optimized kernel.

Figure 4.8 shows the achievable CRB of the compressive arrays with the optimized

combining network and the random ones that have the same number of antennas and

sampling channels while ϕm,n are drawn uniformly at random from (0, 2π]. At a fixed
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SNR level of 0 dB, an estimate of the Complementary Cumulative Distribution Function

(CCDF) of the CRB obtained from 5000 random realizations of Φ is shown. The opti-

mized networks for both approaches have been designed to achieve the same CRB. This

has been done by varying w of the Opt SCF approach such that the resulting optimized

Φ achieves a similar CRB as the one obtained from the Opt CRB approach. As evident

from the figure, the CRB of the optimized compressive arrays is almost in every case

lower than that of the random ones. In other words, the random kernel can potentially

provide a performance comparable to the optimized ones but with a very low probability.

The CCDFs of the average sidelobe levels for the same scenario are shown in Figure 4.9.

We observe that the random compressive arrays provide significantly higher sidelobe lev-

els compared to both the SCF and the CRB-optimized ones. This supports the intuition

that designing the combining matrix randomly results in sub-optimal performance.
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Figure 4.9: Comparison of the sidelobe levels of the optimized linear combining network versus
the random ones. The CCDF of the mean sidelobe levels for 5000 random realizations are shown
together with that of the optimized kernel.

Comparing the sidelobe level of the SCF and CRB-optimized compressive arrays, we

can notice that the latter has a lower sidelobe level at a specific CRB. This is confirmed

by the corresponding (analytic) probabilities of false detection depicted in Figure 4.10.

For comparison Figure 4.10 also presents the results for the uncompressed UCAs with

N = 9 and N = 5 (i.e., with smaller aperture size) as well as the average Pd for the

random arrays. As can be seen, both proposed approaches achieve lower probability

of false detection Pd than the uncompressed UCA with a lower number of antennas,
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whereas the sparse arrays on average are significantly inferior to all the rest. It is worth

noting that for both proposed optimization approaches, the CRB and the sidelobe level

(and hence the probability of false detection) can be controlled: explicitly in the case of

the CRB-based approach via setting a threshold ǫ0 on Pd, and indirectly in the case of

the SCF-based approach via a proper choice of the weighting matrix W in (4.15).
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Figure 4.10: False detection probability of the uncompressed UCAs, compressive arrays, and the
random ones.

Now we compare the compressive array to a sparse array that has the same number

of receiver chains, i.e., for the considered scenario it means that for a sparse array

N =M = 5. According to [171], we design the sparse array such that the positions of its

elements are optimized towards obtaining a uniform sensitivity and desired CRB. Note

that this results in an array geometry closely resembling that of a V-shaped array [171].

Figure 4.11 shows the spatial correlation functions at a specific DOA for the sparse array

and an SCF-optimized compressive array (compression from N = 9 elements to M = 5

receiver chains) that achieves the same CRB (0.113) at the fixed SNR level of 0 dB. It

can be noted that the sidelobe level of the sparse array is relatively high compared to

that of the compressive one (especially the Opt CRB design). Particularly, the mean

level of the sidelobes for the optimized compressive array is 0.53 compared to 0.68 of

the sparse array.
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Figure 4.11: The spatial correlation function at a specific DOA of an optimized sparse array and
a compressive array with the same number of receiver chains and an optimized combining network
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Figure 4.12: The CRB versus the sidelobe level for a compressive array with an optimized
combining network and a sparse array (single diamond marker)

Figure 4.12 shows the resulting trade-off between providing a good CRB and main-

taining a low sidelobe level. One can see that the compressive array (with either of the

optimization schemes) outperforms the sparse one and gives more degrees of freedom
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to tune the array design with respect to some desired properties (e.g., targeted CRB

or sidelobe level). This figure also confirms once again that the Opt CRB approach

outperforms the Opt SCF approach as it gives more control over the sidelobe level for a

specific CRB. Note that the comparison to the sparse array is optimistic since it assumes

an efficiency of η = 1. For η < 1, the sidelobe level is unaffected but the CRB scales

linearly with η2, shifting the Opt SCF and Opt CRB curves to the right. However, one

should not forget that in contrast to the sparse array, the proposed arrays are reconfig-

urable, allowing to carry out beamforming in directions of interest once some targets

have been detected. This beamforming can partially compensate the analog combining

losses.

The superiority of the compressive arrays over the sparse ones with respect to adapt-

ability is further highlighted in Figure 4.13. It presents the CRB and the sidelobe level

of an optimized compressive array as a function of the number of antennas N . It is clear

that the compressive arrays not only allow to control the CRB and the sidelobe level via

an optimization of the combining network, but also by adding more antenna elements

while the number of receiver channels is kept fixed. In Figure 4.13, we can see that the

CRB can be improved significantly when the number of antenna elements is increased

at the price of higher sidelobe levels. However the network can then be re-optimized for

the new scenario (e.g., with the Opt CRB approach), aiming at a better suppression of

the sidelobes while a certain level of CRB improvement is maintained.
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Figure 4.13: The CRB and the sidelobe level for a compressive array with different number of
antenna elements and fixed number of channels
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Now we examine the performance of the proposed optimized compressive array in

the case of two sources impinging on the array from different DOAs. The power ratio

between the two sources is set to α = |s2/s1|2 = −6 dB, while their DOAs are d radians

apart, i.e., θ1 = θ, θ2 = θ + d where θ scans the whole angular space. The two sources

are inphase.
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Figure 4.14: Comparison of the CRBs of the optimized compressive arrays versus the random
ones for the case of two impinging sources. The CCDF of the CRB for 5000 random realizations
are shown together with that of the optimized kernel.

Similar to Figure 4.8, Figure 4.14 shows the achievable CRB of the strongest path

using the compressive arrays with the optimized combining network and the random

ones that have the same number of antennas and sampling channels for an SNR level

(with respect to the strongest source) of 12 dB. The CCDF of the CRB obtained from

5000 random realizations of Φ is shown for d = 0.2 and d = 0.4 radians. As discussed

earlier, the Opt SCF and the Opt CRB designs both provide the same CRB and so only

the Opt SCF is shown for clarity. The CCDF shows that the CRB of the optimized

compressive arrays is again almost in every case lower than that of the random ones.

As the sources get closer (e.g., d = 0.2), the need for the optimized network increases as

the probability to achieve acceptable properties (e.g., low CRB) by the random design

gets lower.
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Figure 4.15: False detection probability of the uncompressed UCAs, compressive arrays, and the
random ones with two source signals with power ratio α = −6dB.

It has been proposed in Section 4.3.3, to extend the design based on CRB for the

case of multiple sources. Considering the same set-up with two sources, and for a

specific DOA of the first source, to do so the sidelobes in the correlation function have

to be searched for all possible DOAs of the second source. This leads to a very high

computational complexity. The same search strategy has to be performed for all possible

DOAs of the first source. Therefore, for simplicity, we fix the second source DOA and

perform the optimization similar to that of the single source case. Figure 4.15 shows the

probabilities of false detection Pd for two sources. It can be seen that the design based on

CRB shows superior performance in terms of lower false detection probability compared

to that of the uncompressed (N = 5)-element UCA, compressive array with SCF based

designed network, and the averaged random ones. Although the SCF based design can

not be re-optimized for the multiple source case, it still provides a significantly lower

probability of false detection compared to the random arrays and is comparable to a

non-compressed (N = 5)-element UCA.

4.6.3 Performance Analysis for Adaptive Focusing

In this section, we present some numerical results to demonstrate the advantage of using

the focusing measurement matrix design according to our proposed methodology. To

this end, we consider a M = 12 element ULA that is reduced to m = 8 channels via an

89



Chapter 4 Compressive Antenna Arrays for Direction of Arrival Estimation

8 × 12 compression/focusing matrix Φ. We sample the spatial space using an N = 64

point uniform sampling grid, i.e., µ1,2 = (n0 ± d/2) · ∆ where n0 ∈ [1, N ] and d is the

inter-source spacing in grid points.

To construct the uniform matrix ensemble Φuni we solve the optimization prob-

lem (4.26) to obtain the closed form solution. As a target we set Tuni = IN which is

the ideal uniform target function described by (4.24). We will only consider it here as

an initial estimator of the regions of interest towards which the main beam is focused

afterwards.
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Figure 4.16: Definition of the focusing window: the blue arrows indicate the estimated DOAs
with a distance of d grid points. The window is centered at grid point c, located in the middle of
the targets, and has a width of w grid points, where w = d+ 2w∆.

The focusing measurement design Φfoc is obtained by modifying the target according

to (4.25) where Tfocus is an N × N matrix that contains the identity matrix in the

focusing region and nulls otherwise. The focusing region is identified based on an initial

estimate of the source locations, e.g., by a reconstruction of the scene based on a first

measurement carried out with Φuni. Figure 4.16 shows how to define the target for two

closely spaced sources, in which case we define one interval containing both as the region

of interest. The blue arrows represent the (estimated) source positions. The focusing

interval Θ is described as mentioned earlier by a center grid point c which we place in

the middle of the two sources and a width w. Naturally, we have w = d + 2w∆, where

w∆ is the number of extra grid points we allow to both sides of the identified sources (in

Figure 4.16 we have w∆ = 1) and d is the distance between the sources estimated from

the uniform measurement initialization step. In general, the width w represents a design

parameter where smaller values indicate a more narrow focus. If the initial estimate of

the regions of interest is not very reliable, w should be chosen larger to allow for some
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deviations of the source position estimate in the refocused measurements. A concrete

strategy for the choice of w is discussed below. Note that if more than two sources are

present, the focusing interval Θ can be found by the union of several intervals, each

centered around the middle of a cluster of identified sources.

As a first step, we compare the performances of the three measurement designs of Φ:

the random design advocated in the earlier papers [45, 150], the uniform we proposed

in [4] and the focusing design proposed in this work. The latter uses the estimate of the

uniform design as an initialization, i.e., its first measurement is carried out with Φuni,

the scene is reconstructed, and then used to identify the regions of interest to find Φfoc

for the second measurement. For this experiment, we choose w∆ = 6, i.e., a window

width of w = d+ 12 grid points as the focusing region.
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Figure 4.17: MSE versus SNR for two sources using the random, uniform, and focusing design
where the source separation d is varied randomly. The focusing interval is defined according to
the knowledge about the region of interest obtained from the first uniform measurement with a
window width given by w∆ = 6.

Figure 4.17 shows the mean square error (MSE) versus the signal to noise ratio (SNR)

for a scenario with two sources that are located on the grid and d grid points apart.

The MSE is averaged over randomly drawn distances d and noise vectors w (cf. (5.12))

drawn from a zero mean circularly symmetric complex Gaussian distribution. For each

trial, the fast orthogonal matching pursuit (OMP) [106] is used for the DOA estimation

process and then the mean square error MSE = 1
2

∑2
k=1(µk − µ̂k)

2 is calculated for the

three designs.
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As depicted in the figure, the random measurement design shows the worst perfor-

mance as expected (see [4] for more details). The results show that the focusing design

provides a significant improvement in terms of the SNR.

To investigate the effect of the focusing interval width, we have repeated the exper-

iment from Figure 4.17 with different focusing widths while fixing the sources’ spacing

to d = 4 which corresponds to 0.75 Rayleigh distances (i.e., they are closely spaced).

Figure 4.18 compares the resulting MSE for a focusing width parameter w∆ = 3, 5,

and 7, respectively. We observe that a more narrow focus leads to significantly reduced

MSEs and thus a superior resolution of the two closely spaced sources compared to the

unfocused, uniform design.
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Figure 4.18: MSE versus SNR for two sources separated by four grid points using different
focusing interval lengths. A smaller window size leads to a more narrow focus, resulting in an
improved resolution.

We now turn our attention towards a concrete example of a possible implementation

of our focusing design without any special prior knowledge about the scene. Our idea

is to perform the focusing sequentially, starting with an unfocused, uniform design and

then gradually narrowing the focus by sequentially reducing the window size w. Each

of the sequential measurements provides an improved estimate of the scene (as we have

seen in Figure 4.18) which can be used to update the center of the window c and thus

make sure that the focus is put in the correct direction.
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Figure 4.19: Same scenario as shown in Figure 4.18 but this time the focusing is done sequentially
with w∆ being halved at each step.
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Figure 4.20: Same scenario as shown in Figure 4.19 but this time the sources are only d = 2 grid
intervals apart.

Figure 4.19 shows such a process where we investigate a scenario with two sources

d = 4 grid points apart and we keep decreasing the window size parameter w∆ from N/2
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to N/4 to N/8 to N/16. The curves labeled w∆,i for i = 1, 2, 3, 4 correspond to the i-th

sequential measurement which positions the target window according to the estimate

from the (i− 1)-th measurement and sets the window size to N/2i, as indicated in the

legend of the figure. The results show that each of the sequential measurements provides

a more narrow focus which leads to a lower MSE, although the change from N/8 to N/16

does not improve the MSE significantly anymore.

Figure 4.20 depicts the result for the same scenario with the sources only d = 2 grid

points apart. Here the fourth measurement w∆,i = N/16 shows a worse performance

than the third measurement using w∆,3 = N/8. This suggests that over-focusing might

result in a worse performance, e.g., if the focus center c is not placed exactly in the

correct direction.

So far, all the numerical results were based on the OMP algorithm for the sparse

recovery step. To demonstrate that our proposed measurement matrix design can be

applied to any sparse recovery algorithm, Figure 4.21 shows the same scenario as Fig-

ure 4.18, comparing the basis pursuit (BP) [97] with the OMP algorithm. The results

show that as expected, the convex optimization based BP algorithm outperforms OMP,

however, both algorithms benefit in a similar way from our proposed adaptive measure-

ment matrix design.
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Figure 4.21: Same scenario as before but instead using BP for initialization
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4.7 Summary

In this chapter we consider the design of compressive antenna arrays for direction of

arrival (DOA) that aim to provide a larger aperture with a reduced hardware complex-

ity and allowing reconfigurability compared to traditional array designs. We present an

architecture of such a compressive array and introduce a generic system model that in-

cludes different options for the hardware implementation. We then focus on the choice of

the coefficients in the analog combining network. We have demonstrated that choosing

it randomly may lead to undesirable effects in the effective CS array such as very high

sidelobes. These are particularly problematic for correlation-based sparse recovery algo-

rithms such as the Orthogonal Matching Pursuit since they may lead to the detection

of spurious peaks.

Instead of choosing them randomly, we propose a generic design approach for the

analog combining network with the goal to obtain an array with certain desired proper-

ties, e.g., uniform sensitivity, low cross-correlation, or low variance in the DOA estimates.

We exemplify the array design via two concrete examples. Our numerical simulations

demonstrate the superiority of the proposed optimized compressive arrays to compres-

sive arrays with randomly chosen combining kernels, as the latter result in very high

sidelobes (which imply a higher probability of false detection) as well as higher CRBs.

We also compare our optimized compressive array to a sparse array of the same com-

plexity (i.e., same number of receiver channels M) and find that sparse arrays suffer

from much higher sidelobes at the same CRB level. Also our proposed compressive

array enjoys a high degree of adaptability since the combining weights can be altered to

adjust the array to the current requirements, which is impossible for sparse arrays due

to their static nature.

We have also proposed a focusing design of the compression matrix based on the SCF

technique. The main idea is to apply measurements in a sequential fashion: first, we

measure with a uniform design that is equally sensitive in all directions and thus allows

us to obtain a good estimate for the region(s) of interest in the angular domain. Then,

the measurements are iteratively focused towards these regions. We have demonstrated

that the focusing design results in a significant performance improvement compared to

the uniform design. In particular, our numerical results demonstrated that a narrower

focus, leads to an improved SNR and resolution. We have demonstrated that the width

of the focusing region is a parameter that can be used to control the degree of focus

depending on the reliability of the estimate of the regions of interest and provided a

sequential focusing strategy as a concrete example.
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Chapter 5

Compressive Time Delay Estimation

This chapter extends the ideas from the previous chapters applying them to time delay es-

timation (TDE) and synchronization. After the motivation in Section 5.1, we introduce

the TDE model in Section 5.2. The compressive sensing (CS) based TDE architecture

is then presented in Section 5.3 followed by a description of the TDE procedure in the

compressed domain in Section 5.4. In Section 5.5 an optimization based design for the

measurement kernels of the CS based TDE architectures is proposed extending the ideas

from the previous chapter. Afterwards, we deal with the synchronization of the TDE

network in Section 5.6 and propose a CS based reference broadcast synchronization

where the reference signal is an opportunistic signal already in the system. Section 5.7

evaluates the proposed approaches via numerical simulations followed by a summary in

Section 5.8.

5.1 Motivation

Time delay estimation (TDE) is a fundamental challenge arising in many applications

such as wireless communications [208], radar [209], localization [210], sensor networks

[211], and many others. A wide range of TDE techniques have been proposed, see,

e.g., [212] for a survey for TDE in linear dynamic systems.

In this chapter, we treat the special case of estimating the delay of a signal with a

known pulse shape from a noisy superposition of several delayed copies. Such problems

occur in synchronization of wireless sensor networks [213], localization [214] or wideband

channel estimation [215] due to the multipath channel.

The complexity bottleneck in these systems is the high data rate from the high-speed

AD converters that are required to sample the wideband signals which are used to ensure

a high resolution in time. However, since the pulse shape is known, the actual rate of
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(unknown) information in the received signals is low. Therefore, it has been proposed

to apply compressed sensing (CS) to reduce the hardware complexity while maintaining

high precision. In [216,217], a framework for sampling time-delayed signals is presented

based on a union of subspaces approach [218]. The authors derive sufficient conditions

on the transmitted pulse and the sampling functions in order to ensure perfect recovery

of the channel parameters in the absence of noise, which includes conditions on the

minimal required sampling rate.

Considering concrete choices of the low rate sampling kernels, it is often suggested

in the CS literature to use random kernels which are incoherent with any basis and

so achieving informative measurements even at low rates. Though randomly chosen

kernels represent a simple and generic approach, it is known that they do not provide the

optimal robustness against noise. Only recently, the optimization of the measurement

kernels has been investigated [219–221]. In particular, [219] studies the optimization of

a discrete measurement matrix in time domain and [220] consider a continuous (sum-

of-sincs) kernel in time domain whose output that is sampled at a sub-Nyquist rate.

Both use criteria inspired by the Bayesian Cramér-Rao bound to optimize the kernels.

In [221], the measurement matrix is optimized such that for a given (overcomplete) basis,

the sensing matrix has a small average coherence.

In this chapter, we propose another optimization based design for the measurement

kernels of the CS based TDE architectures. We consider an architecture based on a

bank of K continuous-time periodic functionals that are sampled once per period. We

show that their Fourier-domain representation allows to optimize these functions based

on a finite number of coefficients. We demonstrate numerically that the optimized CS

kernels outperform a randomly chosen one in terms of the delay estimation accuracy.

It is also worth mentioning that the fully wireless operation for TDE also poses

significant synchronization challenges compared to a wired network (i.e., precise time

synchronization is essential). A certain degree of synchronization is required in any WSN

in order to establish the communication protocols. However, some TDE applications

such as using a WSN for wireless distributed localization of a set of targets, require a

very accurate synchronization which is even more challenging.

The simplest approach for synchronizing a WSN is given by transmitting a known

reference signal from at least one node in the network. Each node can then obtain

its timing information by comparing the known signal to its own received copy [213].

However, accurate timing information requires a reference signal with high bandwidth,

thus consuming precious resources (when done wirelessly).

A promising alternative approach to the problem is presented in [211, 222] and ex-
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Figure 5.1: Example WSN using signals of opportunity for the wireless synchronization. The
blue nodes represent the WSN that shall localize the green tags.

emplified in Figure 5.1. Using so-called signals of opportunity like communication (e.g.,

LTE) or broadcast (e.g., DVB-T) signals, a precise time synchronization between the RX

nodes can be realized. Since it is desirable that the system is able to use arbitrary signals

of opportunity, it should operate without having to fully decode these signals (which

would be impossible, e.g., for LTE signals). Traditionally, orthogonal frequency division

multiplexing (OFDM) receivers synchronize themselves on the received signal [223–225].

Additionally, the own or the remote clock error may be modeled and corrected accord-

ing to [226]. However, this requires that either the signal is completely demodulated

or even decoded [224, 225] or this requires that small pieces of the received signal at

the reference RX (REF RX) are distributed to all other RX (Figure 5.1, blue arrows)

via a data link. We refer to this as the reference signal. At the RX the received time

sampled copy of the reference signal is compared with the originally received signals of

opportunity (Figure 5.1, red arrow) and a time difference between the local clocks and

the clock of the REF RX can be estimated.

It is clear that retransmitting the wideband reference signal requires significant re-

sources. In [222], it is proposed to extract features from the OFDM symbol stream and

compare the features in a centralized unit for timing offset compensation. In this work,

we propose to compress the reference signal before transmission to all other nodes. We

rely on the basic ideas of CS to design the compression matrix without significantly

affecting the properties of the correlation function which determine the synchroniza-
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tion precision compared to the original non-compressed scenario. We show that the

correlation can be calculated in the compressed domain, yet achieving correlation char-

acteristics comparable to the high bandwidth correlation obtained with opportunistic

signals. In particular, we demonstrate that the compression does not affect the width of

the main peak in the correlation function, but rather it leads to higher cross-correlation

levels. Therefore, the compression ratio allows to control the trade-off between the

required bandwidth of the reference node and the effective SNR which can be tolerated.

5.2 Time Delay Estimation

The time delay estimation (TDE) between a reference signal and its delayed version is a

fundamental problem arising in many applications such as wireless communications [208],

radar [209], localization [210], sensor networks [211], and many others.

In a typical scenario, a pulse with a priori known shape is transmitted through a

medium. As a result, the received signal is composed of a delayed and a weighted replica

of the transmitted pulse. In various applications, the time delay and the gain coefficient

have to be estimated from the received signal.

A typical TDE problem can be described as:

y(t) = G(p)u(t− Td) + n(t), (5.1)

where the signal u(t) is the so called reference signal, y(t) is the one measured (i.e.,

recieved), n(t) is the measurement noise and G(p) is a linear system (without time-

delay). The time delay to be determined is Td. The signal can be either wideband

or narrowband. They can also be either real valued or complex valued. Complex (or

analytic) signal representation is often used for narrowband signals but can also be used

for wideband signals. The impulse response g(t) of G(p) can also be complex valued.

Complex signals and impulse responses are commonly used for bandpass systems, e.g.,

in radar and communications.

A wide range of TDE techniques have been proposed, see, e.g., [212] for a survey

for TDE in linear dynamic systems. The conventional method of TDE uses the cross-

correlation between the reference and the delayed signal and estimates the time delay

by finding the maximum of this cross-correlation [227, 228].

The time delay estimation problem can be formalized as follows. A transmitter sends

a signal s(t) to allow a receiver (or multiple receivers) that know s(t) to synchronize

themselves. For simplicity, we assume that s(t) is tp-periodic, i.e., s(t) = s(t + tp).
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Periodic synchronization signals are common, e.g., in GNSS [229] and UWB Radar

applications [230]. They allow receivers to keep track of the synchronization over time

and to average over multiple periods. For the problem at hand, another advantage is

that since these signals are also band-limited to a certain bandwidth B, they can be

completely described by a finite number of M = B · tp coefficients. Therefore, we can

write s(t) as

s(t) =
∑

m∈M
cs[m]e

2πm t
tp (5.2)

where M is the set of points in frequency where s(t) is non-zero1 with |M| =M .

Due to the multipath nature of wireless propagation channels, the receiver observes

a weighted sum of delayed copies of s(t), i.e., the received signal can be written as

x(t) =

L∑

ℓ=1

αℓs(t− τℓ) + w(t), (5.3)

where αℓ and τℓ represent the complex amplitude and delay of the ℓ-th propagation path

for ℓ = 1, 2, . . . , L, respectively, and w(t) is the additive white Gaussian measurement

noise. Note that since s(t) is tp-periodic so is x(t) (besides for the additive noise).

5.3 Compressive Sampling TDE Architecture

We employ a compressive sampling architecture similar to [216], which is depicted in

Figure 5.2. After an initial downconversion stage to remove the carrier frequency2,

instead of sampling the received signal x(t) directly, the receiver performs a bank of

analog multiplications with the functions pk(t), k = 1, 2, . . . , K, followed by sampling

with a lower rate to yield the coefficients ψk. Since x(t) is periodic, it is convenient to

choose pk(t) such that they are also tp-periodic.

1We employ a complex representation of all signals, which can refer to the complex low-pass domain
where M = {−M

2 + 1, . . . , M
2 } or analytic signals where only the positive half of the spectrum is

considered.
2The transmitter sends the bandwidth-B signal by modulating it onto a carrier frequency fc, which

is removed at this stage. The signal model is described entirely in the complex low-pass domain.
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Figure 5.2: Compressive receiver architecture: the signal is multiplied with K periodic waveforms
pk(t) and the result is sampled once per period in each branch.

The overall sampling rate of the receiver is then equal to K
tp

= K
M

· B which means

that the compression factor relative to Nyquist sampling is equal to K
M
. Note that each

of the K ADCs operates at a rate B
M
, i.e., a factorM times lower than in a conventional

system.

It is important to note that since our receiver is linear and x(t) is a linear combination

of delayed copies of s(t), it is sufficient to describe the sampling of one delayed signal

s(t − τ). Once a mathematical model for this has been obtained, the sampled version

of x(t) follows from a trivial linear combination.

Therefore, if we let x(t) = s(t− τ), the k-th sample ψk for k = 1, 2, . . . , K is given

by

ψk(τ) =
1

tp

∫

tp

pk(t)
∗ · s(t− τ)dt. (5.4)

As both, pk(t) and s(t) are periodic, they can be expressed using a discrete representation

in the Fourier domain, namely

pk(t) =

∞∑

m=−∞
cp,k[m]e

2πm t
tp . (5.5)

With the help of (5.5) and (5.2), we can now rewrite (5.4) in frequency domain [216].
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For clarity, let us begin with τ = 0 to obtain

ψk(0) =
1

tp

∫

tp

( ∞∑

m1=−∞
c∗p,k[m1]e

−2πm1
t
tp

)

·
(
∑

m2∈M
cs[m2]e

2πm2
t
tp

)

dt

=
∞∑

m1=−∞

∑

m2∈M
c∗p,k[m1]cs[m2]

1

tp

∫

e
−2πm1

t
tp e

2πm2
t
tp dt

︸ ︷︷ ︸

tp·δ[m1−m2]

=
∑

m∈M
c∗p,k[m]cs[m]. (5.6)

Equation (5.6) shows, not surprisingly, that only the M coefficients of pk(t) that

coincide with the spectral support of s(t) contribute to the coefficients ψk. Therefore, if

the hardware realization allows it, they should be chosen such that they are bandlimited

to B as well3.

Introducing the short hand notations cs ∈ CM×1 and cp,k ∈ CM×1 for the M coeffi-

cients that cs[m] and cp,k[m] in (5.6) we then have ψk(0) = c
H
p,k · cs. Moreover, it is now

easy to carry out the same computation for τ 6= 0. We obtain

ψk(τ) =
∑

m∈M
c∗p,k[m]e

−2πm τ
tp cs[m]

= cHp,k · diag{d(τ)} · cs, (5.7)

= cHp,k · diag{cs} · d(τ), (5.8)

where we have defined the vector d(τ) =
[

e
−2πm τ

tp

]

m∈M
.

Based on (5.8), the entire vector of observations ψ(τ) ∈ CK×1 can be described as

ψ(τ) = [ψ1(τ), . . . , ψK(τ)]
T = CH

p · diag{cs} · d(τ), (5.9)

where Cp = [cp,1, . . . , cp,K] ∈ C
M×K contains the coefficients of all the K sequences

pk(t). Equation (5.9) describes the observed output vector for a single delayed copy of

s(t). Since our receiver is linear, the observed vector y ∈ CK×1 for the input signal x(t)

3Compressive sampling architectures that use PN-sequences for the pk(t) have been proposed, e.g.,
the modulated wideband converter [216]. Although these are not strictly bandlimited to B, their
practical advantage is that they can be realized in hardware up to very high switching speeds.
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according to (5.3) is given by

y =

L∑

ℓ=1

αℓψ(τℓ) + w̃, (5.10)

where w̃ ∈ CK×1 is the effective noise vector.

5.4 Delay Estimation Procedure

5.4.1 Gridded Sparse Recovery Based Estimator

Equation (5.10) shows that our observation vector can be modeled as a weighted sum of

L terms ψ(τℓ) under additive noise. Since ψ(τ) is known to the receiver, this suggests

that the delays can be recovered from y if L < K. The difficulty in estimating the delays

lies in the fact that they can take any value from a continuous domain. A common and

very simple approach to tackle such problems is to discretize the parameter space into

an N -point sampling grid in τ referred to as τ
(G)
n , n = 1, 2, . . . , N . In the special case

of a uniform sampling grid, we have τ
(G)
n = (n− 1) ·∆τ , n = 1, 2, . . . , N where ∆τ = tp

N
.

Based on the sampled delays, we can define a basis Ψ ∈ CK×N according to

Ψ =
[

ψ
(

τ
(G)
1

)

, ψ
(

τ
(G)
2

)

, . . . , ψ
(

τ
(G)
N

)]

. (5.11)

Since the delays τℓ can take any value, they will not be on any predefined sampling

grid almost surely. However, it has been shown that if the sampling of the grid is not too

coarse, one can still use the fact that y is approximately sparse in Ψ and apply suitable

grid offset estimation procedures to correct for the mismatch between the grid points

and the actual delays, cf. e.g., [231] for a comparison of interpolation strategies in this

setting. Therefore, to facilitate the further explanations we now assume that all the

delays τℓ were exactly on the sampling grid, i.e., τℓ = τ
(G)
dℓ

for some dℓ ∈ {1, 2, . . . , N}.
This allows us to write y as

y = Ψ ·α+ w̃, (5.12)

where α ∈ CN×1 contains αℓ at the indices dℓ for ℓ = 1, 2, . . . , L and zeros otherwise. In

other words, besides for the noise, y is L-sparse in Ψ. The delay estimation problem
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can then be cast as a sparse recovery problem, e.g.,

min ‖α‖1 s.t. ‖y −Ψ ·α‖22 ≤ σ2, (5.13)

where σ2 is an estimate of the noise power. Note that it has been shown in [216] that

K ≥ 2L is sufficient to recover all the delays from y in the noise-free case.

5.4.2 Correlation Based Estimator

A simpler estimator is inspired by traditional, Nyquist-sampling based systems which

simply correlate the observed signal with the known waveform and then estimate the

location of the peak. Note that if there is only one path (L = 1) or if paths are very

well separated (by more than the width of the correlation peak), this method is in fact

optimal. Along these lines, the correlation based estimator in our setting is defined as

τ̂ = argmax
τ

∣
∣
∣
∣

ψ(τ)H · y
ψ(τ)H ·ψ(τ)

∣
∣
∣
∣
, (5.14)

where the peak search is not limited to a prespecified grid. It is instructive to expand

(5.14) for the special case L = 1 where we obtain

τ̂ = argmax
τ

α1 ·
ψ(τ)H ·ψ(τ1)
ψ(τ)H ·ψ(τ)
︸ ︷︷ ︸

ρ(c)(τ)

+
ψ(τ)H · w̃
ψ(τ)H ·ψ(τ) . (5.15)

Equation (5.15) shows that we are essentially finding the peak in the “compressed”

correlation function ρ(c)(τ).

5.5 Measurement Design

The previous sections have shown how the CS based receiver can be employed for delay

estimation. As we have seen, it provides a sparsifying basis ψ(τ) for the signal and

the atoms ψ(τ) depend on the choice of the signal s(t) (through the vector cs) and the

sampling functions pk(t) (through the matrix Cp). In this section, we shed some light

on their proper choice to obtain a good synchronization performance.
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An “ideal” choice of ψ(τ) would satisfy the conditions

ψ(τ1)
H ·ψ(τ2) ≈







0 τ1 6= τ2

const τ1 = τ2,
(5.16)

where the first condition asks for good cross-correlation properties between different

delays and the second condition guarantees that the measurement is equally sensitive

to all possible delays. This choice will ensure that the compressed correlation function

ρ(c)(τ) introduced in (5.15) is close to the ideal delta function. At the same time, it is also

beneficial for the gridded sparse recovery based estimator since the first condition asks

for low correlation between the columns of the sensing matrix Ψ (i.e., a low coherence)

and the second condition guarantees that all columns have similar norms (to achieve a

uniform sensitivity for all possible delays).

To measure how well a given matrix Φ satisfies (5.16), we can formulate an error

measure of the form e(Φ, τ1, τ2) = (ψ(τ1)
H ·ψ(τ2)−C ·δ[τ1−τ2])·ωτ1,τ2 where ωτ1,τ2 ∈ R≥0

is a weight function which allows to trade the weight between certain (τ1, τ2) regions,

e.g., between uniform sensitivity (τ1 = τ2) and low cross-correlation (τ1 6= τ2).

However, since it is difficult to minimize the error over the continuous variables τ1

and τ2 we consider it only on the N -point sampling grid introduced earlier. This leads

to an error matrix E(Φ) ∈ RN×N given by

E(Φ) =
[
e(Φ, τ (G)

n1
, τ (G)

n2
)
]

(n1,n2=1,2,...,N)

=
(
ΨH ·Ψ− C · IN

)
⊙Ω, (5.17)

=
(
DH · diag{c∗s} ·Cp ·CH

p · diag{cs} ·D − C · IN
)
⊙Ω,

=
(
DH ·

([
Cp ·CH

p

]
⊙
[
c∗s · cTs

])
·D − C · IN

)
⊙Ω,

where we have used (5.9) to rewrite Ψ and defined D = [d(τ
(G)
1 ), . . . , d(τ

(G)
N )] ∈

CM×N . Moreover, ⊙ in (5.17) denotes the Hadamard-Schur (elementwise) product and

Ω contains the weights ωτ1,τ2 . Based on (5.17), the quality of Ψ can be measured via an

appropriate norm of E. For instance, minimizing the (weighted) average squared error

corresponds to minimizing the squared Frobenius norm of E, whereas minimizing the

maximal error is achieved by minimizing ‖vec{E}‖∞. For simplicity, let us consider a

Frobenius norm, leading to the following criterion for Cp

min
Cp

∥
∥
[
DH ·

([
Cp ·CH

p

]
⊙
[
c∗s · cTs

])
·D − C · IN

]
⊙Ω

∥
∥
F
. (5.18)
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Note that the problem (5.18) belongs to the class of weighted low-rank approximation

problems which have been shown to be NP-hard [232] and do not admit a closed-form

solution in general. However, iterative methods with some performance guarantees

exist [233].

Note that in the special case Ω = 1N×N , problem (5.18) is equivalent to coherence

minimization which has been studied, e.g., in [221]. Moreover, due to its structure we

can actually solve it in closed form. From [4], we have the following theorem:

Theorem 2. For a row-orthogonal matrix A ∈ CM×N and a square Hermitian matrix

T ∈ CN×N , consider the following optimization problem over matrices Φ ∈ Cm×M with

m < M

argmax
Φ

∥
∥AH ·ΦH ·Φ ·A− T

∥
∥
2

F
. (5.19)

Then, a matrix Φ maximizes (5.19) if and only if ΦH ·Φ = Sm, where Sm is a rank-m

approximation of the matrix S = A ·T ·AH, obtained by setting all but the dominant m

eigenvalues of S to zero.

Applying Theorem 2 to (5.18) shows that Cp is optimal with respect to (5.18) if and

only if it can be written as

Cp =
√
C · diag{c∗s}−1 ·Q, (5.20)

where Q ∈ CM×K is an arbitrary unitary matrix. However, this result is not very useful

since it leaves a large space of possible solutions (any properly scaled row-orthogonal

matrix) that achieve the same minimum in the cost function.

Therefore, instead of using (5.20), we choose to solve (5.18) using numerical opti-

mization methods. Note that since the measurement matrix design is performed off-line

once only, the computational complexity of solving this problem is not a critical issue.

5.6 Compressive RBS Synchronization

We now consider the challenge of synchronizing the WSN for accurate TDE perfor-

mance. Now instead of transmitting a synchronization signal throughout the network,

we consider reference broadcast synchronization (RBS), where the reference signal is an

opportunistic signal already in the system (e.g., FM or TV signals).

The opportunistic signal, denoted as s(t), is generally a non-periodic signal. The
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Chapter 5 Compressive Time Delay Estimation

received signal at node k with a delay τk is given by

yk(t) = αk · s(t− τk) + wk(t), (5.21)

where wk(t) denotes the additive white Gaussian noise (AWGN) contaminating the

received signal, αk is the attenuation factor and τk is the true delay at the k-th node.

Note that (5.21) ignores the effect of multipath propagation for simplicity, which we

discuss later.

For each synchronization attempt, a reference transmitter informs all nodes to start

recording an L point sampled version of yk(t). Let yk = [yk[0], yk[1], . . . , yk[L− 1]]T ∈
CL be the windowed sampled version of the recorded signal yk(t) at sampling times t0 · ℓ,
ℓ = 0, 1, . . . , L− 1. For simplicity, we assume that the delays τk are integer multiples of

the sampling times t0, i.e., τk = dk · t0 for dk ∈ N.

The reference node records an N -sample version of its own observed signal yref(t),

denoted by yref ∈ CN , which is then broadcasted to all other nodes as the synchroniza-

tion template. By comparing this reference signal to its own observed signal yk, each

node can estimate its relative delay to the reference node. Due to the aperiodicity of the

SOO one has to ensure that the window of s(t) contained in yref falls completely within

the window of s(t) captured in yk for all nodes. However, since it is unknown in advance

whether τk < τref or τk > τref the reference node needs to start recording yref a certain

number of samples D0 after the other nodes have started recording yk and finishes D1

samples before the other nodes stop. Thereby, we have L = D0 + N + D1 > N . The

relative delay between yk and yref that the k-th node observes, referred to as ∆dk, is

then related to the delays dk and dref via ∆dk = D0 + dk − dref . Consequently, D0 must

be chosen such that ∆dk is always non-negative, i.e., according to the highest expected

delay offset between the reference node and any other node. Since D0 is a fixed system

design parameter, it is known to all nodes so that the relevant timing information can

be extracted once ∆dk is estimated.

Now, since yref represents a piece of the signal s(t) completely inside the L-point

sampling window chosen for yk with a relative delay of ∆dk samples, we can write

yref = αref · sref +wref and yk = αk · sk +wk, where

sref =
[

0N×∆dk IN 0N×L−N−∆dk

]

· sk. (5.22)

By correlating yref with all N -point subvectors of yk, each terminal can determine

its relative delay from the location of the peak of the correlation function. Note that the
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5.6 Compressive RBS Synchronization

accuracy of the synchronization depends on the width of the auto correlation function

(ACF) of yref , i.e., for accurate localization, it should be a wideband signal.

The cross correlation function between yref and all N -point subvectors of yk can be

defined as

ρk[∆d] =
1

L
yH
ref · yk[∆d], (5.23)

where yk[∆d] =
[

0N×∆d IN 0N×L−N−∆d

]

· yk ∈ CN is the N -point subvector of yk

with relative offset ∆d = 0, 1, . . . , L−N .

The estimated relative delay ∆d̂k at node k is then given as

∆d̂k = argmax
∆d

|ρk[∆d]|. (5.24)

In the ideal noise-free case, we obviously have ∆d̂k = ∆dk (i.e., ρk[∆d] has a peak at

∆d = ∆dk).

The main drawback of this wireless synchronization approach is that the reference

signal yref has to be broadcast by the reference node to all the other nodes. Since

accurate localization requires the signals to be wideband, this transmission requires a

significant amount of bandwidth which is highly undesirable. Therefore, we propose

the following remedy, which is based on Compressed Sensing (CS) theory: Instead of

yref , the reference node broadcasts a compressed vector zref = Φ · yref ∈ CM×1 where

Φ ∈ CM×N . With M < N , transmitting zref requires less bandwidth than transmitting

yref .

This approach may look strange since yref cannot be assumed to be a compressible

signal and therefore, yref cannot be recovered from zref in general (i.e., there is a loss

of information). However, note that the goal is not to recover the opportunistic signal

but instead to recover (the peak of) its autocorrelation function. Since the latter is in

fact quite sparse, it can be well compressed which is achieved by the proposed method,

as we show below.

After the nodes have received zref , the compressed correlation function ρ
(c)
k [∆d] is

estimated via

ρ
(c)
k [∆d] =

1

L
zHref · zk[∆d], (5.25)

where zk[∆d] = Φ ·yk[∆d] is the compressed version of yk[∆d] and yk[∆d] is an L-point

subvector of yk according to (5.23). Then, the k-th node obtains its estimate ∆d̂k from

the peak of ρ
(c)
k [∆d] according to (5.24).
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To see why this procedure works, we can express the correlation function in the

compressed domain in terms ofyk and yref via

ρ
(c)
k [∆d] =

1

L
yH
ref ·ΦH ·Φ · yk[∆d]. (5.26)

Now, comparing (5.23) and (5.26), we see that the only difference between the origi-

nal correlation function ρk[d] and the correlation function ρ
(c)
k [d] based on the compressed

reference signal is in the term ΦHΦ which is the Gram matrix of the compression matrix.

However, CS theory has shown that one can find matrices Φ such that ΦHΦ is close

to an identity matrix. Often, Φ is drawn randomly [31] which is a good strategy if the

problem dimensions are not too small. Therefore, (5.26) is expected to have its main

correlation peak at ∆d = ∆dk as long as the compression rate is not too high. At the

same time, a degradation of the cross-correlation level is expected, which we show via

numerical results in Section 5.7.

Note that some simplifying assumptions have been made in this work that need

to be lifted before it can be applied in real systems. Firstly, we have not considered

the multipath nature of the wireless propagation channel. We consider an extension

to the multipath case feasible, e.g., by considering approaches based on signal cross-

correlations [234] or by estimating more than one dominant peak in the ACF [217].

Secondly, we have limited our attention to relative delays that are integer multiples

of the sampling time. The entire analysis can be extended to the case of fractional

delays by applying oversampling to the opportunistic signals before applying the com-

pression. For instance, to evaluate the correlation function at sample 0.25, oversample

the received signal by a factor of 4, shift by one subsample, downsample; then compress

and compare to the compressed reference signal (which remains the same). The amount

of oversampling applied represents a tradeoff between the computational complexity and

the final synchronization accuracy that shall be achieved.

5.7 Numerical Results

In this section we present some numerical results to show the performance of the pro-

posed CS-based architecture for delay estimation and to demonstrate the advantage of

using the compressed synchronization design according to our proposed methodology.
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5.7.1 Compressive Time Delay Estimation

The observed signal is generated according to (5.10). The transmit signal is chosen

according to cs[m] = eϕm where ϕm is drawn from a uniform distribution in [0, 2π).

In other words, the transmitter distributes its power evenly across frequency, which

corresponds to a sinc-like pulse in the time domain. The noise samples in the noise vector

w are drawn from a zero-mean circularly symmetric complex Gaussian distribution with

N0 =
1

SNR
.

The coefficients Cp are modeled as eϕm,k where ϕm,k are drawn from a uniform

distribution in [0, 2π) for the random approach and used as optimization variables in

the proposed optimized choice of Cp. The latter is found by solving (5.18) via Matlabs

numerical optimization toolbox. The weight matrix is chosen according to Ω = (1−ρ) ·
IN +ρ ·1N , where ρ ∈ R[0,1] allows to adjust this trade-off: values close to zero put more

weight on the main diagonal (for uniform sensitivity) whereas values closer to one shift

the weight to the off-diagonal elements (for low cross-correlation). The results shown

here are obtained for ρ = 0.5. Finally, the constant C is set to K ·M .

14 16 18 20 22 24
10

−4

10
−3

10
−2

10
−1

SNR [dB]

R
M

S
E

 

 

Reference Low Bandwidth

Random

Optimized

Reference Full Bandwidth

Figure 5.3: Relative RMSE of the delay τ1 (in units of tp) vs. SNR for K = 5 branches and
M = 20 spectral lines.

Figure 5.3 depicts the result for a system with K = 5 branches that uses M = 20

spectral lines (i.e., the compression rate is 4). The relative root mean square delay

estimation error of the estimator (5.15) (in units of tp) is estimated over 100’000 Monte
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Carlo trials. A single path scenario is chosen where α1 = 1 and τ1 is drawn randomly

from [0, tp). Since we have a single path, the correlation-based estimator according to

(5.14) is used to estimate the delays.

For comparison, the achievable accuracy of a traditional system that uses no com-

pression but a full-rate ADC is also shown (“Reference Full Bandwidth”) as well as the

performance of a system that uses 1/4 of the bandwidth (“Reference Low Bandwidth”).

The results demonstrate that the optimized measurement kernel outperforms the ran-

domly chosen one, in particular for lower SNRs. This behavior is mainly due to the

outliers that occur due to the sidelobes in the compressed correlation function. More-

over, the CS-based system achieves an accuracy better than a Nyquist system operating

with a reduced bandwidth / sampling rate.

To shed further light on this aspect, Figure 5.4 depicts the estimated complementary

cumulative distribution function (CCDF) of the RMSE for the same simulation at an

SNR of 13 dB. We can see that the random choice of the measurement kernels is more

prone to outliers. This behavior becomes even more pronounced for lower SNRs.
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Figure 5.4: Histogram of the relative root squared error of τ1 for K = 5, M = 20, and an SNR
of 13 dB.

Figure 5.5 shows the estimation result for a L = 6 path channel for K = 10,M = 20,

and an SNR of 30 dB, using the estimator from (5.13). The true value of delays and

amplitudes are indicated by the markers labeled “True” and compared to the proposed
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Figure 5.5: Estimation of a multipath channel with L = 6 paths for K = 10, M = 20, SNR =
30 dB

compressed approach (using an optimized matrix for ρ = 0.5) and the low/full band-

width reference.

The result shows that the compressed approach finds all the taps while the low

bandwidth version misses some peaks (and finds comparably strong spurious ones).

5.7.2 Compressive RBS Synchronization

We consider an OFDM signal as the opportunistic signal to be used for synchronization.

An L = 2048 sample window is recorded at each node. The reference signal is chosen

to be the first N = L/2 samples with D0 = L/4. The received signals at the kth node

and the reference node have a delay of dk = 36, and dref = 65 samples, respectively.

Therefore, the correlation peak is expected at the sample index ∆dk = D0 + dk −
dref = 483. The additive noise vectors are drawn from a zero mean circularly symmetric

complex Gaussian distribution with variance PN, corresponding to a (pre-correlation)

signal to noise ratio (SNR) of 1/PN.

To implement our compressed correlation technique, we use a random compression

matrix Φ ∈ CM×N , where M is the length of the compressed signal to be communicated

throughout the network, i.e., the compressed signal has a bandwidth of M
N
·B = B

R
, where

R = N/M denotes the compression rate. The coefficients of Φ are drawn from a zero

mean circularly symmetric complex Gaussian distribution as well where each element

has variance 1
N
.

Figure 5.6 shows the correlation functions computed using the proposed compressed

design for an SNR of 0 dB (for clarity, only the region around the correlation peak is

shown).
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Figure 5.6: Comparison of the correlation function ρ
(c)
k [∆d] at a node k with ∆dk = 483 for

different compression rates R.
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Figure 5.7: Empirical probability of correctly detecting the main correlation peak vs. the SNR
for different compression rates R.
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For comparison, the graph labeled “Full Bandwidth” shows the result when the

reference node sends an uncompressed (high bandwidth) copy of the opportunistic signal

to all nodes and they use that to obtain the correlation. As expected, the compressed

designs achieve almost the same accuracy as the high bandwidth system (i.e., they all

have a peak at the correct delay ∆dk = 483) at a much lower bandwidth. Figure 5.6

also shows that higher compression leads to higher side lobes.

To further analyze this behavior, we have conducted an additional experiment shown

in Figure 5.7. Here, we vary the SNR by scaling all the noise samples to variance 1/SNR.

We compute the empirical probability that the main correlation peak is identified at the

correct location, i.e., Pr[∆d̂k = ∆dk]. The empirical probabilities are averaged over

500 trials where each trial represents a new realization of the noise samples as well as

the compression matrix Φ. Higher compressions move the curve to higher SNRs. This

means that to achieve the same success rate a larger SNR is required when compared

to the uncompressed approach. This can be explained according to (5.26) where the

correlation between the columns of the compression matrix rises and henceΦHΦ deviates

stronger from the identity matrix, distorting the shape of the correlation function.

5.8 Summary

In this chapter, we have investigated a system architecture for delay estimation via

Compressed Sensing (CS). We propose to use a bank of K periodic functions pk(t) that

multiply the received signal and are sampled once per period. Thereby, the effective

sampling rate is reduced by a factor which depends on the period, the bandwidth, and

the number of channels K.

We then discuss the design of the functions pk(t) based on their frequency domain

representation. We propose an approach that directly optimizes the shape of the auto-

correlation function in terms of the choice of pk(t) and demonstrate that it outperforms

a random choice in terms of the delay estimation accuracy.

We have also discussed a compressed technique for temporal synchronization with

high bandwidth opportunistic signals. The main idea is to let the reference node transmit

a compressed form of the reference signal for synchronization and thus reducing the data

rate needed for communication between the nodes.

We proposed a random design of the compression matrix inspired by the compressed

sensing findings about designing measurement ensembles that preserve the information

rate of the original system. We have shown that the compression does not significantly

affect the correlation function obtained at the receiving nodes compared to the high
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bandwidth correlation functions obtained from the original non-compressed reference

However, the expense for the reduction in bandwidth is an increased sidelobe level

of the correlation function. This effect mirrors a degradation in the effective SNR which

means that there is a tradeoff between the bandwidth reduction and the SNR that can

be controlled by the compression ratio.
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Compressive Spatial Channel

Sounding

This chapter deals with the application of compressive arrays discussed in Chapter 4

to channel sounding. After the motivation in Section 6.1, the main channel sounding

principles are summarized in Section 6.2. In Section 6.3, the usage of compressive arrays

for spatial channel sounding is investigated and then evaluated by numerical simulations

based on a real scenario in Section 6.4. The chapter is then summarized in Section 6.5.

6.1 Motivation

Electromagnetic (EM) wave propagation between transmitter (TX) and receiver (RX)

antennas undergoes a variety of interactions with the objects of the environment leading

to multiple propagation paths that are spread in directions of departure (DoD) and

arrival (DoA), time delay and Doppler. Proper handling of this multipath diversity is

the key enabler to achieve high data rate, robust operation and ubiquitous coverage

in mobile radio. Therefore, the multidimensional structure of electromagnetic wave

propagation has to be studied, analyzed, and identified.

Multidimensional channel sounding is the key technology for experimental analysis

of electromagnetic wave propagation in mobile radio channels [235]. A channel sounder

is a multidimensional data recording system, which measures and identifies the multi-

path propagation structure in mobile radio. These measurement results are required for

experimental studies of multipath propagation, channel modeling and mobile radio sys-

tem performance prediction. If conventional Nyquist schemes are applied, the recorded

data volume is determined by the number of antenna array elements at TX and the RX,

the length of the channel impulse response and the number of the observed snapshots
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over slow time. A wide variety of high resolution parameter estimation (HRPE) is avail-

able [19] to estimate these structural parameters by fitting an appropriate data model

to the recorded data.

The number of measurements is orders of magnitude larger than the number of pa-

rameters. This suggests that there is a significant amount of redundancy (sparsity) in

the recorded signals. In this chapter, it is our goal to take advantage of compressive sens-

ing (CS) [30,31,101] to reduce the amount of data stored and the hardware complexity

without losing any relevant information but saving a huge part of resources. Moreover,

snapshot recording time (and thus repetition time) can be considerably reduced (e.g., by

minimizing the number of recorded Tx/Rx MIMO links). This allows better handling of

dynamic scenarios (i.e., increasing the Doppler range) which is still the highest challenge

in MIMO channel sounding.

The application of CS to channel sounding is hardly described in literature. A

Channel Sounding Xampler was proposed in [236] based on the sub-Nyquist Xampling

architecture [237] reducing the measurement acquisition time while simultaneously es-

timating time delays, multipath amplitudes, and angles of arrival. However, the main

focus was to reduce the sampling effort in the time-frequency domain by exploiting the

sparsity of the channel there. Otherwise, related ideas can be found in the application

of compressed sensing to MIMO radar [238] and compressive channel sensing [46].

In this chapter, we exploit the application of CS to the double-directional channel

sounder in the spatial domain that includes joint DoA/DoD estimation. In particular,

the CS paradigm can be implemented in the spatial domain by employing M antenna

elements that are combined into a smaller number of m < M active RF chains using

an analog combining network (at the transmitter, the receiver or both). Since only m

channels need to be sampled and digitized, the hardware complexity remains comparably

low while allowing us to cover a larger aperture (and thus be more selective) than a

traditional, Nyquist (λ/2) spaced m-channel antenna array. Based on the fact that

the underlying signal is sparse in the angular domain, CS theory suggests that it can

be recovered from m < M measurements, provided that the measurement kernel is

appropriately chosen.

A compressive spatial channel sounder is proposed and evaluated based on real sce-

narios showing superior advantages in terms of time, hardware complexity and resolu-

tion. In particular, the proposed approach reduces the total number of switching peri-

ods, which implies a reduced channel acquisition time and thus an improved Doppler

bandwidth. On the other hand, the compressive approach reduces the number of RF

chains, which is a very relevant advantage in terms of the overall receiver complexity,
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the amount of data to be processed in the digital domain (e.g., FPGA), power consump-

tion, as well as RF hardware calibration. Alternatively, for the same measurement time

and/or hardware complexity, one can increase the number of array elements to cover a

larger aperture and so achieving better performance in terms of resolution.

6.2 Channel Sounding

The definition of the channel sounding data model is crucial for parameter estimation.

It has to represent the reality of wave propagation and the influence of the measurement

device. We prefer a data model comprising two components which can be handled

separately throughout the estimation procedure. The first part is deterministic and

results from specular-like reflections. The second part represents distributed diffuse

scattering which typically occurs in a complicated, multipath rich environment. We

focus on the first part and leave the second for future works (see e.g., [239] for more

details about handling diffuse scattering).

Consider measuring the channel transfer function between two points in space (nTX

for the n-th antenna array element at the transmitter and mRX for the m-th receiver

element) inside a certain bandwidth. A simplified model for the channel in the mul-

tidimensional aperture domain is given by a superposition of a discrete number of S

propagation paths [240].

Expressed in the frequency domain, we can write

h(f,mRX, nTX) =
S∑

s=1

γs · e−2πfτs · gm,RX(Ωs,RX) · gn,TX(Ωs,TX), (6.1)
where f

denotes the frequency, γs ∈ C and τs ∈ R are the amplitude and delay of the s-th path,

Ωs,RX and Ωs,TX denote the Direction-of-Arrival (DoA) and Direction-of-Departure

(DoD), in general in both azimuth and elevation domain, of the s-th path at the receiv-

ing and the transmitting side. Moreover, gm,RX and gn,TX denote the complex radiation

pattern of the m-th receiver and n-th transmitter element, respectively1. The complex

patterns describe the gain of the antenna itself as well as the phase shift caused by the

geometrical arrangement within the antenna array.

The temporal and frequency characteristics are measured by exciting the channel

with a well defined transmit signal. The channel impulse response is obtained by post-

processing the recorded data, depending on the type of transmit signal. Common types

of signals are pseudo-noise sequences with subsequent correlation of the measured data

1In general they will depend on frequency f as well but we assume here that the bandwidth is not
too high.
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with the transmit sequence as well as specially designed periodic multi-tone signals. The

benefit of multi-tone signals is the easier control of the occupied bandwidth (theoretically,

it is rectangularly shaped). Furthermore, the transmit signal can be removed from the

recorded data (deconvolution of the transmit signal) by a simple division in the frequency

domain. This step can be combined with the calibration of the RF equipment resulting

in very little additional effort.

For measuring the spatial properties of the channel, MIMO channel sounders are

used. They feature antenna arrays at both the transmitter and receiver side. Specif-

ically, double-directional measurements that include joint DoA/DoD estimation allow

the separation of the directional dependent influence of the measurement antennas from

the channel measurements which is a prerequisite of antenna-independent channel char-

acterization [235].

In theory, all combinations of transmitter and receiver array elements can be mea-

sured at the same time and frequency. While this can be achieved with parallel RF

chains at the receiver, it is not meaningful to excite all transmitter elements with the

same signal at the same time, due to the inability to distinguish the different transmit-

ters at the receiver. To be able to separate TX antennas, one has to choose transmit

sequences that are at least linearly independent over the antennas (or better yet, orthog-

onal). These can be Code, Frequency, or Time Division Multiplexing (CDM or FDM

or TDM) or combinations thereof. The most established technique is Time Division

Multiplex (TDM). TDM based sounders measure the response from each TX antenna

element separately by switching. During a specific time frame, only a single transmitter

antenna element is active. For this reason, TDM only needs one TX RF chain followed

by a switch, which makes it very attractive from the hardware complexity point of view.

We therefore focus on TX TDM exclusively in this paper.

For the measurement at the receiver, we have two main options. The first is to let

all M RX antennas listen jointly which then requires M RF chains. The other option is

to apply receive switching as well. The advantage of the latter is the use of a single RF-

chain and ADC/DAC which relaxes the requirements of the RF calibration dramatically.

However, the price we pay is anM times longer measurement time. Intermediate options

between the two extremes are possible as well, which allows us to control the trade-off

between the hardware complexity and the measurement rate (which controls the Doppler

bandwidth we can cover).

At TU Ilmenau, a MIMO channel sounder is available which is designed following the

TDM principle [241, 242] at TX and RX. The RUSK-HyEff-Sounder was used through-

out numerous channel sounding campaigns where a variety of different antenna arrays
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suitable for high resolution parameter estimation were employed. The obtained data

was used to directly evaluate the performance of different MIMO systems [243], as well

as an input for calculating parameters of the channel model [244].

6.3 Compressive Spatial Channel Sounding

The number of array elements and the choice of the antenna array geometry heavily

determines the performance of any subsequent high resolution parameter estimation

algorithm. According to the spatial sampling theory, the distance between adjacent sen-

sors should be less than or equal to half a wavelength of the impinging planar wavefronts,

otherwise it leads to grating lobes (sidelobes) in the spatial correlation function which

correspond to near ambiguities in the array manifold. At the same time, to achieve

DoA/DoD estimation with a high resolution, the receiving arrays should have a rela-

tively large aperture [28]. This implies that arrays with a large number of antennas are

needed to obtain a high resolution, which then requires complex hardware processors

and/or long measurement times. The main goal of this work is to exploit the sparsity

of the channel in the spatial domain considering only the specular-like components of

the channel towards reducing that measurement complexity (i.e., hardware and time).

Recently, compressed sensing (CS) has been widely suggested for applications that ex-

hibit sparsity in space to reduce the measurement efforts and/or improve the estimation

performance (i.e., spatial resolution). It is highlighted in [29] that if the electromagnetic

field is modeled as a superposition of a few plane waves, the DoA/DoD estimation prob-

lem can be expressed as a sparse recovery problem. Since then, many sparse recovery

algorithms became popular in the CS field for the DoA/DoD estimation problem as an

alternative to existing parameter estimation algorithms [175, 176]. On the other hand,

there has been comparably little research towards applying the CS paradigm spatially

to antenna arrays. Yet, this is an attractive idea since the sampling of RF signals is

a costly task as each receiver chain requires hardware components such as low-noise

amplifiers, filters, mixers, and A/D converters. Therefore, reducing the number of chan-

nels that have to be sampled could significantly lower the hardware complexity and the

measurement time [8,45,150]. In this work, we extend this idea to the double directional

MIMO scenario with antenna arrays at both the transmitter and the receiver. We focus

on the spatial domain where the ultimate goal is to estimate the DoAs and the DoDs.

Consider a multipath channel scenario with S paths. A MIMO channel sounder is

used with N transmit antennas and M receive antennas. For a single snapshot and
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assuming only a narrowband scenario, the channel can be written as:

h(mRX, nTX) =
S∑

s=1

γs · am,RX(Θs,RX) · an,TX(Θs,TX), (6.2)

where γs ∈ C and τs ∈ R are the amplitude and delay of the s-th path, Ωs,RX and

Θs,TX denote the Direction-of-Arrival (DoA) and Direction-of-Departure (DoD) in the

azimuth domain, of the s-th path at the receiving and the transmitting side. Moreover,

am,RX and an,TX denote the array response of the m-th receiver and n-th transmitter

element, respectively.

In matrix notation, one can write

H = AT
RX · Γ ·ATX, (6.3)

where H ∈ CM×N represents the channel transfer function in the spatial domain, Γ is

a diagonal matrix with the paths’ power on the main diagonal, ARX and ATX are the

array steering matrices for the receive and transmit arrays respectively.

The main idea of spatial CS is that instead of measuring each antenna separately,

we sample only a linear combination of the signals from all the antennas. Such linear

combinations can be implemented in the analog domain, e.g., via networks of power

dividers and phase shifters (see [8] for more details).

For channel sounding, we apply this idea at both the TX and the RX. For the TX,

this means that instead of transmitting from one antenna at a time and cycling through

all antennas, we transmit via a set of beams, where each beam represents a complex

weight vector applied to the TX antennas. We can write this as a sequence of transmit

signals ϕTX,k · sk, k = 1, 2, . . . , n, where ϕTX,k ∈ CN and sk are the weight vector and

the transmit symbol in the k-th TX switching period, respectively.

At the receiver, instead of measuring the antenna signals directly, we form linear

combinations via receive weight vectors denoted as ϕRX,ℓ ∈ CM , which can again be

implemented as an analog beamforming network. Here, ℓ = 1, 2, . . . , m represents the

receive measurement index. After cycling through all n TX beams and all m RX weight

vectors, we have collected a total number of n ·m compressive observations which we

can write as

Hc = ΦT
RX ·AT

RX · Γ ·ATX ·ΦTX, (6.4)

whereHc ∈ Cm×n denotes the compressive spatial channel transfer function and ΦRX ∈
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Cm×M and ΦTX ∈ Cn×N represent the RX and TX combining matrices which contain

the vectors ϕRX,ℓ and ϕTX,k, respectively.

Compared to the Nyquist approach, this reduces the total number of observations

from M · N to m · n where n < N and m < M . This implies some relevant practical

benefits. First of all, the proposed approach reduces the total number of TX switch-

ing periods to n < N , which implies a reduced channel acquisition time and thus an

improved Doppler bandwidth. For the receiver, the concrete advantage depends on the

implementation choice which was discussed in Section 6.2. If we choose to employM RX

RF chains, the compressed approach reduces the number of RF chains to m < M , which

is a very relevant advantage in terms of the overall receiver complexity, the amount of

data to be processed in the digital domain (e.g., FPGA), power consumption, as well

as RF hardware calibration. If we choose to measure the RX chains sequentially and

employ receive switching, the compressive approach reduces the number of measurement

cycles further compared to Nyquist since instead of M · N we then only require m · n
cycles.

Note that another advantage of such a compressive architecture is that it allows us to

reconfigure the array on the fly without any change in the receiver hardware which can

be very advantageous in many applications. In [45] and its follow-up papers, it has been

suggested to consider measurement kernels Φ drawn from random distributions such

as Gaussian or Bernoulli distributions. Such a choice is popular due to its simplicity

and certain mathematical guarantees on the uniform support recovery, i.e., recovering

arbitrary subsets of K non-zero entries in s(t). In our recent works [4,8], we have shown

that optimizing Φ can improve the performance significantly. We will compare different

constructions of Φ via simulations and discuss their implementation.

After having the compressive measurements, the same ML-based estimators (e.g.,

The RIMAX [245]) could be applied to multidimensional channel parameter estimation

from field experiments. In this paper, our goal is to evaluate the performance of recov-

ering the channel parameters from noisy observations. To this end, the performance

metrics we consider are the conditional (deterministic) Cramér-Rao Bounds (CRBs) as

a proxy to the performance of ML-type estimators. This is done since ML estimators

are known to (asymptotically) achieve the CRB and therefore it provides an abstrac-

tion over the concrete ML implementation. Moreover, the computation of the CRBs

is much simpler allowing for larger ensembles to be considered. In addition, since the

compression is a linear operation, it is very easy to find the CRB for the compressed

model (6.4), cf. [8]. Future works would feature direct application of an ML-based esti-

mator to the compressive measurements from realistic scenarios towards obtaining the
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channel parameters.

6.4 Numerical Simulations

In this section, we present some numerical results to demonstrate the compressive spa-

tial channel sounding concept and evaluate its advantages compared to conventional

sounding. At TU Ilmenau, a MIMO channel sounder is available which is designed fol-

lowing the TDM principle at the TX and the RX. The sounder was used throughout

numerous channel sounding campaigns where a variety of different antenna arrays suit-

able for high resolution parameter estimation were employed. We consider a realistic

scenario based on a sounding campaign of the RESCUE project [246] at the campus of

TU Ilmenau. Here, a V2V-type setup was considered at the campus of the TU Ilmenau

at 2.35 GHz carrier frequency and 36 dBm transmit power. The antenna arrays used

at both the transmitter and receiver are two 16-element Stacked Polarimetric Uniform

Circular Array (SPUCA) placed on two trolleys. The main purpose is to investigate the

impact of a moving transmitter on the channel observed by the receiver. Therefore, a

grid of transmitter locations was selected where the grid points are separated by 10m on

each lane (two adjacent grid points on the same lane are 10m apart). The transmitter

was located on each of the grid points and the receiver was slowly moved on the opposite

lane. Figure 6.1 shows the grid positions of the TX and the RX where the black circle

highlights the positions we use for our simulations.

After the measurement campaign, we have ran the recorded data through the ML-

based high-resolution parameter estimation scheme RIMAX [245] to extract the param-

eters of the individual propagation paths. In particular, for each path, its DoA, DoD

(azimuth and elevation), delay, and polarimetric path weights were estimated. This al-

lows to remove (de-embed) the effect of the antenna array that was used to measure the

channel. It also allows to resynthesize the channel with a reduced number of relevant

paths to simplify its complexity.

Since this paper presents a first study on the possibility of applying spatial CS to

the sounding problem without considering all the dimensions (e.g., frequency), the main

goal of the numerical evaluation is to provide a proof of concept. We therefore simplify

the complexity of the channel significantly by considering only the four dominant paths

for a specific TX/RX position and for a single snapshot. Focusing only on the spatial

domain, we aim at estimating the DoAs and the DoDs shown in Figure 6.2. Note how

there are two paths that are very closely spaced in terms of their DoA, which makes it

challenging to resolve them.
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Figure 6.1: Top view of the locations of the transmitter and the receiver during the measurement
campaign considered.
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Figure 6.2: The DoAs and the DoDs of the 4 most dominant paths for the considered scenario.
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Figure 6.3: The CCDF of the mean CRB of the DoAs and DoDs for 10000 random realizations
of ΦTx and ΦRx with 4 different designs.

As mentioned earlier, the performance of the compressive sounder will be evaluated

based on the CRBs of the DoA/DoD estimation as a proxy to the performance of ML-

type estimators. Figure 6.3 studies the performance of the compressive spatial channel

sounder for DoD/DoA estimation and compare it to the uncompressed cases. For the

case where we have a full array (i.e., fully meshed with no combining network) with

16 TX array elements and 16 RX array elements, the mean CRB of the DoAs and

the DoDs is calculated and then used as a reference onward. Let’s call this CRBsmall.

The large array is the one where we have 32 elements instead of 16 which we then call

CRBlarge. The compressed case is the one where we have 32 antenna elements but only

16 measurements (and/or 16 RF channels) and this we call CRBcompressed. The mean

CRB values are calculated for both cases (i.e., the large array and the compressed one)

and then normalized to the mean CRB of the small array for comparison. We call

this the CRB Ratio where the CRBlarge and the CRBcompressed shown are normalized to

CRBsmall (e.g., CRB Ratio =
CRBlarge

CRBsmall
). The main advantage of this ratio is that it is

independent of the SNR. No matter what’s the SNR, we will always have this factor in

variance reduction in the CRBs.

The coefficients of the combining networks ΦTx and ΦRx are then selected according

to 5 different criteria which we name Gaussian, Rademacher, Random Phase, Switching
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and Optimized. The complementary cumulative distribution function (CCDF) for 10000

realizations of the random combining networks is shown (i.e., the Gaussian; the Random

Phase, the Rademacher, and the Switching). In the Gaussian case, the coefficients are

drawn from a from a zero mean circularly symmetric complex Gaussian distribution. In

the Random Phase case, a unit norm is chosen while the phases are drawn uniformly

at random from (0, 2π]. The Rademacher setup is the one where the coefficients are

drawn randomly from a Rademacher distribution with only ±1s as possible outcomes

at a 50% chance. The switching design is the one where for each measurement, one TX

and one RX antenna/port is selected at random. The optimized design is the one we

recently proposed based on optimizing the spatial correlation functions for DoD/DoA

estimation [4].

The results show that the optimized design is the best 90% of the cases while the

switching case is the worst. The Gaussian, the Random Phase and the Rademacher

constructions achieve similar performance. However, from an implementation point of

view, the switching design is the most appealing and realizable one where only a switch

is needed to construct the network (one at the TX and one at the RX). The Rademacher

design with only ±1s requires only adders and inverters (180◦ phase shifters) to realize,

which make them the second choice to implement. Both the Random Phase and the

Optimized cases require phase shifters with an almost continuous phase range which

make them very challenging to realize. The Gaussian case with a varying amplitude

would make the implementation even more challenging and so that is why it is better

to avoid it. We are currently investigating the optimization of the combining network

with regard to the implementation challenges as well as the estimation performance.

The figure shows that the CRB of the compressive array is not as good as that of the

full large array of 32 elements but still much better (more than 10 times better) than

that of the uncompressed, conventional 16-element array. In case of a TDM TX/RX

architecture, this means lower measurement time compared to the full 32 array case.

Instead of taking 32× 32 = 1024 measurement cycles, only 16× 16 = 256 (i.e., only 1/4

the number of measurements compared to the full array) would suffice and so increasing

the Doppler range without degrading the performance drastically. This can be of great

importance when considering fast varying channels with a large Doppler spread. In

case of a TDM TX and a linear combining compressive RX, we do 16 × 32 = 512

measurements and reduce the hardware complexity to 16 < 32 RX RF chains.

Alternatively, for the same measurement time and/or hardware complexity, one can

increase the number of array elements to cover a larger apperture and so achieve better

performance in terms of resolution. Figure 6.4 shows the improvement in the CRBs
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Figure 6.4: The improvement in the CRBs using larger number of array elements at the RX with
a fixed number of 32 elements at the TX.

proportional to increasing the number of array elements (the Rademacher design is used

to obtain ΦTx and ΦRx). The TX has 32 elements with a combining network of only

16 measurements. The RX takes only 16 compressive measurements but the number of

elements is varied from 32 to 64 to 128 elements. The CRBs of the DoA/DoD estimation

improves (i.e., reduces) significantly while keeping the measurement complexity the same

(i.e., 16 measurements). This can be interpreted as increasing the array aperture by using

more antenna elements at the RX and so achieving a better resolution.

6.5 Summary

In this chapter, we consider the application of compressive sensing (CS) to channel

sounding in the spatial domain. We proposed a compressive spatial channel sounding

architecture where the antenna elements at the transmitter, the receiver or both are

combined into a smaller number of channels using an analog combining network. The

proposed approach reduces the total number of switching periods, which implies a re-

duced channel acquisition time and thus an improved Doppler bandwidth. On the other

hand, the number of RF chains can be reduced, which is a very relevant advantage

in terms of the overall receiver complexity, the amount of data to be processed in the
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digital domain (e.g., FPGA), power consumption, as well as RF hardware calibration.

Alternatively, for the same measurement time and/or hardware complexity, one can in-

crease the number of array elements to cover a larger aperture and so achieving better

performance in terms of resolution. Based on a realistic scenario, we show by simulations

the superiority of the proposed compressive architecture in terms of the measurement

complexity (i.e., time and hardware) and/or estimation performance.
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Chapter 7

Conclusions

This chapter concludes this thesis and summarizes its main contributions.

Thesis summary

In this thesis, the application of compressive sensing (CS) to the problem of direction

of arrival (DOA) estimation has been examined and its applicability to the time delay

(TD) estimation and channel sounding has been investigated. The major objective

was to develop approaches that allow to minimize the hardware complexity in terms

of receiver costs and power consumption, while providing a desired level of estimation

accuracy and robustness in the presence of multiple sources and/or multiple paths.

We started in Chapter 2 by providing the background related to the work in this

thesis. We mainly discussed the underlying principles of CS and DOA estimation.

Chapter 3 addressed the problem of CS-based DOA estimation for off-grid sources.

We studied the spectrum in the case of off-grid sources qualitatively and found that

most of the energy of the off-grid source after reconstruction is concentrated in the

two neighboring grid points. Based on this observation, we derived the best two-term

approximation coefficients explicitly and showed that the approximation error is very

small. Moreover, we proposed a very simple scheme to estimate the grid offset based on

the observed coefficients. For multiple sources, we showed that this simple scheme still

works well when they are sufficiently spaced. For closely spaced sources, we proposed a

numerical procedure for the joint estimation of their offsets from the recovered spectra

at their neighboring grid points. Afterwards, the CS-based formulation of the DOA

estimation problem has been extended to the polarimetric model. We discussed the off-

grid problem in the polarimetric setting and proposed an estimator for the grid offset

of one source (or an isolated source) as well as a joint estimator for the grid offsets
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of two closely-spaced sources. Our numerical results demonstrated that the estimators

could recover the DOA regardless of the polarization state of the incoming wave and is

applicable to arbitrary arrays.

In Chapter 4 we investigated the application of CS in the spatial domain via com-

pressive arrays that aim to provide a larger aperture with a reduced hardware complexity.

We presented an architecture of such a compressive array and introduced a generic sys-

tem model that included different options for the hardware implementation. We then

focused on the choice of the coefficients in the analog combining network. We started by

demonstrating that choosing it randomly may lead to undesirable effects in the effective

CS array such as very high sidelobes. Instead of choosing them randomly, we proposed

a generic design approach for the analog combining network with the goal to obtain

an array with certain desired properties, e.g., uniform sensitivity, low cross-correlation,

or low variance in the DOA estimates. Our numerical simulations demonstrated the

superiority of the proposed optimized compressive arrays to compressive arrays with

randomly chosen combining kernels and to a sparse array of the same complexity. Also

our proposed compressive array enjoys a high degree of adaptability since the combining

weights can be altered to adjust the array to the current requirements, which is impossi-

ble for sparse arrays due to their static nature. We have also proposed a focusing design

of the compression matrix which resulted in a significant performance improvement com-

pared to the uniform design. Moreover, we proposed an extension for the combining

matrix design for 2D (elevation and azimuth) DOA estimation with compressive antenna

arrays.

Finally, we considered two other applications of the proposed approaches namely, CS

based time delay (TD) estimation and compressive channel sounding. In Chapter 5,

we investigated a CS based system architecture for TD estimation. We proposed to use a

bank ofK periodic functions pk(t) that multiply the received signal and are sampled once

per period. Thereby, the effective sampling rate is reduced by a factor which depends on

the period, the bandwidth, and the number of channels K. We then discussed the design

of the functions pk(t) based on their frequency domain representation. We proposed an

approach that directly optimizes the shape of the autocorrelation function in terms of

the choice of pk(t) and demonstrate that it outperforms a random choice in terms of the

delay estimation accuracy.

Chapter 6 considered the application of CS to channel sounding in the spatial

domain. We proposed a compressive spatial channel sounding architecture where the

antenna elements at the transmitter, the receiver or both are combined into a smaller

number of channels using an analog combining network. The proposed approach reduces
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the total number of switching periods, which implies a reduced channel acquisition time

and thus an improved Doppler bandwidth. On the other hand, the number of RF chains

can be reduced, which is a very relevant advantage in terms of the overall receiver

complexity, the amount of data to be processed in the digital domain (e.g., FPGA),

power consumption, as well as RF hardware calibration. Alternatively, for the same

measurement time and/or hardware complexity, one can increase the number of array

elements to cover a larger aperture and so achieving better performance in terms of

resolution. Based on a realistic scenario, we showed by simulations the superiority of

the proposed compressive architecture in terms of the measurement complexity (i.e.,

time and hardware) and/or estimation performance.

Contributions

The main contributions of this thesis are:

� A qualitative analysis of the model mismatch for CS based DOA estimation off

the grid based on the shape of the resulting spectrum.

� A simple scheme for CS based DOA estimation off the grid for one source as well

as multiple sources based on the aforementioned analysis.

� A novel polarimetric based CS based DOA estimation off the grid while polariza-

tion has been almost always ignored by state-of-the-art CS based DOA estimation

methods.

� A basic architecture of a compressive array employing linear combinations in the

analog domain by means of a network of power splitters, phase shifters, and power

combiners with a generic system model that includes different options for the

hardware implementation.

� An efficient design of the combining matrix to obtain an array that is suitable

for DOA estimation (i.e., minimum variance of DOA estimates and robustness in

terms of low side lobe levels or low probability of false detections).

� An extension of the presented ideas to be applied in TD estimation and synchro-

nization. We mainly proposed an optimization based design for the measurement

kernels of the CS based TD estimation architectures. We also proposed a CS based

reference broadcast synchronization where the reference signal is an opportunistic

signal already in the system (e.g., FM or TV signals).
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� A compressive spatial channel sounder is proposed and evaluated based on real

scenarios showing superior advantages in terms of time, hardware complexity and

resolution.

Closing remarks

Compressive sensing and sparse recovery techniques have opened up new horizons for

DOA estimation with sensor arrays. For almost a decade now, many CS based DOA esti-

mation approaches have been proposed that allow to minimize the hardware complexity

in terms of receiver costs, measurement time and power consumption, while providing a

superior estimation accuracy and robustness in the presence of multiple sources and/or

multiple paths.

This thesis tackled two main challenges of CS based DOA estimation, namely: the

sparse CS based recovery of offgrid sources and the design of the combining network

for compressive arrays. We have studied both problems quantitatively and proposed

efficient schemes towards solving them. We have also shown the possible extension of

these ideas to other applications, mainly: TD estimation and channel sounding.
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[12] F. Römer, M. Ibrahim, N. Franke, N. Hadaschik, A. Eidloth, B. Sackenreuter,
and G. Del Galdo. Measurement matrix design for compressed sensing based time
delay estimation. In European Signal Processing Conference (EUSIPCO), pages
458–462, Aug 2016.
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