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Abbreviations	
	
ACTH  adrenocorticotropic hormone 

ANP  atrial natriuretic peptide 

As  arsenic 

Asymp. Asymptotic significance 

BHI  brain-heart infusion  

C  Celsius 

Cd  cadmium 

CG  chorionic gonadotropin 

CGRP  calcitonin gene-related peptide 

cm  centimeter 

CRH  Corticotropin-releasing hormone 

E1  estrone 

E2  estradiol  

E3  estriol 

g  gram 

GH  growth hormone 

GnRH  gonadotropin releasing hormone 

Fe  iron 

FSH  follicle stimulating hormone 

Hb  hemoglobin 

Hg  mercury 

HIV  human immunodeficiency virus 

HPA  hypothalamic-pituitary-adrenal  

HPE  human placental extract 

hPL  human placental lactogen 

IDA  iron deficiency anemia 

i.m.  intra muscular 

LH  luteinizing hormone 

mg  milligram 

µg  microgram 

ng  Nano gram 

Pb  lead 

pCRH  placental Corticotropin-releasing hormone 
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pg  pictogram 

PL  placental lactogen 

PPD  postpartum depression 

PRL  placental prolactin 

r   raw 

r-dhy  raw dehydrated 

RT  room temperature 

s   steamed 

sp  species 

spp  species pluralis 

Se  selenium 

s-dhy   steamed dehydrated 

TCM  traditional Chinese medicine 

TRH  thyrotropin-releasing hormone 

TSH  thyroid-stimulating hormone 

VIP  vasoactive intestinal peptide 

YES  yeast estrogen screening 

y  year  
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Zusammenfassung	
	
 

Einleitung:  

In den letzten Jahrzehnten kann man unter Müttern der industrialisierten Länder den 

Trend beobachten, die eigene Plazenta als Heilmittel im Wochenbett einzunehmen. 

Ausgehend von den USA wurde das Verarbeiten der getrockneten Plazenta zu 

Kapseln für die postpartale Einnahme auch in Europa populär. Angebliche Benefits 

sind vermehrte Milchbildung, stabile Gemütslage, beschleunigte Rückbildung und 

das subjektive Gefühl von „mehr Energie“ im Wochenbett.  

In der traditionellen Chinesischen Medizin wird gedämpfte, getrocknete placenta 

hominis seit Jahrhunderten als Therapeutikum angewendet, unter anderem bei 

insuffizienter Milchbildung. Auch in historischen deutschen Arzneimittellehren ist 

getrockenete placenta hominis als wehenförderndes Heilmittel verzeichnet.  

 

Ziel der Studie:  

In dieser Studie wurde untersucht, welche Hormone und Spurenelemente in 

Plazentagewebe enthalten sind und wie sich deren Konzentration durch das 

Verarbeiten und Dehydrieren verändert. Außerdem wurde die bakterielle 

Kontamination von Plazenta-Präparaten analysiert.  

 

Methoden:  

Neun Plazenten, alle von spontanen, interventionslosen Geburten gesunder Frauen 

wurden verarbeitet: sechs wurden zur Analyse der Hormon- und 

Spurenelementkonzentrationen ausgewählt, acht wurden mikrobiologisch untersucht. 

Die Konzentrationen von CRH, hPL, Oxytocin (OT) und ACTH in rohem, 

dehydriertem und gedämpften und dehydriertem Plazentagewebe wurden mittels 

ELISA gemessen. Durch einen Hefe-Rezeptor-Bioassay wurde die Bindung der 

Inhaltsstoffe an den humanen Rezeptor für Östrogene bzw. Progesteron analysiert 

und die Östrogen- bzw. Progesteron-Äquivalente (EEQ bzw. PEQ) bestimmt. 

Spurenelemente (As, Cd, Fe, Pb, Se, Hg) wurden mittels ICP-MS quantifiziert.  

Isolierte Kolonien von Proben und Abstrichen der Plazentapräparate wurden durch 

Vitek-MS identifiziert.  
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Ergebnisse:  

Folgende Hormonkonzentrationen (Mittelwert) wurden in roher Plazenta gemessen: 

CRH 177.88ng/g, hPL 17.99mg/g, Oxytocin 85.10pg/g, ACTH 2.07ng/g,  Östrogen 

Äquivalent aktive Substanzen 46.95ng/g und Gestagen Äquivalent aktive Substanzen 

2.12µg/g. Das Verarbeiten (Dampfgaren und Dehydrieren) verursachte eine 

signifikante Hormonreduktion. 

Mikroorganismen der vaginalen Flora wurden auf Abstrichen und in den Präparat-

Proben identifiziert. Die absolute Anzahl an Spezies änderte sich deutlich mit der 

Verarbeitung: rohe Plazenta (n=13 Spezies), roh dehydrierte Plazenta (n=5 Spezies), 

gedämpfte Plazenta (n=4 Spezies) und gedämpfte, dehydrierte Plazenta (n=2 

Spezies).  

Die Konzentrationen potentiell toxischer Spurenelemente (As, Cd, Hg, Pb) waren 

unterhalb der zugelassenen Höchstgehalte für Lebensmittel.  

 

Diskussion:  

Das Dehydrieren von Plazentagewebe verursacht sowohl eine signifikante Reduktion 

der Hormonkonzentrationen als auch eine deutliche Keimreduktion. Das Risiko für 

eine Intoxikation bei individueller Einnahme von Plazenta-Präparaten ist gering.  

 

Plazentagewebe ist eine Quelle natürlicher Hormone, Spurenelemente und 

essentieller Aminosäuren - die Einnahme roher oder dehydrierter Plazenta könnte die 

postpartale Genesung, Laktation, Gemütslage und Rückbildung beeinflussen. 

Weitere Studien zur biologischen Verfügbarkeit der Hormone nach oraler Einnahme 

und deren potentiellem physiologischen Effekt sind notwendig, um die Anwendung 

von Plazenta-Präparaten besser beurteilen zu können. 
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1.	Abstract	
 

Introduction:  

A growing trend among women of Western societies of consuming their own 

placenta after delivery, referred to as human maternal placentophagy, has developed 

during the last decades. Purported benefits such as enhanced lactation, stabile mood 

in puerperium, accelerated recovery after birth and the subjective feeling of having 

more energy are claimed from placentophagy supporters.  

The use of placenta preparations as a treatment for insufficient lactation has been 

known for centuries; it is documented in traditional Chinese medicine. Desiccated 

placental tissue was further described in German historical pharmaceutical 

encyclopedias as a remedy to stimulate labor and enhance placenta expulsion. 

The most popular method of ingesting placenta today is through encapsulation of 

dehydrated, pulverized placental tissue.  

 

Aim of Research:  

This study aims to identify the impact of placental tissue preparation on hormone and 

trace element concentrations. Further, possible contamination of processed placenta 

with microbial species has been analyzed.   

 

Methods:  

A total of nine placentas, all from spontaneous, non-interventional births by healthy 

women have been processed: six were studied for hormone and trace element 

concentrations; eight were studied for microbial contamination. 

The concentrations of CRH, hPL, OT and ACTH in samples of raw, steamed 

dehydrated and raw dehydrated placental tissue were detected using ELISA. A yeast 

screening was performed in order to detect estrogenic (EEQ) and gestagenic (PEQ) 

active substances. Elements (As, Cd, Fe, Pb, Se, Hg) were analyzed using ICP-MS. 

Isolated colonies from tissue and placenta swab samples were identified using Vitek 

MS. 
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Results:  

The following mean hormone concentrations were detected in raw placental tissue:  

CRH (177.88 ng/g), hPL (17.99 mg/g), oxytocin (85.10 pg/g), ACTH (2.07 ng/g), 

estrogen equivalent active substances (46.95 ng/g) and gestagen equivalent active 

substances (2.12 µg/g). All hormones were sensitive to processing with a significant 

concentration reduction through steaming and dehydration.  

Microorganisms mainly from the vaginal flora were detected on placenta swab 

samples and samples from raw, steamed, dehydrated and steamed dehydrated tissue. 

Raw tissue contained the highest absolute number of species detected (n=13 species), 

followed by raw dehydrated tissue (n=5 species), steamed tissue (n=4 species) and 

steamed dehydrated tissue (n=2 species).  

The concentrations of potentially toxic elements (As, Cd, Hg, Pb) were below the 

toxicity threshold for foodstuffs, as set by the European Union.  

 

Discussion:  

The preparation process caused a significant alteration in detected hormone 

concentrations. Dehydration caused a hormone loss of 85.1–97.3%. Steaming 

followed by dehydration caused a hormone loss of 89.2–99.6%.  

The concentrations in processed placenta for the potential toxic elements arsenic, 

cadmium, lead and mercury were detected below the toxicity threshold for 

foodstuffs. Microbiological analysis of samples from raw placenta and dehydrated 

powder showed a decimation of microbial species through steaming and dehydrating.  

No organisms that pose a potential risk for ingestion as defined by the foodstuff 

regulations of the European Union were identified.  

The number of species detected in dehydrated placental tissue was low. Retained 

samples showed only sporadic bacterial growth. The overall risk for microbiological 

spoilage of dehydrated placental tissue is low. 

 

Conclusion:  

Processed placenta is a source of different hormones that may possibly have an 

impact on postpartum recovery, mood disorders and lactation. Further research is 

necessary to evaluate the bioavailability of these hormones and possible physiologic 

effects. The preparation process of steaming and dehydrating provokes a significant 
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hormone loss, yet reduces microbial contamination. The overall risk of 

placentophagy is low. 

 

Limitations:  

The findings of this research need to be confirmed through a repeated study with a 

larger sample size. Randomized, double-blind, placebo-controlled studies are 

necessary to determine possible physiologic influences of placentophagy to the 

human hormone system and to evaluate the potential use of individual placenta 

remedies as a postpartum treatment. 
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2.	Introduction	

	

2.1	Placenta	Structure	
 

Morphologically the human term placenta is a single disc with a diameter of 15–20  

cm and a thickness of 2–3 cm. Amnion and chorion, the fetal membranes that 

surround the fetus in the amniotic cavity, extend from the margins of the chorionic 

disc. The placental parenchyma is divided into irregular cotyledons by protrusions of 

the basal plate (Benirschke and Kaufmann 1995). The embryo/fetus is connected to 

the placenta through the umbilical chord.  

 

 
 
 
Figure 1: Schematic section of the human term placenta.  
Placental septa are produced by protrusions of the basal plate from the maternal side of the 
placenta; the parenchyma is divided into irregular cotyledons. Each cotyledon contains 
several villi, which originate from the chorionic plate. Fetal blood vessels are located within 
the branches of the villi. Reprinted with permission (Parolini et al. 2008). 
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The placenta separates the maternal and the embryonic/fetal blood from each other. 

Maternal cells and embryonic/fetal tissue are always separate. This is necessary to 

avoid maternal immune defense towards the fetus (Kliman 2000). 

During the very early stages of pregnancy the blastocyst, a rotund structure, 

differentiates into two separate cell types: An inner cell mass that becomes the fetus 

(embryoblast), and an outer cell mass with undifferentiated trophoblast stem cells 

that will develop into external membranes and the placenta (Geneser 1986). The 

cytotrophoblast can be described as the stem cell of the placenta. Four days after 

fertilization, it emerges as the outer layer of the blastocyst. The cytotrophoblast 

consists of undifferentiated mononuclear cells. Different forms of trophoblasts 

evolve from the cytotrophoblast: 

The villous syncytiotrophoblast is the site of endocrine activity and hormone 

production. Another type, the junctional trophoblast, ensures attachment of chorionic 

villi onto the maternal decidua by producing trophouteronectin (Feinberg et al. 

1991). Cells of the invasive intermediate trophoblast leave the placenta to migrate 

into the decidua, the myometrium, and finally into the spiral arteries of the maternal 

uterus (Kliman 2000). The invasion of spiral arteries leads to increased blood flow to 

the placental bed. 

The decidualization of the uterine epithelium makes it receptive for the activated 

blastocyst to implant. The lining of the maternal uterine lumen, excluding the 

endometrium beneath the implanted blastocyst, is called the decidua parietalis. The 

cells of the endometrial stratum functionale proliferate and grow into large, 

polyhedral decidual cells, building the decidua basalis (Geneser 1986). The decidua 

as a tight cellular matrix functioning as a barrier to prevent the penetration of 

invasive trophoblast cells. Implantation and placentation is a balance between 

trophoblast and endometrium interaction (Kliman 2000). After the implantation of 

the blastocyst into the decidua basalis, the endometrium closes superficially through 

a compact layer called the decidua capsularis.  
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Figure 2: The implantation of the human embryo.  
A. Floating blastocyst. B. Attachment to the uterine epithelium and initial invasion of the 
syncytiotrophoblast cells. C. The blastocyst penetrates deeper into the uterine stroma and 
develops an amniotic cavity. D. The fully implanted embryo invades the maternal 
vasculature and the uterine epithelium grows over the implantation site and undergoes 
decidualization. Reprinted with permission from Jones RE. 1997 Human Reproductive 
Biology by Academic Press, San Diego, p 189. 
 

The human placenta is a hemochorial organ. This means that chorionic epithelial 

layers form villi that lie in the maternal blood for extensive nutrition and gas 

exchange. 

The trophoblast invades the endothelial layer of the maternal endometrial blood 

vessels, forming intertrophoblastic, maternal blood-filled sinuses. Thus the placental 

villi float freely in maternal blood (Enders and Welsh 1993). 
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Three weeks after fertilization the first sight of fetal circulation is evident. Capillary 

loops within chorionic villi penetrate the intervillous space. The embryonic blood is 

carried to the villi by the umbilical arteries, returning after the exchange of metabolic 

products to the embryo by the umbilical vein (Geneser 1986, Kliman, 2000 #100). 

 

2.2	Stem	Cells		
 

The human placenta is of great medical interest because it consists of 

progenitor/stem cells (Kyurkchiev et al. 2012). Obtaining embryo-derived, 

pluripotent cells is the point of origin for regenerative medicine (Mason and Dunnill 

2008). 

The term “stem cell” has been used in medical literature to describe a number of 

cells isolated from placenta that demonstrate phenotypic plasticity. Phenotypic 

plasticity is a common characteristic of the reaction norm of a genotype. Plasticity 

describes the possibility of appearing as a novel, environmentally induced phenotype 

(Pigliucci et al. 2006). The following cell populations of the placenta possess this 

ability: human amniotic epithelial cells (hAEC), human amniotic mesenchymal 

stromal cells (hAMSC), human chorionic mesenchymal stromal cells (hCMSC), and 

human chorionic trophoblastic cells (hCTC) (Parolini et al. 2008). 

Other features of “stem cells” are self-renewal and hierarchy. These cells are at the 

apex of the cell system because all cell types can develop from them. Used in 

regenerative medicine these cells could repair or replace damaged or malfunctioning 

cells and tissues.  

 

2.3	The	difference	between	human	and	mouse	placenta	
 

Much research has been done on placenta using mouse models. Studies have 

identified similar cell types in human and rodent trophoblasts (Cross 2006). But the 

difference in morphology and histology of both human and murine placentas should 

not be forgotten.  

All rodents retain a yolk sac placenta, which stays until term and becomes active 

early in pregnancy, preceding the chorioallantoic placenta. The yolk sac placenta is 

mandatory for a successful pregnancy in rodents; it is part of the fetal membranes.  
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Humans do not keep a yolk sac placenta: only in the very early stages of pregnancy 

is an umbilical vesicle formed for embryonic blood supply, although it never forms a 

placenta (Carter 2012). 

Decidualization, the transformation of the endometrium that facilitates implantation, 

happens at different points of gestation in these two species. In humans, 

decidualization takes place before implantation (Kliman 2000); in mice, implantation 

is the trigger for decidualization (Enders and Welsh 1993). 

The structure of the human placenta becomes apparent in early pregnancy. By day 21 

of 270 the chorionic villi are established (Benirschke and Kaufmann 1995). The 

chorioallantoic placenta in mice is only complete halfway through gestation; the 

chorioallantoic pattern is seen by day 11.5 of 19–20 days of gestation (Malassine et 

al. 2003). A chorioallantoic placenta is supplied with blood by the allantoic vessels. 

It is the definite type in human and rodent placentas (Carter 2012). 

The endocrine function of mice and human placenta differs widely. For maintenance 

of pregnancy, human chorionic gonadotropin (hCG) is indispensable in humans.  

It exists in five isoforms, with hCG and hyperglycosylated hCG playing crucial roles 

in human pregnancy (Cole 2012). A prominent role of hCG is the stimulation of the 

corpus luteum to synthesize progesterone in the first 8 weeks of gestation. After that 

time the syncytiotrophoblast of the placenta produces sufficient progesterone for 

maintaining pregnancy (Srisuparp et al. 2001). In mice, no hCG exists and the corpus 

luteum is required throughout pregnancy as the main site of progesterone synthesis 

(Strauss et al. 1996).  

The syncytiotrophoblast is where maternal and fetal blood is exchanged, and has a 

high level of endocrine activity, in the human placenta. The comparable structure for 

maternal-fetal exchanges in mice – the trophoblast layers of the labyrinth – is 

without endocrine function (Malassine et al. 2003). 

However, in contrast to humans, mice possess a gene cluster of 23 prolactin/placental 

lactogen-related genes while humans only have one gene for prolactin. In humans, 

these hormones are produced by the syncytiotrophoblast, in mice, it is produced by 

trophoblast giant cells, the spongiotrophoblast: glycogen cells that represent 

trophoblast layers. These are absent from humans (Simmons et al. 2008).  

Comparing these differences between placentae of humans and mice shows that the 

results from placentophagy studies with murine species should not be transferred to 

humans without caution (Schmidt et al. 2015).  
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2.4	Placenta	as	an	endocrine	organ	
 

During the period of gestation the placenta develops as a self-managed, unique 

organ. It is essential for maintaining pregnancy and enables fetal-maternal exchange.  

The placenta requires high levels of oxygen for the production of steroid, peptide and 

protein hormones. These regulate the adaptation of the maternal organism to 

pregnancy, support fetal growth, maintain the wellbeing of the embryo and prepare 

the maternal body for parturition. These hormones also play an important role in the 

local maternal-fetal immunotolerance.  

Human pregnancy is an unusual hyperestrogenic and hypercortisolic state that 

increases with the duration of gestation and suddenly comes to an end after the 

delivery of the fetus and placenta. The hormonal changes during pregnancy are 

shown in Figure 3.  

 

  
Figure 3: Temporal changes during human pregnancy in the serum concentration of 
several hormones. Reprinted with permission from “Hormones” by  Anthony W. Norman                                    
and Gerald Litwack , Academic Press 1987.                                       
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Table 1 gives an overview of hormones produced by the placenta. Some of them are 

discussed in detail below.  

 

Table 1: Placental hormones.  

Table modified from (Reis und Petraglia 2001). 

Neuropeptides Pituarity-like 
Hormones 

Steroid Hormones Monoamines and 
Adrenal-like 

Peptides 
CRH ACTH Progesterone Epinephrine 
TRH TSH Estradiol Norepinephrine 
GnRH GH Estrone Dopamine 
Melatonin PL Estriol Serotonin 
Cholecystokinin CG  Adrenomedullin 
Met-enkephalin LH 2-Methoxyestradiol  
Dynorphin FSH Allopregnanolone  
Neurotensin B-Endorphin Pregnenolone  
VIP Prolactin 5α-Dihydroprogesterone  
Galanin Oxytocin   
Somatostatin Leptin   
CGRP Activin   
Neuropeptide Y Follistatin   
Substance P Inhibin   
Enothelin    
ANP    
Renin    
Angiotensin    
Urocortin    
 

2.4.1	Hormones	

Progesterone 

Progesterone is a steroid hormone. It is produced by the corpus luteum during the 

menstrual circle. It is the main pro-gestational hormone in pregnancy.  

From the sixth week of pregnancy, progesterone is exponentially synthesized 

throughout subsequent gestation. The plasma concentration is increased 10-fold by 

the third trimester (Tulchinsky et al. 1972). The syncytiotrophoblast produces large 

amounts of progesterone from maternal cholesterol. A placenta produces daily about 

300 mg of progesterone at term (Evain-Brion und Malassine 2003). 

The effects of this hormone are various. Progesterone maintains and protects 

pregnancy by suppressing myometrial activity to prevent uterus contractions as well 
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as inducing the formation of the mucus plug to close the cervix. In addition, it has an 

influence on mammillary gland's preparation for lactation (Yen et al. 2014). It further 

has anesthetic and anticonvulsive properties through its modulation of the gamma 

amino butyric acid (GABA) receptor (Paul und Purdy 1992). Its role in development 

and treatment of postpartal depression (PPD) is not yet understood, and studies 

examining changes in progesterone levels in the first postpartum week report 

conflicting results (Abou-Saleh et al. 1998).  

Estrogens 

Estrone (E1), estradiol (E2) and estriol (E3) are steroid hormones. After week 7 of 

gestation more than 50% of the estrogens found in the maternal serum are of 

placental origin. The biosynthesis of placental estrogen differs from the synthesis of 

estrogens in other tissues of the human organism. The placenta is not able to convert 

C21 steroids to C19 steroids, as it lacks the enzyme 17α-hydroxylase. Trophoblasts use 

dehydroisoandrosterone sulphate (DHEAs) from the fetal adrenal glands for the 

biosynthesis of estradiol-17β (Kaufmann 1993).  The cooperation between fetal 

adrenal glands and maternal placenta in steroid synthesis forms the concept of the 

feto-placental unit (Redman 1993). The fetus plays an important role for maternal 

estriol synthesis, as it is the source of 90% of the precursors of placental estriol. 

Estrogen has multiple effects. It prepares the mammillary glands for lactation; it 

enhances myometrial and uterine growth, uterine and placental blood flow and 

prostaglandin production by the endometrium. In addition, it regulates LDL uptake 

for placental steroid synthesis. 

Chorionic Gonadotropin - hCG  

Human chorionic Gonadotropin (hCG) is a peptide hormone and belongs to the 

family of complex proteins known as glycoprotein hormones. It has two intertwined 

subunits, the common α subunit and distinct β subunit. 

HCG indicates pregnancy when detected in maternal blood or urine, usually shortly 

after conception, that is, about 8-10 days after ovulation. It is one of the earliest 

secreted products of the conceptus. HCG is secreted initially from the 

cytotrophoblast and later from the syncytiotrophoblast. After implantation, the 

plasma concentration rises rapidly with a peak during the 8th to 10th week of 

pregnancy. It tends to plateau at a lower level for the remainder of the pregnancy 

(Yen et al. 2014).  
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In vitro studies have shown that the hCG production by the cytotrophoblast differs 

depending on placental age (Kato und Braunstein 1990). 

HCG acts biologically in the same way as luteinizing hormone (LH) and is important 

for pregnancy maintenance. It inhibits the corpus luteum from involution and ensures 

progesterone secretion by the ovarian granulosa cells. 

Human placental lactogen – hPL = Chorionic somatomammotropin  

Human placental lactogen is a polypeptide hormone consisting of 191 amino acids, 

with a structure similar to prolactin and growth hormone (GH). It has a potent 

lactogenic and growth hormone-like effect (Reis et al. 2001).  

Its production increases throughout pregnancy, showing a correlation with gain of 

placental mass, reaching an extremely high secretion rate of about 1–3g per day 

towards term (Evain-Brion and Malassine 2003). It has a very short half-life in 

maternal plasma and is secreted continuously from the placenta during late human 

pregnancy (Eriksson et al. 1989).  

Two variations of growth hormone exist in the maternal endocrine system: GH-N, 

the pituitary growth hormone, and GH-V, the placental growth hormone that is 

produced in the syncytiotrophoblast. Both growth hormones are strong insulin 

antagonists that break down lipids and stimulate hepatic gluconeogenesis. The 

placental variant increases the nutrients available to the fetus and placenta, as well as 

protecting them from hypoglycemia. It is not noted in fetal tissue. GH-V is released 

into the maternal circulation from the second trimester onwards, gradually replacing 

pituitary GH-N. After delivery, placental GH-V immediately disappears from the 

maternal circulation, and pituitary GH-N is once again excreted (Newbern and 

Freemark 2011). 

Placental CRH 

Hypothalamic CRH is an essential neurohormone for stress adaption. It mediates the 

Hypothalamic-Pituitary-Adrenal-Axis (HPA-Axis) and the behavioral and autonomic 

response to stress (Aguilera and Liu 2012). CRH stimulates the pulsatile liberation of 

adenohypophysal ACTH. This induces adrenal cortisol release and synthesis.  

The placental counterpart is placental CRH (pCRH). PCRH is a 41-amino acid 

peptide hormone with relevant endocrine and paracrine effects. It is secreted mainly 

from the syncytiotrophoblast.  
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PCRH is similar to hypothalamic CRH in structure, immunoreactivity and 

bioactivity, and it has an effect on the function of the HPA-Axis. It is produced 

exponentially throughout pregnancy; with vaginal delivery being the moment of 

highest reached serum levels. PCRH stimulates prostaglandin release and the release 

of immunoreactive oxytocin from placental cells. It also plays a role in feto-placental 

perfusion and has an effect on myometrial contraction. This hormone also has a 

direct effect on the liberation of DHEAs from adrenal cells, which is needed for 

placental estrogen synthesis (Reis et al. 1999). 

A positive feedback mechanism forms the basis of the CRH-synthesis – a rise in fetal 

adrenal cortisol and maternal glucocorticoids stimulates placental CRH production 

(Schleussner 2002). Towards the end of gestation an increasing cortisol production 

of fetal adrenals stimulates placental CRH secretion. CRH induces ACTH secretion. 

This ascending hormonal loop can be seen as the placental response to delivery stress 

(Yim et al. 2009). 

Chorionic adrenocorticotropin – cACTH 

Chorionic or placental ACTH is a peptide hormone with the same structure and 

immunogenic and biologic activity as pituitary ACTH. It is synthesized at the 

cytotrophoblast during the first trimester, after which time the syncytiotrophoblast is 

the site of production. Its effect could be the stimulation of steroid synthesis in the 

placenta (Barnea et al. 1986). 

Placental Thyrotropin- releasing hormone (TRH) 

TRH secreted by the hypothalamus stimulates the release of thyroid-stimulating 

hormone (TSH) and prolactin. The syncytiotrophoblast produces placental TRH from 

the beginning of pregnancy until term. It is mainly released into fetal circulation and 

may regulate fetal thyroid function (Reis et al. 2001). 

Chorionic thyrotropin – hCT 

HCT is a TSH-like peptide with a very low thyrotropic activity. Its levels increase 

throughout pregnancy (Reis et al. 2001). 

Placental GnRH 

Placental GnRH (pGnRH) is identical to hypothalamic GnRH. It can be measured 

from the first trimester until term. PGnRH is believed to regulate paracrine hCG 

release (Iwashita et al. 1993). 
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Placental Growth hormone-releasing hormone (GHRH) 

Hypothalamic GHRH is a peptide hormone and stimulates the release of GH from 

the adenohypophysis. The placental GHRH is identical to hypothalamic GHRH; it 

regulates fetal and placental growth during pregnancy.  

Placental Prolactin 

Placental prolactin (pPRL) is a peptide hormone that not only exists in the fetal 

pituitary but can also be found in cells of the decidua, the amnion and the chorion. 

The possible site of biosynthesis is in decidualized cells. The role of pPRL in 

pregnancy is not yet known (Wu et al. 1991). 

Oxytocin 

Oxytocin (OT) is a peptide hormone. If released from the posterior pituitary gland it 

initiates and sustains milk ejection in response to suckling during lactation  

(Wakerly JB 1988). In addition, OT is a potent and specific hormone to stimulate 

labor, triggering myometrial contractions. OT is produced by several organs 

including the placenta (Kiss and Mikkelsen 2005) and its gene expression can be 

found in in the decidua, the amnion and the chorion. A three- to four-fold increase in 

the rate of synthesis of OT mRNA in human chorio-decidual tissue around the time 

of parturition has been demonstrated, illustrating its importance in labor (Chibbar et 

al. 1993). 

Besides the myometrial function it has various psychosocial effects. It is the key 

mediator of complex emotional and social behaviors, including attachment, social 

recognition, and aggression (Kirsch et al. 2005). 

Leptin 

Leptin is a peptide hormone synthesized and secreted by adipose tissue and the 

maternal placenta. Placental leptin is increased significantly between the first and 

second trimester of pregnancy. Leptin acts on the hypothalamus and regulates food 

intake and energy balance. It has been suggested that several gestational hormones 

induce its synthesis (Sivan et al. 1998). 

PSG  

Pregnancy-specific glycoproteins are composed of an immunoglobulin variable-like 

domain and a variable number of constant-like domains. They may act to modulate 
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maternal immune responses and induce monocytes to secrete several anti-

inflammatory cytokines.  

PSG can reach concentrations of 200 – 400 µg/ml at term and are the most present 

placental proteins in maternal blood (Carter 2012). 

Beta-Endorphins 

Pregnancy is characterized by several changes in the opioid peptides. Beta-endorphin 

plasma levels increase progressively during gestation, reaching the highest 

concentration at term with a maximal value at delivery (Genazzani et al. 1981). Beta-

endorphin is synthesized in human placental trophoblastic cells (Liotta und Krieger 

1980).  Interestingly, beta-endorphin levels were lower in cases of elective C-section 

compared to spontaneous births, with the presence or absence of labor as the possible 

critical factor (Facchinetti et al. 1990).  

	

2.4.2	Further	components	of	the	placenta	
 

Placental tissue at term contains a high concentration of hormones and nutrients.  

De Moraes et al. studied the elemental composition of the human placenta. The 

following median concentrations of essential elements were found in maternal parts 

of the placenta in adults: calcium 700.8 ng/g, iron 85.3 ng/g, copper 0.8 ng/g  

and zinc 12.7 ng/g (de Moraes et al. 2011).   

The concentrations of the following trace elements have been determined in dried or 

wet placental tissue. Selenium, an essential trace element, has a concentration of  

0.56 – 1.06 µg (Alonso et al. 2005). Cadmium, a toxic trace element, was detected at 

31 ng/g (Schramel et al. 1988). It accumulates in the placenta and was found to be 

elevated in smoking mothers (Bush et al. 2000). Nickel had an average concentration 

of 36 ng/g, aluminum had an average concentration of 250 ng/g and arsenic had an 

average concentration of 6 ng/g. The average concentration of lead was found to be 

34 ng/g (Iyengar and Rapp 2001). Chronic exposure to lead produced a modest 

increase in lead concentration in the placental body (Baghurst et al. 1991). The 

concentration of mercury was, in the majority of placentas examined by Schramel et 

al., below the detection limit (Schramel et al. 1988). 
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2.5	Placentophagy	
	
Based on existing definitions from animal studies and ethnographic research of 

humans, the term placentophagia is relating to the consumption of afterbirth by 

animals. The behavior of ingesting placental tissue by humans is defined as human 

placentophagy (Marraccini und Gorman 2015). 

2.5.1	Placentophagia	in	mammals	
 

The greek term “Placentophagia” can be translated as “ingestion of the afterbirth”. It 

is the behavior of eating the afterbirth, which consists of the placenta, the umbilical 

cord, the amniotic and chorionic membranes, and the amniotic fluids (Kristal 1980). 

Almost every eutherian mammalian species engages in this behavior after 

parturition. Humans, camelids and marine mammals are the few exceptions (Young 

et al. 2012). Nevertheless, it occurs in all non-human primate species (Stewart 1977).  

Many hypotheses have been put forward to explain placentophagy, ranging from 

cleaning the nest site in order to avoid attack by predators, to carnivorousness after 

parturition, to specific or general hunger. 

Kristal (1980) disproved these assumptions, defining placentophagy as an ingestive 

behavior that is found in vastly different mammalian groups and consequently 

remains a mystery. Kristal states that it is not evident if there is a single, special 

advantage of placentophagy, or if the summary of multiple benefits leads to placenta 

ingestion.  

The lactagogic effect of placentophagia in collared peccary (Pecari tajacu) is 

described by Schmidt (Schmidt 1976). Lactogenesis is induced through ingestion of 

the afterbirth not by the mother but by the older siblings of the newborn. These 

subadult females start nursing the newborn, allowing the mother to recover from 

delivery. 

2.5.2	Placentophagy	in	humans	
 

Placentophagy is remarkably uncommon in humans compared to other mammals.  

An ethnographic cross-cultural study identified only 1 of 179 societies that 

mentioned the practice of maternal placentophagy (Young und Benyshek 2010).  

There are many methods used to dispose of this organ, with burial being the most 

common. In 67 of the 179 examined cultures, placenta rituals are connected to 

superstitious beliefs (Young und Benyshek 2010).  
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Placentophagy in humans was described by Young as an ancestral mammalian 

behavior that was subsequently lost in the evolution of the homo sapiens. A possible 

reason why placentophagy is now absent in humans could be the change in lifestyle 

that came about with the directed use of fire. As stated in the “fire hypothesis” 

(Young et al. 2012) the accumulation of toxic trace metals in the placenta after 

exposure to wood smoke could be responsible for negative effects experienced after 

ingesting the afterbirth.  

Menges investigated possible motivation for human placentophagy in evolutionary 

biology. She stated that there is no phylogenetic background for that behavior and no 

reasonable explanation in evolutionary biology (Menges 2007). Nevertheless, 

anecdotal reports about human placentophagy in diverse ethnos do exist (Ober 1979, 

Enning 2003).  

Since 1973 placentophagy has been mentioned in scientific discussions. For 

example, Ober reported that a mother living in a commune ate her steamed placenta 

after giving birth naturally (Ober 1979).  

In recent years there has been a growing interest in placentophagy among new 

mothers in industrial nations (Selander et al. 2013). Discussions about natural, 

holistic and spiritual childbirth, including placentophagy and its possible benefits, are 

increasing on the internet and in other media (BBC 2006, USA today 2007, 

Blumenfeld 2013). A debate about different ways of preparing placenta and recipes 

for placenta meals is ongoing. 

	

2.6	Different	placenta	preparations		
 
Different ways of preparing the placenta have been described in popular and medical 

literature. One method explained by Enning is the dehydration of the placenta in the 

oven until it is completely mummified. To avoid any substance changes in the 

placenta, the heat supply should be as low as possible. A bowl with water and 

vinegar should be placed below the placenta for mild sterilization (Enning 2003).  

The use of acetic acid has a wide, excellent bactericidal effect, even at low 

concentrations (Ryssel et al. 2009). 

Subsequently the black, hard placenta is crushed into pieces and ground in a mortar 

This way of preparing the placenta is very basic, uncomplicated and does not require 

much equipment (Enning 2003).  
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There is archaeological evidence that drying strips of meat was practiced in early 

civilizations. Desiccation, which means reducing the water activity of a product to a 

low level, was developed by the ancient Egyptians for the mummification of the 

deceased (Hugo 1991).  

 

Another method is ingesting raw placenta shortly after delivery.  A piece of placenta 

is washed in salt water, cut into thin slices and stored in the freezer. One slice of 

placenta is eaten per day (Enning 2003).  

Several organizations have been set up in the United States that provide placenta-

encapsulation services. Table 2 shows the first 20 results of a Google online search 

using the key words “placenta encapsulation service”. These organizations offer to 

collect the woman’s placenta immediately after childbirth and prepare placenta 

capsules from it.  

Two different methods are used for encapsulation: “raw” and “Traditional Chinese 

Medicine” (TCM) encapsulation. For the production of “raw” capsules, the placenta 

is sliced and dried by dehydration. The dehydrated pieces are ground and put into 

empty vegetable capsules. For the production of “TCM” capsules, the placenta is 

steamed prior to dehydration.  

In addition to placenta capsules, there are many other products offered by these 

organizations, such as placenta tincture, placenta essence, placenta salve, placenta 

cream, placenta tea, placenta smoothies, placenta truffles and placenta meal 

preparation. 
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Table 2: First 20 results for “placenta encapsulation” web search (21.03.2015). 

Organization 
 

Website Location 

Tree of life  www.portlandplacentaservices.com	 Portland, U.S. 

Afterbirth Anywhere www.afterbirthanywhere.com U.S. 
Placenta Benefits www.placentabenefits.info/services.asp North Las Vegas 

Nevada, U.S.  

Individual Placenta 
Encapsulation 
Network 

www.placentanetwork.com U.K. 

Placenta Mom www.placentamom.com Sacramento, U.S. 
Placenta Service www.placentaservice.com Hudson Valley, 

New York, U.S: 

The Association of 
placenta preparation 
arts 

www.placentaassociation.com U.S. 

Lucina Birth Service www.lucina.ca/placenta.html Toronto, Canada 
Massachusetts 
placenta 
encapsulation 

www.massachusettsplacentaencapsulation.com Massachusetts, 
U.S. 

Tree of life www.treeoflifebirthandbeyonde.com.au Sidney, Australia 

Placenta Service www.placentaservices.com.au Sidney, Australia 
Afterbirth Service www.afterbirthservice.com Michigan, U.S. 
Brooklyn Placenta 
Service 

www.brooklynplacentaservices.com Brooklyn, New 
York City, U.S. 

Hampton Roads 
Placenta 
Encapsulation 

www.hrplacenta.com North Carolina, 
U.S. 

Placenta 
Encapsulation 
Service 

www.bywaterbirth.com/encap.html Minnesota, U.S. 

Richmond Placenta 
Encapsulation 

www.richmondplacentaencapsulation.com Virginia, U.S. 

The Nurturing Root www.thenurturingroot.com Maryland, U.S. 
Wise Birth Choices www.wisebirthchoices.com/placenta.html New Jersey, U.S. 

Minnesota Placenta 
Service 

www.flutterbybirth.com/placenta-services.html Minneapolis, 
Minnesota, U.S. 
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2.7	Traditional	use	of	placenta	remedies	
 

The use of dried human placenta, known as “zi he che”, has a long tradition in 

Traditional Chinese Medicine (TCM). As a TCM therapeutic it tonifies the liver and 

kidney for the treatment of infertility, impotence and spermatorrhea. Dried human 

placenta augments the "qi" (body energy) and nourishes the blood as a cure for 

emaciation and insufficient lactation (Bensky et al. 1986).  

 

The use of desiccated placental tissue for complicated labor was further described in 

the Pharmacopoeia Wirtenbergica, a German historical pharmaceutical encyclopedia 

as following: Secundinarium humanarum praeparatio – usus est in pulveribus, ad 

partum difficilem (Gesner 1741).  

Additionally, in 1743 the use of powder from dehydrated human placenta to 

stimulate labor and enhance placenta expulsion was described in a historic medical 

encyclopedia (Schmidt 1743).  

 

2.8	Microbiology	of	the	female	genital	system	
	

2.8.1	The	microbial	composition	of	the	vagina	

	
The vaginal ecosystem is complex and dynamic, with changes throughout a women´s 

lifespan from birth, to puberty and menopause. Compared to non-pregnant women, 

the vaginal microbiota is more stable during pregnancy (Romero et al. 2014). Aagard 

and colleagues have shown that the microbial community is less diverse and rich 

during pregnancy (Aagaard et al. 2012).  

The healthy vaginal flora in pregnant women is Lactobacillus predominant;  

L. vaginalis, L. jensenii, L. crispatus and L. gasseri have a relative high abundance in 

pregnant women (Romero et al. 2014, Hillier et al. 1993). The predominance of 

Lactobacillales is followed by Clostridiales, Bacteriodales and Actinomycetales 

(Aagaard et al. 2012).  

Facultative Lactobacilli make up 50–90% of the aerobic vaginal microflora 

(Redondo-Lopez et al. 1990). The acidic environment in the vagina is maintained by 

Lactobacillus spp., but lactic acid can similarly be produced by other 

microorganisms in the vagina such as Atopobium, Megasphaera and Leptotrichia 
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(Larsen und Monif 2001). Through the production of lactic acid a low vaginal pH 

(<4.5) is maintained, functioning as a barrier against infections by genital pathogens.  

The following bacterial species can be found in varying population density in the 

normal vaginal flora of non-pregnant women (Neumann et al. 2014):  

• Lactobacilli 

• Bacteroides sp. 

• Corynebacteria 

• Porphyromonas sp. 

• Prevotella sp. 

• Enterobacteriaceae 

• Enterococci 

• Fusobacterium sp. 

• Leptotrichia sp. 

• Megasphaera sp. 

• Gardnerella vaginalis 

• Mobiluncus curtisii, M. mulieris 

• Mycoplasma hominis 

• Ureaplasma urealyticum 

• Peptostreptococci 

• Propionibacteria 

• Pseudomonadaceae 

• Streptococci (not Streptococcus-A) 

• Staphylococci 

	
Microorganisms recovered from pregnant women with bacterial vaginosis included 

Gardnerella vaginalis, Bacteroides spp, Peptostreptococcus spp (Hillier et al. 1993). 

Other pathogenic species are Neisseria gonorrhoeae, Streptococcus pyogenes, 

Streptococcus pneumoniae, Haemophilus influenza, Listeria monocytogenes and 

Trichomonas vaginalis. Furthermore, the vaginal flora can be disturbed by aerobic 

microorganisms such as E. coli, Group B Streptococci, Enterococci and others 

(Hillier et al. 1993). Carriage of these microorganisms does not necessarily constitute 

disease, when disease is defined in terms of symptoms. But they bring the potential 

for disease to the vaginal area (Larsen und Monif 2001). Similarly, the yeast  

C. albicans is present in the vagina of approximately 10–20% of women of 

reproductive age. The carriage is typically asymptomatic (Witkin et al. 2007) 
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2.8.2	The	placental	microbiome	
 

Not only the vagina but also the placenta and endometrium harbor physiologic 

communities of microorganisms. The upper genital tract and endometrium is not 

sterile and is predominantly populated by Lactobacillus, followed by bacterial 

communities of Gardnerella, Prevotella, Atopobium and Sneathia (Franasiak und 

Scott 2017).  

The microbiome of the placenta was characterized by Aagard et al. using 

metagenomic analysis. The placental microbial community represents a unique niche 

of organisms with several species of the oral microbiome detected including 

Prevotella tannerae and nonpathogenic Neisseria species. The placental microbiome 

is composed of commensal microbiota from Firmicutes, Tenericutes, Proteobacteria, 

Bacteroidetes and Fusobacteria phlya (Aagaard et al. 2014).  

 

2.9	Placentophagy:	Current	state	of	research		
 

The effects of placentophagy have been examined intensively on rats.  

These investigations have shown that animals which consume their placenta display 

an increase in maternal pup-directed contact, enhancement of opioid-mediated 

antinociception and a suppression of postpartum pseudo-pregnancy.  

An active substance that potentiates pregnancy-mediated analgesia was found in the 

placenta and the amniotic fluid. This substance has been termed Placental Opioid-

Enhancing Factor, also known as POEF.  It is a peptide that works via gastric vagal 

receptors on the central nervous opioid system before it can be denaturized in the 

acidophil gastric environment (DiPirro and Kristal 2004), Kristal et al. 2012). 

Hormonal changes after placentophagy in rodents have also been investigated.  

Rats that were allowed to eat their placenta after parturition had elevated serum 

prolactin concentrations on day 1, and depressed concentrations of serum 

progesterone on day 6 and 8 post partum, when compared to those hormone levels of 

rats prevented from eating their placenta.  

This may indicate that rat placenta contains orally active substances that modify 

blood levels of pituitary and ovarian hormones (Blank and Friesen, 1980). 
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There are outdated studies on human maternal placentophagy by Hammett and 

Soykova-Pachnerova et al. However, they do not meet the criteria for standardized 

double blind, placebo-controlled surveys.  

In the study by Hammett the growth rate of solely breast-fed infants whose mothers 

ingested their placenta after childbirth was compared with infants whose mothers did 

not. The mothers were fed 0.6 g of desiccated placenta three times per day. It was 

shown that the growth rate of the infants whose mothers engaged in placentophagy 

was uniformly greater than the growth rate of the infants whose mothers did not 

(Hammett 1918).   

In the survey by Soykova-Pachnerova et al. (Soykova-Pachnerova et al. 1954), 210 

mothers with nursing difficulties ingested vacuum frozen-dried placenta. In 86% of 

cases, the quantity of milk was increased by 20g or more. The study does not offer 

further detailed information on these results. 

A more recent study conducted at Mahidol University in Bangkok, Thailand, 

investigated the concentration of hormones and nutrients in heated-dried human 

placenta.  

30 placentas from first, singleton term pregnancies were examined, from 15 male and 

15 female newborns, all delivered by normal vaginal birth. Placentas of mothers with 

infections (HIV, Hepatitis, Syphilis) and with medical or obstetric complications 

were excluded. Placentas were dried for 24 h at a temperature of 80–100° Celsius 

and then blended into a powder. The analysis data is shown in Table 3, presenting 

the mean and standard deviation (Phuapradit et al. 2000).  
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Table 3: Hormones, minerals, vitamins and macronutrients in dried human placenta 
(Phuapradit et al. 2000). 
 

Hormones (ng/g) Female Male 
Estradiol  9.35 ± 3.75 8.49 ± 1.27 
Progesterone  123.47 ± 39.46 148.27 ± 35.15 
Testosterone  19.79 ± 7.95 20.71 ± 4.28 
Growth Hormone  3.40 ± 6.76 0.00 ± 0.00 
Minerals/Vitamins (mg/kg) Female Male 
Sodium  10202.21 ± 320.7 10418.0 ± 704.0 
Potassium  8590.9 ± 1020.2 8367.1 ± 574.9 
Phosphorus  2807.0 ± 343.2 2800.0 ± 410.6 
Calcium 1525.8 ± 1302.8  2287.7 ± 2639.1 
Iron  980.0 ± 147.4 1040.0 ± 154.9 
Magnesium  373.0 ± 55.6 392.8 ± 59.3 
Zinc  47.3 ± 11.4 47.0 ± 4.2 
Copper  41.3 ± 35.6 46.3 ± 26.2 
Vitamin E (mg/g) 5.9 ± 1.2 50.9 ± 0.9 
Macronutrients (%) Female Male 
Moisture 6.12 ± 1.14 7.47 ± 1.22 
Ash 5.74 ± 0.48 5.75 ± 0.33 
Fiber 0.20 ± 0.02 0.15 ± 0.03 
Protein 81.62 ± 1.29 80.06 ± 1.58 
Fat 1.49 ± 0.36 1.69 ± 0.46 

 

In 2013 Selander et al. conducted a survey, evaluating the self-reported motivations 

and experiences of 189 women who ingested their placenta. These motivations 

included mood improvement after childbirth, general health benefits, 

recommendation by a placentophagy supporter, restoration of hormones/nutrients 

lost with parturition and improved lactation. The most common method of 

consuming placenta was the raw or cooked, dehydrated and encapsulated placenta. 

The positive effects experienced by women ranged from improved mood (40%) to 

increased energy (26%), improved lactation (15%) and alleviated postpartum 

bleeding (7%). No negative effects were mentioned by 69% of the women, 20% 

experienced various negative effects,  7% reported the unpleasant smells of the 

capsules and 4% headaches (Selander et al. 2013). It has to be taken into 

consideration that the data of this survey cannot be interpreted as objective evidence. 

The extent to which these benefits arise cannot be distinguished from the placebo 

effect. As the author of this study is the owner of a placenta encapsulation service, 

there is moreover a conflict of interest.  
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Recently, placentophagy became a topic of interest in the scientific community. 

A cross-sectional survey by 2016 Schuette et al. found that patients with a history of 

a self-reported mental health disorder were more likely to be willing to consider 

placentophagy. Health care providers and patients had heard of placentophagy, but 

were unsure of its benefits and/or risks (Schuette et al. 2016).  

 

In a randomized, double-blind, placebo-controlled pilot study conducted by Gryder 

et al. in 2016, the effect of placenta capsule intake on the maternal iron status was 

investigated. With an iron concentration of 0.664 mg/g per placenta capsule the 

recommended daily placenta capsule dose (2 capsules taken 3 times daily) only 

provided 24% of the recommended daily allowance. The postpartum maternal iron 

status was neither significantly improved nor impaired (Gryder et al. 2016).  

 

Trace minerals in steamed, dehydrated placenta tissue were analyzed in a study by 

Young et al., which showed that the mean concentrations of potentially harmful 

elements (arsenic, cadmium, lead, mercury, uranium) were well below established 

toxicity thresholds (Young et al. 2016b). In another study by Young et al., steamed 

and dehydrated placenta tissue was analyzed for its hormone content using liquid 

chromatography tandem-mass spectrometry. 16 different hormones were detected at 

relatively low concentrations, including cortisone, progesterone, 17-

hydroxyprogesterone and estradiol (Young et al. 2016a).  

 
 

2.9.1	Placentophagy	and	Depression	in	Childbed		
	
Depressive disorders are the most common psychiatric manifestations in parturitional 

women, with a prevalence of 19.2% in the first 3 months after birth. A postpartum 

depression (PPD) has to be distinguished from “Baby-Blues”, which occur during the 

first 10 days after parturition in 50–80% of women (Hubner-Liebermann et al. 2012). 

The “Baby” or “Maternal Blues” are a transitory mild depression with tearfulness, 

often considered as a normal finding after delivery. Causes are physical discomfort, 

perineal soreness, psychological difficulty at the onset of lactation and hormonal 

changes (Pitt 1973). In contrast, Bloch has established the following risk factors for 

post-partum depression: a history of mental illness including PPD, premenstrual 
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dysphoric disorder and mood symptoms during the third trimester (Bloch et al. 

2006). 

According to Gurel, the following additional psychosocial risk factors for postpartal 

low mood are evident: grandmultiparity, short inter-pregnancy interval and low 

educational level (Gurel und Gurel 2000). 

Hendrick summarized other psychosocial stressors that can contribute to the 

symptom of PPD: a lack of support, marital conflict, unemployment, an unplanned 

pregnancy, single motherhood and younger age (Hendrick et al. 1998).  

The postpartal wellbeing of the mother has an impact on the cognitive and emotional 

development of the child (Hubner-Liebermann et al. 2012). For both mother and 

child, it is desirable to prevent women from experiencing depressive episodes after 

childbirth. Exposure to maternal depression has a direct impact on child health 

outcomes. Children of depressive mothers are at least two times more likely to have 

emotional-behavioral difficulties than children of mothers reporting minimal 

symptoms (Giallo et al. 2015).  
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3.	Aims	of	this	study	
	
As placentophagy gains popularity, interest has become focussed on the exact 

properties of placental tissue. 

 

The aim of this experimental study was to analyze the concentration of hormones 

and trace minerals in, and the microbial composition of raw and processed placental 

tissue.  

Based on  this data, possible positive and negative effects of human placentophagy 

were considered.  

Further, a literature review with specific reference to human placentophagy was 

carried out to evaluate the behavior of ingesting the afterbirth.  
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4.	Methods	and	Materials		

4.1	Sources	
	
Pertinent publications were retrieved by searching English-language publications in 

PubMed, Web of science and Google scholar between 10/2014 and 01/2017, using 

the key words: “placentophagy”, “placentophagia”, “ingesting placenta”, “eating 

placenta” and “placenta capsule intake”. The search included experimental, clinical 

and epidemiological study types from 1917–2014 and comprised reviews, abstracts 

and articles.  In addition, animal studies and studies found on reference lists were 

evaluated.  

English and German reference books have been a useful source of information, in 

particular “Heilmittel aus Plazenta”, written by the German midwife Cornelia Enning 

(Enning 2003). Personal communication with placenta encapsulation specialists 

Lynnea Shrief and Jules Giessing Gourley via E-Mail and Skype was used to adjust 

the methodology of placenta preparations.  

4.2	Financing	
 
This study was made possible through public funding. Funds were raised through the 

online platform www.experiment.com/placenta, a website for the crowd funding of 

scientific projects.  

Between November 13 and December 13, 2015 an amount of $ 8,355 was raised 

from 115 backers. This money (less 8 percent platform fee) was directly transferred 

to Jena University. All the equipment needed for placenta preparation (dehydrator, 

food processor, steamer pot) and the analysis of all samples by Food GmbH was paid 

for from this fund. 

4.3	Placenta	Sample	Collection	
 
This study was approved by the ethics committee of the University of Jena. Written 

informed consent was obtained from all women who gave birth at the obstetric 

department of the Jena University Clinic and donated their placenta to the Placenta 

Laboratory for scientific research. Exclusion criteria were C-section, the use of 

synthetic oxytocin and infection of either the mother or newborn. 
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Basic data including mothers’ age, gravida- and para-status as well as newborn and 

placenta data were taken.  

4.4	Sample	Preparation	
 
Nine placentas, all from spontaneous, non-interventional birth were collected at the 

Obstetric Department of the Jena University Clinic. The placentas were taken 

immediately after spontaneous birth to the Placenta Lab in clean containers. Within 2 

h of placenta birth a swab was taken from both sides (maternal and fetal) of the 

placenta.  

Weight, height and diameter of the placenta were measured and the placenta 

carefully inspected. Then the placenta was washed under cold running water; blood 

and blood clots were removed. To replicate the most common method of placenta 

preparation in a home-based environment, the processing was done under clean but 

not sterile conditions. 

The placenta was cut into three pieces and the umbilical cord was removed.  

 
One piece (“r” = raw) was homogenized using a meat processor (Moulinex DP800G, 

Frankfurt am Main, Germany) and samples were taken from the raw homogenized 

tissue.  

Another piece (“s” = steamed) was steamed using a steamer pot with boiling water. 

Following the preparation method of Traditional Chinese Medicine (TCM), ginger, 

lemon and hot pepper was added to the water. To avoid variations in the preparation 

process in our experiments (e.g. different concentrations of volatile oils in fresh 

ginger), boiling water without added herbs was used for steaming.  

The piece was steamed for at least 10 min until the core temperature reached 70 °C 

and there was no bleeding when pressed.  

raw

steamed dehydrated

raw dehydrated
Figure 4: Sample Preparation. 
Each placenta was cut into three 
pieces to represent the different 
hormone concentrations in various 
placental regions. 
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After the steaming process a sample was taken for microbiological analysis. The 

steamed piece was cut into 0.5 cm thin slices and placed on backing foil in a 

dehydrator tray (“s-dhy” = steamed dehydrated). 

 

A third piece of placenta (“r-dhy” = raw dehydrated) was cut into 0.5 cm thin slices 

and placed on backing foil in a dehydrator tray. 

The raw and steamed placenta slices were dehydrated for 8 hours at a temperature of 

55°C using a food dehydrator (Stöckli Dörrgerät, Netstal, Switzerland). The heating 

period of the dehydrator was 20 min, the timer was set for 12 h. The temperature in 

the upper and lower part of the dehydrator varied during the 8 h dehydration process 

(Table 4).  

 
Table 4: Variation of temperatures in the bottom and top tray of the dehydrator during 
8 h dehydration process. 
 

Sample Temperature in °C 

Bottom Tray 

Temperature in °C 

Top Tray 

P2 54-58 53-56 

P3 54-59 47-56 

P4 45-56 49-55 

P5 51-59 50-60 

P6 50-59 50-53 

P7 49-59 49-60 

P8 54-58 49-59 

P9 51-59 47-56 

 

After 8 hours of dehydration the samples were inspected, and a “snap test” was done 

to evaluate the complete desiccation of the material. If the material was snap dry, the 

dehydration process was stopped. If the material was still flexible, the dehydration 

was resumed for another hour.  

During the preparation process the working space was cleaned and disinfected using 

antibacterial Wipes (Disinfectant Mikrobac forte 0.5 %).  

Scalpel, scissors and all utensils made of steel were autoclaved after each complete 

preparation process.  

The samples for microbiological analysis were sent immediately to the Microbiology 

Department of the Jena University Hospital.  
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The samples for hormone and trace element analysis were stored in a freezer  

(–20 °C) until all samples were collected. They were all transferred at the same time 

after a period of 9 weeks to the laboratory of  “Food GmbH, Jena, Germany”.  

From each placenta a retained sample of steamed dehydrated and raw dehydrated 

tissue was stored at room temperature and in a fridge (4 °C). After 6 months (± 8 

weeks) the samples were analyzed again at the Institute of Medical Microbiology, 

University of Jena, to evaluate the microbiological growth. A summary of samples 

taken is displayed in Table 5.  

 

Table 5: Number of placentas used for further analysis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

Sample Microbiology 
analysis 

Hormone and 
trace element 

analysis 

Microbiology analysis 
after 6 months 

(retained samples) 

Swab fetal 7 - - 

Swab maternal 7 - - 

raw  “r” 7 6 - 

steamed  “s” 7 - - 

raw dehydrated   
“r-dhy” 7 6 7 

steamed 
dehydrated  
“s-dhy” 

7 6 7 
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Figure 5: Homogenization of raw placental tissue using a meat processor. 

 

 

 

             
Figure 6: 10 min steamed placenta (the pot was covered with a lid during steaming). 
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Figure 7: Cutting raw and steamed placenta; placing slices on dehydrator tray. 
	
	
	

	
	
	
	

			 	
 
Figure 9: Dehydrated slices of raw placental tissue were ground and samples taken 
from the powder.  

Figure 8: Dehydration of placenta slices.  
Raw slices were placed in the bottom tray, steamed slices 
in the upper tray. The temperature was monitored in both 
trays.  
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4.5	Sample	Analysis	

4.5.1	Microbiologic	sample	analysis	

 

Samples of raw, steamed, raw dehydrated and steamed dehydrated tissue and swabs 

of seven placentas were sent to the Institute of Medical Microbiology at the Jena 

University Hospital for microbiological analysis. Standard routine procedures were 

used to identify potentially pathogenic bacteria and fungi. 

A loop was used to inoculate agar plates with the powder from steamed, dehydrated 

and ground placental tissue. The placenta samples were streaked onto Columbia 

sheep blood agar, chocolate agar, Drigalski lactose agar, Schaedler agar, (Oxoid, 

Thermo Fisher Scientific, Wesel, Germany) using a wet swab. Additionally, for 

enrichment of microbes brain-heart infusion broth (BHI; BD, Heidelberg, Germany) 

was inoculated with the powder from steamed, dehydrated and grinded placental 

tissue.  

Cultures were incubated at 37o C at aerobic conditions with 5% CO2 for blood and 

chocolate agar for 48 h. Drigalski agar plates were incubated at aerobic conditions 

for 24 h. Cultures on Schaedler agar were incubated at anaerobic conditions for 96 h.  

BHI broth was streaked onto blood and chocolate agar after overnight incubation.  

These culture media are appropriate to isolate common microbial species of the 

normal vaginal flora, Staphylococcus aureus, hemolytic streptococci, enterococci, 

Enterobacteriaceae including enteropathogenic species, non-fermenters including P. 

aeruginosa, Candida spp. and filamentous fungi.  

Identification of bacteria and fungi was performed using the examination of specific 

colony morphologies, characteristic growth on differential and selective media, and 

further species identification with MALDI-TOF mass spectrometry (Vitek MS, 

bioMerieux, Nürtingen, Germany) if necessary. 

Antimicrobial Susceptibility Testing was performed using Vitek 2 and minimal 

inhibitory concentration interpretation based on European Committee on 

Antimicrobial Susceptibility Testing (EUCAST) criteria. 
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4.5.2	Microbiological	analysis	of	retained	samples	

 

To replicate the most common methods of storage, a retain sample of r-dhy and s-

dhy tissue from every processed placenta was stored at room temperature and in the 

refrigerator (4° Celsius). After 6 months (± 8 weeks) of storage, samples from raw 

dehydrated (r-dhy) and steamed dehydrated (s-dhy) placenta were analyzed again for 

possible further bacterial or fungal growth. The samples were streaked onto 

Columbia sheep blood agar, chocolate agar, Drigalski lactose agar, Schaedler agar, 

(Oxoid, Thermo Fisher Scientific) and brain-heart infusion broth (BHI; BD) and 

incubated as described above. The organisms were identified by VITEK mass 

spectrometry (MALDI-TOF, bioMerieux). 

	

4.6	Hormones,	trace	elements	and	protein	content		
	
Hormone concentrations, trace elements and protein contents in samples from raw, 

raw dehydrated and steamed dehydrated tissue of six placentas were examined in an 

external laboratory (Food GmbH Jena, Analytik-Consulting, Germany).  

Hormone	Analysis	

The hormone extraction process is based on tissue digestion by an osmotic shock. 

Placenta tissue samples were treated with a lysis buffer (100 mM NaCl, 50 mM Tris-

HCl pH 8.0, 5% Glycerol). After 20 min incubation time samples were centrifuged 

and the supernatant was transferred to a new reaction tube. Hormone analysis was 

done immediately afterwards.  

The concentrations of CRH, hPL, Oxytocin and ACTH in samples of raw,  

steamed dehydrated and raw dehydrated placental tissue were detected using the 

following ELISA kits: Human OT Elisa Kit (Cusabio Biotech CO., LTD), detection 

range (8–400µ IU/ml), sensitivity: less than 10 µIU/ml; hPL Elisa (GenWay Biotech, 

San Diego CA), detection range (0.043–20 mg/l), sensitivity: 0.043 mg/l; CRH Elisa 

(Cloud Clone Corp., Wuhan, PRC) detection range (12.35–1000 pg/ml), sensitivity: 

4.55 pg/ml; ACTH Elisa (Cloud Clone Corp., Wuhan, PRC) detection range  

(12.35–1000 pg/ml), sensitivity 5.18 pg/ml.  

Yeast	Estrogen	Screening	

Yeast Estrogen Screening (YES) is a sensitive tool to identify hormone-active 

bindings in diluted samples. This bioassay is used to detect endocrine disruptors, for 



	 44	

example in food or drinking water. Genetically modified yeast strains produce 

specific receptors for steroid hormones, such as the human estrogen receptor or the 

human gestagen receptor. The activation of the receptor induces an enzyme-mediated 

discoloration of the samples that is quantified by spectrophotometry. Therefore, the 

results for the analysis of estrogen and progesterone show the equivalent of 

substances activating the human receptor for these hormones.  

ICP-MS	Measurement	

The elements As, Cd, Fe, Pb, Se, Hg were determined for all samples by wet 

digestion with oxidizing reagents (nitric acid, hydrogen peroxide) under increased 

pressure and temperature. This method is based on DIN EN ISO 17294-2:2017-01 

and is  typically used for the analysis of food samples. Therefore, it was also used for 

the placenta tissue samples that were treated in this case study as food samples. 

For each element measurement, calibration was done using a blank solution and the 

diluted ICP multi-element standard solution XXI for MS (Merck). In order to 

substantiate the results, an internal standard was used for each measurement: 

1 µg/ml Rh; preparation: 0.1 ml 1 g/l + 3 ml HNO3 ad 100 ml. 

Kjeldahl	protein	quantification	

The quantification of the protein content in a sample was done by standard 

determination of Kjeldahl-nitrogen. Samples were digested with sulfuric acid in 

presence of a chemical catalyst (potassium sulphate and copper sulphate). Sodium 

hydroxide solution was added to the acid digestion mixture to convert ammonium to 

ammonia gas, followed by boiling and condensation of the ammonia gas in a 

receiving solution. The amount of ammonia in the receiving solution was detected by 

titration. The amount of nitrogen in a sample was calculated from the quantified 

amount of ammonia ions in the receiving solution. The protein content was 

calculated as the product of the amount of nitrogen and the conversion factor 6.25.  

Each measurement was done along with a blank and an internal reference analysis. 
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4.7	Data	Evaluation	
 
Descriptive data analysis was used to characterize the microbial composition of the 

tissue samples. The absolute number of detected microbial species was used to 

compare the outcome of microbial composition of the different preparation methods.  

The effect of different preparation methods of placenta tissue on its hormone content 

was evaluated using the Friedman test. This test was used to match the three different 

preparation methods and hormone concentrations. 

The Wilcoxon test was used subsequently to evaluate the relationship between the 

two different methods. The Wilcoxon test compared two sets of scores that came 

from the same placenta sample. 
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5.	Results	
 
This study was approved by the ethics committee of the University of Jena. At the 

Department of Obstetrics of the Jena University Hospital written informed consent 

was obtained from all women who gave birth and donated their placenta to the 

placenta laboratory for scientific research. Exclusion criteria were C-section, the use 

of synthetic oxytocin and infection of either the mother or newborn. All placentas 

were delivered at term, gestational age ranging from 37+6 to 40+6 weeks. Three 

women gave birth without any medication, two women had local anesthesia during 

delivery, two women had other medication (Methyldopa, Butylscopolaminium 

bromid, Meptazinol hydrochlorid) during delivery.  

The first Placenta (P1) was used to test the preparation methods for this study and 

was removed from the analysis. The samples were labeled P2–P9. One placenta (P7) 

was excluded from hormone and trace mineral analysis because of synthetic oxytocin 

administration during delivery, but was included in bacteria testing. P6 also was 

excluded from hormone analysis for reasons of gender equality (n=3 male and 3 

female newborns).  

Data from all patients participating in this study were obtained, including newborn 

and placenta data. The mean weight of the analyzed placentas was 563.7 g, the mean 

placenta diameter was 18 cm.  

Detailed patient information can be found in Table 6.  

 

Table 6: Patient characteristics including newborn and placenta data, (n=8). 

 Mean Range SD 
Age, y 30.26 20–36 4.8 
Gravida 2 1–3 0.5 
Para 1.9 1–3 0.6 
Gestation week 39.8 37+6–40+6 – 
Birth weight newborn, g 3496.3 3170–4190 304.9 
Head circumference newborn, cm 33.9 31.5–36 1.2 
Body length newborn, cm 51.3 48–54 2 
Placenta weight, g 563.73 434–709 91.3 
Placenta height, cm 2.13 1.5–2.5 0.4 
Placenta diameter, cm 18 16–19 1 
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5.1	Microbiology	
 

The samples were labelled “swab f” for the swab of the fetal side of the placenta, 

“swab m” for the swab of the maternal side of the placenta, “raw”, “steamed”, “r-

dhy” (raw dehydrated) and “s-dhy” (steamed dehydrated). 

To examine the possible microbiological spoiling of dehydrated placenta tissue, 

retained samples were analyzed after 6 months (Chapter 5.1.1: Retained samples). 

 

Microorganisms, mainly from the vaginal flora, were detected on swab samples and 

samples from raw, steamed and dehydrated placenta tissue. The absolute number of 

species detected varied according to the preparation method.  

 

  

Figure 10: Number of different species detected, n=7.                                                             
Blue – Number of different microbial species detected on swab samples (maternal/fetal side 
of placenta) and on raw, steamed, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) 
tissue, Lilac – Number of different microbial species detected on raw dehydrated (r-dhy) and 
steamed dehydrated (s-dhy) tissue of retained samples (after 6 months ± 8 weeks of storage) 

0	

2	

4	

6	

8	

10	

12	

14	

16	

N
um

be
r	
of
	d
iff
er
en
t	s
pe
ci
es
	

de
te
ct
ed
	



	 48	

The steamed dehydrated tissue showed minimal microbiological growth: in only 1 

out of 7 samples were bacteria identified; 6 out of 7 samples showed no bacterial 

growth after 48 h (Figure 11).  

 

 
Figure 11: Absolute number of different microbial species detected in each individual 
placenta (P2-P8).  
Samples taken from raw, steamed, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) 
tissue and from retained samples, stored at room temperature (RT) and in the fridge (4°). 
Swab samples from the fetal and maternal side of the placenta were added and the sum 
divided by two; a detailed summary with all samples and microbial species detected can be 
found in the Appendix.  
 
 

In 4 out of 7 samples of the raw dehydrated tissue, no bacterial growth was shown 

after 48 h; bacteria of the vaginal flora (Streptococci, Staphylococci, 

Enterobacteriaceae) were detected in 3 samples. 

The steaming process diminished the number of bacteria species detected on placenta 

tissue. A piece of placenta was steamed for at least 10 min until the core temperature 

reached 70 °C. The absolute number of different microbes detected on all samples of 

raw placenta tissue was reduced from a total of 13 to only 4 different microbes on all 

steamed samples (Figure 10).  
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Figure 12: Distribution of microbial species detected on all analyzed placenta tissue 
samples (n=7).  
Samples analyzed from swab samples of the fetal (swab f) and maternal (swab m) side of the 
placenta, and from raw, steamed, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) 
tissue. A detailed summary with all samples and microbial species detected can be found in 
the Appendix.  
 

A total of 14 different species were detected on swab samples from the fetal side of 

the placenta; a total of 12 different species were detected on the maternal side. A 

cross-contamination of bacteria from the maternal and fetal sides is probable.  

The raw, homogenized placenta tissue was predominantly populated by bacteria of 

the vaginal and skin flora. The following organisms were identified: 

Lactobacillaceae, Corynebacterium spp, Staphylococcus spp, Streptococcus spp, 
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Bacteriodes spp, Peptostreptococcus spp, E. Coli, Gardnerella vaginalis, 

Burkholderia gladioli, Achromobacter spp, Capnocytophaga spp, Candida albicans.  

 

 
Figure 13: Absolute number of different microbial species detected on each placenta 
(P2-P8).  
Swab samples from the female and maternal side of the placenta (swab f/m) were added and 
the sum divided by two. The absolute number of different microbial species detected in raw, 
steamed, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) tissue is shown.   
	

Raw dehydrated tissue of samples with relatively numerous microbial species 

detected on raw tissue (P5, P6) showed no bacterial growth after dehydration  

(Figure 13).  
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5.1.1	Retained	Samples	
 

Women who consume their placenta in capsule form often store the processed 

placenta tissue for weeks or months. To evaluate the microbiological composition of 

the dehydreated, pulverized placental tissue, retained samples of every processed 

placenta in this study were stored for 6 months (± 8 weeks). To replicate the most 

common method of storage, a retained sample of steamed dehydrated and raw 

dehydrated tissue from every processed placenta was stored at room temperature and 

in the fridge (4° Celsius). In 8 out of 28 samples bacterial growth was verified (see 

Appendix for species details).  

The following bacteria were identified:  

- Lactobacillaceae 

- Coagulase negative Staphylococci 

- Propionibacterium spp 

- Bacillus spp  

- Paenibacillus macerans 

- Roseomonas mucosa 
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5.2	Hormone	Analysis		
 
Hormones were analyzed in the following  preparation samples of placenta tissue:  

raw (r),  

raw dehydrated (r-dhy) and  

steamed dehydrated (s-dhy) placental tissue.  

The median water content of samples from raw placenta tissue in this study was 

85%. In order to compare the concentration of hormones in raw and dehydrated 

tissue with respect to the water content of raw tissue, the concentration of hormones 

found in raw tissue were converted to dry matter values.  

The following formula was used to calculate the relative water content of raw 

placental tissue:  
wet weight − dry weight

wet weight
 = realtive water content of raw placenta tissue 

 

In order to calculate the theoretical hormone concentration in dried raw placenta 

tissue the following formula was used: 

 
 Hormone concentration x in raw placenta

(1 –  relative water content)
 = theoretical hormone x concentration 
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5.2.1	Concentrations	of	Corticotropin	releasing	hormone	(CRH)	
 
An ELISA Test was performed in order to analyze concentrations of CRH in 

placental tissue. The highest concentration of CRH was found in raw placenta tissue 

(median 179.27 ng/g). Proportionately, raw tissue contains a much higher amount of 

CRH per gram if the water content of placenta tissue is eliminated (median 1206.36 

ng/g). The process of dehydration caused a hormone loss of 85.1%, whereas the 

process of steaming followed by dehydration caused a hormone loss of 95.5%. 
 
Table 7: Tissue CRH concentrations dependent on placenta preparation style: raw (r),  
raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in ng/g. 
 
CRH in  
ng/g  
 

raw (wet weight)  raw (theoretical 
dry weight) 

r-dhy  s-dhy 

P2 160.94 836.89 215.19 34.64 
P3 139.17 1036.04 208.49 61.84 
P4 172.91 1671.46 207.99 6.10 
P5 185.62 1093.10 263.69 50.72 
P8 203.02 1319.63 202.60 99.72 
P9 205.61 1347.89 217.51 58.77 
     
Mean 177.88 1217.50 219.25 51.97 
SD 23.35 266.70 20.47 28.37 
Median 179.27 1206.36 211.84 54.75 
25th 
Percentile 

163.93 1050.31 
 

208.12 
 

38.66 
 

75th 
Percentile 

198.67 
 

1340.82 
 

216.93 
 

61.07 
 

Range 139.17 – 205.61 836.89 – 1671.46 202.60 – 263.69 6.10 – 99.72 
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Figure 12: Mean and standard error (n=6) for different placenta preparation styles and 
their influence on CRH concentrations in ng/g.  
The highest concentration of CRH was found in raw placenta (theoretical dry weight). 

 
  

0	

200	

400	

600	

800	

1000	

1200	

1400	

CR
H
	c
on
ce
nt
ra
ti
on
s	
in
	n
g/
g	
	

raw	(wet	weight)	 raw	(theoretical	dry	weight)	 r-dhy	 s-dhy	



	 55	

5.2.2	Concentrations	for	human	placental	lactogen	(hPL)	
 

An ELISA Test was performed in order to analyze concentrations of hPL in placental 

tissue. The highest hormone concentration for hPL was found in raw placental tissue 

(median 17.58 mg/g). The hormone concentration of theoretical dry weight derived 

from raw placenta is much higher (median 121.89 mg/g). The process of dehydration 

caused a hormone loss of 87 %, whereas the process of steaming followed by 

dehydration caused a hormone loss of 99.5 %. 
 
Table 8: Tissue hPL concentrations dependent on placenta preparation style: raw (r),  
raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in mg/g. All concentrations below 
detection limit were defined as half of the value of the detection threshold. 
 

 
  

hPL in 
mg/g 

raw (wet 
weight) 

raw (theoretical 
dry weight) 

r-dhy s-dhy* 

P2 22.30 115.96 31.05 0.63 
P3 17.26 128.49 13.28 0.63 
P4 14.72 142.29 16.00 0.63 
P5 21.47 126.43 12.86 0.63 
P8 14.31 93.02 19.83 0.63 
P9 17.90 117.34 15.83 0.63 
     
Mean 17.99 120.59 18.14 

 
0.63 
 

SD 3.04 15.06 6.20 0.00 
Median 17.58 121.89 15.92 0.63 
25th 
Percentile 

15.36 
 

116.31 
 

13.92 
 

0.63 
 

75th 
Percentile 

20.58 
 

127.98 
 

18.87 
 

0.63 
 

Range 14.31 – 22.30 93.02 – 142.29 12.86 – 31.05 0.63 – 0.63 



	 56	

 
 
Figure 13: Mean and standard error (n=6) for different placenta preparation styles and 
their influence on hPL concentrations in mg/g.  
The highest concentration of hPL was found in raw placenta (theoretical dry weight).  
All concentrations below detection limit were defined as half of the value of the detection 
threshold. 
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5.2.3	Concentrations	for	oxytocin	(OT)	
 
An ELISA Test was performed in order to analyze concentrations of OT in placental 

tissue. The highest hormone concentration for OT was found in raw placental tissue 

(median 82.58 pg/g). The hormone concentration of theoretical dry weight derived 

from raw placenta was much higher (median 572.05 pg/g). The process of 

dehydration caused a hormone loss of 64.6 %, whereas the process of steaming 

followed by dehydration caused a hormone loss of 89.2 %. 

 

Table 9: Tissue OT concentrations dependent on placenta preparation style: raw (r),  
raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in pg/g. 
 
OT in 
pg/g 

raw (wet 
weight)  

raw (theoretical 
dry weight) 

r-dhy s-dhy 

P2 105.62 555.89 236.55 61.12 
P3 80.80 621.54 167.65 65.67 
P4 80.04 800.40 132.92 57.66 
P5 84.35 496.18 239.71 62.39 
P8 71.57 477.13 646.51 56.07 
P9 88.23 588.20 107.38 65.38 
     
Mean 85.10 589.89 255.12 61.38 
SD 10.48 106.44 181.74 3.59 
Median 82.58 572.05 202.10 61.76 
25th 
Percentile 

80.23 511.11 141.60 58.53 

75th 
Percentile 

87.26 613.20 238.92 64.63 

Range 71.57 – 105.62 477.13 – 800.40 107.38 – 646.51 56.07 – 65.38 
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Figure 14: Mean and standard error (n=6) for different placenta preparation styles and 
their influence on OT concentrations in mg/g.  
The highest concentration of OT was found in raw placenta (theoretical dry weight). 
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5.2.4	Concentrations	for	adrenocorticotropin	hormone	(ACTH)	
 
An ELISA Test was performed in order to analyze concentrations of ACTH in 

placental tissue. The highest hormone concentration for ACTH was found in raw 

placental tissue (median 2.02 ng/g). The hormone concentration of theoretical dry 

weight derived from raw placenta was much higher (median 14.26 ng/g). The 

process of dehydration caused a hormone loss of 91.7 %, whereas the process of 

steaming followed by dehydration caused a hormone loss of 99.6 %. 
 
Table 10: Tissue ACTH concentrations dependent on placenta preparation style: raw 
(r), raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in ng/g. All concentrations 
below detection limit were defined as half of the value of the detection threshold. 
 
ACTH in 
ng/g 

raw (wet 
weight)  

raw (theoretical 
dry weight) 

r-dhy s-dhy * 

P2 1.92 10.11 1.76 0.06 
P3 2.04 15.69 1.12 0.06 
P4 1.92 19.20 0.94 0.06 
P5 2.32 13.65 1.78 0.06 
P8 2.00 13.33 1.25 0.15 
P9 2.23 14.87 0.85 0.19 
     
Mean 2.07 14.47 1.28 0.10 
SD 0.15 2.74 0.37 0.05 
Median 2.02 14.26 1.19 0.06 
25th 
Percentile 

1.94 13.41 0.99 0.06 

75th 
Percentile 

2.18 15.49 1.63 0.13 

Range 1.92 – 2.32 10.11 – 19.20 0.85 – 1.78 0.06 – 0.19 
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Figure 15: Mean and standard error (n=6) for different placenta preparations and 
their influence on ACTH concentrations in ng/g.  
The highest concentration of ACTH was found in raw placenta (theoretical dry weight). All 
concentrations below detection limit were defined as half of the value of the detection 
threshold. 
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5.2.5	Concentrations	for	Estrogen	Equivalent	(EEQ)		
 

A yeast estrogen screening (YES) was performed in order to analyze estrogenically 

active substances. The highest concentration for EEQ was found in raw placental 

tissue (median 48.38ng/g). The hormone concentration of theoretical dry weight 

derived from raw placenta was much higher (median 300.11ng/g). The process of 

dehydration caused a hormone loss of 97.3%, whereas the process of steaming 

followed by dehydration caused a hormone loss of 99.2% 

 
 Table 11: Tissue EEQ concentrations dependent on placenta preparation style: raw (r),  
 raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in ng/g. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EEQ in 
ng/g 

raw (wet weight)  raw (theoretical dry 
weight) 

r-dhy s-dhy 

P2 55.48 288.50 18.79 3.57 
P3 38.84 289.14 6.69 2.68 
P4 36.28 350.71 8.57 1.92 
P5 51.13 301.10 11.74 2.30 
P8 54.32 353.08 7.55 2.73 
P9 45.63 299.13 6.01 1.96 
     
Mean 46.95 313.61 9.89 2.53 
SD 7.37 27.48 4.38 0.56 
Median 48.38 300.11 8.06 2.49 
25th 
Percentile 

40.54 291.64 6.91 2.05 

75th 
Percentile 

53.52 338.30 10.95 2.72 

Range 36.28 - 55.48 288.50 - 535.08 6.01 - 18.79 1.92 - 3.57 
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Figure 16: Mean and standard error (n=6) for different placenta preparation styles and 
their influence on EEQ concentrations in ng/g.  
The highest concentration of EEQ was found in raw placenta (theoretical dry weight). 
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5.2.6	Concentrations	for	progesterone	equivalent	(PEQ)	
 
A yeast screening was performed to detect gestagenic active substances. The highest 

hormone concentration for PEQ was found in raw dehydrated placental tissue 

(median 18.76µg/g ). Raw tissue contained a high amount of PEQ if the water 

content of placenta tissue was extracted (median 14.61µg/g). The process of 

dehydration caused a hormone increase of 7.3% compared to the concentration in 

raw tissue. The progesterone equivalent was the only substance that showed an 

increase in hormone concentration after the preparation process of dehydration. The 

process of steaming followed by dehydration caused a hormone loss of 97.5%.  
 
 Table 12: Tissue PEQ concentrations dependent on placenta preparation style: raw (r),  
raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) in µg/g. 

 
 
 
 

PEQ in  
µg/g 

raw (wet 
weight)  

raw (theoretical 
dry weight) 

r-dhy s-dhy 

P2 1.85 9.74 9.19 0.46 
P3 1.97 15.15 18.93 0.40 
P4 1.93 19.30 18.74 0.26 
P5 2.39 14.06 10.62 0.38 
P8 2.01 13.40 18.78 0.35 
P9 2.56 17.07 18.95 0.13 
     
Mean 2.12 14.79 15.87 0.33 
SD 0.26 2.99 4.24 0.11 
Median 1.99 14.61 18.76 0.37 
25th 
Percentile 

1.94 13.56 12.65 0.28 

75th 
Percentile 

2.30 16.59 18.89 0.40 

Range 1.85 – 2.56 9.74 – 19.30 9.19 – 18.95 0.13 – 0.46 
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Figure 17: Mean and standard error (n=6) for different placenta preparation styles and 
their influence on PEQ concentrations in µg/g.  
The highest concentration of PEQ was found in raw dehydrated placental tissue. 
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5.3	Concentration	of	trace	elements	
 
To evaluate the accumulation of potentially toxic elements through placenta 

preparation, six elements (As, Cd, Fe, Pb, Hg, Se) were analyzed in placenta tissue.  

The detection limits for the elements were the following:  

Cadmium        0.0007 mg/kg 
Lead                0.003 mg/kg 
Iron                0.02 mg/kg 
Selenium         0.003 mg/kg 
Mercury          0.0007 mg/kg 

 
Table 13: Range of trace elements detected in placenta preparations. 
 
 Arsenic 

µg/kg * 
Cadmium   
µg/kg 

Iron      
mg/kg 

Lead     
µg/kg * 

Selenium     
µg/kg 

Mercury      
µg/kg * 

raw 5.0 – 5.0 2.7 – 9.7 61.0 – 97.0 5.0 – 43.0 138.33 – 150.0 1.0 – 1.0 
r-dhy 5.0 – 16.0 19.0 – 28.0 450.0 – 600.0 18.0 – 250.0 700.0 – 850.0 3.0 – 99.0 
s-dhy 5.0 – 14.0 14.0 – 23.0 350.0 – 580.0 15.0 – 220.0 720.0 – 1000.0 3.3 – 19.0 

 
 
Table 14: Concentrations of trace elements (mean and standard deviation). 
 
 Arsenic 

µg/kg * 
Cadmium   
µg/kg 

Iron      
mg/kg 

Lead      
µg/kg * 

Selenium     
µg/kg 

Mercury      
µg/kg * 

raw 5.0 ± 0.0 4.22 ± 2.5 81.5 ± 11.4 22.5 ± 13.6 138.33 ± 13.4 1.0 ± 0.0 

r-dhy 6.8 ± 4.1 24.17 ± 3.6 548.33 ± 48.8 102.17 ± 101.4 826.67 ± 57.3 66.83 ± 31.6 

s-dhy 6.5 ± 3.4 19.0 ± 3.6 481.67 ± 75.6 68.33 ± 69.6 851.67 ± 96.9 7.33 ± 5.4  

 
The preparation process caused only minor changes in trace element concentrations, 

except for the concentrations of iron.  

 
 
Table 15: Median values for trace element concentrations. 

 
* All concentrations below detection limit were defined as half of the value of the detection 
threshold. 
  

 Arsenic 
µg/kg * 

Cadmium   
µg/kg 

Iron      
mg/kg 

Lead     
µg/kg * 

Selenium     
µg/kg 

Mercury      
µg/kg * 

raw 5.0 3.0 84.5  26.5 140.0 1.0 
r-dhy 5.0 25.0 565.0 41.5 850.0 70.0 
s-dhy 5.0 20.0 475.0 42.0 860.0  5.35 
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5.4	Protein	content	
	
The protein content of placenta tissue from raw, raw dehydrated and steamed 

dehydrated placental tissue can be compared in Table P1. Due to the moisture 

reduction, the protein concentration in dehydrated and steamed dehydrated tissue 

rises.  

 
Table 16: Different protein concentrations dependent on placenta preparation  
in g/100g. 
 

Total protein in 
g/100g 

raw r-dhy s-dhy 

P2 12.40 80.90 82.70 
P3 12.70 79.80 82.30 
P4 11.60 73.60 78.30 
P5 12.70 81.50 81.50 
P8 13.40 78.80 80.10 
P9 14.20 78.70 81.50 
    
Mean 12.83 78.88 81.07 
SD 0.81 2.57 1.48 
Median 12.70 79.30 81.50 
25th percentile 12.48 78.73 80.45 
75th percentile 13.23 80.63 82.10 
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5.5	Statistic	analysis	of	hormone	concentration	in	different	placenta	tissue	
preparations		
 

For the statistic analysis of hormone concentrations, data from hormone 

concentrations in raw tissue (converted to dry matter value), raw dehydrated tissue 

and steamed dehydrated tissue were compared. Friedman's test was applied to the 

example data to see if there were differences between the hormone concentrations of 

the three preparation groups. The SPSS output from running Friedman’s test can be 

observed in Table 17. There was a statistically significant difference in the hormone 

concentration of every hormone analyzed, which was dependent on the different 

styles of preparation.  

	
Table 17: Results of Friedman's test: Comparison of hormone concentrations from three 
preparation groups (raw, steamed dehydrated and raw dehydrated) showed significant 
differences.  
 
 x2  p 

CRH 12.000 0.002 

hPL 12.000 0.002 

OT 10.333 0.006 

ACTH 12.000 0.002 

EEQ 12.000 0.002 

PEQ 9.000 0.011 

	
 

A Wilcoxon signed-rank test was applied to compare two sets of data from the same 

placenta in order to evaluate the three different preparation methods on tissue from 

one placenta.  

 
Table 18: Comparison of CRH concentrations in r (raw), r-dhy (raw dehydrated) and 
s-dhy (steamed dehydrated) samples. 
 

CRH 
 r-dhy – raw s-dhy – raw s-dhy – r-dhy 
p-Value .028 .028 .028 
Based on positive ranks: r-dhy < r, s-dhy < r, s-dhy < r-dhy 

 

The concentration of CRH in raw tissue was significantly higher than in raw 

dehydrated and steamed dehydrated tissue.  
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Table 19: Comparison of hPL concentrations in r (raw), r-dhy (raw dehydrated) and s-
dhy (steamed dehydrated) samples. 
 

hPL 
 r-dhy – raw s-dhy – raw s-dhy – r-dhy 
p-Value .028 .028 .028 
Based on positive ranks; r-dhy < r, s-dhy < r, s-dhy < r-dhy 

	
The concentration of hPL in raw tissue was significantly higher than in raw 

dehydrated and steamed dehydrated tissue.  

 
Table 20: Comparison of oxytocin (OT) concentrations in r (raw), r-dhy (raw 
dehydrated) and s-dhy (steamed dehydrated) samples. 
 

OT 
 r-dhy – raw s-dhy – raw s-dhy –  r-dhy 
p-Value .046 .028 .028 
Based on positive ranks: r-dhy < r, s-dhy < r, s-dhy < r-dhy 

	
The concentration of OT in raw tissue was significantly higher than in raw 

dehydrated and steamed dehydrated tissue. 
 
 
Table 21: Comparison of ACTH concentrations in r (raw), r-dhy (raw dehydrated) and 
s-dhy (steamed dehydrated) samples. 
 

ACTH 
 r-dhy – raw s-dhy – raw s-dhy – r-dhy 
p-Value  .028 .028 .028 
Based on positive ranks: r-dhy < r, s-dhy < r, s-dhy < r-dhy 

 
The concentration of ACTH in raw tissue was significantly higher than in raw 

dehydrated and steamed dehydrated tissue.  
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Table 22: Comparison of EEQ concentrations in r (raw), r-dhy (raw dehydrated) and s-
dhy (steamed dehydrated) samples. 
 

EEQ 
 r-dhy – raw s-dhy – raw s-dhy – r-dhy 
p-Value .028 .028 .028 
Based on positive ranks: r-dhy < r, s-dhy < r, s-dhy < r-dhy 

 

The concentration of EEQ in raw tissue was significantly higher than in raw 

dehydrated and steamed dehydrated tissue.  

 
Table 23: Comparison of PEQ concentrations in r (raw), r-dhy (raw dehydrated) and s-
dhy (steamed dehydrated) samples. 
 

PEQ 
 r-dhy – raw s-dhy –raw s-dhy – r-dhy 
p-Value .463 .028 .028 
Based on positive ranks: r-dhy > r, s-dhy < r, s-dhy < r-dhy 

 
The findings for progesterone equivalents differed from those for the other 

hormones. The concentration of PEQ in raw dehydrated tissue was significantly 

higher than in raw and steamed dehydrated tissue.  

 

In summary, the Wilcoxon signed-rank test showed that all hormone concentrations, 

except progesterone equivalents, had the significantly highest concentration in raw 

placenta tissue. All analyzed hormones had a significantly higher concentration in 

raw dehydrated tissue compared to steamed dehydrated tissue. 
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6.	Discussion	
 

The present study was designed to evaluate the effect of different preparation 

methods on the properties of placental tissue. Additionally, literature on 

placentophagy was obtained and carefully reviewed. Based on the findings of 

experimental results and published data, processed placenta is discussed as a 

potential supplement for postpartum recovery.  

 

6.1	Possible	effects	of	placentophagy		
 

In a survey conducted by Selander et al. (Selander et al. 2013) women reported the 

following benefits after placentophagy: improved mood (40%), increased energy 

(26%), improved lactation (15%) and alleviated postpartum bleeding (7%). 

To what extent the subjective feelings of mood stabilization, having “more energy” 

and enhanced milk supply could be due to placentophagy is discussed in the 

following.  

6.1.1	Improved	Mood	
	
In addition to psychosocial factors influencing the perinatal period, drastic hormonal 

changes occur. Pregnancy is characterized by marked changes in the Hypothalamic-

Pituitary-Adrenal-Axis (HPA-Axis) (Yim et al. 2009). During the third trimester of 

pregnancy placental CRH (pCRH) is detectable in maternal blood, stimulating 

ACTH release from the anterior pituitary (Sasaki et al. 1984). ACTH causes cortisol 

release from the maternal adrenal cortex (Smith und Vale 2006). Cortisol levels 

during pregnancy reach levels found in Cushing´s Syndrome and major melancholic 

depression (Kammerer et al. 2006). Cortisol again stimulates placental CRH 

synthesis. During pregnancy, the exponentially increased pCRH reaches levels 

similar to those of CRH in the hypothalamus during conditions of acute stress 

(Lowry 1993). These high hormone levels fall immediately after placental birth. It 

has been argued that the acute withdrawal from these high CRH levels after 

parturition can explain the occurrence of postpartum depressive disorders (Magiakou 

et al. 1996). 

Yim found a correlation between CRH concentration and PPD. Even if there are 

many studies with no clear results for hormone substitution therapy as option of 
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choice for PPD, there is still the hypothesis that the withdrawal of gonadal or 

neurohormones can influence the mood of certain women. pCRH is produced by the 

placenta, and plasma CRH concentrations rise exponentially during pregnancy 

(Sandman et al. 2006). The CRH concentration found in raw placental tissue in this 

study was 179.27 ng/g. Could it be an option for women to substitute the body´s own 

CRH with placenta intake to regulate the hormonal situation after birth? The effect of 

placentophagy on PPD or other mood symptoms still has to be evaluated in clinical 

studies. Further studies are needed to investigate the bioactivity of CRH after oral 

ingestion.  

As progesterone is the only hormone that is stable to dehydration, our data suggests 

that it could have an effect on postpartal mood stabilization. According to Bloch et 

al., marked changes in gonadal steroid levels can produce mood destabilizing effects 

and the involvement of progesterone in the development of post partum depression 

has been shown (Bloch et al. 2003). The role of progesterone in the development and 

treatment of post partum depression must be investigated in more detail. 

Even if the reported benefit of stable mood after placentophagy is due to a placebo 

effect, it nevertheless has an influence on the mother-child relationship. If the intake 

of processed placenta helps a new mother to cope with the exhausting situation after 

delivery and in puerperium, and leads – through whatever cause – to a stabilized 

mood in the mother, there will be advantages for the child as well.  

6.1.2	More	energy			
	
Anemia is a significant health problem in women of reproductive age and is related 

to various health problems for the mother and the newborn. Iron deficiency anemia 

(IDA) with a prevalence of 80% is the most common form (Herold 2009). 

The hemoglobin (Hb) threshold used by the WHO to define anemia is <11.0 g/dl in 

pregnant women and <10.0 g/dl in women post partum (WHO 2008). The prevalence 

of anemia in pregnant women is 25.1% in Europe and 24.1% in the Americas, 

compared to a prevalence of 19.0% in non-pregnant women in Europe and 17.8% in 

non-pregnant women in the Americas (Bruno de Benoist und Erin McLean 2008).  

The manifestation of a postpartum anemia is closely associated with the occurrence 

of IDA in pregnancy (Milman 2008). The short and long term effects of anemia for 

mother and newborn are wide ranging, as detailed by Milman. Postpartum anemia in 

women causes decreased physical performance and is associated with an increased 
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prevalence of tiredness, breathlessness, palpitations, and infections, predominantly of 

the urinary tract (Milman 2011).  

The treatment of IDA with iron supplementation results in an improvement of 

maternal stress and depression indicators (Beard et al. 2005). Beard concluded that 

there is a strong relation between iron status and depression, stress and cognitive 

function. However, Corwin states that early postpartum anemia is a significant risk 

factor for PPD. Hb levels are expected to rise by day 7 postpartum. When this did not 

occur, symptoms of depression were soon apparent (Corwin et al. 2003).  

Corwin linked early postpartal fatigue with the development of PPD. It was found 

that women who experience high levels of fatigue on day 14 postpartum scored 

significantly symptomatic of depression on day 28 postpartum (Corwin et al. 2005).  

Therefore anemia has an important effect on the (psychological) wellbeing of the 

mother and her interaction with the newborn. Assuming that the anemia is caused by 

iron deficiency, the dietary requirement of iron in pregnant and breast-feeding 

women is higher compared to that of the normal population.  

Two different types of iron are known: nonheme iron, which is present in both plant 

foods and animal tissues, and heme iron, which comes from hemoglobin and 

myoglobin in animal source foods (Hurrell und Egli 2010). Taking into account that 

heme is absorbed intact and more effectively than inorganic iron (Bhagavan 2002), 

using the iron stores of the placenta can be a good option to meet the postpartal iron 

demand. According to the U.S. Department of Health and Human Services the 

recommended iron intake for women of reproductive age (19–51 years) is 18mg/d 

(Health and Human Services 2015). The dose is increased to 27 mg/d in pregnancy 

and reduced to 9mg/d in lactating women. A reduction of the daily iron intake in 

lactating women has to be discussed with respect to the numbers of anemic women 

during pregnancy and the resulting possibility of postpartum anemia. The logical 

consequence for women suffering from IDA in the postpartum period would be iron 

supplementation, preferably with heme iron. 

The concentration of iron found in raw, raw dehydrated and steamed dehydrated 

tissue measured in our study was compared to other published iron levels in 

processed placenta (Table D1).  
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Table 24: Published iron concentration in processed placental tissue.  
Data compared from samples of raw, raw dehydrated (r-dhy) and steamed dehydrated (s-
dhy) tissue, mean and standard deviation in mg/kg. 
 
 raw r-dhy s-dhy 

Present study 81.5 ± 11.4 548.33 ± 48.8 481.67 ± 75.6 

Puaphradit et al. 

2000 

– 980.0 ± 147.4 – 

Young et al. 2016 – – 664 ± 161.4 

 

When consuming 1g of raw dehydrated placenta powder three times daily, the 

approximate iron intake is 1.6mg per day. This is 17.8% of the daily intake 

recommended for lactating women (Recommended Dietary Allowance 9mg/day).  

In a randomized, double-blind, placebo-controlled pilot study, Gryder et al. 

compared the iron status of women ingesting their own encapsulated placenta to 

those ingesting a dehydrated and encapsulated beef placebo (with a lower iron 

concentration compared to that of the encapsulated placenta) over a 3-week 

postpartum period. It was concluded that encapsulated placenta is an inadequate 

source of supplemental iron in cases of deficiency (Gryder et al. 2016).  

The subjective effect of having “more energy” could be linked to the high protein 

content of dehydrated placenta.  

Lactation is a consumptive process for women in childbed and afterwards.  

According to Butte et. al, the energy cost of milk production must be added to a 

women´s basic energy requirement. The energy cost of lactation is met primarily 

through dietary intake (Butte und King 2005). The recommended dietary protein 

intake for lactating women is 71g/d (Trumbo et al. 2002). 

Dehydrated placenta is a source of the indispensable amino acids Threonine, Valine, 

Methionine, Leucine, Phenylalanine, Lysine and Tryptophan and other semi-

indispensable amino acids. According to Phuapradit (Phuapradit et al. 2000), the 

protein content of dehydrated placenta is 81.6%. The protein concentration of 

placental tissue rises with dehydration due to the reduction of moisture.  

In this study, a median protein amount of 79.3g/100g was found in dehydrated 

placental tissue. A daily dose of 3g raw dehydrated placental powder contains 

approximately 2.4g of protein. It can be concluded that placentophagy has no 

nutritional benefit, as there are many other sources of proteins in a balanced diet. 
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6.1.3	Enhanced	lactation		
	
During pregnancy the preparation of the human breast for lactation is mediated 

through an interaction of hormones. The placenta produces progesterone and 

estrogen in high concentrations, the latter causes high levels of circulating pituitary 

prolactin (PRL). These hormones, together with a high concentration of human 

placental lactogen, promote the development of lobular and alveolar breast tissue. 

The decline in serum progesterone and estradiol concentration after delivery, 

combined with the elevated prolactin, results in an increase of milk production (Yen 

et al. 2014). In lactating women postpartum basal PRL levels remain elevated and 

postpartum amenorrhea persists (Stern et al. 1986).  

During breastfeeding, episodes of suckling trigger the quick release of pituitary 

oxytocin, which induces the flow of milk by contracting the mammary acini and 

ducts. PRL, hPL and OT have a lactation enhancing effect and placental tissue is a 

natural source of these hormones. It is stated by Enning that a shortage of oxytocin 

can be regulated by the intake of the body´s own oxytocin contained in placenta 

remedies (Enning 2003). As oxytocin triggers uterus contraction, the observed 

alleviated postpartal bleeding after placentophagy could be additionally due to this 

hormone activity.  

Oxytocin was detected in raw placental tissue with a median concentration of 

82.58pg/g. The median concentration of hPL in raw placental tissue was 17.58mg/g. 

It has to be established whether these hormones are biologically active after oral 

ingestion. Depending on these findings, ingested placenta could be a lactagogon. 

6.2	Metabolism	of	placental	hormones	
 
More research is needed to determine if placental hormones can have a therapeutic 

effect for postpartum women. The pharmacokinetic properties of these hormones 

need to be studied. There are different metabolism pathways for protein and steroid 

hormones. Steroid hormones are well absorbed from aqueous solutions in the human 

intestine, but absorption and biological activity are not directly related 

(Schedl 1965).  

The placental protein hormones include larger polypeptides such as prolactin, hPL 

and growth factors, and complex proteins such as hCG. Peptides are polymers of less 

than 50 amino acids such as Oxytocin, consisting of 9 amino acids, and CRH, 

consisting of 41 amino acids.  
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Current opinion in the field of biochemistry deems it impossible that proteins, 

ingested and processed by the human digestive system, can retain their structure.  

Proteins are broken down from oligopeptides into dipeptides and finally into amino 

acids by proteases. These enzymes hydrolytically cleave peptide bonds between 

amino acids of proteins. Usually these peptidases have specific amino acid sequences 

that they cleave in their substrates (Campbell 2014).  This extensive proteolytic 

cleavage causes the short plasma half-life of peptides that are used therapeutically 

(Diao und Meibohm 2013). Pepsinogens produced by the stomach are proteolytic 

enzymes that hydrolyze peptide bonds, with an optimal activity between pH 1.8 and 

3.5. The major source of proteases for digestion of ingested proteins is the pancreas, 

which produces trypsin, chymotrypsin and elastase (enzymes of the serine protease 

family).   

Additionally, small peptides are digested effectively in the small intestine with the 

help of several other proteases after initial hydrolysis of complex proteins by gastric 

and pancreatic enzymes (Whitcomb und Lowe 2007).  

It may be possible that there is a difference between the digestion of dietary proteins 

and proteins that are involved in the control of biological processes, such as, for 

example, protein hormones. Cleavage of peptide bonds may be non-specific as part 

of degradation during protein catabolism, or highly specific as part of proteolytic 

cascades and signal transduction events (Verspurten et al. 2009). This leads to the 

question whether peptide hormones are inactive after proteolysis or if proteolysis can 

extend the mechanism of action of these hormones. 

Usually protein hormones are cleared via endosomal and lysosomal pathways.  

It has been shown that hormones are processed through cleavage into hormones with 

a secondary biological action (Erdmann et al. 2007).  

Numerous hormones survive degradation through target cells after endocytosis. 

Multiple peptides of more than 6–20 residues often survive.  The residual peptides 

could act in unrecognized ways as secondary hormones (Campbell 2014). 

6.3	Possible	ways	for	placental	hormones	to	enter	the	maternal	system	
	
Ingesting placenta could be compared to oral drug administration. When pieces of 

raw placenta are chewed before swallowing, absorption via oral mucosa is possible. 

The oral mucosa, including buccal, sublingual and gingival mucosa, is well supplied 

with vascular and lymphatic drainage. Rapid absorption as well as good 



	 76	

bioavailability is known from sublingual drug administration. There will be no first 

pass metabolism of the liver and no pre-systemic elimination of substances in the 

gastrointestinal tract (Shojaei 1998). The absorption of peptides through the oral 

mucosa is described by Senel (Senel et al. 2001). Peptides enter the circulation by 

passive diffusion, using the intercellular route as a pathway.  

Humans do not possess oral proteolytic enzymes, therefore most protein digestion 

will not take place until passage into the duodenum and small intestine. Thus there is 

ample potential for peptides and small proteins to be absorbed in the mouth, 

esophagus or stomach even prior to entry into the small intestine (Campbell 2014).  

 

There have also been interesting studies discussing the intranasal application of 

peptides (Striepens et al. 2013, Born et al. 2002). Born et al. found that intranasally- 

administered peptides achieve direct access to the cerebrospinal fluid within 30 

minutes, bypassing the bloodstream. It is assumed that peptide molecules travel by 

the extracellular route, passing through intercellular clefts in the olfactory epithelium 

and diffuse into the subarachnoid space (Born et al. 2002, Illum 2000).  

Neuropeptide concentration in the brain can be pharmacologically increased through 

intranasal application, as is evident from cerebrospinal fluid studies (Born et al. 

2002).  

According to these findings there might be a chance for placental protein hormones, 

from ingested raw placenta, to be absorbed via oral mucosa. This, in theory, cannot 

happen with encapsulated placenta powder. The capsules that are used for 

encapsulation are made of either gelatin or hypromellose (HPMC). Both substances 

are not resistant to gastric acid, but prevent eventual pregastric absorption.  

6.4	Preparation	styles	of	placental	tissue	and	their	influence	on	hormone	
concentrations	
 

Proteins coagulate when they are heated to a higher temperature than body 

temperature, and denaturation occurs. Heat denaturation results in cleavage of cross-

links between peptide chains. Electrophoretic patterns of proteins heated to 50° and 

55° Celsius showed no difference compared with unheated proteins. By increasing 

the temperature to 60° Celsius electrophoretic alteration in protein structure occurs 

(Tekman und Oner 1966). This leads to the conclusion that steaming placenta tissue 
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results in the denaturation of protein hormones. Theoretically there is no hormone 

activity possible after heating the placental tissue above 55° Celsius.  

In this study, protein hormones and steroid hormones were identified in placental 

tissue even after steaming. CRH, hPL, OT, ACTH, EEQ and PEQ were detected in 

all processed placenta samples. 

The results for EEQ and PEQ resemble the equivalent of substances activating the 

human receptor for these hormones. It can be hypothesized that activation of the 

human receptor could happen in vivo after placentophagy. 

Levels of CRH, hPL, OT and ACTH were quantified using ELISA. The conclusion 

that these hormones activate the human hormone receptor can not be drawn from this 

data. The placental tissue was homogenized in all three preparation styles with 

respect to possible variations of hormone concentrations in different placental 

regions. The preparation had a huge effect on the median hormone concentration 

(compare the alteration of hormone concentrations dependent on the preparation 

process in Table 25).  
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Table 25: Median hormone concentrations in raw placenta (wet weight) and the 
hormone loss through processing in %. The median hormone concentration from raw 
tissue (calculated dry weight), raw dehydrated (r-dhy) tissue and steamed dehydrated (s-dhy) 
tissue was used to calculate the percentaged hormone loss. 
 

 Median 
hormone 

concentration 
in raw placenta 
(calculated dry 

weight) 

Median 
hormone 

concentration 
in r-dhy 

tissue 

Hormone 
loss through 
dehydration 

(in %) 

Median 
hormone 

concentration 
in s-dhy tissue 

Hormone loss 
through 

steaming and 
dehydration 

(in %) 

CRH ng/g 1206.36 211.84 –85.1 54.75 –95.5 
hPL mg/g 121.89 15.92 –87.0 0.63 –99.5 
OT pg/g 572.05 202.10 –64.6 61.76 –89.2 
ACTH ng/g 14.26 1.19 –91.7 0.06 –99.6 
EEQ ng/g 300.11 8.06 –97.3 2.49 –99.2 
PEQ µg/g 14.61 18.76 +7.3 0.37 –97.5 

 

Dehydration caused a hormone loss of 85.1 % up to 97.3 %. Only gestagenic active 

substances seemed to endure the dehydration process.  

The concentration of various hormones in steamed and dehydrated human placenta 

was evaluated by Young et al. The concentration of many selected hormones was 

relatively low, and no conclusion about an physiological effect could be made 

(Young et al. 2016a). 

The data in this study shows a hormone concentration reduction from 89.2 % up to 

99.6 % in steamed and dehydrated placental tissue. This could explain the low 

hormone concentrations detected by Young et al.  

If placentophagy could cause a physiologic effect to the human endocrine system, it 

can be hypothesized that the expected impact would be highest from ingesting raw 

placenta tissue as this has the highest concentration of hormones. In this case, hPL 

has the highest mean concentration of all detected hormones (121.9 mg/g) and could 

have a lactagogic effect if it is bioavailable to the maternal organism. 

As our data shows, every placenta contains a certain level of hormones and a huge 

variation in hormone concentration can be observed. A definite conclusion for active 

agents in placenta tissue cannot be made and will vary with each processed placenta.	

 

It is understandable that women can have an aversion to consuming raw placenta 

tissue. The esthetically acceptable preparation of raw placenta into placenta pills is a 

more palatable method of consumption. Taking a pill daily is a more convenient 
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method of drug application.  For this more suitable method of placenta ingestion, a 

broad loss of hormone concentrations must be accepted.  

6.5	Preparation	styles	of	placental	tissue	and	their	influence	on	
microbiological	composition	

The different preparation styles of placental tissue have an apparent impact on its 

microbial composition. The data from this study cannot be used for statistical 

analysis but it gives quantitative information about the number of species detected on 

processed placenta tissue. Comparing the different placenta preparations, raw 

placenta tissue contains the highest number of different species. A total of 13 

different microorganisms, mainly from the vaginal flora, were detected. Steaming 

reduced the number of species from a total of 13 in raw tissue to only 4 

microorganisms on all steamed samples. The process of dehydration also had a clear 

effect on the reduction of microorganisms and diminished the number of species 

from 13 in raw tissue to 5 in raw dehydrated tissue (Figure 10). Steamed and 

dehydrated tissue had the fewest number of microorganisms detected; only 2 

different bacteria (Staph. haemolyticus and Corynebacterium spp) were found.  

In three steamed samples (P4, P5, P6) Achromobacter xylosoxidans, a bacteria that is 

found in a wet environment, was detected after steaming. A contamination of the 

tissue with Achromobacter xylosoxidans through steaming or rinsing placentas in the 

sink of the laboratory could be possible. To avoid artificial contamination, rinsing the 

placenta with sterilized water before the preparation process is therefore 

recommended. Sterilized water should also be used for the steaming process.  

In one sample of raw dehydrated tissue (P4 r-dhy, see Appendix), growth of 

Lactobacillaceae and coagulase negative Staphylococci was shown. The retained 

sample still contained Lactobacillaceae and coagulase negative Staphylococci. 

Retained placental tissue is not sterile, but storing does not increase microbiological 

contamination.  

Consumers claim their own placenta as lactagogue and therefore store processed 

placenta over their lactation period. According to the recommendations of the World 

Health Organization (WHO accessed 05.01.2018) that infants should exclusively be 

breastfeed for 6 months,  samples in the present study were tested for microbial 



	 80	

contamination after 6 months of storage in a setting similar to a home-based 

environment.  

Growth of Paenbacillus macerans was identified on four retained samples. This 

species can produce histamine in preserved foods (Rodriguezjerez et al. 1994). 

Ingesting high levels of histamine can cause  foodborne chemical intoxications. The 

produced levels of histamine correlate with the level of microorganisms found. In 

this study, no exzessive accumulation of Paenbacillus macerans was identified. 

Nevertheless, dehydrated placenta is not sterile and the possibility can not be 

excluded that the encapsulated tissue contains other potential harmful bacteria such 

as enterotoxine-producing Staphylococcus aureus or histamine-producing 

Enterobacteriaceae. Depending on the vaginal flora of the placenta donor, 

transmission of resistant microbial species or potentially pathogenic bacteria such as 

Enterobacteriaceae, Gardnerella spp or Candida albicans to the placenta is possible. 

A severe infection in the mother is a contraindication for placentophagy. 

 

Microbiological safety regarding the regulation of foodstuffs is achieved for the 

small sample size of dehydrated placenta tissue in our study. According to the 

Commission Regulation of the European Union (Journal of the European Union und 

Official 2005), dehydrated tissue does adhere to the microbiological criteria for 

foodstuffs. The food safety criteria for “ready to eat” food and “dried dietary foods 

for special medical purposes” declare the following organisms as unsafe: : Listeria 

monocytogenes, Salmonella spp, Enterobacter sakazakii, E. coli and Staphylococcus 

aureus, which produces staphylococcal enterotoxins. 

The dehydrated tissue of our samples did not contain any of the following: Listeria 

monocytogenes, Salmonella spp, Enterobacter sakazakii, E. coli and S. aureus. 

In this study, a very low number of microbial species was detected in dehydrated and 

retained dehydrated placental tissue, and microbiological spoilage of retained 

placenta tissue is improbable. Therefore, we conclude that the infection risk or risk 

of food poisoning from individual intake of encapsulated placenta is low.  
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6.6	Preparation	styles	of	placental	tissue	and	their	influence	on	trace	
element	concentrations	

Potentially toxic trace elements were analyzed in this study. According to the 

foodstuff regulations of the Committee of the European Union (EU 2006), the 

concentrations of cadmium, lead and mercury found in dehydrated placenta tissue are 

below the maximum level for contaminants in dietary supplements (Table 26). 

Concentrations of arsenic were below the maximum concentration for foodstuff (EU 

2006). 
 
Table 26: Maximum level of contaminants in dietary supplements according to the 
commission regulation of the European Union. 
	
Element Maximum level for 

contaminant in 
dietary supplement 

(mg/kg) 

Maximum 
concentration found 
in raw dehydrated 

placenta tissue 
(mg/kg) 

Maximum 
concentration found in 

steamed dehydrated 
placenta tissue (mg/kg) 

As No maximum level 
established 

0.016 0.014 

Cd 1.0 0.028 0.023 
Hg 0.1 0.099 0.019 
Pb 3.0 0.25 0.22 
Se No maximum level 

established 
0.85 1.0 

These findings are consistent with data from Young et al. (Young et al. 2016b), who 

detected concentrations of trace elements below toxicity thresholds. 

6.7	Limitations	of	placentophagy	research	

The measured concentrations of hormones in processed placenta will not provide 

information on their bioavailability. To obtain information on the possible effects of 

placentophagy clinical research is needed. Controlled trials with comparisons of 

serum and saliva parameters from women before, during and after placenta intake 

need to be conducted. Furthermore, the concentration of substances that can have a 

physiological effect on the organism varies in each individual placenta. The different 

types of delivery (vaginal delivery, elective cesarean section, emergency cesarean 

section) and the presence or absence of labor and maternal and/or fetal distress can 

have a considerable effect on the placental hormone concentrations at the time of 

placenta birth. 
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Another critical point is the possible accumulation of drugs in the placental tissue. 

Depending on the physicochemical characteristics of drugs taken during pregnancy 

or administered during delivery, a possible drug passage from the ingested placenta 

capsule into breast milk has to be considered. There are several drugs with strict 

indication or contraindication during breast-feeding, such as antihypertensive drugs, 

antidepressants and antibiotics. For many other drugs no sufficient data on damage to 

the newborn caused by drug passage into breast milk is available (Hiddemann 2000). 

A method for the exact investigation of drug accumulation in placental tissue is the 

ex vivo placenta perfusion method. It can also be used to predict placental drug 

transfer (Hutson et al. 2011). As long as there is no data on drug accumulation or 

excretion into breast milk available, for the safety of mother and newborn only 

placentas from healthy women after spontaneous vaginal delivery without drug 

administration should be used for placentophagy. A contraindication for further use 

of the placenta would be surgical intervention. In that case anesthesia is required and 

drugs such as benzodiazepines, opioids, inhalative and local anesthetics are used that 

could be traceable in the placenta.  

Until recently, only anecdotal knowledge about side effects of placentophagy 

existed. A possible adverse reaction to placenta remedies can be galactostasia 

through excessively enhanced lactation. In addition, there exists no data on the 

effects of ingesting placental neurohormones such as ACTH that mediate stress 

reactions through possible cortisone liberation and HPA-axis activation.  

	
The analgesic effect of placentophagy has been studied extensively in rodent models 

and is the most clearly established benefit supported by systematic investigation  

(Kristal et al. 2012). Amniotic fluid ingestion by rodents licking the vaginal area 

during delivery is probably as important for the studied potentiation of opioid effects 

as the ingestion of the placenta. Ingesting amniotic fluid is not practicable for 

humans. 

The analgesic effect of placentophagy in rats is limited to additional opioid-

administration (Kristal 1991). Acute pain management for women after spontaneous 

delivery does not include opioid-administration (Spies 2013). Presumably, women 

would not experience analgesic benefit from placentophagy without an additional 

treatment with opioids. 

According to Heussner et al. there is a relevant species-specific difference in 

placental steroid metabolism. In contrast to human placenta, CRH is not detected in 
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rat placenta (Heussner et al. 2016), and no model exists to evaluate postpartum 

depression in rats. Conclusions from research on placentophagy in rodent models 

must be treated with caution, as the human placenta and the rodent yolk sac placenta 

are not identical. 

 

This study evaluates the impact of steaming and dehydration on the hormone and 

trace element concentration of human placental tissue as well as its microbial 

composition. The findings from this study need to be confirmed through a repeated 

study with a larger sample size. Randomized, double-blind, placebo-controlled 

studies are necessary to determine possible physiologic influences of placentophagy 

on the human hormone system, and to evaluate the potential use of individual 

placenta remedies as a postpartum treatment.  
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A B S T R A C T

Introduction: Human maternal placentophagy, the behavior of ingesting the own raw or processed placenta
postpartum, is a growing trend by women of western societies. This study aims to identify the impact of de-
hydration and steaming on hormone and trace element concentration as well as microbial contamination of
placental tissue.
Methods: A total of nine placentas have been processed: six were studied for hormone and trace element con-
centrations; eight were studied for microbial contamination.

The concentrations of CRH, hPL, oxytocin and ACTH in samples of raw, steamed dehydrated and raw de-
hydrated placental tissue were detected using ELISA. A yeast bioassay was performed in order to detect estrogen
equivalent (EEQ) and gestagen equivalent (PEQ) active substances. Elements (As, Cd, Fe, Pb, Se, Hg) were
analyzed using ICP-MS. Isolated colonies from tissue and placenta swab samples were identified using Vitek MS.
Results: Following mean hormone concentrations were detected in raw placental tissue:

CRH (177.88 ng/g), hPL (17.99mg/g), oxytocin (85.10 pg/g), ACTH (2.07 ng/g), estrogen equivalent active
substances (46.95 ng/g) and gestagen equivalent active substances (2.12 μg/g). All hormones were sensitive to
processing with a significant concentration reduction through steaming and dehydration.

Microorganisms mainly from the vaginal flora were detected on placenta swab samples and samples from
raw, steamed, dehydrated and steamed dehydrated tissue and mostly disappeared after dehydration. According
to regulations of the European Union the concentrations of potentially toxic elements (As, Cd, Hg, Pb) were
below the toxicity threshold for foodstuffs.
Conclusion: The commonly used protocols for preparation of placenta for its individual oral ingestion reduce
hormone concentrations and bacterial contamination.

1. Introduction

A growing trend of women in Western societies consuming their
own placenta after delivery, referred to as human maternal placento-
phagy, has developed during the last decades [1]. Purported benefits
such as enhanced lactation, improved mood in puerperium, accelerated
recovery after birth and the subjective feeling of having more energy
are claimed from placentophagy supporters [2,3].

A common method of ingesting placenta today is through en-
capsulation of dehydrated, pulverized placental tissue [3]. This en-
capsulation method originates from traditional practices and resembles
the most practical procedure of remedy preparation in a home-based

environment.
Placental tissue at term shows intensive endocrine activity [4–7].

Human placental lactogen (hPL) has a potent lactogenic effect and is
produced by placental tissue with an extremely high secretion rate of
about 1–3 g per day at the end of pregnancy [7]. Oxytocin (OT) initiates
and sustains milk ejection in response to suckling during lactation [8],
reduces postpartum bleeding through myometrial contraction [9] and is
a key mediator of complex emotional and social behavior such as pair
bond formation and maternal behavior [10,11]. Oxytocin is produced
by several organs including the placenta [12] and its gene expression
can be found in in the decidua, the amnion and the chorion [6,13].
Ambiguous data exists on the role of placental corticotropin-releasing
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hormone (pCRH) in the prediction and treatment of postpartum de-
pression (PPD) [14,15]. During pregnancy, exponentially increased
pCRH reaches levels similar to those of CRH in the hypothalamus
during conditions of acute stress [16]. These high hormone levels fall
immediately after placental expulsion. It has been argued that the acute
withdrawal from these high CRH levels after parturition can explain the
occurrence of postpartum depressive disorders [17,18].

Only a small number of reviews [1,19–21] and studies [22–27]
examining the effect of placentophagy on humans exist and yet the
bioavailability of hormones and their possible physiologic effects re-
main unclear. Current research on placentophagy aims to gain deeper
insight into hormone composition and trace element concentration of
placental tissue after encapsulation [28,29]. This exploratory study
aims to examine the effect of three different preparation methods and
the impact of steaming/dehydration on properties of human placental
tissue.

2. Material and methods

2.1. Placenta donors

This study was approved by the ethics committee of the University
of Jena. At the Department of Obstetrics of the Jena University Hospital
written informed consent was obtained from all women who gave birth
and donated their placenta to the placenta laboratory for scientific re-
search.

Nine placentas, all from spontaneous, non-interventional deliveries
were collected. Exclusion criteria were diseases in pregnancy that re-
quired medical intervention, C-section, the administration of synthetic
oxytocin during delivery and infection of either the mother or newborn.
All placentas were delivered at term, gestational age ranging from
37 + 6 to 40 + 6 weeks. Three women gave birth without any medi-
cation, two women had local anesthesia during delivery and two
women had other medication (Methyldopa, Butylscopolaminium bro-
mide, Meptazinol hydrochloride) during delivery. One placenta was
used to test the preparation methods for this study and was excluded
from the evaluation. Another placenta was excluded from hormone and
trace mineral analysis because of administration of synthetic oxytocin
during delivery but was included in microbiological analysis. One male
placenta was removed: for hormone analysis 50% male and 50% female
placentas have been used (n = 3 per group).

Basic data including the mother's age, gravida- and para-status as
well as newborn and placenta data were collected (Table 1).

2.2. Sample collection and preparation

To resemble the most common method of placenta preparation in a
home-based environment, the processing was done under clean but not
sterile conditions.

In order to evaluate the effect of preparation on microbial con-
tamination and hormone and trace element concentration, three

different preparation methods were applied to tissue from each pla-
centa.

Placentas were taken immediately after birth to the placenta lab in
clean containers. Within 2 h a swab was taken from the maternal and
fetal side of the placenta. Weight, height and diameter of the placenta
were documented and the placenta carefully inspected. Subsequently,
the placenta was washed under cold running water and blood and blood
clots were removed.

The placenta was cut into three pieces and the umbilical cord was
excised.

2.3. “Raw” preparation process

One piece (“r”=raw) was homogenized using a food processor
(Moulinex DP800G, Frankfurt am Main, Germany) and samples were
taken from the raw homogenized tissue.

2.4. “Steamed” and “steamed dehydrated” preparation process

Another piece (“s”=steamed) was steamed using a steamer pot
with boiling water.

The piece was steamed at least 10min until the core temperature
reached 70 °C and there was no bleeding when pressed. After the
steaming process a sample was taken for microbiological analysis. The
steamed piece was then cut into 0,5 cm thin slices and placed on baking
foil in a dehydrator tray (“s-dhy”=steamed dehydrated).

2.5. “Raw dehydrated” preparation process

The third piece of placenta (“r-dhy”=raw dehydrated) was cut into
0,5 cm thin slices and placed on baking foil in a dehydrator tray.

Both raw and steamed placenta slices were dehydrated for 8 h at a
temperature of 55 °C using a food dehydrator (Stöckli Dörrgerät,
Netstal, Switzerland). The dehydration temperature varied from 45 to
59 °C in the bottom tray and from 47 to 60 °C in the top tray. After 8 h of
dehydration the samples were inspected, a “snap test” was done to
evaluate the complete desiccation of the tissue. If the tissue was snap
dry, the dehydration process was stopped. If the material was still
flexible the dehydration was resumed for another hour.

The dehydrated placenta slices were grinded using a food processor
(Moulinex DP800G, Frankfurt am Main, Germany) and samples were
taken from that pulverized tissue. During the preparation process the
working space was cleaned and disinfected using antibacterial Wipes
(Disinfectant Mikrobac forte 0,5%). Scalpel, scissors and all utilities
made of steal were autoclaved after each whole preparation process.

2.6. Retained samples

To evaluate the microbiological contamination of the dehydreated,
pulverized placental tissue, retained samples of every processed pla-
centa were stored for 6 months (± 8 weeks). A retained sample of
steamed dehydrated and raw dehydrated tissue from every processed
placenta was stored in non-sterile reaction tubes at room temperature
and in the refrigerator (4 °C).

3. Sample analysis

3.1. Microbiologic analysis

Samples from raw, steamed, raw dehydrated and steamed dehy-
drated tissue and swabs of seven placentas were sent to the Institute of
Medical Microbiology of the Jena University Hospital for micro-
biological analysis. Standard routine procedures were used to identify
potentially pathogenic bacteria and fungi.

A loop was used to inoculate agar plates with the powder from
steamed and dehydrated placental tissue. The placenta samples were

Table 1
Participant characteristics including newborn and placenta data, (n= 8).

Mean Range SD

Age, y 30.26 20–36 4.8
Gravida 2 1–3 0.5
Para 1.9 1–3 0.6
Gestation Week 39.8 37 + 6–40 + 6 –
Birth weight Newborn, g 3496.3 3170–4190 304.9
Head Circumference Newborn, cm 33.9 31.5–36 1.2
Body length Newborn, cm 51.3 48–54 2
Placenta weight, g 563.73 434–709 91.3
Placenta height, cm 2.13 1.5–2.5 0.4
Placenta diameter, cm 18 16–19 1
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streaked onto Columbia sheep blood agar, chocolate agar, Drigalski
lactose agar, Schaedler agar, (Oxoid, Thermo Fisher Scientific) using a
wet swab. Additionally, for enrichment of microbes brain-heart infusion
broth (BHI; BD, Heidelberg, Germany) was inoculated with the powder
from steamed and dehydrated placental tissue.

Cultures were incubated at 37 °C at aerobic conditions with 5% CO2

for blood and chocolate agar for 48 h. Drigalski agar plates were in-
cubated at aerobic conditions for 24 h.

Cultures on Schaedler agar were incubated at anaerobic conditions
for 96 h.

BHI broth was streaked onto blood and chocolate agar after over-
night incubation.

These culture media are appropriate to isolate common microbial
species of the normal vaginal flora, Staphylococcus aureus, hemolytic
streptococci, enterococci, Enterobacteriaceae including en-
teropathogenic species, non-fermenters including P. aeruginosa, Candida
spp. and filamentous fungi.

Identification of bacteria and fungi was performed using the ex-
amination of specific colony morphologies, characteristic growth on
differential and selective media, and further species identification with
MALDI-TOF mass spectrometry (Vitek MS, bioMerieux, Nürtingen,
Germany) if relevant [30].

Antimicrobial Susceptibility Testing was performed using Vitek 2
and minimal inhibitory concentration interpretation according to
European Committee on Antimicrobial Susceptibility Testing (EUCAST
criteria) [31].

Retained samples were analyzed after storage exactly as described
above.

3.2. Hormones, trace elements and protein content

Hormone concentrations, trace elements and protein contents in
samples from raw, raw dehydrated and steamed dehydrated tissue of six
placentas were examined in an external laboratory (Food GmbH Jena,
Analytik-Consulting, Germany).

3.3. Hormone analysis

The hormone extraction process is based on tissue digestion by an
osmotic shock. Placenta tissue samples were treated with a lysis buffer
(100mM NaCl, 50mM Tris-HCl pH 8,0, 5% Glycerol). After 20min
incubation time samples were centrifuged and the supernatant was
transferred to a new reaction tube. Hormone analysis was done im-
mediately afterwards.

The concentrations of CRH, hPL, Oxytocin and ACTH in samples of
raw, steamed dehydrated and raw dehydrated placental tissue were
detected using the following ELISA kits: Human OT Elisa Kit (Cusabio
Biotech CO., LTD), Detection Range (8-400μ IU/ml), Sensitivity: less
than 10 μIU/ml; hPL Elisa (GenWay Biotech, San Diego CA), Detection
Range (0,043-20 mg/l), Sensitivity: 0,043mg/l; CRH Elisa (Cloud Clone
Corp., Wuhan, PRC) Detection Range (12,35–1000 pg/ml), Sensitivity:
4,55 pg/ml; ACTH Elisa (Cloud Clone Corp., Wuhan, PRC) Detection
Range (12,35–1000 pg/ml), Sensitivity 5,18 pg/ml.

A yeast bioassay was performed in order to detect active estrogenic
and gestagenic substances. The results of the analysis for estrogen and
progesterone show the equivalent of substances activating the human
receptor for estrogen and progesterone.

In order to compare the concentration of hormones in raw and de-
hydrated tissue with respect to the water content of raw tissue, the
concentration of hormones found in raw tissue was converted to dry
matter values (calculated dry weight).

3.4. ICP-MS measurement

The elements As, Cd, Fe, Pb, Se, Hg were determined for all samples
by wet digestion with oxidizing reagents (nitric acid, hydrogen

peroxide) under increased pressure and temperature. This method is
based on DIN EN ISO 17294–2:2017-01 [32] and is typically used for
the analysis of food samples. Therefore, it was also used for the placenta
tissue samples which were treated in this case like food samples.

For each element measurement, calibration was done using a blank
solution and the diluted ICP multi-element standard solution XXI for MS
(Merck). In order to substantiate the results, the following internal
standard was used for each measurement: 1 μg/ml Rh; preparation:
0.1 ml 1 g/l + 3 ml HNO3 ad 100ml.

3.5. Kjeldahl protein quantification

The quantification of the protein content in a sample was done by
standard determination of Kjeldahl-nitrogen. Samples were digested
with sulfuric acid in presence of a chemical catalyst (potassium sul-
phate and copper sulphate). Sodium hydroxide solution was added to
the acid digestion mixture to convert ammonium to ammonia gas,
followed by boiling and condensation of the ammonia gas in a receiving
solution. The amount of ammonia in the receiving solution was de-
tected by titration. The amount of nitrogen in a sample was calculated
from the quantified amount of ammonia ions in the receiving solution.
The protein content was calculated as the product of the amount of
nitrogen and the conversion factor 6.25.

Each measurement was done along with a blank and an internal
reference analysis.

3.6. Data evaluation

Descriptive data analysis was used to characterize the effect of
different preparations on microbial contamination. Friedman's Test and
Wilcoxon signed-rank Test were performed to compare the three dif-
ferent preparation methods for samples of each placenta.

4. Results

4.1. Trace elements

To evaluate the of potentially toxic elements through placenta
preparation, six elements (As, Cd, Fe, Pb, Hg, Se) were analyzed in
placental tissue and its preparations (see Table 2).

The preparation process caused only minor changes in trace element
concentrations Dehydration and steaming caused an accumulation of
iron and selenium. According to foodstuff regulations of the Committee
of the European Union [33] (EU), the concentrations of cadmium, lead
and mercury found in dehydrated placenta tissue are below the max-
imum level for contaminants in dietary supplements. Concentrations of
arsenic were below the maximum concentration for foodstuff [33].

The participants of our study reported no special exposure to these
toxic elements.

4.2. Protein content

Raw placental tissue contained a median protein amount of 12.7 g/
100 g with a range from 11.6 to 14.2 g/100 g. A median protein amount
of 79.3 g/100 g was found in raw dehydrated placental tissue with a
range from 73.6 to 81.5 g/100 g. Steamed dehydrated placental tissue
contained a median protein amount of 81.5 g/100 g with a range from
78.3 to 82.7 g/100 g.

4.3. Microbiology

The absolute number of organisms detected varied according to the
preparation method (Fig. 1).

Raw, homogenized placental tissue was predominantly populated
by bacteria of the vaginal and skin flora. The following organisms were
identified: Lactobacillaceae, Corynebacterium spp, coagulase negative
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Staphylococcus, Streptococcus spp, Bacteroides spp, Peptostreptococcus
spp, E. coli, Gardnerella vaginalis, Burkholderia gladioli, Achromobacter
spp, Capnocytophaga spp and Candida albicans.

Raw tissue contained the highest absolute number of microbes de-
tected (13), followed by raw dehydrated tissue (5), steamed tissue (4)
and steamed dehydrated tissue (2) (see Table 3 for a detailed list of
detected organisms).

Potentially pathogenic organisms (E. coli, Gardnerella vaginalis)
were detected in raw placental tissue but were absent after dehydra-
tion. C. albicans was detected on swab samples from 3 placentas, but
was absent after dehydration and after steaming.

All samples were negative for group B streptococci.
Growth of Panbacillus macerans was identified on four retained

samples.

4.4. Hormone content

Hormones were analyzed in different preparation samples:
raw (r), raw dehydrated (r-dhy) and steamed dehydrated (s-dhy)

placental tissue.
The median water content of samples of raw placental tissue in this

study was 85% with a range from 81 to 90%. In order to compare the
concentration of hormones in raw and dehydrated tissue with respect to
the water content of raw tissue, the concentration of hormones found in
raw tissue were converted to dry matter values (Table 4).

Significant hormone reduction through steaming and dehydration
was shown for CRH, hPL, oxytocin, ACTH and estrogen equivalent ac-
tive substances (p < 0.05 for all). The concentration of gestagen
equivalent active substances in raw dehydrated tissue was significantly
higher than in raw and steamed dehydrated tissue (p 0.028). The
Wilcoxon signed-rank test showed that all hormone concentrations,
except that of progesterone equivalents, had the significantly highest
concentration in raw placenta tissue. All analyzed hormones had a
significantly higher concentration in raw dehydrated tissue compared
to steamed dehydrated tissue (p < 0.05).

The highest mean concentrations for the following hormones were
found in raw placental tissue: CRH 177.88 ng/g, hPL 17.99mg/g,
oxytocin 85.10 pg/g, ACTH 2.07 ng/g, estrogen equivalent active sub-
stances 46.95 ng/g, gestagen equivalent active substances 2.12 μg/g.
Dehydration caused a hormone loss of 85.1–97.3%. Only gestagenic
active substances remain stable during the dehydration process with the
highest mean concentration found in raw dehydrated tissue (gestagen
equivalent active substances 15.87 μg/g).

A dose of 3 g raw dehydrated placental tissue (a daily dosage re-
commendation according to Enning and Bensky [34,35]) contains ap-
proximately the following hormone amounts: 635.4 ng CRH, 47.8mg
hPL, 606.3 pg oxytocin, 3.6 ng ACTH, 24.2 ng estrogen equivalent ac-
tive substances and 56.3 μg gestagen equivalent active substances.

5. Discussion

The recent study was designed to evaluate the effect of preparation
methods on the properties of placental tissue. Based on these findings,
processed placenta is discussed as a supplement for postpartum re-
covery.

The recommended dietary protein intake for lactating women is
71 g/d [36]. According to Phuapradit [37], the protein content of de-
hydrated placenta is 81.6%. The present study found a mean protein
content of 12.8 g/100 g in raw; 78.8 g/100 g in raw dehydrated; and
81.1 g/100 g in steamed dehydrated placental tissue. The protein con-
centration rises with dehydration due to the reduction of moisture. A
dose of 3 g raw dehydrated placental powder contains approximately
2.4 g of protein. It can be concluded that placentophagy has no nutri-
tional benefit, as there are many other sources of proteins in a balanced
diet.

In the present study, the mean iron concentration of raw placental
tissue is 81.5mg/kg (SD ± 11.4). Raw dehydrated tissue contains
548.33mg/kg (SD ± 48.8); this is considerably less iron then detected
by Puaphradit [37] et al. in raw dehydrated tissue (980.0 ± 147.4).
Steamed dehydrated tissue contains a mean concentration of
481.67mg/kg (SD ± 75.6) which is nearly the concentration detected
by Young [29] et al. (664 ± 161.4).

When consuming 1 g of raw dehydrated placenta powder three

Table 2
Median and range of trace elements detected in placenta preparations of raw, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) tissue in mg/kg and the
maximum level for contaminants in dietary supplements and foodstuff according to Foodstuff Regulations of the EU1 in mg/kg, limits of detection (LOD) in mg/kg.

MMMM Arsenic
mg/kg

Cadmium mg/kg Iron
mg/kg

Lead
mg/kg

Selenium mg/kg Mercury mg/kg

raw <0.01 0.003 84.5 0.03 0.14 < 0.002
(< 0.01) (0.0027–0.0097) (61.0–97.0) (0.01–0.04) (0.11–0.15) (< 0.002)

r-dhy <0.01 0.025 565.0 0.04 0.85 0.007
(< 0.01–0.016) (0.019–0.028) (450.0–600.0) (0.02–0.25) (0.70–0.87) (0.003–0.0099)

s-dhy <0.01 0.02 475.0 0.04 0.86 0.005
(< 0.01–0.014) (0.014–0.023) (350.0–580.0) (0.02–0.2) (0.72–1.0) (0.003–0.019)

Max. level 0.1 0.1 No max. 3.0 No max. 0.1
level level
established established

LOD 0.01 0.002 0.05 0.01 0.01 0.002

1. EU. VERORDNUNG (EG) Nr. 1881/2006 DER KOMMISSION | vom 19. Dezember 2006 | zur Festsetzung der Höchstgehalte für bestimmte Kontaminanten in
Lebensmitteln. Committee of the European Union 2006.

Fig. 1. Absolute number of different microbial groups and species detected and
identified by VITEK mass spectrometry on swab and tissue samples.
(Swab F: fetal side of placenta; Swab M: maternal side of placenta).
Black: Samples from raw; steamed; raw dehydrated (r-dhy) and steamed de-
hydrated (s-dhy) tissue
Grey: retained samples (analyzed after 6 months), RT (stored at room tem-
perature), 4 °C (stored in the refrigerator at 4 °C).
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times daily, the approximate iron intake is 1.6mg per day. This is
17.8% of the daily intake recommended for lactating women (re-
commended dietary allowance 9mg/day [38]). According to Gryder
et al. [39] ingestion of steamed, dehydrated placental tissue has no
effect on the postpartum iron status.

Potentially toxic elements (As, Cd, Hg, Pb) were below the max-
imum level for contaminants in dietary supplements and foodstuff re-
garding regulations of the European Union. These findings are con-
sistent with data from Young et al. [29] and Chang et al. [40] who
detected concentrations of trace elements below toxicity thresholds in
encapsulated placental tissue. The occurrence of symptoms (e.g. head-
ache) caused by toxic metal accumulation through placenta ingestion
discussed by Farr [19] et al. seems negligible, as the detected amounts
of potentially toxic trace elements were minimal.

The preparation of placental tissue has a clear effect on the micro-
bial contamination: dehydration causes a drastic germ reduction,
steaming followed by dehydration causes an even greater reduction of
microbial species. According to the Commission Regulation of the

European Union [41], the dehydrated tissue does adhere to the mi-
crobiological criteria for foodstuffs.

Consumers claim their own placenta as lactagogue, and therefore,
store processed placenta over their lactation period. As according to
recommendations of the World Health Organization [42] infants should
exclusively be breastfeed for 6 months, samples in the present study
were tested for microbial contamination after 6 months of storage in a
setting similar to a home based environment. Retained samples showed
growth of Panbacillus macerans, a species that can produce histamine
in preserved foods [43]. Ingesting high levels of histamine can cause
foodborne chemical intoxication. The produced levels of histamine
correlate with the level of microorganisms found. In this study, only a
low number of colony forming units of Panbacillus macerans was
identified. Nevertheless, dehydrated placenta is not sterile and it can
not be ruled out that the encapsulated tissue contains other potential
harmful bacteria such as enterotoxine producing Staphylococcus aureus
or histamine producing Enterobacteriaceae. Depending on the vaginal
flora of the placenta donor, transmission of resistant microbial species

Table 3
Microorganisms isolated from samples of raw, raw dehydrated (r-dhy) and steamed dehydrated (s-dhy) placental tissue,⃠=no growth after 48 h, same species or
groups of microorganisms are colored identically.

Table 4
Median hormone concentrations in raw placenta (wet weight and calculated dry weight) and the hormone loss through processing in %; the median hormone
concentration from raw tissue (calculated dry weight), raw dehydrated (r-dhy) tissue and steamed dehydrated (s-dhy) tissue was used to calculate the percentaged
hormone loss.

Median and Range of hormone
concentration in raw placenta
(calculated dry weight)

Median and Range of
hormone concentration in
raw placenta
(wet weight)

Median and Range of
hormone concentration
in r-dhy tissue

Hormone loss
through
dehydration
(in %)

Median and Range of
hormone concentration
in s-dhy tissue

Hormone loss through
steaming and
dehydration (in %)

CRH ng/g 1206.36 179.27 211.84 −85.1 54.75 −95.5
(836.9–1671.5) (139.17–205.61) (202.6–263.7) (6.10–99.72)

hPL mg/g 121.89 17.58 15.92 −87.0 < 0.63 −99.5
(93.0–142.3) (14.31–22.30) (12.9–31.1) (< 0.63)

OT
pg/g

572.05 82.58 202.10 −64.6 61.76 −89.2
(477.1–800.4) (71.57–105.62) (107.4–646.5) (56.07–65.38)

ACTH ng/g 14.26 2.02 1.19 −91.7 0.06 −99.6
(10.1–19.2) (1.92–2.32) (0.9–1.8) (0.06–0.19)

EEQ ng/g 300.11 48.38 8.06 −97.3 2.49 −99.2
(288.5–535.1) (36.28–55.48) (6.0–18.8) (1.92–3.57)

PEQ μg/g 14.61 1.99 18.76 +28.4 0.37 −97.5
(9.74–19.30) (1.85–2.56) (9.2–19.0) (0.13–0.46)
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or potentially pathogenic bacteria such as Enterobacteriaceae, Gardner-
ella spp or Candida albicans to the placenta is possible.

The highest risk of viral transmission from mother to the fetus oc-
curs during pregnancy and delivery. An infection of mother or newborn
is a contraindication for placenta consumption [19]. The mother should
have been tested for viral infections during pregnancy (e.g. HIV, HBV,
and CMV). If there was a viral infection of the mother, the highest risk
for infection results from diaplacentar or perinatal transmission from
mother to the newborn.

A single case published by the CDC in 2017 reports a severe new-
born infection with group B streptococci and transmission from the
mother to the newborn via maternal placentophagy [44]. Questionable
in this case is the possible route of infection. The acidic environment of
the stomach functions as a physiologic barrier for multiple micro-
organisms including streptococci. The colonization of the mothers gut
with group B streptococci (GBS) as a component of the maternal mi-
crobiome with an intrauterine inoculation of the fetus with GBS during
pregnancy cannot be excluded [45,46].

In this study, a very small amount of microbial species was detected
in dehydrated and retained dehydrated placental tissue and micro-
biological spoilage of retained placenta tissue is improbable. Therefore
we conclude that the infection risk or risk of food poisoning from in-
dividual intake of encapsulated placenta is very low.

Although we could not find relevant pathogens that may cause a
serious infection after placentophagy, further studies using a larger
sample size are needed to evaluate the statistical significance of an
infection risk.

The highest concentrations of hormones were found in raw pla-
cental tissue. The hormones were all sensitive to processing. The pre-
sent study found an enormous hormone reduction through steaming
and dehydration of placental tissue. It is most likely caused through
denaturation of proteins after thermal processing [47]. Dehydration
alone caused a minor hormone loss and even increased the concentra-
tion of progesterone.

Young et al. evaluated the concentration of various hormones in
steamed and dehydrated human placenta: the concentrations of many
selected hormones were relatively low and no conclusion regarding an
elicit physiological effect could be made [28]. The data in this study
shows a hormone concentration reduction from 89.2 up to 99.6% in
steamed and dehydrated placental tissue. This could explain the low
hormone concentrations detected by Young et al.

Recent publications show only small changes in circulating hor-
mone concentrations and no effect on postpartum maternal mood,
bonding, or fatigue after ingestion of steamed or dehydrated placental
tissue [22,24].

Effects from ingestion of processed placental tissue are presumably
missing after a reduction of up to 99.6% of its hormone content.
Focusing on possible hormone interactions from placentophagy, the
highest impact would be expected from consuming raw tissue. In this
case, hPL has the highest mean concentration of all detected hormones
(121.9 mg/g) and may have a lactagogic effect.

But the measured concentrations of hormones in processed placenta
does not provide information on the bioavailability of those hormones.

Because of its sensitivity a yeast bioassay was chosen instead of an
ELISA for the hormone analysis. The bioassay is able to detect all
substances (i.e. also precursor molecules) that induct the human pro-
gesterone receptor and the estrogen receptor, respectively. The detec-
tion of progesterone equivalents and estrogen equivalents as sum
parameters was advantageous for this study. Our data showed that
progesterone was the only hormone that remained stable after the de-
hydration process. The calculated minor increase after dehydration
could be explained by fluctuations of the bioassay method.
Nevertheless, it was shown that progesterone is still present in a bioa-
vailable form and could be discussed for postpartal mood stabilization.
The specific role of progesterone in development and treatment of PPD
needs to be investigated in more detail. According to Bloch et al.

marked changes in gonadal steroid levels can cause mood destabilizing
effects and the involvement of progesterone in the development of PPD
has been shown [48].

Farr et al. [19] conclude that there is no professional responsibility
for offering placentophagy until reliable evidence on benefits of pla-
centophagy are published. The data provided on improvement of mood
and lactation [3] through placentophagy can represent a placebo effect.
But nevertheless, if placentophagy subjectively changes the emotional
wellbeing of the mother, both mother and newborn can profit from an
improved state of health [49].

6. Conclusion

Placental tissue is a natural source of hormones, iron and protein.
The exact properties of placental tissue composition vary widely in each
individual placenta. Ingesting placental hormones may have a physio-
logic effect in the postpartum period but no conclusion about the
bioactivity of these hormones can be made. The analyzed samples of
this study bear a low risk of food poisoning or intoxication but these
findings need to be verified with statistical significance in a large
sample size.
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