PERFORMANCE OF ADHESIVE FORMULATION USING GLUTINOUS, SAGO AND TAPIOCA FLOUR

ALAIN DILLON ANAK MICHAEL JOPIE

This Final Year Project Submitted in Partial Fulfillment of the Requirements for the Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Pahang (Jengka)

JANUARY 2019
ABSTRACT

PERFORMANCE OF ADHESIVE FORMULATION USING GLUTINOUS, SAGO AND TAPIOCA FLOUR

The performance of adhesive formulation using glutinous, sago and tapioca flour had been studied. This exploratory research was for determining the use of different types of natural adhesive towards different types of substrates. This includes the production of natural adhesive by using glutinous, sago and tapioca flour as the main raw material according to a fixed ratio of formulation. Adhesives were then carefully observed and evaluated in terms of its changes of state or any kind of obvious observation when the application of heat treatment occur. Observation adhesive condition and color upon storage for 3 weeks at room temperature was made. This shows that glutinous type of adhesive resulting in the highest degradation which released rancid odor and changed its state to aqueous. While for the lowest degradation level was sago adhesive which remained in paste form and has absent of odor. Evaluation of bonding performance of the three adhesives was done using maximum load (ML) and internal bonding (IB). In this assessment, four different types of substrates veneer, cardboard, paper and plastic were used as to determine the bonding strength of respective natural adhesives. With this, sago was the best type of adhesive among the other two types of adhesives which react effectively with amount of glue spread value, GSV (79.24g/m2), ML (25.06N) and IB (0.04MPa). Besides that, glutinous has the lowest properties of adhesive compared to the other two types of adhesives to react with the amount of GSV (64.61g/m2), ML (17.73N) and IB (0.03MPa). In terms of substrates, veneer has the best reaction towards the GSV (115.42g/m2), ML (41.74N) and IB (6.48x10^{-2} MPa). While plastic have poor reaction towards GSV (20.69g/m2), ML (11.69N) and IB (1.81x10^{-2} MPa).
TABLE OF CONTENT

APPROVAL SHEET I
CANDIDATE’S DECLARATION II
ACKNOWLEDGEMENT III
TABLE OF CONTENT IV
LIST OF TABLES VII
LIST OF FIGURES VIII
LIST OF PLATES IX
LIST OF ABBREVIATIONS X
ABSTRACT XI
ABSTRAK XII

CHAPTER 1: INTRODUCTION

1.1 Background 1
1.2 Problem statement 4
1.3 Justification of study 4
1.4 Limitation of study 5
1.5 Objectives 5

CHAPTER 2: LITERATURE REVIEW

2.1 Wood adhesive 6
 2.1.1 Synthetic adhesive 6
 2.1.1.1 Thermoplastic adhesive 7
 2.1.1.2 Thermosetting adhesive 8
 2.1.2 Natural adhesive 8
 2.1.2.1 Animal adhesive 9
 2.1.2.2 Starch based vegetable adhesive 10
 2.1.2.3 Protein based 10
2.2 Starch 11
2.3 Tapioca flour 12
2.4 Sago flour 12
2.5 Glutinous rice flour 14
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Observation of adhesives during heat treatment process</td>
<td>27</td>
</tr>
<tr>
<td>4.2</td>
<td>State of adhesives after 3 weeks storage</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of (ANOVA) on the influence of different types of adhesives and substrates on the capability of bonding performance</td>
<td>34</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of different adhesives on bonding performance</td>
<td>35</td>
</tr>
</tbody>
</table>