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VERTEX PARTITIONING OF A CLASS OF DIGRAPHS

Louis FERRE et Bertrand JOUVE*

RESUME — Partitionnement d’une classe de graphes orientés.
Un ensemble de sommets V' d’un graphe orienté G = (V, A) est un pseudo puits si son demi-degré
extérieur est faible. La recherche d’un pseudo puits dans un graphe d’ordre élevé est un probléme de
forte complexité combinatoire. Nous montrons, sur une famille particuliére de graphes, que 'utilisation
d’une classification hiérarchique des sommets, dont 1’ensemble est muni d’une métrique bien choisie,
permet la mise en évidence de pseudo puits par leur agrégation en 1¢.

MOTS CLES - Classification hiérarchique, Dissimilarité, Partitionnement d’un graphe orienté,
Graphes de petits mondes.

SUMMARY - A vertex subset V' of a digraph is a pseudo sink set if its out-degree is low. The
research of a pseudo sink set in a digraph is a high complexity combinatory problem. We show, for a
particular family of digraphs, that a clustering of the vertex set fitted with a well chosen metric allows to
reveal pseudo sink sets by their aggregation in a first level.

KEYWORDS - Hierarchical clustering, Dissimilarity, Partitioning of a digraph, Small worlds
Graphs.

1 INTRODUCTION

In numerous situations (one may cite for instance [5], [15], [11]) scientists are con-
fronted with large netlike objects whose architecture may be symbolized by a directed
graph, or digraph, G = (V| E). A step toward understanding the object is to search for
hidden structures of the digraph. Two complementary approaches may be run, combi-
natorial and statistical, that have to be adapted according to the type of graphs: dense
or non-dense, symmetrical or non-symmetrical. A combinatorial approach may consist
in enumerating all the objects of a combinatorial class (cliques, stable sets, efc.) or only
the maximal ones. It often comes up against combinatorial explosions as soon as the
order of the graph becomes high. Moreover, such an approach is not efficient to reveal
objects that are nearly in a class (for instance, a dense subgraph is not but nearly com-
plete). The idea of a statistical approach, within which this paper stands, appears for
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instance in [14], for non-dense and non-directed graphs, in the domain of the pagination
of large electrical networks, and is adapted in [12] for dense and directed graphs that
modelizes the neuronal cortex. The strategy consists in looking for a clustering of the
vertices of the graph G in such a way that the vertices of a same class share some ad-
jacency properties, and that the partition, in its whole, reveals some structure properties
of G.

Motivated by a study we lead concerning the topology of the World Wide Web [8],
we are interested in automatic search processing of sink sets in ”small world” digraphs
[17], that is directed graphs of low diameter and made of dense components. The family
of digraphs we study in that paper is of that type and we use the previous strategy to
present a method for revealing dense components that are pseudo sink sets.

Graphs terminology and notations used in that paper follows [1] with some exceptions:
we assume there is a loop at each vertex (even if they will never be drawn in the figures),
that is all the arcs (7, ¢) exist, and, given a vertex ¢, ['* (z) and I~ (¢) respectively denote
the out-neighbourhood and in-neighbourhood of . Given a digraph, integers » and
m respectively refer to its number of vertices and arcs. An articulation vertex of a
connected digraph G is a vertex : such that G — ¢ is not connected. In the same way,
we define an articulation set B as a subset of A such that G — B is not connected. A
subdigraph G’ = (V', A’) of G is a dense component if |V’|* /| 4’| is close to 1, where
| - | symbolizes the cardinal of a set. A subdigraph G’ is a pseudo sink set (resp. sink
set) of G if its out-degree is low (resp. equal to zero).

The family of digraphs we will study in that paper is denoted by G, , = (V,4, Ap,q)
and made of p complete digraphs with ¢ vertices (there are two opposite arcs for each
~ pair of vertices and a loop at each vertex), Yx_f R F(_%, cee, ﬁ, plus another complete
digraph W , plus p maximum matching between each X? and X’?ﬁ, all the arcs of
the matchings directed to e They have g(p + 1) vertices and ¢(p + 1) + pq arcs.

The digraph ?&’P’L i is a sink and the articulation set of (G, , of minimal order. Given p
and g, all the isomorphic digraphs G, , will be confused.

In its main points, that paper follows 3 steps:

1. a metric d is defined on the vertex set V' and the finite metric space (V, d) is em-
bedded in (IR?, d; ), where d;, is the Euclidean distance associated to the L, —norm,

2. the digraph (5 5 is studied in details as an illustrative example,

3. Mathematical proofs of some empirical results obtained for G5 5 are given for the
Gpgq-

2 THE GRAPH EMBEDDING

The adjacency matrix M(G) of a digraph G may be seen as a presence-absence data
table. That point of view allows to fit V' with a dissimilarity coefficient d for binary
variables. We have chosen for d the square root of the half sum of the Czekanovsky-
Dice index [7], [9] applied to M(G) and M'(G), where M'(G) is the transpose matrix
of M(G):
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1
d* = 5 (d% +d2)

where
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We denote by A A B the symmetric difference between the two sets A and B. With this
coefficient d, two vertices are close together if and only if they have at the same time a
lot of common out — and in — neighbours and few different ones (see Figure 1).

B

d(5.6) = 0.4 d(17,18) = 1

Figure 1. Two examples of calculation of d(3, j). The vertices are numbered. Each line symbolizes an
arc whose initial extremity is black and final extremity grey

That choice of d is justified by 3 reasons:

e It is a local index and one just has to know the neighbours of vertices : and j to
calculate d(z, j), which is not expensive in computation time for large networks.

e It is an Euclidean semi-distance on V': there exists an isometrical mapping I;(G)
from the metric space (V,d) into the metric space (IR?,d;). To prove d is eu-
clidean, just note that d, and d_ are Euclidean [7], and that a distance d is Eu-
clidean if and only if the Gram matrix W (i,) of d at point 1, is positive for all 1,
[2], where the general entry of W (i) is equal to w;;(10) = 1(d?(10,7) + d* (o, j) —
d*(i,7)). Then the Gram matrices W, and W_ are positive and the Gram matrix
$(W, + W_) associated with d is also positive so d Euclidean.

e For non-oriented graphs (in that case d, = d_ = d), empirical results of [14]
show that d is efficient to reveal dense components. The adaptation to the directed
graphs, by defining d and d_, lies in a principle of separation between the in —
and the out — neighbours, considering the adjacency matrix at the same time as a
in-neighbours’ table and a out-neighbours’ table.

Now, the Euclidean finite space (V, d) is isometrically embedded into IR* by means of
Principal Co-ordinates Analysis. If C = I, — %ln,n is a centering operator and D the
distance matrix between the n vertices, a double centering of D, in rows and columns,
defines the Torgerson matrix W = —1 C' D C which is the Gram matrix at the center of
gravity of (V, d). Let F} denotes the eigenvectors of 2, the k** coordinate i;, of the
vertex ¢ in the embedding of (V,d) in (IR®, d,) is [16]:

ik = VA F;

61



62 L. FERRE ETB. JOUVE

where ), is the k** eigenvalue of W (the eigenvalues are assumed arranged in descen-

ding order), and F} the i** coordinate of F. Such an embedding is called a d—embed-

ding and denoted by I; (G). At the most, s = n — 1, but for some digraphs we may

have s < n — 1. Because d is a non graduated distance (large distances are all equal

to 1 (see Figure 2 for an example), dense components are more or less distributed on a

hyper-sphere of IR? where p+1 is the number of dense components. Hence, for directed

graphs we find again the results of [14] concerning the fact that each first principal axis

will reveal more or less one dense component. We are now interested in knowing how -
the superior dimensions bear information about the way dense components are linked.

The following of the paper explores that question on graphs G, 4.

B— B— R— B

Figure 2. d(1,4) = d(5,9) = 1 even if both configurations are noticeably different

3 ILLUSTRATIVE EXAMPLES OF HIERARCHICAL CLUSTERING METHODS TO RE-
VEAL AN ARTICULATION SINK SET

We propose to analyze not I;(G, ) but some projections of I;(G, ,) onto subspaces
generated by some factorial axes. This will allow a better understanding of the role of
each factor of the Principal Co-ordinates Analysis for revealing the structure of G, ;. We
denote by py [1,(G,,,)] the projection of I;(G, ;) onto the space of the k first factorial
axes. The points of p; [I4(G,,4)] are clustered using agglomerative method. We have
chosen to use a single linkage method but alternative methods may suit for the G, ,
graphs. In the following, the results of the clusterings are represented by dendograms.

In that part, we lead a comparative study between an example of digraph G,, with
p = q = 3, and the digraph (G5 3 constructed from (i3 3 by reversing some arcs joining
the articulation sink set ﬁ to the ?’%s in such a way that Fﬁ is no more a sink set nor
a pseudo-sink set (see Figure 3).

3.1 Clusterings of G35

The graph Gj 3 has a d—embedding in IR” since the 4 last eigenvalues are equal to zero.
The agglomerations of the points of the py [I;(Gs,3)] are presented through dendograms
of Figure 4 and the scree-graph corresponding to the 7 first eigenvalues associated with
the principal axes appears in Figure 5. The scree-graph shows 3 plateaux, corresponding
to the 1% and 2¢, 4t and 5**, and 6** and 7™ eigenvalues. The relative contribution
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m‘E’
[o€]

Figure 3. Digraphs G3 3 (left) and G’3,3 (right). The conventions are the same as those of figure 1.
Moreover, when there are two reciprocal arcs between two vertices, the line is entirely black. In G 3 the

vertices of K‘E are {10,11,12}.

(CTR) of %‘Z to the inertia of the first two axes (first plateau) is equal to zero although

that of each other ?2 is about 1/3, and the CTR of ﬁ to the 3¢ axis is about 75%.
Hence the first plateau corresponds to the two factorial dimensions that reveal the 3

complete digraphs ?’} fori € {1,2, 3} (see the first dendograms of the Figure 4) and the
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Figure 4. Dendograms of G3 3 provided by a single linkage method applied on the vertices of I4 (G3,3)
or on their projections on some principal axes. The variables are the factors of the Principal Co-ordinates
Analysis

3rd factor bears ﬁ We verify here, on an example, the results announced at the end of
the previous part. If we add one dimension to the space onto which we project I; (Gs 3),
the articulation set is distinguished by its aggregation in a first level. This difference
remains until we take 7 variables. As soon as we take 7 variables, the articulation set
is aggregated in second. Projections of I; (G5 3) onto the space generated by factors of
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the second plateau perfectly show that these dimensions reflect the way the 3 Ws are
linked to the articulation set. The clustering of the projection onto that space builds the
classes {1,4,7}, {2,5,8}, and {3,6,9} of the vertices linked to the same vertex of it
Along the factors of the 374 plateau all the vertices of the X—i Xi and Y{—é have their
coordinates equal to 0, although the vertices of ﬁ are well separated with coordinates

(0,-.289), (-.250,.144) and (.250,.144) respectively. That separation of these vertices is
a notable difference between these factors and factor 3.

]

000 002 004 006 008 010
L 2 1 1 i I
000 002 004 0.08 0.08 0.10

: & 8w : 4« & e w0
Figure 5. Scree-graphs for the Principal Co-ordinates Analysis of /4 (G35 3) (left) and 14(6‘3‘3) (right).
The pt" eigenvalue is equal to the inertia of the d-embedding along the p* principal axis

Let us notice that if we replace the sink set by a source set, the distance table between
the vertices are the same, and a fortiori the results.

3.2 Study of C~r'3,3

The graph G 5 is obtained from Gj 5 by reversing the arcs (2,11), (1,10), (4,10) and
(9,12). The scree-graph of é3’3 has the same two important jumps as G5 3, between
the 2"¢ and the 3"¢ eigenvalues, and the 37 and the 4**. On the other hand, it has no
really pronounced plateau after the 4** eigenvalue. The dendograms of Figure 6 reflect
these results since the first difference appears when we take 4 dimensions. Moreover,
the vertices of the articulation set are never agregated in 1°*. Finally, the dendograms
relative to the variables {4,5} and {6, 7} have not the form of those of G5 3. It reinforces
the idea that these dimensions code the matching and its direction.

3.3 A last example mixing G5 3 and (:}3,3

In this last example, we combine both digraphs G 3 and C~¥3,3 in the form of a “cater-
pillar” digraph G (see Figure 7).The scree-graph and some dendograms are presented
in Figure 8. The scree-graph reveals 5 high eigenvalues corresponding to 6 complete
digraphs. The analysis of the contribution of each vertex to different factors shows
that inertia of the factors 4 and S are greatly due to both articulation sets {7,8,9} and
{10,11,12}. Those articulation sets emerge in the clustering using all the dimension
of the d—embedding by their last aggregation. The sink set is distinguished by its first
aggregation in the clustering of p; [I;(G)].
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Figure 6. Dendograms of G3

3.4 Assumptions for the following

That study of G55 allows to make some assumptions about the way the clustering of
I3 (G, ) acts on the digraphs G, ,:

Figure 7. The digraph G is made of 6 complete digraphs with 3 vertices. Both induced by vertices
{7,8,9} and {10,11,12} are articulation sets, only the first is a sink

o The p — 1 first factors of the Principal Co-ordinates Analysis just allow to separate
the %s fori € {1, --,p — 1}. Those results were revealed in [14]. The number
p of complete digraphs is equal to the length of the first plateau of the scree-graph.
e The p*" factor reveals the articulation setgwt.

65
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o The other factors inform about the way the K’%\s are connected to ?&’”T. The scree-
graph contains a second plateau of length ¢— 1, and the existence of an articulation
set K7+ which is a sink appears in the aggregative orders of its vertices.

variable 1to 7 ait the variables

| e ———— .

IR L |
_ mIn = r
m

06

04
s
-]

00 0z
L
1 -1
-
hx} ——-I
o
5
4
13
12 ———-I

1%
7

Figure 8. Dendograms for "variables 1 to 7” and “all the variables” are presented. The 7
variable is the end of a light plateaun which appears in the scree-graph. Both articulation sets are

last aggregated when we take all the variables but the one which is a sink is aggregated in first
for 7 variables.

4 THEORETICAL RESULTS FOR G, , GRAPHS

We now give mathematical arguments to confirm and prove the above observations ob-
tained for p = ¢ = 3.

Let us first give some additional notations. The general entry of a matrix M will be
denoted by m;; and all the matrices we consider are real. The identity squared matrix of
order n is denoted by I, and the full of 1 column matrix of order n by 1,,. The transpose

of a matrix M is denoted by M’ and we set 1,,,,, = 1,1/ . Finally, we write ||-|| for the
Ly—norm.

For such (7, , digraphs, it is easy to compute the distances between any two vertices

1% 7
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PROPOSITION 4.1 Given k and | two distinct integers of {1,--- ,p},

e (i s +i +i 2 [ p
if (i,7) € KP™ x KP™ | d°(i,j) =
7 0) 1) 2(p +q)
s —{ N PR 1 1
KPP x K -1
if (i,5) € x K', d* (i, j) i1t 3
if (1 ')pr(l?l d2(‘ ) = 1
yi\,J ) 1,7 #2q+2
£ l q_ N
y(i,j)ele?,dQ(i,j)z z(1+q+1) ifi —j=0(g)
1 otherwise

Let us just give, for instance, some elements of the proof for the two first cases. We re-
call that we have assumed that there is a loop at each vertex. When (¢, j) € W X W,
we have | (:) AT*(5)| = O,g%i) AT(j)| = 2p,and [T (3)| = [T (j)| = ¢ + p.
In the same way, when (i,7) € KP*'x K', [T (:) AT*(5)| = 2¢—1L, |~ (0) AT ()| =
2¢+p =2, [T =TT - 1= ¢ [I7()] = ¢+ pand I (5)| = ¢. I
In order to explain the existence of plateaux in the scree-graph, we now investigate the
eigenvalues decomposition of the Torgerson matrix associated with (V}, ,, d).

4.1 FEigenvalues of the Torgerson matrix associated with (V, ,, d)

We need for that to give some definitions and properties of special matrices. A matrix
M will be called of type I, and denoted by M2, if its entries just take two values a and
b according to whether it is a diagonal entry or not. In the following m.; will denote the
sum of all the entries of the column j of a matrix M. If M is a ¢ x ¢ matrix of type I,
m.; = a + (¢ — 1)b. A matrix of type II, denoted by M¢, is a matrix whose all entries
are equal; it is easy to verify that 1, is an eigenvector of such a ¢ x ¢ matrix with a # 0.

A simple calculus gives the following result:
LEMMA 4.2 The determinant of a ¢ x q matrix M} (with a # b) is
(a+(g—1)b)(a—b)""

The matrix M has one simple eigenvalue equal to a + (¢ — 1) b and one of multiplicity
q—1equaltoa —b.

Remark 4.1 The matrix Mf”\ = Mg — X, is of type Il if and only if ) is an eigenvalue
of M{.

PROPOSITION 4.3 The Torgerson matrix of the Euclidean metric finite space (V,, ;,d)
isa (p+1) by (p + 1) block matrix of type:
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A B --- B C
(B A B B C\
wel LD DT 0
B B 4
\C vei +ee . C E)

where each block is a square matrix of order q, E corresponding to ([—\"”*i.
The matrices A, B and E are of type I. The matrices (A — B) and C are of type IL.

The general entry w;; of W is equal to:

—(d2 Y+d® (5,-) — & (i,5) - d* ()

where
d? ( Zd2 (4,7) and d® (- Zd2 (¢,+)

The equality (1) and the form of matrices A, B, C and E then easily result from propo-
sition 4.1. To prove that (A — B) is of type II, one just has to verify that its diagonal
and non-diagonal entries are equal. Considering that d2(s,.) = d?(j, .) for any vertices
7 and j not in W the common value of the diagonal entries is £d? (1,¢+ 1) and the
common value of the non-diagonal ones is 1 (d?(1,q+2) — d*(1, 2)) Both expressions
are equal to 3(1 + -15). - ]

THEOREM 4.4 The characteristic equation of W is

g—1
|det (W — AL,)| = (qu.) A=) (r-1) (A — /\l)p—l (- /\3)11—1

A =2 A=) (A= Xs)
where M\ = (1 + —9-) Ay =1 (—) A= (—ﬂ—) Xs =0 and

q+1 q+1
+4p+1 1 2 2
do=1 - P+ 4p p " N P P
dlp+1) 2p+1)(20+1) 4(g+1) 2(p+1)(2¢+p) 4lg+p)
Adding all the columns, excepted the last one, to the first column, substracting the first

row of blocks from the following p — 1 rows of blocks, and substracting 1/p of the first
column of blocks from the p — 1 following ones, we obtain:

Il

Ay B—%AA B——%A,\ C
0 A-B-)I, 0 0 0
det (W = \I,) = 0 A— B -l .
. ‘. * . 0
0 0 A-B-AIl, 0
pC 0 0 E — ),
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where Ay, = A+ (p—1) B — M,. By reordering the rows and columns of the matrix,
the first row and column of blocs becoming the last ones, there exists o € N such that:

A-B-I, 0 0 0
0 A—-B -,
det (W — \I,,) = (-1)° - ’

B—%A,\ B—’%A,\ C A,
and

| det(W — AL)| = | det(A— B — AL)*"!| - | det((E — Al,) Ay — pC?)|.

o Let us note A the common entry of A— B, we have 2 = 1d* (L,q + 1) = 3(1+ ;37)
and |det (A — B — AL,) | = (&) A= (A= Ap).

e The matrix (E — \[;) Ay — pC 2 is of type I and is denoted by M, ;((,\’\)) The polynomial
a () is monic of degree 2 in the indeterminate A and b () is a polynomial of degree 1.
Since the eigenvalues of W are all real, there exists four reals Ay, A3, A4 and As such
thata (\) + (g —=1)b(N) = (A =X) (A= As)anda — b= (A — A3) (A — Ay).

e Calculus of A3, Ay and A5 :

A, B, and E are type I matrices, and we respectively denote by a;;, b;; and e;; their
diagonal entries, and by a;;, b;; and e;; their non-diagonal entries. The matrix C is of
type II with a common entry denoted by c. Since C is of type II, the matrix C? is also
of type II with entries equal to ¢*q. If M "(A denotes the matrix (E — A\I,) A,, we have

et MEE) = (30 e+ 0 DT) (300 -5 )"

Hence, the eigenvalues of multiplicity ¢ — 1 of M:(( 5 and M:((A) are the same. Since

a(A
det M} ) = det(E — AL,) det(A + (p — 1)B — M)

and E and A + (p — 1) B are of type I, proposition 4.2 gives

A3 = ai—ai+(p—1)(bi — bi;) = p (b — byj)

Ae = e — €

The result is obtained by using the expressions given by proposition 4.1.

To prove that A; = 0, it is sufficient to establish that

det M) = det[E(A — B) + pEB — pC*] = 0
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Since M ;(E)O)) is of type L, it suffices to prove that the sum of all the elements of a column
is equal to zero for the sum of all n rows to be equal to 0. Since W is a Torgerson
matrice, that property is true on it, and:

0 = w,=pgc+e, (2)
0 = wi=(p-1)by+a,+qgc=pb;+ A\ +qc. 3)

Denote by o, , 3;; and §;; the entries of matrices F (A—B), pEB and pC*? respectively,
it follows from (2) that

ap = Mej=—\pqc

61 = pg’cd

B1 = peib; = —p*qch,
Hence, equation (3) multiplied by pqc becomes:

a4 +ﬂ1 - 5.1 = O

which means that the sum of the elements of the first column of M ;(8) is equal to 0.
e Calculus of \,:

Eigenvalues ), and )5 are the two zeros of the polynomial
P(A) =a(A) —cpg® + (¢ = 1)b(N)
where

(A) = M= X(ei+a;+ (p—1)bi) + (s + Bi) |
(A) = =A(ej+ai; + (p— 1)by) + (o + Bij)

SNy

Using A5 = 0 it is not difficult to factorize P()) and write the expression of \y:

1
/\2 =e1+a;+ (p— 1)b1 = (14—5) €.1
Moreover,
: 1 : 1, 1
=) = 3+ a1 (46~ Ja6) - Jac. )
where i € Z"i”ﬁ. The proposition 4.1 allows to formulate an expression of \, that is

simplified with MAGMA Computational Algebra System V2.7-2, and we obtain:

p2+4p+1+ P 4 1 N p? L P’
4p+1) " 2(p+1)(2g+1)  4(g+1) 2(p+1)(2¢+p)  4(qg+p)

/\225—

Consequence 4.5 If g > 1 then )\, > Apand A3 > A, and if 1 < p < ¢ then My > ).
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If ¢ > 1, only the inequality between A, and A, is not evident. We have

1 P 1 1 1
M-de=— 2|12
LTy p+1[ 4(q+l+§+%)

Sincqul,wehavel—}i(%-i_ 1 )Z%and

1p2+1_1 p?

4p+1 4p+q

[ =)

oty i+3

2 2
M-d > il 2 4l 1p
47 3p+1 4p+1 dpig

1 (p*+3 2
_(p 2P\,
4\ p+1 p+q

If p < ¢, the difference \; — A3 may be rewritten:

N(Xg— A
Ay — A3 = N2 = A)
D(Ay — A3)
where
N —2Xs) = (2¢° +8¢*p® +8¢°p + 2¢°p” + 8¢° + 8¢* + 8¢'p + p°)

— (g0 + ¢*p + 12¢°p* + 5¢°P° + 3qp® + 4¢°p” + 2¢p* + p* + 4¢°p)
and
DXy —Xs) = 4(p+1)2¢+1)(2¢+p)(g+1)(p+q)

Let us group some terms of the numerator of A\, — A3 together:

N —2As) = (¢°—a®) + (¢® — ap?) + (2¢°p” — 2¢°p%) + (2¢° + ¢°p + 8¢*p — 10¢%p?)
+(3¢°p — 3¢p°) + (5¢°p® — 5¢°P°) + (4¢°p — 4¢°P") + (4¢° — 4¢°p)
+(2¢° + ¢*p* + 8¢* + p* + 2¢°p° — 2¢p* — p*)

Except for the 4'* and the last one, it is easy to verify that each term of N(X, — X3) is
positive if 1 < p < ¢*. Concerning the 4** one just has to prove that 2¢° + ¢°p > 2¢*p?
since 8¢*p > 8¢’p?. Assuming that ¢ > 1, the inequality 2¢° + ¢°p > 24¢*p?* is equi-
valent to P(p) = 2p® — pq® — 2¢®> < 0. Under the assumption that 1 < p < ¢, the
condition P < Oistrueif4 — ¢ < , /¢ + % which is easily checked. On the other hand,

2¢° + ¢*p® +8¢* + p° + 2¢°° > ¢'p* + 2¢°p° = p* + 2"
if 1 < p < ¢* and the last expression is strictly positive.

We thus have the required result by noting that the denominator of A, — A3 is strictly
positive. 1

In the following we shall assume that the condition 1 < p < ¢? is satisfied.
The screeﬁ_%raph of the Torgerson matrix W then has one plateau of length p — 1 separa-
ting the K*,--- | ﬁ followed by one dimension that isolates the articulation set K7*1.

Then arrive two plateaux with dimension ¢ — 1. The dimension of the embedding space
of G,,isp+2q—2.



72 L. FERRE ETB. JOUVE

4.2 Eigenvectors of the Torgerson matrix associated with (V, ,, d)

We then focus on the eigenvectors of W in order to get the coordinates of the points of
I;(Gyp,e). The result is given by the following proposition:

PROPOSITION 4.6 Let

e [y, -+, I, denote the eigenvectors of the Torgerson matrix W,

e B, ; be matrices with ¢ — 1 columns and q rows,

o A1, Aip, Aig, and A; 4 be matrices whose entries of a same column are equal, with
growsandp — 1,1, g — 1 and q — 1 columns respectively,

o 0 be the full of zeros matrix with (p — 1) (¢ — 1) + 1 columns and q rows.

Then we have:

¥

Aip Ay Bz Ay O
Ay Aip Byy Ay

1 )

(Flt"':Fn):

; A1 Bps Ay
Apran Az Apyisz Bay O

Assume F' is an eigenvector of W corresponding to an eigenvalue ), and let us write
F under the form (F,. .. | FP+!) where each F” is a block of length ¢ we may write
Fi=(Fi(1),---,Fi(q)). The system W - F' = AF may be expanded, using the
expression of W as a blockmatrix, as follow:

([ (A-B)-(F'— F?) = A(F' - F?)
(A= B)- (F' = F3) = \(F' - F?)

. (4)

(A= B)-(F' - FP) = \(F' — F?)
A-F'4+B-(F?+..-+ FP)+ C . FP*l = \F!
C-(F'+4-+ -+ FP) 4+ E. FPtl = \prtl

\

o 1%case: A=A\
Since A — B is of type I and not null, Im(A — B) =sp 1,. The first p — 1 equations of
(4) lead to the existence of p — 1 real constants o’ such that:

Vie{2 - ip), P = F' - o,

The numbers o/ may be chosen for F, - - - , I,—1 to be linearly independant, hence
corresponding to a base of the eigensubspace associated with \;. With F} = il
where «; are real numbers, the first column of blocks {A,; ;, A3, -, A,41.1} has the
expected form.

e2¥case: A = \s
The system (4) is equivalent to
Fl=F2_—-...=Fp

~C-FPl = (A+ (p-1)B — AL,) - F! 5)
pC - F' = (M, - E) - FrH!
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The type I matrix (A3/, — E) is not of type II since A3 # )4 (see remark 4.1), and then
will be written E° with b # c. Moreover, pC - F'* has the form v1,. Finally, the 3™ row
of system (5) has the expression:

bEPHL(1) 4 cFPHY(2) + -+ - + cFPH(g) = v
cFPYY(1) 4+ bFPH(2) + - 4+ cFPH(g) = v

cFPYY(1) + cFPH(2) + -+ 4+ bFPH(g) = v

The subtraction of a row from its following involves FF¥!(1) = FPH(2) = ... =
FP*+'(q). Hence, by projection onto the second plateau, the vertices of the articulation
set merge and the third column of blocks has the expected form.

e3Ycase: A= )4

We obtain the same system as (5) with (A 4 (p — 1)B — A\41;) which is of type I but
not II. Expanding the second equation, we find F*(1) = F(2) = --- = F(q). That
result combined with the first equation of system (5) gives the 4** column of blocks.
e4Pcase: A = )\,

The first row of system (5) is again true. Within each of the 2" and the 3"¢ row, the left
term has the form v1,. Since (A + (p —1)B — A1) and (\;], — E) are not of type L, it
involves that F'(1) = F'(2) = --- = Fl(q) and FP*}(1) = FPt1(2) = ... = FPtl(q).
That gives the form of the 2" column of blocks. 1

The form of the coordinates matrix of the points of [; (G, ,) then proves the preliminary
aggregation of the vertices of the sink set with an agglomerative method applied on the

points of a p [I;(Gp,)] where k € {p+2,--- ,p+ g — 1}, indexes of the 2™ plateau
eigenvalues.

43 Toward an extension to a G, , perturbed graph

We said in introduction that an advantage of the statistical approach is its efficiency to
reveal a vertex set that is not a sink set but a pseudo sink set. We consider digraphs
G, q(€) obtained from G, , by reversing arcs of the matching. We investigate only this
case to keep in the scope of the paper. However, the following discussion also applies
when the whole number of arcs is modified. We assume that the number of reversed
arcs is low to use the perturbation theory for matrix. For convenience we write M for

. . . IM s!—M
l]]\;[\(gp,q). Let M (¢) be the adjacency matrix of GG, ,(¢) and take € = ”M(E)fM”Jr”M“ , We

ME)=M+T(e)=M+eU

where T'(¢) is a perturbation of M in terms of a n x n matrix with entries in [—1; 1] and
U is a matrix depending on . Hence ¢ € [0;1] and ¢ = 0 if and only if M is without
perturbation. Note that || M (g) — M||® is equal to the number of reversed arcs. For a
small perturbation, that is for ¢ in the neighborhood of 0, the matrix U is an holomorphic
function of €.

The perturbation of M affects D and W in terms of two matrices:

D(e)=D+¢eDW and W(e)=W +eW® .
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Under the conditions of applicability of the perturbation theory, the eigenvalues and
eigenvectors of W are holomorphic functions at e = 0. The plateaux of the scree-graph
of W are then transformed in pseudo plateaux of W(e).

The Czekanovsky-Dice index defined in part 2 may be generalized to quantitative va-
riables in the following way:

PROPOSITION 4.7 Let m; and m; be quantitative positive vectors of dimension n (the
rows of M (€)) and let s(1, j) be the similarity index between 1 and j defined by:

2 <mi7 mj>

el + i 2

s(2,7)

where (-, -) is a scalar product, the dissimilarity d = \/1 — s is Euclidean.
If m; and m are binary, d is the Czekanovsky-Dice index.

The different steps of the proof used in the binary case to show that d is Euclidean re-
mains valid for quantitative positive variables and the n points with dissimilarities table
D(e) may be isometrically embedded in IR™. Because these coordinates are continuous
functions of the eigenvectors and eigenvalues of W (e), they also move continuously
with € around € = 0. If € is small enough, the aggregation order of the vertices of the
perturbed graph G, ,(¢) is then the same as G,, ,.

It remains to clarify the conditions of application of the perturbation theory in the spe-
cific case we are interested in. These conditions are the convergence of various power
series, which, in the particular case of a symmetrical matrix, may be reduced to:

le WOl <

N o

where

— . /\_/\ . . —_ .
e= amin {1 =Ml P = A} ©6)

One may verify that ||W®)|| < +/2||D®)}|, and then if € is an upper bound of || DM ||,

the theory is applicable if ¢ < 2\;59.

That inequality notably provides a sufficient condition on the maximum number of arcs
that may be reversed from G, , for a pseudo-sink set to be revealed. In the general
case of graphs G, ,, to find an efficient constant () carries on big calculations. We may
however notice that if

P~ ql-}-a
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where a € [0, 1}, we have:

4(A = A3) ~q
4(A; = X)) ~ ¢
4(A3— Ay) ~q°
40\4"‘/\5)"’1

Hence, as equation 6 may be used to each eigenvalue separately, for instance if a is
low, e may be taken larger for A, and A, than for A3 and A4. So the first two eigenva-

lues, revealing the A™*’s, are more resistant to perturbations. This fact is consistent with
g p

the capability of the method to reveal the X’—’}’s whatever the perturbation. Not surpri-
singly, the last eigenvalues are the more affected: revealing articulation sink set is a
more sensible task.

When a < 0, similar calculations lead to more restricting conditions since 4 (A3 — A4) ~
g**. To get an insight of the behavior of the method in that case, we give below (table
1) some simulated results. The following table presents the results of our simulations
for revealing pseudo-sink sets on digraphs G, ,(¢). The simulations are built from 3 pa-
rameters: p, ¢ and the number N of arcs of the matching (that is entering Fm) whose
direction is reversed. These 3 parameters respectively varies in {3,--- ,9},{3,---,10}
and {0, - - - ,min(E,23)}, & being the half of the number of arcs of the matching. For
each value of the triple (p, g, N) we run 100 simulations (the choice of the arcs that
are reversed is a random processing) and we give the percentage of time the vertices of
KrH are first aggregated in the clustering of p,4,_1 [I4(G,,q)] Where p+ ¢ — 1 is the in-
dex of the end of the 2 plateau (we uses single linkage method for the clustering). For
example, the framed number has to be read as follow: for 100 digraphs G's ¢ from which
one has reversed at random 7 arcs of the matching, 85 present an aggregation of the
vertices of ﬁ (the articulation set) on a first level, within a clustering of pio [[4(Gs )]
No surprising is the fact that the results are closely related to the values of the parame-
ters. Particularly and roughtly speaking, the larger p is, the larger the number of allowed

inversion is. These simulations give encouraging results on the behaviour in practice of
the method.

NOTES

1. The graphs are drawn with the PIGALE Toolkit (Copyright (C) 2001 Hubert de
Fraysseix, Patrice Ossona de Mendez) downloaded from:
http://www.ehess.fr/centres/cams/person/hf/”.

2. Data Analysis has been made with R ([10]).

3. We thanks both referee for their helpfull comments principally about the 37¢ part.

4. This work was partially supported by the research french ministry under contract ACI
Cognitique COGS8S5.
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Table 1.

Nl]O 1 2 3 4 5 6 7 8 9 10 U 12 13 14 15 16 17 18 19 20 21 22 23
q=3

p=3]{100 100 77 0

=4[100 100 100 40 0 O 0

p=5]100 100 100 8 93 19 0 O

=6|100 100 100 8 97 67 18 0 0 0

p=7|100 100 100 92 90 8 64 24 S5 1 0

p=8{100 100 100 95 96 93 78 61 28 5 1 0O 3

=91100 100 100 91 94 98 8 76 47 36 33 7 0 O

q=4

31100 100 82 54 12 16 26

41100 100 100 96 84 35 24 T 17

50100 100 100 100 8 79 71 20 25 3 12

6/100 100 100 100 95 75 90 68 26 6 13 1 10

7]100 100 100 100 93 78 8 8 64 33 14 7 10 0 4

8100 100 100 100 91 76 8 93 77 70 57 31 10 4 10 1 17

91100 100 100 100 97 76 8 8 62 72 71 47 43 22 13 8 S5 0 9

q:

3{100 100 87 61 32 2 13 4l

4|100 100 100 98 8 81 46 32 3 5 S

51100 100 100 100 99 92 73 58 41 25 12 13 8

6100 100 100 100 100 99 92 8 75 72 41 25 19 7 11 ©

7]100 100 100 100 100 98 92 78 75 8 76 63 30 15 12 2 6 4

8]100 100 100 100 100 97 8 84 88 8 8 70 61 38 29 12 10 6 4 4

9/100 100 100 100 100 97 84 76 80 8 75 65 67 66 55 4 22 10 7 S5 2 8 1
9=6

3{100 100 8 67 42 17 36 4 12 3R

41100 100 100 100 96 91 78 47 47 16 12 22 36

51100 100 99 99 100 99 96 73 51 39 28 38 5 9 5

6/100 100 100 100 100 100 100 95 8 78 73 55 49 22 22 12 15 7 13

7/100 100 100 100 100 100 98 92 8 77 77 76 66 59 37 18 8 4 16 1 11 4

8100 98 98 98 100 100 99 94 8 78 77 77 81 70 61 46 30 16 13 4 9 2 T |
91100 98 98 100 100 100 9% 91 90 84 8 78 8 78 69 64 57 50 46 29 15 8 8 2
q:

3/100 100 8 73 37 21 28 38 30 11 17

41100 100 100 100 99 81 92 71 42 32 24 10 17 33 46

5}100 100 100 100 100 100 99 96 91 75 60 39 32 30 26 21 8 7

6{100 100 98 100 99 100 100 97 95 8 8 77 66 S5 SO 40 22 16 13 7 14 10
7/100 100 96 100 100 100 99 99 97 94 90 8 8 81 74 63 37 25 21 15 16 12 10

8100 98 97 100 99 100 100 98 94 8 8 8 81 8 75 73 64 53 40 26 18 10 9 S
9100 99 96 98 98 98 100 99 98 96 90 84 79 76 73 67 66 64 64 59 47 33 21 14
q=8

31100 100 88 73 52 37 32 35 45 29 16 14 19

4]100 100 100 100 98 77 73 69 57 37 44 25 2 7 19 34 56

5]100 100 100 100 100 100 100 96 8 87 76 61 51 31 34 39 38 20 16 12 19

6]100 100 99 100 100 100 99 100 100 100 96 8 79 70 72 58 50 28 24 17 26 6 18 16
71100 96 100 99 99 99 100 100 100 99 98 92 84 85 84 75 67 54 42 30 29 18 23 16

8l100 96 97 98 98 98 100 98 99 98 97 96 91 87 87 84 87 77 70 62 56 36 33 24
91100 96 99 99 97 100 100 99 100 98 95 89 85 83 77 84 83 86 89 81 74 64 56 40
q:

31100 100 93 78 60 38 29 28 38 45 31 18 10 22

41100 100 99 100 99 92 83 55 67 43 34 29 23 15 18 14 21 38 52

5/100 100 100 100 100 98 96 94 95 8L 79 59 €69 56 S4 38 36 35 27 22 12 22 19
6/100 100 99 100 100 97 100 100 100 99 97 92 84 77 64 61 57 51 41 37 34 28 26 31
71100 100 100 100 100 100 98 99 100 100 100 98 97 96 90 87 73 68 66 S6 47 39 30 18

81100 97 98 99 100 100 99 100 100 100 100 100 97 95 95 89 89 86 84 79 72 67 58 45
91100 95 97 99 100 97 98 98 100 100 100 98 97 96 91 85 82 78 77 78 76 T4 65 63
q=10

31100 100 98 80 59 46 38 42 34 35 37 30 24 19 14 14

4]100 100 100 100 99 89 87 66 56 38 40 24 23 20 30 21 27 20 33 33 44

51100 100 100 100 100 98 97 89 8 8 75 76 62 67 64 54 47 39 39 36 24 20 13 20
61100 99 100 100 100 100 100 99 99 99 98 98 94 92 84 77 69 65 60 45 39 38 33 39
7]100 98 100 100 100 100 99 100 100 100 100 100 99 99 96 92 91 83 80 72 67 55 50 39

8100 100 97 99 100 99 100 99 100 100 100 100 99 99 97 93 88 83 84 79 76 71 60 53
91100 97 100 100 97 99 99 100 100 100 99 100 100 98 99 99 95 90 87 87 84 79 75 75

71



