

Mathématiques et sciences humaines
Mathematics and social sciences

165 | Printemps 2004
La théorie constructive des types

Computational semantics in type theory
Sémantique computationnelle dans la théorie des types

Aarne Ranta

Electronic version
URL: http://journals.openedition.org/msh/2925
DOI: 10.4000/msh.2925
ISSN: 1950-6821

Publisher
Centre d’analyse et de mathématique sociales de l’EHESS

Printed version
Date of publication: 1 March 2004
ISSN: 0987-6936

Electronic reference
Aarne Ranta, « Computational semantics in type theory », Mathématiques et sciences humaines [Online],
165 | Printemps 2004, Online since 22 February 2006, connection on 03 May 2019. URL : http://
journals.openedition.org/msh/2925 ; DOI : 10.4000/msh.2925

© École des hautes études en sciences sociales

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenEdition

https://core.ac.uk/display/224254584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://journals.openedition.org
http://journals.openedition.org
http://journals.openedition.org/msh/2925

Math. & Sci. hum. / Mathematical Social Sciences (42e année, n◦ 165, 2004, p. 31–57)

COMPUTATIONAL SEMANTICS IN TYPE THEORY1 2

Aarne RANTA3

summary – This paper aims to show how Montague-style grammars can be completely for-
malized and thereby declaratively implemented by using the Grammatical Framework GF. The im-
plementation covers the fundamental operations of Montague’s PTQ4 model : the construction of
analysis trees, the linearization of trees into strings, and the interpretation of trees as logical formu-
las. Moreover, a parsing algorithm is derived from the grammar. Given that GF is a constructive
type theory with dependent types, the technique extends from classical Montague grammars to ones
in which the Curry-Howard isomorphism is used to explain anaphoric reference. On the other hand,
GF has a built-in compositionality requirement that is stronger than in PTQ and prevents us from
formulating quantifying-in rules of Montague style. This leads us to alternative formulations of
such rules in terms of combinators and discontinuous constituents. The PTQ fragment will mo-
reover be presented as an example of how a GF grammar is modified by replacing English with
another target language, French. The paper concludes by a discussion of the complementary rôles
of logically and linguistically oriented syntax.

keywords – Logical Semantics, Montague Grammar, Type Theory

résumé – Sémantique computationnelle dans la théorie des types
Cet article montre une formalisation complète des grammaires à la Montague dans le cadre de
GF (Grammatical Framework), une formalisation qui est en même temps une implémentation
déclarative. Cette implémentation comprend toutes les opérations fondamentales du modèle PTQ
de Montague : la construction des arbres d’analyse, la linéarisation des arbres en châınes de ca-
ractères, et l’interprétation des arbres comme formules logiques. De plus, un algorithme d’ana-
lyse syntaxique est dérivé de toute grammaire représentée dans GF. Comme GF est une théorie
constructive des types avec des types dépendants, la technique utilisée pour les grammaires clas-
siques de Montague est généralisée au cas où l’isomorphisme de Curry-Howard est utilisé pour
expliquer la référence anaphorique. D’autre part, GF impose une condition de compositionnalité
qui est plus forte que celle du PTQ. Ceci empêche la formulation des règles dites “quantifying in”
de Montague. Nous arrivons ainsi à des formulations alternatives de ces règles utilisant des combi-
nateurs et des constituants discontinus. Le fragment PTQ est aussi présenté comme exemple de la
modification d’une grammaire GF par remplacement de l’anglais par une autre langue de cible, le
français. L’article conclut par une discussion sur les rôles complémentaires d’une syntaxe logique
et d’une syntaxe linguistique.

mots clés – Grammaire de Montague, Sémantique logique, Théorie des types

1 Article reçu le 9 avril 2003, révisé le 17 décembre 2003, accepté le 6 janvier 2004.
2 This paper is based on material used at a graduate course in formal semantics at the Linguistics

Department at the University of Gothenburg in Spring 2001. The work was partly financed from
grand 2002-4879, Records, Types and Computational Dialogue Semantics, from Vetenskapsradet.

3 Department of Computing Science, Chalmers University of Technology and the University of
Gothenburg, aarne@cs.chalmers.se

4 The Proper Treatment of Quantification in English, titre d’un article qui contient un des
exposés canoniques de la grammaire de Montague [ndrl].

32 a. ranta

1. INTRODUCTION

Montague grammar [Montague, 1974] is the corner stone of most work in the compu-
tational semantics of natural language. The “grammar” is actually a series of papers
written in the late 1960’s and early 1970’s, showing how certain fragments of English
are analysed syntactically and semantically. Montague’s syntax was special-designed
for the purpose of semantics, which gave rise to a series of attempts by linguists to
combine his semantics with a more familiar kind of syntax [Partee, 1975], [Cooper,
1981], [Gazdar, Klein, Pullum, Sag, 1985]. As a consequence, what is found in mo-
dern linguistic theory under the title of Montague grammar is seldom a uniform
theory, but rather a bundle of ideas, inspired by Montague and reused in another
context.

In computational linguistics, some attempts have been made towards a uniform
treatment of Montague grammar. The most prominent implementations are written
in Prolog [Pereira, Shieber, 1987], [Blackburn, bos, (to appear)] to illustrate the
suitability of the Prolog programming language [Clocksin, Mellish, 1984] for com-
putational linguistics in general and for computational semantics in particular. The
main advantages of Prolog are its declarativity – implementation and theory are not
separated – and its built-in support for syntactic analysis, in the form of definite
clause grammars and their parsing algorithm.

However, Prolog lacks some of the central features of the logical theory that
Montague used : types, functions, and variable bindings. These features have to be
implemented separately,5 and to do so Prolog is of course as adequate as any other
general-purpose programming language. But, on the other hand, the very extension
of Prolog into a general-purpose programming language, with “impure” features
going beyond its logic-programming core, weaken the claim of declarativity, and
thereby the status of Prolog as the language of choice for implementing Montague
grammar.

Besides Prolog, logical frameworks [The Coq Development Team, 1999], [Harper,
Honsell, Plotkin, 1993], [Magnusson, Nordström, 1994] are another approach com-
bining logic and programming. Most logical frameworks are based on some version
of constructive type theory, which, despite its name, is an extension rather than a
restriction of classical type theory. In particular, they include as special cases the
lambda calculus and the simple type hierarchy that were used by Montague. For the
implementation of Montague’s semantics, logical frameworks thus give more support
than Prolog, but syntactic analysis is not supported. Now, since a logical framework
can be used as a full-scale functional programming language, it would be possible to
implement the syntax part of Montague grammar by writing functional programs
for parsing and generation. But the result would of course no longer be a declarative
definition of the grammar.

Grammatical Framework (GF) [Ranta, (to appear), 2000-2003] is an extension
of logical frameworks with built-in support for syntax. The purpose of this paper
is to show how to implement Montague-style grammars in GF, including not only

5 As an alternative, the semantics of variable bindings is sometimes changed so that Prolog’s
so-called logical variables can be used.

computational semantics in type theory 33

Montague’s own PTQ fragment, but also an extension using dependent types [Ranta,
1994], as well as a grammar of French.6

1.1. the contents of this paper

We begin with a formalization of a small Montague-style grammar in type theory,
in a classical setting, i.e. without using specifically constructive type-theoretical
concepts (Section 2). Then we will introduce dependent types and give a generali-
zation of the classical grammar, together with a model in Martin-Löf’s type theory
[Martin-Löf, 1984] (Section 3). This will lead us to a compositional grammar of
anaphora (Section 4). We conclude the theoretical discussion with the so-called
quantifying-in rules (Section 5).

The presentation of grammatical and logical rules will be strictly formal, using
the notation of GF7. Thus the rules can be directly used in the GF interpreter to per-
form computations, to parse natural-language expressions, and to edit grammatical
objects interactively. We hope to demonstrate the usability of GF for implementing
Montague-style grammars, independently of the constructive extensions that GF
makes available. This demonstration is completed by two supplementary examples :
a fairly complete formalization of Montague’s PTQ fragment (Section 6) and a pa-
rallel concrete syntax for French (Section 7). We conclude by making a distinction
between application grammars and resource grammars, which clarifies the comple-
mentary rôles of logically and linguistically oriented grammar descriptions (Section
8).

The paper presupposes some knowledge of Montague grammar [Montague, 1974],
type-theoretical grammar [Ranta, 1994], and GF [Ranta (to appear), 2000-2003].
Since we focus on semantics, we keep syntactic structures as few and as simple as
possible.

2. FORMALIZING MONTAGUE GRAMMAR

Montague is duly praised as the one who brought logical rigour to the semantics
of natural language. Interestingly, the main bulk of his work was carried out in the
late 1960’s in parallel with the work of Scott and Strachey in denotational semantics
[Scott, Strachet, 1970], partly in contact with Scott. What Montague did was, in
a word, denotational semantics of English. This means, exactly like in computer
science, that he defined an abstract syntax of the language, and for each syntax
tree an interpretation (denotation) of the tree as a mathematical object of some
appropriate type.

6 We have previously studied a Montague-style type-theoretical grammar of French in [Ranta,
1997]. GF can be seen as a formal theory of the concrete syntax which in that paper was defined
in type theory using all available means.

7 All typeset GF judgements of this paper have been produced from actual GF code by a
gf2latex program.

34 a. ranta

In logical frameworks, there is a firm tradition of implementing abstract syntax
and denotational semantics. What is missing is concrete syntax – the relation bet-
ween abstract syntax trees and linguistic string representations. Forms of judgement
for defining concrete syntax are precisely what GF adds to logical frameworks. A set
of such judgements is a declarative definition, from which the printing and parsing
functions are automatically derived.

2.1. levels of presentation and mappings between them

The main levels of representation of linguistic objects in Montague grammar are
– strings : John walks
– analysis trees : F4(John, walk)
– logical formulas : walk∗ (John∗)
– model-theoretic objects : True

In Montague’s original presentation, there are four kinds of rules
– construction : how analysis trees are built
– linearization : how trees are translated into strings
– translation : how trees are translated into formulas
– interpretation : how formulas are mapped into model-theoretic objects

Later work has also considered other operations
– parsing : how strings are translated into trees [Friedman, Warren, 1978],
– generation : how formulas are translated into trees [Friedman, 1981].

It should be noticed that, while the original operations are functions, in the sense
that they always give a unique result, these latter operations are search procedures :
they may yield multiple results or even fail. Thus it is natural that these procedures
do not belong to the definition of a grammar, even though their correctness is of
course defined by the grammar. However, since these algorithms are among the most
important applications of the grammar, it is desirable that they can be mechanically
derived from it.

2.2. abstract and concrete syntax

Following computer science terminology, we call the level of trees and their construc-
tion rules the abstract syntax of a language. The rules translating trees into strings
are called the concrete syntax. A phrase structure grammar à la Chomsky [Chom-
sky, 1957] defines these two things simultaneously. For instance, the predication rule
combining a verb phrase with a noun phrase to form a sentence

S −→ NP V P

simultaneously defines the construction of an S tree from an NP tree and a VP tree,
and the linearization of the tree by prefixing the linearization of the NP tree to the
linearization of the VP tree. To tell apart these two rules, we write as follows in GF

fun Pred : NP → VP → S

lin Pred np vp = {s = np.s ++ vp.s}

computational semantics in type theory 35

The fun judgement belongs to abstract syntax. It says that the type of the tree-
forming constant Pred is the function type with the argument types VP and VP

and the value S. The lin judgement belongs to concrete syntax. It says that any
tree constructed by Pred is linearized by concatenating the linearizations of the two
subtrees.

The use of a category symbol, such as NP above, presupposes that the category
has been introduced in the abstract syntax. The judgement introducing the category
NP is

cat NP

The linearization of a tree is not simply a string but a record, which contains
information on inflection, gender, etc. What information there is depends on the
linearization type corresponding to the type of the tree. We will start with the
simplest kind of linearization types, which are record types with just one field, of
type Str

{s : Str}

The linearization type of a category is defined by a lincat judgement, for instance

lincat NP = {s : Str}

Even though we in this paper try to work with as simple a concrete syntax as
possible, we will later have to show some more complex linearization types. By
using records, GF can handle complex linguistic objects such as inflection tables,
agreement structures, and discontinuous constituents.8

A concrete syntax is complete w.r.t. an abstract syntax if it has for every cat

judgement a corresponding lincat judgement, and for every fun judgement a cor-
responding lin judgement. The concrete syntax is sound if every lin judgement is
well-typed w.r.t. the lincat judgements. Formally this can be expressed as follows :
if a function f has been introduced by the judgement

fun f : A1 → . . . → An → A

then the linearization rule of f must have the form9

lin f = t

where, denoting the linearization type of a type C by Co

t : Ao

1 → . . . → Ao

n
→ Ao.

Mathematically, an abstract syntax defines a free algebra of syntax trees. A
concrete syntax defines a homomorphism from this algebra to a system of concrete-
syntax objects (records of strings etc.).

8 Notice that records are similar to feature structures in formalisms such as PATR [Shieber,
1986] and HPSG [Pollard, Sag, 1994]. The main difference is that GF records are obtained as
linearizations of trees, whereas PATR and HPSG records are obtained as parses of strings.

9 The notation lin f x1 . . . xm = t is syntactic sugar for lin f = λ x1 . . . xm → t.

36 a. ranta

2.3. a fragment of English

Let us now consider the full formalization of a small fragment of English. What we
need first is a sequence of cat judgements telling what categories there are. The
following judgements define the categories of sentence, noun phrase, verb phrase,
transitive verb, common noun, and proper name

cat S

cat NP

cat VP

cat TV

cat CN

cat PN

The next five judgements define the syntactic structures of predication (already
shown above) and complementization, followed by three rules for forming noun
phrases

fun Pred : NP → VP → S

fun Compl : TV → NP → VP

fun Every : CN → NP

fun Indef : CN → NP

fun Raise : PN → NP

Notice that, unlike in PTQ, we have a separate category PN of proper names and
an explicit raising coercion to NP. This gives better modularity in semantics.

Finally, we need a lexicon, i.e. a list of atomic rules

fun Man,Woman : CN

fun Love : TV

fun Walk : VP

fun John,Bill, Mary : PN

Syntax trees can now be built as type-theoretical terms. For instance, the term

Pred (Every Woman) (Compl Love (Raise Bill))

is a syntax tree corresponding to the sentence

every woman loves Bill

The relation between trees and strings is defined in the concrete syntax. First
we have to assign a linearization type to every category. In the present example, it
is enough to use the simplest possible type, i.e.

lincat CN = {s : Str}

and so on, for every category.
To make the linearization rules as simple as possible, we define two auxiliary

operations in concrete syntax : one making a string into a record, and another one
concatenating two records

oper ss : Str → {s : Str} = λs → {s = s}
oper cc2 : (, : {s : Str}) → {s : Str} = λx, y → ss (x.s ++ y.s)

computational semantics in type theory 37

So the linearization rules are

lin Pred Q F = cc2 Q F

lin Compl F Q = cc2 F Q

lin Every A = ss (“every” ++ A.s)
lin Indef A = ss (“a” ++ A.s)
lin Raise a = a

lin Man = ss “man”
lin Woman = ss “woman”
lin Love = ss “loves”
lin Walk = ss “walks”
lin John = ss “John”
lin Bill = ss “Bill”
lin Mary = ss “Mary”

What we have shown above is a complete GF grammar for a fragment of English.
In the same way as Montague, the grammar has explicit statements of construction
and linearization rules. The GF implementation moreover derives a parser for the
grammar. In the present case, it is a simple context-free (even finite-state !) parser.

2.4. predicate calculus

The next task is to define the logical formulas. Here we use GF as a logical frame-
work, and declare the usual connectives and quantifiers. The syntactic categories are
propositions and entities

cat Prop

cat Ent

fun And, Or, If : Prop → Prop → Prop

fun All,Exist : (Ent → Prop) → Prop

Notice how quantifiers are treated as higher-order functions : they take as their
argument a function from entities to propositions.

In ordinary logical frameworks, the users have to read and write formulas in a
purely functional syntax. For instance

All (λx → If (Woman x) (Exist (λy → And (Man y) (Love x y))))

is the purely functional notation for

(∀x)(Woman(x) ⊃ (∃y)(Man(y)&Love(x, y)))

We can produce exactly this notation by making linearization rules produce LATEX
code :

oper par : Str → Str = λs → “(” ++ s ++ “)”

lin And A B = ss (par (A.s ++ “\&” ++ B.s))
lin Or A B = ss (par (A.s ++ “\vee” ++ B.s))
lin If A B = ss (par (A.s ++ “\supset” ++ B.s))
lin Not A = ss (“\sim” ++ A.s)
lin All P = ss (par (“\forall” ++ P.v) ++ P.s)
lin Exist P = ss (par (“\exists” ++ P.v) ++ P.s)

38 a. ranta

The record projection P.v refers to the bound variable of the function argument
of the quantifiers. The linearization of an expression of a function type (such as
Ent → Prop) is a record of the type

{

v : Str

s : Str

}

where the v field stores the bound variable and the s field the function body. The
function has to be in an η-expanded form, i.e. have a λ-bound variable for each
argument type.

Now the above formula is expressed

(∀x)(Woman(x) ⊃ (∃y)(Man(y)&Love(x, y))).

as desired.

2.5. translation into predicate calculus

We define for each category an interpretation function that takes terms of that
category into a type. The value type is what Montague called the domain of possible
denotations of the category

fun iS : S → Prop

fun iNP : NP → (Ent → Prop) → Prop

fun iVP : VP → Ent → Prop

fun iTV : TV → Ent → Ent → Prop

fun iCN : CN → Ent → Prop

fun iPN : PN → Ent

Each interpretation function has a defining equation (a def judgement) for each
syntactic form :

def iS (Pred Q F) = iNP Q (λx → iVP F x)
def iVP (Compl F Q) x = iNP Q (λy → iTV F x y)
def iNP (Every A) F = All (λx → If (iCN A x) (F x))
def iNP (Indef A) F = Exist (λx → And (iCN A x) (F x))
def iNP (Raise a) F = F (iPN a)

Thus the sentence

every woman loves John

has a syntax tree whose translation is expressed by the GF term

iS (Pred (Every Woman) (Compl Love (Raise John)))

By using the def equations, this term is computed into the term

All (λx → If (iCN Woman x) (iTV Love x (iPN John)))

We have left the interpretations of lexical rules undefined. In GF, this means sim-
ply that the computation stops at such applications of interpretation functions. To
view the result of translation as a familiar-looking formula, we may give to the
intrepretation functions linearization rules where expressions are followed by stars

computational semantics in type theory 39

lin iTV F x y = ss (F.s ++ “∗” ++ par (x.s ++ “,” ++ y.s))
lin iCN F x = ss (F.s ++ “∗” ++ par (x.s))
lin iPN a = ss (a.s ++ “∗”)

Thus our example is linearized into the formula

(∀x)(woman∗(x) ⊃ loves∗(x, John∗))

2.6. semantics of predicate calculus

We have now formalized three of the four basic operations of Montague grammar :
construction, linearization, and translation into logic. It remains to define the model-
theoretic interpretation of logic. This can be done in type theory in a classical way
by introducing a domain of truth values and a comain of individuals. The usual
Boolean operations are defined for truth values

cat Bool

cat Ind

fun True,False : Bool

fun conj : Bool → Bool → Bool

fun neg : Bool → Bool

def conj True True = True

def conj = False

def neg True = False

def neg False = True

We go on by defining valuation functions for formulas and terms

fun vProp : Prop → Bool

fun vEnt : Ent → Ind

def vProp (And A B) = conj (vProp A) (vProp B)
def vProp (Or A B) = neg (conj (neg (vProp A)) (neg (vProp B)))
def vProp (If A B) = neg (conj (vProp A) (neg (vProp B)))

However, to extend the valuation function to quantifiers is not quite straightforward.
The first problem is to define the semantic values of the quantifiers, for instance, for
the universal quantifier, the function

fun univ : (Ind → Bool) → Bool

This is only possible if the set Ind is finite ; otherwise we cannot compute a value
of type Bool. Secondly, even if we manage with this, the problem remains to define
the valuation of the universal quantifier. We cannot simply put

def vProp (All P) = univ (λx → vProp (P x))

since this definition contains a type error : the variable x is first bound to the type
Ind, but then used in the type Ent.

The proper formalization of model theory in type theory needs some form of
satisfiability, identifying the free variables in formulas and assignments of Ind values
to those variables. This can of course be done, but it is usually not the thing one
does when working in a logical framework. It is much more common to have a direct
semantics of logic. In the classical case, this means that formulas are directly defined

40 a. ranta

as truth values, which means that the categories Prop and Bool are identified, and
so are Ent and Ind. In the constructive case, this means that formulas are directly
defined as sets of proofs, following the Curry-Howard isomorphism. The semantic
rules for propositions are a certain kind of inference rules, called introduction rules.
This kind of semantic is thus proof-theoretical rather than model-theoretical. In the
rest of this paper, we will mainly follow the constructive interpretation of logic, with
direct, proof-theoretical semantics.

2.7. compositionality

A function on syntax trees is compositional if its application to a complex is construc-
ted from the values of its application to the immediate constituents. Symbolically,
an operation ∗ from T to S is compositional if, for each constructor C of type T , it
holds uniformly that

(C x1 . . . xn)∗ = F x∗

1 . . . x∗

n

for some F operating in the semantic domain. Thus F may not operate on the argu-
ments x1, . . . , xn, but only on their values under ∗. In particular, it is not permitted
to do case analysis on the arguments x1, . . . , xn.

It was emphasized by Montague and his followers that the translation of syntax
trees into logic should be compositional : this is a guarantee that the construction
of syntax trees is a semantically meaningful way of constructing them. It is easy to
check that the translation functions we have defined above are compositional : there
is only one def clause for each fun function, and each clause calls the arguments of
the syntactic construction under the interpretation function of its category.

A less well-known requirement is the compositionality of linearization. This is
what is needed to guarantee that the construction of syntax trees is a linguistically
meaningful way of constructing them. If linearization goes into strings, as in the
simple examples above, the constructor function F in the definition of compositio-
nality consists of string operations, such as constant strings and concatenation.

The compositionality of linearization is not discussed in the PTQ paper, and it
is far from obvious ; the so-called quantifying-in rules are indeed formulated in a way
that violates it, since they force to change the already formed linearizations of some
constituents, e.g. to replace the first occurrence of a pronoun by a quantifier phrase.
Yet it should be emphasized that a grammar is not compositional as a grammar of
natural language if linearization is not compositional as well.

In GF, it has been a leading design principle that linearization rules are forced
to be compositional. One consequence of this principle is that the formalization of
quantifying-in rules is not possible in the same way as in Montague’s PTQ. We will
return to alternative, compositional formulations in Section 5 below.

computational semantics in type theory 41

3. DEPENDENT TYPES

3.1. logic in constructive type theory

A dependent type is a type that depends on arguments belonging to other types. As
the first example, we declare the non-dependent type of sets and, for any set, the
dependent type of its elements

cat Set

cat El Set

Here Set is not a dependent type, but El is. Using these types, we will now give a defi-
nition of the type theory of [Martin-Löf, 1984], also known as lower-level type theory,
which can be used for interpreting (and, actually, extending) first-order predicate
logic. We start with the operator Σ, which corresponds to existential quantification.

The Σ formation rule of type theory says that a Σ set is built from a set A and
a family of sets over A :10

fun Sigma : (A : Set) → (El A → Set) → Set

Read as a quantified proposition, ΣA B has the domain A and the propositional
function B over A.

The Σ introduction rule tells that an element of a Σ set is a pair of an element
of the domain and a proof of the propositional function as applied to that element

fun pair : (A : Set) → (B : El A → Set) → (a : El A) → El (B a) →
El (Sigma A B)

The Σ elimination rules introduce projection functions that take apart the ele-
ment and the proof from a pair

fun p : (A : Set) → (B : El A → Set) → El (Sigma A B) → El A

fun q : (A : Set) → (B : El A → Set) → (c : El (Sigma A B)) →
El (B (p A B c))

The elimination rules are justified by Σ equality rules, which tell how projections
are computed for canonical elements, i.e. pairs

def p (pair a) = a

def q (pair b) = b

The definition of logical operators and inference rules using fun judgements
produces full functional terms, which corresponds to what in [Nordström, Petersson,
Smith, 1990] is called monomorphic type theory. What makes it monomorphic rather
than polymorphic is that the constants p, q, etc., show all their type arguments.
The polymorphic notation (as used in [Martin-Löf, 1984]) is in GF obtained by
linearization rules that suppress the type arguments

oper f1 : Str → {s : Str} → {s : Str} = λf, x → ss (f ++ par (x.s))
oper f2 : Str → (x, y : {s : Str}) → {s : Str} = λf, x, y → ss (f +
+ par (x.s ++ “,” ++ y.s))

lin Sigma A B = ss (par (“\Sigma” ++ B.v ++ “:” ++ A.s) ++ B.s)
lin pair a b = ss (par (a.s ++ “,” ++ b.s))

10 The function name in GF is Sigma, since Greek letters are not permitted in identifiers.

42 a. ranta

lin p c = f1 “p” c

lin q c = f1 “q” c

Another constant we need is Π.

fun Pi : (A : Set) → (El A → Set) → Set

fun lambda : (A : Set) → (B : El A → Set) → ((x : El A) → El (B x)) →
El (Pi A B)
fun app : (A : Set) → (B : El A → Set) → El (Pi A B) → (a : El A) →
El (B a)

def app (lambda b) a = b a

lin Pi A B = ss (par (“\Pi” ++ B.v ++ “:” ++ A.s) ++ B.s)
lin lambda b = ss (par (“\lambda” ++ b.v) ++ b.s)
lin app c a = f2 “app” c a

In the next section, we will show how Σ and Π are used in the semantics of natural-
language constructions.

3.2. a syntax and its interpretation

The type-theoretical quantifiers Π and Σ have an argument A for a domain of
individuals, and the second argument B must be a propositional function over A.
In the formalization of mathematics, this has the effect that e.g.

(Πx : R)(Σy : Circle)(radius(y) = x)

is a well-formed proposition, since radius is a real number assigned to circles, whereas

(Πx : R)(Σy : Circle)(radius(x) = y)

is ill-formed by the same typing of the radius function. In linguistics, this gives us
the possibility of expressing selectional restrictions in the grammar. One way to do
this with dependent types is to relativize the categories of verbs and noun phrases
to sets

cat S

cat CN

cat NP Set

cat PN Set

cat VP Set

cat TV Set Set

The interpretation functions of dependent categories are dependently typed

fun iCN : CN → Set

fun iS : S → Set

fun iPN : (A : Set) → PN A → El A

fun iNP : (A : Set) → NP A → (El A → Set) → Set

fun iVP : (A : Set) → VP A → El A → Set

fun iTV : (A,B : Set) → TV A B → El A → El B → Set

The relativization is easy to extend to the formation of syntax trees. . .

computational semantics in type theory 43

fun Raise : (A : Set) → PN A → NP A

fun Every : (A : CN) → NP (iCN A)
fun Indef : (A : CN) → NP (iCN A)
fun Pred : (A : Set) → NP A → VP A → S

fun Compl : (A,B : Set) → TV A B → NP B → VP A

. . . and to their interpretations

def iNP (Raise A a) B = B (iPN A a)
def iNP (Every A) B = Pi (iCN A) B

def iNP (Indef A) B = Sigma (iCN A) B

def iS (Pred A Q F) = iNP A Q (λx → iVP A F x)
def iVP (Compl A B F Q) a = iNP B Q (λy → iTV A B F a y)

The linearization rules are similar to the first example, just ignoring the extra domain
arguments. However, to prepare the way for future extensions of the fragment, we
introduce a number of parameters

param Gen = He | She | It

param Case = Nom | Acc

param Num = Sg | Ple

and define the linearization types thus

lincat PN = {s : Case ⇒ Str}

lincat NP =

{

s : Case ⇒ Str

n : Num

}

lincat CN =

{

s : Num ⇒ Str

g : Gen

}

lincat VP = {s : Num ⇒ Str}
lincat TV = {s : Num ⇒ Str}

The Case parameter in PN and NP will be used to produce nominative and accusa-
tive forms of pronouns. The inherent Gen feature of CN will be used in producing
pronouns. We introduce some operations to deal with these parameters

oper regPN = λbob → {s = table { ⇒ bob}}

oper regNP = λbob →

{

s = table { ⇒ bob}
n = Sg

}

oper regCN = λbike →







s = table

{

Sg ⇒ bike

Pl ⇒ bike + “s”

}

g = It







and formulate the linearization rules thus11

lin Raise a =

{

s = a.s
n = Sg

}

lin Every A = regNP (“every” ++ A.s ! Sg)
lin Indef A = regNP (“a” ++ A.s ! Sg)
lin Pred Q F = {s = Q.s ! Nom ++ F.s ! Q.n}
lin Compl F Q = {s = table {n ⇒ F.s ! n ++ Q.s ! Acc}}

11 The keyword table designates a table of alternative forms, such as the singular and the plural
of a noun. The exclamation mark ! expresses the selection of a form from a table.

44 a. ranta

4. ANAPHORA

In the same way as in [Ranta, 1994] (chapter 3), we define If and And as variable-
binding connectives, interpreted as Π and Σ, respectively

fun If : (A : S) → (El (iS A) → S) → S

fun And : (A : S) → (El (iS A) → S) → S

def iS (If A B) = Pi (iS A) (λx → iS (B x))
def iS (And A B) = Sigma (iS A) (λx → iS (B x))

lin If A B = {s = “if” ++ A.s ++ B.s}
lin And A B = {s = A.s ++ “and” ++ B.s}

Thus we interpret e.g.
if a man owns a donkey he beats it

as
(Πz : (Σx : man)(Σx : donkey)own(x, y))beat(p(z), p(q(z))).

What remains to be seen is how the pronouns he and it are created from the variables.

4.1. a system of anaphoric expressions

Like in [Ranta, 1994] (chapter 4), we represent pronouns and definite noun phrases
as functions whose interpretations are identity mappings

fun Pron : (A : CN) → El (iCN A) → PN (iCN A)
fun Def : (A : CN) → El (iCN A) → PN (iCN A)

def iPN (Pron a) = a

def iPN (Def a) = a

Even though they have the same interpretation, each of the terms a, Pron(A, a),
and Def(A, a) is linearized in a different way

lin Pron A =

{

s = pron ! A.g
n = Sg

}

lin Def A = regPN (“the” ++ A.s ! Sg)

oper pron : Gen ⇒ Case ⇒ Str = table























He ⇒ table

{

Nom ⇒ “he”
Acc ⇒ “him”

}

She ⇒ table

{

Nom ⇒ “she”
Acc ⇒ “her”

}

It ⇒ table { ⇒ “it”}























Thus the syntax tree representing the donkey sentence is

If (Pred (iCN Man) (Indef Man) (Compl (iCN Man) (iCN Donkey) Own (Indef Donkey)))
(λx → Pred (iCN Man) (Raise (iCN Man) (Pron Man (p (iCN Man)
(λx’ → Sigma (iCN Donkey) (λy → iTV (iCN Man) (iCN Donkey) Own x’ y)) x)))
(Compl (iCN Man) (iCN Donkey) Beat (Raise (iCN Donkey) (Pron Donkey (p (iCN Donkey)
(λx’ → iTV (iCN Man) (iCN Donkey) Own (p (iCN Man) (λy → Sigma (iCN Donkey)
(λy’ → iTV (iCN Man) (iCN Donkey) Own y y’)) x) x’) (q (iCN Man)
(λy → Sigma (iCN Donkey) (λy’ → iTV (iCN Man) (iCN Donkey) Own y y’)) x))))))

This is the full tree. By suppressing most of the type information, we get a more
readable term

If (Pred (Indef Man) (Compl Own (Indef Donkey)))
(λx → Pred (Raise (Pron Man (p x))) (Compl Beat (Raise (Pron Donkey (p (q x))))))

computational semantics in type theory 45

As for modified anaphoric expressions, [Ranta, 1994] has a general rule Mod

subsuming both of
the man that owns a donkey
the donkey that a man owns

The general rule is an instance of quantifying-in structures, to which we return in
Section 5. Now we just give two less general rules, corresponding to relative clauses
binding the subject and the object, respectively

fun ModVP : (A : CN) → (F : VP (iCN A)) → (a : El (iCN A)) →
El (iVP (iCN A) F a) → PN (iCN A)
fun ModTV2 : (A : Set) → (B : CN) → (Q : NP A) → (F :
TV A (iCN B)) → (b : El (iCN B)) → El (iNP A Q (λx → iTV A (iCN B) F x b)) →
PN (iCN B)

def iPN (ModVP a) = a

def iPN (ModTV2 b) = b

lin ModVP A F = regPN (“the” ++ A.s ! Sg ++ “that” ++ F.s ! Sg)
lin ModTV2 B Q F = regPN (“the” ++ B.s ! Sg ++ “that” +
+ Q.s ! Nom ++ F.s ! Sg)

The reader can check that the pronoun he in the donkey sentence can be paraphrased
by

the man
the man that owns a donkey
the man that owns the donkey
the man that owns the donkey that he owns

since all of the arguments needed for these expressions can be constructed from the
bound variable, and all the results are definitionally equal.

5. QUANTIFYING IN

The treatment of quantification by the functions Pred and Compl

fun Pred : NP → VP → S

fun Compl : TV → NP → VP

(Section 2.3.) does not employ variable binding in syntax trees. It also permits simple
linearization rule : just attach a noun phrase before or after a verb

lin Pred Q F = cc2 Q F

lin Compl F Q = cc2 F Q

This mechanism is, however, less powerful than variable binding in logic. The func-
tion Pred corresponds to quantification binding a variable only having one single
occurrence in one single place (the first argument of a verb), and the function Compl

binds a variable in another place. For instance, the functions permit us to parse

every man loves a woman
as the tree

46 a. ranta

Pred (Every Man) (Compl Love (Indef Woman))

which expresses the proposition

(∀x)(Man(x) ⊃ (∃y)(Woman(y)&Love(x, y)))

But we cannot interpret the same sentence as

(∃y)(Woman(y)&(∀x)(Man(x) ⊃ Love(x, y))).

In other words, we do not find the scope ambiguity of the quantifiers in the English
sentence. (If the latter does not feel like a possible interpretation of the sentence,
consider the variant every reporter ran like mad after a previously unknown Estonian
pop singer).

One of the things that Montague wanted to achieve with his grammars [Mon-
tague, 1974] was to reveal scope ambiguities. In addition to rules corresponding
to Pred and Compl (see Section 6.) below, he had what has come to be known as
quantifying-in rules. In words, these rules can be formulated as follows :

(∀x : A)B is linearized by substituting the phrase every A for the variable
x in B

(∃x : A)B is linearized by substituting the phrase aA for the variable x
in B

In the light of these rules, the sentence every man loves a woman can result from
both of the formulas cited above, and is hence ambiguous.

Another advantage of quantifying-in rules is that they readily explain sentences
like

the mother of every man loves the father of some woman

where the bound variable occurs deeper than as an immediate argument of the verb.
The occurrence can, obviously, be arbitrarily deep

the mother of the father of the wife of every man

A computational disadvantage of quantifying-in rules is that they are difficult
to reverse into parsing rules. A solution of the problem was presented by Friedman
and Warren in [Friedman, Warren, 1978] ; they noticed that the rules formulated by
Montague have the consequence that every sentence, even a simple one such as

John walks

has infinitely many interpretations

Walk(John)

(∀x : Man)Walk(John)

(∀x : Man)(∀y : Man)Walk(John)

computational semantics in type theory 47

etc ! This problem is called vacuous binding : there is no occurrence of the variable
in the formula, so that substitution does not leave any trace of the quantifier phrase.
Another, related problem is multiple binding : the proposition

(∀x : Man)Love(x, x)

should not be linearized into

every man loves every man

but rather to

every man loves himself

Montague’s ∀ linearization rule did give a solution to the problem of multiple binding

(∀x : A)B is linearized by substituting the phrase every A for the first
occurrence of the variable x in B, and the pronoun corresponding to the
gender of A for the other occurrences.

But this is a brittle solution, which does not e.g. get reflexive pronouns right. Thus
quantifier rules in Montague grammar were one of the most prominent topics in
formal linguistics in the 1970’s (see e.g. [Cooper, 1981]).

From the GF point of view, quantifying-in rules are problematic since they are
not compositional : a compositional linearization should construct the linearization
of a complex from the linearizations of its parts, but, since linearizations are strings
(or records of string-related objects), there is no such operation as substituting a
noun phrase for a certain occurrence of a variable. In a string, there are no distingui-
shable variables left, but just linearizations of variables, which may be observable to
the human eye as substrings, but which cannot be separated from the whole string
by a reliable formal procedure.

Thus quantifying-in rules cannot be formulated directly in GF. But the rules can
be approximated, in ways that also avoid the drawbacks of the quantifying-in rules,
due to their being too strong. We will present two solutions : one with combinators
and the other with discontinuous constituents.

5.1. solution with combinators

The combinator solution is inspired by Steedman’s combinatory categorial gram-
mar [Steedman, 1988]. The idea is the same as in combinatory logic Curry, Feys,
1958] : to eliminate variable bindings by using higher-order functions. The Pred and
Compl functions are, already, examples of combinators. What we need is some more
combinators and, in fact, syntactic categories.

We introduce a category VS (“slash verbs”), interpreted, like VP, as functions
from entities to propositions

cat VS

fun iVS : VS → Ent → Prop

48 a. ranta

Expressions of VS are formed and used by combinators that are dual to Pred and
Compl : the fractioning function Fract forms a VS by providing a subject NP to a
TV, and the complementizer ComplFract forms a sentence from a VS by providing
an object NP

fun Fract : NP → TV → VS

fun ComplFract : VS → NP → S

def iVS (Fract Q F) y = iNP Q (λx → iTV F x y)
def iS (ComplFract F Q) = iNP Q (λy → iVS F y)

lin Fract Q F = cc2 Q F

lin ComplFract F Q = cc2 F Q

Now the sentence
every man loves a woman

has the two parses

Pred (Every Man) (Compl Love (Indef Woman))

ComplFract (Fract (Every Man) Love) (Indef Woman)

which are interpreted with the two different scopings of the quantifiers.

The category VS is similar to the slash category S/NP (“sentence missing noun
phrase”) of GPSG [Gazdar, Klein, Pullum, Sag, 1985]. However, GF does not have
a general rule for forming such categories ; an unrestricted general rule would, like
the quantifying-in rules, be too strong and difficult to manage. Thus we have to
introduce each slash category separately. Another example is the category of one-
place functions from entities to entities

cat F1

fun iF1 : F1 → Ent → Ent

fun AppF1 : F1 → NP → NP

def iNP (AppF1 f Q) F = iNP Q (λx → F (iF1 f x))

lin AppF1 f Q = cc2 f Q

an example being

fun Father : F1

lin Father = ss (“the” ++ “father” ++ “of”)

In GPSG terms, F1 is the category NP/NP. Fortunately, the number of slash cate-
gories that are really needed is limited.

Slash categories have other applications besides modelling quantifying-in rules.
One is coordination, as e.g. in

Peter loves and John adores every woman

Another one is relative clauses. We can interpret relative clauses as propositional
functions, and turn any VP and VS into a relative clause

computational semantics in type theory 49

cat RC

fun iRC : RC → Ent → Prop

fun RelVP : VP → RC

fun RelVS : VS → RC

def iRC (RelVP F) x = iVP F x

def iRC (RelVS F) x = iVS F x

lin RelVP F = ss (“that” ++ F.s)

lin RelVS F = ss (“that” ++ F.s)

Relative clauses can be attached to common nouns to modify them

fun RelCN : CN → RC → CN

def iCN (RelCN A R) x = And (iCN A x) (iRC R x)

lin RelCN = cc2

Thus we can form

man that walks
woman that every man loves

GPSG also has “slash propagation” rules, such as

S/NP −→ S/NP NP/NP.

In type theory, this rule can be formalized as an instance of function composition

fun CompVS : VS → F1 → VS

def iVS (CompVS F f) x = iVS F (iF1 f x)

lin CompVS = cc2

Thus we can form

man that every woman loves the father of the father of the father of

5.2. solution with discontinuous constituents

Combinators can be seen as an indirect solution to the quantifying-in problem,
because they require changes in the abstract syntax : the addition of new categories
and combinators. However, GF also provides a more direct solution, which can do
with fewer rules. The solution uses discontinuous constituents to mark the “slot”
in which there is a variable binding. Thus we define the category P1 of one-place
predicates as one with a linearization consisting of two strings : the substrings before
and after the place of binding

cat P1

lincat P1 =

{

s1 : Str

s2 : Str

}

The rule PredP1 performs an insertion of a noun phrase

fun PredP1 : NP → P1 → S

lin PredP1 Q F = ss (F.s1 ++ Q.s ++ F.s2)

A P1 can be constructed from a transitive verb in two ways

50 a. ranta

fun P1Compl : TV → NP → P1

fun P1Subj : NP → TV → P1

lin P1Compl F Q =

{

s1 = []
s2 = F.s ++ Q.s

}

lin P1Subj Q F =

{

s1 = Q.s ++ F.s
s2 = []

}

This treatment can be extended to predicates with any number n of argument places,
by using n + 1 discontinuous constituents.

6. THE PTQ FRAGMENT

6.1. PTQ rule-to-rule

The rule-to-rule fashion of formalizing the PTQ grammar ([Montague, 1974], chapter
8) groups the rules in triples. For each category, we have

a cat judgement introducing the category,

a fun judgement declaring its interpretation function (and thereby defining
its domain of possible denotations),

a lincat judgement defining its linearization type.

Thus we have e.g.12

cat S

fun iS : S → Prop

lincat S = {s : Str}

cat CN

fun iCN : CN → Ent → Prop

lincat S = {s : Str}

cat NP

fun iNP : NP → (Ent → Prop) → Prop

lincat NP = {s : Case ⇒ Str}

cat IV

fun iIV : IV → Ent → Prop

lincat IV = {s : Mod ⇒ Str}

cat IAV

fun iIAV : IAV → (Ent → Prop) → Ent → Prop

lincat IAV = {s : Str}

For syntactic rules, we have

a fun judgement introducing the function

a def defining the interpretation function for the value category of the function
for the expressions formed by this function

a lin judgement defining the linearization rule of the function

12 To simplify the presentation, we ignore possible worlds and intensional operations. They would
be no problem in GF, since we could introduce a new basic type of possible words.

computational semantics in type theory 51

Examples of such rules are the following, where the function names refer to Monta-
gue’s rule names13

fun S2F0 : CN → NP

def iNP (S2F0 A) F = All (λx → If (iCN A x) (F x))

lin S2F0 A = mkNP (“every” ++ A.s)

fun S2F1 : CN → NP

def iNP (S2F1 A) F = Exist (λx → And (iCN A x) (F x))

lin S2F1 A = mkNP (indef ++ A.s)

fun S3F3 : CN → (Ent → S) → CN

def iCN (S3F3 A F) x = And (iCN A x) (iS (F x))

lin S3F3 A B = ss (A.s ++ “such” ++ “that” ++ B.s)

fun S4F4 : NP → IV → S

def iS (S4F4 Q F) = iNP Q (iIV F)

lin S4F4 Q F = ss (Q.s ! Nom ++ F.s ! Ind)

We have used two new auxiliary operations

oper indef : Str = pre{“a”; “an” / strs {“a”; “e”; “i”; “o”}}
oper mkNP : Str → {s : Case ⇒ Str} = λs → {s = table { ⇒ s}}

Using the random syntax tree generator of GF followed by linearization, we
generated some random example sentences14

necessarily every price has not risen or mary has not run and a tempe-
rature wishes to seek the woman

every woman changes

the price has changed

the price or every man will try to change

necessarily every price has risen

the park has not run voluntarily

a unicorn walks about a pen

a man will not change

7. GRAMMARS FOR DIFFERENT LANGUAGES

A multilingual grammar in GF is a grammar with one abstract syntax and many
concrete syntaxes. Translation in a multilingual grammar is parsing with one concrete
syntax followed by linearization with another concrete syntax.

We illustrate multilingual grammars first by giving a French concrete syntax to
the PTQ fragment. We continue by showing how some subtleties of translation can
be managed by semantic disambiguation using the type system.15

13 They are formed by combining the rule name, of form Sn, with the syntactic constructor
name, of form Fk. This combination is necessary, since neither the rule nor the constructor names
alone unique determine the constructions.

14 The complete grammar is available from the GF web page [Ranta, 2000-2003].
15 The fact that semantic information is needed in high-quality translation is one of the most

52 a. ranta

7.1. the PTQ fragment in French

To define a new concrete syntax, the starting point is a new set of param and lincat

definitions. The differences between these definitions in different languages can be
enormous, and they explain much of the abstraction power that the abstract syntax
has over concrete syntaxes. The PTQ fragment is small, but even there some of
these differences are instantly shown. For instance, French has a gender parameter
belonging to common nouns as inherent feature

param Gen = Masc | Fem

lincat CN =

{

s : Str

g : Gen

}

Noun phrases also have a gender, but they can moreover be inflected in case, which
has effect on pronouns. A further subtlety is introduced by the clitic (unstressed)
pronouns, such as the accusative case la (“her”) of elle (“she”). When used as an
object, a clitic pronoun is placed before the verb and not after it, as other kinds of
noun phrases. We solve this puzzle by introducing a parameter type NPType and
making it an inherent feature of noun phrases

param NPType = Pron | NoPron

lincat NP =







s : Case ⇒ Str

g : Gen

p : NPType







The syntax rule in which this distinction matters is the complementization rule of
transitive verbs

fun S5F5 : TV → NP → IV

lin S5F5 F Q = case Q.p of






























Pron ⇒







s = table {m ⇒ Q.s ! CAcc ++ F.s ! m}
s2 = []
aux = F.aux







NoPron ⇒







s = F.s
s2 = Q.s ! Acc

aux = F.aux





































The complementization rule shows some other subtleties as well : first, we distinguish
between the clitic and stressed accusative (the stressed form of la is elle). The
stressed form is needed with prepositions, but also for coordinated pronouns : John
seeks him or her is translated to John cherche lui ou elle. The second subtlety is
the need to indicate the auxiliary verb required by verbs : John has talked translates
to John a parlé, whereas John has arrived translates to John est arrivé. The third
subtlety is that verb phrases have two discontinuous constituents – the second one
is for the complement. In the PTQ fragment, this feature is needed in the formation
of the negation : the particle pas appears between the two discontinuous parts. Thus

lincat IV =







s : VForm ⇒ Str

s2 : Str

aux : AuxType







important motivations of computational semantics ; cf. [Rosetta, 1994] for a project using Montague
grammar for machine translation.

computational semantics in type theory 53

lin S17F11 Q F = ss (Q.s ! Nom ++ ne ++ F.s ! Ind ++ “pas” ++ F.s2)

One might argue that the category IV of verb phrases is an artifact of PTQ, or
at most something that works in English but not in French. However, using dis-
continuous constituents in the concrete syntax makes it completely natural to have
this category in the abstract syntax : all of the linearization rules given above are
compositional.

The only structures in PTQ that we found impossible to linearize compositionally
are the conjunction and disjunction of verb phrases

fun S12F8,S12F9 : IV → IV → IV

There are two problems. The first one is to form the negation in the case where
one of the constituent verb phrases has a complement. The second one is to choose
the auxiliary verb if the constituents have different ones. For these structures, para-
phrases using sentence coordination would really be needed. For instance, one has
to paraphrase

John does not run and seek a unicorn

as something like

Jean ne court pas ou il ne cherche pas une licorne

Alternatively, one may try to find a parameter indicating if a verb phrase is com-
plex : case distinctions on syntax trees can always be replaced by distinctions on a
parameter, if the number of cases is limited.

Here are the GF-produced French translations of the English sentences presented
in the previous section.16

nécessairement chaque prix n’a pas monté ou mary n’a pas couru et une
température espère de chercher la femme

chaque femme change

le prix a changé

le prix ou chaque homme va essayer de changer

nécessairement chaque prix a monté

le parc n’a pas couru volontairement

une licorne marche sur un stylo

un homme ne va pas changer

7.2. translating anaphoric expressions

The French sentence

si un homme possède un âne il le bat

is ambiguous, since the masculine pronon (il, le) matches both the man (un homme)
and the donkey (un âne). Leaving out the two interpretations where both pronouns
refer to the same object, we are left with two English translations

16 The complete grammar is available from the GF web page [Ranta, 2000-2003]

54 a. ranta

if a man owns a donkey he beats it

if a man owns a donkey it beats him

Now, it is possible that the type of the verb battre rules out e.g. the latter reading

fun Battre : TV Man Donkey

Such is often the case in technical text, where selectional restrictions are dictated by
semantic considerations. If not, we must conclude that the sentence is ambiguous.

On the other direction, suppose we want to take one of the above English sen-
tences and produce an unambiguous French translation. We can then use the equality
(def) rules of anaphoric expressions to generate unambiguous paraphrases

si un homme possède un âne l’homme bat l’âne

si un homme possède un âne l’âne bat l’homme

8. GRAMMAR COMPOSITION

8.1. logical vs. linguistic syntax

Montague “fail[ed] to see any great interest in syntax except as a preliminary to
semantics” (“Universal Grammar”, chapter 7 in [Montague, 1974]). From this he
drew the conclusion that syntax must be formulated with semantics in mind, which
meant, in particular, that he considered syntax as practised by Chomsky and other
linguists irrelevant. His own syntax, on the other hand, has been criticized on op-
posite grounds : as reflecting the structure of logic rather than the structure of
language. What these two opposite requirements exactly mean can be characteri-
zed in terms of compositionality : a syntax reflects logical structure only if it has
compositional semantics. It reflects linguistic structure only if it has compositional
linearization. As pointed out above (Section 2.7.), Montague only considered compo-
sitionality of semantics, not of linearization. This is one reason for the unnaturalness
of his grammar for linguists.

With ingenious use of parameters and discontinuous constituents, it is often
possible in GF to give compositional linearization rules to very unnatural construc-
tions. Therefore, compositionality is just a necessary condition for reflecting linguis-
tic structure. It is hard to pin down exactly where the lack of linguistic elegance
then lies ; from the programming point of view, the grammar appears as a hack,
due to its complexity and lack of modularity. This is to some extent already true
of a grammar as simple as the GF formulation of the PTQ fragment : a grammar
covering (probably as a proper part) the same fragment of English or French but
written from the linguistic perspective would certainly look different17. Why should
it then be irrelevant for semantics ? Wouldn’t it be better to use the linguistically
motivated grammar as a component of the complete system, where semantics is
another component ?

17 For instance, the very different meachanisms of negation in these two languages would probably
be described in different ways.

computational semantics in type theory 55

8.2. application grammars and resource grammars

The original idea of GF was to make it possible to map abstract, logical structures
to concrete, linguistic objects. This is what linearization rules do. An intended ap-
plication was to study semantically well-defined domains, such as object-oriented
software specifications [Hähnle, Johannisson, Ranta, 2002] or business letters [Khe-
gai, Nordström, Ranta, 2003], and map each domain to different languages which
have a common tradition of speaking about the domain. One advantage of this ap-
proach is that the linguistic aspects of such translations are simple, since only a
limited number of linguistic structures are used in the domain. It is also clear that
semantics, if it is to follow the rigorous standards of type theory, cannot be given to
unlimited natural language, but only to a well-defined domain.

One disadvantage of domain-specific grammars is the lack of linguistic elegance
due to grammars being written in an ad hoc way. Another disadvantage is their
poor reusability : the fragment of e.g. French needed for software specifications is
different from the fragment needed for business letters, and, even though there is
some overlap, each concrete syntax essentially has to be written from scratch.

The solution to these problems is to distinguish between application grammars
and resource grammars. An application grammar is one reflecting a semantic model.
A resource grammar is one written from a purely linguistic perspective, aiming at
complete coverage of linguistic facts such as morphology, agreement, word order,
etc. There is no attempt to give semantics to the resource grammar : its semantics
is only given indirectly through the uses to which it is put in application grammars.

The preferred way to write an application grammar is thus the following : an
abstract syntax is defined from purely semantic considerations. The concrete syntax
is defined by mapping the abstract syntax, not directly to strings and records, but
to trees in the resource grammar. The final product is obtained by grammar compo-
sition, which is a compilation phase that eliminates the intermediate tree structures
and gives a direct mapping from abstract syntax to strings and records.

In a multilingual grammar, the linearization may well assign to one and the same
abstract structure quite different structures in different languages. To take a familiar
example, the two-place predicate x misses y is in both English and French expressed
by a two-place verb, but in French, the order of the arguments is the opposite (x
manque à y). The resource-grammar based linearization rules look as follows :

lin Miss x y = PredVP x (Compl (verbS “miss”) y)

lin Miss x y = PredVP y (Compl (verbEr “manquer”) x)

These rules show on a high level of abstraction what linguistic structures are used
in expressing the predicate Miss. To the grammarian, they give the advantage that
she does not have to care about the details of agreement and word order (including
clitics). Thus there is a division of labour between logicians (or experts of other
domains) writing application grammars and linguists writing resource grammars.

For the debate between logical and linguistic grammars, the implication is clear :
there is a great interest in syntax that is not a preliminary to semantics. Such a
syntax does not have a semantics by itself, but it is an excellent intermediate step
between abstract semantic structures and concrete language.

56 a. ranta

Thanks. The author is grateful to the participants of the Formal Semantics graduate course for
stimulating discussions, and to Pascal Boldini and Robin Cooper for valuable comments on the
paper.

BIBLIOGRAPHY

BLACKBURN P., BOS J., “Representation and Inference for Natural Language”, Studies in Logic,
Language, and Information, CSLI Press, [to appear].

CHOMSKY N., Syntactic Structures, The Hague, Mouton, 1957.

CLOCKSIN W. F., MELLISH C. S., Programming in Prolog, Springer, 1984.

COOPER R., Quantification and Syntactic Theory, D. Reidel, 1981.

CURRY H. B., FEYS R., Combinatory Logic, Vol. 1, Amsterdam, North-Holland, 1958.

FRIEDMAN J., “Expressing logical formulas in natural language”, J. Groenendijk, T. Janssen, and
M. Stokhof (eds.), Formal Methods in the Study of Language, Part 1, Amsterdam, Mathematisch
Centrum, 1981, p. 113-130.

FRIEDMAN J., WARREN D., “A parsing method for Montague grammar”, Linguistics and
Philosophy 2, 1978, p. 347-372.

GAZDAR G., KLEIN E., PULLUM G., SAG I., Generalized Phrase Structure Grammar, Oxford,
Basil Blackwell, 1985.

HARPER R., HONSELL F., PLOTKIN G., “A Framework for Defining Logics”, JACM 40(1),
1993, p. 143-184.

HÄHNLE R., JOHANNISSON K., RANTA A., “An Authoring Tool for Informal and Formal
Requirements Specifications”, R.-D. Kutsche and H. Weber (eds.), Fundamental Approaches to
Software Engineering, vol. 2306 of LNCS, Springer, 2002, p. 233-248.

KHEGAI J., NORDSTRÖM B., RANTA A., “Multilingual Syntax Editing in GF”, A. Gelbukh,
(ed.), Intelligent Text Processing and Computational Linguistics (CICLing-2003), Mexico City,
February 2003, vol. 2588 of LNCS, Springer-Verlag, 2003, p. 453-464.

MAGNUSSON L., NORDSTRÖM B., “The ALF proof editor and its proof engine”, Types for
Proofs and Programs, LNCS 806, Springer, 1994, p. 213-237.

MARTIN-LÖF P., Intuitionistic Type Theory, Napoli, Bibliopolis, 1984.

MONTAGUE R., Formal Philosophy, Collected papers edited by Richmond Thomason, New
Haven, Yale University Press, 1974.

NORDSTRÖM B., PETERSSON K., SMITH J., Programming in Martin-Löf’s Type Theory. An
Introduction, Oxford, Clarendon Press, 1990.

PARTEE B., “Montague grammar and transformational grammar”, Linguistic Inquiry 6, 1975,
p. 203-300.

PEREIRA F., SHIEBER S., Prolog and Natural-Language Analysis, Stanford, CSLI, 1987.

POLLARD C., SAG I., Head-Driven Phrase Structure Grammar, University of Chicago Press,
1994.

RANTA A., Type Theoretical Grammar, Oxford University Press, 1994.

RANTA A., “Structures grammaticales dans le français mathématique”, Mathématiques, Infor-
matique et Sciences Humaines 138, 139, 1997, p. 5-56, 5–36.

RANTA A., Grammatical Framework Homepage, http://www.cs.chalmers.se/~aarne/GF/,
2000-2003.

computational semantics in type theory 57

RANTA A., “Grammatical Framework : A Type-theoretical Grammar Formalism”, The Journal
of Functional Programming, [to appear].

ROSETTA M. T., Compositional Translation, Dordrecht, Kluwer, 1994.

SCOTT D. S., STRACHEY C., “Toward a mathematical semantics for computer languages”,
Microwave Research Institute Symposia Series 21, 1970, p. 19-46.

SHIEBER, S., An Introduction to Unification-Based Approaches to Grammars, University of
Chicago Press, 1986.

STEEDMAN M., “Combinators and grammars”, R. Oehrle, E. Bach, and D. Wheeler (eds.),
Categorial Grammars and Natural Language Structures, Dordrecht, D. Reidel, 1988, p. 417-442.

“The Coq Development Team”, The Coq Proof Assistant Reference Manual,
pauillac.inria.fr/coq/, 1999.

