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Abstract—Detailed frequency-dependent formulations are
presented for several efficient locally one-dimensional finite-differ-
ence time-domain methods (LOD-FDTDs) based on the recursive
convolution (RC), piecewise linear RC (PLRC), trapezoidal RC
(TRC), auxiliary differential equation, and transform tech-
niques. The performance of each technique is investigated through
the analyses of surface plasmon waveguides, the dispersions of
which are expressed by the Drude and Drude-Lorentz models.
The simple TRC technique requiring a single convolution integral
is found to offer the comparable accuracy to the PLRC technique
with two convolution integrals. As an application, a plasmonic
grating filter is studied using the TRC-LOD-FDTD. The use of
an apodized and a chirped grating is found quite effective in
reducing sidelobes in the transmission spectrum, maintaining a
large bandgap. Furthermore, a plasmonic microcavity is analyzed,
in which a defect section is introduced into a grating filter. Varying
the air core width is shown to exhibit tunable properties of the
resonance wavelength.

Index Terms—Alternating-direction implicit finite-difference
time-domain method (ADI-FDTD), auxiliary differential equation
(ADE), dispersive media, surface plasmon polariton (SPP).

I. INTRODUCTION

M ETAL–insulator–metal-type optical waveguides can
allow a surface plasmon polariton (SPP) to propagate

through subwavelength structures [1]–[5]. This fact has re-
ceived much attention, since compact optical circuits may be
realized. For the finite-difference time-domain (FDTD) anal-
ysis of these structures where the SPP is highly localized along
the metal/insulator interface, extremely small spatial sampling
widths are required to attain sufficient accuracy. Unfortunately,
this gives rise to a long computational time when the traditional
explicit FDTD is used due to a small time step determined by
the Courant-Friedrich-Levy (CFL) condition [6]. The use of
the implicit FDTD can circumvent this problem, since it is free
from the CFL condition.
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As an alternative to the alternating-direction implicit (ADI)
FDTD [7], [8], we have proposed an implicit FDTD based on
the locally one-dimensional (LOD) scheme [9]–[11]. The main
advantage of the LOD-FDTD lies in a quite simple algorithm,
maintaining the accuracy comparable to the ADI-FDTD. This
fact has motivated researchers to improve and extend the
LOD-FDTD, e.g., the development of low numerical dispersion
schemes [12]–[14], the formulation of perfectly matched layers
(PMLs) [15]–[17], and the application to three-dimensional
(3-D) problems [18]–[21]. To analyze plasmonic devices in
which the metal dispersion should be considered, we have
developed several frequency-dependent LOD-FDTDs based on
the recursive convolution (RC), piecewise linear RC (PLRC)
[22], [23], trapezoidal RC (TRC) [24], auxiliary differential
equation (ADE) [22], and transform (ZT) [25] techniques.
However, comparison among them has not yet been fully made,
particularly for the analysis of plasmonic devices under the
condition that the time step is beyond the CFL limit.

This paper describes a comparison of the above mentioned
frequency-dependent LOD-FDTDs in a consistent manner,
along with the traditional explicit FDTD. After presenting
detailed formulations, not available in previous papers, we
analyze the pulse propagation of the TM wave in the air core
region sandwiched between the metal claddings. It is shown
for both Drude and Drude-Lorentz models that the simple
TRC technique with a single convolution integral provides
the accuracy almost identical to the PLRC counterpart with
two convolution integrals. For the Drude-Lorentz model, the
ZT-LOD-FDTD allows to use a relatively large time step about
ten times as large as that of the explicit FDTD. The CPU time
of the LOD-FDTD is significantly reduced in comparison with
the explicit FDTD, e.g., the time of the TRC-LOD-FDTD is
reduced to 30–50% of the explicit counterpart, maintaining
almost the same accuracy.

As an application, a plasmonic grating filter is analyzed using
the efficient TRC-LOD-FDTD. Note that in the conventional
grating filter high sidelobes appear in the transmission spectrum.
To suppress the sidelobes, the sine-shaped cell was introduced
to the grating filter. Although the sidelobe level is reduced to
some extent, the sidelobes still exist due to the sequence of the
same cells. In addition, the sine-shaped cell reduces the con-
trast of the effective index in the grating section, giving rise to
a narrow bandgap in the transmission spectrum. To address this
issue, we introduce not only an apodized grating [26] but also a
chirped grating into the filter. With each structure, the sidelobes
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are found to be successfully suppressed, while maintaining a
large bandgap.

Final investigation is given to a plasmonic microcavity, in
which a defect section is introduced into a grating filter. Taking
advantage of the fact that the width of the air core region can
be varied, we obtain tunable properties in the resonance wave-
length. It is shown that the resonance wavelength remarkably
shifts by more than 0.30 with increasing the core width from
0.05 to 0.2 .

II. FREQUENCY-DEPENDENT LOD-FDTD FORMULATIONS

A. Dispersion Model

The dispersion of a metal has frequently been taken into ac-
count using the Drude model. Note that the Drude model is gen-
erally applicable only to the near infrared region. In addition,
the following Drude-Lorentz model [27]–[29] (with poles for
the Lorentz function [30]) has also been used to account for
the measured permittivities of Au and Ag over a wide spectrum
from the visible to near infrared regions:

(1)

where is the dielectric constant of the material at infinite
frequency, is the angular frequency, and are the elec-
tron plasma frequencies, and are the effective electron
collision frequencies, is the pole strength, and is the
weighting coefficient. Eliminating the last term in the right-hand
side of (1) results in the Drude model.

In what follows, we present the LOD-FDTD formulations for
the Drude-Lorentz model. Note that the equations for the Drude
model can easily be obtained with the Lorentz terms being ig-
nored in each formulation.

B. Various RC Techniques

The RC-based techniques are widely used to formulate the
frequency-dependent FDTD, since the calculation of the convo-
lution integral can be efficiently performed. Note that the tech-
niques are applicable only to linear dispersive materials.

The relation in time domain is expressed as

(2)

where is the permittivity of free space, is the linear polar-
ization and is susceptibility.

For the RC technique [30], is approximated as

(3)

where

in which the electric field is assumed constant over .
For the PLRC technique [31], is approximated as

(4)

where

in which the electric field has piecewise linear functional depen-
dence over . Note that the term regarding appears com-
pared with (3), requiring an additional calculation of the con-
volution integral. This formulation results in storage of electric
field values from two time steps [31]–[33].

With the PLRC technique, we obtain the following equation
of the LOD-FDTD for the TM wave (the normalized expression
of field components is used throughout the formulations):

(5a)

(5b)

(5c)

for the first step and

(6a)

(6b)

(6c)

for the second step, where and represent the interme-
diate fields, is the speed of light in a vacuum,

, and , in which
or . and are expressed as follows:
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where , , and . The
parameters used in the above formulation are given as

In the first step, we substitute (5c) into (5b) and implicitly solve
the resultant equation. Then, (5c) is explicitly solved. In the
second step, the equations are calculated in the same way as
in the first step. It should be noted that for the LOD-FDTD two
implicit and two explicit equations are solved. As a result, the
number of explicit equations to be solved is reduced, when com-
pared with the ADI counterpart in which two implicit and four
explicit equations should be solved. Comparison between (3)
and (4) shows that neglecting the terms regarding in (5) and
(6) results in the equations for the RC technique.

As an alternative, the TRC technique was developed for the
frequency-dependent formulation [32], [33]. The advantage of
the TRC technique lies in the fact that it requires only a single
convolution integral maintaining the accuracy comparable to the
PLRC counterpart with two convolution integrals. Although the
TRC technique was applied to the Debye and Lorentz models in
[32], [33], no attempt was made to apply it to the Drude model
frequently used for the analysis of plasmonic devices. Recently,
we have applied the TRC technique to the Drude-Lorentz model
for a concise frequency-dependent formulation [24]. Since only
the brief formulation has been presented in [24], we here de-
rive detailed finite-difference equations of the TRC-based LOD-
FDTD.

For the TRC technique, is approximated using an average
of the electric fields over two consecutive time steps in the fol-
lowing form:

(7)

Obviously, the TRC technique requires only a single convolu-
tion integral regarding , as in the RC technique. As a result
of the formulation similar to the RC procedure, we obtain the
TRC-LOD-FDTD equations, in which (5b) and (6b) obtained

from the PLRC technique are replaced, respectively, with the
following (8) and (9):

(8)

(9)

where , in which or . and
are expressed as follows:

Clearly, the equations for the TRC-LOD-FDTD are simpler than
those for the PLRC-LOD-FDTD. We can solve the TRC-LOD-
FDTD equations as done in the PLRC-LOD-FDTD.

C. ADE Technique

If we want to avoid the calculations of the convolution inte-
grals, we can resort to the ADE technique [34], [35], in which
the relation in frequency domain is translated into that
in time domain using the inverse Fourier transform.

The relation in frequency domain is expressed as

(10)

After substituting (1) into (10) and applying the inverse Fourier
transform to the resultant equation , we obtain

(11)

(12)

(13)

Discretizing the above equations with the LOD scheme leads to
the equations for the first step as

(14)

(15)

(16)
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(17)

Here, we carefully choose the time step to be in (16) and
(17), instead of used in (14) and (15) [22]. This is due
to the fact that splitting (16) and (17) is not required, since the
intermediate fields are regarded as the fields at in the LOD
procedure, as shown in (6a). Consequently, we can apply the
standard central difference with to the discretization of (16)
and (17). This also implies simpler implementation of the LOD
algorithm, compared with the ADE-based ADI-FDTD [29] in
which the intermediate fields should be calculated with (16) and
(17) being split.

For the second step, we have

(18)

(19)

(20)

(21)

To solve the above equations, we first substitute (15)–(17)
into (14) and implicitly solve . Once is obtained,
the other components are solved explicitly. The solutions for
the second step are calculated similarly.

D. Transforms (ZTs)

Another way of avoiding the calculations of the convolution
integrals is to use the ZTs [36]. In this technique, the compli-
cated convolution integrals, treated in the RC-based techniques,
can simply be reduced to algebraic equations, and the
relation can be translated into finite-difference equations in a
straightforward manner, compared with the ADE technique.

To apply the ZT theory, we rewrite (1) as

(22)

Taking the transform of (22) and (with
the field normalization) yields the following equations in the
domain:

in which and represent the time period and the delay of
time periods, respectively. We readily translate the above into

the finite-difference equations in the domain as

(23)

(24)

(25)

Note that the above equations regarding the relation
are analytically derived without adopting the finite-difference
approximation used in the ADE technique.

We now solve (23)–(25), combined with the following stan-
dard LOD-FDTD equations:

(26)

(27)

for the first step. Using only the components in (23)–(25), we
substitute (23) and (27) into (26) and implicitly solve the resul-
tant tridiagonal equations, and then explicitly solve (23)–(25)
and (27). Note that the relation or , as
shown in (6a), is used in the above implementation. The equa-
tions for the second step are

(28)

(29)

where the relation or , as shown in (5a), is
used, which are similarly solved using only the components
in (23)–(25).
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Fig. 1. Configuration of a metal cladding optical waveguide.

III. COMPARATIVE STUDY

We investigate the numerical accuracy and computa-
tional efficiency of each frequency-dependent LOD-FDTD
through analyzing the optical waveguide shown in Fig. 1.
Due to the symmetry of the waveguide, only half the section

is analyzed, in which the computational window
size is in the and directions, re-
spectively. The sampling widths are and

. The upper limit of the CFL condition is
defined as , and the ratio of as
CFL number (CFLN). The TM pulse wave is launched at the
incidence plane (see Fig. 1), which consists of the eigenmode
field in the direction and the Gaussian profile with a
full-width of 1 in the direction. The pulse is illumi-
nated using the one-way excitation scheme, so that no field
propagates toward the direction. Since the computational
window is chosen large enough in the direction, the calcula-
tion finishes before the pulse propagating in the direction
reaches the computational window edge. Therefore, no specific
absorbing boundary condition is employed. The wavelength
characteristic of the transmission coefficient is calculated from
the ratio between the discrete Fourier transforms of the incident
pulse observed at #1 and the transmitted pulse at #2 after a
propagation length of .

Note that the treatment of the interface between a metal and
a dielectric material is quite important in obtaining an accurate
numerical result [37], [38]. Throughout this paper, we adopt the
averaged permittivity between a metal and air along the inter-
face on which the electric field component is placed [24], [37].

A. Drude Model

In the first example, we chose the metal to be Ag, the disper-
sion of which is determined by the Drude model in the near in-
frared region [4]: , , and .

Fig. 2 shows the transmission coefficient versus CFLN
at the center wavelength of the incident pulse (1.55 ).
Taking advantage of the unconditional stability, we use the
LOD-FDTD for . For , the traditional
explicit FDTD is used. For the identical results are
obtained from both LOD-FDTD and explicit FDTD, validating

Fig. 2. Transmission coefficient versus CFLN for the Ag cladding expressed
with the Drude model.

Fig. 3. CPU time for the Drude model.

the LOD-FDTD. It is noteworthy that the TRC technique offers
almost the same results obtained from the PLRC, ADE and ZT
techniques, regardless of the solution with a single convolution
integral. The RC technique works only when CFLN is chosen
quite small. For reference, we analyze the same waveguide
using the frequency-domain eigenmode solver based on the
Yee-mesh-based beam-propagation method [39], providing a
transmission coefficient of 0.97585. For , the errors
of the LOD-FDTD results are calculated to be of the order of

, while even for , they are of . As a
result, we can employ a relatively large CFLN up to 10 for
the LOD-FDTD.

The CPU time is presented in Fig. 3, where a PC with Core2
Quad processor (2.66 GHz) is used. is adopted
for the LOD-FDTD calculations, in which the time of the RC
technique is not shown due to the unacceptable results found in
Fig. 2. It is seen that the CPU time of the ADE-based explicit
FDTD is longer than the times of the other explicit methods.
This is due to a number of arithmetic operations when the elec-
tric fields are calculated with ADEs (the CPU time may be re-
duced with an elaborate algorithm [40]). Fortunately, the time of
the ADE-LOD-FDTD is the same level as the times of the other
LOD-FDTDs. The relative CPU time of each LOD-FDTD to
that of each explicit FDTD is as follows: 30%, 30%, 20%, and
28% for the PLRC, TRC, ADE, and ZT techniques, respectively,
indicating the high efficiency of the LOD-FDTD.

The memory requirement for each FDTD is illustrated in
Fig. 4. In general, the implicit LOD scheme requires larger
memory than the explicit scheme owing to the solution of
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Fig. 4. Memory requirement for the Drude model.

a tridiagonal system of linear equations. Since the RC and
ADE techniques need only the field values from a single time
step, their memory requirements are smaller than the PLRC,
TRC and ZT counterparts. For the ZT technique, the memory
requirement is slightly large compared with the others, due to
some auxiliary variables.

In the application in Section IV, we will use the simple TRC-
LOD-FDTD, due to its acceptable accuracy, less CPU time, and
moderate memory requirement.

B. Drude-Lorentz Model

In the second example, we investigate Au in the visible re-
gion, the dispersion of which is accurately described with the
Drude-Lorentz model. This is motivated by the fact that Au is
frequently applied to the thin metal layer of the surface plasmon
resonance sensor operated in the visible region. The parame-
ters are , ,

, , ,
and [27], [29], which corresponds to , so that

in (1) [30].
Fig. 5 depicts the transmission coefficient versus CFLN at a

center wavelength of 0.7 . For the explicit FDTDs
, there exists no difference in accuracy among the PLRC,

TRC, ADE, and ZT techniques. It is interesting to note, however,
that the difference can be seen with the LOD-FDTD being used
for . To investigate the accuracy in more detail, we
display the expanded figure for the LOD-FDTD in Fig. 5(b). For
reference, also included are the eigenmode solution (0.76451)
and the value with 0.5% error from the solution, both of which
are indicated by the dashed lines. It is seen that the ZT technique
attains higher accuracy, resulting from the analytic derivation of
the equation solved, to which no finite-difference approxima-
tion is applied. Although the PLRC and TRC techniques pro-
vide almost the same accuracy, careful investigation reveals that
the former is slightly better than the latter. This is probably be-
cause for the former even the electric fields over are evalu-
ated using the integration in addition to the electric fields on the
two consecutive sampling times, while for the latter only the
electric fields on the two consecutive sampling times are eval-
uated. Slightly less accurate results of the ADE technique for a
large CFLN may be caused by the accuracy degradation in the
finite-difference approximation of the temporal second deriva-
tive in (17) and (21).

Fig. 5. Transmission coefficient versus CFLN for the Au cladding expressed
with the Drude-Lorentz model.

Fig. 6. CPU time for the Drude-Lorentz model.

Here, we mention the computational efficiency of the LOD-
FDTD, when the 0.5% error is accepted in the transmission co-
efficient. In this case, CFLNs can be extended to 6.2, 5.8, 4.6,
and 10 for the PLRC, TRC, ADE, and ZT techniques, respec-
tively, as shown in Fig. 5(b). Fig. 6 shows the CPU time for
each method. It can be seen that the ZT-LOD-FDTD is slightly
faster than the other techniques because of a large CFLN. When
compared with the explicit FDTD, the CPU times of the LOD-
FDTD are reduced to 48%, 52%, 40%, and 25%, respectively,
for the PLRC, TRC, ADE, and ZT techniques. Fig. 7 shows the
memory requirement. Since the field values from two time steps
are required, the memory is almost the same among the PLRC,
TRC, and ADE techniques. As in the case of Fig. 4, the ZT re-
quires marginally larger memory than the others.

As seen in [27], for Au in the visible region there exists the
strong dispersion of the imaginary part of the permittivity, which
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Fig. 7. Memory requirement for the Drude-Lorentz model.

Fig. 8. Configurations of several plasmonic waveguide gratings. (a) Conven-
tional; (b) apodized; (c) chirped.

is taken into account with the Lorentz term. It follows that a large
CFLN cannot be used, unless the effect of the strong disper-
sion is accurately incorporated into the resultant equation to be
solved. From this aspect, the ZT technique is expected to offer
the use of a relatively large CFLN, since the equations consid-
ering the dispersion is accurately derived in an analytic manner
without a finite-difference approximation.

IV. APPLICATION

A. Analysis of Plasmonic Waveguide Grating Filter

The plasmonic grating filter [4], [5], formed by a periodic
variation of the insulator width of the plasmonic waveguide, is
one of the basic building blocks for small size plasmonic cir-
cuits. Note that in the conventional filter high sidelobes appear in
the transmission spectrum. Here, we introduce an apodized and
a chirped grating into the filter. As mentioned in Section III, we
use the TRC-LOD-FDTD to characterize the modified grating
filters.

Fig. 8(a) illustrates the configurations of the conven-
tional filter, in which the configuration parameters are as
follows: , , ,

, and the number of periods is 19. The metal
is Ag, the material parameters of which are the same as those
used in Section III-A. To absorb the outgoing waves, we impose
the PML at the edges of the computational window. We adopt

throughout the application, where there is no
stability problem of the PML.

Fig. 9. Transmission coefficient for the conventional filter.

Fig. 10. Transmission coefficient for the apodized filter.

The transmission coefficient of the conventional filter is
shown in Fig. 9 (solid line), where the high sidelobes can be
seen. The sine-shaped cell, shown in the inset of Fig. 9, is used
to suppress the sidelobes [4], and the coefficient is shown in
Fig. 9 (dotted line). Although the sidelobes are suppressed with
the sine-shaped cell in some degree, they still remain due to
the sequence of the same cells. In addition, the reduction of
the index contrast in the grating section gives rise to a narrow
bandgap, compared with the conventional filter.

To address this issue, we introduce the apodization into the
filter, as depicted in Fig. 8(b). Fig. 10 shows the transmission
coefficient of the apodized filter, where we apply the linear
apodization to the 5 or 9 periods at both input and output ports.
For the 5 periods, the sidelobes are successfully suppressed,
maintaining a large bandgap. In addition, the sidelobes are
further suppressed as the number of apodized periods is in-
creased, while the bandgap becomes slightly narrow. Hence,
there should be an adequate number of apodized periods.

The first sidelobe level and the band width versus the number
of apodized periods are quantitatively presented in Fig. 11, in
which the band width is defined as the band where the trans-
mission coefficient becomes under 30 dB. In Fig. 11, as the
number of periods is increased, the sidelobe is suppressed and
the band width is reduced, e.g., for the filter with 5 periods, the
first sidelobe level is successfully suppressed to about -1.5 dB,
while maintaining a relatively wide bandgap almost identical to
the conventional filter. On the other hand, the effect of the side-
lobe suppression is also expected with the use of the chirped
grating. The results using the linear chirped grating shown in
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Fig. 11. First sidelobe level and band width.

Fig. 12. Configurations of plasmonic microcavities. (a) Conventional; (b)
apodized.

Fig. 8(c) are also included in Fig. 11. As in the case of the
apodized grating, the sidelobe suppression is observed whereas
the band width is reduced with the number of chirped periods.
Consequently, the use of an apodized and a chirped grating is
effective in reducing the sidelobe, with a large bandgap being
retained.

B. Analysis of Plasmonic Microcavities

Finally, we investigate a plasmonic microcavity in which a
defect section is introduced into the grating discussed above.
Figs. 12(a) and (b) show, respectively, the conventional micro-
cavity and the apodized microcavity for reduced sidelobes. The
defect is in length and the number of gratings is
18. The other structural and material parameters are the same as
those used in Fig. 8.

The transmission spectra are shown in Fig. 13, in which
the linear apodization is applied to the 5 or 8 periods at both
input and output ports of the microcavity. It can be seen that
the transmission peak appears at in the bandgap
ranging from 1.3 to 2.0 . As in the case of the grating,
the apodization leads to a reduction of the sidelobes, when
compared with the conventional microcavity.

Notice that the core width of the cavity can be varied, since
the core is a hollow structure. The variation of the core width re-
sults in the effective index change of the waveguide region. This
is expected to exhibit tunable properties of the resonance wave-
length, which is closely related to a tunable hollow waveguide

Fig. 13. Transmission.

Fig. 14. Resonance frequency and Q factor versus �.

Bragg grating [41]. We are therefore motivated to examine the
variation of the resonance wavelength for a variable core width,
with the grating depth being fixed.

Fig. 14 depicts the resonance wavelength and quality factor
versus defined in the inset, in which the 5 periods at both
input and output ports are apodized. The quality factor is cal-
culated from in which and are the central res-
onance wavelength and the full width at half maximum of the
defect mode, respectively [3]. In the quality factor, a local max-
imum can be seen at . This is where the resonance
wavelength approximately coincides with the local minimum
of the transmission spectrum of the grating. More importantly,
the resonance wavelength is found to monotonically shift to-
ward shorter wavelengths as is increased. A remarkable wave-
length shift of more than 0.30 is obtained for ranging from

to 0.1 .

V. CONCLUSION

We have assessed the performance of several frequency-de-
pendent LOD-FDTDs based on the RC, PLRC, TRC, ADE, and
ZT techniques. It is found that the simple TRC technique re-
quiring only a single convolution integral offers the accuracy
comparable to the PLRC counterpart with two convolution inte-
grals for both Drude and Drude-Lorentz models. When the dis-
persion is strong, the ZT-LOD-FDTD allows us to use a large
time step, since the equations considering the dispersion are
analytically derived without a finite-difference approximation.
The CPU times of the LOD-FDTDs are significantly reduced to
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20%–50% of those of the traditional explicit FDTDs. The com-
parative study provides guidelines on the choice of an appro-
priate method for a practical application. We have also studied
a plasmonic waveguide grating filter and a plasmonic micro-
cavity. For the reduction of the sidelobes of the transmission
coefficient, apodized and chirped gratings are found to be effec-
tive for both filter and cavity. Taking advantage of the hollow
structure of the cavity, we show that tunable properties of the
resonance wavelength can be obtained with varying the air core
width. Left for future studies are the analyses of a coupling
problem between a plasmonic and a dielectric waveguide, and
of three-dimensional structures.
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