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Abstract 
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1 Introduction

In this paper, we study decentralized markets involving many-to-many con-
tractual relationships. Our objective is to understand how the inclusion of
contracts affects the ability of agents to negotiate the terms of their rela-
tionships. This issue is particularly sensitive, as no stable and strategy-proof
revelation mechanism (even for one side of the market) exists in this con-
text, rendering many-to-many markets a more complex subject of study than
many-to-one markets.1

A classical example of a many-to-many market refers to the allocation of
specialty training slots for junior doctors in the UK (see Roth, 1991). The
introduction of contracts allows us to model other real word markets where
the terms of relationships are not established beforehand. Relevant examples
of many-to-many markets with contracts are markets that involve part-time
workers (e.g., consultants, lecturers or teachers) and those involving non-
exclusive dealings between down-stream firms and up-stream providers.

We analyze a class of mechanisms that we refer to as take-it-or-leave-it of-
fer mechanisms or TOM . In the first stage of these mechanisms, hospitals
make simultaneous offers to doctors, and then, groups of doctors sequentially
accept or reject the offers that they have received. The order that doctors
adopt can be arbitrary and even history dependent. The simplest of these
mechanisms is one through which acceptances are made simultaneously. We
refer to this as the simultaneous acceptance mechanism. Versions of
this mechanism have been analyzed by Alcalde and Romero-Medina (2000),
Sotomayor (2004) and Echenique and Oviedo (2006) without reference to
contracts and by Alcalde et al. (1998) based on the many-to-one model
with money developed by Kelso and Crawford (1982). In all of these cases,
the simultaneous acceptance mechanism fully implements the set of stable

1Strategy-proofness imposes very restrictive conditions on the preferences of agents,
as proven by Kojima (2013) and Romero-Medina and Triossi (2017) for a model without
contracts.
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allocations in subgame perfect equilibrium under substitutability. On the
other extreme of the class of take-it-or-leave-it offer mechanisms, we find
mechanisms through which doctors make selections in a given order. This
mechanism has been analyzed by Romero-Medina and Triossi (2014) in a
many-to-one market without contracts. The College Sequentially Choose
mechanism, as they called it, fully implements the set of stable allocations in
subgame perfect equilibrium under substitutability. Klaus and Kljin (2017)
describe a related class of mechanisms in many-to-many matching markets
without contracts. In their model, hospitals make simultaneous offers, and
doctors make selections in a given order. However, offers are not fully bind-
ing. Indeed, a doctor cannot join a hospital that has offered her a position if
at her turn, that hospital does not have an open position. Thus, hospitals do
not pay for the entire cost of their decisions, and unstable equilibrium alloca-
tions can arise unless hospitals have enough positions to satisfy all demand.
This negative result relates to those of Triossi (2009), Haeringer and Wooders
(2011) and Romero-Medina and Triossi (2014), who find that allowing the
choices of agents to be reversible or renegotiable can lead to the occurrence
of unstable equilibrium allocations.

Although simple, take-it-or-leave-it offer mechanisms mimic decentralized
procedures used in labor markets and in college or school admissions systems.
They capture relevant interactions among hospitals and doctors and identify
the basic forces at work in these settings.

We first prove that at her turn, each doctor has a unique best response
that involves accepting the best offers she receives. This result allows us to
show that all mechanisms of the TOM class are outcome equivalent. This
finding reveals the common structure of mechanisms previously analyzed in
the literature. We then prove that every subgame perfect equilibrium (SPE

hereinafter) outcome of any game induced by a take-it-or-leave-it offer mech-
anism is a pairwise stable allocation when doctors’ preferences are substi-
tutable. Thus, the structure of the mechanism is simple enough to prevent
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the manifestation of the above-mentioned coordination problems that can
arise in such a setting.

Contracts introduce a new strategic consideration. Without them, matching
markets simply assign agents to agents. When contracts are available, each
hospital negotiates the details of relationships with its counterparts. Thus,
ceteris paribus, every hospital will offer only its preferred contracts from those
each doctor is willing to accept. Therefore, unlike that for the model without
contracts (see Echenique and Oviedo, 2006), the set of SPE outcomes can
be a strict subset of the set of stable allocations even when preferences are
substitutable.

The characterization of the best response correspondence offers an insight
on the inabilities of the take-it-or-leave-it offer mechanisms to implement all
stable allocations. The best response includes not only the best contracts for
a hospital in response to those offered by others but also the contracts that
will never be accepted but that can spur the rejection of offers from other
hospitals outside the equilibrium path. These additional contracts amplify
competition between hospitals, forcing them to offer better terms to doctors.
It follows that when there is enough competitive pressure, any mechanism of
the take-it-or-leave-it offer class fully implements the set of stable allocations,
generalizing the results of Echenique and Oviedo (2006).

Given that the set of SPE outcomes can be a strict subset of the set of
stable allocations, the existence of stable allocations does not guarantee that
the game has an SPE under pure strategies. We prove that when all agents
have substitutable preferences and the preferences of hospitals satisfy the law
of aggregate demand (see Hatfield and Milgrom, 2005), the hospital-optimal
stable allocation is an SPE outcome. This reveals the existence of a first-
mover advantage that is absent from the model without contracts, as the
doctor-optimal stable allocation may fail to be an SPE outcome.

Next, we generalize the existence result and characterize the set of SPE

outcomes. We show that when both sides of the market have substitutable
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preferences, the maximal best response is increasing, implying that an SPE

exists in the case of pure strategies. We next investigate the structure of the
set of equilibrium outcomes and show that when both sides of the market have
substitutable preferences, the SPE outcomes of the game form a lattice. The
lattice structure of equilibrium outcomes reflects the opposition of interests
between the two sides of the market.

Finally, we relax the assumption of substitutable preferences and study the
existence and stability of SPE. We prove that when hospitals have substi-
tutable preferences doctors have unilaterally substitutable preferences, a pure
strategy SPE exists and every SPE outcome is pairwise stable. However,
when substitutability fails, the set of SPE allocations fails to form a lattice.
Such results relate to those of Yenmez (2015). He proves the existence of
stable allocations when agents on one side of the market have substitutably
completable preferences and when agents on the other side of the market
have substitutable preferences.

This paper is organized as follows. Section 2 introduces the model and no-
tation proposed. Section 3 presents take-it-or-leave-it offer mechanisms and
the implementation results. Section 4 characterizes the structure of SPE out-
comes and proves the possibility of relaxing the substitutability assumption.
Finally, Section 5 concludes. Proofs are given in the appendix.

2 The Model

In our model, there is a group of doctors who seek positions at different
hospitals. We denote H and D as (finite) sets of hospitals and doctors,
respectively. The set of agents is denoted by N = H ∪ D. There exists
a finite set X of contracts. Each contract x ∈ X is associated with one
doctor xD ∈ D and with one hospital xH ∈ H. Each agent can sign multiple
contracts. A null contract, whereby the agent signs no contract, is denoted
by ∅. An allocation is a set of contracts Y ⊆ X. Let Y be an allocation and
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let N ′ ⊆ N . Let YN ′ = {y ∈ Y | {yH , yD} ∩N ′ 6= ∅} be the set of contracts
that belong to Y and that involve a member of N ′. By abuse of notation,
for all n ∈ N we use Yn rather than Y{n}.

For each h ∈ H, �h is a strict preference relation on Xh. Preference relations
are extended to allocations in a natural manner: for all allocations Y, Z,
Y �h Z means Yh �h Zh. A preference profile �h defines a choice function
Ch (·,�h). Formally, for each h ∈ H and Y ⊆ X, we define the chosen
set in Y as Ch (Y,�h) = max�h

{Z | Z ⊆ Yh}. When there is no ambiguity
surrounding �h, we write Ch (Y ) rather than Ch (Y,�h). Let CH (Y ) =⋃

h∈H Ch (Y ) be the set of contracts chosen by hospitals when the set of
available contracts is Y . For each d ∈ D, �d, Cd, Yd, and CD are defined in
the same manner.

As each choice function is derived from a strict preference relation, for each
n ∈ N �n satisfies the irrelevance of rejected contracts condition (IRC

from this point on).2 Formally, for each Y ⊆ X and for each z ∈ X \ Y ,
z /∈ Cn (Y ∪ {z}) =⇒ Cn (Y ∪ {z}) = Cn (Y ) .

We use the notation �H= (�h)h∈H , �D= (�d)d∈D and �= (�H ,�D). We
then define two partial orders �HB and �DB for the set of allocations. We
assume that allocation Y is preferred to allocation Z according to hospital
Blair’s order (see Blair, 1988), and we write Y �HB Z when for each
h ∈ H, Ch (Yh ∪ Zh) = Yh. We assume that allocation Y is preferred to
allocation Z according to doctor Blair’s order, and we write Y �DB Z

when Cd (Yd ∪ Zd) = Yd for all d ∈ D. In other words, Y is preferred to Z

according to hospital Blair’s order when each hospital h chooses contracts
from Y when selecting among all contracts available in Y ∪ Z.

2Sönmez and Aygün (2013) present a detailed analysis of this condition and of its
implications.
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2.1 Stability and substitutability

Stability is a key concept of market design. Theoretical and empirical findings
suggest that markets that achieve stable outcomes are more successful than
markets that do not achieve stable outcomes (see Roth and Sotomayor, 1990,
and Abdulkadiroğlu and Sönmez, 2013). Stable allocations are identified
by two requirements. The first requirement is individual rationality. An
allocation is individually rational when no agent wants to unilaterally cancel
any of the contracts assigned. Allocation Y is individually rational for
agent n ∈ N if Cn (Y ) = Y n. The second requirement is that the allocation
must not be “blocked.” Intuitively, a coalition blocks an allocation when
the members of a coalition can profitably renegotiate the contracts of this
allocation. A coalition of agents can block a given allocation in a variety
of ways. A hospital-doctor pair (h, d) pairwise blocks allocation Y when
there exists x ∈ X \ Y such that xD = d, xH = h and x ∈ Ch (Y ∪ {x}) ∩
Cd (Y ∪ {x}). A coalition of agents N ′ = H ′ ∪ D′, where H ′ ⊆ H and
D′ ⊆ D, blocks allocation Y if there exists a set of contracts Z 6= ∅ such
that (i) Z ∩ Y = ∅; (ii) ZN ′ = N ′; and (iii) for all j ∈ N ′, Zj ⊆ Cj (Z ∪ Y ).
These blocking conditions define the different stability concepts. We assume
that allocation Y is pairwise stable when it is individually rational and
when no coalition pairwise blocks it. The set of pairwise stable allocations
is denoted by PS (M). We assume that allocation Y is stable when it is
individually rational and when no coalition blocks it. Note that any stable
allocation is pairwise stable but that the reverse is not generally true (see
Hatfield and Kominers, 2017).

Sets of pairwise stable and stable allocations may be empty. The literature
has focused on preference restrictions that guarantee the existence of stable
allocations by avoiding complementarities among contracts. Substitutability
is a key condition for the existence of stable allocations. The preferences of
hospital h, �h are substitutable when x, z ∈ X and Y ⊆ X do not exist
such that z /∈ Ch (Y ∪ {z}) and z ∈ Ch (Y ∪ {x, z}). The preferences of hos-
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pital h are substitutable when the addition of a contract to the choice set
never causes a hospital to accept a contract it previously rejected. Substi-
tutable preferences are defined similarly for doctors.

We also employ an additional condition called the law of aggregate demand.
The preferences of agent n ∈ N , �n satisfy the law of aggregate demand
when for all Z ⊆ Y ⊆ X, |Cn (Z)| ≤ |Cn (Y )|.3 When the preferences of
an agent satisfy the law of aggregate demand and as new contracts become
available, the agent will select a (weakly) larger number of contracts.

3 Take-it-or-leave-it offer mechanisms

In the first stage of any take-it-or-leave-it offer mechanism, hospitals make
simultaneous offers to doctors. Groups of doctors then sequentially accept or
reject the offers they have received. Doctors of the same group choose simul-
taneously. The order of choice can be arbitrary and/or history dependent.

Let T > 0 be a positive integer. Take-it-or-leave-it offer mechanisms
involve the following procedures:

Stage 0: Each hospital h offers contracts to some doctors. Let X (h) ⊆ Xh

be the set of contracts offered by hospital h. When h does not make
any offer, then X (h) = ∅. For all d ∈ D, let X (d) =

(⋃
h∈H X(h)

)
d
,

be the set of offers received by doctor d.

Stage t, 1 ≤ T : A subset of doctors D′ ⊆ D who did not move in any stage
t′, t′ < t (D′ can depend on doctors’ choices made in stages t′ < t), selects
a set of contracts from those offered. Let Y (d) ⊆ X (d) be the set of offers
selected by doctor d ∈ D

′ .

This procedure continues until all doctors have chosen. The outcome of the
game is

⋃
d∈D Y (d).

3For each set Y , |Y |denotes its cardinality.
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For a profile of preferences �, any TOM induces an extensive game of com-
plete and imperfect information (see Maschler et al, 2013). In this paper, we
focus on the pure strategy SPE of games induced by TOM .

3.1 Preliminary results

From this point on, T denotes a mechanism of the TOM class. For each pro-
file of preferences �, (T ,�) denotes the extensive form game with imperfect
information induced by T when the preferences of agents are �. In the first
stage of the game, the strategy space of hospital h is Sh = 2Xh .4 Note that
the only payoff-relevant information for doctor d is the set of contracts she
has been offered by hospitals, X (d). For each d ∈ D, let Sd be the strategy
space of doctor d.

We start our analysis by characterizing the equilibrium behaviors of doctors.
For each (X (h))h∈H ∈

∏
h∈H Sh and for each (Sd′)d′ 6=d ∈

∏
d′ 6=d Sd′ , define

Ŝd

(
(X (h))h∈H , (Sd′)d′ 6=d

)
= Cd

((⋃
h∈H X (h)

)
d

)
. Strategy Ŝd selects the

best contracts offered to doctor d. At her turn, a doctor d has a unique best
response and adopts strategy Ŝd.

Lemma 1 Let
(
(S∗h)d∈D , (S∗d)d∈D

)
∈
∏

n∈N Sn be an SPE of (T ,�). Then,
for each d ∈ D, S∗d = Ŝd.

To simplify the analysis, we consider a normal form game Γ where the set of
players is H, the strategy space of the hospital h is Sh = 2Xh , and the out-
come function is g

(
(Sh)h∈H

)
= CD

(⋃
h∈H Sh

)
, Γ =

(
H,�H ,

(
2Xh
)
h∈H , g

)
.

Lemma 1 implies that there is one-to-one correspondence between the Nash
equilibria (NE from this point on) of Γ and the SPE of the game induced
by any TOM : determining the SPE of the game induced by any TOM de-
termines the NE of Γ. In particular, the set of SPE allocations of games
induced by two different TOM coincide.

4For each set Y , 2Y denotes the set of its subsets.
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Proposition 1 The strategy profile
(

(S∗h)h∈H ,
(
Ŝd

)
d∈D

)
is an SPE of (T ,�)

if and only if (S∗h)h∈H is a Nash equilibrium of Γ.

We now show that when �D is substitutable, any SPE of (T ,�) is pairwise
stable regardless of hospitals’ preferences.

Proposition 2 Assume that �D is substitutable. Then, all SPE outcomes
of (T ,�) are pairwise stable allocations.

When all agents have substitutable preferences, the set of pairwise stable allo-
cations coincides with the set of stable allocations (see Hatfield and Kominers,
2017). Thus, from Proposition 2, we obtain the following result.

Corollary 1 Assume that � is substitutable. Then, all SPE outcomes of
(T ,�) are stable.

Corollary 1 extends to a larger set of mechanisms and to a setup with con-
tracts and presents a weaker version of the implementation results of Al-
calde and Romero-Medina (2000), Echenique and Oviedo (2006) and Romero-
Medina and Triossi (2014).

3.2 Contracts and competitive pressure

A many-to-many matching market without contracts is a market in which
|Xh ∩Xd| = 1 for all h ∈ H and d ∈ D. Echenique and Oviedo (2006) analyze
the simultaneous acceptance mechanism of this setup. From Proposition 1
and Theorem 7.1 in Echenique and Oviedo (2006), it follows that in markets
without contracts, any TOM implements the set of stable allocations in SPE

when all agents have substitutable preferences.
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In the model without contracts, hospitals only choose whom to make an offer
to. Contracts introduce new strategic considerations. Indeed, they allow each
hospital to negotiate terms of collaboration with any doctor they may wish
to sign. Intuitively, a hospital can always offer a doctor the worst conditions
(e.g., the lowest salary) she is willing to accept based on offers made by
other hospitals. Therefore, hospitals benefit from a first-mover advantage.
The following example shows that the set of SPE allocations of the game
induced by any TOM mechanism does not include all stable allocations.

Example 1 Assume H = {h} and D = {d}. Let x, x′, x̃ denote contracts
between hospital h and doctor d. Assume that the preferences of the agents
are as follows:
�d: {x} , {x′} , {x̃} ;

�h: {x̃} , {x′} , {x}.
For example, assume that x, x′ and x̃ are contracts that pay salaries of
$200,000, $175,000, and $150,000 a year, respectively, and that all other
contract terms are identical.

In Example 1, the hospital prefers to pay less and the doctor prefers to be
paid more. Only the $150,000 contract is an SPE outcome of every TOM

when the hospital makes the offer. Only the $200,000 contract is an SPE

outcome of every TOM when the doctor makes the offer.5 Unlike in markets
without contracts, the set of SPE outcomes of any TOM depends on which
side of the market makes offers.

In Example 1, contracts through which the doctor is paid $175,000 and
$200,000 are unilaterally renegotiable by hospital h when offers are made.
The unilateral renegotiation of contracts plays an important role in shap-
ing the set of SPE outcomes. However, to fully understand the forces

5One might conjecture that the set of stable allocations involves the union of SPE
outcomes of games through which hospitals make offers and SPE outcomes of games
through which doctors make offers. This is not true: in Example 1, the $175,000 contract
never offers an SPE outcome for any of these games.
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at play, we must characterize the best response correspondence game Γ.
Let S−h be a strategy profile for all hospitals but h. Let Rh (Sh, S−h) ={
x ∈ Xh | x /∈ CD

(⋃
h′∈H Sh′ ∪ {x}

)}
be the set of contracts of agent h that

would be rejected if they were offered by h jointly with contracts in
⋃

h′∈H Sh′ .
Note that Rh (∅, S−h) = Xh \ Fh (S−h).
Define brh (S−h) =max�h

{
Z ⊆ Xh |

[
CD

(⋃
h′ 6=h Sh′ ∪ Z

)]
h

= Z
}
. Define

BRh (S−h) = brh (S−h) ∪ Rh (brh (S−h) , S−h). Finally, set brH
(
(Sh)h∈H

)
=

(brh (S−h))h∈H , and set BRH

(
(Sh)h∈H

)
= (BRh (S−h))h∈H . We can now

present the following lemma, which fully characterizes the best response cor-
respondence.

Lemma 2 Let �D be substitutable. Then, Yh is the best response to S−h in
Γ if and only if

brh (S−h) ⊆ Yh ⊆ BRh (S−h) .

Thus, functions brh (·) and BRH (·) are the minimal and maximal best re-
sponses, respectively. The minimal best response of hospital h includes only
its most preferred contracts among those that would cause doctors to take
its offer, and thus, it allows for unilateral renegotiation. The maximal best
response also involves all contracts that will never be accepted. As these
contracts can induce the rejection of other offers, they amplify competition
between the hospitals, forcing them to offer better terms to doctors. The
trade-off between unilateral renegotiation and such competition shapes the
set of SPE allocations. Indeed, there might exist stable allocations that
can be unilaterally renegotiated by a hospital but can be sustained as SPE

outcomes by apparently redundant offers.

Example 2 Assume H = {h1, h2} and D = {d1, d2}. Let x1 and x̃1 denote
contracts between h1 and d1. Let x2 denote a contract between h2 and d1.
Let z denote a contract between h2 and d2. Assume that the preferences of
agents are as follows:
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�h1 : {x̃1} , {x1} ;

�h2 : {x2} , {z2} ;

�d1 : {x1} , {x2} , {x̃1} ;

�d2 : {z2} .
A unique stable allocation {x1, z2} exists. The allocation can be unilaterally
renegotiated when hospital h1 offers x̃1 rather than x1. However, strategies
X1 (h1) = {x1, x̃1} and X1 (h2) = {x2, z2} are an NE of game Γ yielding
{x1, z2}.

In Example 1, the offer of contract x2 that is not accepted at equilibrium
prevents hospital h1 from offering only contract x̃1. When h1 only offers
contract x̃1, then doctor d1 accepts contract x2 and rejects contract x̃1. In-
creased competition from hospital h2 forces h1 to offer doctor d1 a better
contract.

Examples 1 and 2 highlight differences that emerge with the introduction
of contracts. Each hospital must negotiate the nature of relationships with
doctors, and the mechanism provides hospitals with a first-mover advantage.
In this case, the threat of counteroffers from other hospitals increases com-
petition and helps sustain stable outcomes, as is shown in Example 2. The
notion that the potential entry of new competitors helps sustain efficient out-
comes is not new to the field of economics, and it is related to the concept
of contestable markets (see Baumol et al., 1982).

Formally, we state that market (H,D,X,�) satisfies contestability if for
each stable allocation Y where x ∈ X \ Y and y ∈ Y exist such that x ∈
Ch (Y ∪ {x})∩Cd (Y \ {y} ∪ {x}), where h = xH and d = xD, there exists a
contract x′ ∈ Xd\Xh, x′ ∈ Cd (Y \ {y} ∪ {x, x′}), x /∈ Cd (Y \ {y} ∪ {x, x′}),
x′ /∈ Cd (Y ∪ {x, x′}). Assume that a stable allocation Y can be unilaterally
renegotiated by hospital h by offering contract x rather than contract y to
doctor d. When the market satisfies the contestability condition, a contract
x′ between d and a hospital h′ different from h prevents renegotiations from
being successful. Thus, the essence of the contestability condition lies in the
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existence of the threat of a deviation that introduces competitive pressures
on hospitals. This condition allows for the full implementation of the set of
stable allocations.

Proposition 3 Assume that the market satisfies contestability and that �
is substitutable; then, every stable allocation is an SPE outcome of (T ,�).
Therefore, under contestability, T implements the set of stable allocations in
SPE.

In the absence of contracts, each allocation represents an agreement on only
the identities of counterparts. Thus, the contestability condition holds emp-
tily, and Proposition 3 extends Theorems 7.1 and 7.2 shown in Echenique and
Oviedo (2006). Alcalde et al. (1998) proves the implementability of stable
allocations in SPE in a many-to-one matching model with money developed
by Kelso and Crawford (1982). They use a mechanism that is very similar
to the simultaneous acceptance mechanism. Their model satisfies contesta-
bility because they assume that at least two firms exist, that each firm finds
every worker to be acceptable and that firms can make arbitrarily strong
offers. These assumptions allow them to sustain SPE, preventing unilateral
deviation with the threat of sufficiently high offers.

3.3 Hospital-optimal stable allocation

Contracts shrink the set of SPE allocations through unilateral deviations
and harm doctors more than hospitals. Therefore, the existence of stable
allocations cannot guarantee the existence of an SPE. However, when the
preferences of hospitals are substitutable and satisfy the law of aggregate
demand, the hospital-optimal stable allocation always results as an SPE

outcome.
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Proposition 4 Assume that � is substitutable and that �H satisfies the law
of aggregate demand. Then, the hospital-optimal stable allocation is an SPE

outcome of (T ,�).

To prove Proposition 4, we employ the same argument used in Proposition 3.
We prove that whenever a contract belonging to the hospital-optimal stable
allocation can be unilaterally renegotiated by a hospital, a contract prevents
the unilateral renegotiation from being profitable.

Consider a many-to-one situation in which each hospital can hire one doctor
at most. If �D does not satisfy the law of aggregate demand, the hospital-
optimal stable allocation is not strategy-proof for hospitals (see Hatfield and
Milgrom, 2005). However, Proposition 4 implies that it is an NE outcome
of any TOM .

Proposition 4 also offers proof of the existence of an SPE and confirms the
intuition of hospitals’ first-mover advantages: the hospital-optimal stable
allocation is always an SPE, while the doctor-optimal one is not necessarily
an SPE outcome, as shown in Example 1.

Note that when the law of aggregate demand does not hold, the hospital-
optimal stable allocation can fail to forge an equilibrium outcome.

Example 3 Assume that H = {h1, h2} and D = {d1, d2}. Let x1 and x̃1

denote contracts between h1 and d1. Let y1 denote a contract between h1

and d2. Let x2 and x̃2 denote contracts between h2 and d1. Let y2 denote
a contract between h2 and d1. Assume that the preferences of agents are as
follows:
�h1 : {x̃1} , {x1, y1} , {x1} , {y1} ;

�h2 : {x̃2} , {y2} , {x2} ;

�d1 : {x2} , {x1, x̃2} , {x̃1} , {x1} , {x̃2} ;

�d2 : {y2} , {y1} .
Such preferences are substitutable. Allocation Y = {x1, x̃2, x3, y1} is the
hospital-optimal stable allocation. Next, consider any strategy profile (Sh1 , Sh2)
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of Γ yielding Y = {x1, y1, x̃2} as an outcome. Note that x2 /∈ Sh2; otherwise,
x2 ∈ g (Sh1 , Sh2)h1

. Then, {x̃1} is a profitable deviation for h1, as it yields
{x̃1} = (g ({x̃1} , Sh2))h1

, and thus, Y is not an SPE outcome of any TOM .

4 The structure of the set of SPE outcomes

In Example 3, even when the hospital-optimal stable allocation does not
forge an SPE outcome, any TOM has an SPE as a result of a pure strategy
that yields {x1, y2} as an outcome. The objective of this section is to extend
results provided in Proposition 4 to situations in which the law of aggregate
demand may fail to hold and to characterize the structure of the set of SPE

outcomes.

From this point on, we assume that the entire relationship between a hospi-
tal and doctor can be specified by a single contract through a requirement
referred to as unitarity (see Kominers, 2012).6 We model the unitarity as-
sumption by assuming that allocations through which an agent n ∈ N signs
more than one contract with the same counterpart are not acceptable to n.
Formally, we assume that for each Y ⊆ X and h ∈ H, there exist y, z ∈ Yh,
y 6= z, for some h ∈ H (resp. y, z ∈ Yd, y 6= z, for some d ∈ D) with yD = zD

(resp. yH = zH), and then, ∅ �h Y (resp. ∅ �d Y ).

Under unitarity, we generalize the existence result of Proposition 4 and char-
acterize the structure of the set of SPE outcomes. The strategy of the proof
involves an increasing selection of the best response correspondence and ap-
plying the Tarski’s Fixed Point Theorem (see Tarski, 1955). We order the
strategy space using the product of the natural set order and prove that the
maximal best response BRH (·) is monotonically increasing.

Lemma 3 Assume that � is substitutable. Then, the maximal best response
function BRh (·) is increasing: for each h ∈ H, if S−h ⊆ S ′−h, then BRh (S−h) ⊆

6Pepa Risma (2015) and Hatfield and Kominers (2017) depart from such an assumption.
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BRh (S−h).

In the proof of Lemma 3, the unitarity assumption is crucial. Let Fh (S−h) ={
x ∈ Xh | x ∈ CD

(⋃
h′ 6=h Sh′ ∪ {x}

)}
be the set of contracts that would be

accepted if they were offered by h when the other hospitals offer contracts in⋃
h′ 6=h Sh′ . When preferences satisfy the unitarity assumption, the minimal

best response coincides with Ch (Fh (S−h)) (see Lemma 5 in the Appendix).
If preferences do not satisfy unitarity, this is no longer true. In this case, all
selections of the best response correspondence may fail to be monotonic.

Example 4 Assume H = {h1, h2} and D = {d1, d2}. Let x1 and x̃1 denote
contracts between h1 and d1. Let y1 denote a contract between h1 and d2.
Let x2 and x̃2 denote a contract between h2 and d1. Let y2 denote a contract
between h2 and d1. Assume that the preferences of agents are as follows:
�h1 : {x̃1, x1} , {x̃1, y1} , {x1, y1} , {y1} , {x1} , {x̃1};
�h2 : {x2};
�d1 : {x1, x2} , {x̃1, x2} , {x1, x̃1} , {x2} , {x1} , {x̃1};
�d2 :, {y1} .

Preferences are substitutable but do not satisfy unitarity. We have brh1 (∅) =

BRh1 (∅) = {x̃1, x1} and brh1 (x2) = BRh1 ({x2}) = {x̃1, y1}. As brh1 (∅) *
BRh1 ({x2}), no selection of the best response correspondence is monotoni-
cally increasing.

In Example 4, preferences are substitutable. When hospital h2 does not
make an offer, hospital h1’s best response is to offer separate contracts x̃1

and x1 to doctor d1. Note that the minimal best responses to {x2} do not
coincide with Ch1 (Fh1 (·)): Chh1(Fh ({x2})) = {x̃1, x1}, but brh1 ({x2}) =

{x̃1, y1}. Thus, if hospital h2 offers contract x2, contracts x1 and x̃1 are
separately but not jointly acceptable to doctor d1. It follows that hospital
h1’s best response is to offer contracts x̃1 and y1. Thus, no selection of the
best response correspondence is monotonically increasing.
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Lemma 3 implies that the set of fixed points of BRH (·) forms a non-empty
lattice. This implies that the game induced by any TOM has a pure strategy
SPE, so it generalizes Proposition 4 and provides alternative proof of the
existence of stable allocations under substitutability.

To fully exploit this result and to characterize the structure of the set of
SPE outcomes, we show that all SPE outcomes of the game induced by any
TOM are generated by the set of fixed points of the maximal best response.

Lemma 4 Let � be substitutable. The allocation Y is an NE outcome of Γ

if and only if there is a strategy profile (Sh)h∈H such that BRH

(
(Sh)h∈H

)
=

(Sh)h∈H and CD

(⋃
h∈H Sh

)
= Y .

Lemma 4 does not extend to every selection of the best response correspon-
dence; for instance, it does not extend to the minimal best response. Indeed,
in Example 2, unique stable allocation {x1, z2} is not a fixed point of the min-
imal best response, (brh (·))h∈H , as brh1 ({z2}) = x̃1. Thus, {x1, z2} cannot
be obtained from a fixed point of the minimal best response.

We employ Lemmas 3 and 4 to prove that the set of SPE outcomes of any
take-it-or-leave-it mechanism is a lattice according to Blair’s orders. More
precisely, we prove that the lattice structure of the set of fixed points of BRH

reflects on the set of its outcomes. Furthermore, an opposition of interests
within the set of SPE allocations emerges. For SPE outcomes Y and Z,
when Y dominates Z according to hospital Blair’s order, Z dominates Y

according to doctor Blair’s order.

Theorem 1 Let � be substitutable.

(i) The set of SPE outcomes of the game induced by T is a non-empty lattice
with Blair’s orders �HB and �DB.

(ii) Let Y, Z be SPE outcomes. Then, Y �HB Z if and only if Z �DB Y .
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We provide two algorithms for computing pairwise stable allocations under
substitutability.

HO Algorithm

Step 0:
(X0)h = ∅ for all h ∈ H;

Step r ≥ 1:
(Xr+1)h = BRh

(
(Xr)−h

)
for all h ∈ H.

Set XHO =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

HP Algorithm

Step 0:
(X0)h = Xh for all h ∈ H;

Step r ≥ 1:
(Xr+1)h = BRh

(
(Xr)−h

)
for all h ∈ H.

Set XHP =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

Lemmas 3 and 4 imply that the outcome of the HO algorithm, XHO, co-
incides with the best (resp. worst) SPE for hospitals (resp. doctors) and
that the outcome of the HP algorithm, XHP , coincides with the worst (resp.
best) SPE for hospitals (resp. doctors). In particular, when hospital prefer-
ences satisfy the law of aggregate demand, CD

(
XHO

)
is the hospital-optimal

stable allocation (see Proposition 4). Under contestability, any TOM fully
implements the set of stable allocations, and the CD

(
XHD

)
algorithm de-

notes doctor-optimal stable allocation. The DO and DP algorithms can be
symmetrically defined based on the game through which doctors make the
offers.

These algorithms differ from those proposed by Pepa Risma (2015), Yenmez
(2015) and Hatfield and Kominers (2017). Future studies should compare
their computational efficiency.
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4.1 Beyond substitutability

Substitutability is the minimal condition guaranteeing the existence of stable
allocations in many-to-many matching markets with contracts, as shown in
Hatfield and Kominers, (2017). However, the proof of the result explicitly
employs preferences that do not satisfy the unitarity assumption. When
the unitarity assumption holds, it is possible to relax the assumption of
substitutable preferences and to prove the stability of any SPE outcome
and its existence. More precisely, we require the preferences of doctors to
be unilaterally substitutable (see Hatfield and Kojima, 2010). Formally, the
preferences of doctor d satisfy unilateral substitutability when there do
not exist x, z ∈ X or Y ⊆ X such that zH /∈ YH , z /∈ Cd (Y ∪ {z}) and z ∈
Cd (Y ∪ {x, z}). The preferences of doctor d are unilaterally substitutable if
whenever d rejects the contract z that is the only contract with zH available,
it still rejects the contract z when the choice set expands.

When doctors have unilaterally substitutable preferences, the maximal re-
sponse function BRH is not monotonic, as shown by the following example.

Example 5 Let H = {h1, h2} and D = {d1, d2}. Let xi, x
′
i denote contracts

forged between hospital hj and doctor d1 for i = 1, 2. Let yi denote contracts
forged between hospital hj and doctor d2 for j = 1, 2. Assume that the pref-
erences of the agents are as follows:
�h1 : {y1, x1} , {y1, x

′
1} , {x1} , {x′1} {y1};

�h2 : {y2} , {x′2} , {x2}
�d1 : {x′1, x2} , {x1, x

′
2} , {x1, x2} , {x′1, x′2} , {x′1} ,{x1} , {x′2} , {x2};

�d2 : {y1} , {y2}.
Note that �d1 is unilaterally substitutable, but it is not substitutable, as
x1 ∈ Cd1 ({x1, x

′
1, x
′
2}) but x1 /∈ Cd1 ({x1, x

′
1}).

Now, consider the following strategies for hospital h2, Sh2 = {∅} and S ′h2
=

{x′2}. We have BRh1 (Sh2) = {x1, x
′
1, y} and BRh1

(
S ′h2

)
= {x1, y}. Then,

BRh1

(
S ′h2

)
⊆ BRh1 (Sh2), but Sh2 ⊆ S ′h2

. Thus, BRh1 (·) is not monotonic.
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For each (Sh)h∈H ∈
∏

h∈H 2Xh , define BrH
(
(Sh)h∈H

)
= (Brh (S−h))h∈H ,

where for each h ∈ H, Brh (S−h) = brh (S−h)∪ (Xh \ Fh (S−h)). To prove the
existence of a pure-strategy SPE, we show that BrH is a monotonic selection
of the best response correspondence.

Proposition 5 Let �H be substitutable, and let �D be unilaterally substi-
tutable.

(i) Every SPE outcome of (T ,�) is a pairwise stable allocation.

(ii) The game (T ,�) has an SPE.

Therefore, T weakly implements the set of pairwise stable allocations in SPE.

Claim (i) depends only on the unitarity condition and does not require the
application of any supplementary assumptions on agent preferences (see the
proof of the result in the appendix).

Proposition 5 also implies the existence of pairwise stable allocations when
agents on one side of the market have unilaterally substitutable preferences
and when agents on the other side of the market have substitutable prefer-
ences.

Corollary 2 Let �H be substitutable, and let �D be unilaterally substitutable.
Then, the set of pairwise stable allocations is non-empty.

These results are related to those of Yenmez (2015) based on the cumulative
offers algorithm. When agents on one side of the market have unilaterally
substitutable preferences, pairwise stability and stability are not equivalent.

Example 6 Let us assume that H = {d} and D = {h1, h2, h3}. Let xr be a
contract forged between h1 and d, let y1 be a contract forged between h2 and
d, and let zr be a contract forged between h3 and d, for r = 1, 2. Assume that
the agents’ preferences are as follows:
�h1 : {x1} , {x2};
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�h2 : {y1} ;
�h3 : {z1} , {z2};
�d: {x1, y1, z1} , {x2, y1, z2} , {x2, y1, z1} , {x2, y1, z2}, {x1, y1, z1} , {x2, y1, z2} ,
{x2, y1, z1}, {x2,y1,z2} , {x2, y1} , {x1, y1} , {y1, z2} , {y1, z1} , {x1, z1} ,
{x2, z2} , {x1, z2},{y1} , {x1} , {x2} , {z1} , {z2}.

Preferences �d are not substitutable, as z1 /∈ Cd ({y1, z1, z2}), though z1 ∈
Cd ({x1, x2, y1, z1, z2}). However, �d are unilaterally substitutable. Prefer-
ences �H are substitutable. Allocation Y = {x2, y1, z2} is pairwise stable but
not stable, as it is blocked by N ′ = {h, d1, d3} through Z = {x1, z1}. However,
Sh1 = {x1}, Sh2 = {y1}, and Sh3 = {z3} form an NE of Γ yielding Y as an
outcome.

In the market of Example 6, SPE outcome Y is pairwise stable but not
stable.

Moreover, under the same assumptions, the set of SPE does not even form
a lattice with respect to the joint preferences of agents or Blair’s orders, as
shown by the following example adapted from Hatfield and Kojima (2010).

Example 7 Assume that H = {h1, h2} and D = {d}. Let x1, x2, and x3

denote contracts forged between h1 and d, and let y1, y2, and y3 denote con-
tracts forged between h2 and d. Assume that the preferences of the agents are
as follows:
�h1 : {x2} , {x1} , {x3};
�h2 : {y2} , {y1} , {y3};
�d: {x1, y3} , {x3, y1} ,{x2, y2} , {x3, y3} , {x3, y2} , {x2, y3} ,{x2, y1} , {x1, y2},
{x1, y1} , {x3} ,{y3} , {x2} , {y2} , {x1} , {y1}.

The preferences of doctor d are unilaterally substitutable but not substitutable,
as y3 ∈ Cd ({x1, x3, y1, y3}) = {x1, y3} but y3 /∈ Cd ({x3, y1, y3}) = {x3, y1}.
This market contains three stable allocations: X1 = {x2, y2}, X2 = {x3, y1} ,
and X3 = {x1, y3}, which are also SPE outcomes. However, {X1, X2, X3}
is not a lattice with respect to Blair’s order.
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Consider the following two algorithms:

ho Algorithm

Step 0:
(X0)h = ∅ for all h ∈ H;

Step r ≥ 1:
(Xr+1)h = Brh

(
(Xr)−h

)
for all h ∈ H.

Set Xho =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

hp Algorithm

Step 0:
(X0)h = Xh for all h ∈ H;

Step r ≥ 1:
(Xr+1)h = Brh

(
(Xr)−h

)
for all h ∈ H.

Set Xhp =
⋃

h∈H (Xr̄)h, where r̄ = min {r | (Xr)h = (Xr+1)h for all h ∈ H}.

The monotonicity of BrH (·) = (Brh (·))h∈H implies that both algorithms
stop after a finite number of steps and yield an NE of Γ. In particular, both
CD

(
Xho

)
and CD

(
Xhp

)
are pairwise stable allocations.

5 Conclusions

In this paper, we study a class of ultimatum games that we call take-it-
or-leave-it offer mechanisms whereby hospitals make simultaneous offers
that are either accepted or rejected by doctors. The mechanisms of this class
mimic those of real-world environments and allow us to explore allocative
implications of the use of contracts in many-to-many matching markets.

Our results illustrate the strategic effects of introducing contracts into such an
environment. Contracts preserve the stability of equilibrium outcomes while
reducing the capacity for mechanisms to realize stable allocation. Results are
dependent on the fact that contracts allow agents to negotiate the terms of
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their relationships. This introduces a first-mover advantage that is absent in
the model without contracts. Only the introduction of additional competitive
pressure formalized in a condition that we call “contestability” allows the
mechanism to fully implement the set of stable allocations.

All games induced by TOM share the same strategic structure and are out-
come equivalent. In exploiting the common structure of best response cor-
respondences of such games, we prove the existence of SPE in all games
induced by TOM when preferences are substitutable. We then character-
ize the set of SPE allocations as a complete lattice, which preserves the
opposition of interests found within the set of stable allocations.

Thus, our analysis reveals the common structure underlying take-it-or-leave-
it offer mechanisms. It unifies and generalizes previous results obtained for
specific mechanisms of this class for contexts without contracts, revealing
that in these environments, the contestability assumption is implicitly satis-
fied.

Appendix

Proofs of the results in Section 3

Proof of Proposition 2. Assume S∗ =
(
(S∗h)h∈H

)
is aNE of Γ, and let Y =

g (S∗). We show by contradiction that Y is a pairwise stable allocation. We
first prove that Y is individually rational. The proof of this claim is proven
by contradiction. Assume that Y is not an individually rational allocation for
agent n ∈ N . Let n = h ∈ H. Then, the substitutability of �D implies that
Ch (Yh) is a profitable deviation, yielding a contradiction. Let n = d ∈ D; in
this case, the contradiction follows from Lemma 1.

We conclude the proof by showing that Y is not pairwise blocked. By contra-
diction, assume a hospital h, a doctor d, and a contract x ∈ X \Y exist with
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xD = d, xH = h and x ∈ Ch (Y ∪ {x}) ∩ Cd (Y ∪ {x}). First, we prove x ∈
Cd

(⋃
s∗
h′D=d {S∗h′} ∪ {x}

)
. Set Z =

⋃
s
∗
h′D=d {S∗h′}. From Lemma 1, Cd (Z) =

Yd. By contradiction, assume x /∈ Cd

(⋃
s∗
h′D=d {S∗h′} ∪ {x}

)
= Cd (Z ∪ {x}).

From x ∈ Cd (Yd ∪ {x}) , it follows that Cd (Z ∪ {x}) �d Cd (Yd ∪ {x}). How-
ever, because x /∈ Cd (Z ∪ {x}), Cd (Z ∪ {x}) = Cd (Z) = Yd, yielding a con-
tradiction.
Consider the following deviation for h, Sh = Ch (Y ∪ {x}). As �D is substi-
tutable, the deviation is profitable to h, yielding a contradiction.

Proof of Lemma 2. (i) We first show that brh (S−h) is a best response
to S−h and that for each best response Yh, brh (S−h) ⊆ Yh. Note that
g (brh (S−h) , S−h) = brh (S−h). Let Yh be a best response to S−h, and
set Y ′h =

[
CD

(⋃
h′ 6=h Sh′ ∪ Yh

)]
h

= [g (Yh, S−h)]h. The IRC implies that

CD

(⋃
h′ 6=h Sh′ ∪ Y ′h

)
h

= Y ′h. Thus, brh (S−h) �h Y ′h from the definition
of brh (S−h). As preferences are strict and as Yh is a best response, Y ′h =

brh (S−h). Thus, brh (S−h) is a best response, and brh (S−h) = Y ′ ⊆ Yh.

(ii) Now, we show that when Yh is a best response to S−h, Yh ⊆ BRh (S−h).
Observe that Yh is a best response to S−h if and only if

[
CD

(⋃
h′ 6=h Sh′ ∪ Yh

)]
h

=

brh (S−h). Let Yh be a best response. From part (i) of the proof, we have
Yh = brh (S−h) ∪ Zh for some Zh ⊆ Xh, Zh ∩ brh (S−h) = ∅. From the IRC,
it follows that z /∈

{
x ∈ Xh | x ∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {z}

)}
for all

z ∈ Zh; therefore, Yh ⊆ BRh (S−h).
(iii) Let brh (S−h) ⊆ Yh ⊆ BRh (S−h). We can write Yh = brh (S−h) ∪
Zh, where Zh ⊆

{
x ∈ Xh | x /∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {x}

)}
and Zh ∩

brh (S−h) = ∅. By contradiction, assume that CD

(⋃
h′ 6=h Sh′ ∪ Yh

)
h
6= brh (S−h).

Therefore, there exists z ∈ Zh such that z ∈ CzD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ Zh

)
.

Finally, substitutability implies that z ∈ Czd

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪ {z}

)
,

yielding a contradiction.

Proof of Proposition 3. Let Y be a stable allocation. We construct an
NE of Γ yielding Y as an outcome. If brh (Y−h) = Yh for all h ∈ H, the proof
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is complete. Otherwise, let Th 6= Yh be such that Th = brh (Y−h). Then,
Th = Ch (Yh ∪ Th), and thus, Ch (Yh ∪ {t}) is a profitable deviation for h for
all t ∈ Th \ Yh. Let T =

(⋃
h∈H Th

)
\ Y .

Let t ∈ T . As Y is pairwise stable and as preferences are substitutable,
d ∈ D and y ∈ Y exist such that yH = tH = h and yD = tD = d such
that t ∈ Ch (Y ∪ {t}) ∩ Cd ((Y \ {y}) ∪ {t}) and y /∈ Cd (Y ∪ {t}). As the
market is contestable, t′ = t′ (t) ∈ X and h′ 6= h exist such that t′ ∈
Cd ((Y \ {y}) ∪ {t, t′}), t /∈ Cd ((Y \ {y}) ∪ {t, t′}) , and t′ /∈ Cd ((Y ) ∪ {t, t′}).
Set Y ′ = Y ∪

⋃
t∈T t′ (t). Let Sh = Y ′h for all h ∈ H. Observe that by con-

struction, Yh = brh (S−h). Furthermore, t′ (t) ∈ Rh

(
Y ′h, Y

′
−h
)
, as Y is stable

and �D are substitutable. It follows that (Sh)h∈H is an NE of Γ yielding Y

as an outcome, completing the proof of the claim.

Proof of Proposition 4. Let Y be the hospital-optimal stable allocation.
We construct an equilibrium yielding Y as an outcome. If brh (Y−h) = Yh

for all h ∈ H, the proof is complete. Otherwise, let Th 6= Yh be such that
Th = brh (Y−h). Then, Th = Ch (Yh ∪ Th), and thus, Ch (Yh ∪ {t}) is a prof-
itable deviation for h for all t ∈ Th \ Yh. Let T =

(⋃
h∈H Th

)
\ Y .

Let t ∈ T . Because Y is pairwise stable and as preferences are substitutable,
d ∈ D and y ∈ Y exist such that yH = tH = h and yD = tD = d such that
t ∈ Ch (Y ∪ {t}) ∩ Cd ((Y \ {y}) ∪ {t}) and y /∈ Cd (Y ∪ {t}).
Preferences�H satisfy the law of aggregate demand; thus, |Ch (Y )| ≤ |Ch (Y ∪ {t})|.
As Y is individually rational and as y /∈ Ch (Y ∪ {t}), Ch (Y ∪ {t}) = (Yh \ {y})∪
{t}. Observe that Cd ((Y \ {y}) ∪ {t}) = (Yd \ {y}) ∪ {t}, as preferences are
substitutable and as Cd (Cd (Y ∪ {t})) = Y .
Next consider Z = (Y \ {y}) ∪ {t}. As preferences are substitutable, al-
location Z is individually rational and Z �H Y . In particular, Z is not
stable. As Y is stable, t′ = t′ (t) ∈ X and h′ 6= h exist such that t′ ∈
Ch′ (Y ∪ {t}) ∩ Cd ((Yd \ {y}) ∪ {t, t′}) and t /∈ Cd ((Yd \ {y}) ∪ {t, t′}).

Set Y ′ = Y ∪
⋃

t∈T t′ (t). Let Sh = Y ′h for all h ∈ H. Observe that by
construction, Yh = brh (S−h). Furthermore, t′ (t) ∈ Rh

(
Y ′h, Y

′
−h
)
, as Y is
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stable and �D are substitutable. It follows that (Sh)h∈H is an NE of Γ

yielding Y as an outcome, completing the proof of the claim.

Proofs of the results in Section 4

Lemma 5 Assume that � satisfy the unitarity assumption. Then, for each
h ∈ H, brh (S−h) = Ch (Fh (S−h)) for all S−h ∈ Πh6=H′Sh′.

Proof. Let h ∈ H, and let S−h ∈ Πh6=H′Sh. We prove that brh (S−) =

max�h

{
Z ⊆ Xh |

[
CD

(⋃
h′ 6=h Sh′ ∪ Z

)]
h

= Z
}

= Ch (Fh (S−h)). Let Y =

Ch (Fh (S−h)).
First, we show that

[
CD

(⋃
h′ 6=h Sh′ ∪ Y

)]
h

= Y . Let y ∈ Y , and let
d = yD. The unitarity assumption implies that Yd = {y}. It follows that
Cd

(⋃
h′ 6=h Sh′ ∪ Y

)
h

= Yd = {y}, as y ∈ Cd

(⋃
h′ 6=h Sh′ ∪ {y}

)
, implying the

claim. It follows that brh (S−h)RhCh (Fh (S−h)).

Let Z ∈
{
Z ⊆ Xh |

[
CD

(⋃
h′ 6=h Sh′ ∪ Z

)]
h

= Z
}
. We prove that Z ⊆

Fh (S−h). Let z ∈ Z, and let d = zD. The unitarity assumption implies
that Yd = {z}. We have z ∈ Cd

(⋃
h′ 6=h Sh′ ∪ Zd

)
= Cd

(⋃
h′ 6=h Sh′ ∪ {y}

)
.

It follows that Ch (Fh (S−h))RhZ for all Z ∈
{
Z ⊆ Xh |

[
CD

(⋃
h′ 6=h Sh′ ∪ Z

)]
h

= Z
}
,

and thus, Ch (Fh (S−h))Rhbrh (S−h). As brh (S−h)RhCh (Fh (S−h)), we can
conclude because preferences are strict.

The following Lemma 6 is repeatedly used in the proof of the main results of
this section.

Lemma 6 Assume that � satisfies the unitarity assumption. Let h ∈ H,
and let S ′−h, S−h ∈ Πh′ 6=hXh′.

(i) Assuming that S ′h ⊆ Sh ⊆ Xh, then Rh (S ′h, S−h) ⊆ Rh (Sh, S−h).

(ii) Assume that �D is unilaterally substitutable. Brh (S−h) = brh (S−h) ∪
(Xh \ Fh (S−h)) is a best response.
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(iii) Assume that �D is unilaterally substitutable. Let h ∈ H. If S ′h′ ⊆ Sh′ ⊆
Xh′ for all h′ ∈ H \ {h}, then Fh (S−h) ⊆ Fh

(
S ′−h

)
.

(iv) Assume that �D is substitutable, and let Sh ⊆ Xh. Assuming S ′−h ⊆ S−h,
then Rh

(
Sh, S

′
−h
)
⊆ Rh (Sh, S−h).

(v) Assume that �H is substitutable and that �D is unilaterally substitutable.
Assuming S ′−h ⊆ S−h, then brh

(
S ′−h

)
⊆ Br (S−h).

Proof. (i) Let S ′h ⊆ Sh ⊆ Xh, and let x /∈ CD

(⋃
h′ 6=h Sh′ ∪ S ′h ∪ {x}

)
. We

prove by contradiction that x /∈ CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)
. Assume x ∈

CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)
. Unitarity implies

[
CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)]
h

=

{x}. For all x′ ∈ Sh\{h}, x′ /∈ CD

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

)
h
. As S ′h ⊆ Sh, the

IRC implies
(
Cd

(⋃
h′ 6=h Sh′ ∪ Sh ∪ {x}

))
h

=
(
Cd

(⋃
h′ 6=h Sh′ ∪ S ′h ∪ {x}

))
h

for all d, creating a contradiction. Therefore, Rh (S ′h, S−h) ⊆ Rh (S ′h, S−h).

(ii) To prove this claim, it suffices to show that CD (Brh (S−h) , S−h) =

brh (S−h). Let x /∈ CD

(⋃
h′ 6=h Sh′ ∪ {x}

)
. We prove that

x /∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪X \ Fh (S−h)

)
, implying the claim from the

IRC. By contradiction, assume that x ∈ CD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪X \ Fh (S−h)

)
.

Let d = xD. The unitarity assumption implies that
{x} =

(
CxD

(⋃
h′ 6=h Sh′ ∪ brh (S−h) ∪X \ Fh (S−h)

))
h
. Unilateral substi-

tutability implies that x ∈
(
CxD

(⋃
h′ 6=h Sh′ ∪ {x}

))
.

(iii) Assuming x ∈ Fh (S−h), then x ∈ Cd

(⋃
h′ 6=h Sh′ ∪ {x}

)
, where d =

xD. Note that h /∈
[⋃

h′ 6=h S
′
h′

]
H
. As �d is unilaterally substitutable, x ∈

Cd

(⋃
h′ 6=h S

′
h′ ∪ {x}

)
.

(iv) Let x /∈ CD

(⋃
h′ 6=h S

′
h′ ∪ Sh ∪ {x}

)
. This claim follows directly from the

substitutability of �D.

(v) We have brh
(
S ′−h

)
= Ch

(
Fh

(
S ′−h

))
∩Fh (S−h)∪

(
Ch

(
Fh

(
S ′−h

))
\ Fh (S−h)

)
.

From (iii), Fh (S−h) ⊆ Fh

(
S ′−h

)
. Therefore, the substitutability of �h im-
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plies that Ch

(
Fh

(
S ′−h

))
∩ Fh (S−h) ⊆ Ch (Fh (S−h)), concluding the proof of

the claim, as from (ii), brh
(
S ′−h

)
⊆ Brh (S−h) ⊆ BRh (S−h).

Proof of Lemma 3. From Lemma 6, to complete the proof, it suffices to
showRh

(
brh
(
S ′−h

)
, S ′−h

)
⊆ Rh (brh (S−h) , S−h). Assume x /∈ CD

(
brh
(
S ′−h

)
∪
⋃

h′ 6=h S
′
h′ ∪ {x}

)
.

From Lemma 6 (v), we have brh
(
S ′−h

)
⊆ BRh (S−h) = brh (S−h)∪Rh (brh (S−h) , S−h).

From substitutability, x /∈ CD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
.

From the IRC, it follows that CD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
=

= CD

(
brh (S−h) ∪Rh (brh (S−h) , S−h) ∪

⋃
h′ 6=h Sh′

)
=

CD

(
brh (S−h) ∪

⋃
h′ 6=h Sh′

)
. It follows that x /∈ CD

(
brh (S−h) ∪

⋃
h′ 6=h Sh′ ∪ {x}

)
.

It follows that Rh

(
brh
(
S ′−h

)
, S ′−h

)
⊆ Rh (brh (S−h) , S−h).

Proof of Lemma 4. The set of fixed points of BRH are contained in the
set of the Nash equilibrium of Γ, so it suffices to show that any NE outcome
is the outcome of a fixed point of BR. Let (S∗h)h∈H be an NE of Γ, and let
Y = g

(
(S∗h)h∈H

)
.

Assume h ∈ H. Since for each h ∈ H, S∗h is a best response to S∗−h, we
have brh

(
S∗−h

)
⊆ S∗h ⊆ BRh

(
S∗−h

)
. Consider the sequence T 0 = (S∗h)h∈H ,

T k+1 =
((

BRh

(
T k
−h
))

h∈H

)
for all k ≥ 0. Note that brh

(
T k
−h
)

= Y h for each

h and k ≥ 0. As T 0 ⊆ T 1 and BR are increasing, the sequence
(
T k
)
k≥0

,
T k ⊆ T k+1 for each t ≥ 0. As X is finite, there exists K ≥ 0 such that
TK = T s for all s ≥ K. It follows that TK is a fixed point of BR yielding Y

as an outcome.

Proof of Proposition 1. (i) First, we show two preliminary results.

(a) Let (Ah)h∈H and (Bh)h∈H be fixed points of BR such that Ah ⊆ Bh for
all h ∈ H. We show that XB = CD

(
XA ∪XB

)
, where XA = g

(
(Ah)h∈H

)
and XB = g

(
(Bh)h∈H

)
. Let A =

⋃
h∈H Ah and B =

⋃
h∈H Bh, and note that

A ⊆ B. We have XB = CD (B) = CD (A ∪B). As XA ∪ XB ⊆ A ∪ B, we
have XB = CD

(
XA ∪XB

)
.

(b) Let (Ah)h∈H and (Bh)h∈H be fixed points ofBR, and letXA = g
(
(Ah)h∈H

)
and XB = g

(
(Bh)h∈H

)
. Assume that XB = CD

(
XA ∪XB

)
. We show
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Ah ⊆ Bh for all h ∈ H. Note that XA = CH

(
XA ∪XB

)
(see Pepa Risma,

2015). Let x ∈ XA \ XB. We prove that x ∈ BRh (B−h) . Let h = xH ,
and let d = xD. The substitutability of �h implies that x ∈ Ch

(
XB ∪ {x}

)
.

The pairwise stability of XB implies that x /∈ Cd

(
XB ∪ {x}

)
. The sub-

stitutability of �d implies that x /∈ Cd

(
XB ∪

⋃
h′ 6=hBh′

)
. It follows that

x ∈ Rh

(
XB, B−h

)
⊆ BRh (B−h).

Now, let x ∈ Rh

(
XA, A−h

)
∩Xh, and let d = xD. We have

Cd

(
XA ∪

⋃
h′ 6=hAh′ ∪ {x}

)
= XA

h so XA
d = Cd

(
XA ∪ {x}

)
. The substi-

tutability of�d implies that x /∈ Cd

(
XA ∪XB ∪ {x}

)
= XB, as Cd

(
XA ∪XB ∪ {x}

)
=

XB from the IRC. It follows that x /∈ Cd

(
XB ∪ {x}

)
. Again, the substi-

tutability of�d implies x /∈ Cd

(
XB ∪

⋃
h′ 6=hBh′

)
; thus, x ∈ Rh

(
XB, B−h

)
⊆

BRh (B−h).
It follows that Ah = XA

h ∪Rh

(
XA

h , A−h
)
⊆ XB

h ∪Rh

(
XB

h , B−h
)
for all h ∈ H.

The claim follows from (a), (b) and Lemma 4. Note that the set of fixed points
of BR forms a non-empty lattice from the Tarski’s Fixed Point Theorem.

(ii) The claim follows from (i) and Pepa Risma (2015).

Proof of Proposition 5. (i) We prove the claim under unitarity only
without making any additional assumptions on �. Assume S∗ =

(
(S∗h)h∈H

)
as the NE of Γ, and let Y = g (S∗). We show by contradiction that Y is
a pairwise stable allocation. We first prove that Y is individually rational.
The proof of the claim is determined by contradiction. Assume that Y is not
an individually rational allocation for agent n ∈ N . Let n = h ∈ H. Then,
unitarity and the IRC imply that Ch (Yh) is a profitable deviation, yielding
a contradiction. Let n = d ∈ D; in this case, the contradiction follows from
Lemma 1.

We conclude the proof by showing that Y is not pairwise blocked. By contra-
diction, assume that a hospital h, a doctor d, and a contract x ∈ X \Y exist
with xD = d and xH = h such that x ∈ Ch (Y ∪ {x})∩Cd (Y ∪ {x}). First, we
prove x ∈ Cd

(⋃
s∗
h′D=d {S∗h′} ∪ {x}

)
. Set Z =

⋃
s
∗
h′D=d {S∗h′}. From Lemma
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1, Cd (Z) = Yd. By contradiction, assume x /∈ Cd

(⋃
s∗
h′D=d {S∗h′} ∪ {x}

)
=

Cd (Z ∪ {x}). From x ∈ Cd (Yd ∪ {x}) , it follows that Cd (Z ∪ {x}) �d

Cd (Yd ∪ {x}). However, as x /∈ Cd (Z ∪ {x}), Cd (Z ∪ {x}) = Cd (Z) = Yd,
yielding a contradiction.
Consider the following deviation for h, Sh = Ch (Y ∪ {x}). Unitarity and the
IRC imply that the deviation is profitable to h, yielding a contradiction.

(ii) Let h ∈ H and S ′h′ ⊆ Sh′ ⊆ Xh′ for all h′ ∈ H \ {h}. From Lemma 6,
(Brh (·))h∈H is a selection from the best response correspondence. We prove
that for all h ∈ H, Brh

(
S ′−h

)
⊆ Brh (S−h).

From Lemma 6 (iv), X \ Fh

(
S ′−h

)
⊆ X \ Fh (S−h); from Lemma 6 (v),

brh
(
S ′−h

)
⊆ brh (S−h)∪X \Fh (S−h) = brh (S−h). It follows that (Brh (·))h∈H

is an increasing selection from the best response correspondence. Thus, by
applying Tarski’s fixed point theorem, we obtain the claim.
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