
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

Spring 2019

Combining Blockchain and Swarm Robotics to
Deploy Surveillance Missions
Ardalan Razavi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Razavi, Ardalan, "Combining Blockchain and Swarm Robotics to Deploy Surveillance Missions" (2019). Master's Theses. 5015.
DOI: https://doi.org/10.31979/etd.8yta-2tbv
https://scholarworks.sjsu.edu/etd_theses/5015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SJSU ScholarWorks

https://core.ac.uk/display/223074257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/5015?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F5015&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

COMBINING BLOCKCHAIN AND SWARM ROBOTICS TO DEPLOY
SURVEILLANCE MISSIONS

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ardalan Razavi

May 2019

© 2019

Ardalan Razavi

ALL RIGHTS RESERVED

The Designated Thesis Committee Approves the Thesis Titled

COMBINING BLOCKCHAIN AND SWARM ROBOTICS TO DEPLOY
SURVEILLANCE MISSIONS

by

Ardalan Razavi

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

SAN JOSÉ STATE UNIVERSITY

May 2019

David C. Anastasiu, Ph.D. Department of Computer Engineering

Gheorghi Guzun, Ph.D. Department of Computer Engineering

Gokay Saldamli, Ph.D. Department of Computer Engineering

ABSTRACT

COMBINING BLOCKCHAIN AND SWARM ROBOTICS TO DEPLOY
SURVEILLANCE MISSIONS

by Ardalan Razavi

Current swarm robotics systems are not utilized as frequently in surveillance

missions due to the limitations of the existing distributed systems’ designs. The main

limitation of swarm robotics is the absence of a framework for robots to be

self-governing, secure, and scalable. As of today, a swarm of robots is not able to

communicate and perform tasks in transparent and autonomous ways. Many believe

blockchain is the imminent future of distributed autonomous systems. A blockchain is a

system of computers that stores and distributes data among all participants. Every single

participant is a validator and protector of the data in the blockchain system. The data

cannot be modified since all participants are storing and watching the same records. In

this thesis, we will focus on blockchain applications in swarm robotics using Ethereum

smart contracts because blockchain can make a swarm globally connected and secure. A

decentralized application (DApp) is used to deploy surveillance missions. After mission

deployment, the swarm uses blockchain to communicate and make decisions on

appropriate tasks within Ethereum private networks. We set a test swarm robotics

system and evaluate the blockchain for its performance, scalability, recoverability, and

responsiveness. We conclude that, although blockchain enables a swarm to be globally

connected and secure, there are performance limitations that can become a critical issue.

ACKNOWLEDGMENTS

I want to thank my friend and advisor Professor Gokay Saldamli, Ph.D., who

advised and supported me on this work. Nevertheless, I would like to thank my family

and friends for supporting and expecting nothing less than excellence from me

v

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

List of Abbreviations. x

1 Introduction. 1

2 Background . 3
2.1 Blockchain . 3

2.1.1 Hashing . 4
2.1.2 Asymmetric Key Cryptography . 5
2.1.3 Consensus Algorithms . 5

2.1.3.1 PoW . 6
2.1.3.2 PoS . 6

2.1.4 Smart Contracts . 7
2.1.5 Projects . 7

2.1.5.1 Bitcoin . 7
2.1.5.2 Ethereum . 8

2.2 Swarm Robotics . 8

3 Related Work . 10
3.1 Smart Cities . 10
3.2 Blockchain and Supply Chain . 10
3.3 Golem . 11
3.4 EtherDelta . 12
3.5 Swarm-Bot . 12

4 System Design . 14
4.1 Blockchain . 14

4.1.1 Ethereum Private Blockchain . 15
4.1.1.1 The main private blockchain . 15
4.1.1.2 The dedicated private blockchain . 15

4.1.2 Smart Contracts . 15
4.1.2.1 Control Center Smart Contract . 15
4.1.2.2 Rescue Mission Smart Contract . 15

4.1.3 Node types . 16
4.1.3.1 Light Node . 16
4.1.3.2 Full Node . 16
4.1.3.3 Bootnode . 17

vi

4.2 Robots . 17
4.3 The Control Center DApp . 18
4.4 Storage Methods . 20

4.4.1 InterPlanetary File System (IPFS) . 21
4.4.2 Smart Contracts . 22

4.5 Communication Methods. 22
4.6 Security . 22
4.7 System Flow . 24

4.7.1 User and Robots Registration . 25
4.7.2 Surveillance Mission Smart Contract’s Deployment. 26
4.7.3 Robots’ Blockchain Node Deployment . 27
4.7.4 Surveillance Mission. 28

5 Evaluation . 30
5.1 Test Setup . 30
5.2 System Evaluation . 31

5.2.1 Performance . 32
5.2.2 Scalability . 35
5.2.3 Recoverability . 36
5.2.4 Responsiveness . 37

6 Discussion and Future Work . 38

7 Conclusion. 40

Literature Cited . 41

vii

viii

LIST OF TABLES

Table 1. SHA256 Hash Function Input and Output . 5

Table 2. System Performance Test . 32

Table 3. Transactions Performance Test at Initiation Stage . 35

Table 4. Transactions Scalability . 35

Table 5. Recoverability Test . 36

Table 6. Responsiveness Test . 37

ix

LIST OF FIGURES

Fig. 1. Blockchain overview. 3

Fig. 2. Overview of Golem’s network infrastructure. 12

Fig. 3. Centralized vs decentralized network. 14

Fig. 4. The blockchain nodes. 16

Fig. 5. The control center smart contract deployment. 18

Fig. 6. Swarm storage. 20

Fig. 7. Traditional file system vs InterPlanetary File System. 21

Fig. 8. Multi signature overview. 24

Fig. 9. Swarm registration. 25

Fig. 10. surveillance mission deployment. 26

Fig. 11. A Robot activation flow. 28

Fig. 12. Robot’s activation flow. 29

Fig. 13. Virtual robot experimentation platform. 30

Fig. 14. Testing setup overview. 31

Fig. 15. Time taken for all Geth clients to run. 33

Fig. 16. Time taken for all peers to connect . 34

LIST OF ABBREVIATIONS

CMPE Department of Computer Engineering
DApp Decentralized Application
EVM Ethereum Virtual Machine
IoT Internet of Things
IPFS InterPlanetary File System
PoW Proof of Work
PoS Proof of Stake
SJSU San José State University

x

1 INTRODUCTION

Swarm robotics is a field that studies how a large number of simple robots manage

and coordinate complex tasks as a group using local knowledge. Local knowledge can

be defined as the information gathered by each robot’s sensors. Swarm robotics systems

have been used in various industries to perform specific tasks without global knowledge

or any decision making as a group [1]. For instance, the automotive industry has been

using robots that perform a task together without global knowledge. Swarms of this kind

have a high dependency on each other. As Navarro and Matia [2] mention in their paper,

an ideal swarm should have the following advantages:

• Improved performance by using parallel computing

• Higher achievement by using the swarm’s processing power

• Distributed environment sensing

• Higher fault tolerance

As mentioned in [3], swarm robotics systems are facing problems due to the lack of

global awareness. Also, Ferrer mentions [4] “One of the main axioms in the swarm

robotics field has been the absence of global knowledge or explicit communication

models between swarm robots.” This problem prevents swarms from behaving

dynamically, and it creates deadlocks while performing tasks. The decisions are made

based on local knowledge. As a result, the traditional swarm robotics systems have

limitations when it comes to jobs that require cooperation and consensus. Blockchain is

a technology that has shown great potential for managing distributed systems. After

observing Bitcoin’s use of blockchain, new projects like Ethereum were developed.

Ethereum introduced the idea of smart contracts which make it possible to store logic

(code) on the blockchain. The combination of blockchain and swarm robotics can bring

security and global awareness to a distributed swarm of robots. In this paper, we

1

simulate a swarm robotics system that uses the Ethereum blockchain to determine its

usability in the swarm robotics field.

2

2 BACKGROUND

2.1 Blockchain

Blockchain is an immutable digital ledger system that is distributed among

computers in a network. Blockchain chains the blocks of data to each other using a

cryptographic hash without a central authority. The ledger grows in size with time [5].

The data in a ledger are immutable after blocks are verified. Immutabilitable data brings

security and transparency. Fig. 1 shows a simple overview of how blockchain

technology works. Three concepts should be distinguished when talking about

Fig. 1. Blockchain overview.

blockchain; The blockchain, the protocol, and the cryptocurrency [6]. Cryptocurrencies

are digital money stored on a blockchain network. Protocols are the rules within the

3

blockchain network. These components differ from a blockchain to another. The first

usage of blockchain technology was in the form of cryptocurrency (Bitcoin). Each

cryptocurrency owner can make electronic transactions from his or her account to

another. Each electronic transaction is signed by the account owner’s private key and

verified by network participants. Each block consists of a header and a list of

transactions which are chosen from the participant’s transaction pool. The participants’

job is to verify all of the transactions in a block and solve a puzzle unique to that block.

Once the puzzle is solved, the answer is added to that block header. Then, the block is

broadcasted to the network where all of the other participants verify the validity of the

block. These participants are rewarded with cryptocurrency.

2.1.1 Hashing

An important component of the blockchain is the use of cryptographic hash

functions. Hashing is a method of calculating a unique fixed-size output from an input.

Any change to the input will change the hash value. As shown in Table 1, the slightest

change to the input alters the output of the SHA256 function. The hash function

algorithms are one-way. One-way means that the input cannot be calculated from its

output. It is not feasible to compute the same output from different inputs. As a result,

hash algorithms are collision resistant. Secure Hash Algorithm (SHA) is a popular

choice among the blockchain technologies. The SHA algorithm is supported by most

computer hardware. One of the usages of this type of algorithm in blockchain is hashing

each block’s transaction list and creating a fingerprint. If a single transaction changes

then the fingerprint is different. This way any minor change within a block is easy to

detect.

4

Table 1

SHA256 Hash Function Input and Output

Input Output
blockchain EF7797E13D3A75526946A3BCF00DAEC9F

C9C9C4D51DDC7CC5DF888F74DD434D1
Blockchain 625DA44E4EAF58D61CF048D168AA6F5E

492DEA166D8BB54EC06C30DE07DB57E1
Blockchains E7BFC01C0D3B22212BFC777460E7B3B9

F3FB03E512F70FD4BD43AC669348BDE3

2.1.2 Asymmetric Key Cryptography

A fundamental technology used by blockchain technologies is asymmetric key

cryptography [7]. This cryptographic method uses two keys to encrypt and decrypt a

message. A public key may be made public for anyone who wants to send data to the

person holding the corresponding private key. The private key is kept as a secret on the

contrary to the public key. A public and a private key are generated mathematically.

These two keys are related to each other. Data encrypted with a public key can be

decrypted with the related private key. Also, data encrypted with a private key can be

only decrypted with the related public key. The asymmetric key cryptography is utilized

in blockchain systems for the following use cases:

• Private keys sign transactions

• Public keys create accounts

• Public keys verify signatures

2.1.3 Consensus Algorithms

A consensus is a task of reaching an agreement on data within distributed processes.

In a distributed, open, and trustless system nodes can act maliciously. Blockchain

technology uses different consensus algorithms to verify state changes validity within a

blockchain network. All of the participant nodes in a network work together to verify

the system integrity using a consensus algorithm. This eliminates a need for a

5

centralized authority to verify the state changes. It also empowers all of the participants

in a blockchain network to vote on state changes. Two of the most popular consensus

algorithms are Proof of Work (PoW) and Proof of Stake (PoS).

2.1.3.1 PoW: In PoW, all participant nodes compete to solve the

computationally expensive puzzle for each block. A node can suggest a new block to the

blockchain network once the answer to the puzzle is found. A node is called miner if it

engages in PoW consensus by solving these puzzles. Solving puzzles are challenging,

but verifying the solutions are quick and easy. This way, all of the participant nodes in a

network can quickly verify the validity of the proposed solutions. A block is added to

the blockchain if other nodes confirm a solution. In PoW, miners compete against each

other to solve puzzles and add blocks to a blockchain. A hash function is used by a

miner to find a 32-bit unique number for each block. This unique number is called

nonce. A miner adds a generated nonce to the block header and hashes the block header

using a hash function. The result is a 256-bit hash value that should start with a certain

number of zeros. Finding a nonce is a brute force method. A miner might find a valid

nonce in a first try or it might take a long time.

2.1.3.2 PoS: PoS also ensures that the miners agree on the same branch of data

in a blockchain network. PoS eliminates the race condition produced in PoW. In PoS, a

miner is elected with a probability which is proportional to the amount of stake it owns

in the blockchain network. This way, miners are not competing to solve a mathematical

problem. The miner stake is at risk if a false block is committed to the blockchain

network. A false block is a block in which one or multiple transactions are not valid.

The blockchain keeps track of network validators. A validator can be anyone who holds

a blockchain’s cryptocurrency. A validator needs to send a special type of transaction

that locks up the stake into a deposit transaction. A new validator is selected during each

6

time slot and can create a new block that points to a previous block. PoS reduces

electricity consumption and centralization risks in a blockchain network.

2.1.4 Smart Contracts

A smart contract is a self-executing code that is stored on a blockchain. The miners

are responsible for verifying each smart contract. A smart contract can take actions at

specified times or based on the occurrence of actions or events defined in its code. A

smart contract is not necessarily smart. The smartness of a smart contract comes from

the data and the information that it receives and the code that directs it. An example of a

smart contract is decentralized voting. Voters can vote using methods defined in the

smart contract. The participant nodes in the network verify the validity of votes. A smart

contract can do what its code instructs it to do based on the input. The miners verify the

smart contract transactions. Each instruction in a smart contract has a cost associated

with it. As a result, a user is responsible to pay fees when sending transactions to a

smart contract. These fees encourage mining nodes to participate in a network, and they

prevent malicious users from performing a denial of service by executing a

computation-heavy smart contract function.

2.1.5 Projects

2.1.5.1 Bitcoin: Bitcoin is the first cryptocurrency build on top of a blockchain.

Bitcoin is created by Satoshi Nakamoto. Satoshi’s motive was to improve the banking

and financial industry by making it decentralized. Bitcoin is used as a digital currency.

Bitcoin transactions are stored on distributed ledgers. Bitcoin operates using nodes that

are connected using peer-to-peer connections. As bitcoin founder Nakamoto mentions in

Bitcoin’s white paper, “The network timestamps transactions by hashing them into an

ongoing chain of hash-based proof-of-work, forming a record that cannot be changed

without redoing the proof-of-work” [8]. Bitcoin uses the PoW consensus algorithm to

verify the blocks. Bitcoin nodes solve the puzzle for each block and chain those blocks

7

together by linking the previous block to the newly created one. The PoW is considered

inefficient and not substantial because of race condition between all of the nodes to

solve a block. All of the nodes in a network are trying to verify the same block in

parallel until one node finds the solution and broadcast it to the network.

2.1.5.2 Ethereum: Ethereum blockchain is a successor of Bitcoin. As of today,

the Ethereum blockchain uses the PoW consensus algorithm. As Ethereum founder,

Buterin, mentions in his Ethereum white paper [9], Ethereum is a blockchain with a

built-in Turing-complete programming language which allows anyone to write code that

gets stored on the Ethereum blockchain. Decentralized applications (DApp) can create

their own arbitrary rules for ownership, transaction formats, and state transition

functions within the smart contracts. DApps are applications that interact with the

Ethereum blockchain network instead of centralized servers. In the Ethereum

blockchain, a smart contract gets executed in the Ethereum Virtual Machine (EVM), and

its code is written in Solidity (Ethereum smart contract language). Each interaction with

the Ethereum blockchain is either a call or a transaction. A call doesn’t change the

blockchain state. On the other hand, a transaction changes the state of the blockchain.

Blockchain browser bridges are required by DApps. Metamask is a browser bridge that

lets a user interact with a DApp in a browser. Ethereum nodes are the gateways to any

Ethereum network. A machine can become a node in an Ethereum network by running

an Ethereum client. There are different Ethereum clients developed. The most famous

ones are Geth, Parity, and eth (cpp-ethereum).

2.2 Swarm Robotics

Swarm Robotics is inspired by self-organizing behaviors of insects in nature. Swarm

robotics is the study of how a group of simple agents can be designed such that a global

state can be reached by agents’ communication and observation of an environment [10].

For instance, ants work in swarms to accomplish tasks which can not be accomplished

8

by a single ant. Swarm robotics is a newly emerging field in engineering which aims at

modeling a system which consists of simple agents with micro-tasks assigned to them.

All agents in these type of systems perform their micro-tasks that create a

well-organized system. These systems can accomplish tasks that are beyond the power

and capabilities of a single agent. The study of the insects in nature has shown that

communication and data exchange between all of the insects in the swarm is not

centralized [11]. By observing the swarm of insects in nature, researchers learned the

following characteristics of swarms:

• Robustness: The Swarm should be able to operate in case of disasters and failures.

For instance in a ants swarm, if an ant fails, another one can accomplish the task

without any disruption in the overall swarm. There are a few factors which make a

swarm robust:

– Redundancy: An individual failure can be compensated by other individuals.

– Decentralized: There is no single point of failure in the swarm. If one part of the

swarm is damaged, then the swarm can continue on its task with effective

communication.

• Flexibility: One of the main characteristics of the swarm is to be able to be flexible

and respond to different situations in a suited and logical way. For instance, ants act

differently when pulling or lifting something together.

• Scalability: A swarm should be able to operate in the same way with a change of

workload.

9

3 RELATED WORK

3.1 Smart Cities

Cisco is currently working on making cities smart around the globe by using Internet

of Things (IoT) devices. The sensors around the city gather information and send them

to a centralized control center which has the logic layer built in. All type of useful

information can be collected using different sensors. For example, passive infrared

sensors can be used to track the status of all parking spots around a city. None of the

existing systems currently are capable of communicating and publishing their data

without the need for a central control system. Users need to access the central server if

they want to query the data from all of the sensors. According to IEEE, two of the

biggest challenges of large IoT projects like smart cities are security and

connectivity [12]. By having so many sensors installed in cities, a centralized server and

client architecture is not scalable. An ideal design is to have peer-to-peer

communications between all participating devices within an IoT network.

3.2 Blockchain and Supply Chain

A supply chain can be defined as a set of entities directly involved in flows of

products, finance, services, and information from a source to customers [13]. One of the

biggest concerns in the supply chain is how to track all of the activities and actions from

the starting point, logistics, and eventually delivery. Many companies started looking

into blockchain technology to bring transparency to the supply chain. According to

IBM [14], using blockchain in the supply chain will help with the following issues:

• Reducing or eliminating fraud and errors since the transactions are immutable

• Reducing the time spent on documentation by humans

• Bringing transparency in all operations

• Increasing trust between parties

10

The Blockchain in Trucking Alliance (BiTa) was formed by some of the technology

giant (for instance UPS and FedEx) executives to create a forum for the development of

the blockchain standards used in the supply chain. In addition, companies like VeChain

are working to build a global enterprise level public blockchain platform for supply

chains. VeChain’s goal is to connect blockchain technology to the real world by

providing a comprehensive governance structure. VeChain wants to accomplish these

tasks by the integration of IoT devices with real-world applications. VeChain makes it

possible for products’ end-users and suppliers to track products’ journey from start point

to end point. This provides transparency and security for the supply chain processes.

3.3 Golem

Not every individual has access to a supercomputer to solve complex problems.

Project Golem is trying to solve this issue by creating a distributed and decentralized

supercomputer available to all of the participants in the Golem blockchain network. It

enables people to access the decentralized computing power of other people’s

computers. The Golem blockchain relies on people running Golem nodes. Golem allows

individuals to earn money from unused computation resources that they own. Golem is

built on top of the Ethereum blockchain and connects computers in a peer-to-peer

network. Users can upload computing jobs to the Golem network, and the job will be

distributed between a network of peer-to-peer connected computers. Computers

(owners) that complete the jobs are called “providers”. Users who request computing

jobs are called “requesters”. The value (token) stored on Golem network is called GNT.

GNT is the form of incentive transferred from requesters to providers. Each provider

earns GNT based on the amount of computing power used on a job. Golem uses

Ethereum smart contracts to manage each job’s payments. Payments are distributed

among the providers without a need for a centralized authority. As shown in Fig. 2

providers register their hardware (computing) to the Golem network. In addition,

11

developers create and build software solutions that can be utilized by users. Requesters’

demand is fulfilled by providers’ registered hardware. Both developers and providers are

rewarded for their contributions to the Golem network [15].

Fig. 2. Overview of Golem’s network infrastructure.

3.4 EtherDelta

Etherdelta is a decentralized cryptocurrency trading platform and a DApp. Users can

exchange Ethereum based tokens directly with other users. Users need to use browser

bridges like Metamask or their Ethereum token wallet private key to interact with

Etherdelta. Etherdelta operates using smart contracts that are stored on Ethereum

blockchain. These smart contracts provide exchange functionalities.

3.5 Swarm-Bot

Swarm-Bot is the first Search and Rescue (SAR) project in swarm robotics. The

project was inspired by colonies of ants. The project replicated ants’ activities like

12

transporting objects, building nests, and building bridges to move from one point to

another. Each s-bot was designed as a simple but fully autonomous unit capable of

moving, sensing the environment, and acting based on swarm consensus [16]. In

addition, each robot was equipped with sensors and communication devices to

communicate with other robots. The swarm acted only based on local knowledge.

13

4 SYSTEM DESIGN

The designed swarm uses Ethereum private blockchains and smart contracts to

communicate and store data. The control center is a DApp that uses smart contracts to

interact with the Ethereum private blockchain. The control center deploys a surveillance

mission contract per user request. In addition, after deployment, the user can monitor

the deployed swarm’s activities by interacting with the Ethereum private blockchain.

Each robot is deployed with a code that provides the capabilities for the robot to interact

with the blockchain and perform its tasks.

4.1 Blockchain

One of the main characteristics of the blockchain is decentralization. Fig. 3 shows

traditional centralized network on the left and the decentralized on the right. As

mentioned in the Ethereum white paper [9] “Decentralized consensus gives Ethereum

extreme levels of fault tolerance, ensures zero downtime, and makes data stored on the

blockchain forever unchangeable and censorship-resistant.”. The blockchain is

responsible for validation and storing all of the actions performed in the swarm by all

participants. By using blockchain in the swarm, the problem of having a point of failure

is eliminated.

Fig. 3. Centralized vs decentralized network.

14

4.1.1 Ethereum Private Blockchain

The swarm communication, global knowledge, and command infrastructure are built

on top of an Ethereum private blockchain. Robots use the PoW consensus and smart

contracts to form a swarm.

4.1.1.1 The main private blockchain: One blockchain is deployed only for the

sole purpose of the control center smart contract deployment. This private blockchain is

called the main private blockchain network.

4.1.1.2 The dedicated private blockchain: Another type of private blockchain is

deployed for each mission. This blockchain network is a dedicated private blockchain

network. A dedicated private blockchain starts with a mission request and ends once the

mission terminates.

4.1.2 Smart Contracts

There are two types of smart contracts deployed on the system blockchain networks.

First, the control center smart contract is deployed on the main private blockchain

network. Second, as many as needed surveillance mission smart contracts are deployed

on a dedicated private blockchain.

4.1.2.1 Control Center Smart Contract: The control center smart contract is the

first transaction committed to the main private blockchain network. The contract is the

main component of the control center DApp. All users’ and robots’ registration

processes use this smart contract. After registration, participants are able to interact with

the main private network. More information is provided in 4.7.1 about the registration

flow.

4.1.2.2 Rescue Mission Smart Contract: A user uses the control center DApp

to create and deploy a surveillance mission smart contract. Employed robots’

information needs to be passed into the contract’s constructor. Each contract is

constructed using each robot’s address and initial location. No other robot can interact

15

with the smart contract after deployment. The mission robots update their information

using this contract. Each robot’s speed, movement, and direction are stored on the

contract. More information is provided in 4.7.2.

4.1.3 Node types

The Ethereum network has full and light nodes. Fig. 4 shows the relationship

between the light and full nodes in an Ethereum network. In each swarm, light and full

nodes are used to reduce the storage size and computation time in a swarm.

Fig. 4. The blockchain nodes.

4.1.3.1 Light Node: A light node as the name implies does not store the

blockchain history locally; it gets the current state of the blockchain. In addition, a light

node does not verify transactions that are committed to a blockchain. As a result, a light

node is a great candidate for the robots that have computation power and storage

limitations.

4.1.3.2 Full Node: A full node is responsible for storing the full history of a

blockchain. In addition, a full node performs all of the transactions’ verifications

(mining). In a network, light nodes rely on full nodes to perform their tasks. A full node

16

stores all the records from the first block (genesis block) to the latest block of a

blockchain. A swarm’s full nodes execute all of the transactions committed to the

network.

4.1.3.3 Bootnode: In each swarm, one bootnode is deployed. The only task of

a bootnode is to keep track of all of the nodes in a network. A bootnode only promotes

awareness to the nodes about the existence of other nodes in the network. It does not

perform any blockchain related tasks in the swarm. The nodes in a network use a

bootnode to find and connect to other peers.

4.2 Robots

Robots are the service providers in the system. Each robot must have a daemon

process running at all times on its system. The daemon code is downloaded from the

control center DApp. The daemon provides the following capabilities:

• Communication with the main private blockchain

• Communication with the dedicated private blockchain

• Deployment of a dedicated private blockchain node by running a Geth client

• Communication with IPFS network

Each robot needs to be registered in the system by using the control center smart

contract. Only a registered robot can interact with the system. A registered robot is

activated when a user requests a surveillance mission from the control center. Before the

activation, a robot constantly checks to see if it is activated. Once activated, the robot

becomes a full or a light node by running a Geth client. The robot uses a Geth client to

connect to other activated robots. Once a robot joins a swarm, it constantly updates the

following information:

• Location

• Speed

• Sensors data

17

• Upload vision data if needed

4.3 The Control Center DApp

The control center DApp is deployed on the main private Ethereum blockchain. The

main component of the control center is the control center smart contract. Fig. 5 shows

the deployment process of the contract.

Fig. 5. The control center smart contract deployment.

First, the admin compiles the contract using solidity compiler to get the bytecode

and contract’s interface. Then, a transaction is sent to a private main network’s node by

including the bytecode. The node broadcasts the transaction to the network. The

18

transaction is confirmed with the PoW mining process. Next, the contract’s address is

retrieved from the transaction’s receipt. The control center DApp then stores the

contract’s address and interface for future uses. A user can use the control center DApp

to create and deploy a surveillance mission contract. Below is the overview of the steps

performed by a user and the robots before and after each surveillance mission

deployment:

• Robots:

– Register using the control center smart contract

– Download the surveillance mission code

– Check the control center smart contract to see if they have been activated

– Join the dedicated mission blockchain network

• Users:

– Registers using the control center (DApp)

– Provides the following data for the surveillance mission:

∗ The number of robots needed

∗ Approximate Location (longitude and latitude) of the job

– Monitor the swarm after activation using the control center DApp

The control center DApp provides monitoring interfaces for different private

blockchains. Each working swarm periodically stores its recent status in the blockchain.

The DApp provides two monitoring interfaces. One monitoring interface is dedicated to

a swarm’s performance. The monitoring interfaces use an open-source monitoring tool

called “eth-netstat”. Second monitoring interface is dedicated to the swarm’s dedicated

private network status. Location, speed, number of active agents, and swarm data are

listed for a user to monitor the status of the working swarm.

19

4.4 Storage Methods

InterPlanetary File System (IPFS) and the blockchain smart contracts are the two

methods of storage used in a swarm. Fig. 6 shows an overview of smart contract and

IPFS relation in a swarm.

Fig. 6. Swarm storage.

Each robot is capable of uploading camera images to the IPFS network at the time

of surveillance. Images are uploaded to the IPFS network by a robot. Then, a hash is

returned from an IPFS node. Next, the hash is stored on the mission smart contract by

the robot. A user can view the image by using the control center DApp monitoring

interface. The control center DApp gets the hash by calling and retrieving the image

20

address (IPFS hash) from the mission smart contract. Then, it downloads the image

from the IPFS network and shows it to a user.

4.4.1 InterPlanetary File System (IPFS)

As Benet mentions in his paper [17] “The InterPlanetary File System (IPFS) is a

Peer-to-Peer distributed file system that seeks to connect all computing devices with the

same system of files.”. Robots throughout the life span of a swarm use IPFS to upload

and retrieve files from the distributed and decentralized file system. The command

center is able to pull the data from the IPFS network without putting any load on robots.

Files stored on the IPFS network can not be modified and tempered due to the usage of

cryptographic hash for each file. The address of each file is the hash of its content. Fig. 7

shows the difference between traditional and IPFS storage design. In a centralized file

system, there is a high dependency on a single point of failure. On the other hand, all

nodes are connected without a single point of failure in the IPFS network. IPFS uses

content-based addressing instead of location-based addressing. Once a file is stored on

IPFS, its content hash is returned. The hash can be used to retrieve the file from the

IPFS network.

Fig. 7. Traditional file system vs InterPlanetary File System.

21

4.4.2 Smart Contracts

Smart contracts are used as a storage utility in a swarm. Users, robots, and

surveillance missions information is stored in the smart contracts. Users and robots

registration data are stored in the control center contract. In addition, robots store their

current status in a surveillance mission contract. Storing large data in smart contracts are

expensive because all nodes need to store the blockchain ledger locally. As a result,

using IPFS and smart contracts together is the best solution for storing large data in a

swarm. First, data is stored on the IPFS network. Then, the returned hash from the IPFS

network is stored in a smart contract.

4.5 Communication Methods

Swarm participants use Peer-to-Peer connections to interact with other blockchain

participants and sync data. Robots use the Ethereum Geth client to connect to the

blockchain. Geth is a go language Ethereum client that is capable of interaction with the

Ethereum network. For data transfer, robots use a protocol named RLPx. RLPx enables

robots to transfer encrypted and serialized data. Robots agree on a cryptographic

protocol for the encryption and signing of the data. These protocols are “eth” for full

nodes and “les” for light Ethereum nodes. After the protocol exchange, subsequent

messages are transmitted based on the chosen protocol.

4.6 Security

Asymmetric key cryptography is the fundamental technology used by blockchain.

Asymmetric key cryptography uses private and public keys to decrypt and encrypt data.

In a swarm, robots public key is used to create their blockchain addresses. Robots

private keys are stored locally in each robot’s storage. The Asymmetric key

cryptography utilized by blockchain has the following uses [18]:

• A public key is used to create blockchain addresses.

22

• A public key is used for signature verifications (signed by private keys).

• A private key is used for the digital signature of each transaction.

• Keys used for the resource (smart contract) action restriction.

Furthermore, it is possible to use a multiple signature (multisig) method for securing a

critical action defined in the smart contract. The multisig method requires more than one

robot to approve the action that a single robot wants to perform. Fig. 8 shows the

example of usage of a multisig transaction within a swarm. Robot E wants to relocate

and move from location A to location B. As a result, robot E adds its action to the

required permission action list of the smart contract. Robots A, B, and C are authorized

to participate in the consensus to vote for robot E relocation. Robot B and C vote yes to

the relocation of Robot E. The transactions are signed by their private keys and verified

in the smart contract. Robot E relocates due to the majority of voters agree on the

relocation action.

23

Fig. 8. Multi signature overview.

4.7 System Flow

In this section, the main system events are described to give an in-depth

understanding of the system’s life cycle. In the first step, all robots and users must be

registered in the system. Only authorized robots (registered) are capable of providing

services. On the other hand, only authorized users (registered) are capable of requesting

services. Each user surveillance mission request initiates a surveillance mission smart

contract deployment on a dedicated private blockchain. Then, robots join the

24

surveillance mission based on the user request and the control center order. The robots

join a dedicated mission private blockchain to start the surveillance mission that is

requested by the user.

4.7.1 User and Robots Registration

Users and robots need to register in the system using the control center smart

contract. All of the registration data is stored on the smart contract. As mentioned before,

only registered users are authorized to request a surveillance mission. Only registered

robots are authorized to join and participate in a mission. A surveillance mission smart

contract is deployed on the Ethereum private blockchain. Robots automatically register

using the running daemon code. Fig. 9 shows the overview of registration.

Fig. 9. Swarm registration.

25

Users and robots need to provide different information at the time of registration.

Robots need to provide blockchain address and geolocation. Users need to provide

blockchain address, username, the mission location (providing boundaries).

4.7.2 Surveillance Mission Smart Contract’s Deployment

The control center DApp provides the capability for the users to deploy a

surveillance mission on the Ethereum private blockchain. The users are the only actors

in the system who can initiate surveillance mission service requests. As mentioned in

4.7.1, only registered users are authorized to request a service. Fig. 10 shows the

overview of the steps taken to deploy a surveillance mission smart contract.

Fig. 10. surveillance mission deployment.

26

Each surveillance mission contract is deployed with the required information. In

stage one of the process, a user requests a surveillance mission service based on the

information provided at the registration point. In stage two, the control center DApp

interacts with the control center smart contract to check if the required number of robots

are available for the specific mission. In stage three, a surveillance mission contract is

deployed on a dedicated Ethereum private network if the mission requirements are met.

The requirements of a mission are the robots’ location and charging rate. The mission

contract is deployed on a dedicated private blockchain. The mission deployment on a

dedicated private network eliminates the unnecessary PoW computation by the swarm.

Also, the blockchain ledger is dedicated only to the swarm’s activities. The surveillance

mission contract is constructed by passing a list of the service provider robots.

4.7.3 Robots’ Blockchain Node Deployment

Each robot executes a Geth client when it is activated. The control center activates a

robot if the robot is available and fits a surveillance mission criteria. Below is the

control center smart contract activation method:

f u n c t i o n a c t i v a t e R o b o t (a d d r e s s r o b o t a d d r e s s) p u b l i c r e t u r n s (boo l){

i f (msg . s e n d e r == admin){

r o b o t s a c t i v a t e d [r o b o t a d d r e s s] = t r u e ;

r e t u r n t r u e ;

}

r e t u r n f a l s e ;

}

A robot is constantly checking its activation status. Once the robot’s activation flag

is set, the robot initiates a Geth client to create a swarm by connecting to all other

activated robots in a dedicated mission private blockchain. Fig. 11 shows the flow chart

of this step.

27

Fig. 11. A Robot activation flow.

4.7.4 Surveillance Mission

Robots are constantly updating their information after being activated. Robots’

Information is updated using transactions sent to the mission’s smart contract. Each

robot sends transactions to the private blockchain network. Fig. 12 shows the overview

of information updates by robots by storing them in a surveillance mission smart

contract.

28

Fig. 12. Robot’s activation flow.

Each robot running a Geth client is capable of communicating with the blockchain.

Each robot updates its location and speed by sending transactions to the blockchain

network. Each robot in swarm collects data by using its sensors and vision capability. In

the event of finding the desired surveillance information, a robot stores the data in the

mission smart contract. Vision data (an image) is updated in two steps. First, the data is

uploaded to the IPFS network. Then, the returned hash value is stored on the smart

contract. A user can retrieve the data by using the control center DApp.

29

5 EVALUATION

The focus of this section is to evaluate the usability and application of the existing

Ethereum blockchain with the PoW consensus in a swarm of robots. Performance,

scalability, recoverability, and responsiveness of the system are evaluated.

5.1 Test Setup

All tests and evaluations are performed on an Intel(R) Core(TM) i7-7700 CPU

3.60GHz (x86 64 bit) Linux (Debian stretch) 9.6 with four cores (8 CPU) and 16GB

RAM. Virtual Robot Experimentation Platform (VREP) is used for the swarm’s

simulation. VREP is based on a distributed control architecture. Fig. 13 shows the

virtual environment created by VREP.

Fig. 13. Virtual robot experimentation platform.

As shown in Fig. 14, Kubernetes is used for container orchestration. Each robot is a

docker container (process) in the testing environment. Each robot system’s image is

custom built to provide the capabilities discussed in 4.2. Each robot sends commands to

30

the VREP simulation environment’s controllers for the simulation of its movements and

actions. In addition, a Redis server is used to orchestrate the swarm’s testing.

Fig. 14. Testing setup overview.

5.2 System Evaluation

The system evaluation was performed to answer one question: Is it feasible to use

the Ethereum blockchain in a swarm robotics system to perform the surveillance

mission? In each test, the CPU usage of each robot is monitored. The goal is to find a

threshold at which a robot can perform all of the tasks mentioned in 4.2. Each test is

conducted in a swarm of different sizes. The Linux machine mentioned in 5.1 can run at

most nine Geth clients at the same time. As a result, the minimum size of swarm being

tested is three and the maximum size is nine.

31

5.2.1 Performance

As mentioned in section 2.1.5.2, each interaction with blockchain is either a call or a

transaction. Transactions need to be confirmed and verified by all of the blockchain

network participants (miners). First, the robots’ CPU utilization was monitored to find

the ideal specifications for robots. An ideal specification is the minimum setting that a

robot needs to be able to perform all of the tasks mentioned in 4.2. This test was

performed in a swarm of size five. Each robot commits ten transactions in each test case.

Also, each robot has ten percent of the total memory (16GB total). The time required to

commit and verify all of the transactions is monitored. The CPU percentage represents

the utilization of each computer core (eight cores, 3.60 GHz). Fig. 3 shows the result of

these tests.

Table 2
System Performance Test

CPU % Memory % Avg Block Time Avg Transaction per Block Time
5 10 9.2 0.17 362.23
10 10 7.5 0.36 149.43
15 10 3.4 0.55 104.98
20 10 2.39 0.89 83.71
40 10 2.46 0.92 38.66
60 10 2.42 2.4 23
80 10 2.46 2.3 29.19
100 10 2.43 3.57 15.36

Next, this study measured the required time for robots’ Geth deployment and

peer-to-peer connectivity. After running a Geth client, a robot becomes a node in a

swarm’s blockchain network. A normal state is defined as a state in which robots are

fully synced and connected. There are three steps required before starting the time

measurement. First, a user and robots need to be registered in the system (4.7.1).

Second, users request a mission (4.7.2). Third, robots activate a Geth client (4.7.3). The

timing starts from the point that all of the robots’ activation flags are set to true, and it

32

ends when all of the robots are connected. Fig. 15 shows the result of the timing of the

Geth client execution by swarms of different sizes.

3 5 7 9
0.3

0.4

0.5

Robots

Se
co

nd
s

Fig. 15. Time taken for all Geth clients to run.

Fig. 16 shows the result of the required time for each swarm to be fully connected. It

can be said that a swarm is fully connected when all of the peers are connected.

33

3 5 7 9
4

5

6

7

Robots

Se
co

nd
s

Fig. 16. Time taken for all peers to connect

As mentioned in section 4.7.4, the robots are constantly updating their information

by committing the transactions to the blockchain’s surveillance mission smart contract.

Table 3 shows the performance test results of the robots’ information updates. This stage

starts once all the robots have a Geth client running locally, and it ends when the

surveillance mission is finished. In this stage, each robot is actively moving around in an

assigned area. An area is assigned to each robot at the time of a mission deployment.

The “setRobotMetadata” is the smart contract’s method used by robots to update their

information. Robot’s Speed, longitude, and latitude are passed as the transaction

arguments in every robot’s information update.

The Average Duration column is the total time that a swarm needs to commit and

confirm all of the transactions. The average time of a block verification by all miners

was about 1.1 second. Each block contained an average of 4.24 transactions.

34

Table 3
Transactions Performance Test at Initiation Stage

Swarm Size Each Robot Transaction Count Average Duration in minutes
3 300 1.16
3 3000 10.86
3 30000 115.6
5 500 1.65
5 5000 16.03
5 50000 187.2
7 700 2.58
7 7000 21.5
7 70000 250.8
9 900 4.1
9 9000 26.4
9 90000 307.7

5.2.2 Scalability

As mentioned in section 2.1.5.2, each full node stores a local copy of the blockchain

ledger. Since robots do not have an unlimited storage space, storage becomes a critical

metric to measure. The storage examination starts when the first transaction is

committed, and it ends when all of the transactions are confirmed. The

“setRobotMetadata” method is used as well for testing storage scalability. The test is

performed on a swarm with five robots. The result is shown in Table 4.

Table 4
Transactions Scalability

Total Transaction Count Average megabytes added to the ledger
500 1.1
5000 13.8
50000 122
500000 1302
5000000 12422
50000000 129000

As stated in section 4.1.3, two types of Ethereum nodes are used in a swarm.

Change of node types within a swarm doesn’t change the storage utilization. Using light

nodes within a swarm only puts more computation and storage load on the swarm’s full

nodes. If we assume that the block time is two seconds and each block contains an

35

average of four transactions, then we can say that a minimum of four Gigabyte is added

to the ledger in twenty-four hours.

5.2.3 Recoverability

Applications crash for various reasons which can be out of the control of the

developers [19]. Crashes and failures such as power outage and network congestion can

happen at any point of a swarm’s life cycle. Recoverability testing is evaluating the

recovery time of a swarm after a failure. In this test, a swarm starts in a normal state. A

normal state can be defined as the state in which all of the robots are connected using

peer-to-peer over TCP connection (RPLx). A crash is simulated in a swarm by shutting

down and disconnecting a robot from the network. Variable T can be defined as the time

interval (seconds) that a robot is disconnected from the network. After T time, a

disconnected robot rejoins the swarm by running the Ethereum Geth client. Variable RT

is recovery time in seconds. Recovery time is a time window (seconds) that a robot

needs to recover from a crash. It can be said that a robot recovered from a crash once

the following criteria are met again:

• A Geth client is running

• The robot connected to the blockchain network

• The robot is connected to all peers

• The robot is synced with all peers

The result of recoverability is shown in Table 5.

Table 5
Recoverability Test

Swarm Size Missed Blocks Recovery Time
3 1000 14.473
3 10000 45.64
3 100000 310.25
5 1000 18.4
5 10000 51.2
5 100000 322.1

36

5.2.4 Responsiveness

In this test, responsiveness refers to the ability of a swarm to response to a signal

sent from one of the robots or the contract’s owner (user). A robot or an outside

authority can send a signal to the swarm at any time. The signals are used to provide

global knowledge to a swarm. For example, if there is an emergency, a robot can send a

signal to the swarm so the swarm can take the required actions. In this test, we measure

the time taken for all robots to acknowledge a signal. The test starts from the moment

that a signal is sent to the swarm and it ends when all of the robots know about it. A

signal is a simple flag that is set in the surveillance mission smart contract by calling the

“setFlag” method. Table 6 shows the result of responsiveness measurement in seconds.

Table 6
Responsiveness Test

Swarm Size Responsive Time (RST)
3 2.169
5 3.705
7 1.79
9 5.75

37

6 DISCUSSION AND FUTURE WORK

As shown in section 4, the Ethereum blockchain can provide a platform for swarm

robotics systems. Robots can effectively communicate and perform their assigned tasks

with the help of blockchain. As shown in section 4.7, robotic tasks can be replicated into

a blockchain-enabled swarm. Although the Ethereum blockchain provides a usable

infrastructure for swarm robotics, it has performance inefficiencies shown in the results

in section 5.2.

As shown in 5.2.1, the minimum of 0.36GHz (80% of one core) of the processing

power is needed to prevent a long data propagation delay in the network. Also, as shown

in 5.2.1, the memory (RAM) utilization of at least 1024 megabytes is required for a

robot to operate normally. With such a utilization, a swarm can confirm and propagate

the data without a noticeable delay. The results of the performance test show that

swarms are heavily impacted by the amount of CPU allocated to each robot.

However as shown in 5.2.1, a swarm’s startup and connectivity take an average of

5.2 seconds, if the robots have at least 0.36GHz (80% of one core) of processing power.

In addition, as shown in 5.2.4, the system acknowledges a signal sent to the network at

an average of 3.35 seconds. The required time depends on the blockchain network load

at the time of the signaling.

Considering all of the results, a Raspberry Pi 3 Model B+ could be an ideal

hardware candidate for a robot in a blockchain-enabled swarm. The Raspberry Pi 3

Model B+ fulfills the wireless capability required by a robot. In addition, it has 1 GB of

memory (RAM) and 1.4GHz CPU which allows it to perform all of the necessary PoW

consensus calculations.

The PoW consensus algorithm is not feasible for robots that need to participate in

surveillance missions that require more than seven days. As a mission continues, the

required storage increases for each robot in the swarm (shown in 5.2.2).

38

Developers and companies are continually working on new algorithms to make the

blockchains’ participation feasible for all devices—regardless of computation power and

storage size—to be able to join and participate in a blockchain network. As mentioned

in section 2.1.3, the Ethereum is already working on the implementation of the PoS.

Also, the practicality of using other consensus algorithms like delegated proof of stake,

proof of authority, proof of weight should be explored. The evaluation of the proposed

swarm robotics system should be executed with real robots and complex traditional

swarm robotics algorithms. This in-depth evaluation will provide better direction on how

to fix the performance shortcomings in swarm robotics systems.

39

7 CONCLUSION

Swarm robotics is an emerging technology in which a swarm of simple robots

collaborate and communicate to accomplish a complex task. Swarm robotics is facing

limitations in autonomy and security due to the missing global environmental awareness

within a swarm. Blockchain technology has been able to create decentralized and

distributed systems. It demonstrates the capability of reaching a consensus within a

group of distributed agents using the secure asymmetric cryptographic algorithms. This

paper presented the usability of blockchain in swarm robotics systems by demonstrating

a surveillance mission use case. In this work, a simulated swarm was tested to determine

if the Ethereum blockchain with PoW can be an ideal framework for swarm robotics

systems. The results show the blockchain eliminates a single point of failure, provides

global knowledge, and makes a surveillance mission possible. However, storage

limitation and inefficiency of the PoW consensus algorithm do not allow robots to

operate in a long surveillance mission due to high CPU and memory utilization. As

better consensus algorithms are being developed, blockchains can become more efficient

at the required processing and computation power. As a result, blockchain technologies

like Ethereum can become an ideal platform for swarm robotics systems since they

provide fault tolerance, security, and global knowledge by design.

40

Literature Cited

[1] U. Grohmann, “Paint robots in the automotive industry–process and cost
optimization,” Industrial Robot: An International Journal, vol. 23, no. 5, pp. 11–16,
1996.

[2] D. Evans, “The internet of things: How the next evolution of the internet is
changing everything,” CISCO white paper, vol. 1, no. 2011, pp. 1–11, 2011.

[3] M. Gupta, D. Saxena, S. Kumari, and D. Kaur, “Issues and applications of swarm
robotics,” International Journal of Research in Engineering, Technology and
Science, vol. 6, pp. 1–5, 2016.

[4] E. C. Ferrer, “The blockchain: a new framework for robotic swarm systems,” in
Proceedings of the Future Technologies Conference, pp. 1037–1058, Springer, 2018.

[5] T. Laurence, Blockchain for dummies. John Wiley & Sons, 2017.

[6] M. Hölbl, M. Kompara, A. Kamišalić, and L. Nemec Zlatolas, “A systematic review
of the use of blockchain in healthcare,” Symmetry, vol. 10, no. 10, p. 470, 2018.

[7] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow,
“Elliptic curve cryptography in practice,” in International Conference on Financial
Cryptography and Data Security, pp. 157–175, Springer, 2014.

[8] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[9] V. Buterin et al., “Ethereum white paper,” GitHub repository, pp. 22–23, 2013.

[10] I. Navarro and F. Matı́a, “An introduction to swarm robotics,” Isrn robotics,
vol. 2013, 2012.

[11] N. Correll and D. Rus, “Architectures and control of networked robotic systems,”
Handbook of collective robotics: fundamentals and challenges, pp. 81–103, 2013.

[12] A. Banafa, “Three major challenges facing iot,” IEEE Internet of things, 2017.

[13] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain transformation
toward blockchain integration,” in proceedings of the 50th Hawaii international
conference on system sciences, 2017.

41

[14] D. Galvin, “Ibm and walmart: Blockchain for food safety,” IBM & Walmart, 2017.

[15] J. Ackermann and M. Meier, “Blockchain 3.0 - the next generation of blockchain
systems,” 09 2018.

[16] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo, “Swarm-bot: A new
distributed robotic concept,” Autonomous robots, vol. 17, no. 2-3, pp. 193–221,
2004.

[17] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint
arXiv:1407.3561, 2014.

[18] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology overview,”
tech. rep., National Institute of Standards and Technology, 2018.

[19] E. J. Braude and M. E. Bernstein, Software engineering: modern approaches.
Waveland Press, 2016.

42

	San Jose State University
	SJSU ScholarWorks
	Spring 2019

	Combining Blockchain and Swarm Robotics to Deploy Surveillance Missions
	Ardalan Razavi
	Recommended Citation

	tmp.1562890193.pdf.fFVpE

