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Abstract Achieving autonomous flight in GPS-denied

environments begins with pose estimation in three-

dimensional space, and this is much more challenging

in an MAV in a swarm robotic system due to limited

computational resources. In vision-based pose estima-

tion, outlier detection is the most time-consuming step.

This usually involves a RANSAC procedure using the

reprojection-error method for hypothesis evaluation.

Realignment-based hypothesis evaluation method is ob-

served to be more accurate, but the considerably slower

speed makes it unsuitable for robots with limited re-

sources. We use sufficient statistics of least-squares min-

imisation to speed up this process. The additive nature

of these sufficient statistics makes it possible to com-

pute pose estimates in each evaluation by reusing pre-

viously computed statistics. Thus estimates need not

be calculated from scratch each time. The proposed

method is tested on standard RANSAC, Preemptive

RANSAC and R-RANSAC using benchmark datasets.
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The results show that the use of sufficient statistics

speeds up the outlier detection process with realign-

ment hypothesis evaluation for all RANSAC variants,

achieving an execution speed of up to 6.72 times.

1 Introduction

Swarm robotics has gained popularity due to its numer-

ous potential applications. Particularly, autonomous

swarms of Micro Aerial Vehicles (MAVs) have numer-

ous indoor applications such as surveillance, monitor-

ing, collapsed building exploration and aiding in dis-

aster relief operations. A swarm robotic system com-

prises individuals that are less capable and dispensable,

enabling robustness and graceful degradation of perfor-

mance in the case of individual failure. Thus in a swarm

of MAVs, individuals are very limited in resources com-

pared to a single specialised MAV with many sensors

and high computational resources.

To automate the flight of an MAV in GPS-denied

environments, one needs to know its location with re-

spect to the environment. For an aerial robot this in-

volves estimating position and orientation in three di-

mensional (3-D) space, known as pose estimation. The

computational speed of pose estimation is more crucial

in aerial robots than in ground robots since the perfor-

mance in pose estimation is directly linked to the stabil-

ity of a vehicle. It is obvious that the problem becomes

much more challenging in limited resourced MAVs be-

cause of their low processing power and memory.

Various exteroceptive sensors such as laser range

finders (Bachrach et al. 2011; Chowdhary et al. 2012;

Bry et al. 2012), monocular cameras (Weiss et al. 2012;

Wang et al. 2012) and stereo cameras (Garćıa Carrillo

et al. 2012; Voigt et al. 2011) have been used effec-
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tively for indoor navigation in MAVs. In recent years,

RGB-D visual pose estimation methods have become

popular among the MAV research community for in-

door applications (Stowers et al. 2011; Bachrach et al.

2012; Scherer and Zell 2013; Valenti et al. 2014a). The

main reason behind this trend is that RGB-D cameras

are independent modules providing rich 3-D informa-

tion about its environment (Khoshelham and Elberink

2012), which eliminates the need for any further pro-

cessing to calculate depth information, such as triangu-

lation in stereo cameras. In addition, their small size,

light weight and economical price make them ideal for

use in low-cost MAVs.

Some of the first works that used RGB-D cameras

for real-time robot control did not completely rely on

the RGB-D information for computing full pose esti-

mates. For example, RGB-D information was used for

estimating and controlling the flying height of an MAV

(Stowers et al. 2011) and for indoor exploration where

pose estimation was done using a laser range finder

(Shen et al. 2011). Huang et al. (Bachrach et al. 2012)

was the earliest notable case of using an RGB-D cam-

era for onboard visual odometry. The more recent works

(Scherer and Zell 2013; Valenti et al. 2014a) achieved

fully onboard localisation and mapping using RGB-D

camera. However, all the afore-mentioned visual odom-

etry methods (Bachrach et al. 2012; Scherer and Zell

2013; Valenti et al. 2014a) used single board computers

that are relatively high in processing power and cost.

A recent comparison study (Fang and Scherer 2014)

provided a detailed analysis and experimental com-

parison of several state-of-the-art real-time odometry

estimation methods that use RGB-D cameras, focus-
ing on algorithms suitable for limited-resourced MAVs.

They categorised the existing visual odometry methods

into three groups according to sensor data types as (1)

image-based, (2) depth-based, and (3) both image- and

depth-based. Image-based methods are further subdi-

vided as (a) sparse visual feature based methods, (b)

sparse visual feature based methods combining depth

data, and (c) dense feature based methods. For ex-

perimental comparison they used several existing real-

time RGB-D visual odometry methods that fall into

different categories mentioned above. The methods in-

cluded, among others, Libviso2 (Geiger et al. 2011),

Fovis (Bachrach et al. 2012), DVO (Kerl et al. 2013)

and FastICP (Pomerleau et al. 2013). It should be

noted that among the algorithms considered, only Fovis

(Bachrach et al. 2012), which is a sparse visual feature

based method combining depth data, was originally im-

plemented on an MAV. The results from the experi-

ments in (Sturm et al. 2012) using benchmark RGB-D

dataset as well as self-recorded datasets on a laptop

computer show that Fovis (Bachrach et al. 2012) is the

fastest (least CPU-intensive) method.

However, in our preliminary experiments using a

Beaglebone Black, we discovered that even a sparse

visual feature based method, very similar to Fovis

(Bachrach et al. 2012), produces pose estimation at a

rate less than 1Hz on our system (see section 5.2 for sys-

tem description). This was not fast enough for real-time

navigation of our MAV swarm. Our analysis showed

that the outlier detection using RAndom SAmple Con-

sensus (RANSAC) was the most time consuming step

in this visual pose estimation process.

This paper presents a method for speeding up

RANSAC in the problem of relative-pose estimation us-

ing 3-D point correspondences. The key idea of the ap-

proach lies in the observation that the computation of

relative pose depends on a number of ‘sufficient statis-

tics,’ that is, a number of functions on the input data.

These sufficient statistics have been previously pro-

posed in bioinformatics (Konagurthu et al. 2014) for

efficiently aligning protein structures. Even though pose

estimation involves a similar alignment process for com-

puting the transformation between camera poses, the

3-D feature point sets contain noisy data that are nor-

mally pruned out by the RANSAC procedure.

RANSAC involves hypothesis evaluation where the

transformation that aligns 3D point pairs is computed

numerous times to eliminate the outliers. This evalu-

ation is typically done by computing the re-projection

error of all matches. An alternative method uses re-

alignment based hypothesis evaluation where transfor-

mations are calculated for each of the matches (Li et al.

2013). By nature realignment based method is more

accurate in rejecting outliers than the re-projection er-

ror based hypothesis evaluation as extend the measure-

ment errors are reduced during realignment. However,

the realignment based method is slower due to re-fitting

points at each iteration.

The use of the sufficient statistics of least-squares

minimisation makes it possible to speed-up this more

accurate hypothesis evaluation by computing these

statistics incrementally in each RANSAC iteration, not

from scratch. The proposed method is capable of im-

proving the computational performance of different

RANSAC variants namely, standard RANSAC, Pre-

emptive RANSAC and R-RANSAC.

This paper is a comprehensive and extended version

of our previous conference paper presented at IROS

2015 (Senthooran et al. 2015). In our previous work,

we only applied our method to standard RANSAC and

presented the results from only one benchmark dataset

sequence. In addition to presenting the concept intro-
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duced in the previous work with more detail, this paper

makes the following contributions.

– Time complexity analysis of proposed algorithm.

– Modified algorithms for other RANSAC variants,

namely Preemptive RANSAC and Randomised

RANSAC, by applying the proposed method.

– Results from an extended set of experiments con-

ducted on five additional sequences from different

benchmark datasets.

– Experimental comparison of the performance of the

proposed hypothesis evaluation method when used

in different RANSAC variants.

The rest of this paper is organised as follows. Sec-

tion 2 introduces preliminaries including how pose es-

timation from RGB-D sensor information involves 3-

D feature-based alignment which is essentially a least-

squares minimisation problem and the use of RANSAC

due to uncertainty of feature matches. Section 3 gives

a detailed description of the proposed method. In this

section we explain how we use sufficient statistics in the

RANSAC-based outlier detection for the case of stan-

dard RANSAC (3.1) as well as other variants (3.2). In

Section 4 we analyse the time complexity of our pro-

posed method. We present the experimental results in

Section 5. This includes evaluations of accuracy and

computation time of our pose estimation method using

benchmark datasets. Finally, concluding remarks and

future work are mentioned in Section 6.

2 Preliminaries

In this section some preliminaries regarding the prob-

lem in hand is elaborated.

2.1 Pose estimation from RGB-D information

Pose estimation using RGB-D information is a case of 3-

D feature-based alignment, which is the problem of esti-

mating the motion between two or more sets of matched

3-D points. This process starts by extracting features

from RGB images and then tracking matching features

across different image frames. Using the corresponding

depth information and camera parameters, these two-

dimensional feature point pairs are converted into 3-D

feature point pairs. Assuming that the environment is

static, the geometric transformation in 3-D space (ro-

tation R and translation T ) between two poses directly

corresponds to the camera movement. The camera pose

can thus be determined by computing the inverse of the

geometric transformation that maps the 3-D features in

one image to the other. That is,

∆R = R>, ∆T = −R>T , (1)

where ∆R and ∆T are the relative rotation and transla-

tion of the current frame to the camera’s previous body

frame, respectively.

2.2 3-D feature-based alignment

Let us denote the two 3-D feature sets obtained

from two different RGB-D camera frames as U =

{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}, where n is

the number of features in each set and ui ∈ R3 cor-

responds to vi ∈ R3, i = 1, 2, . . . , n. The objective is

to find the rotation R ∈ SO(3) and translation t ∈ R3

that aligns the point sets U and V while minimising the

alignment error defined as

min
R,t

n∑
i=1

‖Rvi + T − ui‖2. (2)

By evaluating the derivative of (2), it can be shown

that the geometric centres of the two feature sets c(U)

and c(V ) can be used to estimate the value of t at the

optimum as T = c(U) − Rc(V ) (Szeliski 2011). Note

that c(X) ,
∑
xi/n is the geometric centre of arbitary

set of points X = {x1, x2, . . . , xn}. We are now left with

the problem of estimating the rotation between two sets

of points u′i = ui−c(U) and v′i = vi−c(V ) that are both

centered at the origin. This yields an objective function

that is independent of T

min
R

n∑
i=1

‖Rv′i − u′i‖2. (3)

One commonly used technique to solve this op-

timisation problem involves computing the singular

value decomposition (SVD) of the correlation matrix

in R3×3 (Szeliski 2011)

C =
∑
i

u′iv
′ᵀ
i . (4)

Another technique is the absolute orientation algorithm

(Horn 1987) for estimating the unit quaternion corre-

sponding to the rotation matrix R, which involves form-

ing a matrix in R4×4 from the entries of C and then

finding the eigenvector associated with its maximum

eigenvalue. A similar approach for comparing molecu-

lar structures is presented in (Kearsley 1989). Here the

3D alignment problem is constrained since the trans-

formation only involves rotation and translation, which

is the same in our case.
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Even though the regular least squares method can

account for Gaussian noise, more robust methods are

required when there are many outliers among the cor-

respondences (Szeliski 2011). This is particularly true

in our case since the 3-D point sets may contain mis-

matched feature point pairs in addition to inaccuracies

of sensor data. Due to such uncertainties in the fea-

ture correspondences, it is necessary to use iterative

methods such as Iterative Closest Points (ICP) (Besl

and McKay 1992) and RAndom SAmple Consensus

(RANSAC) (Fischler and Bolles 1981) for computing

optimal estimates of relative rotation and translation.

RANSAC is a non-deterministic algorithm for fit-

ting a model to a dataset contaminated with outliers. It

is composed of the two steps, hypothesise and evaluate

that are repeated in an iterative manner. This process

includes generating several hypotheses using randomly

selected minimal sample sets and then evaluating each

of these hypotheses on the entire dataset to build up

consensus sets of inliers. To ensure that the random

sampling has a good chance of finding a true set of in-

liers, a sufficient number of trials must be tried, after

which the hypothesis with the highest number of in-

liers can be taken as the final solution. Since RANSAC

is capable of handling a significant percentage of gross

errors, it is ideally suited for our application due to

error-prone range data and feature detectors/trackers.

When determining the optimal alignment of our two

feature point sets, the RANSAC process starts by se-

lecting, at random, a subset of 3-D point pairs, which is

then used to compute an initial estimate for the trans-

formation (R̂ and T̂ ). Note here that the minimal sam-

ple set size is three since only three point correspon-

dences are necessary to obtain an alignment. The es-

timated transformation is then tested against all the

point pairs excluding the subset taken as the sample

(termed ‘test set’) and those within a given error toler-

ance are classified as inliers and added to the consensus

set.

The widely used method for hypothesis evaluation

in 3-D feature-based alignment is to calculate the ‘re-

projection error’ or ‘residual’ for each feature point pair

in the test set as

εi = |R̂v′i − u′i|, i = 1, 2, . . . , n (5)

where R̂v′i’s are the estimated (mapped) locations and

u′i’s are the sensed (detected) feature point locations.

The point pairs whose re-projection errors are within

an acceptable limit are identified as inliers. The steps

involved are outlined in Algorithm 1 and will be re-

ferred to as HT1 (Hypothesis Testing 1) throughout

this paper.

An alternative way to evaluate the initial estimate

for the transformation would be to add each point pair

in the test set to the sample set individually and re-

compute the transformation as outlined in Algorithm 2.

The point pairs for which the difference between the ini-

tial and the new transformation estimates are within a

certain acceptable limit are identified as inliers. This

evaluation method, which is referred to as HT2 (Hy-

pothesis Testing 2) in this paper, is indeed slower due to

all the re-computations of the transformation. However,

it is not difficult to imagine that this method would be

more accurate since the realignment step may reduce

the effect of measurement errors in the sample set on

the identification of inliers. Therefore, if we can compu-

tationally accelerate HT2, then we would achieve better

accuracy without compromising the efficiency.

The method we propose is to reduce the time taken

for the re-computations of the transformation by using

a set of sufficient statistics for the 3D point alignment

problem derived in (Konagurthu et al. 2014). In this

previous work in bio-informatics, this set of sufficient

statistics has been proposed for efficiently aligning pro-

tein structures. In essence the problem of protein struc-

ture alignment is similar to 3-D feature alignment, as

they both involve computing the transformation that

would superimpose two sets of points in 3-D space onto

each other so that the corresponding points are as close

as possible. Usually, in the case of protein structure

alignment, these points will be the locations of the

amino acids, which are approximated by the locations

of α Carbon (Cα) atoms along each structure’s back-

bone. Aligning two such structures involve finding the

rotation and translation which minimizes the distance

(RMSD) between the equivalent atoms, which can be

solved using the least squares method. The main differ-

ence of our alignment problem is the presence of many

outliers in the 3-D point correspondences, which need

to be pruned out to in order to arrive at an accurate

solution. The next section explains how the sufficient

statistics for 3D point alignment is incorporated into

our RANSAC-based outlier removal routine.

3 Applying Sufficient Statistics to RANSAC

Hypothesis Evaluation

Sufficient statistics (Hogg and Craig 1994) are essen-

tially a set of statistics that summarises all of the in-

formation in a sample about a certain parameter. A set

of sufficient statistics with respect to the least squares

alignment was derived in (Konagurthu et al. 2014),

and furthermore, these statistics were demonstrated to

be additive. Therefore, by using these statistics in the

RANSAC process, computing transformations of the
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Algorithm 1 HT1: Re-projection error based hypoth-

esis evaluation
Input: Initial transformation estimation (R, T ) that best
aligns point pairs in sample set Us, Vs and test sets U = {ui}
,V = {vi}, i = 1, 2, . . . , n
Output: Inlier point pairs
Begin:

for each corresponding points (ui, vi) in U , V do
Transform point vi into point v̂i by applying transfor-

mation (R, T )
Calculate euclidean distance εi between v̂i and ui
If εi is within the acceptable limit consider point pair

(ui,vi) as an inlier.
end for

Algorithm 2 HT2: Realignment based hypothesis

evaluation
Input: Initial transformation estimation (R, T ) that best
aligns point pairs in sample set Us = {ui} ,Vs = {vi},
i = 1, 2, . . . ,m, corresponding alignment residual error εs =∑m

i=1 ‖Rvi + T − ui‖2 and test sets U = {ui} ,V = {vi},
i = 1, 2, . . . , n
Output: Inlier point pairs
Begin:

for each corresponding points (ui, vi) in U , V do

Calculate transformation (Ri, Ti) that best aligns points
in Vs ∪ vi onto points in Us ∪ ui

Calculate the corresponding alignment residual error εi
If εi − εs is within the acceptable limit consider point

pair (ui,vi) as an inlier.
end for

sample set plus each additional point pair can be per-

formed in constant time by reusing the previous solu-

tions of the sample set. This process is much faster than

recomputing transformations from scratch. Below we

re-derive the set of sufficient statistics of (Konagurthu

et al. 2014) with respect to our problem.

Rigid-body alignment is a general regression prob-

lem and we assume that it produces error terms, εi =

R̂v′i−u′i that are normally distributed asN (0, σ), which

is minimised by the solution of (3). Thus, the ‘like-

lihood‘ of the normally distributed error terms after

alignment is given as

f(ε1, ε2, . . . , εn|σ) = (2πσ2)
−
n

2 exp

(
− 1

2σ2

n∑
i=1

‖εi‖2
)
.

(6)

By examining the decomposition of ‖εi‖2, the summa-

tion term in (6) can be reduced to a form containing

a set of statistics which does not take into account its

data explicitly. As these statistics are also sufficient to

estimate σ, they form a set of sufficient statistics of the

least-squares minimisation problem. This set consists

of 24 distinct statistics as described below. First, let us

define

sijm , u′ij−v′ij , sijp = u′ij+v
′
ij , i = 1, 2, . . . , n, j = x, y, z,

where u′ix indicates the x-axis component of vector u′i
and so on. From these, we can define the set of sufficient

statistics as

Ω =

{
for j, k ∈ {x, y, z},

n∑
i=1

sijm,

n∑
i=1

sijp ,

n∑
i=1

sijms
ik
m,

n∑
i=1,j 6=k

sijms
ik
p ,

n∑
i=1

sijp s
ik
p

 . (7)

Let us consider two pairs of corresponding feature

sets, (U ′s, V
′
s ) and (U ′t , V

′
t ). Let Ω1 and Ω2 be the suffi-

cient statistics of the alignment of the first and the sec-

ond pair respectively. As shown through Lemmas 1–3

and Corollaries 1–4 in (Konagurthu et al. 2014), suffi-

cient statistics of least-squares minimisation are addi-

tive. Therefore, we can use Ω1 and Ω2 to derive a set of

sufficient statistics Ω′ of the alignment of U ′ with V ′,

where U ′ = U ′s ∪ U ′t and V ′ = V ′s ∪ V ′t .

The updated sufficient statistics Ω′ is now used with

a method proposed in (Kearsley 1989) to recompute

rotation R. This method transforms the least-squares

minimisation problem to an eigenvalue problem of the

form Q(Ω)q = λq, where Q(Ω) ∈ R4×4 is a symmetric

matrix that is defined as

Q =


∑

(x2im + y2im + z2im)
∑

(yipzim − yimzip)∑
(yipzim − yimzip)

∑
(x2im + y2ip + z2ip)∑

(ximzip − xipzim)
∑

(ximyim − xipyip)∑
(xipyim − ximyip)

∑
(ximzim − xipzip)∑

(ximzip − xipzim)
∑

(xipyim − ximyip)∑
(ximyim − xipyip)

∑
(ximzim − xipyip)∑

(x2ip + y2im + z2ip)
∑

(yimzim − yipzip)∑
(yimzim − yipzip)

∑
(x2ip + y2ip + z2im)

 , (8)

where xim = u′ix− v′ix, yim = u′iy− v′iy, zim = u′iz− v′iz,

xip = u′ix + v′ix, yim = u′iy + v′iy, zim = u′iz + v′iz,

q = (q1, q2, q3, q4)T = (cos
θ

2
,mx sin

θ

2
,my sin

θ

2
,mz sin

θ

2
)T

is the rotation R in quaternion form, and
∑

denotes the

summation over terms i = 1, 2, . . . , n. The eigenvector

of the minimum eigenvalue gives the optimal rotation

which minimises (3). Each element of the matrix Q(Ω)

can be computed by combining a subset of the sufficient

statistics Ω given in (7). Since these statistics are addi-

tive, matrix Q of the sample set with an additional pair

of points can be constructed by finding the elements of

Q for the additional pair and adding it to the previ-

ously computed Q of the sample set. This eliminates
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the need of recomputing Q from the entire set. Once Q

is updated using sufficient statistics, it is diagonalised

to find the corresponding rotation.

3.1 Applying to standard RANSAC

As explained above, adopting sufficient statistics in

RANSAC-based pose estimation can drastically in-

crease the processing speed by performing least-square

minimisation using the previous partial solutions. Our

pose estimation algorithm that uses the standard

RANSAC procedure with HT2 and SS (Sufficient

Statistics) is shown in Algorithm 3. It begins by ran-

domly selecting a pair of sample sets (Us, Vs) from

(U, V ), in which each element in Us has a corresponding

element in Vs (line 5, subroutine randomMinimalSam-

pleSet). The remaining element pairs then constitute

the test pair of sets (Ut, Vt) where Ut = U \ Us and

Vt = V \ Vs. The sufficient statistics in (7) are com-

puted for the sample set. These statistics are denoted

by Ωs (line 6, subroutine suffStats). Then Ωs is used to

compute the relative pose estimation ps for the sample

set by constructing the corresponding Q matrix (line

7, subroutine relativePose). Next, a point pair (ui, vi)

is picked and the sufficient statistics of that pair Ωi

is computed (line 10). We then compute the relative

pose corresponding to the sample set with the addi-

tional point pair pi from its sufficient statistics Ω′ which

is computed using Ωs and Ωi (line 11, subroutine up-

dateSuffStats). If the root mean square error (rmse)

difference of pi and ps is within an acceptable bound,

the additional point pair is considered as an inlier and

added to the consensus set (Uc, Vc) (line 12–15). Suffi-

cient statistics for the pair Ωi is added to the sufficient

statistics of the consensus set Ωc (line 16). At the end

the iteration, precomputed values ps, Ωs and Ωc are

used to compute the corresponding pose estimation psc
(subroutine updateRelativePose) for (Us, Vs) ∪ (Uc, Vc)

(line 20, 21). Finally, the hypothesis with less error E

and larger consensus set size is selected (line 22–27).

3.2 Applying to other RANSAC variants

Out of the numerous descendants from the standard

form of RANSAC, there are a few variants that can

significantly speed up its computation. One of those

variants is called Preemptive RANSAC (Nister 2003).

In this method, using a breadth-first approach, all the

hypotheses are evaluated on a subset of the dataset

and scored based on their alignment error, according

to which hypotheses are filtered out in stages. At each

subsequent stage, the remaining hypotheses are further

Algorithm 3 Standard RANSAC with HT2 and SS
Input: Two sets of corresponding 3D points U = {ui}, V =
{vi}, i = 1, 2, . . . , n
Output: Rotation R and translation T (pose p∗).
Begin:

1: l← 0
2: Cmax ← 0
3: Emin ←allowable error
4: while l < max iterations do

5: Us, Vs ← randomMinimalSampleSet(U, V )
6: Ωs ← suffStats(Us, Vs)
7: ps ← relativePose(Us, Vs)
8: es ← rmse((Us, Vs), ps)
9: for each ui ∈ Ut = U \ Us and vi ∈ Vt = V \ Vs do

10: Ωi ← suffStats(ui, vi)
11: Ω′ ← updateSuffStats(Ωs, Ωi)
12: ei ← rmse(Ω′, ps)− es
13: if |ei| < threshold then

14: add ui, vi to consensus set Uc, Vc
15: Ωc ← updateSuffStats(Ωc, Ωi)
16: end if

17: end for
18: Ωsc ← updateSuffStats(Ωs, Ωc)
19: psc ← updateRelativePose(Ωsc, ps)
20: E ← rmse((Us, Vs) ∪ (Uc, Vc), ps+c)
21: if E < Emin ∧ |(Us, Vs) ∪ (Uc, Vc)| > Cmax then

22: Emin ← E

23: Cmax ← |(Us, Vs) ∪ (Uc, Vc)|
24: p∗ ← psc
25: end if

26: l← l+ 1
27: end while

28: return estimated pose p∗

evaluated on another subset of the dataset. The last

remaining hypothesis or the hypothesis with the least

alignment error is chosen as the final solution.

In another variant of RANSAC, called R-RANSAC

(Randomised RANSAC with Td,d Test) (Matas and

Chum 2004), only a fraction of data points are eval-

uated using a preliminary test to identify hypotheses

contaminated with outliers. Full evaluation is only per-

formed for the hypotheses passing this initial test. The

hypothesis with the most number of inliers is taken as

the final solution.

We used Preemptive RANSAC and R-RANSAC

to confirm that the hypothesis evaluation using re-

alignment is more accurate and that the use of suf-

ficient statistics speeds up computation for different

RANSAC variants. The modified algorithm for Preemp-

tive RANSAC is shown in Algorithm 4. Note that in its

hypothesis evaluation stage, sufficient statistics need to

be calculated only once for each point pair in the test

set and those can be reused to score all the hypotheses.

The modified R-RANSAC algorithm is shown in Algo-

rithm 5. Here, the use of sufficient statistics is identical

to the standard RANSAC. The only difference between

the two algorithms lies in the hypotheses evaluation
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step where R-RANSAC employs a preliminary test in

filtering hypotheses.

Algorithm 4 Preemptive RANSAC with HT2 and SS
Input: Two sets of corresponding 3D points U = {ui}, V =
{vi}, i = 1, 2, . . . , n
Output: Rotation R and translation T (pose p).
Begin:

1: h← 0
2: while h < max iterations do

3: Uh
s , V

h
s ← randomMinimalSampleSet(U, V )

4: phs ← relativePose(Uh
s , V

h
s )

5: Ωh
s ← suffStats(Uh

s , V
h
s )

6: ehs ← rmse(Uh
s , V

h
s )

7: h← h+ 1
8: end while

9: for each ui ∈ U and vi ∈ V do

10: Ωi ← suffStats(ui, vi)
11: for each h ∈ 1..F (i) do

12: Ωh ← updateSuffStats(Ωh
s , Ωi)

13: ei ← rmse(Ωh, phs )
14: Eh ← Eh + |ei − ehs |
15: end for
16: reorder the hypotheses (h) according to Eh in ascend-

ing order so that it contains best F (i+ 1) remaining hy-
potheses

17: if F (i+ 1) = 1 then

18: break
19: end if
20: end for

21: select hypotheses that has least cumulative error as the
best hypotheses pbs

22: for each ui ∈ U and vi ∈ V do

23: ei ← |rmse(Ωi, p
b
s)− ebs|

24: if |ei| < threshold then
25: add ui, vi to consensus set Uc, Vc
26: Ωc ← updateSuffStats(Ωc, Ωi)
27: end if

28: end for

29: p∗ ← updateRelativePose(Ωc, pbs)
30: return estimated pose p∗

4 Time complexity analysis

The time complexity of three hypothesis evaluation

methods HT1, HT2, and HT2+SS are discussed below.

Here we analyse the computations involved in standard

RANSAC iterations. First, we define the following:

– n: number of point pairs involved in alignment

– m: minimum number of point pairs required to gen-

erate a hypothesis

– N : number of hypothesis evaluations or RANSAC

iterations

– d: number of dimensions, in our case it is 3

Algorithm 5 R-RANSAC with Td,d test, HT2, and SS

Input: Two sets of corresponding 3D points U = {ui}, V =
{vi}, i = 1, 2, . . . , n
Output: Rotation R and translation T (pose p∗).
Begin:

1: l← 0
2: Cmax ← 0
3: Emin ←allowable error
4: while l < max iterations do

5: Us, Vs ← randomMinimalSampleSet(U, V )
6: ps ← relativePose(Us, Vs)
7: Ωs ← suffStats(Us, Vs)
8: es ← rmse(Us, Vs)
9: randomly select ud ∈ Ut = U \Us and vd ∈ Vt = V \Vs

10: ed ← rmse((ud, vd), ps)
11: if |ed| < threshold then

12: for each ui ∈ Ut = U \Us and vi ∈ Vt = V \ Vs do
13: Ωi ← suffStats(ui, vi)
14: Ω′ ← updateSuffStats(Ωs, Ωi)
15: ei ← rmse(Ω′, ps)− es
16: if |ei| < threshold then

17: add ui, vi to consensus set Uc, Vc
18: Ωc ← updateSuffStats(Ωc, Ωi)
19: end if

20: end for

21: Ωsc ← updateSuffStats(Ωs, Ωc)
22: ei ← rmse(Ωsc, ps)
23: E ← E + |ei − es|
24: psc ← updateRelativePose(Ωsc, ps)
25: if E < Emin ∧ |(Us, Vs) ∪ (Uc, Vc)| > Cmax then

26: Emin ← E
27: Cmax ← |(Us, Vs) ∪ (Uc, Vc)|
28: p∗ ← psc
29: end if
30: end if

31: l← l+ 1
32: end while
33: return estimated pose p∗

4.1 Hypothesis generation

Calculation of the rotation R and translation T that

aligns randomly chosen minimum sample sets Us and

Vs of corresponding 3D points involves following steps:

– Translation is the difference between the geomet-

ric centroids of two corresponding points sets. The

centroid is calculated through additions of m points

and followed by a division for each dimension and

each set (6(m+ 1) + 3 operations).

– Computation of rotation involves translating the

points such that the corresponding geometric cen-

troid is at the origin (6m), calculation of terms

xim, xip, ... needed for matrix Q (6m), formation of

matrixQ (diagonal elements - 4×6m, other elements

- 12 × 4m), and diagonalisation of Q to obtain the

solution (approximately 8 operations).

Therefore, the total number of operations for hy-

pothesis generation amounts to 90m+ 17 (say G).
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4.2 HT1: Re-projection error based hypothesis

evaluation

Computation of re-projection error of point pair ui, vi in

the test sets given transformation (R,T ) involves trans-

lating (6 operations) and rotating the 3-D point vi (18

operations: 3 × 3 rotation matrix multiplication with

3 × 1 vector representing a point) and calculating the

Euclidean distance between the transformed point and

ui (10 operations). So in total 34 operations for testing

a single point pair. Therefore, the total number of oper-

ations needed for all point pairs in the test is 34(n−m)

(say H1).

4.3 HT2: Realignment based hypothesis evaluation

The operations involved in realignment based evalua-

tion is similar to hypothesis generation process. The

only difference is that the number of point pairs in-

volved is m + 1. So, we get the number of operations

needed for single evaluation by substituting m+ 1 in G

(90(m+1)+17 = 90m+107 operations). Therefore, the

total number of operations needed for all point pairs

in the test set is (n − m)(90m + 107) (say H2). This

is the operation cost of HT2 without the use of suffi-

cient statistics (SS). When SS is applied, the evaluation

step only updates each element the matrix Q with the

point pair from the test set, and then the solution is

obtained through diagonalisation of Q. So, the compu-

tational cost is easily computed by applying the value 1

for m in G, which yields 107 operations. Therefore, for

the computational cost of HT2 with SS is 107(n −m)

operations (say H3).

Computational cost for standard RANSAC with

HT1 evaluation method and N iterations amounts to

N(34n− 56m+ 17) (= N(G+H1)).

Similarly, cost of standard RANSAC with HT2

amounts to N(90mn + 107n − 90m2 − 17m + 17) (=

N(G+H2)).

Similarly, cost of standard RANSAC with HT2+SS

amounts to N(107n− 17m+ 17) (= N(G+H3)).

In our case, m is always three, and in our exper-

iments, we expect n to be in the order of tens or

hundreds. So we assume that n >> m. Thus, from

above we can write the order of RANSAC with HT1,

HT2 and HT2+SS as O(34nN), O((90m + 107)nN)

and O(107nN), respectively. Note that we have kept

the coefficients as the order of complexity in all three

evaluations are the same. Based on the above analy-

sis HT2+SS should be approximately 3.52 times faster

than HT2 ( (90m+107)nN
107nN , where m = 3). According to

the results given in Table 3, the average ratio for stan-

dard RANSAC on all datasets is 2.76, which is quite

similar to the value from the analysis. This small dis-

crepancy may be mainly due to not accounting for dif-

ferences in floating-point operations (e.g. division vs.

addition) as well as integer and logical operations de-

pending on the underlying hardware. Execution time

comparison given in Table 3 is based on an ARM pro-

cessor board. When the algorithms were allowed to run

on a standard PC, we observed the said ratio to be on

average 3.49.

5 Experiment Design and Results

In order to test the proposed hypothesis evaluation

method, we implemented a feature-based pose estima-

tion method which combines depth and visual informa-

tion, since this category of methods has been identified

as the fastest in (Fang and Scherer 2014). A simple

block diagram of this method is shown in Fig. 1.

The pose estimation process starts by prepossess-

ing and extracting features from an RGB image using

the ’Good Features to Track’ (Shi and Tomasi 1994)

method. Detected features are then tracked across

successive RGB image frames using the pyramidal

implementation of the Lucas-Kanade feature tracker

(Bouguet 2000). We adopt a keyframe technique for

reducing short-scale drift, where features are only de-

tected for keyframes and then tracked across several

successive frames until a new keyframe is assigned. The

optical flow step yields two sets of feature points which

are then projected onto 3-D coordinates by using their

two-dimensional feature positions and the correspond-

ing depth data. Once outliers in the 3-D point corre-

spondences are removed using a RANSAC procedure,
the transformation between these two sets of filtered

3D points is computed and in turn used to calculate

the relative pose of the camera between those frames.

This pose estimation method was implemented in

C++ using OpenCV1 for feature detection and track-

ing as well as the open-source implementation2 of (Kon-

agurthu et al. 2014) for alignment of 3D points and com-

puting sufficient statistics. For feature detection and

tracking the OpenCV implementations include several

parameters which can be adjusted to fine tune its per-

formance. The values of parameters used in the exper-

iments are listed in Table 2.

5.1 Scalability with increasing number of features

Figure 2 shows a comparison of run-times for one stan-

dard RANSAC iteration using HT2 with and without

1 http://opencv.org/
2 http://www.csse.monash.edu.au/~karun/superpose3D/

http://opencv.org/
http://www.csse.monash.edu.au/~karun/superpose3D/
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Table 1: List of RGB-D benchmark dataset sequences used

Sequence Duration Length Avg. Trans. Avg. Rot. Bounding

[s] [m] Vel. [m/s] Vel. [deg/s] Box

TUM dataset (Sturm et al. 2012), Device: Kinect v1

fr3 long office 87.10 21.455 0.249 10.188 5.12 x 4.89 x 0.54

fr2 desk 69.15 18.88 0.193 6.338 3.90 x 4.13 x 0.57

fr1 desk 23.35 9.263 0.413 23.327 2.42 x 1.34 x 0.66

Microsoft 7-Scenes dataset (Glocker et al. 2013), Device: Kinect v1

Chess - seq1 na 9.48 na na 1.78 x 0.55 x 2.41

CoRBS dataset (Wasenmüller et al. 2016), Device: Kinect v2

D5 sequence 39.2 16.4 0.419 33.73 1.18 x 2.32 x 0.76

E2 sequence 66.7 23.0 0.344 26.33 3.40 x 3.70 x 1.34

Feature
 Points

 (Key Frame)

RGB Image
(Frame 1 - Key Frame)

RGB Image
(Frame 2)

Depth Information 
(Frames 1 and 2)

Relative 
Pose

Feature 
Detection

Optical Flow
Conversion 

to 3D Points
RANSAC +
Alignment

Tracked 3D
Point Pairs

Tracked 2D
Feature
Points

Fig. 1: Information flow in Pose Estimation: for feature de-
tection and optical flow commonly used OpenCV C++ im-
plementations of goodFeaturesToTrack and calcOpticalFlow-
PyrLK are used, respectively
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Fig. 2: Run-time of one standard RANSAC iteration using
HT2 with and without SS are shown in blue and red, respec-
tively.

SS. Without sufficient statistics, the run-time grows lin-

early with a steep gradient of 0.109 as the number of

input feature pairs is increased. When sufficient statis-

tics are used, the run-time growth rate is much lower

(slope=0.032). These empirical run-time results show-

ing a speed-up of 0.109/0.032 = 3.4 is consistent with

Table 2: Parameters used for feature detection and tracking

Parameter Value
KLT winSize 31 × 31

maxLevel 3
criteria maxCount(10) or

epsilon(0.03)
flags OPTFLOW LK GET

MIN EIGENVALS
minEigThreshold 0.001

GFTT maxCorners 35
qualityLevel 0.01
minDistance 25
blockSize 3
useHarrisDetector false

the theoretical speed-up of 3.52 obtained in the time

complexity analysis.

5.2 System Overview

We have applied our algorithm to several RGB-D

benchmark datasets in order to verify accuracy and

computational performance on the processing system

of our low cost MAV. The system used in this work in-

cludes an Odroid-XU4 running Ubuntu 16.04 LTS and

containing Samsung Exynos5422 CortexTM-A15 2Ghz,

CortexTM-A7 Octa core CPUs, and 2 GB LPDDR3

RAM.

5.3 Test with benchmark datasets

Since the introduction of RGB-D cameras numerous

datasets have been released. Based on an assessment of

these datasets provided in (Firman 2016), we selected

the dataset sequences listed in Table 1 to evaluate the
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accuracy of our method. Graphical presentations of the

ground truth trajectories of these datasets are shown

in Figure 3, allowing visual comparison of the camera

movement patterns and trajectory lengths.

(a) TUM fr3 long office (b) TUM fr2 desk

(c) TUM fr1 desk (d) Microsoft chess-seq1

(e) CoRBS D5 (f) CoRBS E2

Fig. 3: Ground truth trajectories of the different datasets used
for evaluation

In order to validate that HT2 with SS (Algorithm 3)

can improve two RANSAC variants as well as the stan-

dard RANSAC, we implemented these RANSAC vari-

ants in three forms; 1) with HT1, 2) with HT2, and 3)

with HT2 and SS. Parameters like threshold were fine

tuned to minimise the estimation error using bench-

mark sequences fr3 long office and fr1 desk, and these

set values were applied to all other sequences.

Table 3 shows the root-mean-square error (RMSE)

for the trajectory as reported by the tool provided with

the benchmark datasets, averaged over five independent

test runs varying the seed of the random number gen-

erator. All of the pose estimation routines were tested

with the same set of random seeds. Table 3 also shows

the execution time for a single RANSAC iteration (i.e.

the time taken to test one hypothesis), averaged over

the five independent test runs of each routine. It can be

seen that pose estimation with HT2 produces less error

compared to HT1 in all the cases, standard RANSAC,

preemptive RANSAC and R-RANSAC. Furthermore,

the use of sufficient statistics speeds up the routine with

HT2 requiring only 36.45%, 14.87% and 36.03% of ex-

ecution time, respectively in comparison with routine

with HT2 only. In Preemptive RANSAC, which is the

fastest method among the three, HT2 needs an execu-

tion time of around 9.73ms while employing SS signif-

icantly boosts up the processing speed requiring only

around 1.45ms. In other words, a speed up of about

6.72 times is achieved.

Based on our results in Table 3, compared to HT1,

HT2 has improved pose estimation accuracy (RMSE)

by as much as 35%, 21%, and 18% and on average

18%, 6%, and 9% for standard RANSAC, preemptive

RANSAC, and R-RANSAC, respectively. Average ac-

curacy gain for preemptive RANSAC is relatively small

compared to other two variants of RANSAC; but 6% is

still a significant improvement.

As alluded in Section 2.2, HT2 is expected to be

slower due to re-computation of all transformations.

Compared to HT1, HT2 slows down pose estimation

significantly by 14.6 msec on average. However, with

the help of SS, HT2 + SS slows down pose estima-

tion marginally by only 2.2 msec on average, which is

insignificant compared to significant gain in pose esti-

mation accuracy.

Even though our earlier assumption on the error

terms being normally distributed with N (0, σ) may

have sounded counter-intuitive, it is clear that our test

results underline this assumption to be valid in practice.

As shown in the columns HT2 and HT2+SS in Table 3,

RMS errors have remained the same after applying HT2

with SS. It may be argued that having sufficiently low

numbers of outliers could have hidden this issue. How-

ever, this is not the case in our experiments as all the

benchmark datasets we used contain high percentages

of outliers; for example, TUM fr1 desk has about 40%

of outliers on average. This high percentage of outliers

justifies our use of RANSAC. Due to its ability to make

robust estimates in the presence of a significant percent-

age of gross errors, RANSAC is widely used in RGB-D-

base pose estimation methods, for example in (Heredia

et al. 2015; Li et al. 2015; Valenti et al. 2014b; Endres

et al. 2014).

Figure 4 shows a comparison between the execu-

tion times of HT2 and HT2 with SS on RANSAC vari-

ants over the entire E2 sequence. Figure 5 shows de-

tailed comparisons of position estimation accuracy of

HT1 and HT2 with respect to the ground truth on the

benchmark dataset E2 sequence from one of the ex-

periments run. Displacements from the ground truth
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Table 3: RMSE and Execution time for RANSAC variants

RANSAC Variant
RMSE (m) Execution Time (msec)

HT1 HT2 HT2+SS HT1 HT2 HT2+SS

fr3 long office

Standard RANSAC 0.461 0.369 0.369 5.80 25.34 9.03

Preemptive RANSAC 0.635 0.620 0.620 0.94 9.73 1.46

R-RANSAC with Tdd test 0.446 0.415 0.415 4.81 19.68 7.15

fr2 desk

Standard RANSAC 0.066 0.062 0.062 6.12 24.95 8.86

Preemptive RANSAC 0.053 0.052 0.052 0.92 9.84 1.44

R-RANSAC with Tdd test 0.074 0.069 0.069 5.80 22.89 8.43

fr1 desk

Standard RANSAC 0.153 0.125 0.125 6.17 24.91 9.06

Preemptive RANSAC 0.165 0.130 0.130 0.93 9.70 1.46

R-RANSAC with Tdd test 0.137 0.113 0.113 5.76 23.44 8.58

Chess - seq1

Standard RANSAC 0.428 0.398 0.398 6.45 27.49 10.11

Preemptive RANSAC 0.412 0.407 0.407 0.92 9.73 1.46

R-RANSAC with Tdd test 0.406 0.402 0.402 5.84 24.06 8.53

D5 sequence

Standard RANSAC 0.539 0.351 0.351 6.33 27.02 10.01

Preemptive RANSAC 0.357 0.317 0.317 0.94 9.75 1.45

R-RANSAC with Tdd test 0.550 0.456 0.546 5.72 23.98 8.51

E2 sequence

Standard RANSAC 0.730 0.571 0.571 6.27 26.81 9.93

Preemptive RANSAC 0.606 0.601 0.601 0.89 9.68 1.42

R-RANSAC with Tdd test 0.581 0.546 0.546 5.68 23.78 8.43

positions (signed position estimation errors) along each

of the three axes can be easily observed. The caption

also reports the final drift (magnitude of 3-D displace-

ment) as 0.8349m and 0.4461m for HT1 and HT2, re-

spectively, with standard RANSAC. HT2 reduces drift

in position estimation from the ground truth by 46.6%.

Relative position estimation errors between each con-

secutive frames for the same run of the experiment as

in Figure 5 are shown in Figure 6. It is evident that

our method consistently maintains better evaluation

speed across all frames while maintaining the accuracy

of HT2.

6 Conclusion

This paper presents a method to accelerate RANSAC-

based outlier detection in the problem of relative pose

estimation using 3-D point correspondences.RANSAC

involves hypothesis evaluation where the transforma-

tion that aligns 3D point pairs is computed numer-

ous times to eliminate the outliers. This evaluation is

typically done by computing the re-projection error of

all matches. An alternative method uses realignment

based hypothesis evaluation where transformations are

calculated for each of the matches. By nature, the re-

alignment based method is more accurate in rejecting

outliers than the re-projection error based hypothesis
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Fig. 4: Detail comparison of frame-by-frame execution time
between HT2 (red) and HT2 with SS (blue) on variants of
RANSAC over the E2 sequence.

evaluation as effects of the measurement errors are re-

duced during realignment. However, the realignment

based method is slower due to re-fitting points at each

iteration.

The key idea of our approach lies in the observa-

tion that the computation of relative pose depends on

a number of ‘sufficient statistics,’ that is, a number of

functions on the input data. The use of the sufficient

statistics of least-squares minimisation makes it pos-

sible to speed-up the more accurate hypothesis eval-

uation by computing these statistics incrementally in

each RANSAC iteration, not from scratch. Due to the

additive nature of these statistics, the transformations

in each evaluation can be quickly calculated by reusing

previously computed statistics. The accuracy and per-

formance of the proposed method were tested on three

RANSAC versions, namely standard RANSAC, Pre-

emptive RANSAC and R-RANSAC, using several pub-

lic real-world benchmark datasets by running them on

an ARM-based embedded computer. The experiments

showed that the use of sufficient statistics accelerates
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Fig. 5: Comparison of position estimation with HT1 (red),
HT2 (blue) and the ground truth (green) on E2 sequence.
Drift of the final position of the camera when applied stan-
dard RANSAC with HT1 and HT2 are 0.8349m and 0.4461m,
respectively.

the outlier detection process on all cases, requiring only

15% of execution time in case of Preemptive RANSAC

without sufficient statistics. Our algorithm is currently

being implemented on multiple quadrotor MAVs and

will be tested in an indoor environment for solving col-

laborative localisation problem.
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