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Sea-level rise (SLR) poses a range of threats to natural and built environments1, 2, making 

assessments of SLR-induced hazards essential for informed decision-making3.  We develop a 

probabilistic model that evaluates the likelihood that an area will inundate (flood) or dynamically 

respond (adapt) to SLR.  The broad-area applicability of the approach is demonstrated by 

producing 30x30 m resolution predictions for more than 38,000 km2 of diverse coastal landscape in 

the northeastern United States (U.S.).  Probabilistic SLR projections, coastal elevation, and vertical 

land movement are used to estimate likely future inundation levels.  Then, conditioned on future 

inundation levels and the current land-cover type, we evaluate the likelihood of dynamic response 

vs. inundation. We find that nearly 70% of this coastal landscape has some capacity to respond 

dynamically to SLR, and we show that inundation models over-predict land likely to submerge.  

This approach is well-suited to guiding coastal resource management decisions that weigh future 

SLR impacts and uncertainty against ecological targets and economic constraints.   

Future impacts from climate change, and particularly SLR4, are expected to be widespread in 

coastal areas2.  The northeastern U.S. coastal landscape encompasses a variety of environments that will 

respond differently to SLR according to their geomorphology, geologic setting, ecology, and level of 

development.  Elevated water levels due to SLR will exacerbate coastal erosion and flooding1, 5, 

particularly along developed coasts that have substantial, fixed, low-elevation infrastructure and real 

estate2.  Coastal habitats provide breeding areas and migration corridors for many threatened or 

endangered species6. Thus, a significant management challenge for densely populated areas like the 

northeastern U.S. is to ensure the regional persistence of species, habitat, and ecosystems that are 

vulnerable to SLR.  Knowing where available coastal habitat is likely to be resilient, transition to a new 

state, or require a buffer zone to accommodate landward translation is essential for developing 

management and resource allocation strategies that preserve the intrinsic values of the coastal system7.  

The potential for both inundation and dynamic response exists for many coastal landscapes; 

however, SLR assessments typically focus on only one type of response.  Inundation assessments flood 
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existing topography with a projected sea level3.  Although inundation seems straightforward to evaluate in 

terms of vertical and horizontal extent, its rigorous application requires accounting for technical and data 

uncertainties8 as well as SLR uncertainties9. More importantly, this approach fails to include the dynamic 

response due to anthropogenic, ecologic10, or morphologic processes such as erosion and deposition—that 

drives coastal landscape evolution11.  Dynamic response assessments11, 12 tend to represent cross-shore 

sediment transport processes explicitly with highly parameterized models, and can be used to make 

probabilistic assessments13 via Monte Carlo methods and sensitivity analyses to communicate 

uncertainty14.  Uncertainty affecting these approaches includes unknowns regarding rates and magnitudes 

of SLR, storminess, model parameter values, and the extrapolation from cross-shore profiles to spatially 

extensive domains.  This uncertainty must be estimated via comparison to detailed observations.    

As an alternative, we developed a data-driven coastal response (CR) model that considers both 

inundation and dynamic response using a range of SLR scenarios and datasets describing elevation and 

vertical land movement. We integrate these elements with land-cover information to assess CR 

likelihoods in the form of a dynamic probability, DP = 1-Prob. (inundate), using a Bayesian network 

(Figure 1).  The modeling approach considers over 400 different combinations of input and output 

variables and incorporates their corresponding uncertainties, allowing distinctions between locations and 

environment types where current data and knowledge yield high-confidence predictions and where new 

information or better data are needed to resolve uncertain outcomes.  The assessment covers coastal 

Maine through Virginia, and includes a region with a wide range of coastal development, infrastructure, 

and environments found globally; including uplands, barrier beaches, spits, islands, mainland beaches, 

cliffs, rocky headlands, estuaries, and wetlands.  The study area is defined by the -10 and +10 m elevation 

contours and mapped as a 30 m grid. 

To predict CR likelihoods (Figure 2), we first compute an adjusted land elevation with respect to 

projected sea levels: 
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AE = E – SL + VLM + uncertainties  (1) 

where AE represents the adjusted elevation with respect to a future sea level; E denotes the initial land 

elevation; SL is a projected sea level in the 2020s, 2030s, 2050s, or 2080s; and VLM gives the current 

rate of vertical land movement due to glacial isostatic adjustment, tectonics, and other non-climatic 

effects such as groundwater withdrawal and sediment compaction15.  Sources of uncertainty in AE 

predictions include SLR projections, elevation data accuracy, vertical datum adjustments, and the 

interpolation of VLM rates from point data; these geospatially-explicit input uncertainties are propagated 

through the model to produce a probability mass function P(AE) for every grid cell (Figure 2c,d). Once 

generated, AEs are related through evaluation of their dynamic response potential with generalized land-

cover information and used to produce a CR likelihood (Figures 1, 2).  

Discretized AE predictions provide an estimated submergence level comparable to many existing 

inundation models3, 16 (Figure 2).  However, our predictions include several notable improvements over 

existing approaches: 1) SLR projections are associated with time, provided as a series of probabilistic 

decadal estimates aligning with planning and management timeframes; 2) we include VLM, ensuring 

relative SLR change is captured; and 3) our probabilistic AE predictions include robust uncertainty 

assessments.  Despite these differences, it is possible to compare these results with inundation models3, 16 

as an initial test of consistency (Figure 2a).  Because we are forecasting sea levels for which observations 

do not exist, this initial test provides context for interpreting the subsequent CR predictions.   

 CR predictions augment inundation predictions by showing where dynamic response due to 

ecologic or morphologic processes is likely under a range of SLR scenarios (Figures 1, 2b).  DP is high in 

areas likely to preserve their current land-cover state or transition to another non-submerged state by 

adapting to SLR.  Inundation occurs in areas unlikely to adapt in these ways.  For example, an upland 

environment may persist with SLR and remain upland or transition to a marsh; a marsh may vertically 

accrete to maintain itself, migrate laterally, or fail to keep pace with SLR and become inundated10, 17.   
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CR thresholds for specific land-cover types—based on a synthesis of published studies on SLR-

induced change10, 17-19—were used where available to define persistence and determine a DP (Figure 1b).   

Where such information was unavailable, we assigned DPs to the remaining categories, following 

existing approaches used to fill information gaps with expert knowledge20, 21. The potential for lateral 

translation of some environment types (marshes, forests, and beaches) is not directly incorporated into our 

model; however, the co-occurrence of increasing DP and increasing elevation tends to capture this 

behavior (Figure 1b).  Probability assignments and how they relate to SLR thresholds are presented in 

Supplementary Information22. 

The DP assignments in this study (Figure 1b) show that knowledge of particular outcomes is 

strongly related to elevation, and better understood for some land cover types (e.g. beaches) than for 

others (e.g. developed and forest).  Elevation is an important first-order determinant of the spatial 

distribution of land-cover type (e.g. salt marshes occur at low elevations; forests occur at higher 

elevations), and land-cover types in end-member elevation ranges are more likely to maintain their 

predicted response type through time, indicated by high (> 0.75) or low (< 0.4) DP values.  For example, 

areas with AEs that exceed projected SLR are expected to remain dry and maintain their current land-

cover type through dynamic response, whereas areas already submerged are anticipated to become even 

more inundated, regardless of land-cover type.  At moderate AEs, a number of physical-process 

components not addressed by the model (e.g. beach sediment supply; marsh accretion rate; human 

landscape modification) and land-cover-specific AE thresholds make CR predictions highly uncertain 

(e.g. DP ~0.5, Figure 1).  Thus, developed areas close to sea level, or beach areas that have an AE of -1 m 

have similar uncertainties in CR.  Our approach allows any of these probability estimates to be updated as 

knowledge of coastal responses improves.   

Comparison of AE and CR predictions for two time periods demonstrates the impact of changing 

SL on uncertainties (Figure 3).  Initially nearly 70% of the region has potential for dynamic response22 

(Figure 3), suggesting that for the majority of the Northeastern U.S. an inundation approach does not 
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adequately describe the SLR response.  A highly dynamic location, such as Prime Hook National Wildlife 

Refuge (Figure 3a), shows 70% of the area is predicted to be submerged in 2020 (i.e., AE < 0) although 

the CR shows only 2% of the area is likely to inundate (DP < 0.5).  The difference comes from the 

predicted dynamic response of the marsh, and demonstrates the importance of including this information 

to depict more realistically SLR effects on the landscape.  As expected, there is a trend toward increased 

submergence (AE < 0) and greater prediction uncertainty through time for both AE and CR.  This 

behavior is largely attributable to the SLR projections and their associated uncertainties; 2080s sea-level 

projections are the highest and the most uncertain, which are in turn reflected in wider probability 

distributions for predicted outcomes (Figure 3b).   

SLR projections and associated uncertainties have the greatest effects on land at moderate initial 

elevations (-1 to 0 m and 0 to 1 m).  For each land-cover type, we can identify when our knowledge of the 

CR is most uncertain (i.e., DP = 0.5) and when we are likely to observe a transition from dynamic 

response to inundation, indicating a SLR threshold has been exceeded (Figure 4).  Here we relate our 

numerical CR predictions to verbal equivalents following the Intergovernmental Panel on Climate Change 

Fifth Assessment Report23.  At elevations of -1 to 0 m, developed areas are likely (66-100% probability) 

to inundate before the 2020s (relative to the base period of 2010), and marshes and forests after the 2030s.  

In the 0 to 1 m range, inundation is likely for developed areas by the 2050s, and marshes and forests by 

the 2080s.  At any time step, rocky areas are likely to inundate, whereas beaches are likely to very likely 

(90-100% probability) to respond dynamically.  Subaqueous environments are likely to be dynamic at any 

elevation range and time as they are expected to maintain their initial land-cover state; however those 

found below MHW have a greater DP than inland water bodies above MHW (Figure 4), presumably 

because they are responding to changes in sediment transport and resuspension, waves, tides, and other 

factors.   

 Model predictions provide a broad view of the coastal response to SLR and other processes at 

resolutions commensurate with landscape-scale decision-support needs.  The different scenarios depict 
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potential landscape changes that can be used to quantify uncertainties, define a planning horizon, or 

improve an understanding of risk tolerance14.  This information can guide decisions regarding land use 

and management, and provides context needed for understanding tradeoffs that may be necessary to 

achieve management goals, such as future land acquisitions or identification of land area buffers for 

ecosystem migration.   Furthermore, the approach presented here is sufficiently generic to apply at other 

coastal locations globally where environments are similar but data may be more limited in availability or 

resolution.  Probabilistic outcomes can help prioritize where future research efforts are directed to 

improve forecast capability, and as knowledge improves—for example due to better understanding of ice 

sheet behavior24, storminess25, adaptation actions1, or more detailed morphologic and ecologic process 

information2—the model and predictions can be updated.   

Understanding which response—inundation or dynamic—best describes the future system state 

over broad coastal landscapes can inform appropriate selection of more detailed modeling approaches.  In 

some locations, submergence may be the most pressing problem and properly applied inundation models 

can adequately depict future conditions.  Where complex coastal processes affect the landscape, detailed 

morphological models11-13 may be best suited to explore future scenarios.  Our modeling framework 

demonstrates comprehensive consideration of both response types is possible through an approach that 

can be applied to a variety of coastal settings, over a given time frame, or amount of SLR.   
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FIGURES 

Figure 1.  Schematic diagram showing a)  the conceptual coastal response model where x indicates 

dependence on the geospatial location and t indicates dependence on time; and b) the coastal response 

(CR) assignments presented as dynamic probability (DP) based on adjusted elevation range and land 

cover type; inundation probability is 1 – DP.  For example, if adjusted elevation is in the range of 0 to 1, 

the probability that a marsh environment will respond dynamically is 0.65. 

 

Figure 2.  Comparison showing: a) Surging Seas inundation map under 1.5 m of SLR (used with 

permission: http://ss2.climatecentral.org/#13/42.7573/-70.8059?show=satellite&level=4&pois=show); b) 

predicted coastal response likelihoods for 2080s sea level scenario (comparable projected SL to a); c) 

most-probable 2080s adjusted elevation (AE, or inundation levels); and d) probabilities of the AE values 

in (c).   

 

Figure 3.  Regional map (a) showing the spatial extent of predictions (gray shading) and examples of 

adjusted elevation (AE) and coastal response (CR) predictions for the 2020s and 2080s at Prime Hook 

National Wildlife Refuge in Delaware.  The modeled probability distributions (b) for sea level (SL), AE, 

and CR are shown for each time step at a single cell location (black arrow in lower right panel of (a) 

indicates location). 
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Figure 4.  Plots showing shifting coastal response (CR) likelihoods for each land cover type through time 

conditioned on moderate initial (present day) elevations (E).   Central column shows the total percent of 

the prediction area comprised by each land-cover type by each E range.  Red shows probability of 

dynamic response and blue shows probability of inundation. 

 

METHODS 

 Our model uses a Bayesian network (BN), which we exploit here for its ability to propagate 

uncertainty, perform inference and calculate conditional probabilities, and structure the integration of 

stochastic, deterministic, and expert relationships.  BNs have been applied to a variety of coastal 

problems6, 26, 27, and output results in a probabilistic form well-suited to address decision-support needs.  

The relationships between parameters in a BN are established through directed links (causal relationships, 

Figure 1) which represent conditional probabilities trained on observations, probabilistic or deterministic 

equations, or expert opinion.  An advantage in using BNs is their robust consideration of uncertainty.  

Uncertainties in the relationships derived from the observational training and uncertainties in the input 

parameters are propagated through the BN to provide a predicted probability for each discrete outcome.  

The training 1) captured the co-occurrence of land cover and elevation inputs, 2) used explicit 

relationships and input uncertainties among parameters as defined by equation (1), and 3) assigned 

dynamic response probabilities (DP) to a conditional probability table (CPT) based on knowledge specific 

to each scenario of land-cover (LC) and adjusted elevation22 (AE) to generate a coastal response (CR) 

prediction.   

Our BN stores conditional probabilities in order to make predictions using combinations of 

statistical inference and joint probability calculations.  For AE we use 

P(AEi) = ∑𝐸𝐸,𝑆𝑆𝑆𝑆,𝑉𝑉𝑉𝑉𝑉𝑉,𝐿𝐿𝐿𝐿 P(AEi|E, SL, VLM) P(E|LC) P(SLj) P(VLMj) P(LCj),   (2A) 
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where we evaluate the ith AE outcome from 5 discrete possibilities; the summation accounts for 

uncertainties in the input variables; the first term on the right is the probabilistic relationship for equation 

(1) conditioned on inputs from the jth spatial location at a particular time; and the second term accounts 

for the relationship between LC and elevation which is updated using Bayes theorem22  

P(Ei|LCj) = P(LCj|Ei) x P(Ei) / P(LCj).    (2B) 

The remaining (independent) terms in equation 2A are updated with input from data or model sources, 

and are, in general, uncertain.  The only exception is LC, which is entered as if known with certainty for 

each grid cell, as uncertainty for this term is unquantified22.  As noted in this paper, there is an inherent 

correlation between current elevation and LC; capturing this relationship through inference training 

(Bayes' rule), allows us to use LC information to update the prior elevation information (based on the 

values of the digital elevation model [DEM] over the entire domain) and constrain elevation uncertainties 

attributed to errors in the DEM.  For CR, we have  

P(CRi) =  ∑𝐴𝐴𝐴𝐴,𝐿𝐿𝐿𝐿 P(CRi|LC, AE) P(AE|LC) P(LCj),   (2C) 

where P(AE) is computed from 2A (and depends on SL, VLM, E, as well as LC) and P(CRi|LC, AE) are 

determined from published work or expert knowledge10, 17-19.  In our implementation, LC is exact as noted 

above and so the summation is only performed over the AE values—but using the BN allows for 

uncertainty in LC and we would apply this capability if the land-cover maps included uncertainty.   

Regional SLR projections were generated using multiple sources including scenarios—

Representative Concentration Pathways (RCPs)—in the 2014 Intergovernmental Panel on Climate 

Change (IPCC) Fifth Assessment Report (AR5)28.  A three-component approach29 for the SLR projections 

included an ocean term (including thermal expansion and local ocean height); ice melt; and land water 

storage.   The ocean term is taken from 24 Coupled Model Intercomparison Project 5 (CMIP5) models30 

(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html); while the first part is global, the second is computed 

on a 1° x 1° grid and extracted at the nearest ocean grid cell to each grid point in our domain.  Ice melt 
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was estimated for the Greenland Ice Sheet and the two Antarctic Ice Sheets20, and the glaciers and ice 

caps31, 32.  Land water storage was based on IPCC AR5 WG14. Set percentiles (10th, 25th–75th, and 90th) 

were estimated for each of the three components of sea-level change.  These projection ranges are 

representative of key uncertainties in sea-level rise components.   

SLR projections at each time interval (2020s, 2030s, 2050s, or 2080s) were initialized with 

uniformly distributed prior probabilities and updated with the regional  projection probabilities (Figure 

3b). Vertical land movement rates were estimated from GPS data33 and tide station records34.  The highest 

resolution elevation data available (either ~3 m or ~10 m horizontal resolution; +/- 43 cm or 1.25 m 

vertical) through the National Elevation Dataset (NED)35 were vertically adjusted to the MHW datum; 

bathymetry data at coarser resolution (~30 m) from the Coastal Relief Model were used in areas of open 

water.  To represent coastal landscape types, we generalized regional land cover data into six categories 

based on established differences in physical and biological processes that drive responses to SLR22.   

Results span the coastal zone from initial elevations of 10 m inland to -12 m offshore.  A 

comprehensive discussion of methods and input datasets can be found in Supplementary Information22. 
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Figure 1.  Schematic diagram showing a)  the conceptual coastal response model where x indicates dependence on the 
geospatial location and t indicates dependence on time; and b) the coastal response (CR) assignments presented as 
dynamic probability (DP) based on adjusted elevation range and land cover type; inundation probability is 1 – DP.  
For example, if adjusted elevation is in the range of 0 to 1, the probability that a marsh environment will respond 
dynamically is 0.65.



Figure 2.  Comparison showing: a) Surging Seas inundation map under 1.5 m of SLR (used with 
permission: http://ss2.climatecentral.org/#13/42.7573/-70.8059?show=satellite&level=4&pois=show); 
b) predicted coastal response likelihoods for 2080s sea level scenario (comparable projected SL to a); 
c) most-probable 2080s adjusted elevation (AE, or inundation levels); and d) probabilities of the AE 
values in (c).  
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Figure 3.  Regional map (a) showing the spatial extent of predictions (gray shading) and examples of 
adjusted elevation (AE) and coastal response (CR) predictions for the 2020s and 2080s at Prime Hook 
National Wildlife Refuge in Delaware.  The modeled probability distributions (b) for sea level (SL), 
AE, and CR are shown for each time step at a single cell location (black arrow in lower right panel of 
(a) indicates location).
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Figure 4.  Plots showing shifting coastal response (CR) likelihoods 
for each land cover type through time conditioned on moderate initial 
(present day) elevations (E).   Central column shows the total percent 
of the prediction area comprised by each land-cover type by each E 
range.  Red shows probability of dynamic response and blue shows 
probability of inundation.




