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The toxic arsenate ion can behave as a phosphate analog, and this can result in arsenate tox-
icity especially in areas with elevated arsenate to phosphate ratios like the surface waters
of the ocean gyres. In these systems, cellular arsenate resistance strategies would allow
phytoplankton to ameliorate the effects of arsenate transport into the cell. Despite the
potential coupling between arsenate and phosphate cycling in oligotrophic marine waters,
relatively little is known about arsenate resistance in the nitrogen-fixing marine cyanobac-
teria that are key components of the microbial community in low nutrient systems. The
unicellular diazotroph, Crocosphaera watsonii WH8501, was able to grow at reduced rates
with arsenate additions up to 30 nM, and estimated arsenate to phosphate ratios of 6:1.
The genome of strain WH8501 contains homologs for arsA, arsH, arsB, and arsC, allowing
for the reduction of arsenate to arsenite and the pumping of arsenite out of the cell. The
short-term addition of arsenate to the growth medium had no effect on nitrogen fixation.
However, arsenate addition did result in the up-regulation of the arsB gene with increasing
arsenate concentrations, indicating the induction of the arsenate detoxification response.
The arsB gene was also up-regulated by phosphorus stress in concert with a gene encoding
the high-affinity phosphate binding protein pstS. Both genes were down-regulated when
phosphate was re-fed to phosphorus-stressed cells. A field survey of surface water from
the low phosphate western North Atlantic detected expression of C. watsonii arsB, sug-
gestive of the potential importance of arsenate resistance strategies in this and perhaps
other systems.
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INTRODUCTION
Arsenic is prevalent in the marine environment, where it can occur
as arsenite [As (III)] and arsenate [As (V)]. Both oxidation forms
are toxic to the majority of living organisms, with arsenite interfer-
ing with enzyme function, and arsenate, the thermodynamically
dominant form in most oxygenated surface waters (as AsO3−

4 ),
behaving as a phosphate analog (Apte et al., 1986) and disrupting
phosphate uptake and utilization (Wängberg and Blanck, 1990;
Bleeker et al., 2003).

In the surface ocean, arsenic has relatively high concentrations
and follows a nutrient-like profile, with less arsenic at the sur-
face than at depth suggestive of biological uptake and transport
(Andreae, 1979; Cutter and Cutter, 1995). Due to the potential
competitive inhibition between arsenate and phosphate (Smedley
and Kinniburgh, 2002; Manomita et al., 2004), arsenate resistance,
or detoxification pathways may be particularly important in low
phosphate systems like the ocean gyres, including the western
North Atlantic where surface phosphate levels are typically around
5 nM and can be sub-nanomolar (Wu et al., 2000; Lomas et al.,
2010). Surface inorganic arsenic (arsenate and arsenite) concen-
trations in this region can be >12 nM (Cutter and Cutter, 1995)
with an arsenic to phosphate ratio thus exceeding 2:1.

It has been proposed that under low phosphate conditions,
microbial uptake of arsenate and its subsequent reduction to and

excretion as arsenite is rapid (Andreae, 1979). There are relatively
few studies of arsenic speciation in the ocean gyres, but of the
studies that have been done, the speciation of dissolved arsenic
(arsenite, arsenate, and methylated arsenic forms) was subtly con-
trolled by the arsenate to phosphate ratio (Cutter and Cutter,
2006). The microbial detoxification products of arsenic including
arsenite and methylated forms of arsenic have surface maxima, and
in a study of profiles in the western Atlantic tracked closely with
the chlorophylla profile (Cutter and Cutter, 1995). These detoxi-
fication products have a short (days–months) residence time and
their presence suggests active microbial arsenic detoxification in
the surface ocean. Although some arsenic accumulation can occur
in microbes (Statham et al., 1987), arsenic distributions suggest
that the uptake of arsenic by phytoplankton primarily results in
cycling between chemical forms within the euphotic zone and that
the flux of arsenic into the deep ocean by particle transport is
relatively minor (Andreae, 1979; Sanders and Windom, 1980).

Because of the prevalence of arsenic in the environment and
its toxicity, many microbes carry well-described pathways for
arsenate detoxification or resistance. The most common arsen-
ate resistance system (ars) involves an arsenate reductase (ArsC),
an arsenite efflux pump (ArsB or ACR3), and a transcriptional
repressor (ArsR; Rosen, 1999; Mukhopadhyay et al., 2002; Busen-
lehner et al., 2003; López-Maury et al., 2003). Some bacteria also
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possess other ars genes including arsA, an arsenite-stimulated
ATPase that results in more efficient arsenite efflux through ArsB
(Ordóñez et al., 2005; Silver and Phung, 2005). The presence of
arsenate detoxification genes has been reported in a wide vari-
ety of picocyanobacteria (López-Maury et al., 2003; Scanlan et al.,
2009). Furthermore, Prochlorococcus arsenate resistance genes are
overrepresented in metagenome sequence from the surface North
Atlantic with an elevated arsenate to phosphate ratio relative to
the North Pacific (Coleman and Chisholm, 2010). This finding
underscores the potential importance of arsenate detoxification,
especially in the low phosphorus North Atlantic, yet arsenate
resistance strategies have not been investigated in the unicellular
marine nitrogen-fixing cyanobacteria.

In the oligotrophic oceans, nitrogen-fixing cyanobacteria are
considered “keystone” species (Hewson et al., 2009a), because of
their low relative abundance but significance to carbon and nitro-
gen fixation. Of these nitrogen-fixing cyanobacteria, unicellular
diazotrophs are increasingly recognized as critically important to
nitrogen cycling (Montoya et al., 2004), but are less well under-
stood relative to larger filamentous nitrogen-fixing cyanobacteria
like Trichodesmium. Phylogenetic analyses of the nitrogenase-
encoding nifH sequences obtained from field surveys have shown
that there are two distinct groups of the unicellular diazotrophs,
one of which (group B) includes Crocosphaera watsonii WH8501
(Zehr et al., 2001; Falcón et al., 2002, 2004). C. watsonii is widely
distributed through the surface waters of the tropical oceans
(Church et al., 2005; Zehr et al., 2007), including low phos-
phate environments like the Sargasso Sea (Hewson et al., 2007).
Recent work leveraging the whole genome sequence of C. wat-
sonii WH8501 suggests that it has a robust capacity for scavenging
phosphorus (e.g., presence of pstSCAB, a high-affinity phosphate
transport system; Dyhrman and Haley, 2006), and as a diazotroph,
it may drive down local phosphorus concentrations via nitrogen
fixation. In these low phosphate scenarios there may be coupling
between arsenate and phosphate cycling with the possible induc-
tion of arsenate detoxification or resistance strategies. Here we
used a combination of genomic observations, physiological stud-
ies, and field analyses to examine arsenate resistance in C. watsonii.

MATERIALS AND METHODS
CULTURE CONDITIONS
Axenic Crocosphaera watsonii WH8501, previously designated as
Synechocystis sp. strain WH8501, was obtained from John B.
Waterbury at Woods Hole Oceanographic Institution. Cultures
were grown at 27.5˚C using a 14:10 h light dark cycle provided
by cool white fluorescent bulbs with ∼65 μmol quanta m−2 s−1.
Unless otherwise noted phosphorus replete (referred to as +P or
Replete) cultures were grown in 2 L SO medium (Waterbury et al.,
1986), made with a 0.2 μm filtered 75% Sargasso seawater base
and 45 μM K2HPO4. Continued sterility was confirmed by testing
for growth of contaminating organisms with a tryptone-fortified
medium (Andersen et al., 1991). Growth was monitored by in vivo
fluorescence on a Turner Designs TD-700 fluorometer.

ARSENATE AND PHOSPHATE GROWTH EXPERIMENT
Crocosphaera watsonii WH8501 was grown in triplicate on dif-
ferent concentrations of added arsenate and phosphate in SO

medium made as above and amended with no added phos-
phate (NoP), 500 nM phosphate (LowP), and 45 μM phosphate
(Replete). Sterile-filtered (0.2 μm) arsenate was added as ACS-
grade sodium arsenate, Na2HAsO4·7H2O (Chem Service, West
Chester, PA, USA) in appropriate quantities to yield the follow-
ing final concentrations in the NoP treatments: 0, 15, 30, 150,
500, 1000, and 5000 nM. Arsenate was added to the LowP treat-
ments to yield the following final concentrations: 0, 500, 1000, and
5000 nM. No arsenate was added to the Replete cultures as a con-
trol. Cells used as the inoculum for all treatments were centrifuged
initially for 10 min at 7000 rpm and resuspended in medium with-
out added phosphate to restrict carryover. Where no arsenate or
phosphate was added to the cultures, As:P ratios were estimated
based on literature values for ambient arsenate (12 nM; Cutter and
Cutter, 1995) and phosphate concentrations (5 nM; Jakuba et al.,
2008) for the region where the water was collected.

ARSENATE ADDITION EXPERIMENTS
Crocosphaera watsonii was grown in 500 mL +P SO medium (as
described above) to mid log phase and then equal volumes (25 mL)
were dispensed into glass culture tubes. Arsenate was added to trip-
licate cultures at final concentrations of 0, 15, 30, 150, and 500 nM.
The triplicate treatments were pooled and harvested by filtra-
tion (0.2 μm, 25 mm polycarbonate filters) after a 24 h incubation
under the growth conditions detailed above. Samples were flash
frozen immediately and later stored in liquid nitrogen for subse-
quent gene expression analyses. In similar experiments to assay
nitrogen fixation, 30 mL of exponentially growing +P C. watsonii
WH8501 cells were dispensed into 75-mL square polycarbonate
culturing bottles. Arsenate was added to triplicate culture bottles
at final concentrations of 0, 15, 30, 150, 500, and 1000 nM arsenate.

PHOSPHORUS MANIPULATION EXPERIMENTS
Triplicate +P (45 μM) cultures were grown as a scale up as
described above and harvested at late log phase by centrifugation
(7000 rpm). The cell pellets were pooled and split into two equal
volumes, washed twice in either +P or −P (−P; 1 μM K2HPO4)
medium to restrict carryover and resuspended in 25 mL of the
same medium. The resulting +P and −P cell suspensions were
divided among 3–500 mL flasks of like medium. Whole flasks were
harvested onto polycarbonate filters (47 mm, 0.2 μm) at 0, 24, 72,
and 120 h after resuspension and flash frozen in liquid nitrogen for
subsequent analyses. In an additional experiment, triplicate +P
and −P cultures were inoculated each with 2 mL P replete stock
that had been centrifuged, split into two equal volumes, washed
twice in either +P or −P medium and resuspended in 2 mL of the
same medium. Cultures were harvested from mid log phase +P
cultures. When growth had ceased in −P cultures, the triplicate
cultures were pooled and split into six flasks. Triplicate cultures
were re-fed with phosphate to replete P levels (45 μM) and the
remaining three were unchanged. Flasks were subsampled at 0, 24,
48, 72, 120, and 168 h after phosphate addition, harvested onto
polycarbonate filters (25 mm, 0.2 μm), and flash frozen in liquid
nitrogen for subsequent analyses.

NITROGEN FIXATION
Nitrogen fixation was assayed 24 h after the addition of arsen-
ate (as described above), over the midpoint of the dark period
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in the incubator by the acetylene reduction assay described by
Capone and Montoya (2001). Briefly, all culture bottle caps were
replaced with silicone septa. Acetylene was produced by mixing
50 mL of MilliQ water with 15 g calcium carbide and stored in a
bladder. Six milliliters of acetylene were injected into the bottles.
At times 0, 30, 60, 90, and 120 min after injection, duplicate 0.4-
mL samples were removed from the headspace of the bottles and
0.3-mL samples were injected into a Shimadzu GC-8A gas chro-
matograph and integrated by a Shimadzu CR8A Chromatopac to
measure the ethylene peaks. Standards of 9.1 ppm ethylene were
used to calibrate the peak heights. Ethylene formed was calculated
according to Capone and Montoya (2001) with Bunsen coeffi-
cients calculated for a 75% seawater/25% MilliQ water mixture
and ambient temperature according to Breitbarth et al. (2004).
Nitrogenase activity was calculated as the average rate of ethylene
production per volume (nmol C2H4 h−1 mL−1) with a ratio of 3:1.
Growth of cultures was monitored by relative fluorescence with a
Turner Designs Aquafluor fluorometer. The nitrogen fixation rate
calculated for the control (no arsenate added) was set to one and
the nitrogen fixation rates for different arsenate concentrations
were compared as a proportion above or below the control.

FIELD SAMPLE COLLECTION
Samples were collected on board the R/V Bank of Bermuda Atlantic
Explorer in the western North Atlantic (Figure 1) in 2006 on the
BVAL37 transect from Bermuda to Puerto Rico. At each station,

FIGURE 1 | Station locations for field samples collected from an

October 2006 transect from north to south in the Sargasso Sea.

12 L of near surface (∼5 m) seawater was collected via a Niskin
bottle and filtered through 0.2 μm Sterivex cartridge filters (Milli-
pore) under low pressure. Samples were flash frozen and stored in
liquid nitrogen prior to analyses. Total processing time from water
to liquid nitrogen was roughly 20 min. Dissolved inorganic phos-
phate (DIP) concentration was determined on Niskin-collected
water from the same depth and analyzed as described elsewhere
with a typical detection limit of 0.5 nM (Lomas et al., 2010).

TOTAL RNA EXTRACTION FROM CULTURE AND FIELD SAMPLES
RNA extractions were performed on cultured C. watsonii WH8501
cells with the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) with a
small modification to the lysis procedure. Lysis was performed by
adding ∼500 μl zirconium/silica beads (0.5 mm) and vortexing for
10 min at 250 rpm. The RNA was then treated with Turbo DNase
(Ambion, Austin, TX, USA) following the rigorous protocol to
remove genomic DNA. RNA was quantified spectrophotometri-
cally, and a total of 60 ng of RNA was transcribed into cDNA using
random hexamers included in the iScript cDNA Synthesis kit (Bio-
Rad, Hercules, CA, USA), according to the instructions. Additional
reactions for each sample were set up without reverse transcriptase
(RT) to ensure the absence of genomic DNA in no-RT controls.

RNA was extracted from field samples using the RNeasy Mini
Kit (Qiagen) with minor modifications in the lysis procedure.
Lysis was performed by adding ∼500 μl zirconium/silica beads
(0.5 mm), TE/lysozyme buffer (15 mg mL−1), and Buffer RLT
(Qiagen) to the Sterivex cartridge. Cartridges were vortexed for
10 min at 250 rpm. The resulting lysate was removed through the
Sterivex inlet with a syringe, transferred into a 15-mL conical tube,
and processed as per the remaining steps of the RNeasy protocol.
Nucleic acid concentrations were quantified using a NanoDrop®
ND-1000 spectrophotometer (NanoDrop Technologies, Wilming-
ton, DE, USA). Field samples typically yielded ∼35 ng total RNA.
For the field samples, RNA was transcribed and amplified in one
step (see below) using gene-specific primers (Table 1).

GENE EXPRESSION
Crocosphaera watsonii WH8501 culture samples were quantita-
tively assayed by qRT-PCR while field samples were qualitatively
assayed by RT-PCR. Primer sets for arsB, pstS, and rotA (Table 1)

Table 1 | Primers and amplification conditions for the genes used in qRT-PCR and RT-PCR.

Gene Primer sequence Accession number Annealing temperature (˚C) Amplicon size (bp)

arsB 5′ AACAATGGTTTGCCAGGGAAC ZP_00514915 59.5˚C 116

3′ GTCATACTTTGGTGATGGTTGCG

pstS 5′ TTGTGCAACTCAACACAGCA ZP_00514993 59.5˚C 127

3′ TCTGTCATGGCCACATCACT

rotA 5′ GAGAAGATGCTCCTATTACCGCC ZP_00514036 59.5˚C 243

3′ GTTGACCCAATGCTTTGCTGTAG

phnDa 5′ TCGGNGCMATYCCSGATCAGAACCCSG 65˚Cb 620

3′ TTGGGCTGSGCGASCCAGTGGTARTC

3′ GGNCGNGCCACCCAGTGGTARTC

aPrimers were designed by Ilikchyan et al. (2009).
bDecreased by 0.5˚C each cycle until 55˚C was reached, after Ilikchyan et al. (2009).
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were designed based on the sequenced genome of C. watsonii
WH85011. Primers, designed and utilized by Ilikchyan et al.
(2009), were used to amplify the Synechococcus spp. phnD gene
encoding a putative phosphonate binding protein (Table 1). All
analyses were performed in triplicate in an iCycler iQ Real-time
PCR detection system (Bio-Rad) in a total volume of 25 μl. The
reaction mix contained 12.5 μl iQ SYBR Green Supermix (Bio-
Rad), 0.2 μM primer concentrations, and 1 μl template cDNA
(diluted 1:10). Reactions were cycled using a temperature pro-
file of 95˚C for 5 min (1×), 95˚C for 30 s (1×), and 59.5˚C for 30 s
(45×). The temperature profile also included a melt curve proto-
col at the end of the program. In all cases, melt curves were used to
confirm single amplification products for the different reactions.
In addition, for each sample and primer pair no-RT controls and
no template controls were run to test for DNA contamination
and specificity of amplification. These negative controls did not
typically amplify, but in the rare cases where there was any amplifi-
cation the measured template concentration was at least two orders
of magnitude less than the sample template concentration.

The comparative, or ΔΔCt, method was used to normalize
the expression of each gene for the qRT-PCR. The amplifica-
tion efficiency and validation of the ΔΔCt method were tested
for each primer set on cDNA. Amplification efficiency was deter-
mined to be acceptable if it fell between 90 and 110% with an
r2 of 0.98 or higher. Each primer pair was considered accept-
able if the ΔCt of the two slopes was less than 0.1. Samples were
normalized to the constitutively expressed rotA (ZP_00514036),
encoding a peptidyl–prolyl cis-trans isomerase (Hassidim et al.,
1992; Thellin et al., 1999). This gene has previously been used
as a reference gene with the marine diazotroph Trichodesmium
erythraeum (Orchard et al., 2009), and the Ct of this reference
gene did not vary with plate or treatment in samples normal-
ized to total RNA. Fold changes were calculated using the Relative
Expression Software Tool, which accounts for differences in effi-
ciency in its fold change calculation2. For each experiment a
single T 0 time point sample was used as a calibrator for calcu-
lating fold changes. The p-values were calculated using a pair-wise
fixed reallocation randomization analysis as noted (Pfaffl et al.,
2002).

RT-PCR of environmental samples was performed using a
OneStep-RT-PCR kit (Qiagen) according to the manufacturer’s
instructions. Briefly, the reaction mix contained RNase-free water,
5× OneStep-RT-PCR buffer, dNTP mix (containing 10 mM of
each dNTP), 0.6 μM gene-specific primer concentrations (final),
OneStep-RT-PCR enzyme mix, and template RNA (∼10 ng) for
a total reaction volume of 20 μl. Reactions were cycled with a
temperature profile of 50˚C for 30 min (1×), 95˚C for 15 min
(1×), 94˚C for 30 s, 59.5˚C for 30 s, and 72˚C for 1 min (40×),
and 72˚C for 10 min. To validate the integrity of the extracted
RNA, Synechococcus spp. phnD amplification was included for
each environmental sample. The temperature profile was the same
for the reverse transcription and initial PCR activation steps. How-
ever, the temperature profile for amplification was modified to

1http://img.jgi.doe.gov/pub/main.cgi
2http://www.gene-quantification.de/download.html

95˚C for 5 min (1×), 95˚C for 1 min, an initial annealing tem-
perature of 65˚C for 1 min decreasing by 0.5˚C each cycle until
55˚C was reached, and 72˚C for 1 min (40×), and extension at
72˚C for 20 min (Ilikchyan et al., 2009). Additionally, reactions
were performed without RT to ensure the absence of genomic
DNA in the RNA samples. RT-PCR products were resolved on
2% agarose gels. Selected bands were identified, excised, and gel
purified using the QIAquick gel extraction kit (Qiagen). Sequenc-
ing of PCR products was performed at the University of Maine
Sequencing Facility (Orono, ME). All sequence data were analyzed
manually using the programs Sequencher (Gene Codes Corpo-
ration, Ann Arbor, MI, USA), MacVector (Accelrys, Burlington,
MA, USA), and BLASTN3. The sequence of the field amplicon has
been deposited in the EMBL Nucleotide Sequence Database4 with
accession number FR873108.

RESULTS
GENOMIC OBSERVATIONS
The genome of C. watsonii WH8501 contains homologs for genes
involved in the reduction of arsenate to arsenite and the pump-
ing of arsenite out of the cell (Figure 2). A homolog of an
arsenite efflux pump, arsB (ZP_00514915) and an arsenate reduc-
tase, arsC (ZP_00514912), are present in the C. watsonii genome
(Figure 2). These genes are separated by two genes, arsH and
arsH ′, encoding proteins of unknown function (Figure 2). The
arsA (ZP_00516616) gene, an arsenical pump-driving ATPase, is
87.82% identical to Synechococcus PCC 6803. In both Synechococ-
cus PCC 6803 and C. watsonii WH8501 arsA is not contiguous
to the other ars genes, and in C. watsonii WH8501 it is isolated
on a relatively small contig. The C. watsonii WH8501 genome also
contains the pstSCAB genes that encode a high-affinity P transport
system and an additional putative low affinity phosphate permease
(Dyhrman and Haley, 2006).

ARSENATE ADDITION EFFECTS ON GROWTH AND NITROGEN FIXATION
Different concentrations of arsenate were added to C. watsonii
WH8501 cultures to measure the effect on growth in combination
with two different phosphate concentrations. Growth rates were
calculated for each biological replicate (e.g., each flask) and then
averaged within a treatment. The growth rate calculated for the

3http://www.ncbi.nlm.nih.gov/BLAST
4http://www.ebi.ac.uk/embl/

FIGURE 2 |The gene topology of C. watsonii WH8501 arsCHB and

percent identity to Synechocystis PCC6803. Genes shaded gray have
been shown to be up-regulated by phosphorus stress, or arsenate addition
in this study.
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Replete control (no arsenate added, 45 μM phosphate) was set to
one and the growth rate for different arsenate and phosphate con-
centrations were normalized to the Replete growth rate. Significant
differences in normalized growth rates were found in different
treatments (Figure 3A, one-way ANOVA, p < 0.0001). Post hoc
testing at the p < 0.05 level (Student Newman–Keuls) found no
significant differences in normalized growth rate between the
Replete and the cultures grown with no added arsenate, regard-
less of added phosphate concentration, although yield on day 8 of
the experiment was highest in the Replete treatment (Figure 3B).
All treatments with added arsenate had normalized growth rates
significantly lower than the Replete. Four arsenate addition lev-
els were replicated with and without added phosphate; a 2-way
ANOVA using these arsenate and phosphate concentrations as
factors found no significant effect of phosphate concentration
on normalized growth rate (p = 0.3341; Figure 3A). However,
increasing arsenate concentration had a highly significant effect
on normalized growth rate (p < 0.0001; Figure 3A). There was
no significant interaction effect between phosphate and arsen-
ate (p = 0.9051). For the cultures with NoP (0 nM – typically
∼5 nM residual phosphate in culture medium), growth rates were
depressed in the 15- and 30-nM treatments (Figure 3A). The tran-
sition from positive growth to negative growth occurred with an
arsenate addition between 30 and 150 nM (Figure 3A). Short-term
(24 h) additions of arsenate in concentrations of 0, 15, 30, 150,
500, and 1000 nM had no affect on in vivo fluorescence (data not
shown). Further, these same arsenate additions had no acute effect
(one-way ANOVA, p = 0.9816) on nitrogen fixation rate after 24 h
(Figure 4).

GENE EXPRESSION PATTERNS
In +P cultures of C. watsonii WH8501, expression of arsB was
higher, and statistically different from the no addition control
with the addition of 30 nM (p = 0.000; Figure 5). In this experi-
ment, fold changes increased as a function of increasing arsenate
(Figure 5). The expression of arsB was higher in −P cultures of

C. watsonii WH8501 relative to the +P control by 72 h (p = 0.000),
and further increased by 120 h (Figure 6). Consistent with pre-
vious work (Dyhrman and Haley, 2006), the expression of pstS
in the −P cultures was statistically higher than in the +P cul-
tures by 120 h (p = 0.000), although overall expression levels of
pstS were low relative to arsB (Figure 6). When P was re-supplied
to P-stressed cultures, arsB (p = 0.000), and pstS (p = 0.012; data
not shown) were statistically lower within 48 h and remained low
(arsB; p = 0.013 and pstS; p = 0.044) over the course of the 168-h
experiment (Figure 7).

FIELD DETECTION OF C. watsonii ARSB
Three near surface samples were examined for the expression of
the C. watsonii arsB gene in an oligotrophic region of the western
North Atlantic during a transect from Bermuda to Puerto Rico
in October 2006 (BVAL 37). The field stations examined had DIP
concentrations <10 nM (Table 2). A C. watsonii arsB transcript
was detected at station 12, and confirmed with sequencing of the
amplicon, which was 100% identical to the arsB WH8501 genome
sequence. C. watsonii arsB transcripts were not detected at stations
8 and 11. Amplification was not observed in the no-RT controls for
the stations tested, and expression of the Synechococcus sp. phnD
transcript was detected at all stations (Table 2).

DISCUSSION
Arsenate is common in the ocean with surface water concentra-
tions from approximately 5–20 nM (Andreae, 1979; Cutter and
Cutter, 1995). Arsenate and phosphate share the same oxidative
state and as a consequence, enzymes, and proteins may bind arse-
nate and move it into the cell by phosphate transport systems with
little selectivity (Tawfik and Viola, 2011). Although some microbes
thrive in high arsenate (Brunskill et al., 1980; Thiel, 1988; López-
Maury et al., 2003), marine microorganisms, which must take up
phosphate to supply their metabolic needs, face a unique problem
in oligotrophic regimes, where phosphate concentrations are low
and arsenate may equal or exceed the phosphate concentration

FIGURE 3 | C. watsonii WH8501 growth responses to arsenate (As).

(A) Growth rate of C. watsonii WH8501 normalized to the Replete control
with 45 μM phosphate (P) and no added As. Treatments consisted of
different concentrations of As added to medium with either LowP (500
nM) or NoP. Error bars are the SE of the mean (n = 3). Significantly lower

growth rates from the Replete control (p < 0.05) are indicated (*) for each
treatment using a 1-way ANOVA. (B) C. watsonii WH8501 relative
fluorescence as a function of day in growth curves for each P and as
treatment. Treatment key is ordered by the yield on day 8. Error bars are
the SE of the mean (n = 3).
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FIGURE 4 | Nitrogenase activity of C. watsonii WH8501 normalized to

the control with no added arsenate. Treatments consisted of different
concentrations of added arsenate as indicated. Error bars indicate the SE of
the mean (n = 3).

FIGURE 5 | Expression pattern for arsB as a function of arsenate

additions. The expression ratio is the fold change of triplicate
measurements between the sample expression and the calibrator
expression (e.g., the zero time point). Error bars indicate the SE of triplicate
measurements of the expression ratio. Significance (p < 0.05) is indicated
(*) for each arsenate addition treatment relative to the no addition control
using a pair-wise fixed reallocation randomization analysis.

(Johnson and Pilson, 1972). Nitrogen-fixing marine cyanobacte-
ria are often present in low phosphate environments, and exhibit
evidence of P stress-induced adaptations in some regions like the
western North Atlantic (Dyhrman et al., 2002, 2007; Dyhrman
and Haley, 2006). It has also been hypothesized that they may
draw down phosphate to the extent that they induce phosphate
deficiency in local microbial populations (Hewson et al., 2009b).
In these systems, cellular arsenate resistance strategies would allow
diazotrophs to ameliorate the effects of arsenate transport into the
cell.

Despite the potential coupling between arsenate and phosphate
cycling in marine waters, relatively little is known about arse-
nate resistance in the nitrogen-fixing marine cyanobacteria that
are common in oligotrophic systems. The unicellular diazotroph,
C. watsonii WH8501, was able to grow, but with reduced rates,
with arsenate additions up to 30 nM, and estimated arsenate to
phosphate ratios up to 6:1. Cell abundance declined rapidly in

FIGURE 6 | Expression patterns for arsB and pstS in cultures

transferred into either phosphate replete (+P) or no added P (−P)

medium. The expression ratio is the fold change of triplicate
measurements between the sample expression and the calibrator
expression (e.g., the zero time point). Error bars indicate the SE of triplicate
measurements of the expression ratio. Significance (p < 0.05) is indicated
(*) for the −P versus the +P culture at a single time point for pair-wise fixed
reallocation randomization analysis.

FIGURE 7 | Expression patterns for arsB and pstS in phosphate

deficient cultures (−P) re-fed with phosphate (+P). The expression ratio
is the fold change of triplicate measurements between the sample
expression and the calibrator expression (e.g., the zero time point). Error
bars indicate the SE of triplicate measurements of the expression ratio.
Significance (p < 0.05) is indicated (*) for the −P versus the re-fed culture at
a single time point for pair-wise fixed reallocation randomization analysis.

treatments with 500 nM arsenate and phosphate together at a 1:1
ratio, suggesting that C. watsonii is sensitive to the absolute con-
centration of arsenate and not simply the arsenate to phosphate
ratio. Several cyanobacterial species, such as Anabaena variabilis
and Synechocystis strain PCC6803 are able to grow in the presence
of high concentrations of arsenate (up to 75 mM) and in low-
millimolar concentrations of arsenite, respectively (Thiel, 1988;
López-Maury et al., 2003). At this juncture, C. watsonii WH8501
appears to be more sensitive to arsenate additions, ceasing net
growth with additions of 500 nM arsenate in medium with 500 nM
phosphate, and with additions of only 30 nM arsenate in medium
made from low phosphate Sargasso Sea seawater with no added P.
The selectivity of phosphate transporters for phosphate relative to
arsenate can be variable (Budd and Craig, 1981; Takahashi et al.,
2001; Tawfik and Viola, 2011) and was not examined herein, but
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Table 2 | Presence or absence of Crocosphaera watsonii arsB, arsB no-RT, and Synechococcus spp. phnD in field samples.

Cruise-station ID arsB arsB no-RT phnD DIP (nM)

BVAL37–8 − − + 5.4

BVAL37–11 − ND + 2.7

BVAL37–12 + − + BLD

ND, not determined – there was not enough template for this sample to perform a no-RT reaction for arsB; DIP, Dissolved inorganic phosphate; BLD, Below detection

limit.

these growth data suggest that arsenate is able to enter the cell
and effect net growth rate in both 0 nM added and 500 nM added
phosphate treatments. Phosphate may be transported by C. wat-
sonii WH8501 using a low affinity phosphate permease system
under high phosphate, and via the canonical pstSCAB high-affinity
system under low phosphate (Dyhrman and Haley, 2006). These
growth data are consistent with this hypothesis, given that the
arsenate exhibited toxic effects on growth and was likely trans-
ported into the cells in both the 500- and 0-nM treatments. This is
also consistent with the sensitivity of C. watsonii to arsenate com-
pared to other cyanobacteria, as the putative low affinity phosphate
permease transport system is not common in the other marine
cyanobacteria (Dyhrman and Haley, 2006).

Arsenate metabolism and the related genes are well studied in a
diverse array of microbes (Stolz et al., 2006). A conserved strategy
for arsenate detoxification among the marine picocyanobacteria
examined to date is the reduction of arsenate to arsenite within the
cell by means of an arsenate reductase and subsequent removal by
an arsenite efflux pump (ArsB; Scanlan et al., 2009). The required
genes are broadly distributed in the marine picocyanobacteria
Prochlorococcus and Synechococcus (Scanlan et al., 2009). The arse-
nate resistance genes are also present in C. watsonii WH8501,
which has homologs for arsA and arsCHH ′B. The arsA gene is
not contiguous with the other ars genes in the genome. It encodes
an arsenical pump-driving ATPase, arsC encodes a putative arse-
nate reductase, and arsB encodes the arsenite efflux pump. The
ArsH protein has been shown to be required for resistance to
arsenite and arsenate in some bacteria, such as Yersinia enterocol-
itica (Neyt et al., 1997), and arsH is present in the arsBHC operon
involved in arsenic resistance in the cyanobacteria Synechocystis sp.
PCC6803 (López-Maury et al., 2003), but its role in detoxification
is unknown.

The short-term addition of arsenate to high phosphate cultures
of C. watsonii WH8501 resulted in the up-regulation of the arsB
gene, demonstrating its responsiveness to arsenate. Expression lev-
els were titered to increasing arsenate concentration, indicating
the induction of an arsenate detoxification response that is sen-
sitive to absolute concentration of arsenate. Although arsB was
significantly induced with arsenate additions of 30 nM or greater,
arsenate did not result in acute effect on growth or nitrogen fixa-
tion over the 24-h incubation. In fact, there may be no acute effect
on nitrogen fixation because C. watsonii WH8501 is able to detox-
ify arsenate. Given the growth responses to longer-term arsenate
exposure highlighted above, there is likely an effect on nitrogen
fixation in scenarios of chronic exposure, or where the arsenate
resistance system is unable to compensate. This could be the result
of arsenic accumulation in the cell, which has been shown to occur

with chronic exposure in other phytoplankton (Sanders and Win-
dom, 1980). As such, arsenate toxicity could be a controlling factor
on nitrogen fixation in areas where the arsenate to phosphate ratio,
or the absolute arsenate concentration, is chronically high. Regard-
less, C. watsonii WH8501 clearly induces arsB in response to even
low arsenate additions, which underscores the sensitivity of the
resistance response to arsenate.

The arsB expression patterns examined herein demonstrate
that the gene is concomitantly expressed during P stress with pstS.
The differences in the arsB and pstS expression ratios, are consis-
tent with the heterogeneity observed between P-responsive genes
in T. erythraeum (Orchard et al., 2009), and likely reflect differ-
ent transcript abundances. Expression levels of both genes decline
upon P addition to phosphate deficient cells within 48 h. This
is somewhat slower than what is observed with Prochlorococcus
strains (Martiny et al., 2006), and the diazotroph T. erythraeum
(Orchard et al., 2009), which may be related to the relatively slow
doubling times (∼40–60 h) reported for C. watsonii strains (Webb
et al., 2009). Although the arsB gene is clearly induced in concert
with pstS, a known phosphate-responsive phosphate binding pro-
tein gene, the arsB in this case may be responsive to the changing
arsenate uptake dynamics driven by changes in the expression of
the high-affinity phosphate transport system, and the arsenate to
phosphate ratio in the medium, rather than as a direct response to
phosphate supply.

Unicellular diazotrophs such as C. watsonii are increasingly rec-
ognized for their contribution to oceanic nitrogen fixation (Zehr
et al., 2001; Montoya et al., 2004), despite their low abundance.
This low abundance makes tracking C. watsonii gene expression
patterns in the field a challenge relative to more abundant pic-
ocyanobacteria. For example, even at its highest cell densities in
C. watsonii bloom scenarios, relatively few C. watsonii transcripts
could be detected in metadata sets (Hewson et al., 2009a). Low field
abundances have thus, in part, restricted transcriptomic studies of
this diazotroph in the field to surveys of nifH transcripts and
the one metatranscriptomic study in a high density population
highlighted above (Hewson et al., 2009a). Herein, we observed
expression of C. watsonii arsB in the near surface waters of the
tropical western North Atlantic. The likely explanation for why
two of the three stations did not have a detectable C. watsonii
arsB amplicon is low cell abundance, since estimated cell density
in this general region of the western North Atlantic is both spa-
tially variable and low; ranging from undetectable to about seven
C. watsonii nifH copies L−1 (Langolis et al., 2008; Moisander et al.,
2010). C. watsonii abundance was not examined on the transect,
but Synechococcus abundances in this region averaged 104 cells
mL−1 in surface waters (Casey et al., 2009), much higher than
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typical C. watsonii abundances (<<103 cells mL−1). The fact that
the samples amplified for Synechococcus sp. phnD suggests that
the RNA was of good quality, and either C. watsonii arsB was not
expressed, or C. watsonii was not present at abundances where
arsB transcripts could be detected. Despite these challenges, the
arsB transcript detected at station 12 was clearly from C. wat-
sonii. Without quantitative data we are unable to ascertain if this
transcript was induced to levels that would suggest substantial
arsenate detoxification, however, the expression of arsB is con-
sistent with the detection of the arsenite detoxification product
in the North Atlantic (Andreae and Klumpp, 1979; Sanders and
Windom, 1980).

The expression of arsenate detoxification genes has not been
comprehensively examined in marine microbial populations,
although expression of arsenate reductase, arsA, and arsB were
detected in metatranscriptome data from a Trichodesmium con-
sortium collected from the South Pacific (Hewson et al., 2009b).
In this case, the arsA was from Trichodesmium, and the other sig-
nals were from other heterotrophic bacteria present in the sample
(Hewson et al., 2009b). The presence of these transcripts in the
relatively high phosphate environment of the South Pacific may
be attributed to changes in P cycling driven by a dense population
of diazotrophs (Hewson et al., 2009b), and/or differences in the
sensitivity of different microbes to arsenate toxicity. Of the very
few C. watsonii transcripts detected in this study, none were related
to arsenate detoxification (Hewson et al., 2009b). The arsB tran-
script was also not detected in the metatranscriptome of a bloom
of C. watsonii in the South Pacific (Hewson et al., 2009a). The
detection of C. watsonii arsB in the western North Atlantic and
not the South Pacific is consistent with the relatively high phos-
phate environment of the South Pacific relative to the western
North Atlantic. However it is difficult to cross-compare between

PCR and metatranscriptome studies because of differences in the
sensitivities of the two methods, and the lack of quantitative data.
Regardless, the field detection arsB in the western North Atlantic is
permissive of the induction of C. watsonii arsenate detoxification
strategies in this low phosphate environment.

More detailed, quantitative studies that track the expression
of arsB, and rates of arsenate reduction are required to exam-
ine coupling between the cycling of phosphate and arsenate in
diazotrophs like C. watsonii in the field, and to determine the
impact of phosphate and arsenate supply on C. watsonii growth
and nitrogen fixation in situ. However, the data presented herein
are a first step toward these more detailed characterization studies.
Taken together, these data identify that C. watsonii has an arsen-
ate resistance strategy that is sensitive to changes in arsenate, and
phosphate concentration. Chronic arsenate exposure may reduce
growth rates despite the presence of a detoxification mechanism
in this group of diazotrophs, and the expression of C. watsonii
arsB in the western North Atlantic suggests that the coupling of
the arsenate and phosphate cycles should be examined in greater
detail in oligotrophic marine systems.
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