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ABSTRACT: Electrical doping is an important tool in the design
of organic devices to modify charge carrier concentration in and
Fermi level position of organic layers. The undesired diffusion of
dopant molecules within common transport materials adversely
affects both lifetime and device performance. To overcome this
drawback, we developed a strategy to achieve immobilization of
dopants through their covalent attachment to the semiconductor
host molecules. Derivatization of the commonly employed n-type
dopant 2-(2-methoxyphenyl)-1,3-dimethyl-2,3-dihydro-1H-ben-
zoimidazole (o-MeO-DMBI) with a phenylazide enables the
resulting o-AzBnO-DMBI to photochemically generate a reactive
nitrene, which subsequently binds covalently to the host material,
6,6-phenyl-C61-butyric acid methyl ester (PCBM). Both the activation and addition reactions are monitored by mass
spectrometry as well as optical and photoelectron spectroscopy. A suppression of desorption and a decrease in volatility of the
DMBI derivative in ultrahigh vacuum were observed after activation of a bilayer structure of PCBM and o-AzBnO-DMBI.
Electrical measurements demonstrate that the immobilized o-AzBnO-DMBI can (i) dope the PCBM at conductivities
comparable to values reported for o-MeO-DMBI in the literature and (ii) yield improved electrical stability measured in a
lateral two terminal device geometry. Our immobilization strategy is not limited to the specific system presented herein but
should also be applicable to other organic semiconductor−dopant combinations.

■ INTRODUCTION

The applications and benefits of electrical or electrochemical
doping in organic semiconductors are manifold.1,2 Suitable
dopants increase the conductivity of organic layers by several
orders of magnitude, for example, in charge transport layers of
organic light-emitting diodes (OLEDs).3 Promising thermo-
electric devices can be realized with doped conjugated
polymers due to their low thermal conductivity.4−6 Most
importantly, doped layers enable quasi-ohmic contacts to metal
electrodes, which greatly improves charge carrier injection and
mitigates contact resistances due to offsets in energy level
alignment.7−9 A prerequisite for applying doped layers in
dedicated device stacks is stability since diffusion of dopants
into adjacent active layers has been identified as a degradation
mechanism (e.g., exciton quenching), detrimental to photo-
active devices.10−14 Moreover, diffusion of dopants can be

problematic in organic hole transport layers for planar
perovskite solar cells.15 Consequently, stable and efficient
doping of organic materials is of high interest in present-day
device fabrication. Replacing atomic dopants such as halides or
alkali metals by small molecular p- and n-type dopants reduces
volatility significantly.16 However, some host−dopant systems
still exhibit diffusivity of organic electron donors/accept-
ors.17,18 This effect is more pronounced within conjugated
polymers compared to molecular host materials.19−21 Even
though the dopant lacks diffusion in the host matrix, this might
change when an electric field is applied. Recently, the
migration of molecular dopants in an electric field has been
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reported in poly(3-hexylthiophene) (P3HT) and is considered
as a drift effect.22 To suppress dopant diffusion and drift,
certain strategies have been proposed and demonstrated, for
example, introduction of a dense dopant blocking interlayer or
filling of dopant pathways using a second redox-inactive
transport material.23−25 However, processing becomes more
difficult, and possible complications concerning charge trans-
port or energy level alignment arise from the additional dopant
blocking materials.26 Furthermore, polar side chains were
introduced to a polymer to increase its dopant affinity, yielding
an improved thermal stability of molecular dopants and a
higher melting temperature.25 Larger molecular dopants offer a
better morphological stability as demonstrated by thermally
activated diffusion of dopants in molecular host systems.27

Besides physical modifications such as size or morphology,
increased intermolecular interaction also reduces the mobility
of dopants. These include dispersion force, dipole−dipole
interactions, π−π interactions, or even hybridization.28

Charged dopants are much less diffusive than neutral dopants
due to electrostatic interactions.21,29 A covalent bond between
the dopant and the host molecule would allow much stronger
“fixation” ideally for the immobilization of both neutral and
charged dopants. A premodification of the host with a
functional group that introduces self-doping was already used
to localize dopants in assembled thin films.30,31 For the
covalent bond formation after blending, the host and dopant
have to have complementary functional groups.32−34 This
concept requires modification of each transport material to fit
the corresponding dopant, which is not practical given the
plethora of materials in use. In order to be generally
compatible with a wide scope of host materials, an anchor
group for dopants needs an unspecific binding method, for
example, by attachment to aliphatic C−H or olefinic CC
bonds present in almost any organic semiconductor without
introduction of severe degradation or traps. A practical
solution for this issue can be derived from photochemical
cross-linking as the desolubilization protocol:35 The utilization
of various bis-azides for cross-linking, thus preventing polymer
strands from redissolution in solution-processed heterostruc-
tures, is not limited to one specific polymer.36,37 The azide is
activated by deep-ultraviolet light (UV, 254 nm), inducing
photolysis and generating reactive singlet nitrenes. When
properly substituted, these predominantly insert into aliphatic
CH bonds, and side reactions38 involving triplet pathways,
aromatic insertion, attack upon other functional groups, or
ketenimine ring expansion are suppressed.36,39,40 The latter is
found to be dominating only in solution for non-fluorinated
aryl azides,39,41 whereas in thin films or matrices, CH insertion
prevails.42−45

1,3-Dimethyl-2-phenyl-2,3-dihydro-1H-benzoimidazole
(DMBI) derivatives are effective, air-stable, and thus easy-to-
handle, solution-processable n-type dopants. DMBIs are often
used to dope n-channel semiconductors, preferably
PCBM46−51 or n-type polymers.47,52 However, they seem to
be more effective, in terms of achieved maximum conductivity,
in combination with PCBM than with polymers like
P(NDI2OD-T2) due to the poor miscibility of the dopant
and polymer.6,47,53 Although the doping mechanism of DMBI
derivatives in, for example, PCBM has been investigated, it is
still under debate.48,51,54 The initial step either involves a
hydride transfer to the host or a hydrogen radical transfer with
a subsequent electron transferboth mechanisms lead to the

generation of cationic DMBIs and PCBM radical anions
responsible for the doping effect.
In this work, we report the successful anchoring of an azide-

functionalized DMBI-based dopant in PCBM, employing a
nonspecific immobilization strategy through covalent attach-
ment to the host while retaining its dopant strength compared
to a nonfunctionalized counterpart. We detail the synthesis of
o-AzBnO-DMBI and o-BnO-DMBI, in which the ortho-
methoxy group of o-MeO-DMBI55,56 is substituted by a (4-
azidobenzyl)oxy and a benzyloxy functional group, respec-
tively, and investigate their doping and anchoring properties in
blends with PCBM. Infrared and photoelectron spectroscopies
are employed to analyze the CH insertion or cycloaddition
reaction, and conductivity measurement was employed to
verify doping with and without a UV trigger. High-resolution
mass spectrometry verifies a covalent linkage of the dopant to
PCBM. Our immobilization strategy via nitrene generation is
generally applicable and not limited to a specific host−dopant
system. Furthermore, it is destined to improve the stability,
lifetime, and performance of doped organic devices by ideally
suppressing both detrimental diffusion and drift effects.

■ RESULTS AND DISCUSSION
Synthesis and Immobilization Reactions. DMBI

dopants are easily accessible via simple condensation reactions
according to Scheme 1. Introduction of a phenylazide is

achieved after etherification of salicylaldehyde employing 1-
azido-4-(bromomethyl)benzene (1) in DMF at room temper-
ature furnishing compound 2 in 85% yield, followed by
condensation with N1,N2-dimethylbenzene-1,2-diamine to
afford o-AzBnO-DMBI in 40% yield. The characteristic IR
absorption band of the azide stretching vibration at 2109 cm−1

(see Figure 4b and Figure S11) confirms the azide
functionalization.57

To elucidate the influence of the azide group on
immobilization, we synthesized the non-azido-functionalized
analogue and thus nonimmobilizable o-BnO-DMBI employing
benzyl bromide (3) for the Williamson ether synthesis. Both
new dopants were isolated after crystallization from petroleum
ether/methanol or DCM/hexane, respectively. The obtained
colorless single crystals were suitable for X-ray crystal analyses,
unambiguously proving their structure (see the Supporting
Information). In order to optimize the processing parameters,

Scheme 1. Synthesis of o-AzBnO-DMBI and o-BnO-DMBI
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we studied the stability of the newly synthesized dopants and
the literature known o-MeO-DMBI in solution (see the
Supporting Information, Figure S13). NMR spectroscopy
revealed that the dopants are only fairly stable in solution:
after 1 day at ambient conditions (sunlight and air) in
chloroform, oxidized species can be seen. However, the dopant
appears to be stable for processing within several hours. In the
solid state at −10 °C, however, no degradation was observed
over months.
In acetonitrile, the UV−vis spectrum of o-BnO-DMBI

exhibits absorption features at λ = 221, 274, and 313 nm,
whereas for o-AzBnO-DMBI, an additional absorption band at
253 nm is detected and attributed to the azide functional group
(Figure S14).42,58 Irradiation at 254 nm excites the azide and
induces nitrene generation.42,45 Throughout this work, this
wavelength is used to initiate the immobilization process.
Thermogravimetric analysis (see Figure S15) of o-AzBnO-
DMBI shows irreversible mass loss at 117 °C corresponding to
the extrusion of nitrogen. During additional heating/cooling
cycles below the decomposition temperature of 240 °C, no
further mass loss is observed. Similar to the azide-function-
alized dopant, o-BnO-DMBI exhibits a rather low melting
point at 108 °C (86 °C for o-AzBnO-DMBI) and decomposes
at 200 °C. To achieve maximum doping effects for the host/
DMBI blend, annealing at 75 °C is required.48 Thus, o-
AzBnO-DMBI is stable enough to test the doping of the
PCBM host upon thermal treatment.

In the following, we provide spectroscopic data to
corroborate successful anchoring of the o-AzBnO-DMBI
dopant. From X-ray photoelectron spectroscopy (XPS) core-
level spectra, we gain insight into the activation mechanism of
both the dopant and the anchor group as well as possible
decomposition reactions. In order to additionally test the
thermal stability of the DMBI derivative in the blend, we
annealed thin films of high doping concentration (50 mol %)
in ultrahigh vacuum (UHV, 10−9 mbar) and measured XPS at
each temperature step (for details, see Figure S20). The N 1s
emission of o-AzBnO-DMBI contains a contribution of the
functional azide group and the DMBI core, illustrated in Figure
1c in blue (azide) and in green (DMBI).
To assign the N 1s peak components of o-AzBnO-DMBI

correctly, it is instructive to analyze spectral changes expected
from DMBI and the azide group, sketched in Figures 1a and
1b, respectively. The spectra of o-BnO-DMBI in Figure 1d
only exhibit peak components of the DMBI core located at
402.5 and 400 eV. We identify the nitrogen emission at 402.5
eV as charged dopants having formed a radical and transferred
an electron to PCBM. This assignment agrees with the N 1s
emission of the ionic DMBI salt at about 402.5 eV reported in
the literature.59 With rising temperature, the peak component
at 400 eV transforms into charged DMBI species at 402.5 eV,
which correlates with an increase in conductivity observed for
annealed PCBM films doped with DMBI. The N 1s signal
reported for pure azides sketched in Figure 1b has three

Figure 1. XPS measurements of the N 1s core-level spectra of thermally annealed PCBM films doped with o-BnO-DMBI and o-AzBnO-DMBI in
panels (d−f). (a−c) Schematic cartoon of N 1s peak components and their transformation. (d) Recorded spectra of PCBM doped with o-BnO-
DMBI for different annealing temperatures. (e) N 1s signal of PCBM doped with o-AzBnO-DMBI together with the spectrum measured after UV
activation and after annealing of the UV-activated film to 320 °C. (f) Direct annealing of the o-AzBnO-DMBI/PCBM film without UV treatment.
The assignment of peak composition in panels (d−f) is inferred from contributions of DMBI in green and from the azide in blue. The expected
peak components of DMBI upon charge transfer and decomposition of pure azide are sketched in panels (a) and (b), respectively. For o-AzBnO-
DMBI, both reactions of panels (a) and (b) can occur as illustrated in panel (c). The peak shapes of panels (a) and (b) are fitted to the data in
panels (e−f) using a constrained model (see the Supporting Information for details). In the component fit, there is already a considerable fraction
of charged dopants in panels (d−f) and possibly dissociated azide in panels (e) and (f) at room temperature. The initial film thickness at room
temperature is 15 nm and changes in panels (d−f) for higher temperatures.
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components, whereas two components coincide between 400
and 402 eV leaving a single peak component isolated at high
binding energies.60,61 From density functional theory (DFT)
calculations, it is known that the central nitrogen in RN
Nδ+Nδ− is electron-deficient and has a N 1s level at high
binding energies.62 Azide decomposition triggered by UV light
or thermal energy leads to nitrogen release and ideally to the
generation of singlet nitrene, which can then form new
carbon−nitrogen bonds. Regarding the azide in o-AzBnO-
DMBI, the peak component at 405 eV in Figure 1e was
therefore assigned to the central nitrogen, and the contribu-
tions of the lateral nitrogen atoms were between 400 and 402
eV. Upon UV activation at room temperature in Figure 1e, the
former peak at 405 eV vanishes completely, reducing the peak
area around 402 eV and increasing at 400 eV. During annealing
of the doped PCBM film in Figure 1f, the N 1s emission at 405
eV disappears above 100 °C suggesting that the azide group
becomes thermally activated and produces a nitrene. As a
result, carbon−nitrogen bonds are formed causing an addi-
tional N 1s emission at 400 eV, which persists at temperatures
higher than 300 °C. At the same time, the DMBI part of o-
AzBnO-DMBI donates an electron, similar to o-BnO-DMBI,
thus transferring the peak component at 400 eV into the
charged DMBI species at 402.5 eV. When reaching higher
temperature in UHV, pure and o-BnO-DMBI-doped PCBM
completely evaporate from the substrate at 300 and 200 °C,
respectively. Interestingly, the film doped with o-AzBnO-
DMBI is stable even beyond 300 °C, and only a partial
decrease in coverage is observed. However, from the N 1s
emission, we infer that the N 1s peak component at 402.5 eV,
attributed to charged dopants, disappears almost completely
above 210 °C leaving only carbon−nitrogen bonds at 400 eV
when approaching 320 °C in Figure 1 (for details, see Figure
S20).
At room temperature, pure and untreated o-AzBnO-DMBI

is volatile under UHV conditions as observed by XPS.
However, when o-AzBnO-DMBI is sequentially processed
on top of PCBM in monolayer-range thickness, a desorption
experiment in UVH at room temperature reveals that the
anchoring of o-AzBnO-DMBI also appears to be quantitative,
rendering o-AzBnO-DMBI completely resistant to desorption
after UV activation (see the Supporting Information for
details). A similar trend is observed for thicker bilayer
structures, which means that in pure dopant films o-AzBnO-
DMBI may also react with neighboring dopants (see Figure
S19).
Concerning the anchoring mechanism, it is known that

azides react with fullerenes in a 1,3-dipolar [3 + 2]
cycloadditions affording triazolines,63,64 which, upon thermal
treatment, undergo loss of nitrogen,65,66 or [2 + 1]
cycloaddition with nitrenes yielding aziridinofullerenes or
azafulleroids.67,68 Additionally, CH insertion into the alkyl
chains of PCBM, though much less probable, may occur. To
demonstrate covalent attachment of the dopant to the host,
blends of o-AzBnO-DMBI and PCBM were analyzed by
electrospray ionization (ESI) and matrix-assisted laser
desorption ionization (MALDI) high-resolution mass spec-
trometry. We prepared blends of PCBM and o-AzBnO-DMBI
at 25 mol % in a solution of chlorobenzene, which were
subsequently dried in vacuo. Azide activation was achieved by
either annealing at 135 ° C or UV activation of spin-cast thin
films, which were redissolved, and the material was dried
afterward. Whereas no [3 + 2] cycloaddition products are

found after simple blending, additional peaks of covalent
PCBM-nitrene adducts at 1253.2 m/z (attributed to [PCBM +
(o-AzBnO-DMBI)-H-N2]

+) are detected after heating to 135
°C (thermal azide generation) or photochemical activation
(Figure 2 and Figures S24 and S26). Photochemical activation

is the more benign method as shown in the ESI spectra (Figure
S25); fragmentation of the ether bond within the thermal
activated blends is detected. We find comparably small mass
peaks for amines (these may also be a fragment of mass
spectroscopy created during ionization)69,70 and unreacted
azide from the UV-activated blends (Figure 2). We attribute
the latter to the slightly modified sample preparation for mass
spectroscopy because XPS and IR experiments (Figures 3 and
4, respectively) demonstrate quantitative azide photolysis.

Doping and Functional Characterization. The con-
ductivity measurements were performed under nitrogen on
pure and doped PCBM layers (host-to-dopant ratio, 10:1),
spin-cast from chlorobenzene onto prestructured silver
contacts on glass substrates (Figure 3a and Figure S17).
Whereas neat PCBM thin films exhibit conductivities in the
range of 10−6 S/m, this characteristic value rises up to 0.1 and
0.01 S/m for as-cast films doped with o-AzBnO-DMBI and o-
BnO-DMBI, respectively. The final annealing step for doped
films at 75 °C increases the conductivity further to 1 S/m.
After UV treatment (254 nm) of as-cast films, the
conductivities of the doped PCBM layers decrease by roughly
half an order of magnitude in comparison to as-cast blends.
The subsequent thermal treatment (1 h at 75 °C) increases the

Figure 2. MALDI high-resolution mass spectrometry data are plotted
for (a) a blend of PCBM and o-AzBnO-DMBI and (b) after UV
treatment on a log scale. In principle, the MALDI laser used for
desorption can cause azide decomposition, but we find a pronounced
main peak at 370.2 m/z assigned to intact o-AzBnO-DMBI in panel
(a). Comparable ESI spectra can be found in Figures S24−S26. Only
trace amounts of unfavorable amine products are detected at 344.2 m/
z in both panels (a) and (b) relative to o-AzBnO-DMBI at 370.2 m/z.
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conductivities for both dopants by more than 2 orders of
magnitude to 1 S/m. In total, this is a gain of 6 orders of
magnitude compared to neat PCBM layers (see Figure 3a).
UV photoelectron spectroscopic (UPS) measurements of

corresponding PCBM layers on silicon are presented in Figure
3b. The secondary electron cutoffs of o-AzBnO-DMBI-doped
PCBM reveal strong shifts, which translate to a reduction of
the work function of about 300 meV compared to the neat
PCBM layer. Additionally, in doped layers, the highest
occupied molecular orbital (HOMO) broadens, and the
HOMO maximum shifts by 250 meV to higher binding
energies compared to undoped PCBM and is accompanied by
a shift of the core-level emission lines (see Figure S19). For
comparison, Naab et al. observed a Fermi level shift of 500
meV in a PCBM blend with 1 wt % o-MeO-DMBI on ITO.51

The Fermi level shift goes along with an increase of free
charge carrier concentration and thus leads to an increased
conductivity revealing a strong n-type doping effect of both
DMBI derivatives in PCBM. Annealing of the thin film results
in an additional shift of the Fermi level toward the LUMO of
about 50−100 meV for o-AzBnO-DMBI arriving at a total
350−400 meV shift. Furthermore, we find a broadening of the
emission of the HOMO level, yielding an increase of tail states

for doped PCBM films. The results of the UPS measurements
were used to calculate the energy level diagrams of pure and
doped PCBM layers that are depicted in Figure 3c, assuming a
constant band gap of about 2−2.5 eV.71−73

Figure 4a shows I−V curves of doped o-AzBnO-DMBI and
o-BnO-DMBI PCBM layers as-cast and after UV treatment. At
high electric field strength, the untreated films including o-
AzBnO-DMBI feature a pronounced rise and subsequent
falloff in current. As a result, the I−V curve displays a distinct
hysteresis, which can be also observed when repeating the
cycle (slightly shifted to higher voltages). This can be
explained either by contact modification and/or by ionic
migration. A drift of charged dopant molecules away from a
contact causes a similar hysteresis in I−V curves, which was
found for films of poly(3-hexylthiophen-2,5-diyl) (P3HT)
doped with the p-dopants 2,3,5,6-tetrafluoro-7,7,8,8-tetracya-
noquinodimethane (F4TCNQ) and molybdenum tris[1-
(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene]
(Mo(tfd-CO2Me)3)).

22 On the other hand, the I−V curve of
an o-AzBnO-DMBI doped layer that was UV-treated
(followed by a final annealing step) displays no or reduced
hysteresis on average. This observation is a first indication for a
successful dopant immobilization after nitrene generation.

Figure 3. (a) Conductivities of pure and doped PCBM layers with a molar doping ratio of 10:1 as-cast, after UV treatment, and after subsequent
annealing. (b) UPS spectra of pure and doped PCBM layers with a molar doping ratio of 10:1 as-cast, after UV treatment, and after subsequent
annealing. The secondary electron cutoff with respect to the vacuum level and the HOMO onset with respect to the Fermi level are given. (c)
Calculated energy levels of pure and doped PCBM layers with a band gap of 2.4 eV.

Figure 4. (a) I−V curves of annealed layers as-cast and after UV treatment. (b) Relative IR transmission spectra of 30 nm thick pure and doped
PCBM layers with a molar doping ratio of 10:1. The spectra were measured on as-cast layers and after UV treatment as given in the legend.
Dividing the spectra after the UV treatment by the as-cast spectra reveal the relative spectral change caused by the UV treatment. The vibrational
mode of the azide group at 2109 cm−1 is marked in panel (b) and strongly reduced by the UV treatment.
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Moreover, hysteresis persists in o-BnO-DMBI-doped and UV-
treated PCBM, suggesting that the observed characteristic is
not due to changes in morphology during UV irradiation but
due to the reactions of o-AzBnO-DMBI.
The HOMO level of PCBM broadens after UV exposure,

which is attributed to an oxidation of the thin film surface most
likely from residual oxygen in the glovebox triggered by UV
light (measured by XPS in Figure S18). IR transmission
measurements of PCBM layers before and after UV exposure,
given in Figure 4b, do not show an oxidation of the PCBM
bulk material, meaning the observed oxidation takes place only
at the surface. Unfortunately, this hinders the further
evaluation of the UV-treated doped PCBM layers by UPS
since the observed surface degradation strongly influences the
measured Fermi level position. IR transmission measurements
of PCBM layers doped with o-AzBnO-DMBI before and after
UV treatment are presented in Figure 4b (see the Supporting
Information for additional spectra). Due to the doping
concentration of 10 mol %, most of the observed vibrational
modes stem from PCBM and fail to reveal a change caused by
the UV treatment. Only the characteristic vibrational mode of
the dopant’s azide group at 2109 cm−1 vanishes completely,
revealing a quantitative activation and dissociation of the azide
by UV light.

■ CONCLUSIONS
In this work, we detail the synthesis of o-AzBnO-DMBI, a
derivative of the literature known o-MeO-DMBI. An
azidophenyl group is introduced to DMBI by etherification
of salicylaldehyde employing 1-azido-4-(bromomethyl)-
benzene and a subsequent condensation with N1,N2-
dimethylbenzene-1,2-diamine. The modification of DMBI
with a reactive azide aims at providing a universally applicable
anchor-like functional group, which should be able to
covalently bind to a wide scope of common organic
semiconductors. By creating a covalent bond with the host
material, the dopant is expected to be immobilized or at least
rendered significantly less mobile, which ideally reduces
problems in devices arising from diffusion or drift of dopants.
In an exemplary study, o-AzBnO-DMBI was blended with
PCBM and activated by UV light in order to generate highly
reactive nitrenes to ultimately form covalent carbon−nitrogen
bonds between PCBM and the dopant. The azide activation
was monitored by infrared and photoelectron spectroscopy.
High-resolution mass spectrometry reveals addition products,
firmly demonstrating the covalent attachment of the dopant to
PCBM molecules. The thermal stability of o-AzBnO-DMBI in
the blend was tested by annealing thin films of high doping
concentration in UHV and by measuring temperature-
dependent XPS. We find that the activated dopant renders
the doped film more resistant to desorption when approaching
the desorption temperature of PCBM in UHV. At room
temperature, activation of o-AzBnO-DMBI in a bilayer
structure was shown to prevent desorption from PCBM
under UHV. I−V measurements further prove that UV-
activated o-AzBnO-DMBI maintains its doping properties
giving rise to conductivities typical for blends of DMBI and
PCBM. At high electric field strength, the UV-activated doped
PCBM films show no or neglectable hysteresis, but a
pronounced hysteresis is observed if o-AzBnO-DMBI is not
exposed to UV light. The increased electrical stability can be
explained by a suppression of dopant drift due to anchoring of
the dopant to PCBM after activation.

The great advantage of our approach is the use of unspecific
binding of the intermediately generated reactive dopant toward
the host material, offering instant application to a plethora of
organic semiconductors. Although chemical derivatization of
dopants, either n- or p-type, may be challenging due to the
instabilities resulting from their extreme frontier molecular
orbital energies, azide incorporation is possible and has the
potential to reduce undesired drift and diffusion in multilayer
stacks of OLEDs or OPV and can be applied for p−n
homojunctions based on polymers. The appropriate chemical
derivatization of p-type dopants such as F4TCNQ and
F6TCNNQ is ongoing in our laboratories.

■ EXPERIMENTAL SECTION
Synthesis. All reactions requiring exclusion of oxygen and

moisture were carried out in heat-gun-dried glassware under a dry
and oxygen-free nitrogen or argon atmosphere using Schlenk and
glovebox techniques. All reagents were obtained from commercial
suppliers and were used without further purification if not otherwise
stated. Deuterated solvents were purchased from Sigma-Aldrich
Laborchemikalien GmbH (Seelze, Germany).

Sample Preparation for Analysis. If not noted otherwise, the
dopants and PCBM were dissolved separately in chlorobenzene at a
concentration of 5 g L−1 for XPS and 10 g L−1 for IR/I−V
measurements and were mixed right before spin-coating. The dopants
were kept in solution for 5−10 min, but the PCBM solution was
stirred overnight at 50 °C. The films were spin-coated at 1000 rpm for
60 s in a nitrogen glovebox on a cut n-doped silicon wafer for XPS,
intrinsic silicon for IR, and on glass for I−V measurements. Activation
by UV light was performed with a GPH135T5L/4 mercury-vapor
lamp from Peschl Ultraviolet with a nominal UV-C power of 1.2 W at
254 nm in the glovebox. The penlight was mounted on a stand at a
distance of 10 cm above the sample. We measured the UV intensity at
the sample position using a Newport power meter 1936-C equipped
with a 818-UV photodiode plus attenuator and obtain a power density
of 0.8 mW cm−2 for a 20 min exposure time.

IR Spectroscopy. For IR transmission measurements, a Fourier
transform IR spectrometer (Vertex 80v, Bruker) was used. To prevent
absorptions from ambient air (H2O and CO2), the spectrometer was
evacuated to 3 mbar. All samples were recorded near normal
transmittance (7°) with an MCT detector and a resolution of 4 cm−1.
For each spectrum, 200 scans were averaged.

Electrical Measurements. I−V measurements were performed
under a nitrogen atmosphere at room temperature. For this purpose,
finger-like structured silver contacts with channel lengths between 25
and 30 μm were used. Voltages were applied on these contacts using
the 4155C semiconductor parameter analyzer by Agilent Technolo-
gies, which reads out corresponding currents for conductivity
determination. Conductivities were then calculated from a set of at
least three different samples.

Photoelectron Spectroscopy. Photoelectron spectroscopy
(PES) measurements were carried out using a PHI5000 VersaProbe
scanning photoelectron spectrometer, which was equipped with a
monochromated Al Kα X-ray source at 1486.7 eV photon energy for
X-ray photoelectron spectroscopy (XPS) and a differentially pumped
helium discharge lamp operated to achieve He I emission at 21.2 eV
photon energy for ultraviolet photoelectron spectroscopy (UPS). The
focused X-ray spot was approximately 200 μm in diameter and was
moved to a different position on the sample for longer acquisition in
order to avoid radiation damage.

Mass Spectrometry. The mass spectra were recorded using the
following instruments: JEOL JMS-700 magnetic sector (EI); Bruker
ApexQehybrid 9.4 T FT-ICR (ESI, DART); Finnigan LCQquadru-
pole ion trap (DART); and Bruker Autoflex Speed (MALDI).
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