
Sharp Gaussian Approximation Bounds
for Linear Systems with α-stable Noise

Marina Riabiz, Tohid Ardeshiri, Ioannis Kontoyiannis and Simon Godsill
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK

Email: mr622@cam.ac.uk, ta417@cam.ac.uk, ik355@cam.ac.uk, sjg@eng.cam.ac.uk

Abstract—THIS PAPER IS ELIGIBLE FOR THE STU-
DENT PAPER AWARD. We report the results of several
theoretical studies into the convergence rate for certain
infinite Poisson random series representations of α-stable
random variables, which are motivated by and find applica-
tion in modelling heavy-tailed noise in time series analysis,
inference, and stochastic processes. The use of α-stable
noise distributions generally leads to analytically intractable
inference problems. The special version of the Poisson series
representation invoked here shows that the resulting distri-
butions are “conditionally Gaussian”, for which inference
is relatively straightforward, but an infinite series is still
involved. Our approach approximates the residual terms of
the series from some point c > 0, say, to ∞, with a Gaussian
random variable. Empirically, this approximation has been
found to be very accurate for large c. We study the rate of
convergence, as c → ∞, of this Gaussian approximation to
the exact stable law. This allows the selection of appropriate
truncations in order to achieve a required level of accuracy
for the approximate model. Convergence is examined and
explicit finite-c bounds are obtained for the Kolmogorov dis-
tance between distribution functions, through the application
of probability-theoretic tools. The theoretical results obtained
are found to be in very close agreement with numerical
simulations obtained in our previous work.

I. INTRODUCTION

A. Background

Time series arising in the natural sciences, engineer-
ing and finance [1], [2] are frequently characterised by
high data rates and irregular sampling, a situation well-
represented by continuous-time state-space models. Per-
haps the simplest, most tractable such model is the lin-
ear diffusion model with linear observations at discrete
times {ti},

dxt = Axt dt+ h d`t, yti = b′xti + vti

where xt =
[
x1,t, . . . , xP,t

]′
is the state, A is a P × P

matrix describing the interaction of the components of xt,
h is a P -dimensional vector describing the effects of the
noise process {d`t}, b is a P -dimensional vector and {vti}
is the observation noise process. A wide range of results
have been developed in the literature for the case when
{`t} is a Brownian motion [3], [4]. However, such models
cannot account for the heavy tails and the large “jumps”
in the state process often observed in applications. In such
cases, the use of linear state-space systems driven by (non-
Gaussian) Lévy processes is more appropriate, since these
models do exhibit heavy-tailed, discontinuous behaviours
[5]–[7]. Despite the simple characterization of Lévy pro-
cesses [8], specialized probabilistic tools are required in
their analysis. The main difficulty stems from lack of
closed-form expressions for many relevant quantities of in-
terest. We refer to [9]–[11] for an approximate framework

for simulation. The family of α-stable Lévy processes is
of special importance, in that the class of α-stable laws
are the natural limiting distributions in the generalized
central limit theorem (CLT) with heavy-tailed summands
[12]; also see [13], [14] for other relevant background.
The self-similarity of α-stable Lévy processes [13] implies
that transition densities, although still intractable, all come
from the same α-stable family, and hence they may be
considered to be a very natural first approach towards
generalising the classical Gaussian process framework to
the heavy-tailed case.

In this paper we provide convergence results for the
Poisson series representation (PSR) of α-stable random
variables. These find application in discrete time time-
series models with α-stable disturbances, and in the above
continuous time model when the observation noise {vti}
is α-stable. See [15]–[18] for PSR approaches to the full
α-stable Lévy process1. Despite extensive earlier work on
properties of α-stable systems, there are few results on
likelihood or Bayesian parameter inference for such linear
models, see e.g. [19]–[21] for some examples.

Our approach to the inference problem involves an
auxiliary-variables version of Bayesian Monte Carlo ap-
proaches. In our models, for example, where part of the
state is conditionally linear and Gaussian, efficient Rao-
Blackwellised versions of Sequential Monte Carlo (SMC)
can be applied [22], [23], or MCMC in Bayesian parameter
inference may be used [16], [24], [25].

Observe that [9] presents an alternative Gaussian ap-
proximation to ours, based on simulation only of jumps
greater than some magnitude ε, including a CLT and
convergence rates. We will present comparisons between
the two approaches in future work.

B. The α-stable Distribution
We adopt standard notation as in the text [13]. Let

X ∼ Sα(σ, β, µ) denote an α-stable distributed random
variable, where µ is the location parameter, σ > 0 is the
scale parameter, β ∈ [−1, 1] is the skewness parameter,
and α ∈ (0, 2) is the tail parameter. Recall that the prob-
ability density function (pdf) of X decays like 1/|x|1+α

as |x| → ∞, which is a consequence of α-stable version
of the CLT. The polynomial tails are a consequence of
the presence of extreme values, with more extreme values
(and hence heavier tails) appearing for smaller values
of α. When β = 0 the pdf of X is symmetric, while
β = ±1 correspond to the fully left or right skewed cases,
respectively.

1A modified PSR and corresponding CLT results do apply there, but
convergence results are not provided for that case.
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Also we recall that the pdf of α-stable distributions
is not available in closed form, except in few special
cases (Gaussian, Cauchy and Lévy distributions), obtained
for specific choices of α and β. Although, as mentioned
above, this complicates the analysis of questions related
to inference, there is a substantial body of earlier work
developing practically applicable methods.

On the other hand, an α-stable random variable has
characteristic function (CF) φX(s) := E

[
exp (isX)

]
, for

s ∈ R, explicitly given by:

log(φX(s))

=

{
−σα|s|α

{
1− iβ sgn(s) tan πα

2

}
+ iµs if α 6= 1,

−σ|s|
{

1 + iβ sgn(s) 2
π log |s|

}
+ iµs if α = 1.

For the sake of simplicity, we concentrate only on the
non-singular cases, i.e., on values of α 6= 1.

Thus motivated, in this paper we consider the PSR
representation of α-stable random variables, and adopt the
series-truncation approach of the earlier work referenced
above. Our main goal is to obtain simple, explicit, quan-
titative bounds on the quality of approximating the tail
of the series by a Gaussian, or, equivalently, of treating
the PSR as a conditionally Gaussian representation of the
α-stable distribution. Our first main contribution is the
derivation of closed-form expressions for the relevant CFs,
and our second main contribution is the development of
non-asymptotic bounds on the distance between the PSR
residual and an appropriately defined Gaussian. Only brief
outlines of the proofs are given here; complete details can
be found in the full paper [26].

II. PSR AND THE CONDITIONALLY GAUSSIAN
REPRESENTATION

The PSR of the α-stable random variable X ∼
Sα(σ, β, 0), α ∈ (0, 2), α 6= 1, has the following random
series representation,

X
D
=

∞∑
j=1

Γ
−1/α
j Wj − E[W1]b

(α)
j ,

where D
= denotes equality in distribution, E[·] is the

expectation operator, {Γj}∞j=1 are the arrival times of a
unit rate Poisson process, and

{
Wj

}∞
j=1

are independent
and identically distributed (i.i.d.) random variables inde-
pendent of {Γj}∞j=1, with E[|W1|α] < ∞; see [13, p.28]
for a detailed exposition. The coefficients b(α)

j are non-
zero only if α ∈ [1, 2) and for this case they are readily
computed and have a telescoping structure. We further
refer to [13] for the non-linear transformations that map
the moments of Wj and α to the parameters β, σ.

From the PSR it follows that, if we choose the distri-
bution of the {Wj} to be i.i.d. with Wj ∼ N (µW , σ

2
W ),

we can write a conditionally Gaussian model for X as,

X|{Γj}∞j=1 ∼ N
(
µWm,σ

2
WS

2
)
, (1)

where m :=
∑∞
j=1 Γ

−1/α
j − b(α)

j and S2 :=
∑∞
j=1 Γ

−2/α
j

are treated as auxiliary random variables. Figure 1 shows
the first 100 terms of sample PSR realizations, when
changing the parameters α, µW , σW .

A. Truncation of the PSR and the Approximate Condition-
ally Gaussian Representation

While the exact representation of the stable law (1)
is theoretically very appealing, in practice it is compu-
tationally intractable because of the infinite summations
involved in the definitions of m and S. Given that the
summands of the PSR are stochastically decaying, the
approach we adopt is to truncate the series to values of
Γj ≤ c, where c ≥ 0 is a truncation constant, and to
approximate the distribution of the residual term of the
series by an appropriately chosen Gaussian. Then, the PSR
can be split as,

X =X(0,c) +R(c,∞), (2)

where X(0,c) is the truncated PSR,

X(0,c) :=
∑

j:Γj∈[0,c]

WjΓ
−1/α
j , (3)

and R(c,∞) is the obvious PSR residual term.
The residual R(c,∞) is not Gaussian. However, it can

be proved that a CLT holds for its normalized counterpart,
namely that, under mild conditions

Z(c,∞) := (R(c,∞) −m(c,∞))/S(c,∞)

converges to the standard Gaussian distribution, asymptoti-
cally as c→∞. A first result [16] studies the deterministic
case σ2

W = 0 and our more recent results give the general
case [27]. Such a CLT served to justify our adoption of
the following Gaussian approximation of the PSR residual,
R̂(c,∞) , for practical inference procedures,

R(c,∞)
approx∼ R̂(c,∞) ∼ N

(
m(c,∞), S

2
(c,∞)

)
,

where
approx∼ means that the distribution of R(c,∞) con-

verges to the Gaussian on the right-hand side, as c→∞,
and m(c,∞) and S2

(c,∞) are, respectively, the mean and the
variance of R(c,∞), with explicit expressions provided in
[27]. It follows that, by analogy with (2), we can introduce
the random variable,

X̂:=X(0,c) + R̂(c,∞),

that converges in distribution to X , as c → ∞ and it is
this approximating random variable that is used in our
inference procedures.

In fact, our CLT result for the PSR residual does not
assume Gaussianity of the variables Wj . Therefore, even in
this case we have the following approximate conditionally
Gaussian representation for the α-stable model,

X|{Γj ≤ c}
approx∼ N

(
m(0,c) +m(c,∞), S

2
(0,c) + S2

(c,∞)

)
,

where we view m(0,c) := µW
∑
j:Γj∈[0,c] Γ

−1/α
j , and

S2
(0,c)

:= σ2
W

∑
j:Γj∈[0,c] Γ

−2/α
j as auxiliary random vari-

ables, which can now be generated exactly by direct
sampling of the truncated Poisson process.

This approximate conditionally Gaussian structure il-
lustrates the power of the proposed approximation: The
inference methods that are valid for the exact PSR can
be used for such an approximation, with the quality of
the approximation controlled directly by the truncation
parameter c. The inference schemes [15]–[18], [24], [25]
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Fig. 1. First 100 terms of PSR realizations, with Wj ∼ N (µW , σ2
W ) for α = 1.2 and three different scenarios for µW and σ2

W .

referenced in the introduction were based on this approx-
imation; however, we had no numerical measure of how
good the approximation was and how it might vary with
c, α, β.

In this paper we provide explicit probability-theoretic
results that can guide the practical choice of the trunca-
tion parameter c. Specifically, we provide non-asymptotic
bounds on the approximation error between the corre-
sponding cumulative distribution functions (cdfs) for finite
values of c, by making use of Fourier-inversion theorems,
summarized in the following.

III. DISTANCES BETWEEN DISTRIBUTIONS: THE
SMOOTHING LEMMA

As before, let c ≥ 0 be the value of the truncation
parameter. Suppose Sc and T are random variables with
CFs φSc(s) and φT (s), s ∈ R, respectively, let FSc(x) and
FT (x), x ∈ R, be the corresponding cdfs, and assume that
E[Sc] = E[T ] = 0. Furthermore, assume that FT (x) has
derivative pT (x) such that |pT (x)| ≤ m < ∞, ∀x ∈ R.
Finally, denote by,

∆(Sc, T ) := sup
x∈R

∣∣FSc
(x)− FT (x)

∣∣ ,
the Kolmogorov distance between the distributions of Sc
and T , see e.g. [28]. Then, Berry’s smoothing lemma [29,
Lemma 2, p.538] states that, for any Θ > 0,

∆(Sc, T )

≤ 1

π

∫ Θ

−Θ

∣∣φSc(s)− φT (s)
∣∣

|s| ds+
24m

πΘ
:= I(Sc, T )

(4)

Θ→∞−→ 1

π

∫ ∞
−∞

∣∣φSc(s)− φT (s)
∣∣

|s| ds := Ī(Sc, T ), (5)

where (5) is meaningful only if the improper integral
converges. Note that the assumption E[Sc] = E[T ] = 0
can be relaxed, if either (4) or (5) are finite.

We first use the smoothing lemma to investigate con-
vergence of the PSR standardized residual to the Gaussian
distribution, by deriving an upper bound for the distance,

∆(Z(c,∞), Z) := sup
x∈R

∣∣∣FZ(c,∞)
(x)− FZ(x)

∣∣∣ , (6)

where FZ(c,∞)
(x) and FZ(x) denote the cdf of Z(c,∞) and

the standard normal cdf, respectively.
We then use the resulting bound to further bound the

Kolmogorov distance between the approximated stable law
with Gaussian approximation of the PSR residual, X̂ , and
the ‘exact’ stable law, X ,

∆(X, X̂) := sup
x∈R

∣∣FX(x)− FX̂(x)
∣∣ , (7)

where FX(x) and FX̂(x) are the cdfs of X and X̂ ,
respectively.

From this point on, we restrict attention to the case when
the {Wj} are normally distributed. We provide results for
the symmetric stable law (corresponding to µW = 0), for
which we are able to obtain closed-form expressions for
the CF of the residual, as reported in the following lemma,
proved in [26]; we leave to future work the extension of
these theoretical results to the asymmetric case.

Lemma 1: Suppose W1 ∼ N (0, σ2
W ), and denote,

a :=
α

2
, η :=

1− a
a

, w :=
ηs2

2c
, u := wS2

(c,∞), (8)

for α ∈ (0, 2), α 6= 1. Then,

φZ(c,∞)
(s) = ψZ(c,∞)

(w)

= exp
(
c(1− e−w − waγ (1− a,w))

)
, (9)

where γ(s, x) :=
∫ x

0
ts−1e−t dt, Re(s) > 0, is the lower

incomplete gamma function. Moreover,

φX(0,c)
(s) = ωX(0,c)

(u)

= exp(−c(1− e−u + uaΓ(1− a, u))), (10)

where Γ(s, x) :=
∫∞
x
ts−1e−t dt, Re(s) > 0, is the upper

incomplete gamma function.

As a consequence of Lemma 1, and through the in-
dependence of the random variables X(0,c) and R̂(c,∞), it
follows that, when µW = 0 the CF of X̂ , the approximated
stable distribution is φX̂(s) = ωX̂(u), such that

logωX̂(u) = −c(1− e−u + uaΓ(1− a, u) + u/η).

IV. NONASYMPTOTIC BOUNDS ON THE
CONVERGENCE OF THE PSR RESIDUAL

In this Section we apply the smoothing lemma to derive
explicit bounds on the distance ∆(Z(c,∞), Z), defined in
(6). When µW = 0, the closed-form expression in (9)
for φZ(c,∞)

(s) can be used to further bound above the
term Ī(Z(c,∞), Z) in (5). This results in the following
result, whose proof, together with those of the subsequent
theorems, can be found in [26].

Theorem 1: Let Wj ∼ N (0, σ2
W ) and let ∆(Z(c,∞), Z)

be the Kolmogorov distance between Z(c,∞) and Z, as
in (6). Let a = a(α) and η = η(α) as in (8), and
g(w) := 1 − e−w − waγ (1− a,w) < 0. Let γ(s, x) and
Γ(s, x) be lower and upper incomplete gamma functions,



c
15 20 25 30 35 40 45 50

B
1
(c
,
α
)

0

0.05

0.1

0.15

0.2

α = 1.9

α = 0.4

c
50 100 150 200 250 300

B̄
2
(c
,
α
)

0

0.2

0.4

0.6

0.8

1

α = 0.1

α = 1.9

c
10

1
10

2
10

3

10
-6

10
-4

10
-2

10
0

Q̄(Z(c,∞), Z)
B4(c,α)
UBmax

α = 0.1

α = 1.9
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respectively, and let γ̄(a) := γ(1 − a, 1). Then, for any
c > 1, ∆(Z(c,∞), Z) is bounded above by:

B1(c, α) :=
1

π

(
c

c− 1

)(
a

2(2− a)
+

1

η2

)[
1

(c− 1)g2(1)
+

+

(
1

g(1)
− 1

(c− 1)g2(1)

)
exp

(
(c− 1)g(1)

)
+

+
(c− 1) exp

{
(c− 1)(1− e−1)

}
a[(c− 1)γ̄(a)]2/a

Γ

(
2

a
, (c− 1)γ̄(a)

) .
From Theorem 1 it is easy to deduce the following.

Corollary 2: Under the same assumptions and notation
of Theorem 1, ∆(Z(c,∞), Z) = O(1/c).

For values of α greater than 0.4, B1(c, α) gives very
good bounds, as shown on the left-hand side of Figure 2.
But for α below 0.4, the results deteriorate significantly;
for example, for α = 0.2, B1(c, α) is below 1 (the max-
imum possible Kolmogorov distances) only for c > 115.
The following result, obtained by bounding I(Z(c,∞), Z),
gives an O(1/

√
c) bound which is, of course, asymptoti-

cally inferior to that in Theorem 1, but which gives sharper
results for small c and α < 0.4.

Theorem 3: Under the same assumptions and notation as
in Theorem 1, for any δ ∈ (0, 2), ∆(Z(c,∞), Z) is bounded
above by,

B2(c, α, δ) :=
9.6
√
η

π
√

2(2− δ)c
+B3(c, α, δ),

where B3(c, α, δ) is the following O(1/c) term:

B3(c, α, δ) :=
1

πc

[
a

2(2− a)
+

1

η2

](
c(2− δ)

(c− 1)g(2− δ)

)2

×

×
{

1−
[
1− g(2− δ)(c− 1)

]
exp

(
g(2− δ)(c− 1)

)}
.

Numerically minimizing the bound B2(c, α, δ) over δ
yields B̄2(c, α), shown in the central part of Figure 2.

Finally, we combine the results of Theorem 1 and
Theorem 3, to obtain useful bounds essentially for all
values of α ∈ (0, 2), α 6= 1, and c > 1 as,

B4(c, α) := min
{
B1(c, α), B̄2(c, α)

}
.

Figure 2 shows a comparison between the theoretical
bound B4(c, α) and the numerical estimates Q̄(Z(c,∞), Z)
of Ī(Z(c,∞), Z) reported in [30]. The numerical values are

produced through the Matlab routine quadgk; we do not
show here the numerical error intervals because they are
negligibly small for c ≥ 3. Observe that B4(c, α) has the
same asymptotic rate as Q̄(Z(c,∞), Z).

V. CONVERGENCE RATE OF THE APPROXIMATED
α-STABLE DISTRIBUTION

Finally, we examine the distance ∆(X, X̂); note that in
terms of inference, ultimately, it is ∆(X, X̂) that we wish
to make “small”, by appropriately choosing the value of
the parameter c. Using the smoothing lemma (5), and the
bound in Theorem 1, we can establish the following.

Theorem 4: Let ∆(X, X̂) be the Kolmogorov distance
between X and X̂ , as in (7), under the same assumptions
and notation as in Theorem 1. Let N ≥ 1, and introduce
arbitrary abscissae 0 =: u0 < u1 < · · · < uN := 1
together with the corresponding ordinates f0 := 0 and
fi := log(ωX(0,c)

(ui)), for i = 1, 2, . . . , N . Also let,
mi := (fi+1 − fi)/(ui+1 − ui), and qi := −miui + fi,
for i = 0, 1, . . . , N − 1. Then, for any c > 1, ∆(X, X̂) is
bounded above by:

B5(c, α,N) :=
1

π
c

(
a

2(2− a)
+

1

η2

)
×

×


N−1∑
i=0

eqi

m̃i

[
em̃iui+1

(
ui+1 −

1

m̃i

)
− em̃iui

(
ui −

1

m̃i

)]

+
ek̃(1,∞)

a
(
l̃(1,∞)

)2/a Γ

(
2

a
, l̃(1,∞)

) ,

where m̃i := mi + (c− 1)g(1),

k(1,∞) := −c((1− exp(−1)) + Γ(1− a, 1)) < 0,

k̃(1,∞) := k(1,∞) − (c − 1)(e−1 − 1) and l̃(1,∞) := (c −
1)γ(1− a, 1).

The N abscissae ui and ordinates fi serve to define a
piece-wise linear envelope on ωX(0,c)

(u) for u ∈ [0, 1],
that is used in the proof. Increasing N improves (i.e.,
decreases) B5(c, α,N), but the changes are minimal for
N ≥ 10 and logarithmically spaced points.

In Figure 3 we compare the numerical estimates of
Ī(X, X̂) obtained in [30] (denoted Q̄(X, X̂)) with the
bound B5(c, α,N) for N = 10. Note that the bound of
Theorem 4 correctly captures the dependence on α. The
approximation error is lower for smaller values of α, a
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reversal of the trend shown in Fig. 2. We believe this is
because, as α decreases, the relative significance of the
residual term is much smaller, when compared with the
heavy-tailed initial terms in the PSR. We also observe
that the rate of convergence is dramatically better for
smaller α, again in contrast with the analysis of the
residual approximation in Fig. 2.

VI. CONCLUSION

In this paper we have provided explicit bounds on
Kolmogorov distances of interest, when approximating
the PSR of symmetric α-stable random variables. The
theoretical results are in agreement with our previous
numerically computed convergence rates. These results
form then a collection of tools that can be used in future
to automatically select the PSR truncation parameter c, so
as to control the quality of the resulting approximation.
We expect that the present bounds, and our current work
extending them to the case of continuous-time stochastic
process, will be of value in quantifying the accuracy of
inference algorithms employing the PSR.
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