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ARTICLE

Improving the diagnostic yield of exome-
sequencing by predicting gene–phenotype
associations using large-scale gene expression
analysis
Patrick Deelen 1,2,4, Sipko van Dam1,4, Johanna C. Herkert 1, Juha M. Karjalainen1, Harm Brugge1,

Kristin M. Abbott 1, Cleo C. van Diemen1, Paul A. van der Zwaag1, Erica H. Gerkes1,

Evelien Zonneveld-Huijssoon 1, Jelkje J. Boer-Bergsma1, Pytrik Folkertsma1, Tessa Gillett1,

K. Joeri van der Velde1,2, Roan Kanninga1,2, Peter C. van den Akker1, Sabrina Z. Jan1, Edgar T. Hoorntje1,3,

Wouter P. te Rijdt 1,3, Yvonne J. Vos1, Jan D.H. Jongbloed1, Conny M.A. van Ravenswaaij-Arts1, Richard Sinke1,

Birgit Sikkema-Raddatz1, Wilhelmina S. Kerstjens-Frederikse 1, Morris A. Swertz 1,2 & Lude Franke 1

The diagnostic yield of exome and genome sequencing remains low (8–70%), due to

incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq

data from 31,499 samples to predict which genes cause specific disease phenotypes, and

develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that

this unbiased method, which does not rely upon specific knowledge on individual genes,

is effective in both identifying previously unknown disease gene associations, and

flagging genes that have previously been incorrectly implicated in disease. GADO can be run

on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate

variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing

analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.
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D iagnostic yield is steadily improving with the increasing
use of whole-exome sequencing (WES) and whole-
genome sequencing (WGS) to diagnose patients with a

suspected genetic disorder1. Although many genes have been
associated to Mendelian diseases, the diagnostic yield of genome
sequencing remains limited, varying from 8 to 70%2.

Tools exist that can help prioritize candidate genes based on
existing knowledge, of which some use human phenotype
ontology (HPO) terms3 to denote the phenotype of a patient.
However, these methods are often limited in their ability to
identify previously unknown disease-gene associations4. For
instance, AMELIE prioritizes candidate genes using an automated
literature analysis, but cannot pinpoint genes, unknown to cause a
certain disease5. In contrast, Exomiser can aid in disease-gene
discovery by using existing (knock out) annotations for genes or
orthologues in other organisms6. Also, the tissue specificity of
gene expression has been shown to be informative for predicting
disease relevance7. While each of these methods have proven
highly valuable, one challenge remains: for most protein-coding
and non-coding genes very little is known, making it also very
challenging to infer whether a mutation in those genes cause a
specific phenotype.

Another problem is that some genes or variants that have
previously been implicated in the prevalence of a specific disease
are now reported as either being false positive associations or
having limited penetrance8, 9. Often these likely false associations
are identified because the presumed causative variant alleles turn
out to be too common in large populations, such as present in
ExAC10, 11. Alternatively, the effects of variants in some genes
could not be replicated in population-based biobanks12. Although
only few genes have been definitely refuted in literature, it has
been shown that many genes reported in rare disease databases
only have limited evidence to link the gene to the disease13.

Here, we present a method to overcome some of these chal-
lenges. By using 31,499 RNA-sequencing (RNA-seq) samples of a
wide range of tissues and cell types, we can predict gene functions
and disease associations, while not being biased towards existing
gene annotations by using a leave-one-out procedure. Using gene
co-regulation allows us to accurately predict gene functions and
to prioritize candidate disease genes with high accuracy. This is
possible because if genes are known to cause a specific disease or
disease symptom they often have similar molecular functions or
are involved in the same biological process or pathway14. When
the reported disease associations cannot be predicted this may
indicate false positive associations.

We introduce a user-friendly web-based tool called GADO
(GeneNetwork Assisted Diagnostic Optimization, available at www.
genenetwork.nl) and a command line version (available at https://
github.com/molgenis/systemsgenetics/wiki/GADO-Command-line)
that can prioritize variants in known and unknown genes using
HPO-terms to describe a patient’s phenotype. GADO ranks variants
using HPO terms to describe a patient’s phenotype. We validate our
prioritization method by testing how well our method predicts
disease-causing genes based on HPO-terms described for each of the
genes in the OMIM database. Exome sequencing data of patients
with a known genetic diagnosis are used to benchmark GADO.
Finally, we apply our methodology to previously inconclusive WES
data and identify several genes that contain variants that likely
explain the phenotype of the respective patients. Thus, we show that
our methodology is successful in identifying variants in previously
unknown, likely relevant genes explaining the patient’s phenotype.

Results
Gene prioritization using GADO. We have developed GADO, a
method that can perform gene prioritizations, which uses as input

a list of phenotypes (described using HPO terms15) that have
been observed in a patient. In combination with a list of candidate
genes (i.e., genes harboring rare and possibly damaging variants),
GADO reports a ranked list of genes with the most likely can-
didate genes on top (Fig. 1a). These gene prioritizations are based
on the predicted involvement of the candidate genes for the
specified set of HPO terms. These predictions are made by ana-
lyzing public RNA-seq data from 31,499 samples (Fig. 1b),
resulting in a gene prioritization Z-score for each HPO term.
These predictions are solely based on observed co-regulation of
genes annotated to a certain HPO term with other genes. This
makes it possible to also prioritize genes that currently lack any
biological annotation.

Public RNA-seq data acquisition and quality control. To pre-
dict functions of genes and HPO term associations, all human
RNA-seq samples that were publicly available in the European
Nucleotide Archive (accessed June 30, 2016) were downloaded
(Supplementary Data 1)16. Gene-expression was quantified by
using Kallisto17 and samples for which a limited number of reads
are mapped, were removed. A principal component analysis
(PCA) on the correlation matrix was used to remove low quality
samples and to remove samples that were falsely annotated as
RNA-seq but turned out to be DNA-seq. Finally, 31,499 samples
were included and gene expression levels for 56,435 genes (of
which 22,375 are protein-coding) were quantified.

Although these samples are generated in many different
laboratories, we previously observed that, after correcting for
technical biases, it is possible to integrate these samples into a
single expression dataset18. We validated that this is also true for
our dataset by visualizing the data using t-Distributed Stochastic
Neighbor Embedding (t-SNE). We labeled the samples based on
cell-type or tissue and we observed that samples cluster together
based on cell-type or tissue origin (Fig. 2). Technical biases, such
as whether single-end or paired-end sequencing had been used,
did not lead to erroneous clusters, which suggests that this
heterogeneous dataset can be used to ascertain co-regulation
between genes and can thus serve as the basis for predicting the
functions of genes (Methods).

Prediction of gene HPO associations and gene functions. To
predict HPO term associations and putative gene functions
(Fig. 1b), we used a co-regulation method that we had previously
developed and applied to public expression microarrays14.
However, since microarrays only cover a subset of the protein-
coding genes (n= 14,510), we decided to use public RNA-seq
data here instead. This allows for more accurate quantification of
lower expressed genes and the expression quantification of many
more genes, including a large number of non-protein-coding
genes19. Our method uses principal component analysis to
identify a set of components that describe co-regulation between
genes. While some of this co-regulation between genes is deter-
mined by pairs of genes that are specifically expressed in certain
tissues (i.e., tissue-specific expression), a considerable proportion
of this co-regulation reflects pairs of genes that are involved in the
same biological pathways.

We applied this prediction methodology14 to the HPO gene
sets and also to Reactome20, KEGG pathways21, Gene Ontology
(GO) molecular function, GO biological process and GO cellular
component22 gene sets. For 5,088 of the 8,657 gene sets (59%)
with at least 10 genes annotated, the gene function predictions
had significant predictive power (see Methods). For the 8,657
gene sets with at least 10 genes annotated, the median predictive
power, denoted as Area Under the Curve (AUC), ranged between
0.73 (HPO) to 0.87 (Reactome) (Table 1).
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Prioritization of known disease genes using the annotated
HPO terms. Once we had calculated the prioritization Z-scores of
HPO disease phenotypes, we leveraged these scores to prioritize
genes found by sequencing the DNA of a patient. For each
individual HPO term–gene combination, we calculated a prior-
itization Z-score that can be used to rank genes. In practice,
however, patients often present with not one feature but a com-
bination of multiple phenotypic features. Therefore, we combined
the prioritization Z-scores for each HPO term to generate an
overall prioritization Z-score that explains the full spectrum of
features in a patient. GADO uses these combined prioritization
Z-scores to prioritize the candidate genes: the higher the com-
bined prioritization Z-score for a gene, the more likely it explains
the patient’s phenotypes.

Because many HPO terms have fewer than 10 genes annotated,
and since we were unable to make significant predictions for
some HPO terms, certain HPO terms are not suitable to use for
gene prioritization. To overcome this problem we take advantage
of the way HPO terms are structured: each term has at least one

parent HPO term that describes a more generic phenotype and
thus has also more genes assigned to it. Therefore, if an HPO
term cannot be used, GADO will make suggestions for suitable
parental terms (Supplementary Fig. 1).

To benchmark our prioritization method, we used the OMIM
database23. Due to our leave-one-out approach (see methods) we
could directly test how well our method was able to retro-
spectively rank disease-causing genes listed in OMIM based on
the annotated symptoms of these diseases. For each OMIM
disease gene (n= 3,382) we used the associated disease features
(on average 15 HPO-terms per gene) as input for GADO. We
found that GADO ranks the causative gene in the top 5% for 49%
of the diseases (Fig. 3a, Supplementary Fig. 2). However, in
clinical practice it is not uncommon that only a subset of the
features of a patient have been recorded. We therefore repeated
this analysis while randomly selecting at most 5 HPO terms per
disease. We found that the GADO scores remained stable and are
strongly correlated (Pearson correlation r= 0.86) compared to
using all HPO terms (Supplementary Fig. 3).
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Fig. 1 Schematic overview of GADO. a Per patient, GADO requires a set of phenotypic features (encoded using HPO terms) and a list of candidate genes
(gene names either entered using HGNC symbols or Ensembl IDs). This gene list should contain genes in which rare variants have been observed for the
patient. It then ascertains whether any of these genes have been predicted to cause the phenotypic features, observed in the patient. These HPO
phenotypes predictions per gene are based on observed co-regulation with sets of genes that are already known to be associated with these phenotypes.
b Overview of how disease symptoms are predicted using gene expression data from 31,499 human RNA-seq samples. A principal component analysis on
the co-expression matrix results in the identification of 1588 significant principal components. For each HPO term we investigate every component: per
component we test whether there is a significant difference between eigenvector coefficients of genes known to cause a specific phenotype and a
background set of genes. This results in a matrix that indicates which principal components are informative for every HPO term. By correlating this matrix
to the eigenvector coefficients of every individual gene, it is possible to infer the likely HPO disease phenotype term that would be the result of a
pathogenic variant in that gene
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Fig. 2 A compendium of gene expression profiles that can be used for gene function prediction. We downloaded 31,499 RNA-seq samples from ENA.
These samples come from many different studies. They show coherent clustering after correcting for technical biases. Generally, samples originating from
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mentioned, and after the colon the number of unique studies is mentioned, indicating that samples cluster by tissue or cell-type, and that this clustering is
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Table 1 Gene function prediction accuracy

Database Number of gene sets Gene sets≥ 10 genes Gene sets with significant predictive power Median AUC

Reactome 2,143 1,388 1,150 0.87
GO molecular function 4,070 726 398 0.82
GO biological process 11,753 2,576 1,115 0.82
GO cellular component 1,609 500 370 0.84
KEGG 186 186 168 0.84
HPO 7,920 3,281 1,887 0.73

Note: Gene co-expression information of 31,499 samples is used to predict gene functions. We show the prediction accuracy for gene sets from different databases
AUC area under the curve, GO gene ontology, HPO human phenotype ontology

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10649-4

4 NATURE COMMUNICATIONS |         (2019) 10:2837 | https://doi.org/10.1038/s41467-019-10649-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Gene predictability scores explain performance differences. For
some diseases in OMIM, GADO could not predict
gene–phenotype combinations, as indicated by a prioritization
Z-scores close to 0 or below 0 (Fig. 3a). For example, variants in
SLC6A3 are known to cause infantile Parkinsonism-dystonia
(MIM 613135)24–26, but GADO was unable to predict the
annotated HPO terms related to the Parkinsonism-dystonia for
this gene. This may, however, be due to very low expression levels
of SLC6A3 in most tissues except specific brain regions27.

To better understand why we cannot predict HPO terms for all
genes, we used the Reactome, GO and KEGG prioritization
Z-scores. Jointly these databases comprise thousands of gene sets.
Since these databases describe such a wide range of biology, we
assumed that if a gene does not show any prediction signal for
any gene set in these databases, gene co-expression is probably

not informative for this gene. To quantify this, we calculated, per
gene, the average skewness of the pathway prioritization Z-score
distribution of the Reactome, GO and KEGG gene sets. This
average we use as the ‘gene predictability score’ for every gene
that is independent of whether this gene is already known to play
a role in any a disease or pathway (Fig. 3c, Supplementary Fig. 2).
We then ascertained whether these ‘gene predictability scores’ are
correlated with the HPO-based prioritization Z-score of the
OMIM diseases, and found a strong correlation (r: 0.54, p-value:
1.14 × 10−332) between the gene predictability scores and
GADO’s ability to identify a known disease gene (Fig. 3c,
Supplementary Data 2).

Prioritization of disease genes with limited evidence. We used a
set of disease genes that had been systematically studied by
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Fig. 3 Performance of disease gene prioritization compared to random permutation. a OMIM disease genes and provisional disease genes have
significantly stronger prioritization Z-scores compared to permuted disease genes (T-test p-values: 2.16 × 10−532 and 5.38 × 10−80, respectively). We also
observe that the predictions of the provisional OMIM genes are, on average, weaker than the other OMIM disease genes (T-test p-value: 1.89 × 10−7).
Because we use a leave-one-out strategy when calculating prioritization Z-scores for genes that have already been associated to an HPO term, there is no
prediction bias towards known associations. Therefore, this benchmark is informative of the power to predict novel associations (see methods). b We
observe a significant relation (Spearman p-value: 1.01 × 10−4) between the burden of evidence that a gene is associated to a disease and the GADO
prioritization Z-score. Most genes are scored by13 some additional refuted genes, denotated as squares or diamonds, are reported by ref. 8 and ref. 12 c We
observe a clear relation between the prioritization Z-scores and the gene predictability scores (Pearson r= 0.54). We do not observe this relation in the
permuted results. d Our gene prioritization Z-scores are significantly correlated (Pearson p-value: 1.67 × 10−23) to the number of likely pathogenic (LP) and
pathogenic (P) variants reported for a gene in ClinVar
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Strande et al.13 to ascertain the burden of evidence that exists for
these genes, and complemented this list with a set of refuted
genes8, 12. We observed that the GADO prioritization scores are
related to this burden of evidence: refuted genes and genes with
limited evidence have significantly lower prioritization Z-scores,
compared to genes with more supporting evidence (Spearman p-
value: 1.01 × 10−4) (Fig. 3b). Our prioritization Z-scores are also
correlated to the number of times an allele within a gene has been
reported to be pathogenic or likely pathogenic in ClinVar28

(r: 0.14 p-value: 1.67 × 10−23) (Fig. 3d), which indicates that if
many independent submissions have implicated the same gene in
disease, that gene is more likely to be a true disease-causing gene.
This is corroborated by the significant correlation between the
ExAC missense constraint score10 (a metric denoting a depletion
of missense variation in a gene) and the number of submissions
to ClinVar (r: 0.12 p-value: 8.81 × 10−17) (Supplementary Fig. 4a).
Interestingly, we do not observe a correlation between our
prioritization Z-scores and the ExAC missense constraints
(Supplementary Fig. 4b). A linear model to explain the number of
ClinVar submissions using both our prioritization Z-scores
together with the ExAC constraints performs significantly better
than when solely using the ExAC constraints to predict the
number of pathogenic or likely pathogenic in ClinVar (r: 0.21 vs.
r: 0.12, ANOVA p-value: 1.24 × 10−34). This indicates that
GADO is informative for predicting the involvement of genes in
disease, independent from ClinVar and ExAC.

A set of genes known to cause cardiomyopathy was scored for
the amount of evidence in literature that these genes are involved
in cardiomyopathy. Here, we again observe that genes with
limited evidence have lower prioritization Z-scores (spearman
p-value: 8.71 × 10−04) (Supplementary Fig. 5), suggesting these
could potentially reflect false-positive associations.

We were somewhat worried that such false-positive associa-
tions could detrimentally affect our gene–phenotype predictions.
To ascertain this, we randomly added 10% more genes to each
HPO-term and recalculated the predictions. We then observed
that our predictions were robust, and that AUC values (indicating
to what extent gene co-regulation can predict gene—phenotype
associations) were very similar to the original AUC values
(Pearson correlation r= 0.97, Supplementary Fig. 5).

Benchmarking GADO using cases with realistic phenotyping.
Although these in silico benchmarking demonstrated the poten-
tial of GADO, it used all annotated HPO terms for a disease. In
practice, however, patients may only present with a limited
number of the annotated features of a disease. To perform a
validation that was a realistic reflection of clinical practice, we
used exome sequencing data of 83 patients with a known genetic
diagnosis. We used their phenotypic features as listed in their
medical records prior to when the genetic diagnosis had been
made (Supplementary Table 1). Per patient, our exome-
sequencing pipeline GAVIN29 returned a median of 55 possible
disease-causing genes with variants that are rare and predicted to
be deleterious (Supplementary Data 3). We then ran GADO and
observed that for 41% of these patients the actual causative gene
ranked in the top 3 (median rank was 6.5 for all 83 patients,
Supplementary Fig. 6). Using a stringent threshold (prioritization
Z-score ≥ 5), which we also used for the prioritization of unsolved
cases (see below), to select strong candidate genes, we identified
the causative gene for 17 cases (20%) while only needing to
follow-up a single variant (range 0–5) per patient on average.

Because of our leave-one-out procedure when calculating
prioritization Z-scores for known disease genes (see methods),
our performance in solved cases is indicative of the power of
GADO to prioritize novel disease-associated genes without prior

annotations or associations. However, these unbiased predictions
can sometimes cause problems when using GADO in clinical
practice, because GADO cannot predict every known gene-HPO
combination accurately. As such some of these known gene-HPO
combinations might have rather insignificant Z-scores. To make
sure GADO is also suited for cases with variants in currently
known disease associated genes, we adjusted our prediction
matrix to ensure that known HPO-term associations for genes are
also prioritized (see methods). This does not affect GADO’s
ability to prioritize novel diseases genes, but solely helps the
prioritization performance of known disease genes, but ensures
that users of the GADO website will see these known disease-
phenotype as top-ranking genes. By doing this we achieved a
similar prioritization performance as compared with Exomiser
(Supplementary Table 2, Fig. 4a). For this comparison, we used
both methods to rank the on average 663 variants that are
selected by Exomiser. For Exomiser, we used the default
‘combined prioritization’ strategy that is based on the variant
score and the gene score, whereas in GADO we solely used the
prioritization Z-scores (Supplementary Methods 2). Although our
median rank of the causative gene is better compared with
Exomiser (GADO: 12.5 vs. Exomiser: 21), Exomiser on the other
hand, is able to rank more genes in the top 3 (Exomiser: 28 vs.
GADO: 14).

Clustering of HPO terms. In addition to ranking potentially
causative genes based on a patient’s phenotype, GADO can be
used to cluster HPO terms based on the genes that are predicted
to be associated to these HPO terms. This can help to identify
pairs of symptoms that often occur together, as well as symptoms
that rarely co-occur. In a patient diagnosed with a glycogen
storage disease, GSD type Ib, caused by compound heterozygous
variants in SLC37A4 (MIM 602671) and Dilated Cardiomyopathy
(DCM) that is probably caused by a truncating variant in
TTN (MIM 188840) HPO terms related to GSD type Ib (‘leu-
kopenia’ (HP:0001882) and ‘inflammation of the large intestine’
(HP:0002037)) cluster together, while Cardiomyopathy
(HP:0001638) was only weakly correlated to these specific fea-
tures (Fig. 4b).

Reanalysis of previously unsolved cases. To assess GADO’s
ability to discover previously unknown disease genes, we applied
it to data from 61 patients who are suspected to have a Mendelian
disease but who did not receive a genetic diagnosis. All patients
had undergone prior genetic testing (WES with analysis of a gene
panel according to their phenotype, Supplementary Table 3). On
average GADO reported 2.9 genes with a prioritization Z-score ≥
5 (which we used as an arbitrary cut-off and that corresponds to a
p-value ≤ 5.7 × 10−7) and which were further assessed. In ten
cases, we identified variants in genes not associated to a disease in
OMIM or other databases, but for which we could find literature
or for which we gained functional evidence implicating their
disease relevance (Table 2). For example, we identified two cases
with DCM with rare compound heterozygous variants in the
OBSCN gene (MIM 608616) that are predicted to be damaging. In
literature, inherited variant(s) in OBSCN, encoding obscurin, are
associated with hypertrophic CM30 and DCM31. Furthermore,
obscurin is a known interaction partner of titin (TTN), a well-
known DCM-related protein30. Another example came from a
patient with ichthyotic peeling skin syndrome, which is caused by
a damaging variant in FLG2 (MIM 616284). We recently pub-
lished this case where we prioritized this gene using an alpha
version of GADO32.

We compared GADO with Exomiser, ENDEAVOR33, and
ToppGene34 on our unsolved cases for which we identify a
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strong candidate (Supplementary Note 2). Exomiser could be run
directly using the HPO terms. The other tools required a list of
training genes (i.e., the genes known to cause a specific HPO
term), but provided no options to integrate the results of
multiple sets of training genes. We therefore only used
ENDEAVOR and ToppGene for those cases with a single
reported HPO term. ENDEAVOR supported a maximum of 200
input genes in the training set (i.e., those genes known to cause a
specific HPO term) and at most 200 genes to prioritize (i.e., those
genes in which rare variants had been observed). If for an HPO
term over 200 genes were known, we selected a random subset of
200 genes. If a patient had candidate variants in more than 200
genes, we trimmed this set to 200 genes by randomly removing
genes, while ensuring that the known causative gene was
retained. The median rank of these genes was 3 for GADO,
68.5 for Exomiser, 7.5 for ENDEAVOR and 24 for ToppGene
(Supplementary Data 4). The Exomiser ranks however, are not
directly comparable since Exomiser does its own variant select
which yields more variants than GAVIN, the method we used
prior to running GADO, ENDEAVOR and ToppGene. To
overcome this, we also calculated the percentile of the candidate
gene among the total genes selected either by GAVIN or

Exomiser, the median percentile for GADO was: 1.2 and for
Exomiser: 7.9

GADO webserver & standalone command line. All analyses
described in this paper can be performed using our online toolbox
at www.genenetwork.nl. Users can perform gene prioritizations
using GADO by providing a set of HPO terms and a list of can-
didate genes (Fig. 5a). We have also made a standalone command
line version of GADO that can easily be integrating in a bioinfor-
matics pipeline (https://github.com/molgenis/systemsgenetics/wiki/
GADO-Command-line). Per gene, it is also possible to download all
prioritization Z-scores for the HPO terms and pathways. Further-
more, the predicted pathway and HPO annotations of genes can be
used to perform function enrichment analysis (Fig. 5b). We also
support automated queries to our database using a http+JSON api.

Discussion
The identification of new disease-causing genes is a daunting
process. GADO can aid in the discovery of these unknown disease
genes. The main advantage of our methodology is that it does not
rely on any prior knowledge about the genes that we prioritize
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and can therefore also detect genes for which nothing is known.
Instead, we used predicted gene functions based on co-regulation
networks extracted from a large compendium of publicly avail-
able RNA-seq samples allowing accurate expression quantifica-
tion of many genes, including lowly expressed genes and
non-coding genes18. A realistic benchmark using real cases and
features listed in the medical records allowed us to identify the
causative genes for 20% of the cases, while only requiring us to
follow-up on average only a single gene per patient.

GADO is trained in such a way that for each gene–phenotype
combination that is already known, this knowledge is not used
when using co-regulation information to make inferences on that
specific gene–phenotype association. A major advantage of this is
that our gene–phenotype predictions are not biased towards
known associations. However, since we do not incorporate these
known disease associations into our model, the performance of
GADO is lower when studying patients with mutations in well-
established genes, as compared to methods that explicitly use
these known gene–phenotype associations. To accommodate this
issue, we have added these known gene–phenotypes to GADO, to
ensure GADO users will not miss out on known associations.

This is useful for genes with a low predictability score indicating
that gene expression data is not informative for its function
predictions and for genes such as TTR that act in a unique
manner compared to other genes that give rise to CM. TTR is
implicated in hereditary amyloidosis (MIM 105210)35 and there
is a large amount of evidence linking this gene to CM. Mutations
in TTR cause accumulation of the transthyretin protein in dif-
ferent organ systems, including the heart, resulting in CM.
However, this gene is primarily expressed in the liver. Therefore,
its disease mechanism is different from other mechanisms
resulting in CM, as many inherited CMs are caused by deleterious
variants in genes highly expressed in the heart and directly
affecting the function of the cardiac sarcomere36. Because this
gene is expressed in a different tissue than all other CM genes, co-
expression is not informative and as a result the phenotypic
function prediction for this gene is worse than we would expect
based on the predictability score.

Finally, we used GADO on 61 unsolved cases and identified for
10 cases (16.4%) potential disease genes that are strong candidates
based on literature or functional evidence. All these samples
already went through an extensive diagnostic procedure so these

Table 2 Unsolved cases with new candidate genes

HPO
terms used

Number of genes
with candidate
variant

Number of
genes with
Z≥ 5

Candidate
gene

Variants CADD
scores

GnomAD
minor allele
frequency

Supporting
papers

Expression in
relevant tissue

HP:0001644 215 5 OBSCN NM_001098623.2:c.
[15037 C > T];
[20963delC]

24.8
25.2

8.0 × 10−5

1.7 × 10−3

30, 31 Yes

HP:0001644 226 3 OBSCN NM_001098623.2:c.
[5545 C > T];
[22384+ 3
_22384+ 21del]

14.7
7.8

3.2 × 10−4

0

30, 31 Yes

HP:0008066
HP:0008064

359 3 FLG2 NM_001014342.2:c.
[632 C > G];[632 C > G] 35.0 1.1 × 10−5

49 Yes

HP:0001263
HP:0001249
HP:0000717
HP:0000708
HP:0002167
HP:0002360
HP:0000664

206 12 INO80 NM_017553.2:c.
[898C > T] 34 0

50, 51 Yes

HP:0001644 120a 2 MB NM_00203377.1:c.
[214 G > A] 22.4 3.6 × 10−5

52 Yes

HP:0001644 120a 1 SYNPO2Lb NM_001114133.2:c.
[473 G > A] 24.1 5.4 × 10−4

53 Yes

HP:0001638 292 4 NRAPb NM_001261463.1:c.
[4648 C > T] 20.4 8.7 × 10−4

54 Yes

HP:0004322
HP:0001249

381 10 CCNB2 NM_004701.3:c.
25-3_25delCAGG 24.5 0

55 Yes

HP:0003493
HP:0002583

246 6 LY75 NM_002349.2: c.
3476 C > T(;)
23 C > G

22.7
24.1

3.2 × 10−3

2.6 × 10−3

56 Yes

HP:0012649
HP:0002583
HP:0001890

318 8 AGAP2 NM_001122772.1:c.
421delC 27.2 0

57 Yes

Note: In 10 out of 61 unsolved patients we identified likely causative genes that were previously unknown. For these genes we found literature that indicates these genes fit the phenotype of these patients
or we gained functional evidence implicating their disease relevance. HP:0001644=Dilated cardiomyopathy; HP:0008066=Abnormal blistering of the skin; HP:0008064= Ichthyosis; HP:0001263=
Global developmental delay; HP:0001249= Intellectual disability; HP:0000717=Autism; HP:0000708= Behavioral abnormality; HP:0002167=Neurological speech impairment; HP:0002360= Sleep
disturbance; HP:0000664= Synophrys; HP:0001638= Cardiomyopathy; HP:0004322= Short stature; HP:0001249= Intellectual disability; HP:0003493=Antinuclear antibody positivity;
HP:0002583= Colitis; HP:0012649= Increased inflammatory response; HP:0001890=Autoimmune hemolytic anemia
aThese variants were pre-filtered for family segregation
bThe variants in these genes do not fully explain the phenotype but are likely contributing to the phenotype

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10649-4

8 NATURE COMMUNICATIONS |         (2019) 10:2837 | https://doi.org/10.1038/s41467-019-10649-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a
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Fig. 5 a Prioritization results of one of our previously solved cases (www.genenetwork.nl). This patient was diagnosed with Kleefstra syndrome. The patient
only showed a few of the phenotypic features associated with Kleefstra syndrome and additionally had a neoplasm of the pituitary (which is not associated
with Kleefstra syndrome). Despite this limited overlap in phenotypic features, GADO was able to rank the causative gene (EHMT1) second. Here, we also
show the value of the HPO clustering heatmap: the two terms related to the neoplasm cluster separately from the intellectual disability and the facial
abnormalities that are associated to Kleefstra syndrome. b Clustering of a set of genes allowing function/HPO enrichment of all genes or specific
enrichment of automatically defined sub clusters. Here, we loaded all known DCM genes and OBSCN, and we focus on a sub-cluster of genes containing
OBSCN (highlighted by the arrow). We see that it is strongly co-regulated with many of the known DCM genes. Pathway enrichment of this sub-cluster
reveals that these genes are most strongly enriched for the muscle contraction Reactome pathway. DCM, Dilated Cardiomyopathy
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findings are on top of the normal diagnostic yield. When applying
GADO, we could identify a very likely causative gene for 16.4% of
these unsolved cases, based on the existence of circumstantial
evidence in literature on these genes. This is only a bit lower than
what we observed for solved cases where the causative gene is
known: when we assumed that the causative gene was not yet
known, GADO identified the causative gene for 20% of the cases.
We should note that this 16.4% yield in unsolved cases might
actually be an underestimate: GADO also had prioritized genes
with a high prioritization Z-score for some of the other unsolved
cases, of which some are likely to be responsible for the pheno-
types observed in these patients. Regretfully, for these genes no
literature currently exists that supports their role in the symptoms
of these patients. This is one of the pertinent issues when it comes
down to diagnosing patients. Additional repositories that use
orthogonal data to make inferences on the phenotypic con-
sequences of mutations in genes and initiatives like Gene-
matcher37 therefore remain urgently needed, in order to increase
the diagnostic yield.

Given that nearly 5% of patients with a Mendelian disease have
another genetic disease38, it is important to consider that multiple
genes might each contribute to specific phenotypic effects.
Clinically, it can be difficult to assess if a patient suffers from two
inherited conditions, which may hinder variant interpretation
based on HPO terms. We showed that GADO can disentangle the
phenotypic features of two different diseases manifesting in one
patient by correlating and subsequently clustering the profiles of
HPO terms describing the patient’s phenotype. If the HPO terms
observed for a patient do not correlate, it is more likely that they
are caused by two different diseases. An early indication that this
might be the case for a specific patient can simplify subsequent
analysis because the geneticist or laboratory specialist performing
the variant interpretation can take this in consideration. GADO
also facilitates separate prioritizations on subsets of the pheno-
typic features.

We compared GADO to Exomiser, which is closely related to
GADO as it prioritizes genes based on specified HPO terms and
also infers HPO annotation for unknown genes6. The gene
prioritization by Exomiser is based on the effects of orthologous
in model organisms and applies a guilt-by-association method
using protein-protein associations provided by STRING39. Exo-
miser performs similar to GADO in ranking known disease-
causing genes (Supplementary Fig. 7, Supplementary Table 2) and
is also able to identify potential new genes in human disease.
However, only a subset of the protein-coding genes have ortho-
logous genes in other species for which a knockout model also
exists and the used STRING interactions are biased towards well-
studied genes and rely heavily on existing annotations to biolo-
gical pathways (Supplementary Fig. 8). There are however, still
3922 protein-coding genes that are not currently annotated in any
of the databases we used, and there are even more non-coding
genes for which the biological function or role in disease is
unknown. Since GADO does not rely on prior knowledge, it can
be used to prioritize variants in both coding and non-coding
genes (for which no or limited information is available). GADO
thus enables the discovery of novel human disease genes and can
complement existing tools in analyzing the genomic data of
patients who have a broad spectrum of phenotypic abnormalities.

Other tools such as ENDEAVOR33, ToppGene34, and Sus-
pects40, that have been used successfully before to prioritize
candidate genes are not directly comparable to GADO, since
these tools work by either supplying a single HPO term or a set of
training genes. However, these tools can be used to successfully
prioritize disease genes41. In some cases, a single HPO term might
be sufficient or a custom gene can be useful when a specific
syndrome is suspected and several other genes have already been

implicated for this syndrome. Unfortunately, in clinical practice
often multiple HPO terms are needed to describe a patient’s
phenotype (e.g., for our set of solved cases we used two HPO
terms on average). Moreover, it is also often unclear which syn-
drome a patient has, which inhibits the ability to prioritize genes
based on already associated genes to a syndrome.

We found that for some disease genes GADO is unable to
predict the already known phenotypic consequences. This is
partially explained by genes for which gene-expression data is not
informative for function predictions. For instance, because a gene
has very low gene expression, because different splice variants
have different functions, or because the regulation of a gene its
function relies heavily on post-translation modification. We have
defined an empirical measurement called ‘gene predictability’ that
indicates how informative gene expression is for function pre-
diction of individual genes. We found a strong correlation
between this predictability metric and our ability to predict
known phenotypic consequences of disease associated genes. This
however does not fully explain our inability to predict known
phenotypic consequences, in some cases this can simply be due to
an alternative disease mechanism.

GADO can also point to genes that may have been falsely
associated to a disease. Genes for which there is limited evidence
to link them to a disease have, on average, lower prioritization Z-
scores compared to well established genes and genes that have
been refuted in literature have even lower scores. In addition, we
found a statistically significant association between the prior-
itization Z-scores of known disease-gene combinations and the
number of pathogenic or likely pathogenic alleles reported in
ClinVar, thereby assuming that the genes with many submissions
are more likely to be truly related to human disease. We also
observed a statistically significant correlation between the ExAC
missense constraint and the number of alleles submitted to
ClinVar. Interestingly, the ExAC missense constraints are not
correlated to our prediction scores showing that both can be used
as independent predictors of potential false-positive disease
associations.

The median prediction performance of HPO terms is lower
compared to the other gene sets databases used in our study, such
as Reactome. This may be due to the fact that phenotypes can
arise by disrupting multiple distinct biological pathways. For
instance, DCM can be caused by variants in sarcomeric protein
genes, but also by variants in calcium/sodium handling genes or
by transcription factor genes36. As our methodology makes guilt-
by-association predictions based on whether genes are showing
correlated gene expression levels, the fact that multiple separately
working processes can cause the same phenotype can reduce the
accuracy of the predictions (although it is often still possible to
use these predictions, e.g., the DCM HPO phenotype prediction
performance AUC= 0.76). We envision that by creating sub-
clusters, based on these different pathways, and redoing our gene-
expression based predictions, it might be possible to further
improve the performance of HPO based prioritizations in the
future. Insufficient statistical power might also hinder accurate
predictions for HPO terms. This may specifically be true for genes
that are poorly expressed or expressed in only a few of the
available RNA-seq samples. The latter issue we expect to over-
come in the near future as the availability of RNA-seq data in
public repositories is rapidly increasing. Initiatives such as
Recount42 or SkyMap43 enable easy analysis on these samples,
allowing us to update our predictions in the future, thereby
increasing our prediction accuracy.

We have developed GADO, a method that can aid users in
prioritizing genes using multiple patient-specific HPO terms. We
performed our GADO benchmarking while using GAVIN for the
selection of genes that contain (likely pathogenic) rare variants.
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However, GADO can work with any other methodology for
identification of genes harboring rare and potentially pathogenic
alleles. GADO prioritizes variants in coding and non-coding
genes, including genes for which there is no current knowledge
about their function and those that have not been annotated in
any ontology database. This gene prioritization is based on co-
regulation of genes identified by analyzing 31,499 publicly
available RNA-seq samples. Therefore, in contrast to many other
existing prioritization tools, GADO has the ability to identify
novel genes involved in human disease. By providing a statistical
measure of the significance of the ranked candidate variants,
GADO can provide an indication for which genes its predictions
are reliable. GADO can also detect phenotypes that do not cluster
together, which can alert users to the possible presence of a
second genetic disorder and facilitate the diagnostic process in
patients with multiple non-specific phenotypic features. GADO
can easily be combined with any filtering tool to prioritize var-
iants within WES or WGS data and can also be used in gene
panels such as PanelApp44. Finally, GADO can aid in the iden-
tification of genes falsely associated to diseases. GADO is freely
available at www.genenetwork.nl and https://github.com/
molgenis/systemsgenetics/wiki/GADO-Command-line to help
guide the differential diagnostic process in medical genetics.

Methods
Gene co-regulation and function predictions. We used publicly available RNA-
seq samples from the European Nucleotide Archive (ENA) database45 to predict
gene functions and gene-HPO term associations. After processing and quality
control we included 31,499 samples for which we have expression quantification on
56,435 genes (in-depth details are provided in Supplementary Methods 1). We
subsequently performed a PCA on the gene correlation matrix and selected 1,588
reliable principal components (PCs) (Cronbach’s Alpha ≥ 0.7).

We used the eigenvectors of these 1,588 PCs to predict gene functions using a
method we published earlier46 (Fig. 1). Per PC we used the eigenvector coefficients
for the genes that are part of a gene set and the eigenvector coefficients of the
background genes that are not in the current gene set. We used a student’s T-test to
compare the eigenvector coefficients of the genes in the gene set to the eigenvector
coefficients of the background genes. We then calculated a T-test p-value and
converted this to a Z-score. This resulted in a matrix where for each gene set for
each of the 1,588 PCs a Z-score had been calculated. These Z-scores reflect the
importance of a specific component for predicting which genes are part of a specific
gene set. In order to finally predict which genes are part of a specific gene set, we
calculate the correlation between the 1,588 T-test Z-scores for a given gene set and
the 1,588 eigenvector coefficients of each gene. The rationale here is that if the same
components are relevant for an individual gene (as determined through the
eigenvector coefficients) and also for a specific pathway (large Z-score from the T-
test) then this indicates that the expression regulation of that gene is similar to the
expression regulation pattern of that pathway. The p-value that belongs to this
correlation was subsequently transformed to a Z-score and was used as the
prioritization Z-score (where a high score makes it more likely that a gene is part of
a gene set).

Leave-one-out procedure. However, there is one exception to this procedure
when we want to calculate the prioritization Z-score for a gene—gene set combi-
nation when that gene—gene set is already known: If we would include this gene
when conducting the 1,588 T-tests and subsequent Z-scores (for determining the
importance of each component when predicting this gene set), a positive corre-
lation between the 1,588 eigenvector coefficients and the 1,588 Z-scores is expected,
which leads to a bias in the predictions towards genes with a known HPO anno-
tation. To prevent this bias, we used a leave-one-out procedure where we always
exclude the current gene from the gene set and recalculate the Z-scores derived
from the T-tests before correlating the profile of a gene set to the eigenvector
coefficients of this gene. This ensures that there is no inflation of prioritization
Z-score for genes that already have been annotated to the corresponding gene set. It
also allows use to calculate reliable AUC based on the current annotations to a
gene set46.

To determine the accuracy of our predictions, we assessed our ability to predict
known gene set annotations: for each gene set, we calculated an Area Under the
Curve (AUC) using the prioritization Z-scores of the genes that are part of a set
versus those that are not part of a set. We used a Mann–Whitney U test to calculate
if the prioritization Z-score of currently annotated genes are significantly larger
than the genes not annotated to this gene set. If this is not the case, we concluded
that we could not make meaningful prioritizations for this gene set by using the
1588 principal components.

We applied this methodology to the gene sets described by terms in the
following databases: Reactome and KEGG pathways, Gene Ontology (GO)
molecular function, GO biological process and GO cellular component terms and
finally to HPO terms. We excluded gene sets with fewer than 10 annotated genes
and with a p-value ≤ 0.05 (Bonferroni corrected for the number of pathways in a
database).

Gene predictability scores. To explain why for some genes we cannot predict
known HPO annotation, we have established a gene predictability score. We have
calculated this gene predictability using the prioritization Z-scores based on
Reactome, GO and KEGG. For each gene and for each database we calculated the
skewness in the distribution of the pathway prioritization Z-scores of the gene sets.
We used the average skewness as the gene predictability score.

GADO predictions. To identify potential causative variants in patients, we used
HPO terms to describe a patient’s features. We only used the HPO terms which
have significant predictive power (Bonferroni corrected p-value of U test to cal-
culate the AUC ≤ 0.05). If the predictions for a patient’s HPO term were not
significant, the parent/umbrella HPO terms were used (Supplementary Fig. 1). The
online GADO tool suggests the parent terms from which the user can then select
which terms should be used in the analysis. The gene prioritization Z-scores for an
HPO term were used to rank the genes. If a patient’s phenotype was described by
more than one HPO term, a meta-analysis was conducted to integrate the pre-
dictions of the used HPO terms. In these cases a combined prioritization Z-score
was calculated using the Z-transform test47. This was done by adding the prior-
itization Z-scores for each of the patient’s HPO terms and then dividing by the
square root of the number of HPO terms. This will result in a combined prior-
itization Z-score reflecting the predictions of all the supplied HPO terms. The genes
with the highest prioritization Z-scores are predicted to be the most likely candi-
date causative genes for a case.

In addition to the predictions described above, we have created a GADO option
which ensures any HPO term associated to a gene obtains a minimum
prioritization Z-score of 3 for this gene. This option is not used for the benchmark
results shown within this manuscript with the exception of the comparison against
Exomiser using previously solved cases which was ran once with, and once without
this option.

Gene prioritization analysis using HPO terms and a list of candidate genes can
be performed at https://www.genenetwork.nl.

Validation of disease-gene predictions. To benchmark our method we used the
OMIM morbid map23 downloaded on March 26, 2018, containing all disease-gene-
phenotype entries. From this list, we extracted the disease-gene associations,
excluding non-disease and susceptibility entries. We extracted the provisional
disease-gene associations separately. For each disease in OMIM, we used GADO to
determine the rank of the causative gene among all genes in the OMIM morbid
map. For this we used all phenotypes annotated to the OMIM disease. If any of the
HPO terms did not have significant predictive power, the parent terms were used.

To determine if these distributions were significantly different from what we
expect by chance, we permuted the data. We replaced the existing gene-OMIM
annotation but assigned every gene to a new disease (keeping the phenotypic
features for a disease together), assuring that the randomly selected gene was not
already annotated to any of the phenotypes of the original gene.

Cohort of previously solved cases. Whole exome sequencing was performed in
all patients in accordance with the regulations and ethical guidelines of the Uni-
versity Medical Center Groningen (UMCG Medical Ethics Committee). To test if
GADO could help prioritize genes that contain the causative variant, we used
83 samples of patients who were previously genetically diagnosed through whole
exome analysis or gene panel analysis. These samples encompass a wide variety of
different Mendelian disorders (Supplementary Table 1). To assess which genes
harbor potentially causative variants, we first annotated the variants from the
exome sequencing using GAVIN. For 11 of the previously solved cases, GAVIN did
not flag the causative variant as a candidate. Since this is the result of the specificity
and sensitivity tradeoff made by GAVIN, we added the causative genes that had
been missed by GAVIN for these 11 cases, so that we could still benchmark GADO
on these patients.

The phenotypic features of a patient were translated into HPO terms, which
were used as input to GADO. Here, we only used features reported in the medical
records prior to the molecular diagnosis. If any of the HPO terms did not have
significant predictive power, the parent terms were used. From the resulting list of
ranked genes, the known disease genes harboring a potentially causative variant
were selected. Next, we determined the rank of the gene with the known causative
variant among the selected genes. If a patient harbored multiple causative variants
in different genes, the median rank of these genes was reported (Supplementary
Table 1).

Unsolved cases cohorts. In addition to the patients with a known genetic diag-
nosis, we tested 61 unsolved cases (Supplementary Table 2). These are patients with
mainly cardiomyopathies or developmental delay. All patients were previously
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investigated using exome sequencing, by analyzing a gene panel appropriate for
their phenotype. To allow discovery of potential novel disease genes, we used
GADO to rank genes with candidate variants that are identified using GAVIN. For
genes with a prioritization Z-score ≥ 5, a literature search for supporting evidence
was performed to assess whether these genes are likely candidate genes.

Variant calling and processing of benchmark samples. The solved and unsolved
samples were processed in the following manner. For variant calling, we used the
available WES or WGS data from patients with and without genetic diagnosis.
These samples were genotyped using a relatively standard BWA and GATK
pipeline. For a detailed description of the genotype pipeline see: https://molgenis.
gitbooks.io/ngs_dna/ (version 3.4.0). For the WGS samples, we confined our
analysis to the exome. For variant annotation, we used GAVIN to annotate our
variants to obtain a list of candidate variants. GAVIN prioritizes genes based on,
among other factors, minor allele frequency and gene-recalibrated CADD scores
(for details see29).

Comparing GADO and Exomiser on cases with known disease genes. To
evaluate GADO’s performance, we compared GADO with Exomiser48 (version
10.1.0, with exomiser-phenotype-1802 and exomiser-genome-hg19–1805 files from
https://data.monarchinitiative.org/exomiser/data/). Both GADO and Exomiser
were given each patient candidate gene list along with their respective set of
phenotypes as input. Default settings were used. We used the gene rankings based
on “EXOMISER_GENE_COMBINED_SCORE” and identified the rank of the
causative gene (Supplementary Table 2). In case of a tie, the average rank of the ties
was reported. If a patient harbored multiple causative variants, the median rank of
the genes harboring the causative variants was reported. To ensure a fair com-
parison, we used GADO on the set of genes reported by Exomiser (Supplementary
Table 2).

Website. To make our method and data available, we have developed a website
available at www.genenetwork.nl that can be used to run GADO, lookup gene
functions predictions, visualize networks using co-regulations scores and perform
function enrichments of sets of genes (Supplementary Note 3).

GADO prediction of false positives. Gene confidence annotations were retrieved
from previous studies13. We used annotations from13 in our figure. We added an
additional 4 genes from to the refuted category as the variants associated to the
diseases have been found to be to common8, 12. We assigned a score of 1 to the
refuted genes, 2 to limited genes, 3 to moderate genes, 4 to strong genes, and 5 to
definitive genes. Next, we calculated the spearman-rank correlation between these
values and the prioritization Z-scores for the corresponding genes (Fig. 3b).

Data availability
The RNA-seq data used in this study is available at the European nucleotide archive
(https://www.ebi.ac.uk/ena), the included samples are listed in Supplementary Data 1.
The matrices needed for the command line version of GADO are hosted on figshare and
are listed at https://github.com/molgenis/systemsgenetics/wiki/GADO-Command-line.
Due to the nature of the consent given by individuals, we are not allowed to share the
exome sequencing data of the solved and unsolved cases. In Supplementary Data 3 we
have listed the genes harboring candidate variants that are identified by GAVIN to allow
reproducibility of our results. The matrix with gene prioritization z-scores for HPO-
terms is available here: https://doi.org/10.6084/m9.figshare.8144291.

Code availability
The source code of GADO can be found here: https://github.com/molgenis/
systemsgenetics/wiki/GADO-Command-line

Received: 22 October 2018 Accepted: 23 May 2019

References
1. Brown, T. L. & Meloche, T. M. Exome sequencing a review of new strategies

for rare genomic disease research. Genomics 108, 109–114 (2016).
2. Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing

rare disease in children. Nat. Rev. Genet. 19, 253–268 (2018).
3. Smedley, D. & Robinson, P. N. Phenotype-driven strategies for exome

prioritization of human Mendelian disease genes. Genome Med. 7, 81 (2015).
4. Eilbeck, K., Quinlan, A. & Yandell, M. Settling the score: variant prioritization

and Mendelian disease. Nat. Rev. Genet. 18, 599–612 (2017).
5. Birgmeier, J. et al. AMELIE accelerates Mendelian patient diagnosis directly

from the primary literature. bioRxiv 171322, https://doi.org/10.1101/171322
(2017).

6. Bone, W. P. et al. Computational evaluation of exome sequence data using
human and model organism phenotypes improves diagnostic efficiency.
Genet. Med. 18, 608–617 (2016).

7. Feiglin, A., Allen, B. K., Kohane, I. S. & Kong, S. W. Comprehensive analysis
of tissue-wide gene expression and phenotype data reveals tissues affected in
rare genetic disorders. Cell Syst. 5, 140–148.e2 (2017).

8. Nouhravesh, N. et al. Analyses of more than 60,000 exomes questions the role
of numerous genes previously associated with dilated cardiomyopathy. Mol.
Genet. Genom. Med. 4, 617–623 (2016).

9. Shah, N. et al. Identification of misclassified ClinVar variants via disease
population prevalence. Am. J. Hum. Genet. 102, 609–619 (2018).

10. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

11. Tarailo-Graovac, M., Zhu, J. Y. A., Matthews, A., van Karnebeek, C. D. M. &
Wasserman, W. W. Assessment of the ExAC data set for the presence of
individuals with pathogenic genotypes implicated in severe Mendelian
pediatric disorders. Genet. Med. 19, 1300–1308 (2017).

12. Wright, C. F. et al. Assessing the pathogenicity, penetrance, and expressivity of
putative disease-causing variants in a population setting. Am. J. Hum. Genet.
104, 275–286 (2019).

13. Strande, N. T. et al. Evaluating the clinical validity of gene-disease
associations: an evidence-based framework developed by the clinical genome
resource. Am. J. Hum. Genet. 100, 895–906 (2017).

14. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene
dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

15. Köhler, S. et al. The human phenotype ontology in 2017. Nucleic Acids Res. 45,
D865–D876 (2017).

16. Leinonen, R. et al. The European nucleotide archive. Nucleic Acids Res. 39,
D28–D31 (2011).

17. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic
RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

18. Deelen, P. et al. Calling genotypes from public RNA-sequencing data enables
identification of genetic variants that affect gene-expression levels. Genome
Med. 7, 30 (2015).

19. Zhao, S., Fung-Leung, W.-P., Bittner, A., Ngo, K. & Liu, X. Comparison of
RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS
ONE 9, e78644 (2014).

20. Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res.
46, D649–D655 (2018).

21. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG:
new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.
45, D353–D361 (2017).

22. The Gene Ontology Consortium. Expansion of the gene ontology
knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2017).

23. McKusick-Nathans Institute of Genetic Medicine and Johns Hopkins
University. Online Mendelian Inheritance in Man, OMIM. https://omim.org/.

24. Kurian, M. A. et al. Homozygous loss-of-function mutations in the gene
encoding the dopamine transporter are associated with infantile
parkinsonism-dystonia. J. Clin. Invest. 119, 1595–1603 (2009).

25. Puffenberger, E. G. et al. Genetic mapping and exome sequencing identify
variants associated with five novel diseases. PLoS ONE 7, e28936 (2012).

26. Kurian, M. A. et al. Clinical and molecular characterisation of hereditary
dopamine transporter deficiency syndrome: an observational cohort and
experimental study. Lancet Neurol. 10, 54–62 (2011).

27. The Gtex Consortium. The genotype-tissue expression (GTEx) project. Nat.
Genet. 45, 580–585 (2013).

28. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

29. van der Velde, K. J. et al. GAVIN: Gene-Aware Variant INterpretation for
medical sequencing. Genome Biol. 18, 6 (2017).

30. Arimura, T. et al. Structural analysis of obscurin gene in hypertrophic
cardiomyopathy. Biochem. Biophys. Res. Commun. 362, 281–287 (2007).

31. Marston, S. et al. OBSCN mutations associated with dilated cardiomyopathy
and haploinsufficiency. PLoS ONE 10, e0138568 (2015).

32. Bolling, M. C. et al. Generalized ichthyotic peeling skin syndrome due to FLG2
mutations. J. Invest. Dermatol., https://doi.org/10.1016/j.jid.2018.01.038
(2018).

33. Tranchevent, L.-C. et al. Candidate gene prioritization with endeavour.
Nucleic Acids Res. 44, W117–W121 (2016).

34. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene
list enrichment analysis and candidate gene prioritization. Nucleic Acids Res.
37, W305–W311 (2009).

35. Benson, M. D. Inherited amyloidosis. J. Med. Genet. 28, 73–78 (1991).
36. Posafalvi, A. et al. Clinical utility gene card for: dilated cardiomyopathy

(CMD). Eur. J. Hum. Genet. 21, 1185 (2013).
37. Sobreira, N., Schiettecatte, F., Valle, D. & Hamosh, A. GeneMatcher: a

matching tool for connecting investigators with an interest in the same gene.
Hum. Mutat. 36, 928–930 (2015).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10649-4

12 NATURE COMMUNICATIONS |         (2019) 10:2837 | https://doi.org/10.1038/s41467-019-10649-4 | www.nature.com/naturecommunications

https://molgenis.gitbooks.io/ngs_dna/
https://molgenis.gitbooks.io/ngs_dna/
https://data.monarchinitiative.org/exomiser/data/
http://www.genenetwork.nl
https://www.ebi.ac.uk/ena
https://github.com/molgenis/systemsgenetics/wiki/GADO-Command-line
https://doi.org/10.6084/m9.figshare.8144291
https://github.com/molgenis/systemsgenetics/wiki/GADO-Command-line
https://github.com/molgenis/systemsgenetics/wiki/GADO-Command-line
https://doi.org/10.1101/171322
https://omim.org/
https://doi.org/10.1016/j.jid.2018.01.038
www.nature.com/naturecommunications


38. Posey, J. E. et al. Resolution of disease phenotypes resulting from multilocus
genomic variation. N. Engl. J. Med. 376, 21–31 (2017).

39. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled
protein–protein association networks, made broadly accessible. Nucleic Acids
Res. 45, D362–D368 (2017).

40. Adie, E. A., Adams, R. R., Evans, K. L., Porteous, D. J. & Pickard, B. S.
Speeding disease gene discovery by sequence based candidate prioritization.
BMC Bioinforma. 6, 55 (2005).

41. Moreau, Y. & Tranchevent, L.-C. Computational tools for prioritizing
candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536
(2012).

42. Collado-Torres, L., Nellore, A. & Jaffe, A. E. recount workflow: accessing over
70,000 human RNA-seq samples with Bioconductor. F1000Res. 6, 1558
(2017).

43. Tsui, B., Dow, M., Skola, D. & Carter, H. Extracting allelic read counts from
250,000 human sequencing runs in Sequence Read Archive. Pac. Symp.
Biocomput. Pac. Symp. Biocomput. 24, 196–207 (2018).

44. Genomics England. PanelApp. https://panelapp.genomicsengland.co.uk.
45. Silvester, N. et al. Content discovery and retrieval services at the European

Nucleotide Archive. Nucleic Acids Res. 43, D23–D29 (2015).
46. Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene

dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).
47. Whitlock, M. C. Combining probability from independent tests: the weighted

Z-method is superior to Fisher’s approach. J. Evol. Biol. 18, 1368–1373 (2005).
48. Smedley, D. et al. Next-generation diagnostics and disease-gene discovery with

the Exomiser. Nat. Protoc. 10, 2004–2015 (2015).
49. Alfares, A., Al-Khenaizan, S. & Al Mutairi, F. Peeling skin syndrome

associated with novel variant in FLG2 gene. Am. J. Med. Genet. Part A 173,
3201–3204 (2017).

50. Alazami, A. M. et al. Accelerating novel candidate gene discovery in
neurogenetic disorders via whole-exome sequencing of prescreened multiplex
consanguineous families. Cell Rep. 10, 148–161 (2015).

51. Runge, J. S., Raab, J. R. & Magnuson, T. Identification of two distinct classes of
the human INO80 complex Genome-wide. G3. 8, 1095–1102 (2018).

52. Meeson, A. P. et al. Adaptive mechanisms that preserve cardiac function in
mice without myoglobin. Circ. Res. 88, 713–720 (2001).

53. van der Harst, P. et al. 52 Genetic loci influencing myocardial mass. J. Am.
Coll. Cardiol. 68, 1435–1448 (2016).

54. Truszkowska, G. T. et al. Homozygous truncating mutation in NRAP gene
identified by whole exome sequencing in a patient with dilated
cardiomyopathy. Sci. Rep. 7, 3362 (2017).

55. Thiel, C. T. et al. Severely incapacitating mutations in patients with extreme
short stature identify RNA-processing endoribonuclease RMRP as an essential
cell growth regulator. Am. J. Hum. Genet. 77, 795–806 (2005).

56. Mukawa, K. et al. Lymphocyte antigen 75 polymorphisms are associated with
disease susceptibility and phenotype in Japanese patients with inflammatory
bowel disease. Dis. Markers 2016, 1–7 (2016).

57. Kim, S.-E. et al. Genome-wide analysis identifies colonic genes differentially
associated with serum leptin and insulin concentrations in C57BL/6J mice fed
a high-fat diet. PLoS ONE 12, e0171664 (2017).

Acknowledgements
We are grateful for the participation of the patients and their parents in this study. We
thank Kate Mc Intyre for editing the manuscript and Marieke Bijlsma, Gerben van der

Vries, Sido Haakma and Pieter Neerincx for support with the computational analyses.
This work was carried out on the computer cluster of the Genomics Coordination
Center, hosted at the University of Groningen Center for Information Technology
(Strikwerda, W. Albers, R. Teeninga, H. Gankema and H. Wind) and Target storage (E.
Valentyn and R. Williams). Target is supported by Samenwerkingsverband Noord
Nederland, the European Fund for Regional Development, the Dutch Ministry of Eco-
nomic Affairs, Pieken in de Delta and the provinces of Groningen and Drenthe. This
work is supported by a grant from the European Research Counsil (ERC Starting Grant
agreement number 637640 ImmRisk) to Lude Franke and two VIDI grants (917.14.374
and 917.16.455) from the Netherlands Organisation for Scientific Research (NWO) to
Lude Franke and Morris Swertz. This work was supported by BBMRI-NL, a research
infrastructure financed by the Dutch government (NWO 184.021.007). Wouter P. te
Rijdt is supported by Young Talent Program (CVON PREDICT) grant 2017T001 from
the Dutch Heart Foundation. Netherlands Heart Institute, Utrecht, the Netherlands.

Author contributions
P.D., S.D., J.H., and L.F. wrote the manuscript. J.K., H.B., K.A., C.D., P.Z., E.G., P.A., J.J.,
C.R., R.S., B.S., W.K., M.S., L.F. edited the manuscript. L.F. conceived the method. P.D., S.
D., J.K., L.F. developed the statistical methods. P.D., S.D., J.K., H.B., P.F., T.G., L.F. wrote
the software. P.D., J.H., K.A., C.D., P.Z., E.G., K.V., R.K., P.A., S.J., E.H., W.R., Y.V., J.J.,
C.R., R.S., B.S., W.K., E.Z., J.B. processed, analyzed and interpreted the solved and
unsolved cases. J.H., J.K. and H.B. contributed equally to this work.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10649-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information: Nature Communications thanks Peter Robinson and other
anonymous reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10649-4 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2837 | https://doi.org/10.1038/s41467-019-10649-4 | www.nature.com/naturecommunications 13

https://panelapp.genomicsengland.co.uk
https://doi.org/10.1038/s41467-019-10649-4
https://doi.org/10.1038/s41467-019-10649-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Improving the diagnostic yield of exome- sequencing by predicting gene–nobreakphenotype associations using large-scale gene expression analysis
	Results
	Gene prioritization using GADO
	Public RNA-seq data acquisition and quality control
	Prediction of gene HPO associations and gene functions
	Prioritization of known disease genes using the annotated HPO terms
	Gene predictability scores explain performance differences
	Prioritization of disease genes with limited evidence
	Benchmarking GADO using cases with realistic phenotyping
	Clustering of HPO terms
	Reanalysis of previously unsolved cases
	GADO webserver & standalone command line

	Discussion
	Methods
	Gene co-regulation and function predictions
	Leave-one-out procedure
	Gene predictability scores
	GADO predictions
	Validation of disease-gene predictions
	Cohort of previously solved cases
	Unsolved cases cohorts
	Variant calling and processing of benchmark samples
	Comparing GADO and Exomiser on cases with known disease genes
	Website
	GADO prediction of false positives

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




