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Abstract

Small regulatory RNAs (sRNAs) and their enormous potential and versatility have provided us

with an astounding insight in the complexity of bacterial transcriptomes. sRNAs have been

shown to be involved in a variety of cellular processes that range from stress to general metab-

olism. Here we report that the gene encoding the transcriptional regulator ArgR is immediately

followed by the gene of the small regulatory RNA ArgX. The latter is transcribed from its own

promoter. The production of ArgX is induced by increasing arginine concentrations and

repressed by CcpA. Previously, ArgR was shown to act as a transcriptional repressor of the

catabolic arginine deiminase pathway (arc operon) by binding in the promoter region of arcA.

Here we demonstrate that ArgX downregulates arc mRNA levels. Furthermore, ArgX putatively

blocks the translation of one of the genes in the operon, arcC1, a process that would redirect

an intermediate in arginine degradation, carbamoyl phosphate, towards pyrimidine synthesis.

Our findings exemplify, for the first time, the combinatorial power of a transcription factor and a

small regulatory RNA derived from the 3’-UTR region. The regulators ArgR and ArgX share a

common target, but act on transcription and on RNA level, respectively.

Introduction

Post-transcriptional regulation by regulatory RNAs has added huge complexity to gene regula-

tory networks, which contained until recently mainly information of protein regulators such

as transcription factors (TFs). Regulatory RNAs influence gene expression by base pairing to

target mRNAs and thereby affect the stability of the transcript or its translation [1]. This pro-

cess can result in gene activation or -repression [2–4]. Some regulatory RNAs are transcribed

from the DNA strand opposite to the coding strand of the gene they regulate and, thus, (par-

tially) overlap with the gene transcript. These so-called antisense RNAs (asRNAs) have the

potential to base-pair with the mRNA by means of a perfect match [5,6]. In contrast, small reg-

ulatory RNAs (sRNAs) from intergenic regions usually form a duplex with, often, different
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mRNAs by means of imperfect base pairing. In many bacteria with GC-rich genomes, the

RNA chaperone Hfq acts as a mediator to facilitate the binding between sRNA and its target

mRNA [7,8]. A study that involved sequencing of Hfq-bound RNAs in Salmonella typhimur-
ium, has shown that the 3’-untranslated region (3’-UTR) of mRNAs can harbor functional

sRNAs. Such an sRNA can either derive from the transcript via an RNase-mediated processing

event or result from transcription from its own promoter. Both the sRNA and the mRNA

share a common terminator structure [9]. Only a small number of sRNAs derived from 3’-

UTRs have been functionally characterized, such as DapZ from Salmonella, which is tran-

scribed from a promoter located in the very end of the open reading frame of dapB, a gene

involved in lysine biosynthesis. It has been shown that DapZ represses the synthesis of ABC

peptide uptake systems such as Opp and Dpp [9]. The Streptomyces coelicolor regulatory sRNA

s-SodF is derived from processing of the 3’-UTR of the sodF gene, encoding an Fe-containing

superoxide dismutase (SOD). s-SodF negatively regulates the Ni-containing SOD, SodN, by

blocking translation of sodNmRNA and also destabilizing the transcript [10]. CpxQ is another

example of an sRNA that is formed by transcript processing, in this case of cpxPmRNA

cleaved by RNase E. The Cpx pathway monitors misfolded inner membrane (IM) proteins.

While the protein chaperone CpxP directs misfolded proteins in the IM towards degradation,

the sRNA CpxQ downregulates mRNAs of proteins located in the cell envelope [11]. In Rhodo-
bacter sphaeroides, the singlet oxygen-induced SorX sRNA is also generated by RNase E cleav-

age from the 3’-UTR of an mRNA encoding, in this case, an OmpR-type transcriptional

regulator. A 116-nt pre-SorX transcript is further processed into the more abundant 75-nt

SorX. SorX targets potAmRNA which encodes part of a spermidine uptake system. SorX

counteracts oxidative stress by down-regulating potA, which results in reduced spermidine

uptake, thus lowering the sensitivity of the cells to organic hydroperoxides [12]. It was noted

that the limited number of characterized sRNAs derived from 3’-UTRs target functions similar

to those of their parental mRNAs [13].

In this study, we strengthen this notion by the characterization of an sRNA, ArgX, located

in the 3’-UTR of the Lactococcus lactis gene argR, a regulator in arginine metabolism in this

lactic acid bacterium. From a collection of 186 sRNAs we recently identified in the intergenic

regions of L. lactis, ten were located in the 3’-UTRs of mRNAs [14]. These 3’-UTR-derived

sRNAs are formed via transcription from their own promoters, as a TEX-treated pool of

sequenced RNAs was used in this study, resulting in an enrichment of primary transcripts

[15]. It can, however, not be excluded that these sRNAs undergo additional processing.

Arginine is a non-essential amino acid in L. lactis that can use it as a nitrogen, carbon and

energy source. The synthesis in L. lactis of arginine from glutamate is encoded by the operons

argCJDBF, argGH and gltS-argE while arginine catabolism is mediated by a large arc operon,

arcABD1C1C2TD2. The arginine/ornithine antiporter ArcD facilitates arginine uptake. In L.

lactisMG1363 ArcD1 seems to be the main arginine/ornithine exchanger in the arginine dei-

minase (ADI) pathway, while ArcD2 functions together with ArcT as an arginine/alanine

exchanger in another pathway [16]. Arginine is converted via citrulline into carbamoylpho-

sphate, which is further degraded into ammonia and carbon dioxide with production of one

molecule of ATP per arginine. Carbamoylphosphate can also be used for the de novo synthesis

of pyrimidines. The arc operon is highly regulated by the transcription factors CcpA, CodY

and ArgR/AhrC [17–19]. CcpA represses arc and a catabolite responsive element (cre site) is

present in the promoter region of arcA, ParcA[19]. In addition, ParcA contains six ARC boxes,

which represent ARG box half sites that are found in the promoters of genes of the arginine

biosynthetic pathway. In the absence of or during arginine limitation, the regulator AhrC facil-

itates the binding of the repressor ArgR to the ARC boxes, which leads to repression of argi-

nine degradation and simultaneous activation of arginine biosynthesis. This mechanism is

The sRNA ArgX regulated the arc operon in Lactococcus lactis
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reversed in the presence of arginine, which acts as a co-repressor and binds to AhrC. ArgR in a

complex with arginine-bound AhrC shifts its preference to ARG boxes. In this model, ArgR

acts as a DNA binding protein, while AhrC senses and binds arginine [20]. The argR gene is

located upstream of the arc operon, with only the argS gene intervening.

Here we show by transcriptome and proteome studies that ArgX affects arc/Arc expression,

and verified these results using an arc-sfgfp fusion in various genetic backgrounds. Further-

more, we examined the promoter of ArgX and show that it behaves strikingly similar to ParcA;

it responds to arginine and is controlled by the transcription factors CcpA and ArgR.

Materials and methods

Bacterial growth, plate reader assays and microscopy

Table 1 presents an overview of strains used in this study. L. lactis was routinely grown as

standing cultures at 30˚C in CDMPC [21] or M17 broth (Difco, Becton Dickinson, Le Pont de

Table 1. L. lactis strains and plasmids used in this study.

Strain or plasmid Relevant phenotype or genotype Reference

Strains

MG1363 L. lactis subsp. cremoris, plasmid-free derivative of NCDO712 [22]

NZ9000 MG1363, pepN::nisRK [23]

MG1363ΔccpA MG1363, ccpA deletion mutant [19]

MG1363ΔcodY MG1363, codY deletion mutant [24]

MGΔargR MG1363, argR deletion mutant [25]

SVDM2004 NZ9000, ArgX deletion mutant This work

SVDM2005 SVDM2004, ArgX gene integrated in pSEUDO_10 This work

SVDM2006 MG1363, PArgX-sfgfp fusion integrated in pSEUDO_10 This work

SVDM2007 NZ9000, PArgX with mutated -10 promoter sequence (-10 mut) This work

SVDM2008 MG1363, PArgX -10 mut-sfgfp fusion integrated in pSEUDO_10 This work

SVDM2009 MG1363, ΔccpA, PArgX-sfgfp fusion integrated in pSEUDO_10 This work

SVDM2010 MG1363, ΔArgR, PArgX-sfgfp fusion integrated in pSEUDO_10 This work

SVDM2011 MG1363, ΔcodY, PArgX-sfgfp fusion integrated in pSEUDO_10 This work

SVDM2012 Cmr, Emr, NZ9000 (pSVDM5004; pNZ8048) This work

SVDM2013 Cmr, Emr, NZ9000 (pSVDM5004; pSVDM5005) This work

SVDM2014 Cmr, Emr, NZ9000 (pSVDM5004; pSVDM5006) This work

SVDM2015 Cmr, Emr, NZ9000 (pSVDM5004; pSVDM5007) This work

Plasmids

pNZ8048 Cmr, high copy number cloning vector [23]

pIL253 Emr, medium copy number cloning vector [26]

pCS1966 Emr, oroP, integration vector [27]

pSEUDO Emr, vector for integration in the pseudo_10 locus [28]

pSEUDO-GFP Emr, vector for integration of gfp fusion constructs in pseudo_10 [28]

pVE6007 Cmr, plasmid with thermo-sensitive replication [29]

pJP005 Cmr, pNZ8048, with recT under control of PnisA [30]

pSVDM5003 Cmr, pGhost containing PnisA-recT This work

pSVDM5004 Emr, pIL253 containing ParcA-arcABD1-RBSarcC1-sfgfp This work

pSVDM5005 Cmr, pNZ8048 carrying PnisA-ArgX This work

pSVDM5006 Cmr, pNZ8048 carrying PnisA-argRX This work

pSVDM5007 Cmr, pNZ8048 carrying PnisA-argR(Δstart)X This work

Cmr: Chloramphenicol resistance marker, Emr: Erythromycin resistance marker.

https://doi.org/10.1371/journal.pone.0218508.t001
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Claix, France) containing 0.5% (w/v) glucose (GM17), and on GM17 agar plates. Chloram-

phenicol (5 μg ml−1) and erythromycin (5 μg ml−1) were added when required. Plate reader

assays were performed by loading 200 μl of a mixture of CDM medium and cell culture on a

96-wells microtiter plate. Measurements of optical density of the cultures at 600 nm (OD600)

and GFP fluorescence (excitation wavelength of 485 nm and emission wavelength of 535 nm)

were performed in a Tecan F200 (Tecan Group, Männedorf, Switzerland). A Delta Vision Elite

microscope (GE Healthcare Europe GmbH, Eindhoven, the Netherlands) and an Olympus

MVX10 macroscope (Olympus B.V., Zoeterwoude, the Netherlands) were used for fluores-

cence microscopy.

General DNA techniques and L. lactis strain construction

Plasmid DNA and PCR fragments were purified with the NucleoSpin Plasmid kit and

NucleoSpin Gel and PCR Clean-up kit (Machery-Nagel GmbH, Düren, Germany). The

enzymes that were used were produced by Fermentas/Thermo Scientific, Vilnius, Lithuania,

unless stated otherwise.

The strain with a mutation in the -10 box of the promoter of ArgX was made by applying

the recombineering technique [30,31]. To enable recombineering, recT was expressed from

pSVDM5003. This plasmid was constructed by amplification of the recT gene from pJP005

[30], introducing a BamHI and an XhoI site. The BamHI and XhoI digested recT gene was

then inserted by restricting pVE6007 [29] with the same enzymes, followed by ligation by T4

DNA ligase. For recombineering transformation, 100 μg of phosphorothioate-modified single-

stranded DNA oligonucleotide (Biolegio, Nijmegen, The Netherlands) was used, which was

introduced via electroporation using a Bio-Rad Gene Pulser (Bio-Rad Laboratories, Rich-

mond, CA) at 2.5 kV, 25 μF and 200 Ohm. Cells with the anticipated mutation were cured

from the pVE6007_recT (pSVDM5003) plasmid by growing them overnight in non-selective

medium (GM17) at 37˚C.

L. lactisΔArgX was made by double crossover recombination (DCO). To facilitate DCO,

the flanking regions of ArgX were amplified; the restriction sites XbaI and PstI were intro-

duced for the upstream region, and PstI and XhoI site for the downstream region. These frag-

ments were then cloned in plasmid pCS1966 [27] by XbaI and XhoI restriction, followed by

ligation and used to transform E. coli. The plasmids were isolated from E. coli and integrated

in the L. lactis chromosome using erythromycin selection for integration and 5-fluoroorotate

counter selection for the excision step, respectively.

The L. lactis ΔArgX complementation strain was constructed by amplifying a 388-bp frag-

ment containing ArgX and its promoter and inserting it in pSEUDO [28] using the restriction

enzymes BamHI and EcoRI. This plasmid was constructed in E. coli, isolated and integrated

into L. lactis cells using a double cross-over method [28].

The remaining L. lactismutants were made using restriction-and-ligation-independent

cloning [32], by separately amplifying the vector backbone and the required insert(s) with the

polymerase pfuX7 [33], which were subsequently treated with the USER enzyme mix (New

England Biolabs, Ipswich, MA). Ligation mixtures were used to transform L. lactis by electro-

poration. A transcriptional fusion was made between PArgX and the gene for superfolder GFP

(sfgfp) [34] and integrated in the transcriptionally silent pseudo_10 locus [28] in order to exam-

ine the activity of PArgX. Overexpression of ArgX, argRX and argRX with a mutated start

codon (pSVDM5005, pSVDM5006 and pSVDM5007) was done by introducing these genes

under the nisin inducible promoter PnisA on the high copy plasmid pNZ8048 [23]. To test the

effect of the overproduction of these three variations of ArgX on arc-sfgfp expression, the

region of ParcA until the start codon of arcC1 was fused to the sfgfp gene and inserted in pIL253

The sRNA ArgX regulated the arc operon in Lactococcus lactis
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[26], resulting in pSVDM5004. Table 1 and S1 Table provide an overview of strains and oligo-

nucleotides used in this study, respectively.

Proteome analysis and mass spectrometry

L. lactis strains NZ9000 and NZ9000ΔArgX were grown in four biological replicates overnight

in GM17, diluted 1:100 in 100 ml fresh GM17 and grown to an OD600 of 0.5, after which the

cells of 50 ml of culture were harvested by centrifugation for 10 min at 7,200 g and 20˚C. Cells

were washed twice with 5 ml 20 mM Tris-HCl and re-suspended in 0.5 ml lysis buffer (50 mM

Tris-HCl (pH 8.0), 0.3% sodium dodecyl sulfate (SDS), 200 mM dithiothreitol (DTT), 50 mM

MgCl2, supplemented with DNase I (1 mg/ml), RNase (0.25 mg/ml) and mutanolysin (150 U/

ml)), and disrupted with glass beads (75–150 μm, Thermo Fischer Scientific, Rockford, IL) in a

Biospec Mini-BeadBeater (Biospec Products, Bartlesville, OK). After a first centrifugation step

at 10,000 g for 5 min at 4˚C, the resulting supernatant fraction was centrifuged once more

(20,000 g 8 min at 4˚C). Protein samples were prepared by adding 35 mg/ml urea, 2,5 μl tribu-

tylphosphine (Bio-Rad), 5 μl ampholytes (Bio-lyte, Bio-Rad) and 5 mg CHAPS (3-[(-cholamo-

dopropyl)-dimethylammonio]-1-propanesulfonate (Sigma-Aldrich, Darmstadt, Germany) to

140 μl of the cell free extract, resulting in a total sample volume of 250 μl.

First dimension electrophoresis (iso-electric focusing) and second dimension sodium dode-

cyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were performed as described

before [35]. Differentially expressed protein spots were identified and statistically analyzed

using the Delta2D Image analysis program (Decodon GmbH, Greifswald, Germany), excised,

de-stained with 50 mM ammonium bicarbonate in 50% acetonitrile/water and dried prior to

overnight digestion with 10 μl of 10 ng/μl trypsin. The obtained peptide mixture was purified

with ZipTips (Merck Millipore, Darmstadt, Germany) and spotted on a MALDI plate. MAL-

DI-TOF analysis was performed on a Voyager DE Pro (AB Science, Paris, France) and protein

identification was done using the Mascot database search on www.matrixscience.com.

RNA isolation and quality control

RNA was isolated as described before [14]. In short, frozen cell pellets were re-suspended in

400 μl TE-buffer (10 mM Tris, 1 mM EDTA; pH 8.0), and added with 50 μl of 10% SDS, 500 μl

phenol/chloroform and 0.5 g glass beads (75–150 μm, Fischer Scientific). The cells were dis-

rupted in a Biospec Mini-BeadBeater using 2 cycles of 45 sec with a 1-min interval on ice.

Nucleic acids were recovered by chloroform extraction and treated with DNase I supple-

mented with RiboLock RNase inhibitor (Fermentas/Thermo Scientific)) for 30 min at 37˚C.

RNA was retrieved using standard phenol/chloroform extraction and sodium acetate/ethanol

precipitation. RNA pellets were dissolved in elution buffer from the High Pure RNA Isolation

Kit (Roche Diagnostics, Almere, the Netherlands) and subsequently stored at -80˚C. RNA con-

centration was measured using a Nanodrop ND-1000 (Thermo Fischer Scientific). RNA qual-

ity was assessed by checking the integrity of the 16S/23S rRNA and the presence of any DNA

contamination on a 1% agarose/1% bleach gel [36].

Northern hybridization

Separation of total RNA (10 μg) was performed on 8% or 12% polyacrylamide gels in TAE

buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA). As a denaturing agent, 1% bleach

was used to replace 7 M urea. The separated RNAs were then transferred to a positively

charged Zeta-Probe nylon membrane (Bio-Rad), using semi-dry electroblotting (Bio-Rad).

RNAs were covalently cross-linked to the nylon membranes at 1200 mJ in a UVC-508 Ultravi-

olet Crosslinker (Ultra-Lum Inc., Carson, CA). ssDNA oligonucleotides (See S1 Table) were
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labeled with 32P-γATP using Polynucleotide kinase (Fermentas/Thermo Scientific), according

to instructions of the manufacturer. The membranes were incubated overnight for hybridiza-

tion at 42˚C in PerfectHyb Plus Hybridization buffer (Sigma-Aldrich Chemie Gmbh, Munich,

Germany) with 9 μl 0.16 pmol/μl of the labeled probe. Membranes were washed twice in 2x

saline sodium citrate (SSC) buffer with 0.1% SDS, after which they were exposed to a Phosphor

Screen overnight. A Cyclone Plus Phosphor Imager and OptiQuant software (PerkinElmer,

Groningen, NL) was used for imaging.

RNA deep sequencing and data analysis

RNA samples were sequenced at the Primbio Research Institute (Exton, PA), who performed

Ribo-Zero rRNA removal and library preparation using the AmpliSeq kit (ThermoFischer Sci-

entific). The cDNA libraries were sequenced on an Ion Proton sequencer (ThermoFischer Sci-

entific). Raw sequence reads were analyzed for quality, trimmed with a PHRED score >28 and

aligned to the genome L. lactisNZ9000 using Bowtie 2 [37]. RKPM values were used as an

input for the T-REx analysis pipeline for statistical analysis to determine differentially

expressed genes [38]. For the T-REx analysis, a text file describing the factors, contrasts and

classes specifying genes from the arc (red) and arg (blue) operons were written. These text

files, together with the RKPM values are available in S2 Table. The RNA-seq data have been

uploaded under GEO accession number GSE104515.

Results

ArgX biogenesis and homology in other L. lactis species

Previously, we have identified the putative small regulatory RNA LLMGnc_172 by differential

RNA sequencing [14]. This sRNA of ~66-nt, which we rename here as ArgX, is expressed

from the same strand as the immediate upstream gene, argR, and overlaps with the argR 3’-

UTR, thus sharing a common terminator sequence (Fig 1A and 1B). Northern analysis using a

probe for ArgX shows that an additional larger band exists, which likely represents the argR
transcript including ArgX. To provide evidence that both ArgX and argR overlap, we designed

a probe that would anneal to the coding region of argR. Since we observed identical sizes on

both blots, we conclude that ArgX indeed overlaps with argR (Fig 1C).

ArgX was identified in a 5’-enriched fraction of total RNA of L. lactis that resulted in pri-

mary transcript reads due to a treatment with Terminator 5´-Phosphate-Dependent Exonucle-

ase (TEX). A nearly perfect -10 RNA polymerase recognition sequence (TATACT) was

present upstream of the ArgX transcription start site [14], indicating that ArgX is transcribed

from its own promoter. We mutated the putative -10 promoter sequence to investigate the

possibility that ArgX might also be derived from a processing event, as has been described for

CpxQ [11]. Northern analysis revealed that ArgX is not produced in the strain with the -10

box mutation and that, thus, ArgX is derived only by activity from its own promoter, not by

processing from the larger argX transcript (Fig 1D). In an L. lactis ΔArgX complementation

mutant, carrying ArgX including a 246-bp region upstream region, a band of the size of ArgX

reappeared in the Northern blot (Fig 1D). We also observe an increase of ArgX expression

under high arginine conditions, a result that is further examined below.

A GLASSgo search [39] revealed that ArgX is highly conserved in other strains of L. lactis,
especially when comparing the argR coding region immediately upstream of the ArgX gene

(Fig 1E). Notably, L. lactis subsp. lactis strains differ from L. lactis subsp. cremoris strains by an

A to G mutation in the stem of the terminator (Fig 1E), although this change does not alter its

structure or stability, as predicted by Mfold [40]. We could not identify homologs in other,

more distant bacteria, using BLAST search and the GLASSgo output.

The sRNA ArgX regulated the arc operon in Lactococcus lactis
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Fig 1. Biogenesis and sequence analysis of ArgX. (A) Schematic overview of the genomic locus in L. lactis of argR and

ArgX. Black bent arrows indicate promoters. (B) Secondary structure of ArgX as predicted by Mfold [40]. (C) Northern

analysis on an 8% polyacrylamide gel with a probe for ArgX (left) or for ArgR (right). Total RNA was used from

exponential (OD600 of 1.0) and stationary phase (2h after an OD600 of 2.0 was reached) cultures, that were pooled in a 1:1

ratio after RNA isolation. The Northern analysis was repeated twice with identical results. (D) Northern hybridization

analysis on an 12% polyacrylamide gel of ArgX using various growth phases/conditions and mutants of ArgX, showing that

The sRNA ArgX regulated the arc operon in Lactococcus lactis
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The promoter of ArgX is highly regulated and responds to arginine

Various sRNAs are controlled by transcriptional regulators, as well as the other way around

[41]. For instance, the sRNA RyhB, which is involved in iron homeostasis in E. coli, is

repressed by the ferric uptake regulator Fur [42], of which the translation is negatively influ-

enced by RyhB [43]. Other sRNAs are induced by a sigma factor, such as MicA and RybB,

which are regulated by RpoE involved in extracytoplasmic stress [44–46]. In our previous

work we predicted the presence of a Catabolite Repressive Element (CRE-box) in the ArgX

promoter, slightly upstream of the -10 sequence [14], suggesting that the carbon catabolite pro-

tein, CcpA, controls ArgX expression. CcpA is a pleiotropic transcription factor that acts as a

repressor when glucose is available as a carbon source [19,47]. The chromosomal PArgX-sfgfp
fusion was used to examine the activity of PArgX. A heterogeneous gene expression pattern was

apparent in cells growing in the presence of moderate concentrations (2 mM) of arginine. This

heterogeneity in PArgX activity was not observed at high levels (25 mM) of arginine (Fig 2A).

This behavior relays to the macroscopic level as very bright patches of GFP-producing cells in

otherwise non-fluorescent colonies (Fig 2B). The strain containing PArgX-sfgfp was grown in

CDMPC with different concentrations of arginine and with glucose as a carbon source. These

studies revealed that PArgX is induced by arginine, in a concentration dependent response (Fig

2C). This effect was only seen in stationary phase, which suggests that CcpA might have a

repressive effect during the exponential growth phase.

Subsequently, we performed transcriptome analyses on L. lactismutants in which the gene

of one of three transcriptions factors, CcpA, CodY or ArgR was deleted from the chromosome.

In the latter mutant, ArgX was still intact [25]. The deletion of ccpA (+ 3.9-fold) or codY (-

3.2-fold) had a significant effect on ArgX expression, whereas ArgR deletion did not (see S3

Table). An arginine-dependent response of PArgX does suggest involvement of ArgR in regulat-

ing ArgX. Using the ARC box sequences (half ARG box sites) of ParcA [20] we identified a con-

sensus sequence, WGHATADW, that was used to scan ArgX promoter region. This consensus

sequence largely overlaps with the -10 sequence of PArgX. We therefore integrated PArgX-sfgfp
in the pseudo_10 locus in the ccpA, argR or codY deletion backgrounds and measured GFP

activity in the various strains in the stationary phase in the presence of high (25 mM) or low (1

mM) concentrations of arginine. All mutations have an influence on the expression of PArgX

under both conditions, albeit that removal of argR or codY has a minimal effect while deletion

of ccpA has by far the highest impact (Fig 2D). It furthermore appears that the effect of CodY

as measured with the transcriptional fusion is not in line with the decreased expression of

ArgX in a ΔcodYmutant that we observed in the transcriptome data. We note here that the dif-

ference in media, rich GM17 media for the transcriptome study and CDMPC for the plate

reader assay, could be at the basis of the observed difference. Also, it is possible that this dis-

crepancy could be due to potential indirect effects caused by CodY that influence the promoter

activity of ArgX.

Expression of arc/Arc is elevated after deletion of the ArgX gene

To examine the potential targets of ArgX, an ArgX mutant strain was constructed that lacks

the -10 promoter sequence and the first 32 nucleotides of ArgX (L. lactisΔArgX). The mutation

ArgX is derived solely from its own promoter and not from processing. A specific probe for ArgX was used. As a control for

RNA quantity and quality, the 5S RNA was used as a control. (E) Nucleotide sequence of ArgX (black box) and its

promoter region compared to ten L. lactis species. The black arrow indicates the transcription start of ArgX as determined

in L. lactisMG1363. Asterisks: conserved nucleotides (in red), alternative nucleotides in blue or black, the promoter -10

box is indicated.

https://doi.org/10.1371/journal.pone.0218508.g001
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was made such that it did not touch the terminator structure in order not to affect transcrip-

tion termination of the argR transcript. The transcriptome and proteome of L. lactisΔArgX

were compared to those of the wildtype strain L. lactisNZ9000 using RNA-Seq and 2D gel

electrophoresis, respectively. For the analysis, the strains were grown in rich GM17 medium. It

is important to mention that no effects were seen at the level of argRmRNA or on the ArgR

protein level. The arcABD1C1C2 (6.5 ±0.7), argGH (9.3 ±2.1), gltS/argE (8.5 ±0.6), argFBDJC
(22.7 ±12.5) and gltQP (8.2 ±2.0) gene clusters were upregulated in the exponential growth

phase in the mutant strain relative to the wildtype (see S3 Table). The transcripts that encode

genes for arginine biosynthesis are possibly induced, since the level of arginine has most prob-

ably decreased due to the high expression of arc in L. lactisΔArgX. One of the most affected

Fig 2. Analysis of ArgX promoter. (A) Phase contrast (top) and fluorescence microscopy images (bottom) of cells of L. lactis SVDM2006, carrying a chromosomally

integrated PArgX-sfgfp fusion, grown under a low (2 mM) or high (25 mM) arginine concentration. The images depicts a representable situation of at least ten random

fields of view. (B) Macroscopic pictures of colonies of PArgX-sfgfp expressing L. lactis SVDM2006 cells grown on a GM17 agar plate (M17 contains ~1.5 mM arginine).

Bright fluorescent patches of cells with a high PArgX activity are indicated by red arrows. (C) Analysis of PArgX-sfgfp activity in L. lactis SVDM2006 cultures growing in

CDMPC with the indicated concentration of arginine. The measurements were performed by a plate reader on cells growing in the stationary phase and were executed

in quintuples. Standard deviations are indicated in the error bars. (D) GFP fluorescence in L. lactis SVDM2006 (control), SVDM2009 (ΔccpA), SVDM2010 (ΔargR) or

SVDM2011 (ΔcodY), all carrying a chromosomal insertion of PArgX-sfgfp. The cells were grown to stationary phase in CDMPC with low (1 mM, red bars) or high (25

mM, blue bars) concentrations of arginine. Measurements were performed in triplicates in a plate reader and standard deviations are indicated in the error bars.

https://doi.org/10.1371/journal.pone.0218508.g002
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genes, with an almost 1500-fold upregulation, was llmg_1128. This hypothetical gene has been

previously correlated with strain robustness [48], and is possibly expressed by the stress caused

by disrupted arginine regulation. Overall, the changes are strikingly similar to those observed

in the L. lactis ccpA and argRmutants. In the stationary phase, pleiotropic effects were

observed in the strain lacking ArgX, including elevated arc expression (3.8 ±0.9) (Fig 3A).

We also studied the proteome to uncover possible differences as a consequence of the

absence of ArgX in the exponential growth phase. Eleven protein spots had changed signifi-

cantly; these were analyzed by MALDI-TOF and identified by using the Mascot server. For

three spots, no protein could be identified. Four spots were identified as representing ArcA

and another four as ArcB, with an average increase of 4.4 (± 1.5) and 4.9 (± 1.5) fold, respec-

tively, in the ArgX deletion mutant relative to the wildtype strain (Fig 3B). The increase in the

amount of ArcA/B proteins reflects the changes of their transcripts but other significant pro-

tein changes were not detected.

Fig 3. Transcriptome and proteome analysis of the L. lactis ArgX deletion mutant SVDM2004. (A) Volcano plots generated by T-REx [38],

showing the RNA-seq results of the effect of ArgX deletion. Genes present outside the grey areas indicate a p-value of� 0.05 and a fold change

of� 2. Genes outside dashed lines: p-value of� 0.01 with fold change� 5. Left: exponential phase, right: stationary phase. Yellow dots represent

genes from the arginine catabolism (arc), blue dots those involved in arginine anabolism (arg). The shaded circles surrounding the genes

provides a measure for the expression level. Two biological replicates were used for each strain. (B) Analysis by 2D gel electrophoresis of the

proteomes of L. lactis SVDM2004 (left) compared and that of the wildtype strain, NZ9000 (right), grown in GM17 media in four biological

replicates. Blue circles represent spots of arginine deaminase (ArcA), red circles represent the ornithine carbamolyltransferase (ArcB) enzyme, as

determined by MALDI-TOF analysis.

https://doi.org/10.1371/journal.pone.0218508.g003

The sRNA ArgX regulated the arc operon in Lactococcus lactis

PLOS ONE | https://doi.org/10.1371/journal.pone.0218508 June 20, 2019 10 / 18

https://doi.org/10.1371/journal.pone.0218508.g003
https://doi.org/10.1371/journal.pone.0218508


ArgX affects arc expression directly and decreases growth rate when

arginine is absent

ArgX is predicted by TargetRNA 2 [49] to interact with the RBS of arcC1, which is the fourth

gene encoded on the arc transcript, downstream of arcA, arcB and arcD1 (Fig 4A). To study

the direct effect of overexpression of ArgX RNA on the expression of arc, a plasmid was con-

structed containing a DNA fragment with the arc promoter region and arc genes until the start

codon of arcC1 fused to the sfgfp gene (pIL253::ParcA-arcABD1-RBSarcC1-sfgfp). We decided to

construct this fusion on a plasmid because it would otherwise destroy the native arc operon. In

addition, plasmids were made that contained the ArgX gene or the argR gene including the

ArgX sequence, the latter with or without a disrupted start codon AAG (argR(Δstart)X). These

genes were each placed under control of the nisin-inducible promoter PnisA. As a control, the

empty expression vector pNZ8048 was used [23] (Fig 4B). The results (Fig 4C) show that

induction with nisin of ArgX expression leads to a decrease of arc expression. Lower GFP fluo-

rescence was measured under uninduced and induced conditions in strains SVDM2014 and

SVDM2015 containing the mutated and the intact argR gene, probably because ArgX sRNA is

produced from its own promoter in these constructs. Since the media contained 25 mM of

Fig 4. Influence of ArgX/ArgR overexpression on arc-sfgfp expression and the effect of ArgX on the growth of L. lactis. (A) RNA duplex between ArgX and the

arcC1 region containing the gene’s RBS, as predicted by TargetRNA2 [49]. The red box in the structure of ArgX shows the region involved in the postulated base pairing

between ArgX and arcC1. Numbering in arcC1 counts from the start codon, numbering of ArgX from its TSS. (B) Schematic overview of a cell of the L. lactis strain

designed to measure the effect of ArgX/ArgR overexpression on arc-sfgfp expression, measured by the development of GFP fluorescence. Lollipops: terminator structure;

scissors: RNases; green cages: GFP. (C) Results of the experiment described. Blue bars: GFP fluorescence in un-induced cells; Red bars: GFP fluorescence in a culture of

cells that were induced with 5 ng/ml of nisin to overexpress ArgX (SVDM2013), ArgR (SVDM2014) and ArgRΔstart (SVDM2015). L. lactis SVDM2012 is the empty

vector control strain. Data derived from cells cultured in CDMPC containing 25 mM arginine, grown in the stationary phase, measured in a plate reader. The

experiments were executed in quintuples and standard deviations are indicated in the error bars. (D) Growth effect of ArgX deletion mutant in CDMPC medium

supplemented by 0.5% glucose and 0, 10 and 50 mM arginine. The red lines represent the deletion mutants of ArgX, blue lines represent the wildtype. Growth curves are

the average of five cultures and were executed in a plate reader. The experiment is performed three times with consistent results and the standard error is indicated in

the error bars.

https://doi.org/10.1371/journal.pone.0218508.g004
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arginine, ArgX expression is high. Lowest fluorescence was observed when expression of argR
was induced. Overexpression of argR(Δstart)X did not result in a drop of the fluorescent signal

in comparison with the un-induced sample.

The expression behavior of arcmeasured by the readout of the GFP in the same plasmid

used above, did not show any significant and reproducible differences in the deletion mutant

compared to the wildtype strain.

To obtain insight in the biological relevance of ArgX, we grew L. lactis and mutants of

ArgX under different arginine regimes. In the absence of arginine, the ArgX deletion strain

grew significantly faster during the exponential phase and reached a higher final OD. By con-

trast, the same strain grew slightly slower at high arginine concentrations of 10 or 50 mM,

while ultimately reaching comparable end ODs (Fig 4D).

Discussion

Biogenesis and processing of ArgX

Most trans-encoded regulatory sRNA genes are located in intergenic regions in the chromo-

some. Recently, a few examples of regulatory RNAs were reported that overlap with the 3’-

UTRs of coding transcripts [13]. We have previously identified ten 3’-UTR-overlapping

sRNAs in L. lactis by dRNA-seq. Since the RNA used in this study was enriched for primary

transcripts, sRNAs derived from processed 3’-UTRs could not be detected and, if they exist in

this organism, remain to be identified [14]. Here we characterized LLMGnc_172 (ArgX), an

sRNA that overlaps with the 3’-UTR of the argR transcript. ArgX and argR use the same termi-

nator sequence. ArgX is expressed from its own promoter as a 66-nt transcript and is not

formed via processing of the longer argR transcript, as we did not observe any transcripts by

Northern analysis after disrupting the -10 sequence in the ArgX promoter. As we observe two

distinct ArgX bands on a (12%) polyacrylamide gel it could be that processing takes place at

the 5’-end of the ArgX transcript, cleaving off one or only a few nucleotides. Such a processed

form of ArgX would carry a monophosphate (5’-P) at its 5’-end while the primary product car-

ries a tri-phosphate (5’-PPP) group. This difference could be biologically relevant as it has

been shown in E. coli that RNase E degrades target mRNAs in response to the 5’-P of the

involved sRNA. Moreover, in the absence of its target mRNA, an sRNA that carries a 5’-P is

more prone to degradation by RNase E [50]. It is possible that 5’-processing of ArgX would

change its molecular function. We did not observe a fixed ratio between the two forms of

ArgX by Northern analysis, albeit that the upper band is higher under high arginine availabil-

ity. Possibly, the ArgX processing itself is regulated and depending on the requirement by the

cells for e.g., arginine or one of its derivatives. Adding to the complexity of the system, both arc
and ArgX are heterogeneously expressed, at least under “normal” arginine concentrations (1-

2mM). This could mean that some cells in a population produce more ammonia by cataboliz-

ing the carbamoylphosphate, e.g. to neutralize the self-produced acid in the environment,

while others may invest in the production of proteins and nucleotides using arginine as the

precursor. Whether or not such a strategy would provide a benefit for the whole population is

interesting to further investigate.

Regulation of arginine metabolism and the effect of the sRNA ArgX

Arginine metabolism in L. lactis is regulated by the carbon catabolite repressor CcpA [19], the

transcriptional repressor CodY [17] and by the arginine repressor ArgR and its protein part-

ner, AhrC [20]. We show here that ArgX expression is mostly affected by CcpA. The ArgX

promoter responds to arginine availability in a strikingly similar fashion as the promoter of the

arginine catabolic arc operon. This is remarkable as our results show that arc is also regulated
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by ArgX. We hypothesize that the aligned expression could function in arginine homeostasis.

An in silico prediction using TargetRNA2 hinted at a possible base pairing between ArgX and

the RBS of arcC1, the fourth gene in the arc operon. Deletion of ArgX resulted in an increase

in the number of arc transcripts as well as a rise in the proteins ArcA and ArcB. Overexpres-

sion of ArgX, the argR transcript with an intact gene or one in which the argR start codon

(argR(Δstart)X) had been mutated all led to a lower expression of arc, indicating that ArgX reg-

ulates arc directly. The possibility that the parental argRmRNA is also able to regulate arc by a

base pairing reaction, was ruled out since we did not observe any decrease in arc expression

upon overexpression of argR(Δstart)X in comparison with the un-induced mutant. Overex-

pression of argR(Δstart)X leads to a stronger repression of arc than when ArgX was overex-

pressed. This can be explained by the fact that the ArgX promoter is still present in this

construct, probably resulting in a very high amount of ArgX transcripts also because of the

high level of arginine (25 mM), a condition that was shown to boost ArgX expression. Never-

theless, the repressing effect on arc transcription by the protein regulator ArgR appears to be

stronger than that of the sRNA ArgX at least under the conditions tested here.

Arginine, a versatile molecule in carbon and nitrogen metabolism

Arginine has previously been shown to play a role in acid stress tolerance in L. lactis [51]: The

ammonium produced as one of the end products of arginine catabolism can be used to coun-

teract acidification. Ammonium can also be produced for example through conversion of glu-

tamine to glutamate. CcpA represses transcription of the arc operon in the presence of

abundant glucose during the exponential growth phase [52], while pH neutralization might

already be helpful at this stage of growth. Whenever the glucose level drops, and arginine is

present, ArgR repression is relieved and arc is expressed [20]. The ArgX and arc promoters

both become activated by increasing amounts of arginine in the stationary phase. The control

of arc by CcpA suggests that arginine is mainly used as a carbon and/or energy source, at least

during the stationary phase. The arginine deiminase pathway imports and catabolizes arginine.

However, levels of arginine and its metabolites could rise to undesirable heights, especially if

sufficient arginine is available for protein production. The role of ArgX could be to stop the

uptake and catabolism of arginine by inducing the degradation of arc transcripts. In a less criti-

cal situation or perhaps under conditions with high arginine in combination with low glucose,

ArgX could redirect the carbamoyl phosphate towards pyrimidine metabolism by blocking

translation of arcC1, the carbamate kinase that converts carbamoylphosphate into ammonia,

ATP and CO2. It has been shown that disruption of arginine regulation in argR and ahrC
mutants of L. lactis increases the activity and gene expression of the de novo pyrimidine

enzymes PyrE and PyrF [18]. ArgX could function to control the way arginine is utilized by

the cell: as a precursor for pyrimidine synthesis or for ATP and ammonia production.

sRNAs that regulate arginine metabolism in other organisms

Homologs of ArgX were not detected in genomes of other bacterial species. As this search was

performed at the level of nucleotide sequence identity we cannot rule out the possibility that

ArgX genes are present in other, more distant species. An sRNA was found to be involved in

arginine metabolism in Bacillus subtilis. In this soil bacterium, the sRNA SR1 blocks the trans-

lation of the transcriptional activator ahrC, resulting in a decrease of the arginine catabolite

gene clusters rocABC and rocDEF [53,54]. Repression by SR1 on ahrC has similar conse-

quences on arginine catabolism in B. subtilis as does ArgX in L. lactis, although it takes place at

an earlier stage of growth and without the possibility to redirect arginine side-products. Inter-

estingly, SR1, like ArgX, is also repressed by CcpA. Whether the L. lactis genome harbors an
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SR1-homolog, whether the rocR transcript from B. subtilis contains an ArgX-homolog or

whether ArgX and SR1 are functional homologs are questions still to be answered. In E. coli,
an antisense RNA against the argR transcript was identified using dRNA-seq [55]. This tran-

script, as-argR was specifically expressed at an OD600 of 0.4, while it was not detected in cells of

a culture at an OD600 of 2.0. Although no functional analyses were performed, it is expected

that as-argR targets and helps degrading the argRmRNA.

Conclusions

The 3’-UTR region of the L. lactis argR gene, coding the arginine repressor ArgR, harbors a

non-coding small RNA regulator gene called ArgX. This sRNA downregulates mRNA levels of

arc, the operon that specifies the arginine deiminase pathway. ArgX adds another layer to the

complex regulation of arginine metabolism. In Fig 5, we present an overview of the current

model of arginine metabolism regulation in L. lactis. Besides regulation of arc by various pro-

tein transcription factors [17–19], ArgX allows for post-transcriptional regulation by acting on

arc transcript stability and/or translation of arcC1. By blocking arcC1 translation, carbamoyl

Fig 5. Model of arginine metabolism and its regulation in L. lactis. Amino acids and (oligo)peptides can be taken up by L. lactis upon degradation of (milk) protein.

CodY senses the intracellular pool of branched chain amino acids (BCAA) and represses arc and possibly ArgX expression. CcpA, in combination with Hpr-Ser46P, and

ArgR/AhrC repress arc and ArgX expression by sensing fructose-1,6-diphosphate and arginine, respectively. ArgX represses arc by transcript stability (indicated by a

scissor) and/or blocks the translation of arcC1 (indicated by a black schematic ribosome complex).

https://doi.org/10.1371/journal.pone.0218508.g005
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phosphate can be directed towards pyrimidine metabolism. We propose that ArgX ensures

arginine homeostasis by interfering with the breakdown of intracellular arginine into ammo-

nia, CO2 and ATP. The expression of ArgX (and arc) depends on relief of carbon catabolite

repression by the preferred carbon source via CcpA, and on arginine availability to release

repression by ArgR/AhrC. Under low arginine conditions, expression of arc is low such that

the amino acid can be used for protein synthesis. When arginine is abundant, arc is highly

expressed. However complete breakdown of arginine might not always be preferred. Re-direc-

tion of carbamoyl phosphate towards pyrimidine metabolism allows saving energy. While the

conversion of carbamoyl phosphate by ArcC yields 1 molecule of ATP, the production of car-

bamoyl phosphate for the synthesis of pyrimidines from glutamine consumes 2 ATP mole-

cules. Also, if all arginine would be fully converted, protein synthesis might fall short. We

hypothesize that ArgX, of which expression is based on carbon source and arginine availability,

can steer arginine towards ATP and ammonia, to pyrimidine metabolism or to protein

synthesis.

Altogether, ArgX is a fascinating example of how an RNA from a 3’-UTR region can func-

tion as an RNA regulator molecule that is regulated by and intertwined with the function of

the gene product of the parental mRNA, in this case argR.
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