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Abstract

The Smart Grid is widely regarded as the next generation of the power

grid in power system reform. It is the application of digital processing

and communications to the power grid, making data flow and information

management central to the grid. Demand response (DR) is an essential

characteristic of the smart grid and it plays an important role in energy efficiency

improvement and wastage reduction by providing encouraging energy-aware

consumption. However, efficient DR management involves a variety of challenges

including categorisation of load patterns, accurate real-time price (RTP)

forecasting, effective DR program designing, etc. This thesis extends around

these related challenges in the smart grid and presents significant outcomes.

Load pattern categorisation (LPC) plays an important role in DR. However,

how to determine a precise cluster number and choose an appropriate clustering

algorithm are critical in LPC and remain challenging. In this thesis, as the

first contribution, a novel parametric bootstrap (PB) algorithm is proposed,

incorporated with a compatible clustering technique to address the cluster number

determination problem as well as clustering the load data simultaneously. The

PB algorithm is more robust against dimensionality of data and hence applicable

to load demand data which is usually of high dimensionality. It is also general

and independent of data type, resulting in a more appropriate cluster number

determination result than existing methods with little fluctuation. The evaluation

results indicate the feasibility and superiority of the proposed approach over

others previously published in the literature.

The RTP tariff has become a trend in the smart grid and it is usually

utilised as an input control signal to enable efficient load shifting in DR. As the
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second contribution of the thesis, a hybrid RTP forecasting model considering

deterministic and stochastic features of input data is proposed to forecast

short-term electricity prices. The evaluation results clearly demonstrate that

the proposed approach is effective in RTP forecasting with a higher accuracy

compared with existing models from the literature.

An effective DR strategy is the core of DR. As the third contribution, a number

of DR strategies assisted by electric vehicles (EVs) are proposed. Innovative

EV assisted DR strategies with the EV as an auxiliary power supply (EV-APS)

model and a neighbour energy sharing (NES) model are proposed, to jointly

optimise the load distribution for both a single household and multi-household

network via vehicle to home (V2H) and vehicle to neighbour (V2N) connections,

respectively. The proposed DR strategies take account of the comprehensive

impacts of EVs’ charging behaviors, user preferences, distributed energy, and

load scheduling priorities. The effectiveness of the DR strategies are verified by

numerical results in terms of load balancing and cost reduction, and the proposed

DR strategies show better performance compared with previously published DR

approaches.
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Chapter 1

Introduction

Chapter 1 provides an overview of the thesis highlighting the aims of the work

undertaken and its novelty in the field. Specifically, the motivation behind the

work is explained in Section 1.1, the objectives of the thesis are proposed in

Section 1.2, the main contributions and organisation of the thesis are presented

in Section 1.3. Finally, the publications produced as a result of the work are

listed in Section 1.4.

1.1 Motivation

The power grid is a large interconnected infrastructure for delivering electricity

from power plants to end consumers. With continuous development and

modernisation, great changes have taken place in the last few decades on the

information frontier and in relation to control theory and artificial intelligence.

The modern power system has not kept pace with the development of these

technologies and innovations and is not wholly satisfying the demands of the

modern world. Recent electricity blackouts in rural areas of China and other

developing countries indicate that there are great challenges, currently and in the

future, for conventional power grids. Widely considered to be the next generation

of the electricity grid in power system reform, the smart grid has been proposed

as the next generation for energy production, transmission, distribution, and

consumption.

The smart grid which encompasses advanced power, communications, control,

and computing technologies [1], is envisioned as a large-scale cyber-physical
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Figure 1.1: Vision of the cyber-physical smart grid system. The cyber part of
the proposed system includes wide area network (WAN), neighbourhood/field
area network (NAN/FAN), home/industrial area network (HAN/IAN). The

physical part of the proposed system consists of energy generation,
transmission, distribution and consumption.

system as shown in Figure 1.1. The concept of the smart grid was firstly defined

by the Energy Independence and Security Act of 2007 (EISA-2007), which was

approved by the US Congress in January 2007, and signed into law by President

George W. Bush in December 2007. A common feature to most definitions

of the smart grid is the application of digital processing and communications

to the power grid, making data flow and information management central to

the smart grid. It is a power network composed of intelligent nodes that can

operate, communicate, and interact autonomously to efficiently deliver power

and electricity to energy consumers. This heterogeneous nature of the smart grid

motivates development in a number of advanced techniques to overcome various

challenges arising at different levels such as design, control, and implementation.

These innovative techniques could be adopted in the smart grid to improve

reliability, sustainability, efficiency, security, and environmental friendliness.

With the rapid development of smart metering technologies, bidirectional

communications are enabled between power suppliers and users, by having

smart meters installed at consumers’ premises. Accordingly, demand response

(DR) becomes an essential characteristic of the smart grid [2]. The efficient

management of DR on the demand side (e.g., residential homes) is widely

regarded as an excellent long-term solution to improving energy efficiency
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and reducing wastage by providing energy-efficient equipment and encouraging

energy-aware consumption. It plays a significant role in balancing energy supply

and demand, and enhancing the reliability of the smart grid [3–5].

The basic principle of DR management at a consumers’ premises is to reduce

or shift the demand for electricity during peak periods in response to a dynamic

price (DP) or real-time price (RTP) tariff, or other form of financial incentive in

an automated and convenient manner [6, 7], thus achieving the aim of reducing

electricity bills for customers. In other ways, it is also beneficial for the power

grid as it offers an effective solution to averaging power usage over certain periods

alleviating the load burden of the power grid [8–10]. However, designing and

implementing efficient DR based energy management solutions involves a variety

of challenges:

(1) Clarifying the scheduling object in DR management by deriving precise load

consumption patterns from historical load data;

(2) Acquiring a DP or RTP tariff which is can be utilised as the input control

signal in DR management to enable efficient load scheduling;

(3) Developing effective DR strategies considering comprehensive external factors

(e.g., user preferences, energy storage conditions, scheduling priorities, etc.)

to satisfy the requirements of different scales of households.

This thesis focuses on the research area of the smart grid and is expanded in

accordance with these three interconnected challenges. The relationship between

the mentioned smart grid challenges is presented in Figure 1.2.

Load pattern categorisation (LPC) is important to DR management. LPC

involves recording users’ energy usage over a predetermined time, period i.e. a

load pattern, and then categorising users with similar usage into groups. The

result of load pattern analysis is used to support assessment of the impact of DR

programs [11, 12]. The detailed knowledge of electricity consumption’s nature is

essential in promoting strategies for peak load reduction, for instance exploiting

the customers’ willingness to accept price-based demand conditioning on the basis
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Figure 1.2: Three interconnected smart grid challenges that are presented in the
thesis.

of DR programs [13, 14]. Therefore, it is a necessity to study load patterns at

consumers’ premises. The latest developments in smart metering technologies

have given rise to a huge volume of load pattern data, which has greatly benefitted

the task of research in LPC. The latest machine learning (ML) technologies are

considered to offer potential solutions in performing the classification task.

In addition, implementing DR programs requires a reliable DP/RTP tariff

as an input control signal. In general, the RTP tariff is usually provided as an

instantaneous property with price rates varying continuously (typically hourly) to

reflect wholesale market-price changes, however DR programs must be designed

in advance. Hence, it is crucial to obtain a valid RTP tariff ahead of scheduling

actions based on efficient forecasting models. The RTP tariff can be obtained by

data-driven approaches. Afterwards, the predicted RTP can be utilised as the

input control signal in executing DR programs.

As the core part of this thesis, advanced DR strategies considering energy

storage facilities (e.g., electric vehicles), vehicle to home (V2H) and vehicle to

neighbour (V2N) communications, scale of households (e.g., single household

and multi-household network), and other external factors (e.g., user preferences,

EVs’ charging behaviors, load scheduling priorities, etc.) are developed. The

importance of DR programs cooperating with EVs increases with the increased

population of EVs. Considering the flexible energy storage capacity of EVs, up to

date DR strategies that can exploit EV characteristics are required. Compared

with a conventional energy storage system (ESS) and other energy production
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facilities, the utilisation of the EV as a temporary power source has advantages

in employing flexibility and economic efficiency [9]. Use of the EV for this

purpose should not require extra infrastructure investment other than the EV.

In addition, DR strategies can be expanded beyond the individual consumer,

enabling power-sharing via V2N. The available energy in one consumers EV can

be shared to neighbours during peak price periods, which can be beneficial to

both demand and supply sides. Therefore, EV assisted DR strategies hold wide

prospects in practice not only for single households but also for multi-household

networks such as small residential communities.

1.2 Objectives

In accordance with the motivation, the main goal of the thesis is to develop

dynamic price based DR strategies for load scheduling of domestic appliances

to meet the needs of different scales of households. The aim of this work is to

balance the energy supply and demand, enhance the reliability of the smart grid,

and create economic benefits for users. Since the scheduling object in the DR

strategy is the load demand at the consumer side, an investigation of current load

consumption patterns at a consumers’ premises is explored first. A practical DP

forecasting model is then proposed to provide a reliable DP tariff, which is then

utilised as the input control signal in executing DR strategies. Finally, a number

of DR strategies considering the impacts of EVs are designed. The objectives of

the thesis can be summarised as follows:

(1) Investigate consumer load consumption patterns and develop robust ML

based algorithms for LPC. The problems of cluster number determination

and clustering technique selection will be addressed.

(2) Develop effective and practical RTP/DP forecasting models to acquire

short-term electricity prices, which can be used as the input control signal

for DR strategies.

(3) Design effective DR strategies and provide advanced DR based energy
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management solutions for domestic appliances to meet the requirements of

different scales of household:

• A fundamental DR strategy for a single household without EV

assistance;

• An EV assisted DR strategy for a single household;

• An EVs assisted DR strategy for a multi-household network.

Comprehensive factors (e.g., user preferences, energy storage conditions,

scheduling priorities, etc.) have to be considered in developing these

strategies.

1.3 Thesis Overview

1.3.1 Thesis Contributions

A number of interconnected challenges in the smart grid are addressed in this

thesis. The main contributions of the thesis are summarised in the following:

(1) A parametric bootstrap (PB) algorithm for use in LPC.

An innovative PB algorithm is developed and evaluated in conjunction with

compatible clustering techniques to determine the number of clusters within

the load data and perform the clustering process.

First of all, the proposed PB algorithm is shown to be more robust against

the dimensionality of the data in typical load pattern (TLP) analysis than

conventional methods (e.g., G-means [15]). It is able to effectively determine

a cluster number for the data with a high dimensional space and therefore is

applicable for the load demand data, which is usually of 24- or 48-dimensions.

Secondly, the proposed PB algorithm is general and independent of data

type. It is more reliable and stable in cluster number determination than the

Akaike Information Criterion (AIC) based algorithm [16], with a much higher

probability of successfully finding an appropriate number and lower standard

deviation (STD) value.
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Thirdly, an effective cascade clustering scheme that classifies the initial load

data into a series of sub-cascades according to external features is proposed

to reduce clustering errors and improve efficiency over clustering raw data

directly. The proposed PB algorithm is evaluated in conjunction with various

classifying techniques [17–23], among which K-means++ is demonstrated to

offer the best clustering performance in TLP analysis.

This work was published in [24] and is presented in Chapter 3.

(2) A hybrid model for short-term real-time electricity price forecasting.

A hybrid RTP forecasting model which is a consolidation of a least-square

(LS) fitting model, grey prediction (GP) model and artificial neural network

(ANN), is proposed. The LS fitting model considers the deterministic

characteristic of the time series data and the GP model considers the

stochastic characteristic. The ANN model is used for error optimisation,

the execution of which is dependent on the forecasting performance of the

first two stages.

The effectiveness and accuracy of the hybrid forecasting model is verified by

numerical results in terms of a number of evaluation criteria and the results

indicate that the proposed method is an accurate and efficient tool to predict

the day-ahead RTP significantly outperforming previous methods [25–29].

This work was published in [30] and is presented in Chapter 4.

(3) Effective DR strategies and advanced energy management solutions at

consumers’ premises.

As the core of this thesis, a number of DP based DR strategies for

load scheduling of domestic appliances are designed and implemented to

different scales of households (i.e., a single household and a multi-household

network) in order to alleviate the load burden for the grid and save bills for

householders, simultaneously.

For the single household network an EV is utilised as an auxiliary power

supply (APS) for the energy consumption of home appliances. An EV-APS
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model based DR strategy is proposed in accordance with a fundamental DR

strategy.

For the multi-household network, an EVs assisted DR framework including

a neighbour energy sharing (NES) model for a residential network with

different types of EVs installed at consumers’ premises is developed. The

available EVs’ energy distribution is enabled via vehicle-to-home (V2H) and

vehicle-to-neighbour (V2N) connections. The NES based DR framework is

valid and effective not only for an independent household but also for a

multi-household residential network, which can satisfy broader requirements

compared with conventional DR programs [31–35] in literature. The energy

trading policy in the neighbourhood is also declared in this work.

Comprehensive affecting factors (e.g., EV behavior, user preference, load

scheduling priorities, etc.) are considered in scheduling for both EV assisted

DR strategies. The effectiveness of the proposed DR strategies is verified

by numerical analysis, which demonstrates that the proposed approaches

significantly outperform the methods [8, 31] in literature in terms of load

balancing and electricity cost reduction.

The related work has been accepted for publication as a book chapter on

IntechOpen and was partially published in [9]. It is presented in Chapter 5.

1.3.2 Thesis Organisation

This thesis is organised as follows:

In Chapter 2, general backgrounds on the related topics of the smart grid

are proposed. The existing achievements and potential challenges are discussed

specifically.

In Chapter 3, an investigation of consumer LPC is performed based on

ML algorithms. An innovative and robust PB algorithm is developed to solve

the cluster number determination problem and a number of popular clustering

techniques are also presented in this chapter.

In Chapter 4, a hybrid RTP forecasting model is illustrated in detail, to
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provide an controlling input to DR strategies. Data-driven methods are utilised

based on historical data in this chapter.

In Chapter 5, a number of DR strategies for load scheduling of domestic

appliances are designed and implemented for different scales of household. Two

significant models, an EV-APS model and a NES model are analysed. The

effectiveness of the proposed DR strategies is evaluated by case studies.

In Chapter 6, conclusions are drawn and potential future works related to the

evolution of the smart grid are discussed.

1.4 List of Publications

Referred Journal Publications

1. Xing Luo, Xu Zhu, and Eng Gee Lim. Parametric Bootstrap Algorithm for

Cluster Number Determination of Load Pattern Categorisation [J]. Energy,

180:50-60, Apr. 2019.

2. Xing Luo, Xu Zhu, and Eng Gee Lim. A Hybrid Model for Short Term

Real-Time Electricity Price Forecasting in Smart Grid [J]. Journal of Big

Data Analytics, 3(1):8, Oct. 2018.

3. Xing Luo, Xu Zhu, Eng Gee Lim, and Yi Huang. A Semi-Blind Model with

Parameter Identification for Building Temperature Estimation [J]. Journal

of Cognitive Computation, 10(1):105-116, Feb. 2018.

Referred Conference Publications

1. Xing Luo, Xu Zhu, Eng Gee Lim, and Wolfgang Kellerer. Electric Vehicles

Assisted Multi-Household Cooperative Demand Response Strategy [C]. In

Proc. 2019 IEEE Vehicular Technology Conference (VTC)-Spring, Kuala

Lumpur, Apr. 2019.

2. Xing Luo, Xu Zhu, and Eng Gee Lim. Dynamic Pricing Based

and Electric Vehicle Assisted Demand Response Strategy [C]. In Proc.

2017 IEEE International Conference on Smart Grid Communications

(SmartGridComm), pages 357-362, Dresden, Germany, Oct. 2017.
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International Conference on Ubiquitous Computing and Communications

(IUCC), pages 1252-1257, Liverpool, UK, Oct. 2015.

Book Chapter

1. Xing Luo, Xu Zhu, and Eng Gee Lim. Electric Vehicles Assisted Demand

Side Energy Management [B]. Book of IntechOpen (accept for publication).
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Chapter 2

Background

In this Chapter the general and theoretical background relating to each of the

focussed themes within the thesis are introduced. This begins by looking at the

reasons for and methods of load pattern categorisationin Section 2.1, is followed

by work on dynamic price forecasting in Section 2.2 and finally addresses the

concepts behind demand response management in Section 2.3.

2.1 Load Pattern Categorisation

2.1.1 Introduction to Load Pattern Categorisation

The ongoing development of smart grid technologies for data acquisition and

supervision, metering, and communication, has given rise to a huge volume of load

data. It is well recognised that this data can offer vast benefits with respect to

load pattern analysis. Playing a significant role in load analysis, attention towards

load pattern categorisation (LPC) has become increasingly high in recent years.

LPC is frequently used in the process of classifying similar electricity consumption

data into clusters. The clustering process is an unsupervised learning procedure

which has been studied in various contexts and disciplines. It aims to allocate

the electricity demand data of numerous consumers into a few homogeneous

groups, ensuring that objects in the same group are similar while being dissimilar

to objects from other groups. In other words, on the basis of some similarity

criteria, the similarity of the objects within the same cluster is maximised and

the similarity of objects from different clusters is minimised. Following LPC the
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dataset each cluster can be represented by a composite object, which is normally

the weighted average (centroid) of the objects within that cluster. Despite some

fine details in the data maybe lost in this process, simplification and scalability

is achieved.
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Figure 2.1: Examples of collected electricity demand data in the year 2016.

Figure 2.1 illustrates the electricity demand data of a number of users over a

day in the year 2016, each of these datasets is used as an object to be clustered.

Mathematically a dataset which consists of N objects as S, S can be characterised

as:

S = {xn, n = 1,2, ...,N, xn ∈ Rd};

where d denotes the dimensionality which indicates the resolution of an individual

load curve. Based on the recent metering techniques, the actual load data for

a day is usually of 24- or 48-dimensions, which indicates the time interval of a

load curve is either 1.0 hr or 0.5 hr, respectively. One of the main objectives of

this work is to propose an efficient clustering technique to group the collected
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load data into a number of clusters in order to seek typical load patterns (TLPs)

from the dataset. The result of LPC is used to support the development of DR

programs.

2.1.2 Applications of Load Pattern Categorisation

The attention towards the nature of electricity consumption is becoming

increasingly high, since clustering or categorising of load consumption patterns

has broad applications in terms of power system planning and operation, demand

response (DR) and demand side management, load demand forecasting, electricity

tariff design, etc. The applications of LPC can be generally summarised by the

following aspects.

(1) Power system planning and operation: in most electricity markets, the

electricity suppliers are operating in a competitive environment as the

electricity distribution and supply services have been unbundled. The

electricity suppliers need to get accurate information on the actual load

demand of their users to allow the setting up of dedicated commercial offers,

thus improving the planning and operation of the power system [36, 37].

Customer grouping on the basis of similar load demand patterns is likely to

provide an effective solution.

(2) DR and demand side management: enhanced knowledge of LPC can be

useful in supporting DR program development. LPC has been proposed as

an effective means to enhance the targeting and tailoring of DR programs

as well as providing reasonable load scheduling recommendations, owing

to availability of advanced technology for load shifting and to emerging

opportunities for flexible demand management, producing incentives and

rewards to participating users [38–43].

(3) Load demand forecasting: LPC plays a crucial role in load demand forecasting

(LDF) which is an essential part of power generation, distribution and

regulation, since LDF is often estimated by the aggregation of typical load

patterns (TLPs) which are the outcomes of LPC [44–46]. LDF usually
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relies on available data from similar days. Obviously, an effective LPC can

provide relevant information to identify such similar days hence improving

the performance of LDF [47].

(4) Electricity tariff design: LPC is also proposed for the purpose of designing

electricity tariffs. Electricity suppliers now have some degrees of freedom

in formulating tariff offers which can meet the requirements set by the

regulatory authorities. However, each tariff is formulated with reference to

a specific load category, defined by a number of load characteristics [48, 49].

Additionally, LPC also can be used to assist electricity consumers in selecting

an appropriate tariff [50].

LPC is an established yet still very active research topic due to its wide

implications for the industry. However, the choice of a proper clustering algorithm

and determination of an appropriate cluster number remains challenging.

2.1.3 Review on Existing Clustering Techniques

Having extensive applications in the industrial field, a wide variety of clustering

techniques have been investigated in previous works and applied to electrical load

data. There are many clustering technique classifications. According to different

clustering objectives, the clustering technologies can be generally summarised into

three categories: partition-based methods, hierarchical methods and model-based

methods. A summary of clustering techniques used in various literature papers

together with their relevant references, is shown in Table 2.1. On the application

side, the mentioned clustering techniques differ in accordance with the principle

used in the definition.

To begin with, the basic principle of the partition-based algorithm is to divide

the dataset up into groups; one of the most popular representatives is the K-means

algorithm. K-means clustering is a method of vector quantisation, originally from

signal processing, it is popular for cluster analysis in data mining. It aims to

partition N observations into K clusters in which each observation belongs to

the cluster with the nearest mean, serving as a prototype of the cluster [17, 18].
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This results in a partitioning of the data space into Voronoi cells; however, the

weaknesses of K-means are obvious: (i) The number of clusters, K, must be

determined as an input parameter before clustering. (ii) K-means is sensitive

to initial conditions. Different initial conditions may produce different clustering

results and the algorithm may be trapped in a local optimum. (iii) K-means is not

robust to outliers. The data points which are far from the centroid may pull the

centroid away from the real one. (iv) If the amount of data is not sufficient, the

initial grouping will significantly affect the clustering performance. The K-means

algorithm is selected as one of the compatible clustering techniques investigated

in support of the parametric bootstrap (PB) algorithm, the details of K-means

are specified in Subsection 3.3.1.

Table 2.1: Summary of existing data clustering techniques.

Category Methods References

Partition-based Methods

K-means (KMS) [17, 18].

K-medoids (KMD) [21].

K-means++ (KMS++) [19, 20].

Fuzzy K-means (FKM) [51, 52].

Kernel K-means (KKM) [53].

Follow-the-leader (FTL) [49, 54].

DBSCAN [55–58].

Hierarchical Methods
Agglomerative hierarchical clustering (AHC) [59].

Divisive hierarchical clustering (DHC) [60].

Model-based Methods

Gaussian mixture model (GMM) [22, 23].

Dirichlet process mixture model (DPMM) [61].

Gaussian mixture copula model (GMCM) [62].

C-vine copulas based mixture model (CVMM) [16].

Other Methods

Self-organising maps (SOM) [63].

Support vector clustering (SVC) [64–66].

Artificial neural networks (ANN) [67, 68].

Fast wavelet transformation (FWT) [15, 69].

On the basis of the standard K-means algorithm, other generations of

K-means, such as K-means++ (introduced in Subsection 3.3.2), fuzzy K-means,

Kernel K-means, etc. have been developed, to improve the clustering
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performance. The relevant algorithms have been demonstrated in detail in

[19, 20, 51–53].

The K-medoids algorithm is a clustering algorithm related to the K-means

algorithm and the medoid-shift algorithm. The K-means and K-medoids

algorithms both are partition-based methods and attempting to minimise the

distance between points labeled to be in a cluster and a point designated as

the centroid of that cluster. In contrast to K-means, the K-medoids algorithm

chooses data points as centers and works with a generalisation of the Manhattan

Norm to define the distance between data points. It is more robust to noise

and outliers compared with K-means because it minimises a sum of pairwise

dissimilarities instead of a sum of squared Euclidean distances [21]. The details

of the K-medoids algorithm are described in Subsection 3.3.3.

Density-based spatial clustering of applications with noise (DBSCAN) is a

data clustering algorithm proposed in 1996 [55]. It is a density-based clustering

algorithm and the basic principle can be simply described as: given a set of

points in some space, it groups together points that are closely packed together

(points with many nearby neighbours), marking as outliers points that lie alone

in low-density regions (whose nearest neighbours are too far away). DBSCAN is

one of the most common clustering algorithms and also most cited in scientific

literature.

Different from the above partition-based clustering algorithms hierarchical

clustering methods seek to build a hierarchy of smaller clusters. These methods

can be divided into agglomerative hierarchical clustering [59] and divisive

hierarchical clustering [60]. Agglomerative clustering starts with small, atomic

clusters, that are gradually merged into bigger clusters, while moving up the

overall hierarchy. Divisive clustering works the other way round, starting from

one big cluster and clusters are stepwise separated into smaller clusters. The

results of hierarchical clustering are typically visualised with dendrograms. In

order to decide, where to split a cluster or which clusters to merge, a measure of

dissimilarity has to be defined. In many hierarchical algorithms, this is done by

the use of a distance metric and a linkage criterion.
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An alternative approach, beyond partition-based and hierarchical clustering

methods, is the use of distribution mixture models. Gaussian mixture models

(GMM) is one of the most widely used model-based clustering approaches. GMM

is a probability-based unsupervised learning classifier and is often used to classify

a wide variety of signals. According to the central limit theorem [70–72], a given

set of data is normally hypothesised as a mixture Gaussian distributions, since the

mixture Gaussian distribution is able to approximate any probability distribution

by increasing the number of the models in theory. In addition, the parameters of

GMM are normally estimated by the expectation maximisation (EM) algorithm

which is an effective machine learning method for probability density estimation

[73–75]. An apparent drawback of GMM is that the convergence speed of using

the EM algorithm to achieve the parameters of GMM is quite slow, particularly

for large volumes of data with multi-dimensions, due to the seeds which are

arbitrarily selected. The principle of GMM is shown in detail in Subsection 3.3.4.

Some other model types that can be used include, a multivariate Dirichlet

process mixture model (DPMM) which was proposed to classify electricity profiles

in [61]. A Gaussian mixture copula model (GMCM) which was introduced in [62],

where a number of multivariate Gaussian copulas are fitted to a range of datasets.

A C-vine copulas based mixture model (CVMM) was illustrated in [16] for the

clustering of residential load data. Self-organising maps (SOM) [63], support

vector clustering (SVC) [64–66], artificial neural networks (ANN) [67, 68] and

fast wavelet transformation (FWT) [15, 69]. In Section 3.3, a number of selected

compatible clustering techniques that are used to support the PB algorithm will

be discussed in detail.

2.1.4 Review on Cluster Number Determination Methods

Clustering algorithms are useful tools for many important data processing tasks

such as data mining, compression, probability density estimation, etc. However,

a common problem in most existing clustering methods is that the number

of clusters (called k) is a pre-defined parameter, which is difficult to set in

practice. It not always clear what is the best value for k should be and
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using an inappropriate cluster number as the input significantly reduces the

clustering accuracy and increases complexity [76]. Therefore, reliable cluster

number determination is required in advance of clustering.

Several algorithms have been proposed previously to determine k

automatically and most of them are developed on the basis of K-means. Other

methods that have been applied include X-means [77, 78], G-means [15, 79] and

other methods that determine the cluster number by finding an “inflection point”

based on specified criteria [80, 81].

A regularisation framework for learning k, which is also called X-means was

first proposed in [82]. The algorithm searches over many potential k values and

scores each clustering model using the so-called Bayesian information criterion

(BIC) which can be defined as: BIC(C ∣X) = L(X ∣C) − p
2 logn, where L(X ∣C)

is the log-likelihood of the dataset X according to model C, p = k(d + 1) is the

number of parameters in model C with dimensionality d and k cluster centers.

Therefore, X-means selects the cluster number with the best BIC score based on

the clustering results. The X-means algorithm was adopted for cluster number

determination of load profiles based on smart metering data in [77]. Besides

BIC, other scoring criteria such as Akaike information criterion (AIC), are also

acceptable in the usage of X-means.

The Gaussian-means algorithm, also called G-means, provides another way of

determining an appropriate cluster number. G-means starts with a small number

of K-means centers and grows the number of centers. The first k value can be

initialised to k = 1 or it can be selected as a larger value if the range of k is clarified.

Each iteration of the algorithm splits into two centers whose data appears not

to come from a Gaussian distribution via the Anderson-Darling (AD) test, which

is a powerful 1-dimensional statistical test [83]. The splitting continues until the

data in all clusters passes the AD test so that the expected cluster number can be

obtained. The authors of [15] proposed a load pattern clustering strategy based

on the wavelet transformation and G-means to determine the cluster number. In

this way, the adopted load data of N-dimensions has to be reduced to a single

dimension, as the G-means algorithm is not effective for high dimensional data.
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However, actual load data is typically of 24- or 48-dimensions (representing one

day), and the dimensional-reduction always gives rise to the risk of information

loss. Therefore, the G-means algorithm is not normally suitable for data that is

multi-dimensional.

Another popular way to determine an appropriate cluster number is to find an

“inflection point” by certain criteria, such as the AIC based method or BIC based

method. A mixture model for residential load data clustering was presented in

[16]. The Authors selected the optimal cluster number by seeking the first “knee”

always at the local maximum of the curve of the AIC or BIC. However, the criteria

based algorithm is not reliable and does not guarantee a cluster suitable number

will be found at all times, since the estimated “inflection point” normally varies

in a range in AIC calculations.

2.2 Dynamic Price Forecasting

2.2.1 Introduction to Dynamic Electricity Price

Dynamic price (DP), also referred to as demand based price, surge price or

time-based price, is a pricing strategy in which businesses offer flexible prices

for their services or products on the basis of the current market demands. The

product providers are able to change prices based on the internal algorithms

that consider a variety of factors such as competitor price, demand and

supply relationship, as well as other external factors in the market. DP is a

common practice in several industrial areas including hospitality, transportation,

entertainment, retail, electricity market, etc. Each industrial area uses a slightly

different set of criteria to reprice their products according to the demand for the

market.

In the electricity market, dynamic electricity price, also called dynamic tariff,

spot electricity price, or real-time price (RTP) is one critical use case of DP

and it was first introduced in the 1980’s [84]. Nowadays it is being tentatively

applied to the power system in many countries including the US, Australia,

etc. The RTP tariff is an inexorable trend in the next generation of power

19



system reformation [85, 86]. Unlike regulated markets in which the companies

determine prices independently, electricity prices are significantly dependent on

a supply-demand relationship in a deregulated market. Generally speaking,

the principle of RTP is that it offers higher prices during peak load demand

periods and provides lower prices during off-peak load demand periods [87]. In

consideration of the generation cost in different load levels, the DP tariff is a

potential load management method for properly allocating incremental prices of

electricity consumption to the time of delivery, thus ensuring the overall economic

rationality [88].

Considering time scales, electricity price forecasting (EPF) can be classified

into ultra-short-term, short-term, medium-term and long-term forecasting

horizons [89]. The ultra-short term is from several minutes to 1 hour ahead

forecasting. Short-term forecasting generally involves horizons from 1 hour to

several hours or a few days ahead, which is important in day-to-day market

operations. From a few days to a few months ahead is generally defined as

medium-term forecasting. Beyond that, it is the long-term forecasting. It is

usually measured in months, quarters or even years and focuses on investment

profitability analysis and planning. This thesis focuses on day (24 hours) ahead

EPF with a resolution of 0.5 hour, which belongs to short-term forecasting.

2.2.2 Applications of Dynamic Electricity Price Forecast-
ing

DP is regarded as the next generation of electricity tariff. Therefore, the

applications of DP/RTP have been widely discussed in recent years.

The DP/RTP tariff can be broadly utilised as a basic control signal to support

DR management, which offers an excellent long-term solution to improving

energy efficiency and reducing wastage [90]. On the one hand, the DP/RTP

tariff is beneficial to the power grid as it offers specific price instructions for

participants to average their power usage over different time periods alleviating

the load burden of the power grid, especially in peak demand time. On the

other hand, such an electricity tariff encourages consumption by price reduction
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during periods of abundance and allows customers to have multiple choices

in determining the time of electricity consumption. The participants in the

electricity market can regulate the operating time of electric devices automatically

or manually during high-price periods and gain benefits from low-price periods via

DR management, thus achieving the aims of reducing energy usage and saving

on their electricity bills [3, 91]. Therefore, the research on the RTP tariff is

of interest to researchers, production companies, investors, independent market

operators and large industrial consumers [92, 93].

Electricity is a very special commodity, as it is economically non-storable

a constant balance between energy production and consumption is required to

ensure the stability of the power system. Electricity demand significantly depends

on a number of external factors such as weather conditions (e.g., temperature,

solar radiation, wind speed, etc.) and human activity. As a consequence, these

unique characteristics in price dynamics are not easily observed in the market.

Therefore, a reliable electricity price forecasting approach is required. In recent

years, price forecasting from a few hours to a few months ahead has become of

particular interest to power suppliers. On the one hand, a power company able to

forecast the volatile wholesale prices with a reasonable level of accuracy and can

adjust its bidding strategy and its own production or consumption schedule in

order to reduce risk or maximise profits in day-ahead trading [94]. On the other

hand, a reliable electricity tariff also can be used to assist consumers in adjusting

their schedule in order to reduce electricity cost.

2.2.3 Review on Forecasting Methods

A wide variety of methods have been conducted in previous works on EPF,

with varying degrees of success. A taxonomy of electricity price forecasting and

modeling approaches in related works is presented in Figure 2.2. According to

the figure, the forecasting approaches can be broadly divided into six categories

as multi-agent models, fundamental models, statistical models, reduced-form

models, computational intelligence models and hybrid models.

First of all, multi-agent models simulate the operations of a system including
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Figure 2.2: A taxonomy of electricity price forecasting and modeling approaches
in previous works.

heterogeneous agents (e.g., generating units, companies, etc.) interacting with

each other, and establish a price model by matching the demand and supply

in the market [95]. The members of this category include the Nash-Cournot

framework, supply function equilibrium (SFE), strategic production-cost models

(SPCM) and agent-based models. The relevant models have been analysed in

[96–98].

Secondly, fundamental models try to capture the relationship between the

basic physical layer and the economic layer, which represents the production

and trading of electricity. The associations between fundamental drivers (e.g.,

weather conditions, system parameters, load status, etc.) are assumed, and

the fundamental inputs are modeled and predicted independently, often via

statistical, reduced-form or computational intelligence techniques [99]. The

parameter-rich models [100] and parsimonious structural models [101] are two

subclasses of fundamental models. The main weakness of fundamental models in

the practical implementation is that the physical and economic relationships are

assumed in establishing models so that the price projections generated by these

models are very sensitive to the assumptions.

22



Reduced-form models try to characterise the statistical properties within

electricity prices. The main objective of these kinds of models is not to offer

a precise price forecasting result, but rather to replicate the main characteristics

such as dynamic regularity of prices, correlations between commodity prices

and marginal distributions at future time points. The jump-diffusion model

[102–104] and Markov regime-switching model [105] are two popular subclasses

of reduced-form models. The main issues with reduced-form models is that the

model performance is highly dependent on the input price data. If the chosen

price data is not appropriate for capturing the main characteristics of electricity

prices, the obtained prices from the models are not likely to be trustable.

The most popular models used for price forecasting are statistical models since

the introduction of data metering technologies has provided great convenience in

data collecting. Statistical models forecast future prices by using a mathematical

combination of the previous prices and previous or current values of exogenous

factors, typically consumption and production figures, or weather variables

[106]. Statistical models constitute a very rich class which includes similar-day

and exponential smoothing models [25], regression models [107], time series

models including the auto regressive (AR) model, auto regressive moving average

(ARMA) model, auto regressive integrated moving average (ARIMA) model,

fractional ARIMA (FARIMA), seasonal ARIMA (SARIMA), threshold AR

(TAR) [25, 26, 108–114], and heteroskedastic time series models such as the

generalised auto regressive conditional heteroskedasticity (GARCH) model and

the AR-GARCH model [115, 116]. Statistical models are very interesting as

some physical interpretation may be attached to their components, thus allowing

engineers and system operators to understand their behavior. The performance of

these models is restricted by their ability to analyse the non-linear characteristics

of the electricity prices, in practice they typically do not perform better than

non-linear computational intelligence models. [106].

Computational intelligence models for forecasting have been developed in

recent years. They are intelligence-based, non-parametric and non-linear

statistical techniques that combine elements of machine learning, evolution and
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fuzziness to create new approaches. These models are capable of adapting to

complex and dynamic systems. The main classes of computational intelligence

models for EPF are artificial neural networks (ANN) (e.g., feed-forward neural

networks, recurrent neural networks, etc.) [117, 118], fuzzy systems [117, 119]

and support vector machines (SVMs) [120–123]. The advantage of computational

intelligence models is their ability to solve the complex and non-linear systems.

In general, these models are better at modeling the features of electricity prices

in comparison to the statistical models [117].

From Figure 2.2, the last category of EPF approaches is called hybrid models

which combines techniques from two or more of the groups as discussed. However,

the shared limitation of most studies mentioned above is that vast amounts of

historical RTP data are required for building or training the model. Insufficient

historical data causes considerable estimation error. Hence, the research into

EPF in this thesis mainly concentrates on building an effective estimation model

for EPF in a smart grid with comparatively high accuracy by using limited sets of

historical data. The details of the proposed approach are illustrated in Chapter

4.

2.3 Demand Response Management

2.3.1 Introduction to Demand Response

It is widely recognised that a reliable power grid requires a perfect balance

between real-time supply and load demand. It is a difficult task in the current

system, since both supply and demand change unexpectedly and rapidly for

various reasons, such as a power generation unit forced outage, transmission and

distribution outage, abrupt load demand change. Demand response (DR) which is

an essential characteristic of the smart grid, is regarded as an excellent long-term

solution for balancing energy supply and demand, improving energy efficiency,

reducing wastage by providing energy-efficient equipment, and encouraging

energy-aware consumption.

The concept of DR can be descried as changes in electricity consumption
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by end-use customers from their normal consumption patterns in response to a

DP/RTP tariff over time or other form of financial incentive in an automated and

convenient manner. It has also been defined as incentive payments designed to

include lower electricity consumption at times of high wholesale market prices

or when system reliability is jeopardised [2, 124–126]. From the smart grid

perspective, DR management is an effective means of rescheduling users’ energy

consumption to reduce electricity expense. This innovative technology is able

to improve the efficiency of the electricity market, make the power system more

reliable and lead to mutual economic benefits for both power utilities and the

energy consumers. Last but not least, DR is an eco-friendly technique as it will

reduce carbon emissions by enabling efficient utilisation of current grid capacity.

There are three general DR categories, presented as follows (also illustrated

in Figure 2.3).

(1) Peak clipping: Reducing users’ electricity consumption during critical peak

periods, in order to prohibit the load from exceeding the supply capacity of

distribution stations and alleviate load burden. However, this action involves

the temporary discomfort of users, since peak clipping cuts down some of

their demand. An example of this response is achieved when the thermostat

setting within a heater or an air-conditioner is temporarily changed.

(2) Valley filling: In contrast to peak clipping, valley filling is to promote off-peak

energy consumption through energy storage facilities, such as through use of

a solar energy reservoir, rechargeable batteries or plug-in electric vehicles.

(3) Load shifting: Aims to shift energy consumption from peak demand periods

to off-peak demand periods, without reducing the total energy consumption

within a day. Load shifting can be regarded as the combination of peak

clipping and valley filling. An example would be shifting the operating time

of some household appliances (e.g., dishwashers, hot water tank, washing

machine, etc.) to off-peak periods.
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Figure 2.3: Demand response categories. (a) Peak clipping; (b) Valley filling; (c)
Load shifting (combination of peak clipping and valley filling).
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2.3.2 Benefits of Demand Response

Based on the concept of DR, it is obvious that many potential benefits can

be expected from DR programs. Those benefits are categorised into five

general aspects: participant, market-wide, reliability, market performance and

environmental benefits, as illustrated in Figure 2.4.

Firstly, electricity consumers can obtain benefits directly by participating

in DR programs. Electricity bills can be reduced if customers are willing to

shift the operating time of flexible electrical appliances from peak periods to

off-peak periods. In some cases, participants might experience bill savings without

changing their consumption patterns. This will be achieved if their normal
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consumption during high price periods is lower than average [126]. Meanwhile,

some participants are able to increase their total energy consumption without

increasing the payment by operating more appliances during off-peak periods.

In addition, participants in classical incentive based DR programs can obtain

incentive payments for their participation, which is also a great benefit for DR

participants.

The benefits of DR programs are not only for participants but also extend

market-wide. Based on efficient DR programs, an overall electricity price

reduction is expected, which is due to an efficient utilisation of available

infrastructures. DR programs (e.g., market based programs) are able to increase

the short term capacity, which can avoid or defer capacity costs. All of the avoided

or deferred costs will be reflected in the electricity price for all customers.

DR programs are also beneficial for enhancing the reliability of the smart

grid. By installing an efficient DR program, on the one hand, participants are

involved and have the opportunity to help in reducing the risk of forced outages

and interruption. On the other hand, the operator may have more options and

resources to maintain the reliability of the system, thus reducing forced outages

and improving grid stability.

It is expected that there will be an improvement in electricity market

performance in response to the application of DR programs. Participants of DR

programs may have more choices in scheduling their home appliances. As a prime

driver for many utilities to provide DR programs, the change of consumption

behaviors affect the market performance directly, especially for the market-based

programs and the dynamic price based programs [127]. In addition, another

significant market improvement brought by DR programs is the reduction of

price volatility in the spot market. According to the California electricity crisis

report [128], a small reduction in electricity demand by 5% will result in a 50%

price reduction. This is due to the fact that electricity generation cost increases

exponentially near maximum generation capacity. Therefore, a small reduction

in demand will lead to a significant reduction in generation cost, affecting the

electricity market and reducing the electricity price.
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Finally, as an eco-friendly technique, DR will reduce carbon emissions, by

enabling a more efficient utilisation of current grid capacity. Other environmental

benefits include better land utilisation as a result of avoiding the need for

new electricity infrastructures such as generation units and transmission or

distribution lines, water and air quality improvement as a result of more efficient

utilisation of energy sources, and reduction of natural resource depletion.

2.3.3 Review on Demand Response Programs

DR programs are regarded as the means that the power utility takes to incentivise

users to reschedule their energy usage patterns [129]. In other words, an efficient

DR program is able to shape consumers’ electricity load profiles so as to enhance

the reliability, stability, and efficiency of the grid. Having numerous benefits, as

discussed above, much research on DR programs has been conducted in literature.

DR programs can be mainly divided into the following two branches as described

in Figure 2.5.
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Figure 2.5: Summary of existing demand response programs.

A. Incentive-based programs: Incentive-based DR programs pay participating

users for demand reduction, triggered by peak load or system contingencies.

Participating users receive incentive payments usually as a discount rate
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or a bill credit for their participation in the programs. Several typical

incentive-based programs are listed as follows:

(1) Direct load control (DLC): in the DLC program, the power utility is

able to remotely control certain home appliances, such as air conditioner

and water heater. The participant in the program will obtain incentive

payments as a reward [130]. The initial idea of the DLC program is

to alleviate load burden during peak hours and it has been offered to

residential and small commercial customers for decades.

(2) Interruptible/curtailable load: similar to the DLC program, participating

users in interruptible/curtailable load programs will receive a certain

incentive discount on electricity bills as a reward if they agree to cut down

some portion of their interruptible/curtailable loads when grid reliability

is jeopardised [131]. Participants will be asked in advance and participants

who do not respond may face penalties depending on the pre-defined terms

and conditions.

(3) Demand bidding: in demand bidding (also called a buyback) program,

users can benefit from cost reduction if they allow a curtailing of electricity

consumption at a specific bid price in the case of peak demand or system

contingencies. The accepted bid is always less than the market price [132].

This kind of program is mainly provided to larger users (⩾ 1 MW) and

small users require a third party or agent to unite them to bid.

(4) Emergency demand reduction: in this program, participating users can

obtain incentive payments for their load reductions during emergency

conditions, such as reliability accidents when the grid is out of reserve

[133].

B. Price-based program: the price-based DR program is established on the basis

of a dynamic pricing rate in which electricity tariffs are not flat. It provides

users with different electricity prices in different time periods as guidance of

energy consumption. Based on such information, users will be able to schedule
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the operating time of their electric appliances and use less electricity when

electricity prices are high, thus reducing the demand at peak periods. In other

words, the price-based program indirectly induces users to dynamically change

their electricity consumption patterns according to the variance of electricity

prices, instead of directly controlling their loads. A number of typical pricing

rates are as follows (also illustrated in Figure 2.6):

(1) Time-of-use (ToU) pricing: the ToU tariff is the basic type of price-based

program. Under ToU pricing, electricity consumers are charged at

different prices as they consume electricity at different intervals of a day

[134]. The time interval is usually longer than 1 hr. The simplest ToU

pricing has two time blocks: on-peak period and off-peak period. A more

complicated ToU pricing may include more time blocks as illustrated

in Figure 2.6(a). Normally, the electricity price at the on-peak time

block is much higher than other time blocks, in order to induce users

to reduce their electricity usage at peak demand time. ToU pricing is

usually released far in advance and will not be changed for a long time.

(2) Critical peak pricing (CPP): the CPP tariff, also called contingency

electricity pricing, is designed based on ToU pricing. It includes a

pre-defined electricity price which is much higher than normal flat rates.

The design purpose of CPP is to guarantee reliability for the power

system and balance demand with supply. Therefore, the CPP tariff is

employed only for a limited number of hours or days, when grid reliability

is jeopardised [135].

(3) Real-time pricing (RTP): the RTP tariff, also referred to as dynamic tariff,

where the electricity price usually varies at different time intervals of a

day as illustrated in 2.6(b). The RTP tariff is typically released on a

day-ahead or an hour-ahead basis. The RTP tariff is widely considered

to be the most direct and efficient price-based program in the current

competitive electricity market [136, 137]. The proposed DR programs in

this thesis are based on the RTP tariff.
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(4) Inclining block rate (IBR): IBR is designed with a two-level rate

structure (lower rate and higher rate) as shown in 2.6(c). The electricity

price is significantly related to energy consumption. If the user’s

hourly/daily/monthly energy usage exceeds a certain threshold, the

electricity price will climb up to a higher value, which means the more

electricity a user consumes, the more money paid per kWh [138]. IBR

encourages energy consumers to reduce their electricity consumption.

This tariff has been broadly adopted in some areas of many countries

including the USA, UK, and Canada since the 1980s [138].
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Figure 2.6: Illustration of time-based pricing tariffs. (a) Time of use (ToU)
pricing; (b) Real-time pricing (RTP); (c) Inclining block rate (IBR).

2.3.4 Review on Demand Response Approaches

DR management is usually formulated as optimisation problem of utility

maximisation or cost minimisation, which can be solved by various approaches.

Recently investigated DR approaches include convex optimisation, game theory,

dynamic programming, Markov decision process, stochastic programming, and

particle swarm optimisation. However, the selection of the DR approach is

dependent on how optimisation problem will be formulated. In this thesis, the

optimisation problem in DR management is formulated as a convex problem and

mixed-integer linear programming (MILP) is used as the optimisation technique.
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Convex Optimisation

Convex optimisation is currently the most popular and widely applied DR

approach. It is the problem whose objective and constraint functions are convex.

A convex problem means an optimum solution for the objective function can

be found for certain. Mathematically, it is usually defined as minxf0(x) under

constraints fi(x) ⩽ bi, i = 1, ...,m, and f0, ..., fm ∶ Rn → R are all convex functions.

As mentioned above, the DR is usually formulated as cost minimisation or utility

maximisation where the cost function is convex and the utility function is concave.

However, the problem of maximising a concave function f can be reformulated

equivalently as minimising the function −f , which is convex.

In addition, the constraint functions of DR are always convex, for example,

the energy demand of a single household is constrained by lower and upper

bounds [139–141] where the minimum energy consumption level denotes the

baseline demand from the must-run electric appliances and the maximum energy

consumption level usually represents the total energy demand if all home

appliances are turned on. The householder may be concerned about whether

specific tasks need to be finished within a specific time period. For example, the

dishwasher after lunch should complete the task of washing dishes before dinner

or the drying machine should finish the task of drying after clothes have been

washed. Further, the total energy demand of all households in the grid network

is limited to a maximum supply threshold for safety consideration. In addition to

these, considering the energy storage facilities (e.g., conventional battery, electric

vehicle, etc.) and renewable energy resources (e.g., solar energy, wind energy,

etc.) into the DR programs, more constraints should be accounted for. All of

these constraints are linear problems, therefore, DR can be formulated as a convex

optimisation problem.

With the development of computing and optimisation theory, convex

optimisation can be solved by linear programming (LP) straightforwardly. Linear

programming is a mathematical modeling technique in which a linear function is

maximised or minimised when subjected to various constraints. LP is applicable
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in decision situations where quantities (variables) can take any real values only

restricted by linear equalities (e.g., for representing capacity constraints). LP

techniques have been widely adopted in solving convex optimisation problems.

For example, in [142], the authors proposed an optimisation method to the

demand side energy management of a given consumer, such as an industrial

compound or a university campus. The objective of the proposed method is

to maximise the utilisation of the cluster of demands. In order to solve this

optimisation problem, an LP approach which allows the cluster of demand to

buy, store and sell energy at appropriate times to adjust the load levels, has been

implemented. In addition, a {0,1} LP method for fixed-profile load scheduling

and demand management is presented in [143]. The problem in this work involves

organising the requested load over time, without modifying the load profile of

individual requests, while satisfying constraints on the transient response of the

system to changes in the load. Moreover, in [144], the profit-maximising DR of an

energy load in the real-time electricity market was considered. To tackle the high

computational complexity, the authors proposed a dual approximate approach

that transforms the optimisation problem into an LP problem by exploiting the

threshold structure of the optimal solution.

In summary, convex optimisation is regarded as one of the most relevant

approaches to the DR problem. However, there are other methodologies in

addition to convex optimisation can be used in DR and they are briefly discussed

in the following subsections.

Other Approaches

(1) Game Theory. Game theory is another popular approach used in solving the

DR problem. Game theory is a study of mathematical models of strategic

interaction between rational decision-makers [1, 145]. It has applications in

all fields of social science, as well as in logic and computer science. A game

G includes three fundamental components: players N , strategies {Xi}i∈N and

payoff functions {Wi}i∈N . Each player i ∈ N will select a strategy xi ∈ Xi

to maximise the payoff Wi(xi,x−i), which is dependent on both the strategy
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xi and other players’ strategies x−i. In DR, the game participants involve

the power utilities and energy consumers. Related works were presented in

[146–148].

(2) Dynamic Programming. Dynamic programming decomposes a complicated

problem into a number of subproblems, and each subproblem can be solved

backward over the stage. The method was developed by Richard Bellman

in the 1950s and has found applications in numerous fields, from aerospace

engineering to economics. The advantage of this method is that less

time is consumed compared with heuristical methods, particularly for some

subproblems with overlapping characteristics. The related works on the

dynamic programming approach have been performed in [149–153].

(3) Markov Decision Process. A Markov decision process (MDP) is a discrete

time stochastic control process and it is an extension of Markov chains.

It provides a mathematical framework for modeling decision-making in

situations where outcomes are partly random and partly under the control of

a decision maker. In DR management, the exact future electricity prices

(adopted as a control signal) are usually unknown, but the prices can

be obtained from a large number of historical price data. According to

the uncertainty of prices, the problem of home appliance scheduling for

minimising the total electricity cost over a typical day can be naturally cast

as a Markov decision process [154]. The related works have been stated in

[155–157].

(4) Stochastic Programming. In the field of mathematical optimisation,

stochastic programming is a framework for modeling optimisation problems

that involve uncertainty, taking advantage of the fact that probability

distributions are known or can be estimated. It has been utilised in many

previous papers related to DR management. Stochastic programming can be

regarded as a special type of dynamic programming. It is able to address the

time-varying parameters in DR whose probability distributions are known or

can be estimated. As one of the effective approaches in solving DR problems,
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stochastic programming can make wise decisions on the basis of statistic

knowledge about random parameters. Examples are presented in [158–160]

(5) Particle Swarm Optimisation. The last approach that has been considered

for DR is particle swarm optimisation (PSO). PSO is originally attributed to

Kennedy, Eberhart, and Shi [161, 162] and was first intended for simulating

social behavior [163], as a stylised representation of the movement of

organisms in a bird flock or fish school. PSO optimises a problem by

iteratively trying to improve a candidate solution (particle) with regard to a

given measure of quality. Each candidate solution is driven to move around,

with its trajectory affected by its experience and other candidate solutions,

towards the best solution. Each particle can be dynamically adjusted by

inertia, personal best and group best. The related works have been performed

in [164–168].

The objectives of this work involve reducing consumer electric bills and

alleviating grid load burdens during peak demand periods. It is therefore

reasonable for the objective function of the DR design to be formulated as a

cost minimisation where the cost function is convex. Additionally, the relevant

constraints (e.g., maximum energy consumption level, capacity of EV battery,

etc.) are also convex. Based on this, and its relative high efficiency and ease

of implementation in comparison to the other methods convex optimisation is

adopted in this work.

2.3.5 EV Impacts on Demand Response

Electric vehicles (EVs) are a growing trend for next generation transportation,

due to their economic and environmental benefits, and the rapid advance

of rechargeable battery technology [169–171]. Along with the worldwide

application of DP, an increasing adoption of EVs in residences brings about both

opportunities and challenges for the smart grid. Residences with EVs consume

more electricity and react more elastically to electricity price changes [172].

According to the report provided by the U.S. Energy Information Association
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[173], the fast charging of an EV is equivalent to about 120 houses coming on line

for half an hour, which is a severe issue for the power grid. However, the usage of

EVs as energy storage units via vehicle-to-home (V2H) offers an effective solution

to load shaping at the demand side. In addition to this, the energy available from

an EV can be delivered to a neighbour via a vehicle-to-neighbour (V2N) network

if it is enabled. Hence, householders are able to participate in load scheduling

and may have multiple options in energy allocation.

The importance of ensuring DR programs are developed to cooperate with

EVs has increased together with the recent prevalence of EVs in society

. Considering the flexible energy storage capacity of EVs, up to date

DR strategies which take the behaviors of EVs into account are required.

The implementation of DR with EVs requires efficient energy distribution

management and high-performance batteries as a basis. Moreover, DP provides

a basic control signal to optimally schedule the charging and discharging of EVs,

by minimising the overall cost.

Compared with the conventional energy storage system (ESS) and other

energy production facilities, the utilisation of an EV as a temporary power source

has advantages in employing flexibility and economic efficiency [9]. It should not

require extra investment besides the daily used EV. Meanwhile, power-sharing can

be enabled through a V2N connection. The energy available from EVs could be

shared to a neighbour during peak price times and benefit both sides. Therefore,

EV assisted DR strategies hold strong prospects in practice not only for a single

household but also for a multi-household network.

Much research has been conducted on DR and there are many popular DR

strategies considering EV impacts being presented in the literature. For example,

in [31], an optimisation framework based DR program was proposed, with high

penetration of EVs and storage systems from a residential customer’s perspective

as well as the utility company’s perspective. In [32], the authors focused on

EVs’ charging behaviors based on the data collected from EV charging sessions

and different types of charging behaviors were derived. Nonetheless, specific DR

programs with proposed charging profiles have not yet been published. To analyse
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the potential usage of EVs in the power grid, the optimal time of EVs’ charging

and discharging was explored in [33]. However, all the mentioned studies are

limited to the operation of a single user and fail to attempt the scheduling of EVs

among a group of households in the DR program.

Moreover, [34] proposed an algorithm for EVs’ scheduling in DR to optimise

the peak demand. The optimisation problems are studied in a game framework.

However, other electric appliances have not been considered in this work. In

[35], an intelligent preemptive DR management scheme using a building energy

management system was proposed to better schedule the energy consumption

within a building. In this work, dynamic EV charging scheduling, priority-based

load shedding, and air conditioning system were considered. Paper [174] presented

an optimal behavior of plug-in EV parking lots in the energy and reserve

market. Both price-based and incentive-based DR programs were developed

and uncertainties of plug-in EVs were also considered by using the stochastic

programming approach. In addition to these, [175–177] also described a number

of interesting DR programs coordinating with EVs.

Although much research has been conducted on DR management, considering

the impact of the EV on DR programs still remains challenging and worth

studying.
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Chapter 3

A Parametric Bootstrap
Algorithm for Load Pattern
Categorisation in Smart Grid

In this Chapter the scheduling object in demand response (DR) is clarified by

deriving precise load consumption patterns. An innovative parametric bootstrap

(PB) algorithm incorporated with a compatible clustering technique is proposed,

to address the cluster number determination problem, as well as simultaneously

classifying load demand data in load pattern categorisation (LPC). Typical load

patterns (TLPs) are extracted and the categorising performance is evaluated.

The main contributions of this work can be summarised as follows.

(1) The proposed PB algorithm is more robust against dimensionality of the

data in LPC than conventional methods (e.g., G-means [15]). It is able to

effectively determine the cluster number for data in a high dimensional space

and therefore is applicable for the load demand data, which is usually of 24-

or 48-dimensions.

(2) The proposed PB algorithm is general and independent of the data type. It

is more reliable and stable in cluster number determination than the AIC

based algorithm [16], with a much higher probability of successfully finding

an appropriate cluster number and lower standard deviation (STD) value.

(3) An effective cascade clustering scheme that classifies the initial load data

into a series of sub-cascades according to external features is proposed to
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reduce clustering errors and improve efficiency over clustering the raw data

directly. Besides, the proposed PB algorithm is incorporated with various

classifying techniques [17–23], among which K-means++ demonstrates the

best clustering performance in LPC.

The rest of this chapter is organised as follows. In Section 3.1, the cascade

clustering scheme is presented specifically. In Section 3.2, a parametric bootstrap

algorithm is proposed in detail for the determination of the cluster number.

Four compatible clustering techniques are presented and compared in Section

3.3. Additionally, the proposed approach is assessed in Section 3.4. The verified

approach is applied to the actual load data to address the cluster number

determination problem and the objective TLPs are obtained in Section 3.5.

Finally, this work is summarised concisely in Section 3.6.

3.1 Cascade Clustering Scheme for Load Data

Processing

A cascade clustering scheme that comprises two major stages for load data

processing is illustrated in Figure 3.1.

Stage 1: A set of load demand data is classified into a series of sub-cascades

based on the external features including seasonality and day characteristics.

Stage 2: Objects in an individual sub-cascade are further clustered into

numbers of clusters based on the PB algorithm incorporated with a compatible

clustering technique.

Based on the observations of load demand at different time periods in the

UK (as shown in Figure 3.2), the total load demand of electricity consumers is

significantly influenced by the following apparent external factors:

(1) The load demand for weekends is evidently less than that of weekdays, even

though the trends are similar.

(2) The weekly periodicity of the load series is broken by the occurrence of a

bank holiday, as shown in Figure 3.2(b).
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Initial load data: X={x1, x2, …, xn }

Clustering Stage 2

Si, j

y1, 1, 1 y1, 1, 2 y1, 1, k yi, j, 1 yi, j, 2 yi, j, k

……

…

…

S1, 1 S1, 2Sub-cascades

Load Patterns

… …

… y1, 2, 1 y1, 2, k…

Clustering Stage 1

Figure 3.1: Cascade clustering scheme for load pattern categorisation and
typical load pattern recognition.
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Figure 3.2: Load demand observations of different time in the year 2016. (a)
Data of February; (b) Data of May; (c) Data of August; (d) Data of November.
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(3) The load shapes of bank holidays are also dissimilar to both weekdays and

weekends.

(4) The load demand apparently varies with seasonality, as shown in Figure 3.2(a)

and Figure 3.2(c).

According to these factors, pre-clustering the initial load demand data into a

series of sub-cascades at the first stage of the proposed cascade clustering scheme

is significant, it is capable of reducing clustering errors and improving efficiency

when compared with clustering the raw data directly. As a result, the initial load

demand data is divided into i×j sub-cascades, where i and j are referred to as the

day characteristic and the seasonality, respectively. In this work, the day types are

considered to be “working day” consisting of weekdays excluding bank holidays,

“non-working day” consisting of weekends excluding bank holidays and “bank

holiday”, i.e., Good Friday, Easter Monday, Christmas Day, etc. Meanwhile, the

seasonality is divided by month.

Following this, the second stage of the cascade scheme focuses on finding the

internal relationships between objects within the same sub-cascade and assigns

the objects into refined clusters, ensuring that the objects within the same

cluster are similar. In terms of sub-cascade clustering, an appropriate cluster

number k, has to be determined at first. Thus, a robust parametric bootstrap

(PB) algorithm is proposed to resolve the cluster number determination problem

and it is incorporated with a compatible clustering technique to cluster load

data simultaneously. This process allows typical load patterns (TLPs) for each

sub-cascade to be extracted as yi,j,k, as shown in Figure 3.1. Note that in a

practical implementation, sub-cascade clustering can be executed in parallel,

making this a potentially very fast scheme.

3.2 Parametric Bootstrap Algorithm for Clus-

ter Number Determination

The PB algorithm is a kind of re-sampling based algorithm. The basic principle

of the PB algorithm is to use feature parameters that are obtained from the
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adopted data to generate a number of synthetic data to testing the hypothesis.

The hypothesis in this work is the hypothesis of the cluster number. It estimates

the number of components by incrementally testing the hypothesis that there

are k + 1 components against the null hypothesis that there are k components

via parametric bootstrap. An accepted k value is determined based on the

significance level of the hypotheses. Figure 3.3 illustrates the flow chart of

determining an appropriate cluster number based on the PB algorithm.

Input dataset S

Propose a hypothesis k, objects are classified into k

clusters based on a compatible clustering technique

Obtain the feature parameter vector 

Generate sets of BS data using vector 

Calculate of each set of BS data 

and generate PDF: 

Cluster the actual data into k+1

clusters and calculate 

If p-value satisfies the requirement?

Accept hypothesis k as a precise cluster number

Yes

No, reject 

hypothesis 

k, k=k+1

Figure 3.3: Flow chart of determining a precise cluster number using the
parametric bootstrap (PB) algorithm.

Specifically, given an input dataset of a random sub-cascade S with N objects,

it can be mathematically characterised as:

S = {xn, n = 1,2, ...,N, xn ∈ Rd};

where d denotes the dimensionality which indicates the resolution of a load curve.

To begin with, the input data is firstly hypothesised as consisting of k clusters

and it is classified into k groups using a compatible clustering technique.
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In addition, the feature parameter vector of a cluster, P = {µ,E}, consisting

of mean vector µ and a d×d covariance matrix E, can be obtained from Equations

(3.1)-(3.2), respectively.

Mean vector µ:

µ =

Nk

∑
n=1

xn

Nk

(3.1)

Covariance matrix E:

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c(x(1), x(1)) c(x(1), x(2)) ⋯ c(x(1), x(d))
c(x(2), x(1)) c(x(2), x(2)) ⋯ c(x(2), x(d))

⋮ ⋮ ⋱ ⋮
c(x(d), x(1)) c(x(d), x(2)) ⋯ c(x(d), x(d))

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

where

c(x(a), x(b)) =

Nk

∑
n=1
(x(a)n − µ(a))(x(b)n − µ(b))

Nk − 1
(3.3)

In Equation (3.1)-(3.3), Nk is the number of total objects within the kth cluster

among K clusters and a, b ∈ [1, d]. Afterwards, sets of synthetic data with the

same size as the real data can be generated periodically based on the obtained

feature parameters. The process of generating synthetic data is the core of the

algorithm and it is called “bootstrap simulation” (BS).

Moreover, the sum of square errors (SSE, denoted as Φ) which is the

summation of the squared distance of each point within a cluster from the cluster

center, is proposed to evaluate the clustering quality. The SSE of the ith BS

dataset is described by Equation (3.4). The probability density function (PDF)

of ΦBS, denoted as F (ΦBS), also can be calculated.

ΦBS
i =

K

∑
k=1

Nk

∑
n=1

D

∑
d=1
(xBS,(d)

k,n − µBS,(d)
k )2 (3.4)

Further, to assess the hypothesis that a dataset is composed of k + 1 clusters

against the null hypothesis that it has only k clusters, the actual data is clustered

into k + 1 clusters, the SSE of the actual dataset on the hypothesis k can be

obtained from Equation (3.5).

ΦAC =
K+1
∑
k=1

Nk

∑
n=1

D

∑
d=1
(x(d)k,n − µ

(d)
k )

2 (3.5)
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Although the real dataset actually consists of k clusters, the performance of

k + 1 clusters (or more) is normally “better” than simulations, since the data is

grouped into smaller and tighter clusters. Thus, the objective is to find the rate at

which the SSE decreases will slow down for k beyond the objective cluster number.

Accordingly, the p value (proposed in Equation (3.6)) which is a widely used

parameter in a statistical hypothesis [178] is adopted to determine an appropriate

k.

p = ∫
ΦAC

−∞
F (ΦBS) ⋅ dΦBS (3.6)

In the proposed PB algorithm, the requirement of an acceptable hypothesis

k is defined as: if p < α, the hypothesis of using k clusters is rejected and it

tends to hypothesise that the data has at least k + 1 clusters. The evaluation

process continues with increasing values of k until it satisfies the condition p ⩾ α,

where α is an acceptable threshold, which is general is equal to 0.01 or 0.05

[179]. In order to execute the PB algorithm, a compatible clustering technique is

required. In this work, K-means++ which is an improved version of the K-means

algorithm is selected as the classifier due to its higher efficiency and improved

robustness compared with others (e.g., standard K-means, K-medoids, Gaussian

mixture models, etc. [17–23]). The principles of the selected compatible clustering

techniques are introduced specifically in the next section.

3.3 Compatible Clustering Algorithms for Load

Data Classification

3.3.1 Standard K-Means Clustering Algorithm

Given a dataset S = {xn, n = 1,2, ...,N, xn ∈ Rd}, the standard K-means algorithm

divides S into k exhaustive clusters Ω = {Ωk, k = 1,2, ...,K}, ⋃k
i=1Ωi = S, Ωi∩Ωj =

∅ for 1 ⩽ i ≠ j ⩽K. For a cluster, its centroid is given by:

ωi =
1

∣Ωi∣
∑
x∈Ωi

x (3.7)

Let ω = {ω1, ..., ωk} be a set of centers and ∥xi − xj∥ represent the Euclidean

distance between xi and xj. The objective of K-means is to find an optimal ω to
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minimise:

argmin
Ω

K

∑
k=1
∑
x∈Ωk

∥x − ωk∥2 (3.8)

The standard K-means algorithm tries to put object x into a cluster Ωk to

be similar to each other whilst being dissimilar to objects in other clusters. It

takes the cluster number (hypothesised in Section 3.2) as the input parameter

and k mean values are randomly selected as the initial centers of clusters.

Afterwards, the remaining objects are assigned to the clusters with the closest

centers according to the similarity. The algorithm continues to update the means

of clusters until the means converge and become stable. Hence, the classical

K-means algorithm proceeds by alternating two steps, the assignment step and

the update step, and it can be illustrated concisely in Algorithm 1.

Algorithm 1 Standard K-means

Input: k, S = {xn, n = 1,2, ...,N, xn ∈ Rd}.
Output: ω = {ω1, ω2, ..., ωk}.
1: Arbitrarily initialise k centers ω = {ω(1)1 , ..., ω

(1)
k }.

2: Assign each object xp to a cluster Ω(t) according to:

Ω
(t)
i = {xp ∶ ∥xp − ω(t)i ∥2 ⩽ ∥xp − ω(t)j ∥2 ∀j,1 ⩽ j ⩽ k}.

3: Update centers of clusters according to:

ω
(t+1)
i = 1

∣Ω(t)i ∣
∑

xj∈Ω(t)i

xj.

4: Repeat step 2 and 3 until ω becomes stable.

3.3.2 K-Means++ Clustering Algorithm

A good clustering result satisfies the condition that the distance between two

arbitrary clusters should be as large as possible [180]. Intuitively, it is a wise

choice to choose initial centers that are far away from each other in the beginning.

The K-means++ algorithm follows this idea, but the farthest point is not always

chosen to be a center. Actually, except the first center, which is chosen uniformly

and randomly from the data points, each subsequent center is chosen from the

remaining data points with the probability proportional to its squared distance

from the existing cluster center that is closest to the point. Let D(x) be the
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Euclidean distance between x and the nearest center that has already been chosen.

The K-means++ algorithm is presented as follows.

Algorithm 2 K-means++

Input: k, S = {xn, n = 1,2, ...,N, xn ∈ Rd}.
Output: ω = {ω1, ω2, ..., ωk}.
1: ω ← ∅.
2: Choose one center x from S at random, ω = ω ∪ x.
3: Choose x ∈ S with probability: D(x)2

∑
x∈S

D(x)2 , ω = ω ∪ x.

4: Repeat Step 3 until k centers are chosen.
5: Proceed as with the standard K-means algorithm.

Compared with the standard K-means algorithm, the K-means++ algorithm

guarantees to find a solution that is O(logk) competitive to the optimal K-means

solution, which means that K-means++ has better effectiveness in clustering than

the standard K-means algorithm. Although the special seeding in K-means++

takes extra time, its K-means part converges fast so that the clustering efficiency

is significantly improved.

3.3.3 K-Medoids Clustering Algorithm

The classical K-means algorithm is sensitive to outliers since the least squared

Euclidean distance is used. Unlike K-means which uses mean value as a centroid of

a cluster, the K-medoids algorithm utilises a representative object within a cluster

as the centroid, thus being less sensitive to outliers and extreme values [181].

This way also minimises the sum of distances for arbitrary distance functions.

Similar to K-means, given a set of observations, S, the objective of the K-medoids

algorithm is to find:

argmin
Ω

k

∑
i=1
∑
x∈Ωi

∥x −mi∥2 (3.9)

where the centroidmi ∈ Ωi. The most common realisation of K-medoids clustering

is the partitioning around medoids (PAM) algorithm. PAM uses a greedy search

in finding the optimal solution, which is faster than the exhaustive search. It

is executed by arbitrarily selecting k objects within the dataset as the initial

medoids or seeds. The remaining objects are then assigned to the clusters with
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the closest centers based on the absolute distance with the medoids. The medoids

are continuously swapped with the other objects in an order in the corresponding

cluster until the swapped medoid has the minimum sum of distances of objects to

their medoid in a cluster. The algorithm finally stops when the medoids converge.

The K-medoids based PAM algorithm can be summarised by Algorithm 3.

Algorithm 3 K-medoids based partitioning around medoids (PAM)

Input: k, S = {xn, n = 1,2, ...,N, xn ∈ Rd}.
Output: m = {m1,m2, ...,mk}.
1: Arbitrarily select an initial set of k objects as medoids, m = {m(1)1 , ...,m

(1)
k }.

2: Assign each object xp to a cluster Ω(t) according to:

Ω
(t)
i = {xp ∶ ∥xp −m(t)i ∥ ⩽ ∥xp −m(t)j ∥ ∀j,1 ⩽ j ⩽ k}.

3: Update medoids of clusters.
4: for i = 1, ..., k, q = 1, ..., n
5: Swap medoid and objects in order:

m
(t+1)
i = xq.

6: Recompute the sum of distances of objects to their medoid:

Ci = ∑
x∈Ωi

∥x −mi∥2.

7: if Ci increased in step 6
8: undo step 5.
9: end for
10: Repeat step 2 - step 9 until m becomes stable.

3.3.4 Gaussian Mixture Models for Clustering

Different from K-means and K-medoids, Gaussian mixture models (GMM) are

a probability based unsupervised learning classifier and often used to classify a

wide variety of signals. According to the central limit theorem [70, 72, 182], a

given set of data is normally hypothesised as a mixture Gaussian distributions,

since a mixture Gaussian distributions is in theory able to approximate to any

probability distribution by increasing the number of models. Thus, it has broad

applications in data clustering. In addition, the parameters of GMM are normally

estimated by an expectation maximisation (EM) algorithm which is an effective

machine learning method for probability density estimation [73–75]. However,

an apparent drawback of GMM is that the convergence speed of using the EM

algorithm to achieve the parameters of GMM is quite slow, particularly to large
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volumes of data with multi-dimensions, due to the seeds which are arbitrarily

selected. In order to resolve this issue, a heuristic method that is using the

classical K-means algorithm to initialise the data first and then defining weights

based on K-means memberships as the initial setting is applied in the initialisation

of GMM. This action is able to reduce the computation due to the fast convergence

of K-means [183–185] and significantly decreases the probability of the local

minimum appearing.

To begin with, the Gaussian mixture models are a model composed of

multivariate Gaussian distributions. Following this, a multivariate Gaussian

distribution can be given by Equation (3.10).

p(x) =
k

∑
i=1

ϕiN (x∣µi,Σi) (3.10)

where µi is the mean vector and Σi is the covariance matrix of a cluster Ωi.

The mixture coefficient ϕi indicates the weight of each distribution in the model,

and ∑k
i=1 ϕi = 1. However, for a d-dimensions Gaussian distribution, it can be

expanded as:

N (x∣µ,Σ) = 1

(2π)d/2
1

∣Σ∣1/2
exp{−1

2
(x − µ)TΣ−1(x − µ)} (3.11)

Defining a parameter set of the mixture Gaussian distribution, θ = {ϕi, µi,Σi, i =

1, ..., k}, for a series of objects within S, the objective function can be formulated

as maximising the log-likelihood function of S as shown in Equation (3.12).

max
θ

lnp(S ∣θ) =
n

∑
j=1

ln
k

∑
i=1

ϕiN (xj ∣µi,Σi) (3.12)

where p(S ∣θ) =
n

∏
j=1

p(xj ∣θ). With this object, the EM algorithm has to be used

in resolving this density estimation problem. The process of the EM algorithm

estimating the parameters of mixture Gaussian distributions can be summarised

by Algorithm 4.

The EM algorithm is an iterative algorithm that includes two main steps:

expectation-step (E-step) and maximisation-step (M-step). Applied in this

estimation problem, it randomly hypothesises which Gaussian distribution a
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sample xi belongs to in the E-step. In the M-step, the parameters of the

model are updated based on the previous hypotheses. Since in the M-step, it

is pretending that the hypotheses in the E-step were correct, the maximisation

becomes possible.

Algorithm 4 Expectation maximisation (EM) algorithm for parameters
estimation of mixture Gaussian distrubutions

Input: k, S = {xn, n = 1,2, ...,N, xn ∈ Rd}.
Output: θ.
1: Select an initial setting for the parameter θ̄ by using the classical K-means

clustering algorithm.
2: Expectation-step (E-step):
3: for j = 1, ..., n, i = 1, ..., k

γj,i = p(k∣xj, θ̄) ∶= ϕ̄iN (xj∣µ̄i,Σ̄i)
k

∑
i=1

ϕ̄iN (xj ∣µ̄i,Σ̄i)
.

4: end for
5: Maximisation-step (M-step):
6: for i = 1, ..., k

ϕi = ni

n ;

µi = 1
ni

n

∑
j=1

γj,ixj;

Σi = 1
ni

n

∑
j=1

γj,i(xj − µi)(xj − µi)T ;

where ni =
n

∑
j=1

γj,i.

7: end for
8: θ̄ ← θ.
9: Repeat E-step and M-step until θ̄ converges.

3.3.5 Comparison of Compatible Classifiers

K-means and K-medoids are both partition-based and widely used algorithms,

and they are related to each other. The objectives of both algorithms are

to minimise the distance between points labeled to be in a cluster and the

corresponding centroid. The main difference between K-means and K-medoids

is that the K-means algorithm takes the mean value of all labeled data within a

cluster as the center, but K-medoids chooses data points as centers of clusters.

Thus, the K-medoids algorithm is more robust to noise and outliers as compared

to K-means, since K-medoids minimises a sum of pairwise dissimilarities instead
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of a sum of squared Euclidean distance. However, the time complexity of K-means

is less than that of K-medoids [21], since the K-means algorithm only computes

the mean values in centroid updating. The time complexities of K-means and

K-medoids are OKMS = n×k × t and OKMD = n2 ×k × t, respectively, where t is the

number of iterations.

On the other hand, compared with the EM based Gaussian mixture models,

the K-means and K-medoids algorithms are classified into “hard” cluster methods,

while the GMM algorithm is a “soft” clustering method. The soft clustering

methods assign a score to a data point for each cluster. The value of the

score indicates the association strength of the data point to the cluster. As

opposed to the hard clustering methods, soft clustering methods are flexible in

that they can assign a data point to more than one cluster. When clustering with

the EM based GMM algorithm, the term “soft” refers to the hypotheses being

probability and taking values in [0,1]. In contrast, a “hard” hypothesis is one

that represents a single best guess, such as taking values in {0,1}. Moreover,

EM based GMM clustering can accommodate clusters that have different sizes

and correlation structures within them. However, the drawbacks of the EM

based GMM algorithm are also obvious. According to the evaluation results in

Subsection 3.5.5, it is found that the efficiency of the EM based GMM algorithm

is highly dependent on the dimensional conditions and the actual distribution of

the data. The efficiency of the EM based GMM algorithm drops dramatically

when high dimensional data is considered (e.g., d = 48). Additionally, it does not

perform well when the data does not follow a Gaussian distribution.

In fact, for a given set of data, there are several clustering techniques that

can be used. Each technique is able to complete the task of identifying groups,

however, all such compatible clustering techniques suffer from the inherent

limitations of obtaining a local optimal caused by the arbitrarily selected seeds

and the determination of an appropriate cluster number. To reduce the risk of

ending up in a local optimum, the algorithms can be executed multiple times from

which the best solution is selected. To obtain an appropriate cluster number, the

proposed PB algorithm might be a great solution.
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The proposed PB algorithm and the compatible clustering techniques are

verified in Section 3.4 in terms of the clustering accuracy and the precise cluster

number determination.

3.4 Algorithms Verification

It is impossible to evaluate the feasibility of algorithms on the actual load

data since the data is not labeled by groups. Therefore, this section proposes

unsupervised examples to assess the effectiveness of the proposed PB algorithm.

The test dataset is generated based on the data features of actual load data in

different months. The actual load data is utilised as the centroid of a certain

cluster, and N cluster = 102 objects in 24-dimensional space are generated for each

cluster based on the centroid using a Gaussian distribution. In this case, the test

dataset actually consists of 4 certain clusters and the hypotheses of k = 2 to 5

are presented. For each hypothesis, NBS = 5 × 105 bootstrap simulations are

generated. The amount of BS data is usually set according to the requirements

that an accurate PDF of ΦBS can be obtained. Additionally, the significance

thresholds α1 = 0.01 and α2 = 0.05 are both applied in the evaluation. The

proposed PB algorithm is shown to be valid and effective when the evaluation

result corresponds to the initial setup, i.e., the obtained cluster number is equal

to 4.

Figure 3.4 presents the cluster number determination result of the proposed

test data based on the PB algorithm incorporated with the K-means++

technique, where red curves denote the SSE of the actual data (ΦAC) in k + 1

clustering and black curves represent the PDF of the total square errors of the

bootstrap simulation data (ΦBS). Specifically, the result shows that the p-values

of the cases k = 2 and k = 3 in Figure 3.4(a) and Figure 3.4(b), respectively,

are equal to 0, which indicates that the hypotheses are rejected and the dataset

includes at least k + 1 clusters. In addition, when k = 4 in Figure 3.4(c), the

p-value increases to 0.194, which is greater than the pre-defined significance

threshold α. Therefore, the hypothesis k = 4 is accepted as an appropriate cluster
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number according to the cluster number determination requirement in Section 3.2.

Moreover, it can be seen that the p-value (0.251) of hypothesis k = 5 in Figure

3.4(d) is greater than the p-value (0.194) of hypothesis k = 4 as well as greater

than α. The result conforms to the expectation that the rate of Φ decreases with

an increasing value of k. Therefore, the hypothesis of k = 4 is regarded as the

appropriate cluster number, which also corresponds to the initial setup in this

case.
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Figure 3.4: Cluster number determination for a 24-dimensional space dataset
based on the parametric bootstrap algorithm incorporated with K-means++.
Hypotheses of k = 2 to 5 are evaluated. (a) Hypothesis k = 2; (b) Hypothesis

k = 3; (c) Hypothesis k = 4; (d) Hypothesis k = 5.

Compared with the most popular methods, G-means [15] and the AIC based

algorithm [16], which also can be used in the cluster number determination, the

PB algorithm is more robust and reliable, particularly in processing the high

dimensional space data. Specifically, the G-means algorithm is not effective

for high dimensional data, such as the load data, since it cannot ensure the
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data within all dimensions simultaneously passes the Anderson-Darling (AD)

statistical test. One solution is to reduce the data of N-dimensions to a single

dimension [15]. However, the dimensional-reduction always gives rise to the risk

of information loss and often leads to a failure to obtain an appropriate cluster

number.

The AIC based algorithm determines the precise cluster number by seeking

the first knee always at the local maximum of the curve of AIC. However, the

AIC based algorithm also cannot guarantee to find an appropriate cluster number

as the estimated inflection point normally varies in a range in AIC calculations.

In order to evaluate the reliability of an algorithm, a performance metric of

failure rate (FR) is defined as:

FR = Nfailure

Ntest

(3.13)

where Nfailure and Ntest represent the numbers of failed tests and total tests,

respectively.

Table 3.1: Performance comparison of cluster number determination between
algorithms

``````````````̀Criterion
Algorithm

PB G-means AIC based algorithm

Probability 0.98 0.42 0.32

STD 0.14 - 0.99

FR 0 0.26 0

The comparison results of algorithms in terms of the probability of finding an

actual cluster number, the standard deviation (STD) and FR, over Ntest = 102

tests are presented in Table 3.1.

The results show that the proposed PB algorithm is more effective in cluster

number determination than the G-means and AIC based algorithms [15, 16],

with a much higher probability (0.98) of successfully finding an actual cluster

number. In addition, the PB algorithm is more robust against dimensionality of

the data than G-means (FRG-means = 0.26). However, the dimensional conditions

have little affect (FRPB = 0) on the outcome of cluster number determination
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using the PB algorithm. Moreover, the PB algorithm is also more stable than

the AIC based algorithm with a lower STD value (STDPB = 0.14) (as a number

of tests by G-means failed to obtain a cluster number, the G-means algorithm

is not considered in the STD evaluation). In summary, although G-means and

AIC based algorithms can achieve the appropriate cluster numbers in some cases,

both algorithms cannot guarantee to find a precise cluster number at all times

due to their inherent defects.

The verified PB algorithm incorporated with K-means++ is specifically

applied to the actual load data in next section. The initial load dataset is

classified into a number of sub-cascades at first according to the proposed scheme

described in Section 3.1. Afterwards, the cluster numbers of selected sub-cascades

are determined and typical load patterns (TLPs) are derived.

3.5 Case Study

3.5.1 Case Descriptions

In this study, a large set of historical load demand data on the national level

provided by National Grid Ltd, UK [186] is adopted. The dataset includes 3653

days’ load demand data with time intervals 2 hrs (d = 12) and 0.5 hr (d = 48)

from 2007 to 2016.

As objects in the initial dataset are classified into a series of sub-cascades,

mathematical numbers are simply utilised to label the seasonal features and the

day characteristics of each sub-cascade. Specifically, the numbers “1 - 12” are

used to label the 12 months (for consideration of the different seasons) and “1 -

3” are used to indicate the day types (“1”→ “working day”, “2” → “none-working

day” and “3” → “bank holiday”). For instance, S5,1 denotes the sub-cascade of

a working day in May. The rest of the possible sub-cascades can be deduced by

analogy. Additionally, due to limited data samples on special events days such as

UK bank holidays that is available (8 UK bank holidays per year and 82 UK bank

holidays in total), the exclusive sub-cascade S∀,3 consists of all load information

of UK bank holidays. Other types of special events data can be analysed in a
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similar way.

Due to the limited space, 9 typical sub-cascades (i.e., S2,1, S5,1, S8,1, S11,1,

S2,2, S5,2, S8,2, S11,2 and S∀,3) covering various scenarios are selected as examples

to perform the analysis.

3.5.2 Evaluation Criteria

In order to evaluate the similarity of TLPs between a variety of sub-cascades,

the Pearson correlation coefficient (PCC, denoted as ρ) which is a measure of

the linear correlation between two variables X and Y in statistics, is proposed in

Equation (3.14).

ρ(X,Y ) =

D

∑
d=1
(xd − x) ⋅ (yd − y)

√
D

∑
d=1
(xd − x)2 ⋅

√
D

∑
d=1
(yd − y)2

(3.14)

where D is the sample size of the compared time series TLPs. Variables xd, yd are

the individual sample points indexed with d. x = ∑D
d=1 xd/D and analogously for y.

PCC has a value between +1 and -1, where +1 indicates the total positive linear

correlation, 0 represents no linear correlation, and -1 denotes the total negative

linear correlation between X and Y .

In terms of assessing the clustering performance between a variety of

algorithms, a number of evaluation metrics [15, 44] are introduced. The proposed

metrics which are object distance based, mainly evaluate the compactness quality

between objects within the same cluster and the separation quality between

disparate clusters.

Given a sub-cascade S, it is assumed that the objects in S are classified

into K clusters. For an individual cluster Ωi, xi,n and ωi represent an object

within Ωi and the center of Ωi, respectively. Hence, the evaluation metrics

including compactness (CP), separation (SP) and Davies-Bouldin index (DBI)

can be presented in Equations (3.15)-(3.16), (3.17) and (3.18), respectively, as

follows.
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Compactness (CP) metric:

CP = 1

K

K

∑
i=1

CP i (3.15)

CP i =
1

∣Ωi∣
∑

xi,n∈Ωi

∥xi,n − ωi∥ (3.16)

where CPi is the averaged taxicab distance between objects xi,n and the cluster

center ωi within the cluster Ωi. CP shows the compactness or homogeneity

between objects within clusters. The smaller the value of CP the more compact

objects are within a cluster.

Separation (SP) metric:

SP = 2

K2 −K

K

∑
i=1

K

∑
j=i+1
∥ωi − ωj∥2 (3.17)

SP describes the separation or the distance between clusters. The larger the

value of SP the greater the distance between the centroids of the clusters.

Davies-Bouldin index (DBI) metric:

DBI = 1

K

K

∑
i=1

max
j≠i
(
CP i +CP j

∥ωi − ωj∥2
) (3.18)

DBI represents the system-wide average of the similarity measures of each

cluster with its most similar cluster. The smaller the value of DBI, the better the

performance.

In addition, the sum of square errors (Φ) which is the most significant metric,

is also considered in the evaluation of accurate clustering. As the processing time

of algorithms executed on various platforms is different, the relative running time

(RRT) which is defined in Equation (3.19), is taken to evaluate the efficiency

between algorithms.

RRT = CT i

CTmin

(3.19)

where CTi denotes the running time of the ith algorithm and CTmin is the minimal

running time among all the algorithms of comparison.
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3.5.3 Cluster Number Determination for Load Demand
Data

In this section, the cluster number determination program for each sub-cascade

has been run multiple times, to ensure a reliable result. The significance levels

α1 = 0.01 and α2 = 0.05 are both taken into account. Based on the verified

PB algorithm incorporated with K-means++, the cluster number determination

results for the load data of 9 selected sub-cascades are presented in Table 3.2.

Table 3.2: Results of the cluster number determination with p-values for the
typical sub-cascades using the PB algorithm incorporated with K-means++.

Dimension

XXXXXXXXXXXXSL
Sub-cascade S2,1 S5,1 S8,1 S11,1 S2,2 S5,2 S8,2 S11,2 S∀,3

d=12

α1 = 0.01
k=4 k=4 k=4 k=4 k=3 k=3 k=3 k=3 k=3

p=0.017 p=0.040 p=0.039 p=0.036 p=0.057 p=0.038 p=0.027 p=0.042 p=0.110

α1 = 0.05
k=5 k=6 k=5 k=5 k=3 k=4 k=4 k=4 k=3

p=0.064 p=0.073 p=0.066 p=0.053 p=0.057 p=0.051 p=0.060 p=0.064 p=0.110

d=48

α1 = 0.01
k=4 k=4 k=4 k=4 k=3 k=3 k=3 k=3 k=3

p=0.017 p=0.030 p=0.012 p=0.019 p=0.037 p=0.037 p=0.018 p=0.049 p=0.133

α1 = 0.05
k=5 k=5 k=5 k=5 k=4 k=4 k=4 k=4 k=3

p=0.068 p=0.086 p=0.064 p=0.120 p=0.115 p=0.070 p=0.105 p=0.090 p=0.133

Specifically, the results illustrate that the cluster numbers of the “working

day” in sub-cascades S2,1, S5,1, S8,1 and S11,1 are normally equal to 4 for α1 = 0.01,

and 5 for α2 = 0.05. However, the cluster numbers of the “none-working day” in

sub-cascades S2,2, S5,2, S8,2 and S11,2 are usually equal to 3 for α1 = 0.01, and 4

for α2 = 0.05. In addition to these, the exclusive sub-cascade S∀,3 is suggested

as being classified into 3 clusters. The obtained cluster numbers are used as the

input parameters for data classification and the extraction of TLPs in LPC.

3.5.4 Load Pattern Categorisation

In order to reduce the risk of ending up in a local optimum, the clustering

process has been executed multiple times with random initialisations. The

cluster numbers adopted for the categorisation process are those obtained for

a significance level of α1 = 0.01. The center of a cluster which leads to a minimal

SSE of the cluster is regarded as one of the TLPs within a sub-cascade. While

the final TLPs are regarded as the aggregation of TLPs within each individual
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sub-cascade under the cascade clustering scheme.

The obtained TLPs of nine typical sub-cascades are proposed as examples in

Figure 3.5. Specifically, the light grey curves represent the actual load demand

data that is required to be clustered and the colorised curves are the objective

TLPs. Based on the results, it can be seen that the extracted TLPs follow the

shape of actual load curves and cover the most actual load curves within the same

sub-cascade.
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Figure 3.5: Extracted typical load patterns (TLPs) of selected sub-cascades.
The objective TLPs are colorised. (a) Sub-cascade S2,1; (b) Sub-cascade S5,1;

(c) Sub-cascade S8,1; (d) Sub-cascade S11,1; (e) Sub-cascade S2,2; (f) Sub-cascade
S5,2; (g) Sub-cascade S8,2; (h) Sub-cascade S11,2; (i) Sub-cascade S∀,3.

In addition, Table 3.3 illustrates the evaluation of similarity between TLPs of

three sub-cascades based on PCC. It can be seen that the achieved coefficients

of the compared TLPs are very high (⩾ 0.837) in general, which means that
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there are positive relationships among TLPs. Moreover, the coefficients between

TLPs within the same sub-cascades are extremely high (⩾ 0.97). On the contrary,

the coefficients between TLPs from different sub-cascades are relatively small for

most cases. The data indicates that higher correlations between TLPs within the

same sub-cascade and relatively weaker relationships between TLPs from different

sub-cascades. It is also in line with the analysis in Section 3.1.

Table 3.3: Similarity evaluation between TLPs of 3 typical sub-cascades based
on the metric of PCC.

TLPs
S2,1 S8,2 S∀,3

TLP#1 TLP#2 TLP#3 TLP#4 TLP#1 TLP#2 TLP#3 TLP#1 TLP#2 TLP#3

S2,1

TLP#1 1.000 0.999 0.998 0.998 0.911 0.908 0.908 0.934 0.837 0.910

TLP#2 0.999 1.000 0.999 0.999 0.910 0.908 0.907 0.934 0.848 0.915

TLP#3 0.998 0.999 1.000 0.999 0.906 0.905 0.902 0.931 0.848 0.914

TLP#4 0.998 0.999 0.999 1.000 0.915 0.914 0.911 0.939 0.858 0.923

S8,2

TLP#1 0.911 0.910 0.906 0.914 1.000 0.998 0.999 0.994 0.906 0.973

TLP#2 0.908 0.908 0.905 0.914 0.998 1.000 0.997 0.994 0.919 0.980

TLP#3 0.908 0.906 0.902 0.911 0.999 0.997 1.000 0.993 0.899 0.968

S∀,3

TLP#1 0.934 0.934 0.931 0.939 0.994 0.994 0.993 1.000 0.923 0.983

TLP#2 0.837 0.847 0.848 0.858 0.906 0.919 0.899 0.923 1.000 0.976

TLP#3 0.910 0.915 0.913 0.922 0.972 0.980 0.968 0.983 0.976 1.000

3.5.5 Categorising Performance Comparison

Categorising performance is another issue of interest in the research community.

The performance comparison of different clustering techniques incorporated with

the PB algorithm is presented in Table 3.4. The best performance metrics are

marked in bold in the table. Obviously, the K-means++ algorithm outperforms

in most of the metrics as an overall comparison. Specifically, K-means++

performs the best in Φ and CP evaluations, which means the objects clustered by

K-means++ algorithm are more compact and have less square errors. In addition,

in terms of SP and DBI evaluations, K-means++ also performs the best in some

cases, such as S5,1, S8,1, S11,1 and S2,2. On the contrary, the GMM algorithm

has the worst clustering performance in the evaluation as it is not effective in

clustering the data with a high dimensional space, such as d = 48.

Moreover, the adopted K-means++ algorithm is also the most efficient
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clustering algorithm as it spends the minimal amount of running time among

all compared algorithms. In accordance with the RRT results in Table 3.4,

K-means++ is 2.11, 3.93 and 381 times faster than K-means, K-medoids, and

GMM, respectively on average.

Table 3.4: Performance comparison of different clustering techniques incorporated
with the PB algorithm (best performance metrics are marked in bold).

Metric Algorithms

Selected Sub-Cascade Index

d = 12 d = 48

S2,1 S5,1 S8,1 S11,1 S2,2 S5,2 S8,2 S11,2 S∀,3 S2,1 S5,1 S8,1 S11,1 S2,2 S5,2 S8,2 S11,2 S∀,3

Φ×10
10

K-means++ 4.16 2.45 1.85 3.81 2.73 1.65 1.25 2.95 4.69 1.10 0.648 0.496 1.00 0.712 0.434 0.331 0.770 0.123

K-means 4.16 2.45 1.85 3.81 2.73 1.65 1.25 2.95 4.69 1.10 0.648 0.496 1.00 0.712 0.434 0.331 0.770 0.123

K-medoids 4.61 2.76 1.96 4.12 3.29 1.93 1.42 3.31 5.58 1.26 0.739 0.536 1.09 0.863 0.513 0.383 0.879 0.149

GMM 4.69 2.91 2.11 5.95 2.76 1.70 - - 5.34 - - - - - - - - -

CP×10
4

K-means++ 3.91 2.93 2.64 3.72 5.10 3.68 3.15 5.13 6.61 4.01 3.00 2.70 3.80 5.19 3.73 3.24 5.23 6.75

K-means 3.91 2.93 2.64 3.72 5.10 3.68 3.15 5.13 6.61 4.02 3.00 2.70 3.80 5.19 3.74 3.24 5.23 6.75

K-medoids 4.10 3.04 2.69 3.78 5.42 3.80 3.26 5.39 6.86 4.24 3.14 2.76 3.88 5.52 3.89 3.35 5.50 7.04

GMM 4.15 3.22 2.78 4.39 5.15 3.75 - - 7.92 - - - - - - - - -

SP×10
4

K-means++ 4.88 4.48 3.73 6.87 4.99 3.38 3.18 6.62 7.45 2.44 2.25 1.87 3.45 2.50 1.70 1.59 3.31 3.73

K-means 4.88 4.48 3.73 6.87 4.99 3.37 3.18 6.62 7.45 2.44 2.25 1.87 2.95 2.50 1.69 1.60 3.31 3.73

K-medoids 4.95 3.60 3.64 5.96 4.97 3.67 3.35 6.63 8.44 2.49 1.82 1.81 2.98 2.42 1.85 1.69 3.33 4.24

GMM 4.74 3.69 3.50 5.41 4.77 3.28 - - 7.12 - - - - - - - - -

DBI

K-means++ 2.80 2.61 2.62 2.22 2.83 3.10 2.69 2.54 2.46 5.75 5.29 5.41 4.55 5.78 6.31 5.51 5.16 5.06

K-means 2.80 2.61 2.62 2.22 2.83 3.10 2.69 2.51 2.46 5.75 5.29 5.41 4.55 5.78 6.31 5.51 5.12 5.06

K-medoids 2.79 3.11 2.41 2.40 2.97 2.94 2.59 2.55 2.38 5.70 5.93 5.44 5.01 6.04 6.06 5.28 5.18 4.87

GMM 3.20 3.59 2.95 3.10 3.05 3.42 - - 3.16 - - - - - - - - -

RRT

K-means++ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

K-means 2.29 2.01 2.13 2.16 2.79 1.74 2.50 2.99 3.03 1.48 1.34 1.45 1.31 1.95 2.25 2.10 2.27 2.23

K-medoids 4.86 4.83 4.41 4.60 4.56 4.66 4.42 5.32 5.44 2.70 2.91 2.72 2.48 3.07 3.45 3.40 3.50 3.49

GMM 583 581 446 703 120 113 - - 122 - - - - - - - - -

Much more interesting, it is noticed that the clustering performance of the

K-means algorithm is similar to the K-means++ algorithm, except the RRT

evaluation. This is because the K-means++ algorithm is an improved version

of the standard K-means algorithm. The difference is that the special seeding

in K-means++ significantly accelerates the convergence process of K-means.

Besides, the multiple simulations which are taken in this work significantly avoid

the risk of ending in a local optimum for the K-means++ algorithm.
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3.6 Summary

An innovative parametric bootstrap algorithm incorporated with K-means++

which is a comparatively robust clustering technique has been proposed in this

chapter, to address the cluster number determination problem as well as cluster

the load data simultaneously in LPC analysis, under a cascade clustering scheme.

A number of evaluations have been presented in this work, which indicate that the

proposed approach is more robust and reliable in finding an appropriate cluster

number than conventional methods [15, 16] and it also has a better performance

in load pattern clustering in comparison to results published in the literature

[17–23]. In fact, for a given dataset, the data clustering performance is largely

influenced by the choice of the clustering algorithm, the input cluster number

and the characteristics of the data. Several clustering algorithms can be applied

to a certain dataset, however, there is no single best method for all datasets.

Therefore, a comparatively robust clustering technique that is able to complete

the load data classification task efficiently has been used, instead of developing

a new method in this work. On the other hand, this work focused on proposing

a more effective algorithm incorporated with the adopted clustering technique to

address the cluster number determination problem.

The research on LPC is important to DR management. The obtained TLPs in

this work are used to support the assessment of the impact of a DR program. The

detailed knowledge of electricity consumption’s nature is essential to promoting

strategies for peak load reduction, for instance exploiting the customers’

willingness to accept price-based demand conditioning on the basis of DR

programs. In addition, LPC has been proposed as effective means for enhancing

targeting and tailoring DR programs as well as providing reasonable load

scheduling recommendations, owing to the availability of advanced technology

for load shifting and to emerging opportunities for flexible demand management,

providing incentives and rewards to participating users. Therefore, the study of

LPC is essential in advance of designing DR programs.

After gaining a comprehensive understanding of the load consumption
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patterns on the demand side, a hybrid real-time electricity price forecasting model

considering deterministic and stochastic characteristics of input data is proposed

to forecast the short-term electricity prices which are usually used as an input

control signal for DR management in the next chapter.
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Chapter 4

A Hybrid Model for Real-time
Electricity Price Forecasting of
Smart Grid

The research in this chapter mainly concentrates on building an effective, high

accuracy, estimation model for electricity price forecasting in the smart grid using

limited sets of historical data. The obtained real-time price (RTP) can be used

as an input control signal in DR management. The main contributions of this

work can be summarised as follows.

(1) A hybrid RTP forecasting model which is a consolidation of the least-square

(LS) fitting model, the grey prediction (GP) model and an artificial neural

network (ANN), is proposed. The LS fitting model tracks the deterministic

characteristics of the time series data where as the GP model tracks the

stochastic characteristics. The ANN is used for error optimisation; execution

of the ANN is dependent on the forecasting performance of the first two

stages. To the authors best knowledge, this is the first time work combining

the above three processes together for short-term RTP forecasting has been

presented and tested.

(2) The accuracy of time series RTP forecasting is shown to improve through

application of this hybrid model. The effectiveness of the model is verified

and the results indicate that the proposed method is an accurate and efficient

tool in the forecasting of day-ahead RTP and it also significantly outperforms

the previous methods [25–29].
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The rest of this chapter is organised as follows. In Section 4.1, the structure

of the hybrid forecasting model is proposed and the three individual model

components are analysed in detail in Section 4.2. A case study is then performed

in Section 4.3, to evaluate the feasibility of the proposed approach, and the

forecasting performance is tested against a variety of methods from the literature.

Finally, this work is summarised in Section 4.4.

4.1 Structure of the Forecasting Model

The structure of the proposed hybrid forecasting model is presented in this

section. Figure 4.1 shows the historical RTP data over 5 historical day samples

as provided by the Australian Energy Market Operator (AEMO) [187]. The

time series dynamic electricity prices vary dependent on load demand at different

time periods. Based on the variations of historical RTP samples in Figure 4.1,

electricity prices exhibit a prominent regularity and consist of deterministic and

stochastic information along with the varying prices. It is therefore sensible

that the characteristics of the deterministic and stochastic properties of time

series data have to be incorporated into the forecasting model. The proposed

forecasting model is formulated as:

Pt = Lt +Nt +E∗t (4.1)

where Pt is the forecasting RTP at time t. Lt and Nt represent the estimations

of deterministic and stochastic characteristics of the input data, respectively.

Additionally, E∗t denotes the error optimisation procedure and the execution of

E∗t is dependent on the forecasting performance of the first two stages.

In order to present the principle of the proposed hybrid forecasting model,

Figure 4.2 illustrates a flow chart of forecasting day-ahead real-time electricity

prices based on 5 days’ historical RTP data. Specifically, the historical data is

input as the basis to establish the model. Then, the deterministic characteristic

of the data is estimated using the LS fitting model. Following this, the GP model

is applied to the estimation of the stochastic characteristic within the data. Then

it will be determined whether or not the ANN model based error optimisation
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Figure 4.1: Historical RTP over 5 historical day samples (120 hours).

procedure is necessary for this stage in accordance with the spot error rate (ER)

of the initial forecasting result. The ANN model will be executed to improve the

specific forecasting accuracy if the spot ER exceeds the maximum tolerable ER.

Finally, the objective day-ahead RTP can be obtained from the integrated model.

Historical time series 

electricity prices data

Deterministic

characteristic 

estimation 

Stochastic

characteristic 

estimation 

Errors optimisation

in specific time slots

Integrated forecasting 

of real-time prices

Forecasted day-ahead 

real-time prices 

Input ANN modelGP modelLS fitting model

Output Integrated model

Mandatory

Optional

Figure 4.2: Flow chart of forecasting day-ahead real-time electricity prices.

In the following chapter, the specific descriptions of the relevant forecasting

components in the hybrid model are presented in detail.
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4.2 Hybrid Forecasting Model

4.2.1 Least Square Fitting Model for Deterministic Char-
acteristic Forecasting

Based on Equation (4.1), the LS fitting model is employed to obtain the

deterministic characteristic Lt within the input data. The least square fitting for

data is a standard approach in regression analysis to the approximate solution

of over determined systems. It is one of the fitting algorithms [27, 188–190]. On

the stage of deterministic characteristic forecasting, the LS fitting model can be

used to build a fitting function to express the mainstream variation among the

historical data. Assume the input dataset H consists of n days’ historical RTP

data, H can be formulated as:

H = {D1,D2, ...,Dn} (4.2)

The historical RTP of a day can be treated as a number of discrete values

with an interval. In this study, the time interval is set as 0.5 hour, which means

t = 48 fixed values are included in a day. Hence, Dn is represented as:

Dn = [yn,1, yn,2, ..., yn,t] (4.3)

In addition, the fitting function L(t) is taken to model the mainstream

variation in the deterministic characteristic estimation. However, the general

formats of the fitting function include Fourier, Gaussian, polynomial, sum of

sine, etc. and they can be formulated in Equation (4.4)- (4.7), respectively, as

follows.

Gaussian format: f(x) =
d

∑
i=1

ai ⋅ e
(−(x−bi

ci
)
2
)

(4.4)

Fourier format: f(x) =
d

∑
i=0

ai ⋅ cos(i ⋅ ω ⋅ x) + bi ⋅ sin(i ⋅ ω ⋅ x) (4.5)

Polynomial format: f(x) =
d

∑
i=0

pi ⋅ xi (4.6)

Sum of sine format: f(x) =
d

∑
i=1

ai ⋅ sin(bi ⋅ x + ci) (4.7)
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where d ∈ N+ is the degree of the adopted function. Additionally, ai, bi, ci,

ωi and pi are undetermined constant parameters in the model. Although all

the proposed fitting function formats are effective in modeling the deterministic

characteristic within the data, the Fourier format is adopted in this study due

to its better fitting performance. Therefore, the objective function on this stage

can be formulated as determining a group of appropriate parameters (ai, bi and

ωi) to minimise the total square errors J . The objective function is presented in

Equation (4.8).

argmin
a,b,ω

J =
N

∑
n=1

48

∑
t=1
(Lt − yn,t)2 (4.8)

On the one side, a higher value of the fitting degree d leads to a better

performance of the estimation when J is in a reasonable range. On the other

hand, it results in more complexity of the calculation and more CPU wastage.

Therefore, selecting an appropriate fitting degree in the fitting model is significant

and may lead to a better deterministic characteristic estimation performance. In

order to obtain an appropriate fitting degree, a significance level for d, (αd), is

defined in Equation (4.9).

αd =
∣Jd − Jd+1∣

Jd
(4.9)

where Jd denotes the square errors when the fitting degree is d. If αd−1 > 0.05

and αd ⩽ 0.05, the value of d can be regarded as an appropriate fitting degree.

Table 4.1 presents the total square errors J with different values of fitting

degree which range from 1 to 7. It can be seen that when d ∈ [1,3], J decreases

quickly with increasing fitting degree. For example, there is only ∣Jd=5 − Jd=6∣ =

∣2.995 − 2.981∣ = 0.015 difference between cases d = 5 and d = 6. When d = 4,

Jd=4 ⩽ 0.05 and Jd=3 > 0.05. Thus, d = 4 is taken as a proper fitting degree in this

study. Afterwards, the relevant parameters can be determined as in Table 4.2.

Table 4.1: Total square errors with different values of fitting degree, d = 1 to 7
are evaluated.

d 1 2 3 4 5 6 7

J×10
2

5.601 4.152 3.223 2.988 2.995 2.981 2.950
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Table 4.2: Parameter values in Lt. Fourier format is selected and d = 4.

Parameters a0 a1 a2 a3 a4 b1 b2 b3 b4 ω

Values 32.640 0.570 2.153 0.022 -0.831 -2.950 -4.158 1.738 1.185 0.289

4.2.2 Grey Prediction Model for Stochastic Characteristic
Forecasting

The second stage in the proposed hybrid RTP forecasting model is to estimate

Nt which denotes the stochastic characteristic within the input data. Obviously,

the stochastic information within the data is included in the forecasting errors

after using the LS fitting model. Thus, the stochastic characteristic within the

historical data at time t can be expressed by Equation (4.10) and the initial

records within Mt are used to estimate the next record (Dn+1,t −Lt) by using the

GP model.

Mt = {D1,t −Lt,D2,t −Lt, ...,Dn,t −Lt} (4.10)

The GP model or GM(1,1) was first proposed to deal with the data in grey

systems. It is able to analyse a system that includes insufficient information

and unapparent relationships [28, 191, 192]. Hence, the GP model is often

used in predicting data in a stochastic systems based on limited information. It

transforms the forms of the irregular discrete sequences and displays the potential

regularities within the sequences. Transforming the forms of the sequences can

make the properties of stochastic and randomness get weaker thereby turning

irregular sequences to regular ones [193–195]. Since only a few stochastic data

proceeded from LS fitting model, it is quite appropriate to employ the GP model

to estimate the stochastic characteristic within the input data on this stage.

The GP model is established by using generalised series data. The primitive

sequence dataset is defined as X(0) and it can be presented as:

X(0) = {x(0)(1), x(0)(2), ..., x(0)(n)} (4.11)

where x(0)(n) = Dn,t − Lt and x(0)(n) ⩾ 0. However, if there are any x(0)(n) < 0

in the primitive sequence, all the candidates in the sequence have to be improved

until ∀x(0)(n) ⩾ 0. Afterwards, the first accumulated generating dataset X(1) can
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be obtained from Equation (4.12).

X(1) = {x(1)(1), x(1)(2), ..., x(1)(n)} (4.12)

where

x(1)(n) =
n

∑
i=1

x(0)(i) (4.13)

In addition, Z(1) which is determined by X(1), is defined as the background

factor and Z(1) can be represented as:

Z(1) = {z(1)(1), z(1)(2), ..., z(1)(n)} (4.14)

where

z(1)(n) = 1

2
[x(1)(n) + x(1)(n − 1)] (4.15)

For example, when t = 26, the initial sequence (after data preprocessing)

can be represented as X(0) = {6.5,7.9,11.1,11.4,13.5} as shown in Figure 4.3(a).

Then, the first accumulated generating data X(1) can be calculated as X(1) =

{6.5,14.4,25.5,36.9,50.4} as shown in Figure 4.3(b). Obviously, there are not

any prominent regularities between the numbers in X(0). However, after the first

accumulated generating operation (AGO) towards X(0), the new sequence X(1) is

provided with the quasi-exponential property (otherwise, the second AGO will be

executed towards X(1)). Therefore, X(1) can be regarded as being satisfied with

the first order ordinary differential equation which is shown in Equation (4.16).

dX(1)

dt
+ aX(1) = u (4.16)

where a is treated as a development coefficient that describes the increasing speed

of numbers in X(0) and u is an endogenous control coefficient in the system. The

parameters U = [a, u]T can be determined by Equation (4.17).

U = (BTB)−1BTY (4.17)

where Y is a (n − 1) × 1 matrix and B is a (n − 1) × 2 matrix. Y and B can be

written as:
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Figure 4.3: Examples of X(0) and X(1). Case t = 26 is adopted as an example.
(a) Example data in X(0); (b) Example data in X(1).

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x(0)(2)
x(0)(3)
⋮

x(0)(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−z(1)(2) 1
−z(1)(3) 1
⋮ ⋮

−z(1)(n) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

According to these, Equation (4.16) can be resolved using the obtained

parameters a and u, so that the forecasting formula of X̂(1) can be denoted

as shown in Equation (4.18).

x̂(1)(n + 1) = (x(1)(1) − u

a
) e−ak + u

a
(4.18)

Based on Equation (4.18), when n = 1,2, ...,N − 1, x̂(1)(n+ 1) is a fixed value.

When n ⩾ N , x̂(1)(n + 1) is a predicted value of X(1). Afterwards, the predicted

formula of X̂(0) can be achieved through the inverse accumulated generating
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operation (IAGO) as shown in Equation (4.19).

x̂(0)(n + 1) =x̂(1)(n + 1) − x̂(1)(n)

=(1 − ea) [x(0)(1) − u

a
] e−ak

(4.19)
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Figure 4.4: Real-time electricity prices forecasting result based on LS
model+GP model.

According to Equation (4.19), when n = N , x̂(0)(n + 1) is the objective

forecasting value. Following this, the GP model can be utilised periodically

to achieve forecasting values of all time spots. Furthermore, the forecasting

result is the combination of the deterministic characteristic and the stochastic

characteristic within the input data, which is described by Figure 4.4. In general,

the variation of the obtained RTP by using the combined LS+GP model is in line

with actual RTP overall. The result indicates that the ERs are lower than 10%

most of the time, particularly between 12:30 - 22:00 (lower than 5%). However,

the ERs are unexpectedly higher than 10% during the time period 6:30 - 8:30.

These unexpected errors may be caused by defects in the current forecasting

models. Since limited datasets were used in the hybrid model, the random error

increases when there are great differences among the input datasets.

Therefore, in order to improve the forecasting accuracy during specific

time slots based on the initial forecasting result, the ANN model based error

optimisation procedure is required. If the ERs for a time period [ta, tb] are higher

than 10%, the ANN based error optimisation procedure will be executed.

73



4.2.3 Artificial Neural Network Model for Error Optimi-
sation

The artificial neural network (ANN) is a non-linear modeling where any prior

knowledge of the relationship between input and output is needed [196]. It

gives great results for forecasting problems [29]. To establish the model, only a

sufficient amount of data is required to assimilate the connection between inputs

and outputs. The main parameters of the ANN model are the number of the

input vectors, the number of layers and the number of neurons in each layer

[197–199]. However, large and sudden spikes in the input data will lead to less

accuracy in the output using ANN [67, 68]. In this study, the back propagation

(BP) algorithm is utilised to train the ANN model.

Figure 4.5 shows the topography of a typical 3-layer back propagation neural

network [200, 201]. A 3-layer back propagation neural network is a typical

multiple-layer network and it includes the input layer (LA), hidden layer (LB),

and output layer (LC). There are no connections between nodes that belong to

the same layer. LA has m nodes that correspond to the m inputs of the network.

LC consists of n nodes that correspond to the n outputs of the network. The

node number of LB can be varied to fit the task.

Define Wir as the connection weight between the node ai of the LA layer and

the node br of the LB layer. Similarly, let Vrj be the connection weight between

the node br of the LB layer and the node cj of the LC layer. Set Tr and θj as the

bias of the node br of the LB layer and the bias of the node cj of the LC layer,

respectively. Then the output function of the LB layer node should be:

br = f (
m

∑
i=1

Wir ⋅ ai − Tr) (r = 1,2, ..., u) (4.20)

The output function of the LC layer node should be:

cj = f (
u

∑
r=1

Vrj ⋅ br − θj) (j = 1,2, ..., n) (4.21)

where f(x) is a sigmoid function and it can be expressed as:

f(x) = 1

1 + e−x
(4.22)

74



1

2

m

2

1

3

u

1

2

n

Input layer Hidden layer Output layer

Information forward propagation

Errors back propagation

Figure 4.5: Topography of a typical 3-layer back propagation neural network.

In addition, the BP learning algorithm which is a typical error-revised learning

algorithm is used to learn and store knowledge in 3-layer back propagation neural

networks. The learning procedures can be illustrated as follows.

(1) Initialise the variables Wir, Tr, Vrj and θj with small random values.

(2) For each model pair (A(k), C(k)) (k = 1,2, ..., p), take the following steps.

• Input the values of A(k) at layer LA, then calculate br and cj by Equation

(4.20) and (4.21).

• Calculate the bias dj of the desired value and calculate the value cj of

the layer LC nodes and let

dj = cj ⋅ (1 − cj) ⋅ (c(k)j − cj) (4.23)

• Back propagate the errors to the layer LB nodes and let

er = br ⋅ (1 − br) ⋅ (
n

∑
j=1

Vrj ⋅ dj) (4.24)
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• Adjust the connection weights Vrj and the bias of the layer LC nodes

θj:

Vrj = Vrj + α ⋅ dj + β ⋅∆V
′

rj (4.25)

θj = θj + α ⋅ dj + β ⋅∆θ
′

j (4.26)

where ∆V
′

rj and θ
′

j are the adjusting values of the previous learning loop.

α is the learning ratio and 0 < α < 1. β is the momentum factor.

• Adjust the connection weights Wir and the bias of the layer LB nodes

Tr:

Wir =Wir + α ⋅ er + β ⋅∆W
′

ir (4.27)

Tr = Tr + α ⋅ er + β ⋅∆T
′

r (4.28)

where ∆W
′

ir and ∆T
′
r are the adjusting values of the previous learning

loop.

(3) Repeat step (2), until dj becomes adequately small.

In accordance with the analysis in previous chapters, the ANN model is used

on this stage to improve the accuracy of the RTP forecasting further in particular

time slots, such as between 6:30 - 8:30 as shown in Figure 4.4. In this case, 2

hidden layers with 20 and 40 neurons are designed and 10-day historical data is

adopted. In Section 4.3, a number of simulations are carried out to prove the

effectiveness of the proposed hybrid model and the forecasting quality is also

evaluated in terms of a number of evaluation criteria.

In Section 4.3, a case study is proposed to evaluate the hybrid forecasting

model and the forecasting results are also discussed.

4.3 Case Study

4.3.1 Short-Term RTP Forecasting Results

The real-time electricity price forecasting results using the proposed hybrid

forecasting model are presented in this section. Limited datasets (5 days) of the

historical RTP data with a time interval of 0.5 hour from Australia are adopted.
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The obtained results are also compared with other methods (e.g., ARIMA model

[25, 26], independent back propagation-artificial neural network (BP-ANN) [196],

etc.) in this work.

A number of evaluation criteria including mean absolute error (MAE),

mean square error (MSE), root mean square error (RMSE) and mean absolute

percentage error (MAPE) [202–204] are proposed for the evaluation of the

forecasting performance. To begin with, x is defined as the forecasting value

of a model, ref as the observed true values and t = 48 which means 48 points

are required to predict a days pricing. Hence, the mathematical formulations

of MAE, MSE, RMSE, and MAPE can be expressed by Equation (4.29)-(4.32),

respectively.

MAE = 1

t
⋅

t

∑
i=1
∣refi − xi∣ (4.29)

MSE = 1

t
⋅

t

∑
i=1
(refi − xi)2 (4.30)

RMSE =

¿
ÁÁÀ1

t
⋅

t

∑
i=1
(refi − xi)2 (4.31)

MAPE = 1

t
⋅

t

∑
i=1
∣refi − xi

refi
∣ (4.32)
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Figure 4.6: RTP forecasting results comparison between models.
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Figure 4.6 shows the RTP forecasting results comparison between the

proposed hybrid model and some typical models. According to the obtained

results, it can be seen that all three compared models, i.e., the hybrid model,

the ARIMA model and, the BP-ANN model are able to accomplish the task of

forecasting the RTP in advance. The forecasting price variations are in line with

the observed actual RTP in general. The RTP forecasting by the hybrid model

is slightly better than the other two models on the basis of the results. However,

comparing the RTP variations in Figure 4.4 and Figure 4.6, it is apparent that the

forecasting errors are significantly reduced during the time period 6:30 - 8:30, due

to the contribution of the BP-ANN model in the error optimisation procedure.

Table 4.3: RTP Forecasting quality evaluation comparison between models (best
performance is marked in bold).

Models
Evaluation Criteria

MAE ($/MWh) MSE ($/MWh) RMSE ($/MWh) 12 MAPE (%)

ARIMA Model 2.61 9.25 3.04 8.29

LS Model 2.52 9.41 3.07 8.51

GP Model 1.35 3.01 1.74 4.29

LS+GP Models 1.53 5.33 2.31 4.65

BP-ANN Model 1.49 3.50 1.87 4.69

Hybrid Model 1.06 1.72 1.31 3.38

The RTP forecasting evaluation comparison between the hybrid model and

other state-of-the-art models [27, 28, 188, 191, 196] are also presented in Table

4.3. Based on the obtained results, the proposed hybrid model performs best

in forecasting quality evaluation in an overview, which confirms the advantages

of the proposed approach. Specifically, the MAE, MSE, RMSE, and MAPE of

the hybrid model are 1.06, 1.72, 1.31 and 3.38%, respectively, which are the

lowest among all models. The ARIMA model performs the worst in the MAE

evaluation and the independent LS model performs worst in MSE, RMSE and

MAPE evaluations.
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4.3.2 Discussions

The hybrid model analyses the input data in views of deterministic characteristics,

stochastic characteristics, and error optimisation within the data. The advantage

of the proposed approach is that the hybrid model is more robust in dealing with

forecasting tasks based on insufficient data compared with the traditional models

such as ARIMA [25] which needs a large number amount of historical data for

training. The RTP forecasting quality evaluation results in Table 4.3 also indicate

that the ARIMA model is not effective in cases where there is limited input data.

In addition, the individual LS model did not perform well in this case, as the LS

model only extracts the mainstream within the input data. Therefore, using an

LS model independently to forecast the RTP will lead to considerable errors as

expected. It is much more interesting to see that the LS model in cooperation

with the GP model performs a bit worse than the independent GP model in the

overall evaluation. This is because the combined model (LS model + GP model)

performs not well in a specific time period, i.e., 6:30 to 8:30 in this case, so that

the errors increased significantly, although it has higher forecasting accuracies in

other time periods compared with the GP model.

Given a group of historical data, actually, there are several forecasting models

that can be used and each able to complete the task of forecasting but with

varying degrees of accuracies. After a great number of tests, it is realised that the

forecasting performance is crucially dependent on both selecting an appropriate

model and the data correlations. A forecasting model works well to one group

of data, but maybe not effective for another group of data. Therefore, a hybrid

forecasting model is generally more efficient than an independent model.

4.4 Summary

In this chapter, a hybrid model consisting of the LS model, GP model, and

BP-ANN model, has been proposed to forecast the day-ahead real-time prices

based on limited historical data. The evaluation results have clearly demonstrated

that the proposed approach is an accurate and efficient tool in RTP forecasting
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and it also significantly outperforms the previous forecasting models. As the

RTP tariff is a trend for the smart grid, the theories in this chapter have bright

prospects not only in RTP forecasting but also in applications in other industrial

fields, such load forecasting, wind forecasting, GDP forecasting, etc.

In DR management, a valid RTP is usually utilised as an input control signal

for DR to enable efficient load shifting. In the next chapter, a number of DR

strategies are proposed based on the RTP tariff.
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Chapter 5

Electric Vehicles Assisted
Demand Response in Smart Grid

Demand response (DR) is an essential characteristic of the smart grid and it

plays an important role in energy efficiency improvement and wastage reduction,

by providing encouraging energy-aware consumption. In this chapter, A number

of DR strategies considering the impacts of using electric vehicles (EVs) as flexible

storage and supply mechanisms are proposed. Compared with the previous

research, the main contributions of this work are:

(1) A number of DR strategies for domestic appliance scheduling are designed

and implemented to different scales of household (i.e., a single household

and a multi-household network) in order to simultaneously alleviate the

load burden for the grid and reduce bills for householders. For the single

household network, the EV is utilised as an auxiliary power supply (APS)

for energy consumption of home appliances. An EV-APS model based DR

strategy is proposed in accordance with a fundamental DR strategy. For

the multi-household network, an EVs assisted DR framework including a

neighbour energy sharing (NES) model for a residential network with different

types of EVs installed at consumers’ premises is developed.

(2) The available EVs’ energy distribution is enabled via vehicle-to-home (V2H)

and vehicle-to-neighbour (V2N) connections in this work. The NES based

DR framework is valid and effective not only for an independent household

but also for a multi-household residential network, which can satisfy broader
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requirements compared with conventional DR programs in literature. The

energy trading policy in the neighbourhood is also declared.

(3) Comprehensive affecting factors (e.g., EVs’ behaviors, user preferences, load

scheduling priorities, etc.) are considered in scheduling for both EV assisted

DR strategies. The effectiveness of the proposed DR strategies is verified by

numerical results, which demonstrate that the proposed approaches achieve

great performances in terms of load balancing and electricity cost reduction.

The rest of this chapter is organised as follows. Firstly, a fundamental DR

strategy is proposed to manage home appliances intelligently in Section 5.1.

Secondly, a dynamic price (DP) based and EV assisted DR strategy for appliance

scheduling for a single household is developed in Section 5.2. Third, an EVs

assisted DR framework for a multi-household network is proposed in Section 5.3.

Two case studies are carried out to evaluate the feasibility and effectiveness of

the proposed DR strategies in Section 5.4. Finally, this work is summarised in

Section 5.5.

5.1 Fundamental Demand Response for a Single

Household

5.1.1 Appliances Classification

In general, more than 15 types of household appliances will be used in domestic

homes every day. Considering the operating characteristic of each appliance, it

is not necessary to schedule all of them via DR programs. Hence, in accordance

with the device operating characteristics, household appliances can be classified

into different scenarios. As a result, the appliances are sorted into two main

scenarios in this study.

(1) Critical scenario (CS): CS contains the appliances that have to be used at a

specific time or cannot be scheduled. Examples include lighting, TV, laptop,

etc.
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(2) Flexible scenario (FS): FS contains the appliances that can be powered on

with a tolerable delay and have a flexible operating time. Hot water tank

and washer are typical representatives in FS.

According to the sorting scheme above, 16 frequently used appliances are

listed and classified as follows:

(1) CS appliances: refrigerator, water dispenser, toaster, microwave oven, lights,

electric cooker, electric kettle, TV, PC, hair drier, cleaner.

(2) FS appliances: dish-washing machine, hot water tank, washer, drying

machine, EVs.

Therefore, the scheduled appliances in DR programs are from FS appliances.

5.1.2 Fundamental Demand Response

In accordance with the principle of DR and the appliances classification above,

the objective of the proposed fundamental DR program is to reduce the total cost

(TC) which consists of two major parts: the cost of critical appliances Rt ⋅Ec and

the cost of flexible appliances Rt ⋅Ef , where Rt represents the real-time electricity

price (RTP) as detailed in Chapter 4. In addition, Ec and Ef denote the total

energy consumption of appliances in CS and FS, respectively. The value of Ec is

equivalent to the summation of energy consumption of each individual appliance

in CS. For the energy usage of the ith appliance, Ei, it can be denoted as the

integration of the appliances power rating and the corresponding service time.

The time factors αi and βi describe the start and the end of the appliance i

operating time. Variable Ef is similar to Ec. Therefore, the load scheduling

control (LSC) process can be formulated as:

min TC = Rt(Ec +Ef) (5.1)

Subject to:

Ec =
m

∑
i=1

Ei, Ef =
n

∑
j=1

Ej (5.2)
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Ei = ∫
βi

αi

pid(t), Ej = ∫
βj

αj

pjd(t) (5.3)

[αj, βj] ⊆ [αe, βe] (5.4)

∀t0 ⊆ [αe, βe], pmax(t0) ⩾∑pi(t0) +∑pj(t0) (5.5)

The objective function in Equation (5.1) is subject to the constraints in

Equation (5.2)-(5.5). Specifically, considering customers’ preferences, the service

time of the schedualable appliances, [αj, βj], should be subject to users’ expected

operating time, [αe, βe]. On the other hand, pmax(t0) is proposed to limit the

maximum load on the grid at time t0 for safety considerations.

5.2 Electric Vehicle Assisted Demand Response

for a Single Household

5.2.1 EV-APS Demand Response Network
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Power grid 
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Household appliances 
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Power flow 
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Figure 5.1: Schematic diagram of a DR strategy with EV-APS model for a
single household.

The schematic diagram of the proposed DR strategy with EV-APS model is

shown in Figure 5.1. Specifically, householders buy electricity from the power

grid for daily usage including EV charging, under the dynamic price. Normally,
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domestic appliances are directly powered by the main power grid. However, as

an interim energy storage unit, the EV is able to supply power for the household

appliances in auxiliary capacity on appropriate occasions, especially during high

price periods. The time for activation of the EV-APS is dependent on the

instructions from the smart controller.

In addition, the smart controller plays the role of supervisor in the network.

It regulates the energy source supply and the operating time of the household

appliances based on real-time load information which is received from the smart

meter, and other signals (e.g., DP, EV status, load priority, etc.).

5.2.2 System Models

In Subsection 5.2.2, the formulation of the EV-APS DR strategy consisting of the

main power supply model and EV auxiliary power supply model is thoroughly

analysed.

Main Power Supply Model

VariablesW grid
t and P grid

t are defined as total energy consumption and total power

rate on the grid, respectively, at time t. The main power supply model including

the corresponding constraints can be represented by:

W grid
t = ∫

Tterm

Tin

P grid
t ⋅ d(t) (5.6)

P grid
t = PHA

t + PEV,c
t − PEV,d

t (5.7)

PHA
t =

n

∑
j=1

PCS
t,j + εi ⋅

m

∑
i=1

PFS
t,i (5.8)

Subject to:

∀t ∈ [Tin, Tterm] , P grid
t ⩽ P grid

max (5.9)

PEV,c
t = 0, if PEV,d

t > 0 (5.10)

PEV,d
t = 0, if PEV,c

t > 0 (5.11)

Equation (5.6) indicates that the total energy consumption (W grid
t ) is equal to

the integral of total power (P grid
t ) through time. that is between the initial time
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Tin and the termination time Tterm. Equation (5.7) illustrates the relationships

between the total power and each power consuming component. PHA
t is the

load power consumed by the household appliances at time t. PEV,c
t and PEV,d

t

represents the power rates of the EV charging and discharging, respectively.

Additionally, as shown in Equation (5.8), PHA
t consists of the power cost by

CS appliances (PCS
t,j ) and FS (PFS

t,i ) appliances, where j and i are the indexes of the

appliances. The ε parameters have small positive values (e.g., 1+e−8, 1+2e−8 and

1+3e−8) that are determined by assumption. Thus, the total power of appliances

is not affected. This setting meets the requirement of having a priority according

to user preferences in scheduling the FS appliances. The smaller the value of ε

indicates a higher priority in the scheduling process by the DR program.

P grid
max is proposed as being constrained (5.9) to limit the maximum power

rate on the grid at time t for safety considerations. Further, constraints (5.10)

and (5.11) expressed that battery charging and discharging cannot execute

simultaneously, otherwise, the battery will be damaged.

EV-APS Model

Determining the EV-APS model requires sufficient knowledge from previous

research. From investigation of the current EV market, Table 5.1 illustrates

the core parameters of five major brands of EVs around the world [205–207].

The parameters include the maximal battery capacity WEV,max, the discharging

power PEV,d
t and the driving range per charge.

Table 5.1: Major brands of EVs in current market.

Manufacturer and Model Battery Capacity Discharging Power Driving Range per Charge

Tesla, Model-S (EV) 60 kWh 3.0 kW 273 miles

BYD, Tang-100 (HEV) 23 kWh 3.3 kW 63 miles

BMW, i3 (EV/HEV) 33 kWh 2.5 kW 114 miles

GM, Chevrolet Bolt (EV) 60 kWh - 283 miles

Nissan, Leaf (EV) 30 kWh - 107 miles

Moreover, multiple charging schemes are provided for each EV. In Section 5.4,

the Tesla-Model-S is taken as an example in this study and Table 5.2 shows the
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relevant charging schemes that will be considered in the DR strategy. It can be

seen that the charging power PEV,c plays an important role for the grid due to

the high power rate of battery charging.

Table 5.2: Tesla-Model-S charging schemes

Charging Circuit Charging Power Charging Speed Charging Time Cost per 100 Miles

Wall connector (1-phase grid) 7.4 kW 22 miles/hr 4.5 hrs

Wall connector (3-phase grid) 11 kW 34 miles/hr 2.9 hrs

High power charger upgrade 16.5 kW 51 miles/hr 2.0 hrs

3-pin domestic adapter 2.3 kW 6.8 miles/hr 14.7 hrs

Further, WEV,(1) andWEV,(2) are defined as the initial EV energy storage when

people leave home in the morning of the 1st day and the 2nd day, respectively.

Therefore, the EV model can be proposed as below:

WEV,rem =WEV,(1) −WEV,trip (5.12)

WEV,trip = Dtrip

Dmax
⋅WEV,max (5.13)

WEV,(2) =WEV,rem +WEV,c −WEV,d (5.14)

WEV,c = η1 ⋅ ∫
Tc,e

Tc,b

PEV,c
t ⋅ d(t) (5.15)

WEV,d = η2 ⋅ ∫
Td,e

Td,b

PEV,d
t ⋅ d(t) (5.16)

Subject to:

∀t, WEV,min ⩽WEV,rem ⩽WEV,max (5.17)

∀t ∈ [Td,b, Td,e] , PEV,d
t ⩽ PEV,d,rated

t (5.18)

∅ = [Tc,b, Tc,e] ∩ [Td,b, Td,e] (5.19)

Equation (5.12)-(5.13) indicate the state relationships between the initial

energy of the 1st day (WEV,(1)), the remaining energy (WEV,rem) and the energy

consumption on a trip (WEV,trip). It is apparent that WEV,trip is directly

proportional to the driving distance. Additionally, Equation (5.14) implies that

the remaining EV energy can be used to cover a portion of household appliance

energy usage via battery discharging (WEV,d). The EV will then be charged to

an appropriate level for usage on the 2nd day.
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Moreover, Equation (5.15) explains that the relationship between the total

energy charging (WEV,c) and the charging power rate (PEV,c
t ). η1 is the battery

charging efficiency. Time parameters Tc,b and Tc,e denote the begin time and

end time of the charging operation. Meanwhile, the battery discharging occasion

which is described in Equation (5.16), is similar to Equation (5.15).

The constraint (5.17) presents a limit on the the actual amount energy

for the EV battery. It cannot drop below the minimum allowed battery

capacity (WEV,min) or exceed the maximum allowed battery capacity (WEV,max).

Constraint (5.18) limits the actual discharging power rate (PEV,d
t ) to be less than

the rated power of the EV discharging. Additionally, since battery damage will

be caused by simultaneous charging and discharging, constraint (5.19) restricts

the operation time of battery charging and discharging.

5.2.3 Problem Formulation and Optimisation

According to the previous analysis, the problem in this study can be formulated as

minimising the total cost (TC) by scheduling the operating time of the household

appliances. Hence, the objective function can be proposed as:

min TC = ∫
Tterm

Tin

W grid
t ⋅Rt ⋅ d(t) (5.20)

where symbol W grid
t represents the total energy bought from the power grid in

time period [Tin, Tterm]. Additionally, the price variable Rt is time dependent and

varies hourly depending on the total load demand [208]. The DP tariff that is

used in the simulation is given in Figure 5.3 in Section 5.4.

In order to obtain the optimal solution and reduce cost to a minimum,

the exhaustive search technique can be used on the basis of the established

models. The description of the technique is not the focus of this work and is

not emphasised here.

Under the given constraints, the program continuously searches the solutions

of appliances allocation by minimising the global cost according to the DP signals.

The objective appliances in FS are scheduled in sequence based on the pre-set
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priority. Meanwhile, as the auxiliary power source, the operating time of EV

discharging is dependent on the EV status and the load demand. In this study,

the remaining EV energy is assumed to be firstly consumed in high price hours

to ensure maximum utilisation of the available EV energy.

5.3 Electric Vehicles Assisted Demand Re-

sponse for a Multi-Household Network

5.3.1 EVs Assisted NES Demand Response Network

An overview of the proposed demand response framework for a residential

community with multiple households is illustrated in Subsection 5.3.1.

The block diagram of the proposed DR framework with EVs assisted NES

model is shown in Figure 5.2. In this study, it is assumed that each household in

the community is registered in the network and controlled by the corresponding

automatic control unit (ACU) which plays the role as an instructor for each

household. The ACU regulates the power supply and the operating time of the

household appliances (HAs, e.g., flexible appliances and critical appliance [8, 177])

based on the dynamic load information which is received from the smart meter,

and other request signals (e.g., EV status, scheduling priority, DP, etc.). In

addition, the centralised control unit (CCU) that is the highest controller in

the network globally monitors the status of the ACUs and optimally manages

the EVs assisted NES model through information flows. In the proposed DR

framework, customers in the network are registered for two types of connection:

V2H connection and V2N connection.

Specifically, the householders buy electricity from the power grid for daily

consumption including supplying HAs and EVs charging, under the DP tariff. On

the one hand, the domestic appliances are directly powered by the public power

grid in general. However, households which are outfitted with an EV are able

to provide power from the EV battery to their HAs on appropriate occasions,

such as peak demand periods or power grid outage, via V2H connection. On

the other hand, since a limited number of households are equipped with an
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Figure 5.2: Schematic diagram of a DR framework for a multi-household
network.

EV, the households without the energy storage unit may need power assistance

from the NES model via a V2N connection, particularly during high price times.

When there is energy available in EVs, the CCU determines when and how to

allocate the available energy to the personal house or the neighbours’ houses who

have the energy assistance requirements. Ideally, the EV energy will satisfy the

demand of the EV owner in priority. The energy transaction in the neighbourhood

happens when the power grid is not able to fulfill the demand or serve the load

in peak demand and cost periods. Thus, a customer can receive the power from

a neighbour at comparatively lower prices.

5.3.2 System Models

EVs are utilised as flexible energy storage units to enable energy trading in a

neighbourhood. The following section presents the mathematical modeling of the
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system components in detail.

Global Energy Balance Model

In order to precisely present the energy transactions between each component in

the network with K households, W grid
t and W grid

k,t are defined as the total energy

consumption of the entire network and the kth household, respectively, in a time

period [Tin, Tterm]. Afterwards, the global energy model can be proposed as:

W grid
t =

K

∑
k=1

W grid
k,t (5.21)

where

W grid
k,t = ∫

Tterm

Tin

P grid
k,t ⋅ d(t) (5.22)

Moreover, considering the specific power including CS appliances (PCS
k,t ),

FS appliances (PFS
k,t ), EV charging (PEV,c

k,t ) and EV discharging (PEV,d
k,t ) in the

network, P grid
k,t can be extended as in Equation (5.23)-(5.24).

P grid
k,t = P

HA
k,t + α ⋅ (β ⋅ P

EV,c
k,t − (1 − β) ⋅ P

EV,d
k,t ) (5.23)

PHA
k,t =

m

∑
j=1

PCS
k,t,j + εi ⋅

n

∑
i=1

PFS
k,t,i (5.24)

Subject to:

∀t ∈ [Tin, Tterm] , P grid
k,t ⩽ P

grid
k,max (5.25)

∀t,
K

∑
k=1

P grid
k,t ⩽ P

grid
max (5.26)

Binary parameters α and β in Equation (5.23) are both used to indicate the

EV status that is given as:

EV Status =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Disabled, if α = 0, β = ∀
Charging, if α = 1, β = 1
Discharging, if α = 1, β = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.27)

Furthermore, PHA
k,t in Equation (5.24) denotes the load of electric appliances

consisting of CS load PCS
k,t,j and FS load PFS

k,t,i at time t, where j and i are the

indexes of the appliances. The parameter εi indicates the scheduling priority

of the shiftable appliances, it is a small positive value (e.g., 1+e−8, 1+2e−8 and

1+3e−8) determined by a householder according to their scheduling preferences.
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Besides, the maximum power rate of a single household P grid
k,max and the maximum

power rate of the network P grid
max are proposed in Equation (5.25) and (5.26),

respectively, to limit the real-time load for safety considerations.

EVs Assisted NES Model

In a residential community, different classes of customers exist. It is not possible

for every household to purchase an EV. Thus, it is assumed that only some houses

have a EV and are indexed as k̂, and the houses without an EV are indexed as k̃.

Then, W
EV,(1)

k̂
and W

EV,(2)

k̂
are defined as the initial energy within an EV battery

when the EV leaves the home on the 1st day and the 2nd day, respectively. WEV,rem

k̂

represents the remaining energy within an EV. The energy cost on a daily trip

is proposed as WEV,trip

k̂
. Additionally, Dtrip

k̂
and Dmax

k̂
are proposed to indicate

the actual travel distance of the vehicle and the maximum travel distance with a

fully charged EV. Moreover, the energy charging to the EV and discharging from

the EV are assumed as WEV,c

k̂
and WEV,d

k̂
, respectively. The EV balance model

with the relevant constraints for a single house are proposed as:

WEV,rem

k̂
=WEV,(1)

k̂
−WEV,trip

k̂
(5.28)

WEV,trip

k̂
=
Dtrip

k̂

Dmax
k̂

⋅WEV,max

k̂
(5.29)

W
EV,(2)

k̂
=WEV,rem

k̂
+WEV,c

k̂
−WEV,d

k̂
(5.30)

Subject to:

∀t, WEV,min

k̂
⩽WEV,rem

k̂
⩽WEV,max

k̂
(5.31)

τ ⋅WEV,max

k̂
⩽WEV,(1)

k̂
≈WEV,(2)

k̂
⩽WEV,max

k̂
(5.32)

where WEV,min

k̂
and WEV,max

k̂
in (5.31) represent the minimum and the maximum

allowed EV battery capacity, respectively. However, constraint (5.32) is proposed

to ensure that the EV leaves home with an appropriate energy storage level, where

τ is a threshold parameter.

Moreover, considering the power impacts on the grid, PEV,c

k̂,t
, PEV,d,v2h

k̂,t
and

PEV,d,v2n

k̂,t
are utilised to describe the power rates of EV charging, EV discharging
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via V2H and EV discharging via V2N at time t, respectively. Therefore, WEV,c

k̂

and WEV,d

k̂
can be extended to:

WEV,c

k̂
= ηc

k̂
⋅
⎧⎪⎪⎨⎪⎪⎩

L

∑
l=1
∫

T c,2

k̂,l

T c,1

k̂,l

PEV,c

k̂,t
⋅ d(t)

⎫⎪⎪⎬⎪⎪⎭
(5.33)

WEV,d

k̂
= 1

ηd,v2h
k̂

⋅
⎧⎪⎪⎨⎪⎪⎩

M

∑
m=1
∫

Td,2

k̂,m

Td,1

k̂,m

PEV,d,v2h

k̂,t
⋅ d(t)

⎫⎪⎪⎬⎪⎪⎭

+ 1

ηd,v2n
k̂

⋅
⎧⎪⎪⎨⎪⎪⎩

N

∑
n=1
∫

Td,2

k̂,n

Td,1

k̂,n

PEV,d,v2n

k̂,t
⋅ d(t)

⎫⎪⎪⎬⎪⎪⎭

(5.34)

Subject to:

ηc
k̂
, ηd,v2h

k̂
and ηd,v2n

k̂
∈ (0,1) (5.35)

∀t ∈ [T d,1

k̂,m
, T d,2

k̂,m
], PEV,d,v2h

k̂,t
⩽ PEV,rated

k̂
, PEV,d,v2h

k̂,t
⩽ P act

k̂,t
(5.36)

∀t ∈ [T d,n

k̂,n
, T d,2

k̂,n
], PEV,d,v2n

k̂,t
⩽ PEV,rated

k̂
, PEV,d,v2n

k̂,t
⩽ P act

k̃,t
(5.37)

∀[T c,1

k̂,l
, T c,2

k̂,l
] ∩ ∀{[T d,1

k̂,m
, T d,2

k̂,m
] ∪ [T d,1

k̂,n
, T d,2

k̂,n
]} = ∅ (5.38)

where ηc
k̂
, ηd,v2h

k̂
and ηd,v2n

k̂
denote the efficiencies of the corresponding EV

behaviors. Specifically, ηc
k̂
represents the charging efficiency of k̂th EV. Symbols

ηd,v2h
k̂

and ηd,v2n
k̂

are the discharging efficiencies of k̂th EV via V2H and V2N

connections, respectively. Since the EV behaviors are discontinuous and may

execute at different periods, different time labels are proposed. For example,

time parameters T c,1

k̂,l
and T c,2

k̂,l
in Equation (5.33) represent the start time and the

end time of the lth charging period. The definitions of the time parameters in EV

discharging periods are similar to Equation (5.33).

Furthermore, the discharging power via V2H connection (PEV,d,v2h

k̂,t
) cannot

exceed the rated power (PEV,rated

k̂
) nor the actual power required by the household

(P act
k̂,t

) as it is shown in constraint (5.36). Constraint (5.37) is similar to (5.36).

Variable P act
k̃,t

represents the actual load demand of the neighbours household

which receives the power assistance from the EV household via V2N connection.

As shown in constraint (5.38), EV charging and discharging are not allowed to

operate simultaneously for the purpose of protecting the EV battery from damage.
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Energy Trading Model in Neighbourhood

The proposed EVs assisted NES model ensures energy trading in the

neighbourhood via V2H and V2N connections. However, it is necessary to declare

the trading policy in the neighbourhood in advance as follows.

(i) The EV energy will be provided in priority to satisfy the load demand of

the household which owns the EV.

(ii) After (i), the available EV energy will be used in priority to supply the

households which are not equipped with any energy storage units (e.g., EVs.).

(iii) If multiple EVs have available energy, the EV with the most energy reserve

will be adopted in priority to assist a neighbours’ load demand.

(iv) If multiple households require energy assistance, the household which

requires the largest load demand during a high pricing period will receive the

energy sharing in priority and each house can obtain energy assistance from only

one EV energy provider.

(v) The distribution of the EV energy will follow the principle of maximising

the benefits of the EV provider.

In addition to these, BNES
k̂

and BNES
k̃

are proposed to describe the obtained

benefits of the households who sold EV energy and received energy assistance,

respectively, via the NES model. Hence, BNES
k̂

and BNES
k̃

can be formulated as

follows.

BNES
k̂
= θ% ⋅ (Cdmd

k̃
−CEV,c

k̂
) (5.39)

BNES
k̃
= (1 − θ%) ⋅ (Cdmd

k̃
−CEV,c

k̂
) (5.40)

subject to:

Cdmd
k̃
−CEV,c

k̂
> 0 (5.41)

where Cdmd
k̃

is the cost for electricity demand without EV sharing within a none

EV household and CEV,c

k̂
is the cost for EV charging of the energy sharing part.

θ is a profit distribution parameter and normally θ% = 0.5, which means the

participants in energy trading share the profits equally. However, the energy

transaction via NES model occurs only when it is profitable as shown in Equation
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(5.41). Obviously, this type of EV based energy sharing model is beneficial for

the trading participants on both sides.

5.3.3 Problem Formulation and Optimisation

The objective of this work is to minimise the total daily cost of energy usage

for the residential network with K households as well as shaping the load to a

proper level in peak demand time. To begin with, the day is split into equal time

divisions with a time interval and indexed as t. The total cost function is given

in Equation (5.42).

min TC =
K

∑
k=1
{

24

∑
t=1
(Rt ⋅W grid

k,t ) −B
NES
k } (5.42)

where Rt is the real-time electricity price, W grid
k,t is the energy consumed on

the grid of the kth household and BNES
k represents the cost benefit that the

householder can obtain in energy trading in the neighbourhood by using the

NES model.

However, in order to minimise TC, it has to minimise each TCk which denotes

the total cost of the kth household in the network. Therefore, the objective

function can be represented as:

min TC =
K

∑
k=1

min {TCk}

=
K

∑
k=1
{min {

24

∑
t=1
(Rt ⋅W grid

k,t )} −max {BNES
k }}

(5.43)

According to the objective function in Equation (5.43) and the energy trading

policy in 5.3.2, the optimisation process can be executed in two stages. First, it

minimises the total cost for electricity bills by optimally allocating the EV energy

via V2H connection. Second, it maximises the benefit from energy transaction

in the neighbourhood by optimally distributing the available energy via V2N

connection. Based on the previous model descriptions, both optimisation stages

are linear problems. Therefore, mixed-integer linear programming (MILP) has

been used to obtain the optimal solution. However, the description of the

technique is not the focus of this study and so it is not emphasised here.
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Under the given models and the relevant constraints, the proposed DR

strategy is able to optimally schedule appliances within the multi-household

network in accordance with the comprehensive affecting factors, such as EVs’

behaviors, user preferences, and load scheduling priorities. The maintenance cost

for EVs and home appliances is neglected in this work.

5.4 Case Study

5.4.1 Case 1 - EV Assisted DR Strategy for a Single
Household

Case 1 demonstrates how the proposed EV-APS DR strategy can be applied

to a household to alleviate the load burden in peak demand periods and save

electricity bills.

Case Description

First of all, the selected time interval for the optimisation is set as 3 minutes (0.05

hr). The households comprise over 15 types of commonly used loads covering

both CS and FS appliances. The rated power and the pre-set operating time

of the corresponding appliances are given in Table 5.3. The EV and four other

commonly used appliances, hot water tank, dishwashing machine, washer and

drying machine, are considered as the flexible loads in this study.

In addition, the ε parameters are given to indicate the priorities of the related

loads. According to user preferences, they are assumed as, ε0 < ε1 < ε2 < ε3 < ε4,

which means EV charging is assigned the highest priority in scheduling among

all FS loads. Besides, in accordance with the operating habits, the objective

scheduling time for these appliances are set randomly, such as EV charging,

[0:00-8:00]; hot water tank, [17:00-22:00]; dishwashing machine, [18:30-24:00];

washer, [17:00-24:00]; drying machine, [0:00-8:00].

Moreover, the Tesla-Model-S (EV) with a battery rating of 30 kWh (up to

60 kWh) is employed in the case study. On the one hand, it is provided with a

charging wall connector (1-phase grid) limited to a charging power of 7.4 kW. On

the other hand, the discharging power for household appliances is up to 3.0 kW
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as shown in Table 5.1. The charging and discharging efficiencies are considered

as η1=η2=0.95. It is also considered that the householder always arrives home

at 5:00 p.m. with 18 kWh (60%) remaining energy in the EV battery and leaves

home at 8:00 a.m. the next morning with a fully charged EV battery (100±5%,

30±1.5 kWh). The minimum remaining energy in the EV is restricted to 7.5 kWh

(25±5%) to avoid deep discharge as this may cause damage to the battery and

reduce battery life [209].

Table 5.3: Pre-set household appliances information

CS Appliances Power (kW) Operating Time

Refrigerator 0.1 0:00-24:00

Water Dispenser 0.1 0:00-24:00

Toaster 0.6 7:30-7:45

Microwave Oven1 2.4 7:30-8:00

Lights 0.4 17:00-24:00

Electric Cooker 0.5 17:00-17:45

Electric Kettle 2.0 17:15-17:30

Microwave Oven2 2.4 17:30-18:00

Television 0.2 18:00-23:00

Cleaner 0.9 19:00-19:30

Laptop 0.4 21:00-23:30

Hair-Drier 2.0 22:30-23:00

FS Appliances Power (kW) Operating Time

EV, ε0 7.4 18:00-20:00

Hot Water Tank, ε1 2.5 20:00-22:00

Dish Machine, ε2 0.5 18:30-19:15

Washer, ε3 0.6 19:00-20:15

Drying Machine, ε4 2.5 20:30-21:30

Furthermore, the UK dynamic pricing data of a typical day [210] used in this

case is presented in Figure 5.3.

Simulation Results

It is assumed that the threshold of household demand is 8 kW in this study.

Figure 5.4 presents the overall load shaping results of the household appliances.

Specifically, Figure 5.4(a) shows the original load profile without DR. It can be

seen that the peak demand time occurs between 6:00 p.m. and 8:10 p.m. The
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Figure 5.3: UK real-time pricing data

total house load exceeds the 8 kW limit during this period and the maximum

load demand is 11.5 kW which occurs at around 8:00 p.m. Additionally, (b)

and (c) present the load profiles after scheduling by using the LSC DR strategy

(presented in Section 5.1) and the proposed EV-APS DR strategy, respectively. It

is seen that the load burden is alleviated and the load decreases to an appropriate

level in both (b) and (c). Nonetheless, compared with the results in (b), the load

demand in (c) between 6:00 p.m. and 9:40 p.m. approaches to a very low level

since the EV discharging is activated during this time. As a consequence, the EV

takes 3.2 hours to charge as it is shown in (c), which is longer than the charging

time (2.1 hours) in (b).

Moreover, since the EV plays a great role in supplying power in the model,

the real-time EV remaining energy variation at household parking station when

using the proposed EV-APS DR strategy is illustrated in Figure 5.5. Specifically,

the EV arrives at home at 5:00 p.m. and between 5:00 p.m. and 10:18 p.m., EV

discharging is activated and some of the household appliances are powered by the

EV until the amount of EV remaining energy reaches the minimum threshold (7.5

kWh). However, the EV is charged from 3:00 a.m. to 6:18 a.m. the next morning
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Figure 5.4: Overall load shaping results. The load profiles of (a) without DR;
(b) by the LSC DR; (c) by the proposed EV-APS DR
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Figure 5.5: Real-time EV remaining energy variation at parking station

to enable the EV to leave with a fully charged battery at 8:00 a.m. According

to the results, it can be seen that the remaining EV energy variation directly

corresponds to the load curve in Figure 5.4(c), indicating that the proposed

EV-APS DR is correct and feasible.

Furthermore, Figure 5.6 shows the accumulative probabilities of the reshaped

load distributions by DR strategies during the peak load demand period, which

is between 5:00 p.m. and 12:00 midnight. Based on the figure, it can be seen

that the probabilities for the case Pgrid < 1 kW of the original load profile without

DR, the LSC DR shaping profile and the EV-APS DR shaping profile are 7.1%,

24.3%, and 72.9%, respectively. For the case Pgrid < 3 kW, the probabilities are

23.6%, 53.1% and 86.4%, respectively. The results indicate that the load shaping

performance of the EV-APS DR strategy is the best as a higher percentage load

is shaped to a low level compared with the others, proving that the proposed

method is an effective tool in load balancing.

The total cost is another issue of concern for customers. On the basis of the DP

tariff, the daily electric cost can be obtained. Figure 5.7 presents the accumulative

cost comparison between different DR strategies. Based on the results, it can
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Figure 5.6: Accumulative probability of the load distribution during peak load
demand hours

be seen that the proposed EV-APS DR strategy performs superior to other

approaches in comparison. The original total cost for the pre-set household

appliances in a day is about £3.60. However, it decreases to £2.90 and £2.50

by using the LSC DR and the EV-APS DR, respectively. The total cost savings

are about £0.70 and £1.10, which are equivalent to 19.4% and 30.6%, respectively.

Compared with the LSC DR strategy in literature, the proposed DR strategy in

this work has a better performance in load shaping and a higher cost saving

percentage (11.2% improved compared with LSC DR).

5.4.2 Case 2 - EVs Assisted DR Strategy for a Multi-
Household Network

A case study to demonstrate how the DR strategy with the EVs assisted

NES model can be implemented at the side of a residential community, to

simultaneously save on electricity bills and alleviate the load burden during peak

demand time, is proposed here.
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Figure 5.7: Accumulative cost comparison results between DR strategies

Case Description

The optimisation problem for the total cost minimisation is formulated as a linear

programming problem aimed to reduce the daily bill of each household as much

as possible. In the case study, the selected time interval for the optimisation is

set at 3 minutes. The adopted multi-household network is assumed to comprise

5 households. For each household, over 15 types of commonly used domestic

appliance covering both FS and CS are considered.

In addition to these, the ε parameter which is used to indicate the scheduling

priority of FS appliances (e.g., hot water tank, dishwashing machine, washer, etc.)

is randomly selected to simulate various circumstances. The objective scheduling

time for FS appliances is set between 5 p.m. to 12 midnight. according to users’

preferences.

Moreover, as not all users are able to purchase an electric vehicle, only 3/5

of the households are assumed to be equipped with EVs to support neighbour

energy sharing. For each EV device, a battery capacity of 35 kWh is used. The

charging and discharging (via V2H and V2N) efficiencies are all considered to

be 0.95 for convenience. The minimum remaining energy in an EV is restricted
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to 10% (τ = 0.1) of the battery capacity to avoid the deep discharging. Also,

the parameters of EV status, time of arriving (ToA), time of leaving (ToL),

charging rate (CR), discharging rate (DCR) and energy remaining on arriving

home (ERoA) of the specific EV within each household are given in Table 5.4.

Table 5.4: Electric vehicle parameter specification

Parameters House #1 House #2 House #3 house #4 House #5

EV Status Active Active Active Disable Disable

ToA (1st day) 5 p.m. 6 p.m. 7 p.m. - -

ToL (2nd day) 8 a.m. 9 a.m. 10 a.m. - -

CR (kW) 7.5 6.5 5.5 - -

DCR (kW) 3.5 3 2.5 - -

ERoA (kWh) 26 24 22 - -

Simulation Results

Figure 5.8 presents the overall load shaping results obtained using different DR

programs. It is assumed that the threshold of the overall load demand is 25 kW.

Specifically, it can be seen that the LSC DR program can slightly alleviate the

load burden, particularly around 9 p.m. This is because limited appliances are

scheduled and none of the EVs are adopted in the LSC DR program. However,

the load shaping performances of using EVs without NES and EV assisted NES

in (c) and (d), respectively, are much better than the results in (a) and (b). The

load demand of the entire network in both (c) and (d) has remained below the

threshold apparently due to the EVs discharging contributions.

In addition, compared with the load distribution in (c), the load demand in

(d) approaches to a lower level during the peak time period around 7 p.m. to 9

p.m. This is because the households without EVs received energy assistance from

neighbours via the V2N so that the overall load demand on the grid decreases. As

a consequence, it is clear that the EVs take more time to charge their batteries

at the off-peak time for usage the 2nd day. Moreover, since the EVs play a great

role in power transaction within the network, the real-time energy remaining

variations of EVs (#1, #2 and #3) at the parking station are illustrated in

Figure 5.9.
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Figure 5.8: Overall load shaping results by using different DR programs. The
load profiles of (a) without DR; (b) by LSC DR; (c) by EV without NES DR;

(d) by EV assisted NES DR.
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Figure 5.9: Real-time energy remaining variations of EVs at parking station.
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In terms of the daily electricity cost, the proposed approach offers more

benefits when compared with DR programs presented in the literature [8, 9]

as shown in Table 5.5. According to the cost results, the proposed DR with

an EVs assisted NES model performs the best with the lowest cost comparison

for all cases. Specifically, as house #1 does not participate in energy trading

in the neighbourhood due to its lower distributing priority, there is not any

cost difference between using EVs with and without NES. Nonetheless, as the

energy providers in the transaction, the costs of house #2 and house #3 are

reduced by 47.3% and 46.1%, respectively, by adopting the EVs assisted NES

model compared with the original cost. Additionally, about 10.5% and 7.4% cost

reduction can be achieved compared with the method of using EVs without NES.

On the other side of the trading, house #4 and house #5 that are not equipped

with EVs also obtain the benefits from energy sharing. About £0.24 and £0.32

which are equivalent to 10.4% and 13.7% cost savings can be gained during the

transaction for house #4 and house #5, respectively.

Table 5.5: Daily cost (£) comparison by adopting different DR programs (best
performance is marked in bold).

Methods House #1 House #2 House #3 House #4 House #5

Original 3.15 3.55 3.88 2.31 2.34

LSC 3.09 3.49 3.73 2.24 2.26

EVs Without NES 1.83 2.09 2.30 2.31 2.34

EVs Assisted NES 1.83 1.87 2.13 2.07 2.02

In overview, for this selected residential community including 5 individual

households, the total payment saving is about £5.31 which is equivalent to 34.9%

in this case. Obviously, the adopted EVs based NES model is beneficial for the

energy trading participants on both sides and significant improvements can be

achieved compared with DR programs in the literature.

5.5 Summary

The aim of this chapter was to develop efficient DR strategies with EVs, to jointly

optimise the household appliance scheduling and economic cost based on DP for

105



different scales of households. An EV-APS based DR strategy has been proposed

first. Afterwards, a DR strategy considering an EVs assisted NES model has

been studied as an extension. The numerical results demonstrated that: for the

single household network, 86.4% of the load can be shaped to a low level in peak

demand hours and that the daily electricity cost can be reduced by 30.6% by

using the EV-APS based DR strategy. For the multi-household network, the load

can be significantly shaped to an appropriate level and the daily electricity cost of

the entire network can be reduced by 34.9%. On the basis of the achieved results,

it can be summarised that the proposed DR strategies are energy-efficient tools

and can fulfill the tasks of load balancing and saving bills for the smart grid and

DR participants simultaneously.
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Chapter 6

Conclusions and Future Work

In this chapter the thesis is concluded in consideration of the instal aims and

objectives of the work, highlighting the novelty and discussing specific outcomes;

potential directions for future work are also discussed.

6.1 Conclusions

The smart grid is widely considered to be the next generation of the electricity

grid in power system reform. Among a variety of advanced technologies in the

smart grid, demand response (DR) has become an essential characteristic of the

smart grid. In this thesis, a number of significant and interconnected challenges

related to demand side management have been addressed. A comprehensive

investigation of load pattern categorisation (LPC) based on the latest machine

learning algorithms has been proposed and a number of the dynamic price (DP)

based DR strategies have been designed.

Specifically, the challenge of clarifying the scheduling object has been

resolved in Chapter 3. An innovative parametric bootstrap (PB) algorithm

incorporated with K-means++, a comparatively robust clustering technique, has

been proposed to address the cluster number determination problem as well as

clustering the load data simultaneously, under a cascade clustering scheme to

achieve LPC. A number of typical load patterns (TLPs) have been extracted as

scheduling objects for demand side management. The evaluation results indicate

that the proposed approach is more robust and reliable in finding an appropriate

cluster number than conventional methods and it also has a better performance
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in load data clustering compared with methods presented in literature. As the

proposed PB algorithm is entirely unsupervised, it can be widely adopted to solve

the cluster number determination problem for a variety of data processing tasks.

In Chapter 4, a hybrid model consisting of LS model, GP model, and BP-ANN

model has been proposed, to forecast the day-ahead real-time prices as an input

control signal in executing DR programs. The achieved forecasting results clearly

demonstrated that the proposed approach is an accurate and efficient tool in RTP

forecasting and it also significantly outperforms previously published forecasting

models.

A number of DR strategies with EVs have been developed in Chapter 5,

to jointly optimise household appliance scheduling and economic cost reduction

based on DP for different scales of households. An EV-APS based DR strategy has

been proposed first. Afterwards, a DR strategy considering an EVs assisted NES

model has been studied as an extension. The numerical results demonstrated that

for the single household network, 86.4% of the load can be shaped to a low level

in peak demand hours and that daily electricity costs can be reduced by 30.6%

by using the EV-APS based DR strategy. For the multi-household network, the

load can be significantly shaped to an appropriate level and the daily electric

cost of the entire network can be reduced by 34.9%. On the basis of the achieved

results, it can be concluded that the proposed DR strategies are energy-efficient

tools and can simultaneously fulfill the tasks of load balancing for the smart grid

and bill reduction for DR participants.

In conclusion, this thesis extends around these three challenges related to

demand side management in the smart grid. The results of LPC are used to

support the DR management and the predicted RTP plays a role as an input

control signal in load shifting. Meanwhile, the DR strategies are the core of DR

management. According to the results presented in the thesis, it can be concluded

that significant outcomes in DR management have been achieved.
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6.2 Future Work

There are a number of significant issues worthy of further study in this field.

Based on the existing achievements, future research can be focused on the

following aspects:

• Consider the bias of data in data pre-processing of load pattern

categorisation.

With the development of the era, the electricity consumption pattern of

today is different from the pattern of a decade ago. Therefore, in order to

obtain more accurate load pattern results compared with the recent results,

it is necessary to consider the bias of data into the data pre-processing based

on the proposed algorithms.

• Propose an investigation of the relationship between the number of

households in a neighbourhood and the number of EVs, and their effects

on the DR management.

In recent work, only a few households and EVs are considered in the

network. It is interesting to investigate the relationship between the number

of households in a neighbourhood and the number of electric vehicles, and

how the numbers of households and EVs can affect DR management.

• Develop an EV charging strategy for a large quantity of EVs.

With the population of EVs increasing, more and more EVs will be

connected to the power grid in the future. EV charging accounts for a

large proportion of total electricity consumption and it is also a severe issue

for the power grid. Hence, an EV charging strategy for a large number of

EVs is required.

• Involve electrical heating ventilation air conditioning (EHVAC) system in

the DR problem.

The EHVAC system is a particular home appliance within a household and

typically accounts for a significant proportion of electricity usage, especially
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during winter time. The operating time of the EHVAC system is affected

by a number of factors, such as weather conditions, house structure, human

activities, thermal dynamics, etc. Therefore, better and smarter control of

EHVAC system in a DR program is beneficial for both customers and the

smart grid.
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