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Abstract: This paper presents the design, implementation, and testing of a soft landing gear together
with a neural network-based control method for replicating avian landing behavior on non-flat
surfaces. With full consideration of unmanned aerial vehicles and landing gear requirements, a
quadrotor helicopter, comprised of one flying unit and one landing assistance unit, is employed.
Considering the touchdown speed and posture, a novel design of a soft mechanism for non-flat
surfaces is proposed, in order to absorb the remaining landing impact. The framework of the control
strategy is designed based on a derived dynamic model. A neural network-based backstepping
controller is applied to achieve the desired trajectory. The simulation and outdoor testing results
attest to the effectiveness and reliability of the proposed control method.
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1. Introduction

Unmanned aerial vehicles (UAVs) in human-unreachable environments have aroused great
interest in the civil, military, and engineering fields [1-3]. Within the group of drones, quadrotor
helicopters have gained increasing interest, due to their maneuverability, simple structure, affordability,
and agility. Information about the use of UAVs can be obtained from a number of new publications,
with topics ranging from earthquake searching to the deployment of air-dropped goods for
humanitarian purposes [4-6]. Furthermore, for missions such as delivering first-aid supplies, drones
always need ground support, such as airports or landing stations. However, outside cities and bases,
UAVs may quite easily encounter the situation that there is no suitable landing assistance infrastructure
nearby [7-9]. This will severely limit the usability of drones.

Flying animals, such as birds, can perch on trees, poles, and other non-flat surfaces which are
not suitable for UAV landing. Equipped with this soft landing ability, birds may occupy a high
vantage point [10]. They can stay there to search, forage, and rest for an extended period of
time [11,12]. As a high-challenge landing approach, perching refers to precise landing pose control
and the effectiveness of energy absorption [13]. Cory and Tedrake, of the MIT Computer Science
and Artificial Intelligence Laboratory, have analyzed and presented fixed-wing precise drone landing
tests and demonstrated that angles of attack are critical factors during the touchdown procedure [14].
Mirko Kovac from the Imperial College of London designed an aerial robot equipped with soft shock
absorbers which can land on a convex surface with diameter longer than robot’s body length [15].
Subsequently, many inspired mechanical devices have been investigated to test this hypothesis. For
example, a pitch-up touchdown sequence, consisting of distance detection, UAV nose up, and soft
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contact with a landing zone, has been proposed by Stanford University [16,17]. A passive micro-spine
grapple was proposed for perching under tree branches [18].

UAVs are, at present, continue to be sent out to achieve safety, security, and rescue missions.
Numerous robust control schemes have been developed to address the control problems in quadrotor
helicopters associated with uncertainties and delays. In [19], a dynamic model of a quadrotor
helicopter with a suspended payload was established, and a non-linear controller, without considering
the parametric uncertainty, was also presented. In [20], a switching model predictive controller
was proposed for the rejection of external disturbances. In [21], the author presented a feedback
linearization control approach by considering the disturbance from the payload. To maintain the
posture tracking performance against external uncertainties, an He theory-based approach was
proposed in [22]. As an alternative method, the sliding model control technique was used in [23]
to reduce the parameter variation effect on the closed-loop control system. In addition, a quadrotor
transportation platform involves time-varying delays. In [24], constant state delays were analyzed
within the quadrotor helicopter system. The input delays to the system were further discussed in [25].
In [26-28], radial basis function neural network (RBFNN)-based PID controllers were proposed to
control quadrotor flying robots without separating the inner loop and the outer loop. However, the
multiple non-linear uncertainties and disturbances were not considered in the design approach, which
has a sub-optimal impact on the performance of UAVs.

With the demand to land on a non-flat surface, this paper demonstrates the design and fabrication
of a novel quadrotor helicopter system. The proposed platform uses a backstepping theory-based
flight controller working with a neural network algorithm, which enables a drone to safely land
on a non-flat platform. In this paper, a non-linear flight controller is proposed. First, a RBFNN
approach is employed, in order to address the unknown disturbances. Second, the disturbances in the
position and pose control input are suppressed with the modified neural network-based methodology.
Third, the stability of the proposed control approach is proven through Lyapunov stability analysis.
Finally, the RBFNN-based nonlinear controller is verified by real-time outdoor experiments.

The main three contributions of this paper are as follows:

e The design of a novel elastomer landing gear is achieved. It guarantees safe landing on a convex
surface with diameter smaller than the quadrotor body length through a conventional vertical
landing strategy.

*  Aneural network-based backstepping technique is adopted to meet the desired vertical landing
requirement, and soft landing is achieved using the proposed controller with near-zero landing
speed. The stability of the landing control system is proved through the Lyapunov approach and
the backstepping technique.

¢ The proposed platform is challenged in a real flight outdoor scene, which validates the controller’s
effectiveness and robustness.

This paper is organized as follows. Section 2 introduces the modeling of the UAV and soft
elastomer landing gear. In Section 3, we introduce the landing control algorithm and stability analysis.
The simulation of the quadrotor helicopter landing is discussed in Section 4. The prototype of the
UAV and real-world outdoor setup used to assess the control method are demonstrated in Section 5.
Finally, the conclusion and future work are discussed in Section 6.

2. Quadrotor Modeling and Landing Gear Architecture

The quadrotor helicopter used in this work is shown in Figure 1. The structure of this UAV is
in cross mode. The quadrotor helicopter can be considered a rigid, cross-shaped frame bearing four
motors and propellers. The center of mass (COM) is set to coincide with the geometric center of the
quadrotor’s body. The attitude and altitude of the quadrotor helicopter can be controlled by changing
the speed of each rotor. As shown in Figure 1, Rotors 1 and 3 rotate clockwise, while Rotors 2 and 4
rotate anticlockwise [29-31].
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Figure 1. A cross-type quadrotor helicopter.

2.1. The Modeling of the Quadrotor Helicopter
According to the formalism of Newton—Euler approach, the quadrotor dynamics can be expressed
as [32]:
¥ = (cos¢sinbcosp + sm¢smtp) + Dy
i = (cos¢sinfsiny — sm(/)cosv,b) + Dy
Z= (cos4>cos€)— —g+D;
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where (x, 1, z) is the position of the center of the gravity of the UAV in the earth-frame; (p, g, r) denotes
the angular velocity in the body-frame; m is the total mass of the UAV; g is the gravity acceleration; !
represents the arm length of UAV; the moments of inertia are represented by Ix, Iy, and Iz, respectively;
¢, 8, and ¢ are the roll, pitch, and yaw Euler angles; ], denotes the moment of inertia; Dy, Dy, Dy,
Dy, Dy, and Dy represent the uncertain disturbances; O;(i = 1,2,3,4) is the ith propeller speed; and
Qy = O — Oy + Q3 — Q4 is the overall speed of propellers.

2.2. The 3D Schematic and Modeling of the Soft Landing Gear

As presented in Figure 2, a soft passive gear is fixed under the quadrotor helicopter to facilitate
landing impact absorption. The requirements for this end-effector include:

¢ The ideal touchdown velocities and posture of the quadrotor helicopter.

®  Suitable mechanical and material properties of the landing gear to absorb the high-speed impact
force to protect the body of the UAV, as seen in Figure 3.

¢  To fulfill the requirements for drones to achieve successful touchdown, the landing structures
must meet the need to absorb the impact forces during the landing contact.
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Figure 2. The 3D schematic of the proposed quadrotor helicopter.

The Elastosil M4601 silicone material that was used to fabricate the soft landing gear has
hyper-elastic properties. The ABAQUS package was used to simulate the impact displacement and
the reactions of the soft landing gear. In the simulation, the coefficients of strain energy were set as
C10 =0.11 and C20 = 0.02. The density was set as 1130 kg/m3.

The coordination system of the landing gear is shown in Figure 4. In the simulation, the upper
part of the gear was allowed to move in the x—z plane, while the lower part was allowed to rotate
around the x-axis. The impact load was added to the upper part of the gear along the z-axis. Figure 3
demonstrates the maximum displacement of the soft landing region when encountering different
impact forces (5N, 10 N, 15N, 20 N, and 25 N).

Figure 3. The maximum displacement of the soft landing region when encountering different forces.
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Figure 4. The proposed soft landing gear.

3. Controller Design and Stability Analysis

As shown in Figure 5, the control system of the proposed quadrotor contains two loops: An
outer loop and an inner loop. The PID control method in the outer loop is used for the position and
altitude control, while the exploited RBFNN-based control approach is implemented in the inner loop
for stable attitude control.
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Figure 5. The control block diagram of the proposed approach.
3.1. PID Position and Altitude Control Design
P, is the PID controller of UAV altitude in the z direction, which is defined as
k
P, =Kop(zqg —2) + Koy Y ts X (2g; — zi) + Kop (24 — 2), )

i=1

where K;p, K;j, and K,p are the proportional, integral, and differential coefficients in the controller,
respectively, and ¢, is defined as the time step.
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Py and P, are the PID controller of the UAV position in the x-y plane, which are defined as

Py = Kyp (xg — x) + Ky Y51 ts X (41 — x;) + Kyp (g — %)

S 3)
Py = Kyp (¥a =) + Kyt iz ts X (Vai = vi) + Kyp (Ja = 9)- (
The desired attitude angles (roll and pitch) can be derived as
P
(Pd = — arctan (Wh{) ’ (4)

_ Py
0; = arctan (Pz+ngx .

3.2. RBFNN-Based Backstepping Attitude Control Design

Attitude control using the adaptive RBFNN-based backstepping control method is shown in inner
loop of Figure 5. The attitude control of the quadrotor helicopter is controlled by three different inputs
(roll, pitch, and yaw). The attitude control in roll, pitch, and yaw have the same design procedure in
the proposed control method. For the sake of simplicity, we only take the roll channel as the example
design process to describe in this section.

The roll channel is denoted as

X1 = Xp
5
Xy = AIATY + Dy, ©)
where x7 is the roll angle and x; denotes the derivation of x;.
The external disturbance is denoted, by Dy, as
Dg == Ex + (Dx, (6)

where E, = AM,/ (I + Aly) denotes the external bounded disturbance and @, = —ALM,/[L(I; +
Aly)] is treated as the model uncertainty.
The tracking error of roll angle is defined as [33]

e1 = X4 — X1, (7)

where x1, is the desired roll angle.
Then, the derivative of e; is
61 = X14 — X2. 8)

The first Lyapunov function is chosen as
2
e

V= 9
1= )

The tracking error of roll angle velocity is defined as
ey = Xo — X14 — C1, (10)

where the stabilizing function c; is defined as

c1 = ey, (11)

where « is a positive constant.
Thus, the derivative of V; can be obtained by

Vi = e; (14 — x2) = —ejep — ael. (12)
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Then, the derivative of e, can be represented as

€y = Xp — X1y — a1 =

13
%+D9—5€1d+l¥(62+w€2). (13)
The assosicate Lyapunov function is denoted as
1o
Vo=V + ES ’ (14)
and the related sliding surface is designed as
s =key + ey, (15)
where k is a positive constant.
The derivation of V; can be obtained by
Vo = V; + 58
= —¢16y — DCE% +s (ké] + éz) (16)

M
= —ejep —wef +5 | (k—a)é; + — + Dy — #14] -
X

3.3. RBFNN-Based Observer

In real-world outdoor applications, the bound for the uncertainty Dy in the roll channel is hard
to estimate. Considering this, we chose an adaptive RBFNN observer to adapt the estimated the
uncertainty value Dy in the UAV system. The chosen RBFNN was a three-layer feed-forward neural
network [34,35].

The vector in the input layer is Z = [eg, él]T. By using the weighted sum method, the output is
derived as follows .

Do =L Wig(Z), j=1,2-- N

#(2) = exp(— 122000 ’

where W]- denotes the connective weight, N is the number of hidden nodes, M]- is the centre vector, and

(17)

j

the positive scalar 0; denotes the spread width. The receptive field function uses a Gaussian function
in our designed neural network.

3.4. Stability Analysis

The minimum reconstructed error ¢y is defined in the roll channel as
oy = Dy — Dg (W*), (18)

where W* represents an optimal weight vector in the approximation.

Then, an associated Lyapunov function is chosen as
_ 01 rexr T fars 02 £ 2
w_w+EUV—W)Mwww+E@—M, (19)
where ; and {, are defined as positive constants, and J, denotes the approximated value of the
minimum reconstructed error; Jy is provided to compensate the observed error induced by the RBFNN
uncertainty observer.
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Then, the derivation of the Lyapunov function V; is obtained as
V=V (W —W) T W-¢, (5x—3x)(§x =
—epey —aed +s | (k—a)ey + AI/I—;+D9 — X4l — (20)
G (W= W)W — (6 — &) oy
Following the backstepping control law [36], Uy is equal to My, as
Uy = My = I [—(k—a)ég + %14 — ys — hsgn(s) — Uy — Ug|, (21)

where 7 and h denote positive constants, and Uy and Uy are designed as the robust and compensated
controllers, respectively. They are denoted as shown in Equation (22)

. (22)

The derivation of Vj is obtained as

V3 = —ejep = we? — ys2 —h|s| +s [Dg — Dy (W*) — 6] —

PN . A . , (23)
T2 (6x — Ox) 0x +5 [Dg (W*) — Dp(W)] — &3 (W* —W)T W.
Then, V3 can be rewritten as
V3 = —ejey — wes — s> — hls
3 162 = el 7 5] 24)
= —z Az —hls|,
where z = [e; ;] and the symmetric matrix A is in the form
a+ k2 yk+1
- ')/k-z : ! 7 )
The adaptation laws for W and by are designed as
W=2¢(2),
i 8 (26)
T

According to Barbalat’s lemma [37], it is noted that, when V3 <0, Alis guaranteed to be positive
definite, as expressed by

|A| :'y(ac—k)—%l > 0. (27)

Thereby, the roll state of the quadrotor UAV is asymptotically stable, based on the aforementioned
condition. The other channels (pitch and yaw) control follow the same procedure, and are not described
for the purpose of simplicity.

4. Simulation

In order to successfully land on a convex surface, the quadrotor needs to descend vertically to
the landing target to avoid rolling over. The proposed RBFNN method will control the quadrotor in
order to maintain straight attitude during the landing, under the conditions of external disturbances.
The soft landing gear will demonstrate its ability to absorb the remaining impact force and help the
quadrotor to perch on a convex surface, as shown in Figure 6.
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T

Figure 6. Quadrotor successfully landed on convex surfaces with the support of the proposed soft

landing gear.

To validate the real-time performance of the controller and assess the reliability and robustness of
the proposed RBFNN-based backstepping control approach in the challenge of external disturbances,
a Hardware-in-the-Loop (HITL) environment was developed for the UAV. The simulation platform
was made up of two main parts: A hardware part and a software part. The hardware part was the
Pixhawk autopilot unit, which was used in the field tests. The software part was the Matlab aerospace
simulation environment. The hardware and software parts were connected by USB/UART to send
and receive flight data. The RBFNN-based control approach was implemented by MATLAB 2018b and
PX4 Autopilots Support from Embedded Coder.

The quadrotor helicopter model was used, for simulation validation, with the physical parameters
listed in Table 1. The disturbances were added to the model by = = 0.3 cos(0.2) through an individual
plugin. The RBFNN in the simulation used 2, 5, and 1 neuron(s) in the input, hidden, and output layers,
respectively. The centre and width in Equation (17) were chosen as m = 2 and ¢ = 6, respectively.
The coefficients {; and {» were chosen as 0.1 and 0.3, respectively. The parameters in Equation (25)
were tuned by trial and error to achieve satisfying control performance, as shown in Table 2.

Table 1. Parameters of the quadrotor helicopter.

Symbol Description Value Units
m Mass 2 kg
l Body length 450 mm
r Rotor radius 100 mm
Iy Moment of Inertia 1.85 103 kg-m?
Iy Moment of Inertia 1.85 103 kg - m?
I, Moment of I nertia 2.98 103 kg - m?

Table 2. Parameters of the backstepping sliding-mode control.

Parameter Roll Pitch Yaw

11 14 12
04 0.4 0.3
16 23 21
1.1 3.9 1.2

=2 w8
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Five simulation tests were carried out to investigate the accuracy and repeatability of the proposed
method, and the simulation path can be seen in Figure 7. The simulation steps were as follows:

1. The quadrotor started from an initial position A(0,0,0).

2. The quadrotor flew to the position B(2,2,6) and hovered there for attitude control tests; these
results can be seen in Figure 8.

3. The quadrotor descended to the position C(4,2,2) with a speed between 5-8 m/s.

4. The quadrotor, then, received the landing position D(6,2,0). The UAV began to adjust its altitude,
attitude, and velocity for the landing tests.

5. The quadrotor landed on the target without a high-speed impact.

In these tests, the numerical simulation demonstrates that all the quadrotor attitude states had
a small steady-state error, subject to the external disturbance. As shown in Figure 8 and Table 3,
the steady-state error was thoroughly eliminated in a short time using the RBFNN-based backstepping
control method.

Table 3. Setting time and steady-state error in the hovering tests.

Attitude Setting Time (s)  Steady-State Error (Degree)

Pitch 1.1 0
Roll 2.0 0
Yaw 1.1 0

Figure 7. Path and waypoints of the quadrotor in simulation tests.
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Figure 8. Simulation curves of the quadrotor states in hovering stable tests.

Table 4 demonstrates the Root Mean Square Error (RMSE) of the touchdown position, related to
the target surface position. From this, we can conclude that the goal-directed strategy could accurately
control the quadrotor, which smoothly and precisely landed on the target (i.e., the velocity and distance
both decreased to zero at almost the same time). Accordingly, the simulation results demonstrate
that the proposed controller was capable of attaining satisfactory stable hovering and soft landing.
Additionally, & can increase the response speed by adding to it’s value, while huge increases in « will
cause system instability. The steady-state error increases by reducing the value of k.

Table 4. Simulation landing position error.

RMSE Horizontal X,Y [m] 0.03
RMSE Vertical Z [m] 0.02

5. Outdoor Experiment of the Quadrotor with Soft Landing Gears

To further test the proposed control approach performance in the outdoor experimental situation.
The system shown in Figure 9 is proposed to meet the requirements of non-flat surface landing tasks.
The onboard devices include three units: The Flight Unit (FU), the Computing Unit (CU), and the
Landing Gear (LG).
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Figure 9. System structure of the quadrotor helicopter and the soft landing gear for the
outdoor experiments.

The time-consuming complex tasks, such as path planning, GPS waypoint receiving, and manual
switch engaging, are performed on the CU, which has an onboard processor. The position and altitude
control are made on the FU. The FU receives speed values, hovering requirements, and landing tasks,
sent from either the CU or from a human pilot equipped with remote controller (RC).

The integrated systems of the quadrotor helicopter are listed as follows:

¢ Flight System
Autopilot devices: The onboard flight assistant device is a Pixhack-V5 flight autopilot board. The
board is based on the Pixhawk open hardware design; it runs PX4 on the NuttX OS and is fully
compatible with the PX4 firmware [38,39].
Airframe: The structure of the quadrotor cross-shaped frame was built using polyvinyl chloride
(PVC). The quadrotor UAV is equipped with four brushless DC motors and four Electronic Speed
Controllers (ESCs).
Attitude and altitude control: The 3D position is estimated by jointly using IMU and GPS.
Communication Protocol: The communication link used onboard is the Mavlink protocol.
The IMU and the onboard processor use this protocol to send command data [40]. The UAV and
GCS are connected through a universal asynchronous receiver/transmitter (UART).

e Landing System
Control devices: A PDMS-based four-finger soft landing gear mounted on the bottom the
quadrotor body.

To evaluate the soft landing gear performance, twenty real field experiments were carried out
in an open-space test field, as shown in Figure 10. The flight tests were performed under different
weather conditions. The external wind speed was below 5 m/s. To date, the quadrotor helicopter with
soft landing gear has successfully achieved stable landing on non-flat surfaces by using the proposed
control approach.

During the tests in open space, there was always one pilot inspecting the state of the drone and
one ground crew member monitoring the flight testing field. The ground crew was in charge of the
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GCS. A human pilot took control over autopilot unit using the RC transmitter. Both personnel haD the
option to send a full shutdown command to switch off all rotors immediately.

Figure 10. The proposed quadrotor helicopter system successfully landing on an outdoor non-flat
surface with the support of the RBFNN controller.

During the experiments, the quadrotor helicopter attempted to land on a non-flat surface, as
shown in Figure 10, which is common in real-world situations. In each of these 20 experiments,
the propsosed quadrotor helicopter successfully landed on a non-flat surface without rolling over.
Figure 11 displays the velocity, attitude estimation, and altitude over time in the landing process.
Table 5 shows the RMSE of the touchdown position related to the desired position, where the vertical
errors were generated by the quadrotor speeds decreasing to zero before solid contact with the surface.

Table 5. Field landing position error.

RMSE Horizontal X,Y [m] 0.07
RMSE Vertical Z [m] 0.06

Impact absorbing tests were implemented by controlling the quadrotor landing with different
descent speeds (0.5 m/s, 1 m/s, 1.5 m/s, and 2 m/s). The relative landing accelerations were obtained
by the Pixhawk accelerometer. The peak accelerations during the landing impacts were 21 m/s?,
47 m/s%,96 m/s?, and 194 m/s?, respectively. Therefore, the impact forces that the soft landing gear
encountered were 42 N, 94 N, 192 N, and 388 N, respectively. As demonstrated, the soft landing gear
was fully capable of absorbing the landing impact without any damage to the structure of the UAV
body. We also challenged the conventional rigid gear to land on a convex surface which was smaller
than the quadrotor’s body length. In these five challenges, none of them could successfully keep their
balance on the surface and maintain a stable landing. According to the results, it is clear that the
smooth and precise landing requirements of UAV were well-satisfied by the proposed RBFNN-based
controller and soft landing gear.
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Figure 11. Plots of the velocity, attitude, and altitude over time during the landing procedure.
6. Conclusion and Future Work

This paper demonstrates a quadrotor helicopter landing control procedure through an
RBFNN-based backstepping control approach. First, a soft landing gear is designed that effectively
absorbs the landing impact force. Second, an RBFNN-based backstepping control system is designed
for the quadrotor helicopter. Third, a Lyapunov analysis is used to prove the stability of the proposed
control system with external disturbances and uncertainties.

The soft landing gear and the RBFNN-based backstepping control methods work together to
render the quadrotor helicopter system able to softly and precisely land on a challenging, non-flat
surface. The effectiveness of the proposed RBFNN-based backstepping control strategy was further
tested in field experiments. Future work will focus on enabling the quadrotor UAV to detect and
choose the landing zone autonomously, without the support of GPS.
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