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Abstract. The consumption of water with fluoride concentration higher 

than 1.5 mg/L (WHO recommended limit) is recognized to cause serious 

diseases. Fluoride removal from natural contaminated waters is a 

worldwide priority for more than 200 million people. The octacalcium 

phosphate (OCP), a mineralogical precursor of bio-apatite, is here tested as 

a fluoride remover. A new two-step method for the synthesis of OCP is 

proposed; it consists of 1) synthesis of brushite from calcium carbonate 

and phosphoric acid and, 2) subsequent hydrolysis of brushite. Fluoride 

removal experiments were performed in batch-mode using 200 mg of OCP 

in 50 ml solutions with different initial concentrations of fluoride (from 40 

to 140 mg/L). Most of fluoride is removed within the first two hours, 

whereas the WHO limit of 1.5 mg/L is reached within a minimum of 3 

hours for a starting F- concentration of 40 mg/L, and in about 12 hours for 

a starting F-concentration of 80 mg/L. One gram of OCP can remove up to 

26 mg of fluoride. The pH of the solution after the treatment is within the 

range of drinking water. XRD characterization of the solid phases, before 

and after the experiments, indicates that OCP transforms into fluorapatite 

via F- removal from solution. 

1 Introduction 

Fluorine is considered an essential micronutrient for human health as fluoride (F-). 

However, if consumed in high amounts for a long time, fluoride can cause serious health 

problems, such as dental and skeletal fluorosis, birth defects and neurological disorders. 

The WHO (World Health Organization) set at 1.5 mg/L the F- concentration for drinking 

water [1]. The usual consumption of water with high F- concentration is a global concern 

affecting millions of people living in the East African Rift Valley (EARV) [2]. This 

research is part of the FLOWERED project, a HORIZON2020 project, aimed at developing 

a defluoridation method for drinking water suitable for the rural areas of EARV; the 

method should be low-cost, easy-to-use, effective and free of collateral effects on treated 

water. 

The inorganic part of animal and human bones and teeth consists of hydroxylapatite 

(HAP) but, in the presence of high F- exposure, the F- can be accumulated into the hard 

tissue by means of the formation of fluorapatite (FAP) instead of hydroxylapatite [3]. 
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Taking into account that the octacalcium phosphate (OCP) is the precursor of bio-apatite 

[4], in this work the OCP has been tested for the F- removal from solution, with the aim of 

replicating the natural mechanism of F- absorption occurring in the human body.  

2 Experimental 

2.1 Synthesis of sorbent 

All the reagents used were of analytical grade (Carlo Erba reagents ACS-for analysis). The 

synthetic OCP was obtained through a two-step synthesis method: firstly, synthetic brushite 

(DCPD, dicalcium phosphate dihydrate) was synthesized at room temperature by adding 

appropriate quantities of H3PO4 and CaCO3, in order to have a molar ratio Ca/P = 1, in 

ultrapure water (Millipore, Milli-Q®, 18.2 MΩ cm) acidified with HCl. After precipitation 

the DCPD was recovered through filtration and dried at 40 °C. During the second step, the 

OCP was obtained from the DCPD hydrolysis: 1.2 g of synthetic DCPD was added to 500 

ml of ultrapure water, with starting pH = 7.2, and heated at 60 °C for 65 hours. At the end 

of the reaction, the OCP was recovered through filtration and dried at room temperature. 

2.2 Sorption experiments 

The fluoride solutions for the sorption experiments were prepared dissolving appropriate 

amounts of NaF in ultrapure water. 

The experiments were performed in batch-mode using 50 ml conical flasks agitated 

through a rotor system (40 rpm), at room temperature: 200 mg of OCP were added to 50 ml 

of solutions with different initial F- concentrations (40, 60, 80, 120, 140 mg/L), for different 

times of reaction (from 0.5 h to 21 h). The solution pH was measured before and after the 

experiments. At the end of each experiment the solid and the solution were separated 

through filtration and recovered to carry out the mineralogical characterization and 

chemical analysis.  

2.3 Chemical analysis and mineralogical characterization 

The F- concentration in solution before and after the experiments was determined by a 

potentiometer (sensIONTM + MM340, HACH LANGE) with an Ion Selective Fluoride 

Electrode (ISE F- 9655C, HACH LANGE). To buffer the pH of solutions and avoid the 

possible interference of metallic complexes during the F- analyses, the TISAB III solution 

(Total Ionic Strength Adjustment Buffer, concentrated for F- analyses, HACH) was added 

in the recommended volume ratio 1:5 between TISAB III and standard or sample solutions. 

 The mineralogical characterization of DCPD and OCP, before and after the 

experiments, was performed by collecting XRD patterns in the 5−55 °2θ angular range on 

an automated PANalytical X’pert Pro diffractometer, with Ni-filtered Cu Kα1 radiation (λ = 

1.54060 Å), operating at 40 kV and 40 mA, using the X’Celerator detector. 

3 Results and discussion  

3.1 Synthesis 

The XRD pattern of the synthetic phase obtained from the first step of the synthesis 

reaction (Fig. 1A) shows peaks ascribable at DCPD, and the pattern of the product of 
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DCPD hydrolysis (Fig. 1B) is attributable at OCP. In both cases, peaks of secondary phases 

are not present.  

The reaction of DCPD precipitation from aqueous solution and its hydrolysis into OCP 

can be summarized, respectively, by the reactions (1) and (2): 

CaCO3 + H3PO4 + 2H2O → CaHPO4∙2H2ODCPD + CO2 + H2O   (1) 

CaHPO4∙2H2O ↔ 0.125Ca8(HPO4)2(PO4)4∙5H2OOCP + 0.25HPO4
2- + 1.375H2O + 0.5H+  (2) 

The reaction (2), obtained with 1.2 g of DCPD in 500 ml of ultrapure water, leads to 

decreasing the solution pH from 7.2 to 4.9. 

 
Fig. 1. XRD patterns of A) synthetic DCPD (ICDD reference pattern used for identification was n. 

00-009-0077); B) synthetic OCP (ICDD reference pattern n. 00-026-1056); C) the representative 

sample recovered after the F- removal experiment with initial F- concentration of 140 mg/L showing 

the formation of fluorapatite (ICDD reference pattern n. 00-015-0876). 
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3.2 Fluoride removal experiments  

In all experiments, most of dissolved F- is removed from solution during the first hours 

after the addition of OCP, then the F- concentration in solution decreases slowly (Fig. 2). 

The time required to reach the F- equilibrium in solution varies, as a function of the initial 

F- concentration, from 3 hours (F- = 40 mg/L) to 16 hours (F- = 140 mg/L).  

 

Fig. 2. The F- concentration in solution during the F- removal experiments. 

The OCP proves to be a very effective F- remover. In the experiments with starting F- 

concentrations equal to 40, 60 and 80 mg/L more than 99% of F- is removed, whereas the 

percentage of F- removed reaches 76% in the experiment with the highest initial F- 

concentration (Table 1). Moreover, at the end of the experiments, the overall water quality 

is unchanged: the solution pH value slightly decreases, remaining in the range suggested by 

WHO (6.5 - 9.5) for drinking water. 

Table 1. Solution pH values measured before (0 h) and after (21 h) the sorption experiments, and 

concentration of residual dissolved F- and its percentage removed from solution at the end of the 

experiments (21 h). 

Experiment pH F- (21 h) F- removed 

 0 h 21 h mg/L % 

F- 40 mg/L 8 6.52 0.03 99.9 

F- 60 mg/L 8 6.62 0.53 99.1 

F- 80 mg/L 8 6.72 0.71 99.1 

F- 120 mg/L 8 6.92 28.5 76.2 

F- 140 mg/L 8 6.96 37.3 73.4 

 

The results suggest that the OCP, in the presence of dissolved F-, is very unstable and 

tends to transform into fluorapatite (FAP); this is supported by mineralogical XRD analysis 

of representative samples: the characteristic peaks (010), (020) and (110) of synthetic OCP 

(Fig. 1B) are no longer detectable in the solid recovered at the end of the experiment 

performed with an initial F- concentration of 140 mg/L, whereas the most intense peaks 

(002) and (211) of FAP clearly appear (Fig. 1C). The F- removal process can be represented 

by the reaction (3): 
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Ca8(HPO4)2(PO4)4∙5H2OOCP + 1.6F- → 1.6Ca5(PO4)3FFAP + 1.2HPO4

2- + 5H2O + 0.8H+  (3) 

 

On the basis of the stoichiometry of reaction (3), 1 gram of OCP can remove up to 29.4 

mg of F-. The maximum empirical F- removal capacity of OCP obtained from sorption 

experiments is 25.7 mg/g, confirming the good potential use of OCP for water 

defluoridation and indicating that OCP is more effective than synthetic hydroxylapatite 

(HAP) and synthetic brushite (DCPD) for water defluoridation [5]. 

4 Conclusion and further development 

In this work, synthetic octacalcium phosphate (OCP), a precursor of fluorapatite (FAP), 

was tested for water defluoridation. Results obtained from batch F- sorption experiments are 

promising and encourage further investigations. The OCP is unstable in solution and in the 

presence of dissolved F- tends to transform into FAP. The maximum empirical sorption 

capacity measured is 25.7 mg F- for 1 g of OCP, very close to the maximum theoretical 

stoichiometric capacity (29.4 mg/g). In addition, the defluoridation with OCP does not 

affect the overall quality of water; indeed, during the removal reaction, the solution pH 

slightly decreases, remaining in the range suggested by WHO for drinking water. Further 

studies should be addressed to evaluate the effect of coexistent anions on the F- removal 

capacity and test the OCP with natural fluoride-rich waters used by the rural communities 

of the East African Rift Valley for domestic and drinking use. This step will be crucial to 

assess the real possibility of applying the OCP to water defluoridation in the field as a 

simple, low-cost, easy-to-use and effective method. 
 

This research was financially supported by FLOWERED project (Coordinator G. Ghiglieri), a 

Horizon 2020 European funded project (Grant Agreement - N. 690378) (www.floweredproject.org). 

References 

1. H. G. Gorchev, G. Ozolins, WHO Chron. 38, 104-108 (2011) 

2. K.M.K. Kut, A. Sarswat, A. Srivastava, C.U. Pittman, D.A. Mohan, Groundw. Sustain. 

Dev. 2–3, 190-212 (2016) 

3. E.D. Eanes, A.H. Reddi, Metab. Bone Dis. Relat. Res. 2, 3-10 (1979) 

4. R. Xin, Y. Leng, N. Wang, J. Cryst. Growth 289, 339-344 (2006) 

5. S.S. Waghmare, T. Arfin, Int. J. Innov. Res. Sci. Eng. Technol. 4, 8090-8102 (2015) 

 

5

E3S Web of Conferences 98, 09012 (2019) https://doi.org/10.1051/e3sconf/20199809012
WRI-16


