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Abstract   

 

Launch-vehicle primary structures like cylindrical shells are increasingly being built as 

monolithic composite and sandwich composite shells. These imperfection sensitive shells are 

subjected to axial compression due to the weight of the upper structural elements and tend to 

buckle under axial compression. In the case of composite shells the buckling load and 

imperfection sensitivity depend on the laminate stacking sequence.  

 

Within this paper multi-objective optimizations for the laminate stacking sequence of composite 

cylinder under axial compression are performed. The optimization is based on different 

geometric imperfection types and a brute force approach for three different ply angles. Decision 

tree-based machine learning is applied to derive general design recommendations which lead to 

maximum buckling load and a minimum imperfection sensitivity. 

 

The design recommendation are based on the relative membrane, bending, in-plane shear and 

twisting stiffnesses. Several optimal laminate stacking sequences are generated and compared 

with similar laminate configurations from literature. The results show that the design 

recommendations of this article lead to high-performance cylinders which outperform 

comparable composite shells considerably. The results of this article may be the basis for future 

lightweight design of sandwich and monolithic composite cylinders of modern launch-vehicle 

primary structures. 
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Abbreviations and glossary 
Exp. Experiment 

F Axial Load 

GNA Geometrically nonlinear analysis 

KDF Knockdown factor 

L Cylinder length 

MGI Measured geometric imperfections 

N Buckling load in general 

R Radius of cylindrical shells 

SBPA Single boundary perturbation approach 

SPCA Single perturbation cutout approach 

SPDA Single perturbation displacement approach 

SPLA Single perturbation load approach 

t Wall thickness of cylindrical shells 

tply Ply thickness 

u Axial shortening 

 Ply angle 

 Ply angle 

 Ply angle 

 knockdown factor  
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1 Introduction  
 
Thin-walled shell structures, like cylinder are important structural elements for launch-vehicle 

systems. These shells are subjected to axial compression due to weight of the upper structural 

elements and propulsive loads during launch. Within this article, the maximum load carrying 

capability of thin-walled cylindrical shells under axial compression is defined as the buckling 

load. 

Launch-vehicle primary structures are increasingly being built from fiber-reinforced composite 

materials [1]. These materials can have special advantages when compared to metals like high 

specific strength and stiffness as well as good environmental and fatigue resistance [2], [3]. 

Besides monolithic composite shell structures, sandwich composite structures which consist of 

a lightweight core and high strength and stiffness facesheets are also used as launch-vehicle 

primary structures [4].  

A large number of composite cylinders were tested in order to understand buckling of composite 

shells under axial compression. The buckling results are shown in Fig. 1 by means of a 

knockdown factor (which is herein defined as a ratio of the experimental determined buckling 

load to the theoretical perfect buckling load) versus the radius-to-thickness ratio (R/t – shell 

slenderness or thinness). The experimental data collection in Fig. 1 (left) shows that there is a 

significant deviation between the buckling theory and the corresponding experimental results.  

 

 

Fig. 1: Distribution of the experimental data of axial compressed cylindrical composite shells for different R/t ratios (left) and 

different Batdorf Parameter Z with Threshold design curve (right) 

 

A main cause for the large discrepancy between buckling theory and experiment are geometric 

imperfections. Koiter [5] showed that geometric imperfections can reduce the buckling load of 

thin-walled shells significantly. Geometric imperfections are defined as shape deviations from 

the ideal structure. Depending on the shape and amplitude of the geometric imperfections; a 

single dimple appears within the shell during loading. This single dimple initiates the buckling 

process and occurs in thin-walled shells like cylinders [6], [7], cones [8] and spheres [9], [10]. A 

significant number of researchers investigated the influence of different geometric imperfections 

[11], like axisymmetric imperfection [12] and real measured imperfection [13], on the buckling 

load.  

However, the buckling load of thin-walled shells is not only reduced by traditional geometric 

imperfections. But also by non-traditional imperfections like loading imperfections [14], [15] or 

delamination imperfections as recently shown by Wang et al. [16]. Loading imperfections are 

defined as the deviation from the perfect homogenous load introduction of a shell. There are 

several known different loading imperfections like local concentrated loading imperfections 

[17], [18] and uniform bending of the shell edge [19]. The buckling load reduces significantly if 
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loading imperfections occur which was shown in [20]. Therefore they have to be considered in 

the design process as well. 

New design criteria for full-scale [21], [22] and sub-scale stiffened metal [23], [24] and sandwich 

composite shells [4], [25], [26] are currently being developed by NASA in the Shell Buckling 

Knockdown Factor Project (SBKF, references [27] and [28]). A detailed summary regarding the 

SBKF project is given in [29] and [30]. 

A similar project started 2012 in Europe, the DESICOS project [31] (new robust DESign 

guideline for Imperfection sensitive COmposite launcher Structures) to develop and validate 

new deterministic [32], probabilistic [33] as well as experimental [34], [35] design approaches 

for composite shells [36], [37], [38], [39]. A comprehensive overview regarding this project is 

for example given in [2]. 

Recently, comprehensive imperfection sensitivity studies for cylindrical [25] and conical [40], 

[41] sandwich composite shells were published which indicate that the current NASA 

recommendations for composite shells may be very conservative for modern launch-vehicle 

structures. Consequently, it was suggested to investigate the buckling response of composite 

sandwich shells through buckling tests and analytical predictions. In order to perform less 

expensive and at the same time representative buckling tests for composite sandwich shells a 

new scaling methodology was proposed by Balbin et al. [42]. 

An alternative to buckling tests and analytical predictions are lower-bound methods like the 

single boundary perturbation approach (SBPA) [43], [8] or the worst multiple perturbation load 

approach (WMPLA) [44], [45]. The SBPA is a numerical design approach which is realized 

using finite element simulations [46], [47]. The advantage of this methodology is that no 

information regarding imperfections measurements are required [48]. This method can also be 

used to study the imperfection sensitivity of composite shells which was shown extensively in 

[49]. Studies in [50] show that the SBPA delivers robust (conservative with respect to 

experimental results) lower-bounds for composite shells which lead to a new design load bound 

for thin-walled composite cylinders which is given by equation (1): 

 𝜌𝑇𝐻 = ΩTH ∙ (𝑅/𝑡)
−𝜂𝑇𝐻   (1) 

 ΩTH ≈ −0.0196 ∙ (
L

R
)
2

− 0.0635 ∙ (
L

R
) + 1.3212 ,   1 ≤ 𝐿/𝑅 ≤ 3 

ηTH ≈ −0.013 ∙ (
L

R
)
2

+ 0.061 ∙ (
L

R
) + 0.08 ,   1 ≤ 𝐿/𝑅 ≤ 3 

(2) 

Evkin [51] proposed to express equation (1) by using the Batdorf parameter Z, see equation (3-

4). A comparison with experimental results in Fig. 1 (right) shows that the modified lower-bound 

by Evkin delivers conservative lower-bound estimates for Z ~ 300-2500. 

 𝜌𝑇𝐻 = 1.23 ∙ (𝑍)−0.138,   50 ≤ 𝑍 ≤ 7000 (3) 

 
Z =

L2 ∙ √(1 − 𝑣2)

𝑅 ∙ 𝑡
 (4) 

In the case of composite shells, the buckling load [52], [53] as well as the imperfection sensitivity 

[54] also depend on the laminate stacking sequence. Those results were validated within the 

BRITE-EURAM-project “Design and Validation of Imperfection-Tolerant Laminated Shells” 

(DEVILS) [55], [56]. 

First studies which optimized the ply-layup of axially loaded composite cylinders for maximum 

buckling load were published by Khot [57], Tennyson and Hansen [58] as well as Hirano [59]. 

Studies by Onoda [60] have shown that there are many optimal laminate configurations, both 

symmetric and asymmetric. The optimization of the maximum buckling load for a composite 

cylinder is a formidable task due to the presence of many local maxima which was highlighted 

by Nshanian and Pappas [61]. The maximum buckling load for a composite cylinder may be 
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based on quasi-isotropic laminate stacking which was shown by Todoroki [62]. Most 

optimization studies didn’t consider the influence of imperfections on the buckling load. 

However, studies by Hühne [63] and Elishakoff [64] have shown that the optimization for 

maximum buckling load and minimum imperfection sensitivity may lead to more reliable 

composite shell configurations than optimization for only the maximum buckling load.  

The purpose of this article is to derive general design recommendation for the laminate stacking 

sequence of high-performance (high buckling load and low imperfection sensitivity) composite 

cylinder under axial compression.  

In the second section of this article, the numerical model is presented and different imperfection 

measures are introduced. In the subsequent third section, the influence of different imperfection 

measures on the buckling load of composite cylinders is investigated. Based on the results of 

section 3 an imperfection measure is chosen to optimize a realistic laminate stacking with three 

different ply angles for maximum buckling load and minimum imperfection sensitivity in section 

4. Furthermore, a machine learning algorithm is used to evaluate the multi-objective optimization 

results of section 4 and to derive general design recommendations for composite cylinders under 

axial compression. In section 5, the design recommendation are applied to derive laminate 

configurations for monolithic composite cylinders with five different ply angles. The 

corresponding shells are analyzed and compared with optimized shells from literature. 

 

 

 

 
 
 
 
 
 
 



7 

 

 

2 Geometric imperfection and lower-bound 
analysis of axially loaded cylinders 

In this section the numerical model is presented and different imperfection measures are 

introduced and described in detail. 

2.1 Numerical model 

 
In this section, the numerical model for the optimization is presented and described. The 

investigated shells have a radius R = 250 mm, a free length L = 500 mm, a wall thickness t = 0.5 

mm and a ply thickness of tply = 0.125 mm. The material parameters for the composite shells are 

given in Table 1. The composite shells are modeled by using linear shell elements (S4R in 

ABAQUS [65]) and the finite element length was defined as 5.6 mm according to 0.5√𝑅𝑡 [66].  

 
Fig. 2: Numerical model of the cylinder 

 

The mechanical boundary conditions on both cylinder edges are defined as clamped by using 

rigid-body interactions which are coupled with a reference point. The displacement in axial the 

direction is free at the top cylinder edge for load application. Geometrically nonlinear analyses 

(GNA) are performed in ABAQUS [65] in order to determine the buckling load. 

 
Table 1: Material properties of the investigated cylindrical shells after [52] 

Material parameter Dimension 

elasticity modulus 𝐸11 - [MPa] 125774 

elasticity modulus 𝐸22 - [MPa] 10030 

Poisson’s ratio ν12 - [-] 0.271 

shear modulus 𝐺12 - [MPa] 5555 

 

2.2 Geometric imperfection and lower-bound methods 

The buckling load of the perfect (without imperfections) and of the imperfect cylindrical shell 

depends on the laminate stacking sequence which was shown by Geier [56] and Hirano [59]. 

Studies by Hühne [15], Kriegesman [67] and Friedrich [68] indicate that the laminate stacking 

sequence of a composite shell which results in the maximum perfect buckling load is different 

to the laminate stacking sequence which results in the maximum imperfect buckling load. In 

order to verify the results of the before mentioned authors two different composite cylinders are 

now presented and analyzed. 

Mesh: S4R – 5.6 mm

Stacking Sequence
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The shells were defined according to optimization studies by Zimmerman [52] and built, studied 

as well as tested by Hühne [63]. The first shell is denominated as Z07 and has the laminate 

stacking sequence [24,-24, 41,-41] which results in the maximum perfect buckling load for a 

] laminate, see Fig. 3 (left). The second shell is denominated as Z09 and has the 

reversed stacking sequence of Z07 [41,-41, 24,-24] which leads to a very low imperfection 

sensitivity but also a low buckling load, as shown in Fig. 3 (right).  

 
Fig. 3: Load displacement curves for the shells Z07 and Z09 according to a GNA and GNIA (with measured geometric 

imperfections) 

 

In order to study the imperfection sensitivity of both shells, different methods are presented and 

applied in the following. The shell surface of the test specimens Z07 and Z09 were measured 

with the optical measurement system ARAMIS and the resulting point cloud was converted to a 

finite element mesh with the software VISTIM [63]. This imperfection type is commonly defined 

as measured geometric imperfection (MGI) and allows to analyze the influence of manufacturing 

specific and realistic geometric imperfections on the buckling load.  

The MGI of Z07 and Z09 are shown in Fig. 4 and lead to a 23 % reduction of the buckling load 

in the case of Z07 and a 1 % reduction for the buckling load of Z09 as shown in Fig. 3.  
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Fig. 4: Measured midsurface radial deviations from a best-fit cylinder for the shell Z07 (top) and Z09 (bottom) 

The application of MGI is most of the time not suitable because it requires already built structures 

which have to be measured. Also, real shell structures may be burdened by multiple different 

imperfection types like inhomogeneous loading around the circumference, cutouts or wall 

thickness deviations and delamination. 

Therefore the application of only MGI may result in non-conservative design load estimations. 

In order to be independent from imperfection measurements and cover the influence of multiple 

or large amplitude imperfections, different lower-bound methods have been developed as shown 

in Fig. 5. 

 

 
Fig. 5: Perturbation concepts for the design of cylinders under axial compression: SPLA, SPDA, SBPA and SPCA (from left to 

right) 

 

Lower-bound methods should deliver a theoretical plateau for the buckling load which is equal 

or less to every buckling load caused by multiple or large-amplitude imperfections. One of the 

first realistic lower-bound methods was proposed by Hühne et al. [14], the single-perturbation 
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load approach (SPLA) causes a dimple imperfection in a cylinder by means of a lateral 

perturbation load Fig. 5 (left). The amplitude of the dimple imperfection is increased by 

increasing the magnitude of the lateral perturbation load P. 

The buckling load decreases as the perturbation load is increased until a specific plateau for the 

buckling load can be determined. The plateau is due to the membrane stress redistribution in the 

cylinder. Large-amplitude dimple imperfections lead to snap-through buckling which leads to 

local buckling of the cylinder surface and reduces the membrane stresses above and below the 

snap-through to approximately zero, therefore a further increase of the perturbation load doesn’t 

lead to a further reduction of the buckling load.  

The design load of the SPLA is defined according to Fig. 5 (left) as the first buckling load in the 

plateau range, the corresponding KDFs for the shells Z07 and Z09 are given in Table 2 and shown 

in Fig. 6 (right). The SPLA leads to a 40 % reduction of the buckling load of Z07 and a 10 % 

reduction for Z09. 

 

 
Fig. 6: Buckling load vs. perturbation reaction force according to the SPDA (left) buckling load vs. perturbation load according 

to the SPLA (right) 

 

Modern manufacturing techniques for aerospace applications deliver high quality shells 

nowadays which don’t have large-amplitude imperfections and result in a significantly lower 

buckling load reduction as shown in studies by NASA [21] and the Dalian University of 

Technology [69], [70].  

High quality shells may not suffer from snap-through buckling and a method which allows the 

quantification of the pre-snap-through imperfection sensitivity was developed by Wagner et al. 

[20]. The single-perturbation displacement approach (SDPA) [50] relies on displacement 

controlled indentations to approximate the limit load for snap-through buckling as shown in Fig. 
5 (middle left). The buckling load reduction according to the SPDA is 29 % for Z07 and 3 % for 

Z09. 

Deviations from the perfect homogenous loading of the shell may also lead to snap-through 

buckling although the shell geometry has a high manufacturing quality. A method which allows 

the quantification of snap-through buckling due to localized loading imperfections was 

developed by Wagner et al. in [49]. The single boundary perturbation approach (SBPA) [46] 

causes a dimple imperfection near the loading edge by means of a localized uneven shell edge 

as shown in Fig. 5 (middle right). For large-amplitude dimple imperfections, the snap-through 

induced local buckling event may cause early global collapse of the shell which was validated 

in [46] and shown with nonlinear dynamic simulations in [71]. Therefore, the minimum local 

buckling load is defined as design load within the framework of the SBPA. The buckling load 

reduction according to the SBPA is 56 % for Z07 and 24 % for Z09 as shown in Fig. 7 (left). 

Another, lower-bound method is based on cutouts. First studies which show that cutouts lead to 

a lower-bound for the buckling load were summarized Starnes [72] and the application of cutouts 

as an equivalent geometric imperfection was proposed by Wagner et al. [48].  
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Cutouts lead to a similar structural behavior as the local snap-through, the membrane stresses 

above and below the cutout are approximately zero (if the cutout is large enough) and the local 

buckling load approaches a plateau although the radius of the cutout increases as shown in Fig. 
5 (right). The minimum local buckling load of the SPCA lead to similar KDFs for the buckling 

load as the SBPA as shown in Fig. 7. The buckling load reduction according to the SPCA is about 

57 % for Z07 and 23 % for Z09.   

 
Fig. 7: Buckling load vs. edge perturbation according to the SBPA (left) buckling load vs. cutout to shell radius ratio according 

to the SPLA (right) 

 

Yet another measure for the imperfection sensitivity is the post-buckling load of the perfect shell. 

Studies in [73] show that the post-buckling load gives good approximations for early shell 

buckling experiments and may be considered as the absolute worst case buckling scenario. Both 

shells have the same post-buckling load of about 9 kN but different KDFs as shown in Table 2 

and Fig. 3. In every case the shell Z07 has a lower KDF for the buckling load compared to the 

shell Z09. However, the imperfect buckling load of Z07 is still higher. The test buckling load of 

Z07 was about 25 % higher compared to the test buckling load of Z09. 

 
Table 2: Comparison of buckling loads and KDFs for the composite cylinder Z07 and Z09 

Shell  Z07 Z09 

Buckling Load [kN] 

GNA 33.29  17.52 

Knockdown factors (KDF) 

MGI 0.793 0.992 

SPDA 0.710 0.971 

SPLA 0.597 0.904 

SBPA 0.436 0.762 

Cutout 0.432 0.777 

Post 0.275 0.505 

Experiment 0.648 0.896 
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3 Influence of the laminate stacking on the 
buckling load of composite cylinders 

The purpose of this section is to identify an imperfection measure which is suitable for the 

optimization of a realistic laminate stacking sequence of composite cylinders under axial 

compression for maximum buckling load and minimum imperfection sensitivity.  

For this purpose, the laminate stacking sequence [±𝛼,±𝛽] is analyzed; similar to studies in [15]. 

The ply angles  and  are varied in 5°-steps from 0°-90°, which results in 361 different shell 

configurations. In a first step the influence of the laminate stacking on the buckling load without 

imperfections is studied (perfect shell). In the second section, composite cylinders with 

optimized laminate stacking sequence for maximum buckling load from literature are presented 

and analyzed. In the third section, different lower-bound and geometric imperfection methods 

are used to study the influence of the laminate stacking on the imperfect buckling of axially 

loaded composite cylinder. The last section ends with a summary of the main results. 

3.1 Perfect shell analysis 

 
In this section the influence of the laminate stacking on the buckling load of the perfect shell 

(without imperfections) is studied and important laminate stiffness parameter are introduced. 

The buckling load NGNA of a shell without imperfections obtained by a geometrically nonlinear 

analysis (GNA) is shown in Fig. 8 (left) and the corresponding axial displacement uGNA is shown 

in Fig. 8 (right) for composite cylindrical shells with different laminate stacking sequences 

[±𝛼,±𝛽]. 

 
Fig. 8: Buckling load NGNA (left) and axial displacement uGNA (right) of the perfect shell structure for different laminate stacking 

sequences 

 

The relative membrane and bending stiffnesses affect the buckling response and the imperfection 

sensitivity of a cylindrical shell; therefore several nondimensional parameters are used in order 

to assess the shell design. The first parameters are the axial-to-circumferential membrane and 

bending stiffness ratios, A11/A22 and D11/D22, which are used as a measure of layup tailoring. 

These parameter ratios will be greater than unity for axially stiff cylinders, less than unity for 

circumferentially stiff cylinders; and will be unity for (quasi)isotropic cylindrical shells. Both 

stiffness ratios are equal for the [±α, ±β] layup shells as shown in Fig. 9.  
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Fig. 9: Buckling load vs. axial-to-circumferential membrane stiffness ratio (A11/A22) – left – and bending stiffness ratio (D11/D22) 

– right – for the [±𝛼,±𝛽] shells   

 

Axially stiff composite shells (A11/A22 >1) with a high perfect buckling load can be identified at 

[±20, ±45]. The reversed stacking sequence of the axially-stiff composite shells [±45,±20] 
results in low perfect buckling loads. Circumferentially stiff composite shells (A11/A22 <1) with 

a high perfect buckling load can be identified at [±75,±45].   
These results correspond with a finding made by Geier [56] who stated that the presence and the 

position of [+45,-45] plies strongly influences the buckling load. External placed plies [+45,-45] 

result in a high perfect buckling load and internal placed [+45,-45] plies lead to low perfect 

buckling loads. 

The in-plane shear and twisting stiffnesses, A66 and D66 and can vary greatly for laminated 

composite shells and are represented by means of the nondimensional stiffness parameters given 

by equation: 

 A66 =
𝐴66 ∙ 𝐴66
𝐴11 ∙ 𝐴22

 

D66 =
𝐷66 ∙ 𝐷66
𝐷11 ∙ 𝐷22

 

(5) 

For this case both stiffness ratios are also equal for the [±α, ±β] layup shells, see Fig. 10. 

 
Fig. 10: Buckling load vs. in-plane shear stiffness to axial and circumferential membrane stiffness – left – and in-plane twisting 

stiffness to axial and circumferential bending stiffness – right – for the [±𝛼,±𝛽] shells   

 

These parameters will be approximately 0.12 for isotropic materials with Poisson’s ratio  = 0.3 

and for sandwich shells with quasi-isotropic facesheets. Sandwich shells with cross-ply 

facesheets have values less than 0.12. 
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3.2 Maximum buckling load composite cylinders 

 
In this section different optimized laminate stacking sequences for maximum buckling load of 

composite cylinders under axial compression are compared and discussed. Hühne [15] applied 

the SPLA to determine the maximum imperfect buckling load of cylindrical composite shells 

which resulted in [±25,90,90], see Table 3. The second composite shell in this section was 

designed by Zimmerman [52], who assumed that the maximum buckling load of the perfect shell 

[±24, ±41]  also leads to the maximum buckling load of the imperfect shell, see Table 3. 

Friedrich [68] determined the maximum imperfect buckling load by using an axisymmetric 

imperfection that results in the laminate stacking sequence [±34, ±49]. The forth shell was 

designed by Kriegesmann [67] by using probabilistic methods with measured geometric 

imperfections and loading imperfections (rotation of the upper loading plane) and has the 

laminate stacking sequence [±78.75,±67.5].  
 
Table 3: Laminate stacking sequence for the composite shells and corresponding buckling load of perfect shell 

Shell ply-layup 
Method / Imperfection model A11/A22  A66 NGNA [kN] 

Hühne [15] [±25,±90] geometric dimple imperfection (SPLA) 0.70 0.05 26.04 

Zimmerman [52] [±24,±41] max. perfect shell 3.01 0.41 32.73 

Friedrich [68] [±34,±49] rotational symmetric geometric imperfections 1.38 0.50 31.46 

Kriegesmann [67] [±78.75, ±67.5] measured geometric imperfections and bending 0.10 0.17 28.43 

  
    

 

The load-displacement curves of all presented shells are shown in Fig. 11 and the buckling loads 

according to a GNA (perfect shell) are given in Table 3. 

 

 
Fig. 11: Load-displacement curve of different composite shells  

 
The results show that the shell [±25,±90] has a similar axial stiffness as the shell which was 

designed by Zimmermann [±24,±41]  although both designs have significantly different 

A11/A22 ratios. The shell design by Friedrich [±34,±49] has a lower axial stiffness and nearly 

the same perfect buckling load as the shell by Zimmermann. The shell by Kriegesmann has the 

lowest axial stiffness and also the lowest A11/A22 ratio of all four shells.  
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3.3 Imperfect shell analysis 

 

In this section different design and lower-bound methods (from section 2) are applied in order 

to study the influence of the laminate stacking sequence on buckling load of an axially loaded 

composite cylinder with imperfections.  

The imperfect buckling loads for different laminate stacking sequences according to the SBPA 

and the corresponding knockdown factor is shown in Fig. 12. There is one distinct maximum 

and one distinct minimum for the lower-bound buckling load (see Fig. 12 - left). 

Circumferentially-stiff shells have a significantly lower minimum buckling load as axially stiff 

composite shells. 

  
Fig. 12:  Lower-bound buckling load (right) and knockdown factor (left) for different laminate stacking sequences: SBPA 

  
Fig. 13:  Lower-bound buckling load (right) and knockdown factor (left) for different laminate stacking sequences: SPLA 

 
The composite shell with [±25,±90] has the highest imperfect buckling load and the lowest 

imperfection sensitivity of all shells. This laminate stacking sequence was also identified with 

the single perturbation load approach (SPLA) by Hühne [15]. The results of the SPLA are shown 

in Fig. 13 for the purpose of comparison. The design load of the SPLA is the first global buckling 

load which overestimates the lower-bound buckling load of the SBPA (minimum local buckling 

load) for circumferentially-stiff shell significantly. 

Similar contour plots for different buckling loads like the design loads according to the single 

perturbation displacement approach (SPDA) and simulations with measured geometric 

imperfection (MGI) are shown in Fig. 14 - Fig. 15. The results show that the maximum imperfect 

buckling load NSPDA has a laminate stacking sequence of [±20,±30]. 
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Fig. 14:  Lower-bound buckling load (right) and knockdown factor (left) for different laminate stacking sequences: SPDA 

 

Next, the influence of real measured imperfection on the buckling load is studied. The real 

measured imperfections were defined by a double Fourier series [74], [75] and are based on 

measurements from [33] (mean of ten different geometric imperfection patterns from ten 

nominal identical cylinders with  [±24,±41]). The maximum imperfect buckling load NMGI 

corresponds to a stacking sequence of  [±30,±50] and the lowest imperfect buckling loads 

correspond  [±45,±20] (similar to the SPDA). 

  
Fig. 15:  Imperfect buckling load (right) and knockdown factor (left) for different laminate stacking sequences: MGI 
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Fig. 16:  Lower-bound buckling load (right) and knockdown factor (left) for different laminate stacking sequences: SPCA 

 
According to Esslinger [76], the post-buckling load can also be considered as a measure for the 

imperfection sensitivity of a cylinder, see Fig. 17. The highest post-buckling load corresponds 

to the ply layup [±30, ±30] and circumferential-stiff (A11/A22 <1) shells have the lowest post-

buckling loads. 

  
Fig. 17:  Post-buckling load (right) and knockdown factor (left) for different laminate stacking sequences 
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the imperfect buckling load according to the SBPA are chosen for the optimization studies of 

section 4. 

 
Fig. 18: Comparison of the buckling load and KDF for composite cylinders under axial compression with optimized stacking 

sequences from literature 

 
Table 4: Comparison of optimized stacking sequences burdened by different imperfections with corresponding buckling loads 

in [kN] 

Shell  Hühne [15] Zimmerman [52] Friedrich [68] Kriegesmann [67] 

Perfect shell (GNA) 26.04 32.73 31.46 28.43 

MGI 25.61 27.91 28.59 27.02 

Postbuckling 6.04 7.09 6.03 3.51 

SPLA 20.66 18.99 18.22 18.09 

SPDA 20.88 23.24 21.98 18.1 

SBPA 17.32 14.14 14.07 10.38 

Cutout 12.07 14.99 13.96 9.91 

Best 2 times 4 times 1 time 0 times 
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4 Machine learning to optimize the laminate 
stacking for maximum buckling load 

In this section the chosen imperfections measures from section 3 (perfect shell and SBPA) are 

applied to generate input data for the machine learning algorithm. Subsequently, decision tree-

based machine learning is applied to derive general design recommendation for composite 

cylinder under axial compression. 

4.1 Buckling Loads for composite cylinders with [] laminate 

In this section the maximum perfect and maximum imperfect buckling load of a symmetric ply 

layup [±𝛼, 𝛽, 𝛾]𝑠 is determined in order to define the input parameter for the machine learning 

algorithm using the scikit-learn decision tree classifier. 

The ply angles , and are varied in 5°-steps from 0°-90°. The investigated shells have a radius 

R = 250 mm, a free length L = 500 mm, a wall thickness t = 1 mm and a ply thickness of tply = 

0.125 mm.  

 
Fig. 19: Buckling load NGNA of the perfect shell structure for different laminate stacking sequences normalized to the maximum 

perfect buckling load 

 
In Fig. 19 the normalized buckling load NGNA is shown for composite cylindrical shells with 

different laminate stacking sequences. All buckling loads were normalized to the maximum 

perfect buckling load and a color close to dark red indicates the laminate stacking sequences with 

the highest buckling load of the perfect shell. The results show that there are several regions with 

high buckling loads. Especially, in a range of  = 20-40,  and  = 0 & 90 which corresponds to 

quasi-isotropic behavior for example [45,-45, 0, 90]s.  
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Fig. 20: Buckling load NSBPA for different laminate stacking sequences normalized to the maximum lower-bound buckling load 

 

The results of the SBPA iteration are shown in Fig. 20 and the maximum imperfect buckling 

loads also correspond to quasi-isotropic behavior or slightly more axially-stiff shells like 

[±60,0,0]s. The highest imperfect buckling load can be identified at [±25, 90, 15]s and the highest 

perfect buckling load can be identified at [±40, 5, 85]s. Other stacking sequences which may 

result in a high performance cylinder are summarized in Table 5.  

 
Table 5: Laminate stacking sequence for high performance cylinders  

ply-layup NGNA [kN] NSBPA [kN] A11/A22  A66 D11/D22  D66 

[±25,90,15]𝑠 114.80 92.59 1.81 0.08 3.07 0.18 

[±30,90,0]𝑠 161.91 87.79 1.68 0.08 2.34 0.26 

[±40,5,85]𝑠 173.14 83.91 1.21 0.12 1.93 0.44 

[±45,90,0]𝑠 143.55 83.12 1 0.12 0.78 0.44 

[±45,0,90]𝑠 159.65 85.31 1 0.12 1.28 0.44 

[±60,0,0]𝑠 121.03 87.97 1.68 0.08 0.46 0.25 

 

4.2 Application of machine learning 

4.2.1 Decision tree-based machine learning  

 
Within this article the scikit-learn decision tree classifier [77], [78] was used and in the following 

a brief description for this approach is given. For a more detailed overview regarding machine 

learning the book by Witten [79] is recommended.  

A decision tree is based on the hierarchical tree-like partition of the input data (in this case the 

stiffness ratios and the buckling loads). The purpose of this method is to create a model which 

predicts the values of target variables based on several input features. The decision tree is defined 

as a regression tree if the target variable is continuous and as a classification tree if the target 

variable is discrete. In this case, the target variable (buckling load) is discrete and two classes 

were defined for the classification tree. The class 1 corresponds to a high buckling load (in this 

example, class 1 ≥ 32 kN) and the class 0 corresponds to the remaining buckling loads (class 0 

< 32 kN), see Fig. 21. 

 
Fig. 21: Histogram for the composite cylinders from section 3: class 0 buckling loads (left) class 1 buckling loads (right) 
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Fig. 22: Example of a classification tree for the buckling load of composite cylinders under axial compression   

 

An example for a corresponding classification tree is shown in Fig. 22. The classification tree 

consists of internal nodes and leaf nodes.  Each internal node (or decision node) has two or more 

branches and represents a test on a feature (true or false – corresponding to green or red in Fig. 

22 - left). The topmost decision node in a tree corresponds to the best predictor and is called root 

node. The leaf nodes represent a classification or decision. 

The decisions of the classification tree are based on the gini impurity criterion [79] which 

measures how often a randomly chosen element from the set would be incorrectly labeled if it 

was randomly labeled according to the distribution of labels in the subset. As the gini impurity 

is a probability its values is between 0 and 1. The decision tree algorithm will construct the tree 

such that the gini impurity is most minimized. An illustrative example for a decision tree is given 

in Fig. 22 (right). This specific example shows that the A11/A22 ratio should be between 1.83 and 

2.01 in order to have a high probability of having a class 1 buckling load. 

4.2.2 Results for maximum buckling load cylinders 

 
This section summarizes the results of the decision tree algorithm for the design of composite 

cylinder with a high buckling load. The stiffness ratios (membrane, bending, in-plane shear and 

twisting stiffnesses) for a composite shell without imperfection (perfect shell) and the 

corresponding design limits are shown in Fig. 23 - Fig. 24 and given by equation (6).  

 
Fig. 23: Buckling load (perfect) vs. axial-to-circumferential membrane stiffness ratio (A11/A22) – left – and bending stiffness 

ratio (D11/D22) – right –  for the [±α,β,γ,γ,β,∓α] shells   
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Fig. 24: Buckling load (perfect) vs. in-plane shear stiffness to axial and circumferential membrane stiffness – left – and in-plane 

twisting stiffness to axial and circumferential bending stiffness – right – for the [±α,β,γ,γ,β,∓α] shells   
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(6) 

4.2.3 Results for maximum buckling load and minimum imperfection sensitivity cylinders  

 
This section summarizes the results of the decision tree algorithm for the design of composite 

cylinder with a high buckling load and a low imperfection sensitivity. The stiffness ratios 

(membrane, bending, in-plane shear and twisting stiffnesses) for a composite shell with 

imperfection (lower-bound) and the corresponding design limits are shown in Fig. 25 - Fig. 26 

and given by equation (7).  

 

 
Fig. 25: Buckling load (imperfect - SBPA) vs. axial-to-circumferential membrane stiffness ratio (A11/A22) – left – and bending 

stiffness ratio (D11/D22) – right –  for the [±α,β,γ,γ,β,∓α] shells   
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Fig. 26: Buckling load (imperfect - SBPA) vs. in-plane shear stiffness to axial and circumferential membrane stiffness – left – 

and in-plane twisting stiffness to axial and circumferential bending stiffness – right – for the [±α,β,γ,γ,β,∓α] shells   
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5 Practical application 

 
In this section, the design recommendations from section 4.2 are used to generate composite 

cylinders with: 

 

1. Maximum buckling load 

2. Maximum buckling load and a minimum imperfection sensitivity 

 
The laminate stacking sequences which will be analyzed are based on studies by Zimmerman 

[52] and have a [] sequence. The investigated shells have a radius R = 

250 mm, a free length L = 500 mm, a wall thickness t = 1.25 mm and a ply thickness of tply = 

0.125 mm. The material parameters are given in Table 6. 

 
Table 6: Material properties of the investigated cylindrical shells after [52] 

Material parameter Dimension 

elasticity modulus 𝐸11 - [MPa] 123551 

elasticity modulus 𝐸22 - [MPa] 8708 

Poisson’s ratio ν12 - [-] 0.32 

shear modulus 𝐺12 - [MPa] 5695 

 
Zimmerman generated laminate stacking sequences which led to composite cylinders with a 

buckling load between approximately 98 kN and 260 kN. The corresponding laminate stacking 

sequence for the maximum buckling load composite cylinder is given in Table 7. 

 
Table 7: Material properties of the investigated cylindrical shells after [52] 

Laminate Stacking Reference Buckling Load [kN] 

  Perfect shell (GNA) 

[30,-30,90,-90,22,-22,38,-38,53,-53] Zimmerman [52] 260.60 

[38,-38,68,-68,90,90,90,90,38,-38] Friedrich [68] 252.93 

[25,-25,25,-25,85,-85,0,0,50,-50] Opti.-perfect 264.01 

[60,-60,0,0,0,0,30,-30,60,-60] Opti.-imperfect 217.76 

 
The design limits from section 4.2.2 and 4.2.3 were used to generate ply layups for the 
[] laminate. The ply angles are varied in 5°-steps from 0°-90° which 

may result in about 2.5 million different ply layups. The requirements for a maximum buckling 

load according to equation 6 are fulfilled by 118 configurations as shown in Fig. 27. A histogram 

for the corresponding calculated buckling loads is given in and the laminate stacking for the 

maximum buckling load is given in Table 7. 

 
Fig. 27: Histogram for the maximum buckling load cylinders which fulfil the requirements of equation (6)   
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The average buckling load of all 118 configurations is 251 kN which is very close to the 

maximum buckling load for this type of laminate configuration (264 kN). This result indicates 

that the design limits from section 4.2 are suitable for general design recommendations. 

Next, the laminate configurations with a maximum buckling load and a minimum imperfection 

sensitivity are generated. In this case, the requirements for a maximum buckling load and a 

minimum imperfection sensitivity according to equation 7 are fulfilled by 5922 configurations. 

Due to the large number of configurations, the laminate stacking with the maximum perfect 

buckling load from a sample of about 118 shells was chosen. The corresponding configuration 

has a [60,-60, 0, 0, 0, 0, 30,-30, 60,-60] stacking sequence and is compared with a laminate by 

Friedrich et al. [80] which was also designed for maximum buckling load and minimum 

imperfection sensitivity. 

The load-displacement curves for the composite cylinders with the laminate stacking from Table 

7 by Zimmerman, Friedrich and this study are shown in Fig. 28. 

 
Fig. 28: Load-displacement curve of different composite shells with 5 different plies angles 

 

The shells by Zimmerman and Friedrich have a significantly less axial stiffness compared to the 

shells from this article. As in the previous section 3, different imperfections were applied to 

determine imperfect buckling loads for these shells and the corresponding results are shown in 

Fig. 29 and given in Table 8. 

 

 
Fig. 29: Comparison of the buckling load and KDF for composite cylinders (with 5 different ply angles) under axial compression 

with optimized stacking sequences from literature  
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shell Opti.-imp. has always the lowest imperfection sensitivity (highest KDF) and also the 

highest imperfect buckling loads (except for the SPDA). The shell design by Friedrich has the 

worst overall performance. 
 

Table 8: Comparison of optimized stacking sequences (with 5 different ply angles) burdened by different imperfections with 

corresponding buckling loads in [kN] 

Shell Opti.-per. Opti.-imp. Zimmerman [52] Friedrich [68] 

Perfect shell (GNA) 264.01 217.76 260.60 252.93 

Postbuckling 84.04 87.23 76.71 57.43 

SPDA 197.20 194.50 194.90 178.00 

SBPA 132.57 150.03 117.40 105.84 

Cutout 145.13 155.32 132.31 118.51 

Best 2 times 3 times 0 times 0 times 
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6 Conclusion and Outlook 

 
The purpose of this article is to derive general design recommendations for the laminate stacking 

sequence of high-performance (high buckling load and low imperfection sensitivity) composite 

cylinder under axial compression. 

In the first step, the numerical model and state-of-the-art imperfection modeling techniques were 

presented and described in detail. The influence of different imperfection types on an academic 

laminate stacking sequences with 2 different ply angles was investigated.  Based on the results 

of section 3, it was decided to use the perfect buckling load and the imperfect buckling load 

according to the SBPA as basis for an optimization using brute force. 

A multi-objective optimization for maximum buckling load and minimum imperfection 

sensitivity of composite cylinder under axial compression with 3 different ply angles is 

performed. The results of this optimization are used as input data for a machine learning 

algorithm in order to derive general design recommendations which are based on the relative 

membrane, bending, in-plane shear and twisting stiffnesses. Subsequently, several optimal 

laminate stacking sequences are generated and compared with similar laminate configurations 

from literature. The results show that the design recommendations of this article lead to high-

performance cylinders which outperform comparable composite shells considerably. The results 

of this article may be the basis for future lightweight design of sandwich and monolithic 

composite cylinders of modern launch-vehicle primary structures. 
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Appendix  A 
In this section the decision tree for the perfect shell analysis (Fig. 30) and the imperfect shell 

analysis (Fig. 31) from section 4.2 are given. 

 

 
Fig. 30: Decision Tree for the perfect shell    
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Fig. 31: Decision Tree for the imperfect shell    
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