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Abstract 

Electric vehicles (EVs) are increasingly regarded as the way forward to deliver a much-

needed improvement in the transport sector’s sustainability profile, and the UK is 

embarking on a major transition towards them. While previous studies focused mainly on 

greenhouse gas (GHG) emissions, this article assesses the extent to which EVs may 

contribute to reducing the UK’s dependence on (mostly imported) non-renewable primary 

energy. The study combines a life-cycle model of a compact battery electric vehicle (BEV) 

with a prospective energy analysis of a range of electricity supply alternatives for the 

vehicle’s use phase. The key metric analysed is the non-renewable cumulative energy 

demand (nr-CED). Results show that, already under current conditions, the nr-CED of a 

compact BEV in the UK is lower by approximately 34% with respect to that of an otherwise 

similar internal combustion engine vehicle (ICEV). Such reduction is then expected to 

improve further under all future scenarios, indicating that a transition to EVs is indeed a 
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recommendable option to reduce the UK’s demand for non-renewable energy, especially if 

this is accompanied by a shift to a more renewable electric grid. 

Keywords Battery electric vehicles; non-renewable cumulative energy demand; life 

cycle assessment; prospective analysis 

 

1. Introduction 

The world is witnessing the first steps of a gradual shift towards electric power trains for 

passenger vehicles, which are being promoted by policy-makers as a “greener” alternative 

to internal combustion engine vehicles (ICEVs). In the UK in particular, registrations of 

electric vehicles (EVs) have soared exponentially in recent years (Nextgreencar, 2017), and 

sales of new conventional ICE vehicles will be banned after 2040 (UK Gov, 2017). The uptake 

of EVs is projected to accelerate in the next two decades with concerns over local air quality 

as well as overall emissions (Althaus, 2012; Cuenot et al., 2012; Nilsson et al., 2016). It is 

therefore important to estimate the foreseeable energy and environmental consequences 

of this impending large-scale change, by analysing the complete life cycle of typical EVs, 

while considering a range of possible electricity supply mixes used to recharge the vehicles’ 

batteries during the use phase.  

The literature that has tackled these issues has so far focused mainly on greenhouse gas 

(GHG) emissions. For instance, Faria et al. (2013) found that, depending on the grid supply 

mix of the country where they are driven, compact EVs emit between approximately -60% 

(France) to +16% (Poland) CO2-equivalents with respect to conventional ICEVs of the same 
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size segment. In a dynamic analysis focusing on the entire passenger vehicle fleet of 

Portugal, Garcia et al. (2015) found that moving from  the current fleet composed on 33% 

petrol ICEVs and 67% diesel ICEVs to a future scenario completely dominated by battery 

electric vehicles (100% BEVs in 2030), while keeping the carbon intensity of the electricity 

grid mix constant, would result in a 37% reduction in overall GHG emissions; the authors 

then performed a sensitivity analysis on the key model parameters, including the grid mix 

carbon intensity, leading to wide range of possible results. The dependence of an EV’s 

overall life-cycle GHG emissions on the composition of the electricity mix used to recharge 

its batteries was then investigated in even more detail by McLaren et al. (2016), who based 

their modelling on high-resolution time series of grid carbon intensity and EV load profiles. 

Fernández et al. (2018) again focused their analysis on GHG emissions, but instead 

approached the issue from the point of view of the discrepancy between idealized test drive 

cycles and real-world energy consumption data. Finally, Canals Casals et al. (2016) combined 

some of the elements of the studies mentioned above, by looking at the combined effect of 

a range of drive cycle scenarios with different electricity supply mixes for a number of 

European countries.  

The complementary issue of the vehicles’ demand for non-renewable energy has received 

comparatively little attention in the literature, and of those relatively few studies that did 

look into it, most focused on vehicle fuel consumption only. As a case in point, Bradley and 

Frank (2009) only analysed the direct consumption of petroleum fuels by ICEVs and EVs 

during their use phase, acknowledging that “these petroleum reduction figures do not 

account for the petroleum used to generate electricity as energy from oil makes up less than 

3% of the total US electrical energy”. Thus, their analysis failed to take into account all the 
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other types of non-renewable energy that are used: (i) in the other life-cycle stages of the 

vehicles (including extraction and processing of the raw materials for their production and 

maintenance), and (ii) to supply the electricity used by the EVs during their use phase 

(including the demand for primary energy in the forms of gas, coal and uranium).  

The purpose of this article is then to fill this knowledge gap, and assess the extent to which 

EVs may be expected to contribute to reducing the transport sector’s dependence on all 

forms of non-renewable energy, while accurately quantifying the relative importance of a 

range of factors at play. Among the latter, two stand out, namely: the higher efficiency of 

the electric power train (vs. internal combustion engines); and the composition of the grid 

mix supplying the electricity to the vehicles (which is expected to undergo significant 

changes in the decades ahead). Given that over 60% of passenger vehicle registrations in the 

UK are for compact vehicles (SMMT, 2018), it was decided to develop, and use as the basis 

for the analysis, a detailed life-cycle model that would be representative of this size 

segment. Inferences were then also made on the potential results for the whole fleet by 

means of suitable scaling factors and extrapolations. Finally, given that the vast majority of 

the non-renewable energy used in the UK is imported from abroad, the results are also 

relevant in terms of the country’s overall energy independence. 

2. Materials and Methods 

2.1 LCA model of a compact battery electric vehicle 

The chosen functional unit for the study was the cradle-to-grave (excluding end-of-life 

management) life cycle of a compact passenger vehicle, including an assumed 150,000 km 

use phase. The starting point for the analysis was a model previously co-developed with 
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colleagues from Coventry University (UK) for the analysis of a range of possible 

lightweighting strategies for passenger vehicles (Raugei et al., 2015). Rather than refer to 

any specific production car, this model was based on a theoretically derived bill of materials 

(provided in the Supplementary Materials), and conceived to be largely representative of 

the current state of the art for a typical compact vehicle, i.e., one straddling the “Mini” and 

“Supermini” UK segment designations (SMMT, 2018), which are largely equivalent to the 

corresponding European “B” and “C” segments.  

As illustrated in Figure 1, the assessment covers the following vehicle life cycle stages: 

1. Sourcing of raw materials and respective manufacturing routes; 

2. Vehicle manufacturing; 

3. Vehicle use phase; 

4. Vehicle maintenance. 

 

Figure 1.  Schematic illustration of the vehicle life-cycle stages considered in the analysis.  

 

As already mentioned, End-of-life (EoL) management as well as all associated energy credits 

arising from the recovered materials were excluded from the present analysis. This decision 

was principally based on the fact that, while many options are being considered (Ordoñez et 

al., 2016; Raugei and Winfield, 2017; Wang and Wu, 2017; Yun et al., 2018; Glencore, 2018; 

Sumito, 2018; Umicore, 2018;), a mature, standardized and widely-adopted take-back and 

recycling scheme for Li-ion EV batteries is not yet in place. An additional consideration was 
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that, when considering the existing EoL vehicle legislation (Directive 2000/53/EC) and the 

current practice in aluminium recycling (Aluminium Federation, 2013), the analysis of 

previous results (Raugei et al., 2015) indicates that the combined effect of the additional 

energy demand for EoL treatment and the ensuing energy credits, if considered, may be 

expected to only marginally affect the total nr-CED of the vehicles, and therefore not 

significantly alter the relative ranking or interpretation of the results presented here. 

The modelling of life cycle stages 1, 2 and 4 (as described above) was carried out within the 

GaBi Professional software package (Thinkstep, 2017), as was that of stage 3 (use phase) for 

the reference case of a conventional internal combustion engine vehicle (ICEV). Instead, the 

use phase of the EV alternative, including the all-important electricity supply mix scenarios, 

was modelled separately, as described in Section 2.3. All background processes, including 

those for stage 1 (material supply chains), were sourced from the widely-employed 

Ecoinvent database (Ecoinvent, 2016).  

The analysis of the vehicle’s main sub-assemblies, namely the body, chassis, power train, 

electrical system, and trim, was streamlined to a degree of granularity that was deemed 

sufficient to capture the essential life cycle energy performance traits of the two alternative 

options (ICEV vs. EV). In particular, the body and chassis were assumed to consist of 

optimized all-steel architectures, whereas advanced lightweighting alternatives using 

combinations of aluminium, magnesium and carbon fibre reinforced polymers were 

discarded as outside of the intended scope of this investigation. For more details on this 

part of the model, the reader is referred to the block diagram of the structural model and 

the foreground inventories supplied in the Supplementary Materials. 
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Two power train options were considered: firstly, one based on a 44kW ICE to provide a 

frame of reference, and then one using an electric motor of equivalent power. The electrical 

systems were also adapted to the respective power train alternatives, and included a 

conventional lead-acid battery for the ICEV, and a 24 kWh Li-ion battery pack for the battery 

electric vehicle (BEV). In particular, the latter battery pack was modelled on the basis of the 

relevant processes available in Ecoinvent, assuming a lithium manganese oxide (LMO = 

LiMn2O4) cathode chemistry, and including all the necessary ancillaries (battery 

management system, cooling system, etc.). 

This way of framing and modelling the comparison between the two power train 

alternatives essentially corresponds to assuming a retro-fit conversion of a conventional 

ICEV to a functionally equivalent BEV version. This was deemed to be relevant as it appears 

to reflect the readily implementable strategy that several manufacturers are starting to 

adopt in order to be able to quickly introduce a first fleet of BEVs to the market (Volkswagen 

2017; Ford, 2017).  

In both cases, scheduled maintenance over the assumed 150,000 km lifetime of the vehicle 

included multiple tyre, lubricant and brake pad replacements (every 30,000 km), one full 

battery replacement, and 10% outer body panel replacement (due to impact damage). It is 

worth mentioning that, on the one hand, the assumption of one Li-ion battery pack 

replacement mid-way through the expected service lifetime of the vehicle may be 

considered a conservative one for state-of-the-art BEVs, since some manufacturers have 

started to give warranties of up to 160,000 km or 8 years on the originally installed battery 

pack (Nissan, 2017). On the other hand, however, the possible future widespread adoption 
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of fast charging stations may marginally reduce the service life of the battery packs due to 

accelerated cell degradation (Neubauer and Wood, 2015). 

For the ICEV, the use phase fuel consumption was assumed to be equal to the officially 

claimed figure for the 1.2L Volkswagen Polo mk4 (the latter chosen as having approximately 

the same kerb mass and engine power as the idealized model vehicle), i.e., 6.0 L (petrol) per 

100 km under New European Driving Cycle (NEDC) conditions. The energy consumption of 

the BEV was assumed to be 15 kWh (electricity) per 100 km under NEDC conditions, which 

coincides with the officially claimed figure for the Nissan Leaf (Nissan, 2017), which is the 

fastest-growing C-segment car in the UK (Nissan, 2016); the same value also sits in the 

middle of the range recently reported for a number of compact EVs under the same NEDC 

conditions (Grunditz, 2017). While such NEDC energy consumption estimates might be 

regarded as somewhat optimistic in absolute terms (by as much as 21% according to one 

study (Mock et al., 2012)), it was considered that they would still be suitable for the 

purposes of allowing a balanced comparison between the two power train alternatives. 

Finally, the life cycle impact metric of choice to assess the vehicles’ dependence on non-

renewable primary energy over their full life cycle was the non-renewable cumulative 

energy demand (nr-CED). This metric measures the total non-renewable primary energy 

that is harvested from the environment, thereby including all direct and indirect energy 

inputs that are traceable back to petroleum, natural gas, coal and uranium reserves 

(Hischier et al., 2010; Frischknecht et al., 2015a). In particular, cumulative fossil fuel use is 

quantified on the basis of the higher heating value (HHV) of the primary resources in the 

ground, and cumulative uranium use is quantified on the basis of the nuclear fuel supply 

chain as modelled in Ecoinvent, i.e. using data for an average pressurized water reactor 
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(PWR). The latter does not include the energy content in the depleted uranium from the 

enrichment process, and may therefore be regarded as a lower-bound ‘optimistic’ value. 

2.2 First-order extrapolation to entire UK passenger vehicle fleet 

In order to allow the estimation of the nr-CED of an average passenger vehicle that could be 

considered representative of the entire UK fleet (as opposed to the “Mini” and “Supermini” 

segments only), its kerb mass and fuel (for the ICEV variant) or electricity (for the BEV 

variant) consumption were extrapolated on the basis of the weighted average values for 

each segment type. The latter figures were sourced from the available literature on the 

most popular cars for each segment in the UK (SMMT, 2018), and then rounded off to two 

significant digits. The results of such extrapolations are reported in Table 1. All other 

assumptions (lifetime, maintenance, etc.) remain the same as those detailed in Section 2.1 

for the compact vehicle. 

– Table 1 here – 

The calculation of such average vehicle’s nr-CED was then based on the first-order 

assumption that the shares thereof corresponding to life cycle stages 1,2 and 4 (raw 

materials, manufacturing and maintenance) would be directly proportional to the vehicle’s 

kerb mass, while the share corresponding to the use phase (stage 3) would be directly 

proportional to the vehicle’s fuel (or electricity) consumption. While admittedly somewhat 

crude, these assumptions were deemed robust enough for the purpose of double-checking 

whether the accurately determined results for the analysed compact vehicle would 

fundamentally remain applicable to the UK passenger vehicle fleet as a whole, at least in 
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t er m s of t h e r el ati v e or d er of pr ef er e n c e f or t h e diff er e nt s c e n ari o s ( d e s cri b e d i n S e cti o n 2. 3 

h e r ei n aft er). 

2. 3  El e ctri cit y s u p pl y s c e n ari o s f or t h e B E V u s e p h a s e 

T h e  lif e- c y cl e e n er g y p erf or m a n c e of a n E V d uri n g it s u s e p h a s e i s of c o ur s e h e a vil y 

d e p e n d e nt o n t h e s p e cifi c s yst e m t h at s u p pli e s t h e el e ctri cit y u s e d t o r e c h ar g e t h e o n- b o ar d 

Li-i o n b att eri e s. I n or d er t o pr o p erl y t a k e t hi s i nt o a c c o u nt, a n d t o p erf or m a s e n siti vit y 

a n al ysi s t o i n v e sti g at e a r a n g e of alt er n ati v e s c e n ari o s, a n ori gi n al m o d el of t h e U K 

el e ctri cit y gri d w a s u s e d. T hi s m o d el w a s c o- d e v el o p e d wit h c oll e a g u e s fr o m t h e U ni v er sit y 

of M a n c h e st er ( U K), a n d a d et ail e d d e s cri pti o n of it h a s b e e n pr o vi d e d i n t hr e e pr e vi o us 

p a p er s ( R a u g ei a n d L e c ci si, 2 0 1 6; J o n e s et al., 2 0 1 7; R a u g ei et al., 2 0 1 8). At it s c or e, t h e 

m o d el r eli e s o n a q u a ntit ati v e d efi niti o n of t h e a m o u nt s of i n st all e d p o w er f or all el e ctri cit y 

g e n er ati o n t e c h n ol o gi e s t h at c o m pri s e a gi v e n gri d mi x, t h e n c al c ul at e s t h e a m o u nt of 

el e ctri cit y pr o d u c e d b y e a c h t e c h n ol o g y u si n g a n ori gi n al u nit c o m mit m e nt m o d el ( Z h a n g et 

a., 2 0 1 6), a n d fi n all y pr o d u c e s a r a n g e of lif e- c y cl e m etri cs f or t h e c o m bi n e d gri d mi x ( al s o 

t a ki n g i nt o a c c o u nt all gri d i nfr a str u ct ur e a n d a ss o ci at e d tr a n s mi ssi o n a n d di stri b uti o n 

l o ss e s), a m o n g w hi c h t h e nr- C E D w hi c h i s of i nt er e st h er e.  

All t h e u n d erl yi n g b a c k gr o u n d pr o c e ss e s f or t h e m o d elli n g of t h e i n di vi d u al t e c h n ol o gi e s 

w er e b a s e d o n t h e c orr e s p o n di n g E c oi n v e nt pr o c e ss e s, b ut i n di vi d u all y a m e n d e d a n d 

a d a pt e d s o a s t o b ett er r e pr e s e nt t h e a ct u al t e c h n ol o gi e s e x p e ct e d t o b e i n u s e i n t h e U K at 

t h e ti m e of a n al ysi s ( U K G o v B EI S, 2 0 1 6; 2 0 1 7). I n p arti c ul ar: 

−  C o al s u p pl y i n 2 0 1 6 w a s m o d ell e d a s b ei n g i m p ort e d, m a i nl y fr o m R u ssi a, t h e U S A a n d 

C ol o m bi a, a n d b ur n e d i n p o w er pl a nt s at 3 4 % effi ci e n c y. 
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−  N at ur al g a s s u p pl y i n 2 0 1 6 w a s m o d ell e d a s b ei n g 5 0 % d o m e sti c a n d 5 0 % i m p ort e d 

( m o stl y fr o m N or w a y), a n d b ur n e d i n c o m bi n e d c y cl e p o w er pl a nt s at 4 7 % effi ci e n c y. 

Si n c e C C G T s ar e a m at ur e t e c h n ol o g y, t h eir effi ci e n c y w a s a ss u m e d t o r e m ai n t h e s a m e 

i n t h e f ut ur e t o o. H o w e v er, b y 2 0 3 5, a s h ar e of i n st all e d c a p a cit y w a s a ss u m e d t o b e 

fitt e d wit h c ar b o n c a pt ur e a n d s e q u e str ati o n ( C C S) t e c h n ol o g y, w hi c h h a s b e e n 

e sti m at e d t o i n cr e a s e t h e f e e d st o c k d e m a n d b y 1 1- 2 2 % (I P C C, 2 0 0 5); h e n c e, t h e 

c o n v er si o n effi ci e n c y of C C S- C C G T s w a s a ss u m e d t o b e r e d u c e d t o 4 0. 5 % o n a v er a g e. 

−  N u cl e ar f u el s u p pl y w a s a ss u m e d t o b e s o ur c e d fr o m t h e  s a m e mi x of c o u ntri e s a s f or 

t h e E U a s a w h ol e, i. e., m o stl y fr o m K az a k h st a n, C a n a d a, R u ssi a, Ni g eri a a n d A u str ali a 

( E ur o p e a n C o m mi ssi o n, 2 0 1 4), b e c a u s e U K- s p e cifi c i nf or m ati o n i n t hi s r e g ar d i s n ot 

m a d e a v ail a bl e b y t h e U K g o v er n m e nt. C e ntrif u g e ur a ni u m e nri c h m e nt w a s a ss u m e d 

t hr o u g h o ut, si n c e t hi s h a s s u p pl a nt e d diff u si o n e nri c h m e nt t o b e c o m e t h e m o st wi d el y 

e m pl o y e d m et h o d w orl d wi d e ( W orl d N u cl e ar Ass o ci ati o n, 2 0 1 5), a n d all p o w er pl a nt s 

w er e t h e n m o d ell e d as pr e ss uriz e d w at er r e a ct or s ( P W R), b e c a u s e t hi s w a s t h e 

t e c h n ol o g y f or w hi c h t h e m o st c o m pl et e lif e c y cl e i n v e nt or y d at a w er e a v ail a bl e. It i s 

n ot e w ort h y t h at w hil e at pr e s e nt m o st n u cl e ar p o w er st ati o n s i n t h e U K u s e a d v a n c e d 

g a s- c o ol e d r e a ct or s ( w hi c h ar e t e c h ni c all y si mil ar t o P W Rs, b ut s o m e w h at m or e 

c o m pl e x), all n e w p o w er pl a nt s pl a n n e d f or t h e f ut ur e d e pl o y m e nt ar e e x p e ct e d t o b e of 

t h e P W R t y p e (N A M R C, 2 0 1 5 ). 

−  B io m a ss f e e d st o c ks t o U K p o w er pl a nt s w a s m o d ell e d a s c o m pri si n g a mi x of p ell ets 

(i m p ort e d fr o m N ort h A m eri c a), a n d w o o d c hi p s a n d str a w ( b ot h d o m e sti c all y s o ur c e d). 

T h e p o w er pl a nt c o n v er si o n effi ci e n c y w a s k e pt at t h e r e p ort e d v al u e of 2 4 % 

t hr o u g h o ut. 
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−  H y dr o el e ctri c p o w er pl a nt s w er e m o d ell e d a s 8 7 % r e s er v oir a n d 1 3 % r u n- of-ri v er, a n d 

e x p e ct e d t o h a v e a u s ef ul s er vi c e lif e of 8 0 y e ar s. 

−  Wi n d p o w er pl a nt s w er e m o d ell e d a s a p pr o xi m at el y 5 0 % o n s h or e a n d 5 0 % off- s h or e i n 

2 0 1 6, a n d 1/ 3 o n s h or e a n d 2/ 3 off- s h or e i n 2 0 3 5. A s er vi c e lif e of 2 0 y e ar s w a s a ss u m e d 

f or t h e m o vi n g p art s a n d t h e off- s h or e fi x e d p art s, a n d 4 0 y e ar s f or t h e o n s h or e fi x e d 

p art s. 

−  P h ot o v olt ai c ( P V) i n st all ati o n s w er e m o d ell e d a s m ult i- cr yst alli n e sili c o n ( m c- Si), w hi c h i s 

b y f ar t h e m o st wi d el y d e pl o y e d t e c h n ol o g y w orl d wi d e ( Fr a u n h of er I S E, 2 0 1 6); 7 5 % of 

t h e i n st all ati o n s w er e ass u m e d t o b e r o oft o p s yst e m s, c o n si st e ntl y t h e r e s ult s of a 

st a k e h ol d er c o n s ult ati o n e x er ci s e i n v ol vi n g N ati o n al Gri d a n d t h e pri n ci p al i n v ol v e d 

a ct or s i n t h e U K (J o n e s et al., 2 0 1 4). Gi v e n t h at P V s yst e m s ar e u n d er g oi n g a r a pi d 

e v ol uti o n i n t er m s of b ot h m a n uf a ct uri n g a n d r es ulti n g m o d ul e effi ci e n c y, s p e ci al c ar e 

w a s t a k e n t o e m pl o y t h e l at e st i n v e nt or y d at a ( Fri s c h k n e c ht et al., 2 0 1 5 b; L e c ci si et al., 

2 0 1 6), a n d a ss u m pti o n s of e x p e ct e d f ut ur e i m pr o v e m e nt s ( Fri s c h k n e c ht et al., 2 0 1 5 c). 

S p e cifi c all y, m o d ul e effi ci e n c y w a s m o d ell e d a s 1 6 % i n 2 0 1 6 a n d 2 3 % i n 2 0 3 5. 

A n u m b er of k e y i n p ut p ar a m et er s f or t h e gri d mi x m o d el w er e t h e n all o w e d t o c h a n g e i n 

or d er t o r e pr e s e nt t h e f o ur alt er n ati v e el e ctri cit y s u p pl y s c e n ari o s, a s d e s cri b e d b el o w. 

 

B a s eli n e: T hi s s c e n ari o, i nf or m e d b y t h e l at e st el e ctri cit y pr o d u cti o n d at a p u bli s h e d b y t h e 

U K d e p art m e nt of B u si n e ss E n er g y a n d I n d u stri al Str at e g y ( U K G o v B EI S, 2 0 1 7), i s i nt e n d e d 

t o r e pr e s e nt t h e p erf or m a n c e of t h e c urr e nt U K gri d mi x ( e x cl u di n g t h e s m all s h ar e of 

el e ctri cit y s u p pl y t h at c o m e s fr o m a br o a d vi a t h e i nt er c o n n e ct or s wit h m ai nl a n d E ur o p e). 
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Table 2 lists the main data pertaining to the 2016 grid mix in terms of installed power 

(column 2), capacity factors
1
 (CF, column 3) and resulting electricity generation mix (column 

4).  

The CFs of thermal technologies such as coal, gas, nuclear and biomass are in principle only 

technically limited by the necessary down time for maintenance or by a scarcity of feedstock 

supply. As can be seen in Table 2, nuclear power, which is fundamentally a baseload 

technology intended to run at close to maximum output at all time, exhibits a CF near its 

theoretical maximum (78%). Combined cycle gas turbines (CCGT) are more flexible, and are 

also partly used as load-following power plants, thereby reducing their overall yearly 

average CF to 49%. The even lower (38%) CF for biomass electricity is due to the intrinsic 

limitations in supply for this type of feedstock, a large share of which is imported from 

overseas, resulting in low net energy performance (Raugei and Leccisi, 2016). Finally, the 

very low (17%) CF for coal generation is entirely due to this technology already being 

intentionally phased out at a rapid pace.  

The CFs of renewable technologies such as hydro, wind and PV are instead fundamentally 

constrained by the availability of the renewable energy flows they feed on (respectively, 

rainfall, wind power and solar irradiation), and tend to fluctuate year by year depending on 

weather conditions. Wind and PV are additionally conditioned by the absence of any ‘built-

in’ energy storage system, which means that the only way to control their output and adapt 

it to the electricity demand profile is to resort to curtailing during times of peak production, 

which of course negatively affects the yearly average CF. 

                                                           
1
 Capacity Factors (CFs) are defined as the ratio of the average effective power output to the nominal installed 

power. 
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Using the numbers presented in Table 2 in the analysis of the use phase of the BEV leads to 

an estimate of the nr-CED of operating such a BEV today. 

- Table 2 here - 

Scenario 1: This is a prospective scenario that is intended to represent the expected 

performance of the UK grid mix in 2035, based on the projected installed capacities of the 

various electricity generation technologies in the latest Future Energy Scenarios report 

issued by National Grid, under their "2 degrees" scenario (National Grid, 2017). The latter is 

the most ambitious among the grid evolution scenarios considered in the report. It assumes 

that in order to meet the projected future electricity demand, while staying on track 

towards meeting the maximum 2 degrees increase in global temperature discussed in the 

recent 21
st

 Conference of the Parties (UNFCCC COP, 2015), by 2035 it will be necessary to: 

have completely phased out coal use, have almost completely phased out natural gas use 

(and have deployed carbon capture and sequestration (CCS) on about half of the remaining 

CCGT capacity), and have aggressively boosted wind, and to a lesser extent PV, penetration 

(respectively to approximately +400% and +300% with respect to today’s installed capacity). 

Installed nuclear power is also assumed to increase by approximately +70% in absolute 

terms, thereby continuing to represent a similar relative share of the cumulative installed 

electricity generation capacity of the entire grid and providing most of the required 

baseload capacity. According to National Grid, a wide range of policy measures will be 

required to make this scenario possible, among which incentives to increase end-use 

efficiency and reduce overall electricity demand, as well as use of smart technologies to 

optimally manage the electricity demand profile. Specifically as regards the transport sector, 

this scenario assumes a rapid deployment of BEVs (up to approx. 5 million vehicles by 2030 
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and over 15 million ones by 2040) and a concomitant steady rise of autonomous BEVs, 

which are expected to eventually reach 50% of all BEVs by 2050 (National Grid, 2017). 

Adopting the installed capacities assumed by National Grid for the “2 degrees” scenario, and 

using the original unit commitment model previously developed (Zhang et a., 2016) and 

tested on similar future grid mix scenarios (Raugei et al., 2018), led to new CF estimates for 

2035, as illustrated in Table 3 (column 3). Specifically, conventional CCGTs are assumed to 

be on the wane (hence the low CF) and to be replaced by CCS-CCGTs, which will be used 

more intensively as low-carbon baseload providers (hence the higher CF vs. that for CCGT in 

Table 2). Biomass use is also expected to be ramped up (inevitably requiring more imports), 

while the CF of wind is expected to be reduced to 24% because of the need to curtail some 

peak production. The CF of PV is not affected because wind is assumed to be preferentially 

curtailed with respect to PV. 

Adopting the numbers presented in Table 3 for the use phase of the BEV leads to an estimate 

of the nr-CED of operating such a BEV in 2035, under the assumption that it will be possible 

to meet the additional demand for electricity posed by EVs using the same balanced mix of 

technologies that, on average, supply electricity for all other uses in the country. 

- Table 3 here -  

Scenario 2: This is a simple first-order approximation scenario in which all of the electricity 

required to recharge the EV batteries comes from conventional CCGTs. The rationale for 

analysing this scenario is that CCGTs are currently the most readily dispatchable technology 

that could be used in the near term to meet a sudden surge in demand caused by an early 

large-scale uptake of EVs. This particular investigation follows a similar logic (albeit to a 
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lower level of detail) as that of a previous literature study on the consequences of marginal 

electricity supply for EVs in Portugal (Garcia and Freire, 2016). 

Scenario 3: Finally, this third future scenario is intended to investigate the opposite end of 

the spectrum, i.e., the case in which all of the electricity required to recharge the EV 

batteries comes from renewable resources, and specifically a combination of 85% wind and 

15% PV generation. This scenario is intended to reflect the case in which, in the long term, 

optimal demand-side management would enable a sub-fleet of EVs to be recharged almost 

exclusively during times of peak renewable electricity production, thereby reducing or even 

avoiding the otherwise projected need to curtail excess production. 

3. Results and discussion 

Table 4 first presents the results of the analysis of the four electricity supply scenarios 

discussed in Section 2.3 in terms of their nr-CED. 

- Table 4 here - 

Figure 2 illustrates the results of the complete LCA of the analysed compact BEV under the 

four electricity supply scenarios considered, benchmarked against the functionally 

equivalent vehicle equipped with a conventional ICE power train. Figure 3 then presents the 

same results, but for an average passenger vehicle representative of the entire UK fleet, 

based on the first-order extrapolations discussed in Section 2.2. 

 

Figure 2. Life-cycle non-renewable cumulative energy demand (nr-CED) of the analysed 

compact passenger vehicle, respectively when using an internal combustion engine (ICEV), 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 

 

and an equivalent battery electric power train (BEV), the latter under four alternative 

electricity supply scenarios. 

 

Figure 3. Life-cycle non-renewable cumulative energy demand (nr-CED) of an average 

passenger vehicle representative of the entire UK fleet, respectively when using an internal 

combustion engine (ICEV), and an equivalent battery electric power train (BEV), the latter 

under four alternative electricity supply scenarios. 

 

First, it is interesting to note how, even under current (Baseline) conditions, the life-cycle nr-

CED of a BEV is already significantly lower (-34% for the compact vehicle analysed in detail, 

and -36% for the extrapolation to the average vehicle representative of the whole fleet), 

with respect to that of an otherwise similar vehicle powered by a conventional internal 

combustion engine (ICE). Also, by way of a simple sensitivity analysis performed on the 

compact vehicle, even if its use-phase electricity consumption were significantly higher at 

20kWh/100km (i.e., at the very top of the range reported in the literature (Grunditz, 2017)), 

its life-cycle nr-CED would still be 20% lower than that of the compact ICEV. This is a 

reassuring finding, which points to the fact that the on-going drive towards a progressive 

electrification of the UK passenger vehicle fleet is indeed well-guided.  

The shift to an aggressively de-carbonized grid mix such as that projected by National Grid 

under their “2 degrees” scenario (corresponding to Scenario 1 here) could then further 

reduce the vehicle’s dependence on non-renewable energy, bringing its life-cycle nr-CED 
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down to almost one half of that of the conventional ICEV (this applies both to the analysed 

compact vehicle, and to the average fleet). However, it is also noteworthy that such a future 

grid mix is expected to rely heavily on nuclear (and to a lesser extent on CCS-CCGTs) as 

baseload providers of electricity, and that while these are unquestionably low-carbon 

technologies, they are still based on the thermal (and hence inherently inefficient) 

exploitation of non-renewable primary energy resources (respectively uranium ore and 

natural gas). This continued dependence on non-renewable resources ultimately constrains 

the achievable further reductions in the nr-CED of the grid mix electricity (Table 4) and 

consequently also that of BEVs that feed on such mix. Also, as discussed in Section 2.3, 

reaching the results presented for scenario 1 will not be easy, as the grid will have to rely on 

the deployment of smart technologies (including demand-side management) in order to 

cope with the additional demand placed by the whole EV fleet. On the other hand, if 

autonomous driving does become more common in the future, the use-phase electricity 

demand of the drive train per km travelled may come down thanks to smoother flowing 

traffic requiring less acceleration and braking, which may in and of itself further reduce the 

life-cycle nr-CED of the BEV. 

Analysis of Scenario 2 highlights how a very rapid EV uptake that would initially require 

more CCGTs to be used as readily dispatchable marginal electricity producers, could result in 

a slightly worse performance in terms of nr-CED vs. that of a BEV powered by the current 

grid mix. However, overall this potential temporary dip in performance should not be the 

cause of too much concern, as even under these relatively unfavourable conditions, the nr-

CED of a BEV would still be approximately two thirds of that of a conventional ICE equivalent 

(once again, this applies both to the compact vehicle and to the extrapolation to the 
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average vehicle for the entire UK fleet). This remarkable result is clearly indicative of the fact 

that adopting more efficient electric power trains for passenger vehicles is intrinsically 

beneficial, and potentially conducive to a significantly reduced overall dependency on non-

renewable energy resources, even when the source of the electricity used to recharge the 

vehicle’s batteries is ultimately 100% non-renewable itself. In fact, a large part of this 

improvement is due to the combined higher efficiency of: (i) the electric motor (which 

typically runs at 80-95% efficiency), plus (ii) the EV charging efficiency (approximately 90%), 

plus (iii) the CCGT power plant conversion efficiency (47%), plus (iv) the natural gas supply 

chain efficiency (96% from primary resource to gas delivered to the power plant),   vs. (i) the 

ICE (which is at best approximately 30-35% efficient when running at optimal RPMs and 0% 

efficient when idling), plus (ii) the petrol supply chain efficiency (approx. 81% from crude oil 

to petrol delivered to the pump). 

Finally, the analysis of Scenario 3 highlights the very significant extent by which a BEV’s 

dependence on non-renewable energy resources could be reduced (i.e., over -70% vs. the 

corresponding ICE alternative) if the electricity to recharge its batteries could be sourced 

entirely from excess wind and PV generation. Even if achieving such results for the entire 

fleet will likely remain utopian for the UK, optimal deployment of smart technologies and 

widespread user engagement could conceivably make this a reality for at least a sub-fleet of 

BEVs in the medium-to-long term. Additionally, it is worth mentioning that the results 

produced under Scenario 3 may also be deemed indicative of the non-renewable cumulative 

energy performance of EVs today in countries where the electricity grid mix is already 

characterized by a large preponderance of  renewable energy technologies, like e.g., 
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Norway: 98% renewable (Norwegian Government, 2017) and Iceland: 100% renewable 

(Askja Energy, 2017). 

 

4. Conclusions 

This detailed analysis has shown that the potential benefits of fleet electrification, in terms 

of life-cycle non-renewable energy demand, could be very significant.  

One first fundamental factor at play in reducing the dependency on non-renewable energy 

was ascertained to be the intrinsically higher efficiency of the electric power train, as 

highlighted by the fact that even when the electricity used to recharge the EV’s batteries 

was modelled as being entirely generated by combined cycle gas turbines (and therefore 

100% non-renewable), the resulting nr-CED over the vehicle’s life cycle was still 

approximately 32% lower than for a similar conventional ICEV. This result is doubly 

important, as it also points to the fact that the larger demands for non-renewable energy in 

the other stages of an EV’s life cycle (specifically manufacturing and maintenance) vs. those 

of a conventional ICEV are not enough to offset the reduced demand in the use phase. 

Incidentally, a comparison to the results of a previous investigation (Raugei et al., 2015) also 

indicates that the transition to electric power trains holds the potential to be a far more 

effective strategy to this end than lightweighting conventional ICEVs.  

The results produced under Scenarios 1 and 3 then point to the electricity supply mix as the 

second most important factor in potentially achieving even larger reductions in the demand 

for non-renewable primary energy over the life cycle of an ever-more electrified fleet of 

passenger vehicles. 
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However, the ultimate extent of the achievable improvements in terms of reduced demand 

for non-renewable energy resources in the UK will depend on a number of technical and 

behavioural factors. Among the former are: (i) the rate of EV deployment vs. the rate and 

extent of change in the grid mix composition; and (ii) the establishment of an effective 

demand-side management scheme (using appropriate regulation, ‘smart’ meters, economic 

incentives, etc.). In terms of behavioural factors, it is then important to mention that, from a 

quantitative point of view, improvements in the energy efficiency of energy-using products 

(such as vehicles) do not always necessarily result in parallel reductions in the total demand 

for energy resources. This somewhat counterintuitive outcome, first postulated by Jevons 

(1865) and since aptly referred to as Jevon’s paradox, is due to the possible onset of 

increased use of the product by consumers at large, and it has been well documented and 

discussed at length in the literature (Sorrell, 2009; Madureira, 2014; Giampietro and 

Mayumi, 2018).  Additionally, it is also noteworthy that the expected reliance on nuclear 

power in National Grid’s “2 degrees” future grid mix scenario would place a hard limit on 

what may be achievable in terms of non-renewable cumulative energy demand (nr-CED). 

Instead, an even larger deployment of wind and PV technologies, coupled with enhanced 

use of smart technologies and active user engagement to foster vehicle recharging at times 

of peak renewable electricity generation and reduce the need for renewable energy 

curtailment, could potentially open the door to the highest reductions in the nr-CED of 

battery electric vehicles, and hence the UK’s overall dependence on non-renewable energy. 

Finally, there remains scope for future research to investigate the large-scale consequences 

of the co-evolution of the passenger vehicle fleet and the electricity grid in terms of the joint 

overall demand for non-renewable primary energy, when also taking into account a number 
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of additional system-level variables. Among these are the possible gradual transition from 

the conventional transport model based on direct vehicle ownership to one in which the 

accent is shifted to the provision of transportation services (measured in person-

kilometres), and the possible synergies offered by vehicle-to-grid and second-life EV battery 

storage to allow increased penetration of renewable technologies in the electricity grid. 
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Segment Mini 

Supermini + 

Lower Medium Upper Medium 

Executive + 

Luxury Sports 

Dual + Multi 

Purpose 

Registrations in 2017 76616 1607761 256924 138304 49774 563407 

Market share 3% 60% 10% 5% 2% 21% 

Segment average  

kerb mass [kg] 950 1168 1600 1800 1400 1800 

Segment average fuel 

cons. (ICEV) [L/100km] 4.5 6 9 14 10 11 

Segment average 

electricity cons. (BEV) 

[kWh/100km] 11.3 15 22.5 35 25 27.5 

Fleet average  

kerb mass [kg] 1372 

Fleet average fuel  

cons. (ICEV) [L/100km] 8 

Fleet average electricity 

cons. (BEV) [kWh/100km] 19 

Table 1. Composition of the UK passenger vehicle fleet by segment, assumptions on segment-average kerb mass and fuel/electricity 

consumption, and extrapolations to fleet average values. 
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Technology % installed power % CF % generated electricity 

Coal 15% 17% 7% 

Gas (CCGT) 35% 49% 46% 

Nuclear 11% 78% 22% 

Biomass 6% 38% 6% 

Hydro 2% 34% 2% 

Wind 18% 29% 14% 

PV 13% 8% 3% 

Table 2. Main parameters of the UK electricity generation grid mix in 2016 

(CCGT = Combined Cycle Gas Turbine; PV = PhotoVoltaic). Capacity Factor (CF) is defined as 

the ratio of the average effective power output to the nominal installed power. 
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Technology % installed power % CF % generated electricity 

Coal - - - 

Gas (CCGT) 2% 15% 1% 

CCS Gas (CCGT) 2% 67% 5.5% 

Nuclear 12% 79% 33% 

Biomass 5% 45% 8% 

Hydro 2% 35% 2% 

Wind 51% 24% 43% 

PV 26% 8% 7.5% 

Table 3. Main parameters of the projected UK electricity generation grid mix in 2035, 

according to National Grid’s “2 degrees” scenario. (CCGT = Combined Cycle Gas Turbine; CCS 

= Carbon Capture and Sequestration; PV = PhotoVoltaic). Capacity Factor (CF) is defined as 

the ratio of the average effective power output to the nominal installed power. 
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Scenario nr-CED  

[MJ (nr-PE) / kWh (electricity)] 

Baseline (UK grid mix 2016) 7.5 

Scenario 1 (Nat Grid “2 deg” UK grid mix 2035) 5.0 

Scenario 2 (100% CCGT) 7.9 

Scenario 3 (100% renewable:  

85% Wind + 15% PV) 

0.2 

Table 4. Non-renewable cumulative energy demand (nr-CED) of four alternative electricity 

supply options for the use phase of BEVs. 
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