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ABSTRACT

This work introduces a new algorithm called the Self-Organizing Neural 

Network (SONN), and demonstrates its use in a system identification task. The 

algorithm constructs a network, chooses the neuron functions, and adjusts the 

weights. Here, it is compared to the Back-Propagation algorithm in the 

identification of the chaotic time series. The results show that SONN constructs a 
simpler, more accurate model, requiring less training data and epochs. The 

algorithm can also be applied as a classifier.

1.1 THE SYSTEM IDENTIFICATION PROBLEM

In various engineering applications, it is important to be able to estimate, 

interpolate, and extrapolate the behavior of an unknown system when only its

I. INTRODUCTION
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input-output measurement pairs are available. Algorithms which produce an 
estimation of the system behavior based on these pairs fall under the category of 

system identification techniques. These techniques can be divided into two 

major groups: parameter estimation and functional estimation. These two 

groups are not mutually exclusive, but can be described in a continuum between 

the two. The parameter estimation approach is relatively simple, if one can 
safely assume a known system function with only unknown parameters. This 

calls for a large body of a priori knowledge about the underlying process being 
observed, and so it is not very general. The second approach, functional 

estimation, deals with the estimation of the system function as well as its 

parameters, and it can be simplified if assumptions about the function can be 

made. The larger the number of assumptions, the more the parameter estimation 

process it resembles.

1.2 SYSTEM IDENTIFICATION USING NEURAL NETWORKS 

Neurocomputing techniques can be applied to the system identification problem 

using adaptive algorithms for either parameter or functional estimation. When 

both input and output are observable and usable by the algorithm, the learning 

process is called supervised since the output signal works as a teacher signal. The 

Generalized Delta Rule (GDR), the most popular form of this type of learning 
process, has been used for system identification successfully [Lapedes and 

Farber, 1987a&b]. GDR falls somewhere between a pure parameter based 

approach, and a functional estimator where the order of the system complexity 

is known ( number of hidden units). The system identification problem can 
appear in a diverse number of ways, varying in the types of relationships the 

input-output pairs can have within themselves and with each other. If no 

relationship is ascribed to subsequent pairs in time, the system can be thought of
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as performing a static classification over the input space. When a time structure 

is found in the input sequence with implications for the output sequence, the 
system is said to be acting on and producing time dependent sequences. Such 

systems can have a constant internal structure in time. This means that these 

systems would always produce the same output sequence for a given input 

sequence regardless of its previous history, and they would be called static or 
time independent. Some systems might also produce an output value based solely 

on past values of the input-output pairs. In these cases, the systems are said to be 

causal. This work describes a new supervised learning algorithm for self - 

organizing neuromorphic structures which minimizes the number of 

assumptions about the underlying process. Although it does not necessarily have 

to be so, die examples presented here are of static, causal systems, operating on 

time varying signals.

Several different applications of identification techniques can be found in fields 

as diverse as computer vision [Marroquin, 1985], and system adaptive modeling 

[Widrow, 1985]. According to [Zadeh, 1962], the system identification 

problems can be defined as: "the determination, on the basis of input and output, 
of a system with a specified class of systems, to which the system under test is 

equivalent." The thiee key components to system identification are: (1) the class 
of systems, (2) a class of signals, and (3) a criterion of equivalence. Astrom and 

Eykhoff [1971] pointed out that the identification problem can be transformed 

into the optimization problem, if the criterion of equivalence is defined in terms 

of the error function.

A general form to represent systems, both linear and nonlinear, is the 

Kolmogorov-Garbor polynomial [Garbor et al., 1961 ] shown below:
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y = ao + 2 ajxi + S 2 aijxixj + • • *

where the y is the output, and x is the input to the system. Garbor [1961] 

proposed a learning method that adjusted the coefficients of (1) by minimizing 

the mean square error between each desired output sample and the actual output. 

Roy and Sherman [1967] suggested the concept of "hypersurfaces" as an 
alternative way to think about the identification problem. In this case, the 

identification of a system, especially of a nonlinear one, is viewed as the 

construction of an N+l dimension hypersurface; if the highesrorder of the 

polynomial in (1) is N. Lapedes and Farber [1987a ] also explored the 

hypersurface interpretation of the functional relationship in (1). Their work 

concentrated on the use of feedforward neural networks in which the neuron 
transfer function is the sigmoid, or the logistic function. The structure of the 

network is fixed, and the weights adjusted by the GDR algorithm. The 

elementary structure of the system is based on n neurons in the first layer 

connected to the neurons in the second, and third layers according the particular 

connectivity (figure 1). This substructure forms a hypersurface in n+l 

dimension, which they call a "bump" [Lapedes and Farber, 1987a]. 

Combinations of such bumps are used to approximate the desired input-output 
relationship in (1). Here n is the dimensionality of the input, which in this case 
represents past samples of the input sequence x(t), which should completely

characterize y(t).

The approaches described above suffer from the rapid explosion of the possible 

combination of terms as the order of the polynomial is increased. The number of 

samples also need to be much larger than the dimensionality of the hypersurface
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used, which for practical purposes can be difficult to achieve. They also require 
repeated presentation of the training data, or more preferably infinite 

sequences.

To address some of the difficulties described above, a heuristic algorithm called 

the Group Method of Data Handling (GMDH) was developed [Ivakhnenko, 

1971]. This method constructs a feedforward network as it tries to estimate the 

system function. The neuron transfer function consists of a quadratic 

polynomial of two variables, and its parameters are obtained through 

regression. At each stage of the algorithm, neurons are created pairwisely 

connecting the output of one layer to form a new layer, starting with the input 

nodes. This process is exhaustively done for all possible input pairs in each 

layer, and the connections are always in feedforward, n-to-n+1 layer form. The 

power of this method comes from the use of simple elementary functions (low 

dimensionality producing low complexity, linear regression on the parameters, 

and low training data requirements), and the ability of the algorithm to discard 
unpromising neurons (elementary hypersurfaces which represent terms in (1)). 

This selection process is based on a performance criterion which evaluates how 

close the new surface describes the output data in a least-mean-square sense. The 

GMDH method estimates the order and the complexity of the plant (low a priori 

knowledge requirements), and generates suboptimal estimates at each neuron 

output. Thus the algorithm could be stopped at any point to obtain a model of the 
process. A heuristic stopping criterion picks the output of the last node before 

the increase of the fitting error is detected. This technique has drawbacks 

because of its heuristic nature. There were various improvements made to 

overcome the problems associated with these heuristics with some success 

[Duffy and Franklin, 1975; Ikeda, Ochiai, and Sawarogi, 1976; Tamura and
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Kondo, 1980]. However, due to the constraints in the possible connectivity 
pattern in the nodes, the set of possible functions which can be expressed before 
the termination criteria is applied is at best limited. Thus, the models estimated 

by the GMDH are suboptimal by nature in expressivity, search power, richness 

of elementary functions, and suffering from gradient descent hill-climbing

problems.

This paper describes a supervised learning algorithm for structure constmction 
and adjustment. Here, systems which can be described by (1) are presented. The 

computation of the function for each neuron performs a choice_from a set of 

possible functions previously assigned to the algorithm, and it is general enough 

to accept a wide range of both continuous and discrete functions. In this work, 

the set is taken from variants of the 2-input quadratic polynomial for simplicity, 
although there is no requirement making it so. This approach abandons the 

simplistic mean-square error for performance control in favor of a modified 

Minimum Description Length (MDL) criterion [Rissanen, 1978], with 

provisions to measure the complexity of the model generated. The algorithm 

searches for the simplest model which generates the best estimate. The modified 

MDL, from hereon named the Structure Estimation Criterion (SEC), is applied 

hierarchically in the selection of the optimal neuron transfer function from the 
function set, and then used as an optimality criterion to guide the construction of 

the structure. The connectivity of the resulting structure is arbitrary, and under 

the correct conditions [Geman and Geman, 1984] the estimation of the structure 
is optimal in terms of the output error and low function complexity. This 

approach shares the same spirit of GMDH-type algorithms. However, the 

concept of parameter estimation from Information Theory, combined with a
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stochastic search algorithm - Simulated Annealing, was used to create a new tool 

for system identification.

This work is organized as follows: section II presents the problem formulation 

and the Self-Organizing Neural Network (SONN) algorithm description; section 

El describes the results of the application of SONN to a well known problem 

tested before using other neural network algorithms [Lapedes and Farber, 

1987a; Moody, 1988]; section IV compares this approach to the Generalized 

Delta Rule applied to feedforward networks; and finally, section V presents a 

discussion of the results and future directions for this work. -

II. THE SELF-ORGANIZING NEURAL NETWORK ALGORITHM 

H.1 SELF-ORGANIZING STRUCTURES

As mentioned before, the problem with system identification algorithms is the 

size to the possible system function space, which creates a need for the reliance 

of the algorithms on large amounts of a priori knowledge or strong assumptions 

about the process which might not hold true. It is necessary therefore to create 
algorithms which are not dependent on this type of knowledge, but rely mostly 

on the observed data behavior and could incorporate this knowledge when 
available. This leads to the adoption of self-organizing structures in the design of 

neural networks, since fixed structure algorithms present the same problems as 
parameter estimation algorithms, in which the assumed model is either an under 

or overestimation of the true process. If the elementary functions of the neurons 
are permitted to be general enough to minimize the prior assumptions, and a 

self-organized rule is rich enough to capture the complexity of the underlying 

process, then the simplest model can be found.
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The efficiency of the search for the correct model is directly proportional to the 

amount of knowledge available about the process. One would like to steer away 
from heavy dependence on this knowledge by allowing, for example, arbitrary 

connectivity, and number of neurons as is the case with SONN. On the other 

hand, if such a knowledge is available, it is of primary importance to be able to 

transparently incorporate such information into the algorithm. There have been 

very few attempts to design self-organizing structure algorithms due to the 

complexity of the search space, and only now there are a few tentatives using 

modifications of the GDR [Hansen and Pratt, 1988]. Algorithms with fixed 

structure depend on a good guess of the set of initial parameters and structure 
order, having their final performance dependent on the ability and knowledge of

the designer.

The Self-Organizing Neural Network (SONN) algorithm performs a search on 

the model space by the construction of hypersurfaces. A network of nodes, each 

node representing a hypersurface, is organized to be an approximate model of 

the real system. SONN can be fully characterized by three major components, 
which can be modified to incorporate knowledge about the process: (1) a 

generating rule of the primitive neuron transfer functions, (2) an evaluation 

method which accesses the quality of the model, and, (3) a structure search 

strategy. Below, the components of SONN are discussed.

H.2 THE ALGORITHM STRUCTURE

II.2.1 The Generating Rule 

Given a set of observations S:

S = {(Xi, Yi),(X2, Y2),- • -,(Xn, Yn)1 generated by
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(2)

where f(.) can be represented by a Kolmogorov-Garbor polynomial, and the 

random variable H is normally distributed, N(0,1). The dimension of output 
variable Y = lyu -Jm] is m, and the dimension of input variable X = 

[jci, xt, ..,*«] is n. Every component yi of Y forms a hypersurface, yi~ in 
the space of n + 1. The problem is to find f(.) = E fi*f* •••»fm \ given the 

observations S.

The approach taken here is to estimate the simplest model which best describes 
f(-) by generating an optimal function at each neuron. This can be viewed as the 

construction of a hypersurface based on the observed data. It can be described as 

follows: given a set of observations S; use p components of the n dimensional 
space of X to create a hypersurface which best describes yp fi(x) through a 

three step process. To explain the process, the following terms are defined: the 

terminals H (i=1’n> defined as the ordered set whose elements initially are the jth 

components of all input variables xi 0=fN), the set A as the set of terminals, and 

the mapping *j: A -> Tj is the projection on jth terminal of set A. The selection 
mapping : Ak '> ^ ^ -1A ^ consists of p such 7Ts

Initialize k=l, Ai = E ^ whose size corresponds to the dimension of

X.

Step 1. From a set of prototype function F, select a function h in the kth 

iteration. Construct the hypersurface ^ Ak^ \

Step2. If the global optimality criterion is reached by the construction of 

hk( Ak))? then stop, otherwise continues to the third step.

Step3. Ak+1 =Ak u hk^ ^ Ak-) ^ k=k+l, go to step 1.

Yi=f (x j) + tq
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The resulting model is a multi-layered neural network whose topology is 
arbitrarily complex and created by a stochastic search guided by an optimality 

criterion (Structure Estimation Criterion). Each neuron describes a function h

of p variables.

For simplicity in this work, the set of prototype functions (F) is restricted to be 

2-input quadratic surfaces or smaller, with only four possible types.

y = ao+aiXi+a2X2 (3)

y = a<j+aiXi+a2X2+a3XiX2 (4)

y = ao+aiXi+a2xf (5)

y = ao+aix i+a2X2+a3x 1x2+a4x]+a5x| (6)

Type (3) indicates a linear relationship between the input and output variables, 
types (4) and (5) indicate a 2nd order relationship, whereas type (6) is a 

complete quadratic polynomial in 2 variables. There is no restriction on the use 

of higher order polynomials, functions of more variables, or other functions 

such as the sigmoid (logistic) or sinusoidal functions.

II.2.2 Evaluation of the Model Based on the MDL Criterion 

The selection rule (T) of the neuron transfer function was based on a 
modification of the Minimal Description Length (MDL) information criterion. 

In [Rissanen, 1978], the principle of minimal description for statistical 

estimation was developed. This principle chooses the best model as the one that 

minimizes the total number of binary digits required to encode the observations. 

The reason for the choice of such a criterion is that, in general the accuracy of 

the model can increase at die expense of simplicity in the number of parameters. 
The increase of complexity might also be accompanied by the overfitting of the
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model. To overcome this problem, the MDL provides a trade-off between the 

accuracy and the complexity of the model by including the structure estimation 
term of the final model. The final model (with the minimal MDL) is optimum in 

the sense of being a consistent estimate of the number of parameters while 

achieving the minimum error [Rissanen, 1980]. Given a sequence of observation 

xi,X2,...,x„ from the random variable X, the dominant term of the MDL in

[Rissanen, 1978] is:
MDL = -log f(xl0) +0.5 k log N (7)

where f(xl0> is the estimated probability density function of the model, k is the 

number of parameters, and N is the number of observations. The first term is 

actually the negative of the maximum likelihood (ML) with respect to the 

estimated parameter. The second term describes the structure of the models and 

it is used as a penalty for the complexity of the model. As indicated m [Rissanen, 

1983], the ML estimate is a special case of the MDL, as is also the Maximum 
Entropy Principle [Rissanen,1983; Feder,1986]. A related estimator is the AIC 

derived by [Akaike, 1974] which has a similar structure defined as:

AIC = - 2 log f(xl0) + 2 k (8)

For the linear polynomial regression, as in the set F {(4)-(6)], the AIC reduces 
to log(Sn) + 2 k, where s§ is the mean square error, and k is the number of 
parameters in the model [Akaike, 1972]. In spite of the success of the AIC 

estimator in various applications such as AR model estimation, and river 

environment identification, the estimator has been proven inconsistent 

[Kashyap, 1980]. In the case of linear polynomial regression, the MDL is:

MDL = 0.5 N log S& + 0.5 k log N (9)

where k is the number of coefficients in die model selected.
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In the SONN algorithm, the MDL criterion is modified to operate both 
recursively and hierarchically. First, the concept of the MDL is applied to each 

candidate prototype surface for a given neuron. Second, the acceptance of the 

node, based on Simulated Annealing, uses the MDL measure as the system 

energy. However, since the new neuron is generated from terminals which can 

be the output of other neurons, the original definition of the MDL is unable to 

compute the true number of system parameters of the final function. Recall that 

due to the arbitrary connectivity it is non trivial to compute the number of 

parameters in the entire structure. In order to reflect the hierarchical nature of 

the model, a modified MDL called Structure Estimation CriterionlSEC) is used- 

in-conjunction with an upper bound on the number of parameters in the system 

at each stage of the algorithm. The expression to compute the estimated upper 

bound of the number of parameters in the system, k, is:

k = (rtd) (10)

where r is equal to 21,1 is the number of neurons between the input and the 

output (layers), and d is the number of different variables in the model. The 

proof of the upper bound is given in the appendix. The upper bound of the 

number of parameters in the example of the figure 2 can be estimated as follows:

r' ,22+4. ,8n nCik7 = ( 22 )= Op = 70. (11)

Another computationally efficient heuristic for the estimation of the number of 

parameters in the model is based on the fact that SONN creates a tree-like 
structure with multiple roots at the input terminals. Then k, in expression (12), 

can be estimated recursively by:

k=kL+ kR + (no. of parameters of the current node) (12)
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where and £r are the estimated number of parameters of the left and right 

parents of the current node, respectively. This heuristic estimator is neither a 
lower bound nor an upper bound of the true number of parameter in the model.

II.2.3 The SONN Algorithm

To explain the algorithm, the following definitions are necessary:

NODE - a neuron and the associated function, connections, and SEC.

BASIC NODE - A node for the system input variable.

FRONT NODE - A node without children. _

INTERMEDIATE NODE - The nodes that are neither front or basic nodes. 

STATE - The collection of nodes, and the configuration of their 

interconnection.
INITIAL STATE (Sj) - The state with only basic nodes.

PARENT AND CHILD STATE - The child state is equal to the parent state 

except for a new node and its interconnection generated on the parent state

structure.
NEIGHBOR STATE - A state that is either a child or a parent state of another. 

ENERGY OF THE STATE (SEC-Si) - The energy of the state is defined as the 

minimum SEC of all the front nodes in that state.

In the SONN algorithm, the search for the correct model structure is done via 
Simulated Annealing. Therefore the algorithm at times can accept partial 

structures that look less than ideal. In the same way, it is able to discard partially 

constructed substructures in search of better results. The use of this algorithm 

implies that the node accepting rale (R) varies at run-time according to a cooling 

temperature (T) schedule. The SONN algorithm is as follows:
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Initialize T, and SI 

Repeat

Repeat

Sj - generate (Si), - application of P.

If accept ( SECj*J, SEC_S i, T) then Si =

- application of R.

until the number of new neurons is greater thanN.

Decrease the temperature T. (cooling sequence) 
until the temperature T is smaller than Ten^ - (terminal temperature for

Simulated Annealing).
Each neuron output and the system input variables are called terminals. 

Terminals are viewed as potential dimensions from which a new hypersurface 

can be constructed. Every terminal represents the best tentative to approximate 

the system function with the available information, and are therefore treated 

equally. The rule P which produces new neurons can be defined as:

generate (Si):
Randomly select two terminals from Ai+1 =Ai u W ¥i (A»))

For each prototype surface in the set F,fit the surface and calculate SEC.

Choose the surface with the smallest SEC (best fitting and less complex). 

Construct the neuron using the prototype surface chosen if the SEC of the 

neuron is smaller than the SEC of parents.
The generation function can be further refined by keeping records of the 

combination of nodes being produced, and checking the new combination 

against the records. By such a checking process, we can avoid the useless nodes
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being re-generated during the search procedure. Such a scheme corresponds to a

memory version of Simulated Annealing.

The rule R represents the test for acceptance of a new neuron. It searches the 

model space using Simulated Annealing, where the SEC is viewed as the state 

energy. There is a non zero probability that a previously generated neuron can 

be destroyed, thus returning to a previous state. The rule can be defined as:

accept (SECji, SECJi,T):

If the new state SEC is smaller than the SEC of the current state, accept the

neuron, else accept the neuron with probability. _
n , / A StateJ5EC ^ p = Exp(-(---- ---- ------ ))>

T Current (13)

There have been different annealing sequences proposed in the literature 
[Kirkpatrick et al., 1983; Gelfand and Mitter, 1985]. We adopted the 

geometrical annealing sequence in the SONN algorithm.

Tnew — Ct*T0id (14)

II.2.4 Structuring the State Search

The SONN algorithm performs the organization of the model structure. Each 
node is generated competitively and cooperatively with one another. The 

competition occurs between front nodes competing for lower SEC values. The 
cooperation occurs between parent nodes and their child. The initial set of 

terminals contains only the input nodes. From this set, candidates are chosen 

randomly (in this case 2) to construct a new terminal (new node for the list), 

which becomes the front node. This process of the combining of nodes starts at a 

high temperature T, and an initial state S (only input terminals). In the outer

15



loop of the algorithm that defines SONN, the temperature is decreased after a 
certain number of new nodes are created. This slow cooling procedure is 

motivated by the analogy with the annealing process used in physical systems to 
minimize the system's potential energy [Kirpatrick et al, 1983]. A final state Sf is 
reached when the low temperature Ten(j is present. Sf corresponds to the state of

low energy. The energy of the state in terms of the SEC is defined to be the 

energy function of the Simulated Annealing algorithm.

The application of the P rule produces a state SJ by a perturbation in the state Si. 

The transition probability between states is determined by the probability 

function (13) as part of the acceptance rule R. Figure 3 shows the generation of 

state Sj from state Si. The difference between the two states is the new neuron H, 

the connections from the previous structure into H, and the new terminal (the 

output of H). Every terminal is an estimate of the output of the system; in other 

words, the structure relevant to the terminal is an approximated suboptimal 

model of (1). The optimal model which represents the global minimum of the 

objective function will be embedded in the final state Sf.

The definition of the system’s SEC is consistent with the state generation 
mechanism. Given the state Si and the state sj derived after the structure of Si,

then:
1. State Sj has the same energy value of Si, if the new terminal generated has a 
higher SEC than the front nodes of Si. This is true since the structures in Si are

subsumed in Sj.
2. State Sjhas a lower energy than Si, if the new terminal generated has a lower 
SEC than the front nodes of Si. In this case, there is a structure in Sj which better

estimates the model and it is not present in Si.
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III. EXAMPLE - THE CHAOTIC TIME SERIES

Randomness is a prevalent characteristic in natural systems such as economical 

or physical systems. Traditionally, randomness has been viewed as a 
characteristic attributed to the inherent complexity in the large number of 

degrees of freedom present in the observed system. However, recently chaos has 

been proposed as a possible source of randomness in dynamical systems [Farmer 

and Sidorowich, 1987]. A system is said to be chaotic if the evolutionary 
trajectory of the system is generated by a deterministic mechanism, but it is very 

sensitive to the system's initial condition. Examples of chaotic systems can be 

found in turbulent fluid flow analysis [Packard, Crutchfield, Farmer, and Shaw, 

1980], and biological systems [Mackey and Glass, 1977]. Since under certain 

conditions a chaotic system behaves randomly, the identification of such systems 
is difficult. Under those conditions, a model capable of identifying the 

underlying deterministic mechanism can greatly improve system performance, 

predictability and control.

Lapedes and Farmer [1987a] were the first to explore the use of neural networks 

for the identification of a chaotic time series. A two hidden layer neural network 

with the sigmoid transfer function in the individual neurons was used to identify 

the chaotic time series generated from the Mackey-Glass differential equations 

[Mackey and Glass, 1977]. The two hidden layer neural network using the 

Generalized Delta Rule (GDR) has been proven successful as a tool to identify 

such systems. This architecture, together with the GDR, is then referred to as the 

"Nonlinear Signal Processing Method." Other neurocomputing methods have
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been applied to the same problem. For example, the work of Moody [1988] used 

a variation of the CMAC algorithm proposed by Albus [1981].

In the following results, the same chaotic time series was used. The SONN with 
the SEC, and its heuristic variant, were used to obtain the approximate model of 

the system. The result is compared with those obtained by using the Nonlinear 

Signal Processing Method [Lapedes and Farber, 1987a]. The advantages and 

disadvantages of both approaches are analyzed in the next section.

ffl.l STRUCTURE OF THE PROBLEM

The Mackey-Glass differential equation used here can be described as:
9x(t) _ ax(t-T) b ,t)

9t 1 + x10(t - x) (15)

By setting a = 0.2, b = 0.1, and x = 17, a chaotic time series with a strange 
attractor of fractal dimension about 3.5 will be produced [Farmer and 

Sidorowich, 1987].

If the points on the attractor of dimension A are related by : 

x(t + P) = f(Xi(t),X2(t),- • -,XM(t» (16)

then the necessary condition [Takens, 1981] for f(.) to be a smooth mapping is. 

dA ^ <1m ^ 2 dA + 1 (17)

where P is the prediction time, dAis the dimension of the attractor, and d\t is 

the embedding dimension of the dynamic system of (15), Takens’ theorem 
guarantees the existence of f (.), but it does not provide a constructive method. 

The Nonlinear Signal Processing Method utilizes the GDR in a four layer 

feedforward neural network to estimate f (.). To facilitate the comparison 

between the SONN and the GDR, we chose the embedding dimension to be 4.
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This also specifies that four data points should be chosen as state variables: x(t), 
x(t -T), x(t - 2T), x(t -3T).The prediction time P is chosen according to the need

for long term or short term prediction. However, for practical engineering use, 
the short term prediction is often sufficient. In this example, P was chosen to be 

6. To compare the accuracy of prediction the normalized root mean square

error is used as a performance index:

Normalized RMSE = RMSE
Standard Deviation (18)

m.2 Using the SONN Algorithm for the Time Series Identification

The SONN algorithm is based on the idea that all neurons generated try to solve 

the problem by best tuning themselves and the structure to the system's response. 
The "quality" of such estimation is given directly by the SEC, and the quality 

of the moves between states by the difference between state SEC measures. 
Therefore, each and every terminal (neuron output) produces of itself the best 

possible estimate for the system given the present structure. The user can select 

any suboptimal stopping criterion for the algorithm to obtain an estimate of the 

system, or he/she can allow the algorithm to converge to its global optimum. 
Since the search space is very largest is sometimes undesirable to spend the 

computing time for the optimal estimate. Therefore, by considering the 

computation resource available, the designer can stop the algorithm by accepting 

a feasible but suboptimal solution.

ni.2.1 SONN with the SEC

19



In this subsection, the SEC is used as the criterion in the choice of the model for 
the chaotic time series, using the estimator of (10). Recall that this estimator is 

the upper bound of the number of parameters in the model. The resultant model 

tends to be an underestimate of the number of parameters of the real system. 
Since the SONN is basically a stochastic search algorithm, to compare the result 

of the SONN with the Nonlinear Signal Processing Method, 10 runs of the 

SONN were initiated. The averaged statistics of the performance parameter
were computed. In the example of the chaotic time series, the firstTOO points of 

the series were used as training data. One example of a non linear model which 

has been obtained by SONN for this series is a two layer network with five nodes 

(figure 4). There are 15 weights in the model, 4 connections. The output of the 
network overlapped with die output of the system and is shown in figure 5. The 

performance index over the next 400 points (101st-500th) used as testing data is 

equal to 0.137. The averaged number of regressions ( the corresponding 

number of ephocs is 64.1) used to obtain the model is 320.5. The standard

deviation of the number of regressions is 29.4. The SONN using the SEC as an 

estimator did not produce satisfactory results. The SEC produces severe
constraints on the number of parameters the model can have (underestimation),

therefore drastically limiting the search space.

m.2.2 SONN with the Heuristic SEC (SONN-h)

In the following examples, a modified heuristic version of the SEC is used to try 

to overcome the limitations described before. The estimator of the number of

parameters is switched from the expression (10) to the estimator of (12). To 

compare the performance, the same averaging method used in last section is
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adopted. The first run was initiated. Two suboptimal models were obtained 

during the search procedure. The same state-SECs were then used as the 
criterion to choose the corresponding suboptimal models in the next several 

runs. The averaged number of the regressions (i.e. the epochs) was calculated.

m.2.2.1 Node 19

First, the SONN is allowed to generate up to the 19th accepted node. In this 

example, the first one hundred points of the time series was used for training, 

and samples 101 through 400 used for prediction testing. The total number of 

weights in the network is 27. The performance index average 0.077. The output 
of the network is overlapped in figure 6 with the original time series, and the 

averaged number of the regressions spent was 225.8( i.e. 45.16 epochs).

For comparison purposes, a GDR network with the structure used in [Lapedes 
and Farber, 1987a] is trained for 6,500 epochs. The training data consisted of 

the first 500 points of the time series, and the testing data ran from the 501st 

sample to the 832nd. The total number of weights is 165, and the final 

performance index is equal to 0.165. Notice that the number of epochs in the 

GDR training was smaller than the work of Lapedes and Farber. This was done 

to give both algorithms similar computational resources. Figure 7 shows the 

original time series overlapped with the GDR network output.

m.2.2.2 Node 37

The second model chosen was formed by the 37th accepted node. Remember 

that Simulated Annealing requires a non zero probability of returning to a
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previously visited state, and therefore, in this case, withdrawing part of the 
structure. The network was trained in a similar manner to the first example, 
since it was actually part of the same run. The final number of weights was 40, 

the performance index was 0.018, and the average number of the regressions 
spent was 1765.8 (i.e. 353.13 epochs). Figure 8 shows the output of the network 

with the original time series. Figure 9 shows the GDR with 11,500 epochs. 

Notice that in both cases, the GDR network requires 150 connections and 150 

weights, as compared to 12 connections and 27 weights for the first example and 

10 connections and 40 weights for the second example. Figure 10 shows the 

final state of the algorithm; some of the connections were omitted for clarity.

Another interesting aspect of the final state is that not all, but only 3 of the inputs 

contribute to the model.

ni.4 COMPARISON OF THE GDR AND SONN RESULTS

In figure 12 the performance indexes versus sample points for the 2 experiments 

with GDR and SONN are shown. The table 1 summarizes the comparison data.

Table 1 Comparison between the four experiments

Algorithm Ephocs Connections Weights Performance

SONN 320.5 4 34 0.137

GDR 6,500 150 150 0.165

SONN-h 225.8 12 27 0.077

GDR 11,500 150 150 0,038

SONN-h 1765.8 10 40 0.018
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IV. ADVANTAGES AND DISADVANTAGES

In this section, the advantages and disadvantages of SONN as compared with 

GDR are outlined.

IV.l ADVANTAGES OVER GDR

The SONN algorithm requires considerably less samples to acquire an estimate 

of the system. In this exercise, GDR was given five times more samples than 

SONN. GDR assumes that the order of the model is known through the size of 

the hidden units; SONN estimates the complexity of the model at run-time. It 

constructs the connectivity pattern, and the neuron transfer functions during the 

identification process. The resulting network is more sparsely connected, 

requiring less hardware, and achieving better results for a given amount of 
computation. The SONN algorithm is not subject to the difficulties encountered 

with local minima, nor with the initial set of weights given to the network. The 

learning process does not depend on ad-hoc error assignment mechanisms.

The algorithm produces estimates of the system model at every new node, 

permitting the user to trade-off the accuracy of the model for learning time. The 

final model is more accurate, and at the same time less complex and is dependent 

on fewer parameters. The prediction error revealed to be almost constant over a 
wide range of samples. The arbitrary connectivity, with the two-input function 

used here, can be easily extended to accommodate functions of an arbitrary 

number of variables. Furthermore, the connectivity pattern can be restricted by 

incorporating knowledge about the problem, such as neuro-sensorial spatio- 

temporal mappings present on biologic hearing systems, or biological visual 

systems' SONN can be used as an investigation tool to hypothesize the 

connectivity pattern in such cases.
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Different sets of transfer functions can be mixed in the same network, with the 
choice subject to a problem dependent criterion. This allows for another level of 

a priori knowledge incorporation. The functions can have temporal behavior, or 

can be simple linear discriminant functions. This work can easily be extended 

for the use of SONN as a classifier. Although not tested yet, the set of quadratic 

functions used here should work quite well for classification tasks, since they are

special cases of the Mahalanobis distance.

The SONN algorithm can be used in cases where the connectivity pattern 

between the input and the output is unknown, such as sensori-neuronal pathways. 
The algorithm can be restricted to apply a set of functions known to be present in 

the problem, and have the choice of new terminals restricted by high level 

knowledge. This same idea can be used to integrate symbolic knowledge about 
the problem to restrict the search with the numeric knowledge being developed 

during the search. The SONN algorithm could reason about its experiments on 
the model, with the choice of the experiment being guided by a priori 

knowledge, as opposed to only using the outcome of the experiment. In this case 

the search can be viewed as a symbol-numeric planning strategy. The algorithm 

can then be used to produce a symbolic model of the underlying system.

Overall the algorithm has low computational demands as compared to the GDR, 
and reduces the learning problem at each neuron to a simple linear regression, 

therefore avoiding local minima problems. At every stage, a sub-optimal partial 

structure is generated, allowing for variations on the algorithm stopping 

criterion.

IV.2 DISADVANTAGES OVER GDR
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The SONN learning algorithm, based on a stochastic search, is non 

deterministic, and therefore the learning time cannot be known a priori. For the 
same reason, successive runs of the algorithm do not generate the same partial 

structures, but they do generate the same optimal final structure if the algorithm 

is allowed to run to the end. Similarly, the connectivity cannot be known a priori 

for the partial structures, which demands flexibility of communication for 

parallel hardware architectures.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a new approach for the identification problem based 

on a flexible, self-organizing neural network (SONN) structure. The variable 

structure provides the opportunity to search and construct the optimal model 

based on input-output observations. The hierarchical version of the MDL, called 

the structure estimation criteria, was used to guide the trade-off between the 

model complexity and the accuracy of the estimation. The SONN approach 

demonstrates potential usefulness as a tool for system identification through the

example of modeling a chaotic time series.

An alternative interpretation of the competition between the nodes in different 

layers is the feature selection process in the pattern recognition literature 
[Fukunaga, 1972]. The quadratic node functions are specializations of the 

Mahalanobis distance, and can easily be changed to accommodate other 
discriminant functions. Thus it is not unreasonable to treat the final 

approximated model as a classifier. Polynomial classifiers have been 

successfully used before [Sanz and Hinkle, 1988].

Future work on the SONN algorithm includes the development of a better 

estimator for the SEC, the use of multiple sets of functions, the generalization to
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functions of an arbitrary number of variables (arbitrary neuron branching), the 
use of high level symbolic knowledge about the problem domain to aid the 
search, and a connection to a symbolic module to analyze the hypotheses, and 

generate model closed form solutions for symbolic manipulation. Possible 

future applications include: use as a static pattern classifier, extensions of the 

functions to operate on time varying patterns, knowledge based restriction of the 

connectivity pattern to search for neurobiologically plausible nerve 
connectivity, naive and experimental physics reasoning (model building and 

hypothesis testing).

Appendix:

The proof of expression (10) is the upper bound of the number of parameters in 

the layered system is followed from the induction. First, we prove that the 
nodes in layer 1 satisfy the expression. Let the node *1 in layer 1 receive the 

inputs xl, x2 from layer 0, then 1=1, d=2. The maximum number calculated 

according to expression (10) will be 6. Since the highest order polynomial in 

propotype functions (F) is second order, he number of parameters is 6. Hence, 

the expression holds for nodes in the 1st layer. Suppose the expression (10) holds 
for the two nodes , XM ’ Xk>2, with highest order kl,k2 separately, in the kth 

layer, then kl,k2 must be smaller than 2k. Observe that there are four possible 
combinations of the variables according to (F). The highest order terms of these

formulas are of the following three types:

(1) . *ixi

(2) . *2x2

(3) . aixixi
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all of these three formulas of the combination of variables will produce the 

polynomial of a degree no more than 2k+1. Since d of the expression (10) is the 
union of the variables from the nodes in kth layer. By the expression derived in 

[Roy and Sherman, 1967], all the possible combinations of terms appearing in 

the resultant polynomial can be computed according the expression (10). Since 
the actual order of the polynomial,d, of node ^k+1 is no more than 2 , The k 
computed by expression (10) will be the upper bound for the number of 

parameters in the system. Q.E.D.
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I the substructure of neural network of 
nonlinear signal processing method



f(x1 ,x2)

Fig. 2 computation of the K for the system



CREATE Nj

DESTROY Nj

SI: STATE-SEC = 4

SEC=5

3EC=4

SJ: STATE-SEC = 3

SEC=3,SEC=4

Fig. 3 state transition and calculation of the State_SEC



= 0.484497*x?+ 0.078320*x?+ -0.766702*x9*x«+ 0.89467 l*x9 + 0.476700 x« 

' _ -2.006957*x?+ 2.968429*xi -0.004738

-2.409953*x
1 -2.218073*X?+ i.037223*X0** l+ 2.259*52*«o + 2.259S52*xt • 0.852424

xi= x(t-6)
xo= *(0

Fig. 4 model from SONN with the SEC



I ig 5 ilala from SONN with SRC

System Output 
Network Output



I

Fig. 6 data from node 19
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System ID. - Back Propagation
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Fig. 7 data from nonlinear signal processing method
with 6,500 epochs
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Fig. 8 data from node 37



System ID. - Back Propagation with 11,500 Epochs
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Fig. 9 data from nonlinear signal processing method
with 11,500 epochs



Fig. 10 final state of SONN
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