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ABSTRACT

EQUITY AND EFFICIENCY
IN MULTI-MODAL TRANSPORTATION SYSTEMS

MAY 2019

NICHOLAS MARC FOURNIER
B.S., M.S.C.E., M.R.P., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Eleni Christofa, Ph.D.

The land-use pattern for many cities is a central business district surrounded
by sprawling suburbs. This pattern can lead to an inefficient and congestion-prone
transportation system due to a reliance on automobiles, because high-capacity tran-
sit is not efficient in low-density areas where insufficient travelers can access transit.
This also poses an equity concern as the monetary cost of faster and more expensive
travel disproportionately burdens low income travelers. This dissertation presents a
deterministic approximation of a discrete choice model for mixed access and mainline
transportation modes, meaning that travelers may use different modes to access a
mainline system, such as transit. The purpose is to provide a tractable computation-
ally efficient model to address the first/last mile problem using a system-wide pricing
policy that can account for heterogeneous values of time; a problem that is difficult
to solve efficiently using a stochastic model. The model is structured for a catch-

ment area around a central access point for a mainline mode, approximating choice

vii



by comparing modal utility costs. The underlying utility model accommodates both
fixed prices (e.g., parking, fixed tolls, and fares) and distance-based unit prices (e.g.
taxi fare, bike-share, and distance tolls) that may be set in a coordinated way with
respect to value of time. Using numerical analysis, the deterministic model achieved
results within 4% accuracy of a stochastic logit-based model, and within 6% of mea-
sured values. The final model achieved a 57% reduction in generalized travel time

and improved the Gini inequity measure from 0.21 to 0.03.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The dream for many is simply a beautiful home and a stress free commute. How-
ever, with populations in the United States and around the world continuing to grow
and becoming increasingly reliant on urban centers, this dream is transitioning into
a nightmare of congested roads, polluted air, and swaths of wasteful parking. With
the transportation sector accounting for nearly one-third of global greenhouse gas
emissions, the need for more efficient transportation is not only a social concern, but
rapidly becoming an environmental imperative. One that must not only address high
density urban centers, but the surrounding lower density regions which largely con-
tribute to automobile congestion. Traditional solutions of large scale infrastructure
investment are often impossible or impractical due to financial, spatial, or political
constraints. Moreover, man existing fixed route transit systems in the United States
are underutilized due to low demand, resulting in funding cuts that further undermine
ridership. A more holistic solution is one that not only accounts for multiple modes,
but align the parallel perspectives of modal demand and optimal system utilization.

For many developed nations, the era of fast paced construction of transporta-
tion infrastructure to keep up with demand has largely ended. Yet many cities
remain plagued with congestion caused by inefficient utilization of infrastructure,
compounded by sprawling suburban regions surrounding central business districts
(CBD). This creates a persistent challenge in how to serve a concentrated demand

from a spatially distributed source using efficient high-capacity transit. The recent in-



troduction of new forms of transportation under the “mobility as a service” umbrella,
namely e-hailing services, transportation network companies (TNCs), and bike-share
systems, are becoming a popular choice among travelers and have brought additional
complexities in how multi-modal networks operate and travelers behave. While such
services provide additional alternatives to users and are said to have increased the
“car-free by choice” population, they still largely contribute to unsustainable conges-
tion in urban multi-modal networks. For example, average traffic speeds in midtown
Manhattan, NY have slowed since the advent of TNCs due to the potential for an
inefficient abundance of empty e-hailing taxis circling for passengers (Schaller, 2017).
Furthermore, it is still unclear whether e-hailing services complement or compete with
transit services.

In low population density areas, the number of travelers within walking distance of
transit often does not support fixed route transit. Colloquially called the “first/last
mile” problem, it is the challenge in getting travelers to and from a transit access
point. Although travelers may access transit by automobile, either by driving to a
park-n-ride or using an e-hailing service operated by a transportation network com-
pany (TNC), there is little incentive to transfer to transit when completing the whole
trip by automobile is, or is perceived as, more convenient. This often results in overly
congested roads and underutilized transit capacity (Schaller, 2017; Gan and Ye, 2018).
Alternatively, bicycling is often cited as an excellent alternative access mode serving
populations between walking and driving. However, bicycling has its own set of so-
cial and infrastructural challenges limiting it, such as physical impedance, discomfort,
safety, and social stigmas (Boarnet et al., 2017).

The complications in modeling multi-modal systems come from the need to real-
istically represent both the supply and demand, and to do so at the scales of the local
neighborhood and broader urban region. Travel demand depends on the behavioral

characteristics of the population that are difficult to model or predict due to lack of



data and the uncertainty associated with behavior and choice. The demand patterns,
in turn, impact available supply. Thus, mode choice should be considered in the con-
text of equilibrium models that represent the inter-related nature of transportation
supply and demand.

Setting policies to influence demand while considering supply is not only a po-
litical challenge, but also a modeling challenge. Realistic stochastic demand models
introduce mathematical hindrances in finding an optimal solution for the system.
Conversely, generalized deterministic system models can more easily find a system
optimum, but lack user heterogeneity (e.g. assume uniform travelers with a single
value of time (VOT)). Although the lack of heterogeneity may be justified by using
a mean value, the resulting pricing policies may exacerbate, rather than mitigate,
existing inequities in the population. It is essential that equity is accounted for when
developing policy to ensure that system improvements do not come at the cost of

equity.

1.2 Research Question

The task of shifting low-density populations to more efficient and sustainable
modes, such as bicycling, transit, or ride-hailing services, is extremely difficult. Tran-
sit can be efficient, but inherently relies on high population density within walking
distance to support operation. Bicycles provide excellent cost and environmental
benefits, but are impractical for most long-distance commutes. Emerging on-demand
ride hailing services offer great potential for eliminating the need for parking, but are
currently too costly to serve as a daily commute mode and still absorb the same road
space as single occupant vehicles. Although each mode alone is impractical, there are
many cases where modes can be integrated in new ways to provide a feasible optimal

solution. This elicits the question:

Can an access mode congestion pricing model improve system per-
formance in terms of time, cost, and equity?



1.3 Research Contribution

This dissertation presents a hybrid mode choice system model using a determin-
istic model for mixed access (e.g., walk, bike, and drive) and mainline modes (e.g.
highway, in other words drive on the highway, and rail). The proposed model is
based on comparing modal choice utility over a continuous catchment area around
an access point. Unlike a stochastic based model, the deterministic global optimum
can be found quickly, providing a system-wide optimal pricing policy to be set by the
operator. This pricing policy incentivizes mode-shift to achieve a certain objective,
such as minimum average travel time. Furthermore, the pricing inputs are provided
as both fixed and distance based prices independently for each mode, providing an
opportunity to integrate Transportation Network Companies (TNC) (e.g., Uber and
Lyft), bike-share systems, and distance based tolling.

The purpose is to provide a tractable and computationally lightweight model to
address the first/last mile problem using a system-wide pricing policy that can ac-
count for heterogeneous values of time; a problem that is difficult to solve efficiently
using a stochastic model. The computationally simple deterministic model makes
it possible to more easily explore outcomes. Unlike most system models, which use
a single value of time for an entire population, this model accounts for a varying
value of time (VOT), optimizing pricing for the entire system across multiple value
of time groups. This accounting for all value of time groups is essential as congestion
is experienced collectively, thus optimizing demand must account for all groups. Fur-
thermore, accounting for heterogeneous populations is not just beneficial to model
accuracy, but enables the results to be evaluated for equity implications resulting
from policy decisions.

To apply the model, a test case of Worcester to Boston, Massachusetts is used.
Although the pricing optimization itself is performed using a simple VOT distribution

and aggregated values (e.g., commuter population density), a synthetic population



provides a more realistic joint distribution of study variables. In particular, the
precise number of residents commuting to Boston from the Worcester region, their
existing mode choices, and their household income which becomes the basis for VOT.
This synthetic population is generated for the entire population of 106,166 households
with 282,142 total individual persons, each with workplace destination assigned using
industry sector as the linking distribution. The population synthesis makes two con-
tributions: First is workplace assignment is integrated into the population synthesis
process itself to generate a more accurate result. Second is a much more efficient
person-household re-weighting algorithm based on non-negative least deviation fit-
ting (NLAD). This efficient algorithm enables many more population features to be
included in the synthesis, specifically the fourteen additional industry sectors used to
generate the accurate workplace assignment.

In summary, the dissertation makes the following contributions:
1. Population Synthesis

(a) Integrated population synthesis and fixed work-place assignment
(b) Faster non-negative least-deviation (NLAD) method for fitting
joint population of persons and households

2. Mixed-access Model

(a) A congestion pricing model with multiple access modes
(b) Allows for value of time to vary across both income and mode

(c) Model framework allows flexible objective function (e.g., optimize eq-

uity directly)
(d) Measured impacts of transport system efficiency gains on user equity

(e) Computationally lightweight, meaning it requires little computational

resources and quickly reaches a solution



1.4 Dissertation Organization

Within this section, an abstract discussion of the proposed methodology is de-
scribed in order to provide a skeletal framework for subsequent chapters. Chapter 2
is an in-depth literature review and discussion of previous research efforts and mod-
eling approaches to understand their contributions and gaps. Within the literature
review, there is first a broad discussion of urban planning and transit access in Sec-
tion 2.1. Then the literature review shifts to a more modelling focus with a review
of system models in Section 2.2 and a detailed review of discrete choice models in
Section 2.3 to provide an understanding of behavioral modelling. A comparison of
system models and discrete choice model is discussed in Section 2.4. Then in Sec-
tion 2.5, previous theoretical and applied studies on value of time and its estimation
methods is discussed. Lastly, a thorough discussion on population synthesis methods
is provided in Section 2.6 before a final summary that identifies gaps in Section 2.7.

Chapter 3 describes the population synthesis process used in this dissertation,
the data required, and the resulting population in six sections. Section 3.1 describes
the process where population synthesis and workplace assignment is integrated using
Iterative Proportional Fitting. Section 3.2 discusses the joint re-weighting of person-
household joint populations and the proposed non-negative least absolute deviation
(NLAD) fitting method used to improve this process. Section 3.3 then describes the
sampling method used to generate the final realized population. After the population
synthesis methodology, Section 3.4 describes the data used to generate the popula-
tion. Finally, Section 3.5 presents and evaluates the resulting synthetic population
generated, which is summarized in Section 3.6.

Chapter 4 first introduces the multi-modal model for a simple single VOT case.
The proposed multi-modal methodology is described in seven subsections: The basic
concept of the model as it relates to access mode and discrete choice utility is presented

in Section 4.1. Then in Section 4.2 the model is formulated to minimize travel time,



given the necessary constraints to ensure the model is mathematically feasible. Next
the mainline mode choice is introduced as a spatial interpretation of conditional
choice depending upon access mode in Section 4.3. Building upon the mainline mode,
congestion is introduced into the model in Section 4.4 which is then compiled into a
final continuous objective function in Section 4.5. This objective function provides
the optimal allocation of demand to achieve minimum travel time, which is then
realized through an optimal pricing policy determined in Section 4.6. This pricing is
presented separately for access mode and mainline mode in Sections 4.6.1 and 4.6.2.
A brief discussion on pricing implementation is presented in Section 4.6.3. Access
mode pricing yields the deficit cost in monetary prices needed to adjust the observed
demand to become optimal demand. The mainline mode pricing is a decomposition
of a nested logit model, which extracts the pricing necessary to achieve the desired
optimal mode split given the access mode split determined by the optimization in
Section 4.5. The model is then extended in Section 4.7 to account for a varying VOT
distribution as well as a means of measuring the model’s impacts on equity using a
Gini coefficient as a measure of equity.

Chapter 5 concludes the dissertation by highlighting key contributions in Sec-
tion 5.1, followed by a summary of findings presented in Section 5.2. Section 5.2
summarizes numerical findings, but also highlights key research findings and contri-
butions. Section 5.3 then presents possible future research work and applications of

the multi-modal system model and integrated population synthesis.



CHAPTER 2
LITERATURE REVIEW

Transportation modeling is the attempt to create an abstract representation of a
real system or situation in the realm of transportation. A larger transport “model”
typically incorporates several smaller models to address the various aspects of human
transport. In the most general sense, transportation modeling approaches tend to
fall into one of two categories: system models and data-driven models. These two
schools of thought can be defined in parallel to Kant’s 1781 definition of a priori and
a posteriori knowledge. A priori models are classical mathematical formulations for
entire systems. Their strength comes from their elegant simplicity and mathematical
form, but often lack empirical validation (Daganzo, 2010). Their counterpart, a
posteriori models are statistically fit directly from empirical data. Their strength
comes from truth in data, but in an age of data-driven decision making, this laissez
faire approach can often lead to the data driving itself in a feedback loop of perverse
incentives (Train, 1978, 1986; Ben-Akiva and Lerman, 1985; McFadden, 1978).

At a macroscopic level, transportation modeling is often divided into the two
sides of supply and demand. In general the typical approach is to first estimate
transportation demand (e.g. the number of people who choose each mode) and to
then meet that demand with supply (e.g. build bigger roads or run more trains and
buses). Demand is often treated as a fixed monolith from which we must work around.
However, any economist would argue that demand is merely the reverse perspective

of the dynamic problem.



As mentioned, this one sided approach can lead to perverse incentives and induced
demand. In addition to this one sided approach, transport models often lack flexibility
in combinatorial mode choices. At most they are capable of a fixed set of bundled
options, assuming travelers will rely entirely on one or another mode for travel. As
we enter an era of increasingly complex systems with evolving mode varieties, such
as mobile ride-hailing services (e.g., Uber & Lyft), dock-less bike shares, and shared
automobiles; it is important to take full advantage of these emerging systems with
models that can account for multi-modal systems.

Rather than continually adjusting the supply system to meet a dynamic demand,
the opposite stance may be taken to adjust demand through pricing policies to op-
timize the system. Recent research has demonstrated the potential for personalized
and optimized incentive programs to improve system performance (Azevedo et al.,
2018). In order to support effective decision making for policies related to infras-
tructure investment, operations planning, and demand management (e.g., through
incentives), there is a need for simplified models that consider the variations across
different travelers, e.g., varying values of time to account for modal preferences and
socio-demographic factors. This includes considering the effect of distance from tran-
sit stations on mode choice decisions as well effects of other types of heterogeneity of
travel preferences across the population.

The following literature review begins with an introduction to transit access in
Section 2.1, discussing its importance and contextual relevance to density and ur-
ban planning. The following three sections are structured around the two modeling
paradigms of system models and discrete choice models in Sections 2.2 and 2.3, re-
spectively, followed by a comparison in Section 2.4. The nexus bridging the two
methodological approaches is the “value of time” measure, discussed in Section 2.5.
The value of time measure is given empirical value in this dissertation through a data

synthesis process called population synthesis, which is discussed in Section 2.6.



2.1 Transit access, density, and the urban form

It is no great revelation that transit access is an essential aspect of transit itself.
Either from a quantitative technical engineering perspective or a planner’s holistic
qualitative perspective. Perhaps planners have intuitively recognized how integral
accessibility is to transit, for it has been exhaustively studied and examined in count-
less ways. One of the most critical aspects of transit access is density (Cervero and
Kockelman, 1997). However, for much of 20'" century, planners saw dirty and con-
gested city centers as the source of social woes. As a result, planners often shifted
towards decentralization and low-density design by taking advantage of individual
mobility made possible by an affordable automobile and a burgeoning late-20*" cen-
tury middle class (Fishman, 1987).

Perhaps since Jane Jacobs’ seminal work The Death and Life of Great American
Cities in her fight against “urban renewal” and the destructive interstate highway
projects (Jacobs, 1961), a generation of contemporary planners now realize the nega-
tive effects this had on urban form, communities, economics, environment, equity, and
overall transportation effectiveness (Cervero and Kockelman, 1997). Today there are
a plethora of revivalist initiatives as ubiquitous as “New Urbanish” that bring both
hope to urbanism, but also concern over gentrification and the erasure of organic
culture (Grant, 2005; Smith, 2002). Moreover, there are of course dissenting opinions
arguing that transit projects are a financial failure and merely a planner’s fantasy of
a bygone era; that the superior mobility of automobiles should be embraced (Pickrell,
1992). Looking into the future, the relative effects of emerging technologies (e.g. ride
sharing and autonomous vehicles) may no doubt incite a further debate.

In a purely utilitarian economic sense, affordable transportation provides the nec-
essary nexus between housing and productive employment (Sandoval et al., 2011;
Pathak et al., 2017). Of course, many planners recognize transportation’s importance

in life outside work and the impact it has on a community (Cervero and Guerra, 2011;

10



Cervero and Duncan, 2003). For example, classical commuter focuses park-and-ride
models are being grown to foster communities around the transit access centers in
what is called transit oriented development (Turnbull et al., 2004; Caltrans, 2010;
Center for Neighborhood Technology, 2006). Furthermore, there is also a growing
trend to consider bicycle access in these models, for their low cost, small footprint,
and environmentally friendly benefits (Flamm and Rivasplata, 2014). In analyzing
the fare-box, many transit researchers found that subsidizing lower fares can have
surprising societal and economic impacts beyond a marginal increase in ridership
(Farber et al., 2014; Cervero, 1982; Cervero and Kockelman, 1997; Sandoval et al.,
2011). Moreover, mass transportation is inherently more environmentally friendly
than individualized transport. Although governmental air quality regulation began
in the late 1960’s with a focus on regional air pollution (e.g., smog), environmental
concern recently has become a global concern with transportation being the second
largest source of greenhouse gases (Hoehne and Chester, 2017).

Although studies from a planning perspective provide a broad insight into sys-
temic issues, they are largely high-level and focus on qualitative measures, ultimately
lacking quantitative solutions. From an engineering perspective, transportation can
be quantified in many ways. As a fundamental example, Hégerstrand (1970) posited
a measure of transportation access as the number of destinations reachable within a
given distance and time. More recently, data-driven econometric approaches quantify
difficult to measure factors, such as ease of access and “taste” preferences of individ-
uals (Dong et al., 2006; Tong et al., 2015; El-Geneidy et al., 2016; Ben-Akiva et al.,
1996). In effect, quantifying qualitative aspects of transportation. To date an ever
growing number of transportation models are being developed for a variety of applica-

tions, ranging from simplistic geometric models to complex computer simulations.
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2.2 System models

The desire to improve multi-modal transportation system efficiency through pric-
ing is a decades old ambition. Since Vickrey’s model (1969), many have extended
this work to include competing modes (Tabuchi, 1993; Huang, 2000; Kraus, 2003;
Gonzales and Daganzo, 2012, 2013), and to include population heterogeneity through
discrete choice models (Huang, 2002). Much of this work, especially in transportation
economics, has focused on a single corridor or a simplified representation of a city as
a linear system. For example, recognizing that transportation infrastructure requires
space itself, Solow and Vickrey (1971) analyzed traffic patterns in an idealized linear
city to find an economic equilibrium allocation of space to balance land value and
congestion costs. These models have been developed to account for the costs and
externalities of transportation (Solow, 1972, 1973; Wheaton, 1998) as well as equilib-
rium and optimum urban land use patterns (Anas et al., 1998; Anas and Xu, 1999;
Rossi-Hansberg, 2004).

A significant body of literature has focused on equilibrium traffic assignment prob-
lems that consider detailed mode and route choices on specific links in a network.
Equilibrium traffic models are necessary for estimating demand to be used as input
in pricing optimization. These include stochastic equilibrium (Daganzo and Sheffi,
1977), dynamic user equilibrium (Ben-Akiva et al., 1986; de Palma et al., 1983),
experience-based models (Iida et al., 1992; Fujii and Kitamura, 2000; Polak, 1998),
boundedly rational user equilibrium (Lou et al., 2010), late arrival penalized user equi-
librium (Watling, 2006), and multi-objective equilibrium models (Dial, 1996; Chen
et al., 2010; Zhang et al., 2013; Levinson and Zhu, 2013; Wang et al., 2014).

A separate body of literature has been developed around modeling transit net-
works in regions. Analytical continuum approximation models date back to Holroyd
(1967) and have been recently used to compare the performance of radial, grid, and

hybrid network structures, as well as feeder-bus transit systems (Daganzo, 2010; Ba-
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dia et al., 2014, 2017; Chen et al., 2015; Sivakumaran et al., 2012). The advantages of
these models is that the costs for users and operating agencies can be associated with
the performance of a transit system based on a small number of design variables (e.g.
route spacing, stop spacing, and service headway) and the number of people using
the system. This aggregated approach of modeling transportation fits well with the
network-level perspective of the Macroscopic Fundamental Diagram (MFD), because
the characteristics of the traveling public and region can be described in terms of
high-level, aggregate quantities.

In regards to transit access models in addressing the first-last mile problem, to
date there is a growing body of research focused on developing park-and-ride system
models. These models seek to better understand station choice of users (Mahmoud
et al., 2014), find optimal locations (Wang et al., 2014), optimize pricing (Zhu et al.,
2013; Li et al., 2014; Kono et al., 2014), and even commoditized park-and-rides with
parking permit trading schemes (Zhang et al., 2011). Although planners have adeptly
focused analysis and policy around mixed-modal access (e.g., walk, bike, and drive),
the quantitative transportation system models are lacking. Moreover, there is not
only a lack of multiple access modes, but a lack of any access modes other than

walking and driving.

2.3 Discrete choice

A discrete choice model is for the most part an umbrella term for any model which
attempts to predict or explain the choices between discrete alternatives from empirical
data. These models are generally regression-based and include such discrete choice
model forms as Logistic Regression (Logit), Multinomial Logit, Probit, Nested Logit,
Generalized Extreme Value, and Latent Class. Models used for the discrete choice

of mode will be discussed in this review. Ben-Akiva and Bierlaire (1999) describe
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a framework for discrete choice models as having four components: decision-maker,
alternatives, attributes, and decision rule.

The decision-maker is any decision-making entity and their characteristics. This
could be an individual person, a collection of individuals in a household, or an or-
ganization. Decision-makers are defined using characteristics (i.e., variables) for the
disaggregated set of individuals. The variables are usually socio-economic and de-
mographic attributes (e.g., age, income, gender, education, occupation, etc.). The
alternatives are the possible choices available to the decision-maker. Alternatives
could be which mode to choose, route to take, or location to reside in. The attributes
are costs and benefits associated with each alternative (e.g., cost, travel-time, mode
features, etc.). These attributes can be generic or alternative-specific. The decision
rule is the process by which the decision-maker considers their choices, such as maxi-
mum utility. The output of discrete choice models can be deterministic with a single

result, or probabilistic with a probability associated with each choice.

2.3.1 The logit model

Most choice models are based on wtility theory in which each alternative provides
a certain value, or utility, to the decision-maker. A deterministic decision rule is made
for whichever option offers the highest utility to the decision-maker (Fishburn, 1970).

For an alternative n and decision-maker ¢, utility is given by equation 2.1 as

where U,; is the utility and V,,; is the representative utility. V,,; is referred to as the
“representative utility” because V,; # U,;. This is due to unobservable attributes

affecting uncertainty in the decision-maker’s choice, captured by the error term, €,;.
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In most cases, representative utility V' is estimated using linear parameters fitted with

regression. For example such as

where [ is the linear coefficient for variable x,;. This simple form enables a very
flexible platform from which to estimate utility using any number of desired vari-
ables. From this estimated utility, the probability of each alternative is then given by

equation 2.3 as

ev;Li

Pni = J (7
D g €V

(2.3)

where P,; is the probability of alternative n being chosen by decision-maker i, V,,;

Vni is the sum of utility for

is the representative utility for alternative n, and ijl e
all alternatives. This final expression provides an elegant and flexible platform of
discrete choice and has led to a growing family of logit based choice models. Logit

models are a very popular estimation method in transportation, but is also widely

used in other fields, such as economics, psychology, and sociology.

2.3.2 Nested logit

In standard logit models, alternatives are treated as independent of each other,
such as the choice between driving or riding the bus. This is referred to as Independent
Irrelevant Alternatives (IIA) property (Ben-Akiva and Lerman, 1985). This becomes
problematic when similar options are presented. Such is the case in Ben-Akiva’s
(1973) red/blue bus paradox where three alternatives are given: drive, blue bus, and
red bus. Since the red and blue buses are identical, one would expect the modal split
to be 50%-25%—-25% for drive, red, and blue. However, a standard logit model treats

them independently, thus yielding an even split of 33%-33%-33%. This overestimates
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net mode-share of 66% for transit, despite red and blue buses essentially providing
identical utility. Ben-Akiva (1973) proposed a Nested Logit Model to resolve this
issue by providing predefined model partitioning of the alternatives into “nests”. An

example of this is shown in Figure 2.1.

Decision

Bus

Drive Red Bus Blue Bus

Figure 2.1: Red/blue bus nested logit

This can be accomplished mathematically by creating a utility function for the

desired nests as shown in equation 2.5

Unj = nk + Ynj + €nj + €nk (24)

j € Cy (25)

where C}, is the set of nested alternatives and W;; and Y;; are representative utilities
for variables in nests j and k. The error terms € are assumed to be independent and
Gumbel distributed, scaled by the parameter pu,,. A composite utility for W;; then is

as in equation 2.6:

1
We, = We, + —In (Z e#mWik> (2.6)

m JECK
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where p,, is a unitless correlation term for the nest, often called the “logsum” term.
Equation 2.6 is then nested in equation 2.3 to provide a nested probability function.

An example of this nesting for the red/blue bus scenario is shown in equation 2.7.

eﬁxred euimln(eﬁ%“édﬁ»eﬂmblue)
Fous = 2.7
bus eﬂxred + eﬁxblue euimln(eﬁxred—keﬂmblue) + euimln(eﬂwdrive) ( )

2.3.3 Mixed logit

In addition to the problem of ITA, there are two other limitations: (1) the pop-
ulation is assumed to have uniform preferences, (2) the independent irrelevant al-
ternatives (IIA) property restricts substitution of similar choices, and (3) there is no
account for unobserved factors over time. First, in a standard logit all decision-makers
are treated as uniform with only a single 3 in the utility function of V,; = SBx,; + €,;.
This inability to account for a heterogeneous population severely impacts the consid-
eration of alternative modes (e.g., bicyclists), which typically have varying degrees of
ability, confidence, and comfort as users. Second, the ITA property means that any in-
troduction of new modes is severely limited if they have similar utility to other modes
(e.g., introducing electric cars) (Brownstone and Train, 1998). Lastly, the standard
logit does not consider repeated or sequential decisions over time; thus, assuming that
each decision is a new one and is not affected by previous decisions.

To surmount the limitations of the standard logit model, McFadden and Train
(2000) proposed the Mixed Logit Model. This was achieved by incorporating a dis-
tributed G, in the utility function V,,;(8,) = BnZni + €ni. The probability can then be

estimated as the standard logit randomly distributed across f(/3) given as

P — / Li(8)f(B)dB (2.8)
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where L,; is the standard logit model given as

65n$ni

Lni = _Zj eﬁnxnj

(2.9)

In its complete form, the mixed logit is given as

oBntni
P | (Z—ﬁ> 7(8)ds (210)

The mixed logit essentially is a logit that is integrated across a continuous density

function that can account for heterogeneous decision-makers.

2.3.4 Latent class logit

It is often that population data is only available in a discrete distribution, not a
continuous function. To address this, the mixed logit can be discretized to represent
segments of the population in what is called the Latent Class Logit (Kamakura and
Russell, 1989; Chintagunta et al., 1991). The probability P,;, of alternative n and

individual 7, is estimated as

M eﬁmxni
Pni == Z Sm (Z] eﬁmznj> (2]‘1>

where s,, is the share of population segment m of M total segments.

2.4 Comparison of system models and discrete choice models

With the continued advancement and availability of high performance comput-
ing, computationally intensive stochastic behavioral models have been pushed to the
forefront of transportation research. Stochastic models (e.g., discrete choice) uti-
lize abundant data for empirically fit models based on random utility theory, pro-

viding generalizable and realistic results (Ben-Akiva and Lerman, 1985; McFadden,
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1978; Train, 1978). Stochastic behavioral models are well suited for user-side de-
mand estimation models, but often lack a closed-form solution, obscuring parameter
relationships and requiring heuristic solutions that do not guarantee global optimal-
ity (Sivakumaran et al., 2012). Alternatively, continuum approximation models can
provide robust closed-form solutions, revealing the relationships between input vari-
ables and their optimal values (Daganzo and Sheffi, 1977; Newell, 1973; Yang and
Bell, 1997). Continuum approximation models tend to be more general and their
simplified nature typically only allows for a select few competing modes. Moreover,
accounting for a mixture of access modes has yet to be accounted for in a pricing

optimization model.

2.5 Value of time

“Value of time” is a measure often used in transportation models as a way to
estimate the additional cost imposed on users due to the time spent traveling. Par-
ticularly since the proliferation of random utility and disaggregate data based models
(i.e. logit), a quantifiable value of time can be extracted from the fitted utility es-
timations. The value of time is in itself a quantification of an abstraction. It is the
value, measured either in utility or monetarily, that a person holds for a particular
increment of time given some activity or purpose. Value of time is not entirely un-
derstood nor fully quantified as it varies across individuals and purpose, but also in
time as well. For example, a rushed morning commute compared to a more relaxed
return trip. Many studies have been conducted on the subject, but tend to be either
very general with little detail, or too detailed and case specific.

Value of time is something long understood in the realm of labor and work as the
value extracted from time spent working. However, outside of wages, pay scale, and
productivity, it is also a concept that has become of particular importance in the field

of transportation. That is, how much value does a person associate with time spent
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traveling in addition to the actual monetary cost? This concept enables researchers
and practitioners to convert from the abstract realm of utility into the real world
monetary value.

Becker (1965) and Beesley (1965) provided the first theoretical accounts for value
of time in transportation. Becker’s theory of time and money assumed that an indi-
vidual optimizes their exchange between leisure and work time. Meaning that time
spent traveling to work is essentially unearned income; thus, their value of time can
be derived as the marginal between travel time and money, i.e. the person’s after-tax
wage rate.

DeSerpa (1971) expanded upon this by formulating a utility function of U that is
affected by the goods consumption G of time T}, an individual spends on K activities,
which can include work time T,,, and leisure time T,. Assuming there is a time
that must be spent on each activity and a total time constraint 7° (e.g., hours not
sleeping) > T} < T°, the individual will optimize their utility given their budget
G<Y+ S)Tw. Where Y is unearned income and w is wage. The problem can be

solved using a Lagrangian function

dY 8V/8T ¢k

k — k

_ __ _ 2.12
o (d k>v Ny A (2.12)
Kt _ U o Ure = Urk

vr =5 5 =w+ 3 (2.13)

with the multiplier constraints of A for budget, p for time, and ¢x for activity k.

Within this formulation, we can extract the value of time as
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In terms of a logit model’s utility estimation, the value of time can be extracted
from the various estimation coefficients for cost and time components (Ben-Akiva
et al., 1993; Train, 2009). Utility in the form U,; = a¢nifw, + Bt,; + --- where ¢ is
cost, w is wages, t is time, and the estimation coefficients are o and 5. The value of
time then becomes

defar = — (B fa)w, (2.15)

which is essentially a ratio of that activity’s value to the person’s wage rate.

From this basis, a plethora of empirical studies have been conducted to study the
many possible time valuations and methodological varieties (Hensher, 1976, 2001).
Abrantes and Wardman (2011) provides an empirical estimation of value of travel
time, depending upon the various types of time spent (e.g. in vehicle time, wait
time, congestion time, etc.). Since value of time is a marginal benefit (i.e. a partial
derivative) studies often focus on travel time savings from choosing some time saving
alternative, e.g. toll roads (Shires and de Jong, 2009; Li and Hensher, 2012; Steimetz
and Brownstone, 2005).

Small (2012) provides a detailed review of the literature, noting that many studies
find the value of time to be about half the gross wage rate, which is consistent
with earlier findings by Lave (1969). However, the value of time varies with income
(Johnson, 1966) and tends to increase over longer times, suggesting travel fatigue.
This is particularly important for active-transportation modes such as walking and
biking, which value of time can vary across as well (Jara-Diaz et al., 2008; Uchida,

2014; Wichman and Cunningham, 2017).

2.6 Population Synthesis
While the field of transportation demand modeling is departing from classical

trip-based approaches and shifting toward purely activity-based models, it is still
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necessary to possess data with fixed workplace locations (e.g., home and work-based
origin destination) as well as the socio-demographic characteristics (e.g., age, gender,
income, person-household relationships, and household attributes) of the target pop-
ulation. However, such a complete joint set of data with socio-demographic attributes
and workplace location is not available. Instead it must be synthesized using available
census or sample data.

Population synthesis is a process by which a complete population data set (typ-
ically disaggregated data) is synthesized using partial data that are available (e.g.,
population samples or total census counts). Meaning that the missing portions of a
data set are re-created by expanding or estimating for the unknown portions using
existing data. Traditionally, population synthesis relied upon a well-matured de-
terministic fitting method called Tterative Proportional Fitting (IPF), where a mul-
tidimensional joint frequency matrix (i.e., a population sample) is fitted to known
marginal totals (i.e., census totals). An alternative deterministic method is Combi-
natorial Optimization (CO), which re-frames it as an optimization problem to find a
set of joint frequency matrix weights that minimize error with respect to the target
marginal totals. More recently, population synthesis has shifted towards using more
probabilistic approaches, such as Bayesian Networks (BN) and Monte-Carlo Markov
Chain simulation. The benefit of these probabilistic approaches is that they require
smaller sample sizes and free the researcher to use variable types other than binned
frequencies (e.g., continuous age variables instead of bins of 10-14, 15-19, 20-24, etc.).

Workplace location models may be estimated using disaggregated data (e.g. dis-
crete choice models or BN), or using aggregated data (e.g., with classical fitting
methods, such as IPF and CO). The former is more flexible, capable of including a
large number and variety of socio-demographic variables with accurate results, but

the spatial precision is limited by sample size. The latter is typically provided at
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a very fine grain spatial level (e.g., census blocks), but with fewer and less flexible
variables (e.g., categorical frequencies only, not continuous variables).

In general, population synthesis methods can be categorized into three broad
groups: (1) Iterative Proportional Fitting (IPF), (2) Combinatorial Optimization
(CO), and (3) Probabilistic Simulation Synthesis (PSS) based approaches. The fol-
lowing literature review of population synthesis methods is structured around these
three groups, but focusing mainly on IPF as it is most pertinent to the method de-
veloped in this dissertation. The following population synthesis literature review is
as outlined as follows. First in Section 2.6.1 presents IPF along with the associated
method of Iterative Proportional Updating (IPU) for synthesizing multilevel popula-
tions in Subsection 2.6.1.1. Next a brief overview of CO is presented in Section 2.6.2
before presenting PSS approaches in Section 2.6.3. Section 2.6.4 then discusses the

advancement of workplace assignment models to date.

2.6.1 Iterative Proportional Fitting (IPF)

Data can be cleaved into two distinct types, aggregated and disaggregated data.
Aggregated data are the totals of a particular subject or variable (e.g., total number
of men or women), referred to as marginal data. Aggregated population data in
the U.S. is generally available from the U.S. Census Bureau (U.S. Census Bureau,
2010, 2015), which provides tabulated totals for variables, such as totals by age, sex,
occupation, etc. Disaggregated data in contrast, are comprised of individual persons
in the population and their characteristics, referred to as microdata.

For decades the backbone of most population synthesizers has been IPF, a method
for expanding a small microdata sample (called a seed) to match marginal totals
through an iterative fitting process (Deming et al., 1940; Stephan, 1942; Choupani and
Mamdoohi, 2016; Pritchard and Miller, 2012). Introduced by Deming et al. (1940),

IPF is an iterative process used to fit joint distribution cells in an n-dimensional
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contingency table when the marginal totals are known. The process begins by setting
initial “seed” values in the cells #° equal to the sample frequencies p. Then for each
dimension (e.g. rows ¢ and columns j) the cells are proportionally adjusted to fit the

marginal totals for the respective dimension. This is expressed as

70 =p (2.16a)
~(n=1) _ ~(n-2) P+

2.7
7 = gl P (2.16¢)

B D

where 7 is the iteration number. Once all dimensions are proportionally adjusted, a
measure of fit calculated, completing one iteration. This iterative process is repeated
until error converges to some desired threshold. Deming et al. (1940) proposed an
objective function of minimizing the least square error, also called a chi-squared func-

tion, shown in equation (2.17).

A )2
(e =3 W ) 2.17)
irj i

where p;; is the sample proportion of cell ¢j and 7;; is the estimated cell propor-
tion. Mosteller (Mosteller, 1968) advanced the technique by showing with equation

(2.18) that cross-product ratios could be used to adjust the table while preserving its

structure at each iteration.

(), (n)

NijNhk  Pij Phi
kTR Dig Phyj

where n is sample of observations in two multi-way tables of proportions h, i, j, and
k; with n being the iteration number. Then Ireland and Kullback (1968) further
showed that cell probabilities can be estimated for multi-way contingency tables, the

importance of this is that IPF can be extended to high dimensional contingency tables.
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Wong (1992) then tested the utility of IPF for generating populations for geographers,
until finally Beckman et al. (1996) was the first to utilize IPF for population synthesis
with disaggregated travel demand modeling.

IPF requires initial seed values to begin proportional fitting. Any zero cells in
the seed will remain as a zero during IPF and not be fitted. There are two types of
zero cells, “sampling” zeros that occur when there are no representatives captured
in the sample (e.g., rare combinations), and “structural” zeros that represent impos-
sible combinations in the data (e.g., a head of household that is under aged). The
difficulty in handling zero cells is the need to preserve structural zeros while adding
heterogeneity by filling sampling zeros. One solution to the zero cell problem is to
simply set a very small arbitrary value (e.g., 0.001) for zero cells (Beckman et al.,
1996). This allows the cell to be fitted and helps IPF to converge. However, this
also removes any structural zeros in the seed, introducing the potential for impossible
combinations to occur. Another solution is to substitute missing cells using values
from a larger sample (e.g., the entire study area rather than a sub region). In order
to ensure proportional unity, the borrowed values are adjusted proportionally by the
ratio of sub-sample size to the total sample size (Ye et al., 2009; Guo and Bhat, 2007).

Alternatively, sample-less populations may be generated using structured marginals
(Barthelemy and Toint, 2013) with IPF. The weights are then integerized and repli-
cated to form a near perfect disaggregate population (Lovelace et al., 2014; Ballas
et al., 2005a,b). However, this destroys the intricate household-person relationships
that can be extracted organically from a joint sample. Demand models often rely on
decisions made at the houschold level (Guo and Bhat, 2007). For this reason it is
often necessary to synthesize a multilevel population (i.e., persons and households).
Multi-level populations must then be reconstructed using an algorithm, but this often
comes with a loss of accuracy (Lovelace and Dumont, 2016). Sample-based approaches

tend to be preferred, largely because public use microdata are typically available in
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most countries where population syntheses are performed. For example, Public Use
Microdata Sample (PUMS) in the United States (U.S. Census Bureau American Com-
munity Survey, 2015), Public Use Microdata Files (PUMFs) in Canada, and Samples

of Anonymised Records (SARs) in the United Kingdom.

2.6.1.1 TIterative Proportional Updating (IPU)

Generating multilevel populations tends to be one of the most challenging prob-
lems in population synthesis. In general, multilevel populations are synthesized by
drawing households from a joint microdata sample of persons and households. The
sampled households along with their associated persons are replicated into a pool of
joint persons and households (Beckman et al., 1996; Auld and Mohammadian, 2010).

Beckman et al. (1996) estimated joint populations by fitting households using IPF,
then used the IPF weights to draw from a joint sample. However, using only house-
holds leaves person characteristics uncontrolled, therefore, introducing error. Error
was partially mitigated by incorporating broad person level variables into households
(e.g., number of workers, children, or adults). This was further improved through
sampling algorithms, relation matrices, multiple IPF steps, or improved classification
and regression trees (Le et al., 2016; Zhu and Ferreira, 2014; Guo and Bhat, 2007;
Arentze et al., 2007; Arentze and Timmermans, 2004).

Ye et al. (2009) provided a major breakthrough by proposing a novel fitting algo-
rithm called Iterative Proportional Updating (IPU). IPU re-weights households in a
microdata sample using separate IPF weights for persons and households as marginal
constraints in the subsequent IPU step. This yields a single joint weight that accounts
for both persons and households simultaneously. It is based on the basic principle of
IPF, but instead of individual households and persons, IPU re-weights a joint sample
of household and person types using separate IPF estimates as marginals in a subse-

quent fitting process. The results yield a re-weighted value for each household that
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accounts for both persons and household attributes. The algorithm is performed by
first structuring the joint person-household sample data (e.g., Public Use Microdata

Sample) into a joint list, such as the example in Table 2.1.

Table 2.1: Example IPU joint list

Households Persons

Sample ID Weight | Type 1 Type 2 | Typel Type2 | j

1 wy 1 0 1 1

2 Wa 0 1 0 2

3 W3 0 1 1 1

4 Wy 1 0 3 0

5 ws 0 1 0 1

6 We 1 0 1 0
1 Ww; dij
Marginal constraint 35 45 124 137 C;

The household and person types are combinatorial types, meaning that there is
a unique type for each possible combination of household or person variables. The
values in the columns under person and household type represent the number of
persons or household types in each household sample. Thus, the number of columns in
the joint table is equal to the total number of all possible person variable combinations
plus all possible household variable combinations. The number of rows in the joint
table is equal to the number of household samples in the data. The iterative process
begins by proportionally adjusting the weights w; to match the marginal constraint
in each column. Once all columns are adjusted, completing one iteration, a measure

of fit is checked using the objective function”

(sames)

J Cj

5= - (2.19)

where ¢ is the absolute relative difference value, d;; is the frequency of sample pop-

ulation characteristic j in household ¢, w; is the weight for household i, ¢; is the
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marginal constraint for the population characteristic, and m is the total number of
marginal constraints in the problem. The process repeats iteratively until a speci-
fied convergence criteria for ¢ is met. However, depending on the sample size and
possible combinations, the resulting table can quickly become an extremely large
matrix creating massive memory requirements. Although it is possible to reduce
memory requirements using sparse matrices, the dimensions of the matrix itself are
still computationally cumbersome, greatly slowing computation for a process that

could require many iterations to converge.

2.6.2 Combinatorial Optimization (CO)

Though popular, IPF is not the only technique used in population synthesis. An-
other classical deterministic approach is Combinatorial Optimization (CO) (Open-
shaw and Rao, 1995; Voas and Williamson, 2000; Abraham et al., 2012). CO treats
population synthesis as an optimization problem, where the number of representatives
in the joint sample (i.e., sample weight) is optimized to match the marginal totals.
CO also offers the possibility of integer optimization, eliminating the need for prob-
abilistic sampling or decimal “integerization” (Lovelace and Ballas, 2013). However,
a major weakness of using CO is the inherent disregard of attribute association and
weight (i.e., the frequency a combination of attributes) (Pritchard and Miller, 2012).
While IPF will preserve patterns in a microdata sample based on frequency, CO will
minimize error even if it means setting unrealistic weights (e.g. zero). This poten-
tially leads to over-fitting or loss of heterogeneity. In general, CO is less common,

but can provide precise and computationally efficient results (Hermes and Poulsen,

2012).

2.6.3 Probabilistic Simulation Synthesis (PSS)
IPF and CO rely on classical fitting and re-weighting methods for populations,

but more recently a pure simulation based probabilistic approach has proven superior
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in many regards. Rather than determining household weights using IPF and then
drawing, simulation-based approaches effectively fit and draw samples simultaneously
by sampling directly with a conditional Monte-Carlo Markov Chain (MCMC).

Farooq et al. (2013) used a Gibbs sampler to draw from a person level population
sample, checking the fit against marginals to achieve a near perfect fit. Casati et al.
(2015) improved upon this by proposing a two-step method using a Gibbs sampler
followed by a re-weighting step to satisfy both individual and household margins.

A major weakness of simulation-based methods is the lack of heterogeneity in the
sample, meaning that persons or households cannot be synthesized in the population
if they are not represented in the sample (Farooq et al., 2013). Sun and Erath (2015)
proposed a new approach using Bayesian Networks (BN) to map and reconstruct the
joint conditional probabilities one pair of variables at a time from their partials in
the population; in effect, reintroducing heterogeneity into the population that may
have been lost by solely relying on full joint conditionals. This ability to reconstruct
populations also means that the method requires smaller sample sizes than IPF to
achieve a satisfactory level of accuracy. A further improvement by Saadi et al. (2016)
using Hidden Markov Models (HMM) helps capture hidden correlations between the
diversity of variables in subgroups of the population.

These probabilistic approaches are state-of-the-art in population synthesis pro-
viding accurate results, but unlike IPF or CO that rely on discrete categorical fre-
quencies, probabilistic approaches have the flexibility to handle continuous variables.
This flexibility has spurred the interest in integrating advanced computation meth-
ods with population synthesis methods, such as machine learning, to further refine
results (Borysov et al., 2018). Although PSS methods do not forbid integration of
workplace assignment and population generation per se, but no examples have been
found in the literature yet. Furthermore, PSS approaches are limited in synthesiz-

ing joint populations, requiring that household relationship structures (e.g., spouse,
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child, non-relative etc.) be defined by researchers (Sun and Erath, 2015). This is
problematic as there are an unimaginable variety of family and non-family household

structures.

2.6.4 Workplace assignment

Traditional trip-based models allocate aggregated travelers from origins to desti-
nations using an origin-destination (OD) assignment matrix fitted with aggregated
trip generation data. For example, the number of workers that live in each origin and
the total number of workers that work in each destination. To fit the OD matrix,
the cells in the matrix (i.e., OD pairs) are given an initial weight based on some
weighting scheme, such as the common “gravity model” (Voorhees, 1956). Most ag-
gregated trip-based models fall into this classical model of iterative fitting, but vary
by their weighting procedures (Abdel-Aal, 2014), such as the maximum entropy (Wil-
son, 2011), intervening opportunities (Stouffer, 1940), or radiation laws (Simini et al.,
2012). These models make alternative assumptions (e.g., distance based attraction)
or add complexity in order to account for a variety of socioeconomic factors. However,
these aggregated approaches all rely on IPF and are confined to a single trip purpose
at a time (e.g., work trips).

With the development of discrete choice models and the ability to break free from
single purpose OD matrices, transport modeling has largely shifted away from rigid
deterministically fit assignment models (McFadden, 1978; Train, 1986; Ben-Akiva
and Lerman, 1985). An ever growing family of increasingly complex models are being
developed to model individual decisions (e.g., for mode, purpose, time of day, and
destination) (Bowman and Ben-Akiva, 2001; Bowman et al., 1998; Dong et al., 2006;
Recker, 2001). The challenge with these types of models of is that as the desired
spatial resolution increases, ever larger sets of sample data are required to builds

these models. While methodologies to deal with the limitations of discrete spatial
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choice modeling have been proposed (Guevara, 2010), data limitations still poses a
problem to fine grain destination choice models as sample data can become too sparse

for accurate estimation.

2.7 Summary of Literature

Demand models typically rely on a family of discrete choice models, estimated
using previous travel behavior or stated preferences. Discrete choice models treat
each alternative as a singular entity (e.g. walk, drive, or train). As a practical
solution, multi-modal combinations are typically modeled by creating “bundles” of
alternatives (e.g. walk to train). The utility of bundles are then fitted as a unique
alternative and the choice probability is estimated as such. In most cases this is a
perfectly acceptable practice because “feeder” modes are often relatively uniform (e.g.
walk distance around a transit stop). However, this poses as a limitation to more
complex multi-modal combinations due to the lack of control for individual modal
utility and the ability to predict for hypothetical new combinations. The purpose
of combining new modes is to investigate the potential for improved overall travel
benefit by manipulating not merely mainline modes, but both access and mainline
modes.

Multi-modality might be solved by chaining decisions together through estimation
of the probability for each mode segment of the journey separately. However, this is a
partially flawed approach as a decision-maker will not make each choice independently,
but instead will consider the total benefit in a single decision. Moreover, this risks
underestimating costs associated with transferring modes. Thus, by splitting the
modes into decisions, one violates the fundamental assumption that a decision maker
is logical and will choose the combination of alternatives which provides the greatest
utility. A more appropriate and parsimonious model would be to incorporate and

account for the multiple utilities at the decision point.

31



To accomplish this task, a demand model must be developed in a way that not only
accounts for system costs, but formulated in such a way that is easily optimizable.
Furthermore, the model should also account for population heterogeneity, as expressed
by value of time variation. Although value of time is an already extensively researched
subject, a varying value of time has yet to be included in a system-demand model
of this kind. Moreover, the relationship between value of time and income is often
cited across the literature Small (2012), yet little research has been undertaken to
investigate it specifically. The aforementioned research may be distilled into the

following critical research gaps:

1. System models: System models provide a mathematical approximation for an
entire system, revealing parameter relationships and easily finding a robust
global optimum. However, these models have yet to include multiple access
modes and user heterogeneity. Moreover, demand is often considered a fixed

input, or assumed to conform to supply.

2. Demand models: Contemporary stochastic demand models (e.g., logit-based)
can achieve a high degree of empirical accuracy and flexibility with respect to
heterogeneity, but fundamentally do not possess a closed-form. This makes
them impossible to solve analytically and obscuring parameter relationships.
Optimization of such models requires heuristic solutions that can become com-

putationally intensive and do not guarantee global optimality.

3. Economic models: A multitude of economic modelling and theory has been
published surrounding mono-centric or poly-centric cities and economic equilib-
rium. However, these models often oversimplify travel time to a single mode, or
disregard congestion in the system. Moreover, these models are closed systems

in that they do not consider movement between cities, only within. Lastly, these
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models purely seek to find efficient equilibriums and fail to consider population

heterogeneity (i.e., value of time).

4. Equity: Although equity is often raised as a social issue resulting from trans-
portation policy, it is largely researched a posteriori. Transportation models
rarely, if ever, address equity as a factor in the model itself and not merely a

latent variable or external consideration.

The proposed research seeks to address these research gaps with a new hybrid
deterministic model that accounts for multiple access modes, varying values of time,
and can be optimized with computational efficiency. Such a model can be used to
not only provide an optimal pricing policy to achieve desired demand, but to explore

policy results more easily and possibly address equity concerns.
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CHAPTER 3
POPULATION & WORKPLACE SYNTHESIS

Both population synthesis and workplace destination have classically relied on
IPF, yet to date the two fitting processes have not been integrated into a single
process despite sharing a common algorithm. The benefits of such an integration
provides a much more efficient and seamless generation and assignment process. This
is done by first fitting a workplace assignment model using aggregated employment
data using aggregated population data as a constraint (i.e., known home location as
origin totals). The joint distribution of individuals in a synthetic population is then
fitted, also using IPF, with workplace destination as a variable using the workplace
assignment model as a marginal constraint. Thus, as the synthetic population is fitted
with respect to persons and households, it is also fitted with respect to workplace.
The result yields a synthetic population already fitted with home origin and workplace
destination for each individual.

This proposed unified process makes two contributions; first by integrating pop-
ulation synthesis and workplace assignment, and second by developing a more effi-
cient joint person-household matching approach to handle the additional population
attributes added. The joint person-household matching approach is based on Com-
binatorial Optimization (CO) with linear optimization of non-negative least absolute
deviation (NLAD). The new re-weighting method is capable of handling larger ma-
trices more efficiently than typical methods, a necessary consideration when many
additional features are incorporated for workplace assignment. This not only makes

integrated workplace assignment possible, but also provides inherently robust results
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while exploiting the computational efficiency of linear optimization. The proposed
method is compared against the more conventional algorithm of Iterative Proportional
Updating (IPU) as well as a non-negative least squares (NNLS) approach.

The proposed integrated population synthesis and workplace assignment process
is displayed visually through a schematic process flowchart in Figure 3.1. In general
the process is divided in to four steps: (1) origin-destination fitting, (2) person and

household IPF, (3) joint re-weighting, and (4) joint sampling,.
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Figure 3.1: Modeling framework

3.1 Simultaneous fitting of population and workplace

Within the proposed process, IPF is used at three separate instances: persons,
households, and origin-destination. The origin-destination IPF is performed in step
labeled (1) as a pre-processing step for aggregated origin-destination data. The pur-

pose of the pre-processing step is to obtain the joint distribution for origin, destina-
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tion, and industry from the simple “flat” two-dimensional tables. The resulting joint
distribution is then used as marginals in the person level IPF of step (2).

Despite being classically fitted using IPF, the origin-destination-industry (ODI)
matrix is weighted using observed OD totals, not an assumed model as the gravity
or similar model. The fitting process merely extends the OD table across multi-
ple dimensions using origin by industry (OI) and destination by industry (DI) as
marginals, meaning that the resulting matrix is empirically fit. In this dissertation
a three-dimensional matrix was generated for origin, destination, and industry; how-
ever, the process is flexible in that it can accommodate higher dimensional matrices
by incorporating additional socio-demographic stratification. The three-dimensional
matrix is formed by the three marginal tables of origin-industry, destination-industry,
and origin-destination (see Figure 3.2). Industry by origin or destination make the
vertical faces and origin-destination totals make the cube base. The cube interior is
the unknown joint distribution of home-workplace pairs, which is fitted using multi-

dimensional IPF.

Figure 3.2: Origin-destination-industry conceptualization
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3.1.1 DMarginal consistency

Before the multidimensional matrix is constructed, the marginals must be checked
for consistency between the origin, destinations, and person marginals (i.e., the
marginal totals are equal). It is likely that the tables will not match perfectly due to
sampling error, shifts in the population over time, unemployed persons, or persons
that enter/leave the study region. Although the differences may be minor, IPF re-
quires perfect consistency between marginals. The minor differences between the OD,
OI, and DI marginals can be corrected by proportionally adjusting each marginal to
match each other.

The adjustment process begins by treating the population marginals as the OI
marginal. The OD and DI tables will be adjusted to match the OI table (i.e., popu-
lation marginal). The OD table is adjusted first to match the OI table, then the DI
table is adjusted to match the OD; effectively using the OD table as a bridge between
origins and destinations. At this point, non-working persons are excluded because the
aggregated employment data only accounts for employed persons. Once the tables
are adjusted, the missing portion of non-working persons are added back to the OD,
DI, and OI tables using the original total of unemployed persons in the population
marginals. Since the aggregated data reflects workplace only, the non-working per-
sons are their origin (i.e., home zone) as also their destination to ensure the totals

are consistent.

3.1.2 Origin-Destination-Industry seed

Although it is possible to perform IPF using only the OI and DI marginals with
an assumed a priori seed model, such as the gravity or radiation models, the OD
marginal itself may be used to seed the ODI matrix. This provides the important
OD distribution that is then fitted to the other two OI and DI marginals. Moreover,

since all marginals are contingent upon each other (e.g., the origins in OI overlap with
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origins in the OD, and the destinations in the OD then overlap with the destinations
in DI), this adds structure to the IPF process helping to ensure accurate fitting
(Barthelemy and Toint, 2013; Lovelace and Dumont, 2016). This means that the
OD marginal table itself may be used as seed data, building an empirically fit OD

assignment model.

3.1.3 Integrated person fitting

Once the origin-destination-industry (ODI) matrix is fitted, the joint distribution
of destinations can be treated as marginal totals for destinations of persons. This
is performed in a zone-by-zone basis where a slice of the three-dimensional cube is
taken for the respective origin zone. This yields a joint table of total workers at each
destination by origin zone and by industry sector. The joint table is then used as
a marginal constraint in IPF along with the conventional demographic variables for
persons (e.g., age, gender, industry, etc.). The joint destination table by industry,
as opposed to destination only, provides additional structural constraint to the IPF,
helping to ensure a good fit (Lovelace and Dumont, 2016). IPF for households is also

performed at this step in tandem with the person IPF.

3.2 Joint re-weighting

To generate a joint population of households and persons in step (3) (see Fig-
ure 3.1), the separate IPF weights must be jointly re-weighted using the joint person
and household sample. A common re-weighting method is Iterative Proportional Up-
dating (IPU) (Ye et al., 2009). However, IPU is computationally intensive and given
a large number of zones and person level variables, IPU requires a very long time
to compute (e.g. approximately over 100 hours in this case). To improve upon the
computational efficiency of IPU, the joint re-weighting problem is recast as an op-

timization problem. The optimization problem is then solvable by minimizing error

38



through either non-negative least squares (NNLS) or non-negative least absolute de-
viation (NLAD) objective functions. For the overall synthetic population generation,
only NLAD is used due its superior performance and the excessive time required to
compute a full population using the other methods (e.g., 720 days for NNLS). How-
ever, the performance of NNLS and IPU is compared to NLAD using a smaller set of

zones and by treating the entire GBA as a single zone.

3.2.1 Non-negative least squares (NNLS)

The problem is formulated as an optimization problem that minimizes an error by
changing joint person-household population weights. The optimal solution can then
be found more directly through efficient optimization algorithms, rather than iterating
until convergence as is the case with [PU. The problem may be easily formulated into
the familiar Az = b format, treating each joint sample weight as a decision variable
x, and the sample values as constraints in an A matrix, and the IPF marginal cells
as the right hand side target value of b. The objective is to minimize the fitting
error by finding a combination of samples x that best fit the IPF marginals b. This
optimization approach is similar to CO in the sense that it uses optimization to find
weights, but unlike conventional CO it does not use individual population variable
totals as the target. Instead this approach using IPF contingency table results, rather
than individual variables. This not only provides a joint person-household weight, but
helps to preserve the attribute associations in the population that may be lost with
conventional CO (Pritchard and Miller, 2012). For demonstration, the generic data
is reformatted into Table 3.1 for an optimization approach. As with IPU, the person
and household types are combinatorial, resulting in a table with as many rows as
total possible combinations of person and household variables, and as many columns
as household samples. Each column contains a household sample, specifying which

household type it is and then the number of person types in each household sample.
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Table 3.1: Example linear program joint list

Sample ID  Weight xy xo x3 x4 x5 x b

Typel| 1 0 0 1 0 1|35
Households | 000 | 0 1 1 0 1 0| 45
Typel| 1 0 1 3 0 1124

Persons | 790011 2 3 0 1 0 |137

Although this problem can be solved analytically with ordinary least squares
(OLS) regression, this poses a problem in the context of a population for which
there cannot be negative weights (e.g., cannot have negative households or persons).
Thus, this problem requires a non-negativity constraint and cannot be solved analyt-
ically. The non-negative OLS problem, called non-negative least squares (NNLS) is

presented in Equation (3.1) and can be solved using quadratic programming.

min ||b — Az|[? (3.1a)

st. x>0 (3.1b)

This NNLS problem is often solved using an algorithm developed by Lawson and
Hanson (1995). However, for large scale problems, such as the one posed in this dis-
sertation, this algorithm becomes computationally inefficient. Alternatively, a linear
approach such as NLAD, may actually yield superior computational performance in

this case.

3.2.2 Non-negative least absolute deviation (NLAD)

To avoid the quadratic complication, the problem can be made linear by instead
optimizing for least absolute deviation with Equation (3.2). Least absolute deviation
(LAD) is a well established sibling to OLS regression often used as a “robust” alter-

native less sensitive to outliers (Bloomfield and Steiger, 1984; Davis and Dunsmuir,
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1997). In typical regression applications, LAD is less attractive than OLS because it
cannot be solved analytically. However, since the non-negativity constraint already
makes the problem unsolvable analytically, the linear form proves more efficient in

this case.

min |b — Az| (3.2a)

st. x>0 (3.2b)

The single constraint of x > 0, again is for the simple reason that there cannot be
a negative number of households or persons. The absolute value is needed in order
to account for both positive and negative deviations, which was otherwise handled in

OLS by the squared term. This can be further recast as a linear program as follows:

min ) e (3.3a)

st. Ar —e<b (3.3b)
Ar —e> —b (3.3¢)
x>0 (3.3d)

where € is an artificial variable for error (i.e., the deviation) to be minimized in the
objective function (3.3a). Absolute deviation is provided by the mirrored inequal-
ity constraints (3.3b) and (3.3c), ensuring that both positive and negative error is
minimized. This linear mathematical program can be solved by the simplex method,
using almost any optimization package. However, the matrix created by the problem
is quite large with tens of thousands of decisions variables and potentially hundreds
of thousands of constraints (i.e., one per household sample), and would benefit from

a well coded optimization package.
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The project work flow and data handling is written in R, but the optimization
algorithms are coded as dedicated functions using more efficient programming lan-
guages and simply executed with R. In all cases, the joint sample is stored as a
sparse matrix in R before being passed to the respective algorithms, greatly reduc-
ing the required memory and improving overall performance for all methods. NLAD
utilizes an open source linear programming package written in C++ called “Clp”,
developed and maintained by Computational Infrastructure for Operations Research
(COIN-OR) Foundation (2017). NNLS also utilizes open source software package
called “nnls”, which is based on the Lawson and Hanson (1995) algorithm and writ-
ten in Fortran (Katharine M. Mullen and Ivo H. M. van Stokkum, 2015). IPU is not
readily available as an R package, but was coded as a custom R package in C++ by

the authors to provide a competitive performance comparison.

3.3 Joint sampling

The results for all re-weighting methods are decimal weights for each joint record
in the microdata. The joint weights can then be used as weighted probabilities to
generate the final population with Monte-Carlo sampling in step (4) of the process
(see Figure 3.1). This sampling process is no different than with existing methods
(e.g., IPU). However, microdata typically does not contain OD information and can-
not be re-weighted with respect to OD. Instead a simple two step random sampling
procedure is used to generate the final population. First, joint household-persons are
generated by sampling from the microdata using the new joint weights. Then from
this joint sample, the destination is drawn using the person-destination IPF weights

as proportional probabilities for each person given their person type.
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3.4 Data

Data utilized for population synthesis consists of aggregated marginal totals, dis-
aggregated microdata samples, and aggregated OD totals by industry. All data are
publicly available from the United States Census Bureau, and are summarized in
Table 3.2. The marginal tables are provided by the United States Census Bureau’s
American Community Survey (ACS) (U.S. Census Bureau, 2015). As opposed to
the decennial census, which is a full census collected only every 10 years, the ACS
is a program that performs ongoing data collection used to estimate adjusted tables
for more recent years between decennial census years. The microdata are also man-
aged by the ACS program of the United States Census Bureau, referred to as Public
Use Microdata Samples (PUMS). The PUMS are provided as roughly a five percent

sample of the households and persons in the population.

Table 3.2: Data used in population synthesis

Table/Dataset Name Year Program  Description

Marginal data

B19001 2015 ACS 5-year Household income
24050 2015 ACS 5-year Industry & occupation
B01001 2015 ACS 5-year Age & sex
Microdata

ss15pma 2011-2015 PUMS Disaggregate persons sample
ss15hma 2011-2015 PUMS Disaggregate households sample

Origin-Destination data
ma_wac_S000_JT00 2015 LODES Workplace destination by industry
ma_rac_S000_JT00 2015 LODES Workplace origin totals by industry
ma_od_main_JT00 2015 LODES Workplace origin-destination totals

The OD totals are managed by the Center for Economic Studies of the United
States Census Bureau under the Longitudinal Employer Household Dynamics (LEHD)
program. This program also collects home and work locations of individuals, with

origins and destinations aggregated by various stratification (e.g., industry sector),

called the LEHD Origin-Destination Employment Statistics (LODES). LODES pro-
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vides aggregated OD pair totals for census blocks in a set of data tables stratified by
demographics. The demographic data stratification are provided for origins or des-
tinations separately, not simultaneously. For example, the total number of workers
for each origin-destination pair are provided in one table with two separate tables
stratified for origin by industry and destination by industry.

Since both the PUMS and census tables are managed and provided by the U.S.
Census Bureau, they largely share the same variables and data structure, requiring
very little adjustment to make them compatible. In some cases however, continuous
variables (e.g., income and age) in the disaggregated PUMS needs to be binned as dis-
crete variables to match the grouping used in the aggregated census tables. Table 3.3

summarizes the overall variables used for person and household IPF.

Table 3.3: Population synthesis variables

Household income Sex Age Mode Industry Occupation Home Workplace
<$10,000 Male 0-9 Drive None None (965x965 tracts)
$10,000-14,999 Female 10-14 Transit Natural resources Service
$15,000-19,999 15-19 Other Transportation  Production and
and utilities transportation
$20,000-24,999 20-24 None Finance and Sales, office, and
real-estate administration
$25,000-29,999 25-44 Educational and Management,
social-work business,
scientific, and
arts
$30,000-34,999 45-54 Professional, Natural
scientific, and resources,
management construction, and
maintenance
$35,000-39,999 55-64 Retail trade
$40,000-44,999 >65 Wholesale trade
$45,000-49,999 Information
$50,000-59,999 Construction
$60,000-74,999 Manufacturing
$75,000-99,999 Arts and
accommodation
$100,000-124,999 Other

$125,000-149,999
$150,000-199,999
>$200,000
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3.4.1 DMarginal data

The census tables contain data for all census tracts in the Commonwealth of Mas-
sachusetts. These tables are provided as either the decennial census or the American
Community Survey (ACS) program. The decennial census is a complete census com-
pleted every 10 years and the ACS is an ongoing sampling program which publishes
estimated tables every year. A summary of the tables used are shown in Table 3.2
under Marginal Data. Census tracts that exist outside of the study area were re-
moved using GIS shapefiles. It should be noted that some of the tables contain joint
contingency tables, such as SF-DP1 which contains both age and sex. In this case
we can have a joint count for the number of men and women within an age group.
The benefit of this is it eliminates the need to fit for these variables jointly, improving
IPF accuracy and performance. To make these tables compatible with IPF, they
are restructured to be multidimensional, rather than tabular. For example, SF1-DP1
would become a three dimensional matrix with each dimension being age, sex, and

census tract.

3.4.2 Micro-data

The microdata samples used in this dissertation are Public Use Microdata Samples
(PUMS) obtained from the U.S. Census Bureau (U.S. Census Bureau American Com-
munity Survey, 2015). The PUMS are five percent disaggregate population samples
collected as part of the ACS. The samples are compiled and anonymized for public
use. The smallest spatially allocated area available in the PUMS are Public Use Mi-
crodata Areas (PUMA). PUMAS are areas that contain at least 100k persons in the
population, which are relatively large compared to census tracts used for synthesis,

but smaller than most counties.
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3.4.3 Longitudinal Origin-Destination Employment Statistics

The origin-destination totals are managed by the Center for Economic Studies
of the United States Census Bureau under the Longitudinal Employer-Household
Dynamics (LEHD) program. This program also collects home and work locations
of individuals, with origins and destinations aggregated by various stratifications
(e.g. industry sector), called the LEHD Origin-Destination Employment Statistics
(LODES) (U.S. Census Bureau Center for Economic Studies, 2017). The LODES
tables provides aggregated origin-destination pair totals for census blocks, but the
demographic stratifications are only provided for origins or destinations, not simulta-
neously. For example, the total number of trips from each origin-destination pair are
provided in one table with two separate tables stratified for origin by industry and
destination by industry. In this case, the aggregated data is stratified by industry

sector.

3.5 Evaluation

The results are described in three subsections: joint re-weighting method com-
parison, population generation results, and workplace assignment results. Joint re-
weighting results present the accuracy and computational performance comparison
between IPU, NNLS, and NLAD when performed for a single zone. The subsequent
sections then demonstrate the final population and workplace assignment results using
the NLAD re-weighting method. Only NLAD was used to generate a full population
due to the excessive computation time required the synthesis all 965 census tracts
with the other methods.

The results are validated using Root Mean Square Error (RMSE) and Root Mean

Square Normalized Error (RMSN). RMSE is calculated as
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RMSE = (3.4)

where n is the number of values, b; is the estimated value of variable 1, and b; is the
actual values. For example, b; is the frequency of person or household type 7. A good
fit will yield a small RMSE. However, since the following comparisons contain a wide
range of values (e.g., between tracts, total region, and ODs) a normalized RMSE
value is used in order to make the errors more comparable across tests. A commonly
used alternative is to normalize the RMSE value by the mean b to account for relative
error between differently sized values, further calculated as

RMSN — RMBS b (3.5)

3.5.1 Joint re-weighting results

As a general comparison of fitting accuracy, persons and households are jointly re-
weighted using the three re-weighting methods of (1) NNLS, (2) NLAD, and (3) IPU
for the entire Greater Boston Area treated as a single zone. Figure 3.3 is a comparison
of the fit results for the three methods. The target values from IPF for persons and
households (i.e., the b values) are shown on the horizontal axes and the vertical axes
are the fit results when the joint weights are multiplied by the joint sample matrix
(i.e., the Ax result). A good fit will be along the diagonal, meaning that the correct
number of both persons and households are fitted when Ax = b is evaluated. Note
that the weights at this point are decimal values, which is why the results are near
perfect. Error will be introduced when weights are sampled as discrete persons and
households, but as a measure of fitting performance that fact is irrelevant.

NNLS and NLAD both achieve much better fit results than IPU with RMSNs of

0.0318, 0.0824, and 0.1787, respectively. Figure 3.4 presents the same results as in
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Figure 3.3, but zoomed in at 100:1 scale. This closer perspective in reveals interesting
insights into the inherent properties of NNLS, NLAD, and IPU. Least square based
NNLS will find the mean fit, fitting the points near the diagonal target line.

contrast, least deviation based NLAD finds the median fit, placing the points either
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Figure 3.3: Comparison of fit by method (1:1 scale)
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perfectly on the line or almost not at all. IPU is neither, resulting a combination of

near perfect and approximately fit results.
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Figure 3.4: Comparison of fit by method (5000:1 scale)

Although both NNLS and NLAD outperformed TPU in terms of goodness of fit,

NLAD substantially outperformed both NNLS and IPU in terms of computational
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time. The computational time for each of the three methods to fit a single zone are
shown in Table 3.4. Although NNLS yielded the most accurate results, a computation
time nearly 1000 times longer than NLAD does not justify the relatively small gain
in accuracy over NLAD. Overall, NLAD achieved the greatest results in computation

time while still providing an excellent fit.

Table 3.4: Computation time comparison of re-weighting methods

Method RMSN Computation time
NNLS 0.6e-4  5.89 hours

IPU 1.9e-3  2.37 minutes
NLAD 9e4 19.75 seconds

IPU did achieve a substantial improvement in computation time over NNLS, but
even IPU is still much slower than NLAD. The performance success of NLAD may be
attributed to the linear form, allowing it to be solved with an efficient optimization
algorithm (e.g., simplex), whereas IPU must fit all cells iteratively until convergence.
Furthermore, the IPU computation time can greatly vary depending on the relative
difference between the microdata sample and the target distribution. For example, if
the proportional distribution of a microdata sample poorly fits the target marginal dis-
tribution then IPU will require additional iterations to achieve convergence; whereas
NLAD will always use a similar number of steps to find a solution regardless of initial
condition. The total estimated computation time for 965 census tracts is approx-
imately 16 hours for NLAD, 105 hours for IPU, and 17,300 hours for NNLS on a
single computer core. This of course can be reduced significantly if census tracts are
processed on parallel computer cores, but a full run using IPU and NNLS were not

performed as they would have required a substantially high computation time.
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3.5.2 Person-household population generation results

Validation of the synthetic population generated using NLAD is performed at two
levels: marginal totals and cells proportions. The marginal comparison measures
how well the aggregated variable totals in the synthetic population fit the actual
control variables in the census. The cell level comparison is a much more in depth
comparison, comparing combinatorial person and household type frequencies in the
synthetic population to the PUMS. This helps ensure that the actual individual person
and household types (i.e., joint distributions) are properly synthesized. However, since
the PUMS is only a sample, this comparison must be performed proportionally where
the distribution percentages are compared. An overall marginal level comparison for

individual census tracts is shown in Figure 3.5.
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Figure 3.5: Map of marginal fit for census tracts
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The marginal comparison is performed across all individual census tracts, achiev-
ing an RMSN of 0.0715 (see Figure 3.6a). These comparisons show the final realized
population results (i.e., not just weighted fit) on the vertical axes, against the expected

census totals shown on the horizontal axes. The cell level comparison achieved an
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RMSN of 6.5779 (see Figure 3.6b). Although the cell level RMSN is much higher
than at the marginal level, this is to be expected since it is a very sparse comparison
with many small values magnifying error. Moreover, any error in the sample itself

will be evident against the synthesized data.
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Figure 3.6: Population generation results

Using R? and the estimated slope as an additional measure of it, all comparisons
yielded very good fit results of 0.999 and 0.8846 for the marginal and cell levels,

respectively.

3.5.3 Origin-destination results

Results up to this point only considered demographic variables, not workplace
assignment. A final check is to cross-validate the allocation of synthesized persons
to origins and destinations. This is performed at the aggregated level by comparing
the aggregated totals in the synthetic population to the actual totals in the LODES
marginals. This comparison is similar to the validation for the synthetic population,

but can only be performed at the aggregated level because OD microdata at this fine
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grain resolution is not available. The results are well fit, with RMSN values of 0.3889
for OD pair totals. These applied workplace assignment results are visually displayed

in Figure 3.7.
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Figure 3.7: Workplace allocation by origin-destination pair

The reason that the figures are plotted on different scales is due to the variation
between origin and destination totals. This is a byproduct of census tracts being
delineated roughly by population size, but not by employment size; in other words,
while residential location is dispersed fairly evenly, it is likely that certain census
tracts (e.g., downtown) will attract a high concentration of workers and others very
few. Regardless, the results show a very good fit, though it is impossible to validate
further using only aggregated data. However, since industry sector is a shared variable
between both the population and workplace assignment, it provides an additional level
of cross validation, meaning that at the very least, persons are properly allocated to
destinations based on industry. Further stratification of workplace assignment by

additional variables, such as age and gender, would strengthen the validation results.
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3.6 Summary of findings

As travel demand models shift towards pure activity-based models, workplace
assignment is still an important input for activity-generation in state-of-the-art mi-
croscopic travel demand models. For example, many travel related activities take
place in conjunction with work trips, such as shopping trips on the way home from
work or picking up school-age children. Although discrete choice spatial models are
possible to use, aggregated employment data is often readily available at a higher
spatial resolution than in disaggregated samples, making the use of classically fit
models attractive. This dissertation presents and applies an integrated population
synthesis and workplace assignment method using aggregated employment data and
an efficient person-housing matching method based on non-negative least deviation
fitting. Such an integrated approach can be easily integrated in current common
practice in existing models in the United States and elsewhere. The specific applica-
tion described in this dissertation synthesized a population of 4.6-million people and
1.7-million households in the Greater Boston Area, which is ultimately utilized for an
energy assessment simulation of an activity-based demand and multi-modal supply
simulation (Fournier et al., 2018). The resulting population achieved a marginal level
fit RMSN of 0.0715, cell level fit RMSN of 6.5779, and a workplace assignment fit
RMSN of 0.3889.

The overall application for the population synthesis, workplace assignment, and
person-household matching are achieved good fit results. However, there are several
areas of potential refinement. The first is in including additional OD stratification
variables. This synthesis presents only a single stratification variable for industry
sector, but the workplace assignment can be easily modified for any number of strat-
ifications (e.g., age and gender). Additional stratification variables would not only
make the workplace assignment more disaggregated, but effectively it would add more

constraints to the integrated IPF process, further improving the accuracy of the final
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workplace assignment. A second area of improvement is the error dispersion notice-
able for infrequent persons and household types incurred during the joint sampling
process. This dispersion is visible in Figure 3.6a where the fitting points for infre-
quent types are more dispersed than their more common counterparts. This may be
refined by using an improved sampling algorithm that does not over-penalize rare
sample weights Lovelace and Ballas (2013).

An area worth further investigation is the impact of using an optimization based
re-weighting approach (i.e., NLAD), as opposed to traditional proportional fitting
(i.e., IPU). A well known weakness of Combinatorial Optimization (CO) population
generation is that it fits sample attributes to the marginal variables, ignoring at-
tribute associations (Pritchard and Miller, 2012). A similar limitation may be true
for NLAD where an optimal solution is found using some combination of samples, but
potentially eliminates redundant sample weights to zero. This raises the concern that
NLAD may eliminate households that should exist in the population. However, unlike
conventional CO that uses individual variables as marginals directly, the marginals
in the proposed NLAD method uses combinatorial joint weights from IPF, preserving
attribute association through the initial IPF step.

The proposed integrated process makes two contributions. First by exploiting
the common IPF algorithm used in population synthesis and workplace assignment
for an integrated method. This minimizes errors that would be introduced through
independently estimated models. Second, this dissertation develops an efficient joint
person-household re-weighting technique based on non-negative least absolute devia-
tion (NLAD) fitting, substantially reducing computation time by one-sixth compare
to the conventional iterative proportional updating (IPU) method. This new re-
weighting technique makes the integrated process possible by being able to efficiently
handle additional shared attributes in the population and workplace data (e.g., em-

ployment). The proposed technique outperforms both the conventional IPU method
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and non-negative least squares (NNLS) in terms of computation time, while providing

a final joint person-household population and workplace assignment.
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CHAPTER 4
MULTI-MODAL SYSTEM MODEL

4.1 Concept

Figure 4.1: Hlustration of Model Concept

The proposed model is structured for a catchment area around a central access
point, which serves a mainline mode, as a simple catchment zone around an access
point; see Figure 4.1. This mainline mode may be part of a larger more complex
network system, but in a simplistic case it can be represented as a direct link to a
central point, such as the central business district (CBD). Mode choice can then be
broken down into two basic sub-models for access mode and mainline mode. The
respective utility cost, or dis-utility since it is a cost not a benefit, may be formulated

as
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L
U=Y+2Z= Etat—)+rC%+Cl + &ty + —) + Cp,

a

m

—Y = £(t, + UL) +rC%+ Cf

a

L
~Z = E(tw + —=) + Cn

m

a €{w, b, d} for walk, bike, drive

m € {p, h} for park-n-ride and highway

(4.1a)
(4.1b)

(4.1c)

where U is the joint dis-utility of the combination of an access and mainline mode, Y

is the access mode dis-utility, and Z is the mainline mode dis-utility. The negativity

in each case ensures that the function is a dis-utility, where a user will choose the

alternative of least cost. The parameters used are as described in Table 4.1.

Table 4.1: Utility model parameters

Parameter/Variable Unit Description

£ $ [time value of time (VOT)

r distance access distance

L distance mainline distance

Vg distance [time  access speed

Um distance [time  mainline speed

ta time access mode startup time
tm time mainline mode delay time
cd $ [distance unit cost per distance for access mode
CC]: $ fixed cost for access mode
Cin $ fixed cost for mainline mode

This basic dis-utility function may be applied to independent access modes, such as

walk, bike, and drive; as well as mainline modes of highway and train. A conventional

approach to mode choice is to enter these dis-utility functions into the general logit

function in Equation (4.2) to yield the probability

P; of the discrete mode choice

j € J, where J is the set of available modes, and (3 is an additional scaling parameter.
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e J
P.

= (4.2)

By varying the radial distance, the linear dis-utility and choice probability may be
represented visually in Figures 4.3a and 4.3b, respectively. The total demand for each
mode )\((f) from a stochastic solution (s), is then the product of population density 0,
and the area under the probability curve P, (see Figure 4.3b). This can be achieved
radially by integrating probability as a function of r from 0 to the maximum radius

R using the shell integration method, expressed as

R
) / P,(r) dr (4.3)
0

The problem, however, is that the logit function is not a closed form expression,
making the optimization of pricing to incentivize demand difficult. Alternatively, the
basic geometry of the model in Figure 4.2 may be exploited to approximate the logit

model, while remaining in an analytical form that can be optimized efficiently.

Drive

Figure 4.2: Spatial approximation of radii boundaries for access mode choice
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Assuming that travelers choose the mode with the least dis-utility, all travelers
between radius 0 and r; will walk, all travelers between r; and ro will bike, and all
travelers between r and R will drive in the deterministic case as shown in Figure 4.3a.
Demand A for each access mode in the deterministic case (d) is simply the product
of the population density d, and the ring areas between the tipping points at radii
r1 and 79. In other words, the area under each probability curve in Figure 4.3b is
approximately equal to the area formed between the respective radii that determine
the boundaries of choosing that mode. For example, the sum of probabilities under

the walk curve is equal to the area formed between 0 and ry.

Dis-utility
Probability

Radius (distance) Radius (distance)

(a) access mode dis-utility (b) access mode logit probability

Figure 4.3: Access mode choice model comparison

4.2 Mathematical Model
Various objectives may be formulated to include other costs, such as agency cost;
however, a simple case of minimizing total travel time 77", will be used for demonstra-

tion. Generically this may be formulated in Equation (4.4) as the sum of the products
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of demand in number of travelers A\ and average travel time T,, respectively, for

each access mode a € A, where A is the set of all access modes.

TT =) T\ (4.4)
A

The deterministic travel demand )\((zd), between two radii r; and r;yq, is derived from

the area of a circle multiplied by the population density, as follows

Ay = 7T(5(7”l-2+1 — rf) (4.5)

The average travel time 7T, is the average radial distance 7, divided by average speed
Vs, which is assumed to be constant across the network. The average speed v, is
calculated as the average distance divided by the sum of startup time ¢, (e.g., time

to unlock bicycle or start and un-park automobile) and travel time 7, /v,.

Uy = —— (4.6)

The average radial distance 7, may be calculated using the population’s probabil-
ity distribution function f(r). Assuming a uniformly distributed population, the
probability density function increases linearly with r, f(r) = kr. The value of k is
determined using the law of total probability to solve f:”f” kr dr = 1, implying that

min

the probability density function is

f(’f’) -2 .32 for r € [Tmi'm Tmag:] (47)
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The expected radius is E(r) = [rf(r) dr = [ kr* dr, which yields a formula for
average radius, 7,, for points within a ring assuming uniform density. For access

mode a serving the population between r; and r; ., the average distance is

- 2 ("’EH - 7’?)

p— 4.
o 3 (T'Z-2+1 — Tf) (48)

Recalling that average travel time is T, = 7,/7,, and substituting for 7, and v,, a

formula for travel time as a function of r; and r;, is expressed as

’ (T?gl . 2 (4.9)
3q (7}'+1 — 7‘»)

]

ty +

which can then be used to formulate an objective function for minimizing total travel

time of all users in the system

2
TTa(Tz‘a Tz‘+1) = NIy = 7o {tf(ria-l - T?) + g (T?+1 - T?)] (4-10)

where t¢ is the fixed additional travel time specific to the combination of access and
mainline mode (i.e., startup time ¢, plus mainline travel time 7,,), and r; and ;4
are the decision variables. The radii subscripts i and i+ 1 reflect whether the relevant
distances are 0 to r; for walk, 1 to ro for bike, or r5 to R for drive. Global monetary
costs (e.g., tolls, fares, parking, etc.) experienced by the user may also be included
into the model to express the generalized cost. This can be done by converting

monetary costs to generalized time (GT) cost using the VOT as in the expression

—~d f

GTa(Tia Ti+1) = )\a |:Ta + TC(lé_—+QI:| (411)
2 1 cd\ of

=4 {tf(rfﬂ =)+ 3 (=) (U—a + ?) + ?} (4.12)
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where C¢ and C/ are the existing fixed or distance-based monetary costs. A final

caveat of this model is that a basic hierarchical constraint must be imposed such that

1 1 1
Vehicle speed: Cy + — > C% + — > Of + — (4.13a)
Vw UB UD
Vehicle startup time: Cij, + ty < Cf +tp < O +tp (4.13b)

meaning that the distance cost of walking is greater than that of biking, which is
greater than that of driving, and the fixed cost of driving is greater than that of
biking, which is greater than that of walking. With the given linear constraints,
Equations (4.10) and (4.11) are convex and can be efficiently optimized to obtain a

global optimum solution.

4.3 Conditional choice of mainline mode

Since highway travel time ultimately depends upon the number of drivers that use
the highway Ay rather than park-and-ride to the train Ap, the mode-share 6 = i—g of
highway drivers to all drivers must also be determined. This may be conceptualized
spatially in Figure 4.4a where the portion of walk, bike, and drive are determined by
the radii r; and ry, but highway and park-and-ride are subsequently split within the
drive portion. This can be thought of as analogous to the nested logit illustrated in

Figure 4.4b.
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(a) spatial interpretation of nests (b) logit nests

Figure 4.4: Nested mode choice

With Ty as highway travel time, and 7 as the train travel time, the total travel
time for driving is estimated as in Equation (4.14). It is essentially the product of the
total drive demand Ap and the sum of the proportional mainline travel times 07,

(1 — 0)Tr, and drive access time T)p.

TTp = Ap [0Ty + (1 — 0)Tr + Tp)] (4.14)

4.4 Congestion

Thus far in the dissertation, congestion has been absent from the model. To be
more realistic, once the mainline mode is incorporated, a model for congested mainline
travel time must be considered. The following section describes this formulation and
justification for utilizing a simpler continuous function for congested travel time.

Mainline dis-utility is a fixed constant time cost that may be added to ¢, in
Equation (4.10). The effect of the mainline mode is a vertical shift in dis-utility while
the slope remains unchanged. This provides a generic input for the mainline travel
time, allowing for flexibility in mainline travel time estimation. Assuming that train

transit is reliable and does not experience delay due to congestion, then the train
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travel time T in Equation (4.15), depends on the distance, L; speed, vr; and any

fixed delay, t7, such as the waiting time associated with transit headway.

L
Tr=tr+— (4.15)
Ur

The travel time for driving, which is a congestible mode, requires accounting for
the network’s capacity to move car traffic and can account for the effect of traffic
volumes on speed. The Macroscopic Fundamental Diagram (MFD) (see Figure 4.5a),
provides an aggregate representation of network traffic conditions that can be used
to characterize traffic speeds as a function of traffic flow ¢ in vehicles per time, and

density k in vehicles distance.
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(a) Flow-density relationship (b) Travel time from flow-density

Figure 4.5: Relationship between flow, density, and travel time

A generic mathematical model for the flow-density relationship shown in Fig-
ure 4.5a is a function ¢(k), where a and b are model fitting parameters subject to
boundary constraints. The average travel time, including the effects of congestion,

can then be derived by solving for £ and substituting into the inverse of speed % = §

as
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x>

1

T = 1) = ; = 2 (4.16)
where Ty is in units of time per distance per lane (e.g., hours/km/lane). However,
the resulting travel time function is multi-valued for each flow (see Figure 4.5b),
complicating the optimization. Steady-state conditions can only be maintained for
highway demand that does not exceed the network capacity, Ay < ¢., but each flow
is associated with an “uncongested” state with density less than the critical density
associated with capacity, k., and a “congested” state with density exceeding k., as
shown in Figure 4.5a.

Since the overall objective is to identify system optimum pricing strategies, travel
times can be modeled using the bottom (solid) part of the Ty (q) curve, because un-
congested conditions use fewer resources to serve traffic flow and are therefore always
preferable to congestion. Pricing strategies should aim at maintaining uncongested
conditions. Thus, travel time for highway users can be modeled using a continu-
ous non-decreasing function of demand Ty (Ay) for cases when pricing or demand
management will keep demand from exceeding the highway’s capacity.

For the purposes of demonstrating the application of the model, the travel time
function for the highway between Worcester and Boston is characterized by Equa-

tion (4.17),

L
Ty(Ag) =ty + —
VH

l+a (/\TH) (1 (4.17)

where Ay is the highway demand, and «, ¢, and ~ are model parameters. Although

a hard constraint for capacity is not set, it is assumed that the model results will never

Lthese regions are referred to as “congested” and “hypercongested,” respectively, in the economics
literature (Gonzales, 2015).

66



exceed capacity. This expression represents only the uncongested lower part of the

travel time vs. flow relation, illustrated in Figure 4.5b.

4.5 Optimal Mode Split

Mainline travel times for train and highway in Equations (4.15) and Ty (Ay) can
be incorporated into the respective access travel time functions in Equations (4.11)
and (4.14). Once expanded to include mainline travel time, the walk, bike, and drive

travel times are calculated as in Equations (4.18a-4.18c), respectively.

i L 2 1 cd cl 4+ cf
(0, =m0 o8 =0%) (04 ) 300 (G0 )+ | s
GTalrisrs) = | (13— 2) (tm+or+ L) 4 2 (g —rt) (L + BBY) 4 CB2CE| (s
1,72 - 2 1 or 3 \2 U\ s ¢ £ .
— L
GTp(re,0) =md (R2 — rg) (tD +0 Ty (M) +(1-190) (tT + v))
- T
d ! o0t o (1— e
2oy (LG Co 0 T 100y (4.180)
3 Up 5 5

where the highway travel time Ty is a function of highway demand A\y. Highway
demand is calculated as the portion of total drive access users taking the highway

given by the 6 ratio, calculated as

A =0 p =076 (R*—r3) (4.19)

The final objective function then becomes the summation of the three generalized

travel time functions with three decision variables of 71, r9, and 6 in Equation (4.20).

min GT(Tl, T, 0) = GTw<O, T1) + GTB(Tl, 7’2> -+ GTD(TQ, ‘9) (420)

The optimal parameters, ry, 7, and 0 yield the allocation of demand to access and
mainline modes that minimizes the generalized total travel time while accounting for

congestion. All components TTy,, TTg, and TTp are convex, thus the summation is
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also convex, providing an objective function that can be efficiently solved to obtain

the global optimum.

4.6 Pricing

To achieve the optimal mode share determined by Equation (4.20), society might
need to impose additional policies to incentivize users through the intervention price
parameters C'({ , é‘fj, and C,,. This would adjust the dis-utility functions shown in
Figure 4.3a such that the intersections for r; and ry are shifted from their observed
position to match the optimal values (i.e., r; and r3). First the observed “effective”
radii 7" and highway ratio 8 must be determined from an observed mode share P’.
This can be done using the proportions in Figure 4.4a from the proportional demand
P,,, and the known total radius R to calculate the effective proportional radii r; and

rh, expressed more fully as

ry =Pl - R (4.21a)
Pl

¢ =——DPH 4.21c

P + P 421

4.6.1 Access Mode Pricing

The point of intersection can be solved when the costs are known by setting
Equation (4.1Db) for the access modes’ dis-utilities equal to each other (i.e., Y, = Y 1)
and solving for r;. This yields Equation (4.24). Without any intervention, the given
parameters yields a null tipping point radii ] calculated as

_ f_of
ro — £<ta+1 ta) + Ca+1 Ca (422)

Coe(E k) rai-ady,

Va+1
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where i is the tipping point radius between incremental access modes a and a+1 (i.e.,
ry is tipping point between walk and bike and r, is the tipping point between bike
and drive). Incorporating intervention prices C! and C¢ yields the cost differential
needed to shift from the null radii 7{, to some target radii ;. However, we seek to
find the differential from the optimal to the existing, not from the null. This total

differential is simply calculated as

vy =ritr] — (4.23)

where 7; — r7 accounts for the difference between the null and optimal condition,

which can then be used to find the differential intervention prices with

_ Eltan—t)+Cly - CI+CL - O (4.24)
g(i_ 1 )+cg_cg+1+ég—é§+l

Va Va+1

However, when the intervention price variables are not known, an “optimal” set
of prices must be found to achieve the desired radii. This can be done by reformu-
lating Equation (4.24) for r; and ry as constraints in an optimization problem as
shown in Equations (4.25b-4.25¢). An infinite number of solutions may exist, thus a
reasonable objective function in Equation (4.25a) might be to minimize the square
magnitude of costs to shift the radii as in Equation (4.25a). From a social perspective,
this would minimize the quantity of money changing hands. Equations (4.25d-4.25¢)
impose the hierarchical constraints required for the deterministic model from Equa-
tion (4.13). An additional constraint could also be set to maintain revenue neutrality

(Equation 4.25f).
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min Z Cj2 (4.25a)

s.t. r{é%—r{(i’%jLCA"fV—CA’};: g{B—tW—i-rl( )
4 (CW CB> +of - (4.25b)

7“5(?’%—7“3(3’%—%@2—@{5: §[tD—tB+r2< o UB)
+r5 (Ch - cp) cf, (4.25¢)
C&,+é€v+izc,‘é+é,§+ich)+(§%+i (4.25d)

VW VB VD

Cly + Cl, + etw < CL+CL+ ¢ty < CL + CL + ¢tp (4.25¢)
» Ci=0 (4.25f)

4.6.2 Mainline Mode Pricing

The optimal prices from solving Equation (4.25) yield only the access mode costs,
the equation does not yet consider the two mainline modes. Recalling the conditional
mode choice model described in Section 4.3 where § = Ay /Ap, the analogous nested
logit may be decomposed to extract the cost differential necessary to achieve the
desired mode split . Assuming revenue neutrality, the individual mainline mode
prices for highway Cpy, and train C'r, can be analytically determined. The following
section describes this decomposition to yield highway and train prices. Although
these prices may be implemented as a distance based cost as well as a fixed cost from
a mainline perspective (e.g., distance-based tolling), only a fixed cost parameter is
necessary, because the total cost associated with the mainline part of the trip will
always be the same for mainline distance L.

Walk and bike access users are limited to only the train for mainline mode, so
determination of the relevant radii is sufficient to determine the number traveling by
each mode. Drive access users have an additional choice between train or highway,
so in addition to determining the number of drivers by radius, they must be further

distinguished by mainline mode. A deterministic model would assign all trips to the
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lowest cost mainline mode unless the costs were exactly equal. For the model to
predict non-zero numbers of highway and transit users in uncongested conditions, a
stochastic logit model is needed. Unlike the access mode, everyone travels the same
mainline distance, so this does not introduce the same computational complexity. In
the logit model, this introduces the problem of independence of irrelevant alternatives
(ITA). A common solution to this problem is to nest the choices using a nested logit

model as in Equations (4.26).

Pm - Pa : Pm|a (426&)
o (4.26b)
P, = 4.26b
o7
2
Poja = (4.26¢)

Z e~ Zrt+ulVy

IV, =In (Z e*Ya> (4.26d)

where P, is the probability of the mainline nest (i.e. highway or train), P,
is the probability of access mode a given a mainline nest m, I'V,, is the logsum for
nest m, and p is the logsum coefficient. When p = 1, there is no correlation, and
when p = 0, there is perfect correlation among alternatives. It can be assumed that
the choices are perfectly correlated because highway is exclusive to driving, reducing
the conditional probability of choosing highway given driving as the access mode to
Pyip = % and the conditional probability of choosing train given walk or bike
access modes to Py = Ppr = 1, because users that user walk or bike as their access
mode must take the train. Thus, Py = Pp - Pyp = /\TH = /\TD . % the logit
can be solved to extract the cost differential AC,,, = Cy — Cr as in Equation (4.27a).

Subsequently if revenue neutrality is maintained across the mainline modes as well,

then A\gyC'y + ArCr = 0 may be used to solve for the specific cost values.
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4.6.3 Pricing Implementation

) +Cr—Cy (4.27a)

The flexibility of the model’s pricing inputs as both fixed and distance-based
prices provides potential for multi-modal integration. Fixed costs may be attributed
to more classical features, such as parking, transit fare, bridge tolls, etc., whereas
distance based costs can help integrate future technologies, such as gantry mounted
all electronic tolling (AET), Vehicle Miles Traveled (VMT) fees, or even bike-share
and e-hailing taxi fares. Moreover, with increasingly inter-operable payment sys-
tems, it is possible to promote an efficient multi-modal pricing system through price

collaboration, such as providing a discount when transferring to transit.

4.7 Income, Equity, and the Value of Time

Thus far the fundamental mode choice model uses a homogeneous population with
a single VOT. This is not only unrealistic, but poses equity concerns considering that
VOT is often correlated with income (Small et al., 2005; Hensher, 1976; Li and Hen-
sher, 2012; Hensher, 2001). To ensure that the transportation system is both efficient
and equitable, the VOT must also be a parameter to account for varying distribu-
tions of income or preferences. Since Equation (4.20) is convex, further summation
remains convex, enabling the population to be segmented into any number of discrete

population groups optimized for the total generalized travel time in Equation (4.28).

minZGTk<T1kar2k>0k) (428)
K
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The population may then be segmented by VOT & for K discrete segments with
a population density of J;, modeled by some population probability density function.
Such a function might follow a log-normal distribution commonly used to model
income distributions. Similarly, the pricing policy can also be optimized by extending
Equation (4.25) with a set of access pricing variables C9, | C({k, and the mainline prices
of Cyi and Cry, associated with each population segment k& with Equation (4.29).

The same constraints hold, but with a corresponding set for each k.

min Z Z CJZk (4.29a)
K J

* A * A A A 1 1
st rikCin = iCh + Gl = Clh = & l:tB —tw + 7 <UB - vW)]
71k (Célm - Cfék) +CL, —Cl, (4.29b)
e > A A 1 1

5 (Chi — C) Chy =l (4:200)

&k &k &k

ot +Ct, + 2 >0t +C% + 22 >0, + 04, + 25 (4.29d)
W vB UD

CIJ/IVk + CA'IJ:Vk + &ty < Cék + CA']J;]C + &tp < Cgk + CA%I@ + &tp (4.29¢)

> Cir=0 (4.29f)

4.7.1 Estimating value of time

Empirical estimation of the VOT in transport is typically achieved by comparing
the coefficients 3, for time and cost fitted in a discrete choice model (Hensher, 1976;
Li and Hensher, 2012; Hensher, 2001; Small et al., 2005). Estimating VOT varying
across income is accomplished by estimating a multinomial logit choice model with

income as fixed effects,

Vijk = o + Bt + BiCi (4.30)
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where Vi, is the mode choice utility, «; is the intercept for choice alternative j, and
Cjr and t;;, are the costs imposed on the individual ¢ in money and time, respectively;
with income group k as the fixed effect in the model. From this, discrete VOT can
be calculated for each income group k as

time

— Uk 4.31

4.7.2 Extrapolating value of time to full population

In order to provide any number of discrete segment breaks in a VOT distribution
beyond what is available in sample data, a smooth continuous distribution function
can be fitted to a sample. However, such a sample distribution does not exist and
must be estimated. This is done by further modeling the correlation between income
and VOT itself. A simple linear model would follow the form ¢ = o + SIncome,
where the estimated VOT is merely a scaled model of income with a fixed intercept.
Applying the linear VOT-income model to a sufficiently large sample distribution of
income, the distribution can be fitted using the appropriate parametric model, such

as a log-normal distribution in Equation (4.32).

(In(k) — p)?

e 202 (4.32)

f(k) = oo

where p is the mean and o is the standard deviation for the probability density
function f(k), for discrete segment k. Once fitted, any scale and number of discrete
segments may be created from the distribution for analysis.

The value of time (VOT) was modeled by first estimating the VOT for eight dis-
crete household income groups using data from the Massachusetts Household Travel
Survey (MTS) (Massachusetts Department of Transportation, 2012). The monetary

costs for the respective modes and their alternatives were determined by either im-
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puting known prices based on location for commuter rail and transit fares, or by using
travel distance with an average cost of $0.40 per km (= $0.64 per mile) for driving.
The travel times were obtained using the estimated travel time matrices from the
Boston Region Metropolitan Planning Organization (MPO)/Central Transportation
Planning Staff (CTPS) (Massachusetts Central Transportation Planning Staff, 2018).
Once a VOT was determined for each of the income groups, a linear model was
constructed using the median income value of each group.

This VOT model was then applied to a full synthetic population for the Worcester
region. This larger distribution was then used to fit a continuous log-normal distri-
bution used to model population density d; for k income groups. The purpose of
using a synthetic population is to not only create a value of time distribution, but
to determine the joint distribution of travelers commuting to Boston, their value of

time, and their current mode choice.

4.7.3 Gini equity coefficient measure

Accounting for varying income groups presents the prospect of evaluating equity
in the system, in addition to efficiency. Though there are many different methods to
measure equity, a very common and universally accepted measure is the Gini coeffi-
cient (Gini, 1912; Litchfield, 1999). In addition to its popularity, the Gini coefficient
can be easily calculated for a discrete probability distribution directly, rather than
aggregating individuals in a population. The Gini coefficient is calcualted with Equa-

tions (4.33).

F ) f(yn)lyr — ynl (4.33a)

= el () (4.33b)
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where G is the Gini coefficient which ranges from 0 to 1, 0 being perfectly equitable
and 1 being perfectly inequitable. f(yx) is the discrete probability function for the
percent of the population with income y;. The Gini coefficient is calculated as one
half the total absolute relative difference in income normalized by sum of all costs in
the population, u. Instead of income, average generalized cost GT), is used for each

VOT group k.

4.8 Data

As an application of the proposed model, an ideal case study is the Worcester to
Boston commute in Massachusetts, USA; shown in Figure 4.6. Worcester is a satellite
city to Boston with competing mainline transportation modes of tolled highway and
a commuter rail line. Both the highway and commuter rail line originate at relatively
central locations in Worcester and Boston. A summary of the basic parameters used
for this numerical example are detailed in Table 4.2, which includes both the general
system parameters, as well as vehicle specific parameters. All parameter values are

approximate for demonstration purposes.
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Figure 4.6: Worcester residents employment density
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Table 4.2: Worcester-Boston commuter model parameters

System Parameters
Parameter Value Units  Description

1) 49.14 rar/km?  Average commuting population density

£ 17.21 3/howr  Mean value of time (VOT)

R 7.5 km Approximate access radius

L 70 km Approximate distance to Boston

« 0.1 - Congestion model parameter

0] 4 - Congestion model parameter

¥ 4,400 - Highway throughput parameter

Commuters 3% - Share of population that travels from Worcester to Boston

Boardings 1,000 pax Average daily passenger boardings at Worcester
Auto parking 700 pax Number of auto parking spaces available
Bike parking 30 pax Number of bike parking spaces

Walk access 270  pax Remaining number of passengers boarding minus parking
Vehicle Specific Parameters

Parameter Units  Description Walk Bike Drive Train Highway

v km/hour  Speed 5 15 40 85 100

to hour Startup time 0 5/60 1060 O 0

c 8 km existing distance prices 0 0.1 04 0 0.4

cf $ existing fixed prices 0 0 5 11.5 29

The value of time (VOT) was modeled by first estimating the VOT for eight dis-
crete household income groups using data from the Massachusetts Household Travel
Survey (MTS) containing 61,777 trips reported by 15,828 travelers (Massachusetts De-
partment of Transportation, 2012). The monetary costs for the respective modes and
their alternatives were determined by either imputing known prices based on location
for commuter rail and transit fares, or by using travel distance with an average cost
of $0.40 per km (= $0.64 per mile) for driving. The travel times were obtained using
the estimated travel time matrices from the Boston Region Metropolitan Planning
Organization (MPO)/Central Transportation Planning Staff (CTPS) (Massachusetts

Central Transportation Planning Staff, 2018).

4.9 Evaluation
This findings section is split into two main parts using data for the Worcester-

Boston commute example case. First, the deterministic model itself is validated
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against a logit-based counterpart for a simplified case with a single average VOT.
Second, the deterministic model is extended to include multiple values of time across

the distribution.

4.9.1 Value of time

The value of time (VOT) was modeled by first estimating the VOT for eight dis-
crete household income groups using data from the Massachusetts Household Travel
Survey (MTS) containing 61,777 trips reported by 15,828 travelers. The monetary
costs for the respective modes and their alternatives were determined by either im-
puting known prices based on location for commuter rail and transit fares, or by using
travel distance with an average cost of $0.40 per km (& $0.64 per mile) for driving.
The travel times were obtained using the estimated travel time matrices from the
Boston Region Metropolitan Planning Organization (MPO)/Central Transportation
Planning Staff (CTPS). Once a VOT was determined for each of the income groups,
a linear model was constructed using the median income value of each group, shown

in Figure 4.7.
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Figure 4.7: Value of time and income in M'TS
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This VOT model was then applied to a much larger data set using the 2016
Massachusetts Public Use Microdata Sample (PUMS) containing 343,615 individu-
als, provided by the U.S. Census (U.S. Census Bureau American Community Survey,
2015). This larger distribution was then used to fit a continuous log-normal distribu-
tion used to model population density d; for k income groups, shown in Figure 4.8.
The mean VOT was determined to be $17.21 per hour, with a standard deviation of
$1.93 per hour. This mean value is used as the VOT for the single VOT validation

example.
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Figure 4.8: Value of time distribution in PUMS

4.9.2 Validation

The deterministic model is validated by directly comparing estimated demand
for each mode using the deterministic and logit methods, A and A(®), respectively.
Since the logit model does not provide a closed form solution for the access mode
choice, a comparison must be evaluated numerically. This is done by generating
10,000 random price combinations ranging between -$10 to $10 and comparing the

demand resulting from the deterministic model and the stochastic model. Figure 4.9
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is a numerical comparison between the deterministic approximation and the stochas-
tic logit model. The plot is generated by drawing 10,000 random price combinations
ranging between -$10 to $10 to reveal the functional relationship. To determine the
effect of fixed prices, C7, and distance prices, C?, on the model, the numerical com-
parison is performed three times. Once with only fixed prices varying (Figure 4.9a),
another with only distance prices varying (Figure 4.9b), and a third with both prices
varying (Figure 4.9¢). To determine the effects of VOT on the model, this analysis is
then repeated across a range of VOTSs, ranging from 0 to 50 with 5 $/hour increments.
Percent root-mean square error (RMSE) is used as an overall measure of fit for each

of the price and VOT sets, expressed in Equation (4.34) as

100 =
)\totzzl n

NRMSE =

(4.34)

where the stochastic and deterministic estimation for demand are \®) and A\ re-
spectively. Alternatively, the comparison could be using measured demand versus

modeled demand.
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Figure 4.9: Comparative fit between deterministic and nested logit models

The fixed price only model in appears to provide the stable results, but tends to
have larger errors towards the ends (i.e. at origin and maximum radius) for biking
and driving. This may be problematic when the radii for biking is often in this

range. Conversely, the distance price only model provides better fit at the ends of the
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range, but quickly degrades as biking and driving demand move towards each other.
However, in practice it is unlikely that the demand for biking will exceed that of
driving, so it may prove beneficial to retain distance pricing in a model. As expected,
the combination of two price inputs, shown in Figure 4.9¢, yields a hybrid of the two
models, providing a more reliable fit overall.

The overall analysis results in Figure 4.10 show that the greatest loss in accuracy
occurs at lower VOTs, but the magnitude of the loss differs when using the different
price sets. With fixed costs only, the model accuracy increases from 17% to 2%RMSE
over a range of 5 to 508 /hour. The same is true for distance prices only, but to a lesser
degree, ranging from 6% to 2%RMSE over the same VOT range. However, when
using a combination of pricing schemes, different values of time have little effect on

the model’s accuracy, ranging from 4% to 2%RMSE, with an average of 2.56%RMSE.
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Figure 4.10: Effects of value of time on model accuracy

4.9.3 Single Value of Time — Optimal Mode Split

Using the observed mode-share in Table 4.2, the effective “observed” radii and 6
are calculated using Equation set (4.21). The optimal radii and 6 are then determined
through optimization of Equation (4.20). The calculated observed radii and optimal

radii are presented in Table 4.3.
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Table 4.3: Optimal and observed radii

r Ty 0 Average travel time
Observed 0.23 0.26 0.92 79.23 minutes
Optimal  0.63 2.00 0.53 72.97 minutes

The shape of the objective function is shown in Figure 4.11. In Figure 4.11a the
gradient contours for the travel time are plotted by varying the access mode radii
while holding the third term 6 as constant. A unique optimal point is visible at
the bottom of the distorted bowl shape. Conversely, in Figure 4.11b the travel time
function is plotted by varying mainline # and holding the radii constant. T'wo surfaces
are present in Figure 4.11b because the optimal radii are used for the optimal case
and the observed effective radii are used for the observed case. Regardless of radii,

there appears to be a unique optimum at the bottom of the curve.
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Figure 4.11: Optimal demand allocation

Another perspective of the results is the highway travel time as users are loaded
onto the highway, as shown in Figure 4.12. One might assume that the optimal

highway utilization would be when the highway travel time is equal to the train
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travel time. However, a more global optimal point actually leaves the highway with
excess capacity. This is because the access mode is being considered in the proposed
model. System performance is improved by maintaining a free-flowing highway by
having more drivers take the train, as well as by leveraging the shorter start up times

and access distances for walk and bike.
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Figure 4.12: Mainline travel time with congestion

4.9.4 Single Value of Time — Optimal Prices

Using the proposed optimization approach in Equation (4.25), optimal access
mode prices are determined for the three price sets of fixed prices only, distance
prices only, and the combination of the two. Each of the three price sets are optimized
using a revenue neutral scheme. The mainline prices are calculated using the nesting
approach proposed in Equation (4.27), also using a revenue neutral scheme. The
optimal prices are presented in Table 4.4 for the three sets of prices. The table also

presents the mainline prices.
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Table 4.4: Optimal pricing

Access prices Mainline prices
Price set ci, ¢t ¢t o, oL of Chr Cr
Fixed only - - — -$1.02  -$0.12 $1.13
Distance only -$4.18 -$0.32  $4.50 — — — $1.22  -$1.20

Combination  -$0.22 -$0.05 $0.28 -30.96 -$0.10 $1.06

The effect on results for each pricing set are compared by modeling the demand
for the observed condition using stochastic and deterministic methods as well as for
the optimal condition without addition pricing. The results of this are presented in
Table 4.5. A percent root-mean square error (%RMSE) is calculated for each model’s
fit against the observed condition, as well as between model fit (i.e., difference between
deterministic and stochastic). The reason that the observed condition is modeled with
pricing is because the optimal point is when costs are zero, the additional pricing costs
reflect the unobserved utility “deficit” required to move the observed condition to the
optimal condition. Modeling the observed condition also provides a useful measure

of overall accuracy, not just relative precision between models.

Table 4.5: Model demand estimation comparison

. %RMSE
Price scheme Model Aw Az Ap Apir Ao TT Deterministic . Observed

vs. Stochastic  vs. model

Matching observed condition
Measured 270 30 8,383 700 7,683 79.23 - -

Combination Deterministic 8 2 8,673 628 8,045 81.43 9.53% 2.77%
Stochastic 27 280 8,376 607 7,770 78.66 1.91%
Distance Deterministic 8 2 8,673 185 8,045 81.43 0.17% 5.32%
Stochastic 9 20 8,664 185 8,469 81.34 5.21%
Fixed Deterministic 8 2 8,673 628 8,045 81.43 4.85% 2.77%
Stochastic 33 542 8,108 587 7,521 7791 3.39%
Optimal condition
N Deterministic 60 557 8,066 3,771 4,294 74.97 6.48% B

Stochastic 104 1,326 7,253 3,391 3,862 71.48

As a demonstration of how the dis-utility functions are modified by the prices,

Figure 4.13 displays both the original and optimized functions for dis-utility and
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subsequent logit curves using a combination price set. In both Figures 4.13a and
4.13b the original functions without any additional costs are shown in gray, and the
optimized functions are shown in black. The dis-utility plot in Figure 4.13a shows
how the functions are adjusted to intersect at the optimal radii, shown as the vertical
dotted lines. The original dis-utility functions all nearly intersect at the same point,
reflecting the small number of bicyclists. In the logit plot in Figure 4.13b, the curves
for walk and bike grow to represent a much larger share while the driving curve

shrinks.
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Figure 4.13: Optimal logit and dis-utility comparison

An artifact of the model is that the dis-utility functions intersect exactly where the
logit functions intersect. However, unlike the all-or-nothing deterministic case, the
intersection merely represents where the probabilities intersect. This corresponds to

the results in Table 4.5 where the deterministic model always yields the same result,
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but the stochastic model can vary. This is because the deterministic model simply
finds the radii where dis-utility intersects to approximate demand. Thus, as long as
dis-utility intersects at the desired radii the result is the same, regardless of slope or
intercept. However, the stochastic model determines demand by integrating the area
under the non-linear probability curve across the radii. The steepness of the curves,

or the magnitude of the difference in dis-utility, will then affect the results.

4.9.5 Distributed Value of Time — Optimal Mode Split

Using the continuous log-normal distribution function for VOT, a range of dis-
crete probability distribution segments are created. The product of this probability
distribution and the population density ¢ provides a set of densities d;, for each VOT
segment in the population. From this, a set of optimal parameters for rix, 1z, 0%,
are determined for each segment & in the initial parameter optimization step. In this
dissertation, a discrete distribution size of thirty equal-length segments were chosen
for optimization. Although this is a fairly large number of segments, it was chosen in
order to provide a reasonably smooth result for analysis and graphical representation.

The results of the parameter optimization step are shown in Figure 4.14.

Mode:

Drive to Train
Drive to Highway
Bike

Walk

Radii (km)

40 50 60
Value of Time ($/hr)

Figure 4.14: Optimal parameters by VOT
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The horizontal axis in Figure 4.14 is the range of VOT and the vertical axis
shows the tipping point radii for the corresponding VOT (i.e., the point at which
users change mode choice). The gradual descent of bike users makes intuitive sense,
because as the users’” VOT increases, the time savings of the much faster drive mode
begins to outweigh the cheaper but slower bike mode. This is also true for the walk
mode, but at a much steeper slope, indicating that all but the poorest users will
choose another mode if they travel further than approximately 2/3 of a kilometer. A
particularly interesting result is the severe change of drive users from train to highway.
Unlike the single VOT case where 6 is between zero and one, here we see that the shift
from train to highway is almost binary depending upon VOT. This is because from
the perspective of an individual VOT segment, the choice between train and highway
doesn’t vary by distance and only depeonds on whether the VOT is high enough to
justify the travel time savings. A 6 between zero and one would occur when a VOT
segment spans the range of VOT where this choice occurs, as is the case when the

mean VOT is used for the entire system.

4.9.6 Distributed Value of Time — Optimal Pricing

Although the results of a single mean VOT system optimization may simply be
the aggregated result of a distributed VOT system, the pricing policy and generalized
cost experienced does not affects users equally. A set of prices for all VOT groups was
determined simultaneously using Equation (4.29), minimizing the total magnitude of
money changing hands while achieving the desired radii and 6 parameters for all k.
The results of this are presented in Figure 4.15, displaying the costs of fixed only,

distance only, and combination across VOT.
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Similarly to the pricing determined in the single VOT case, the walk, bike, and
train modes are all subsidized while drive and highway have a surcharge. The differ-

ence in this case is the magnitude of the surcharge and subsidies increases with VOT.

This makes intuitive sense, as a greater monetary magnitude is needed to sway the
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users with higher values of time. More interesting is the non-linear pricing for access
modes, with fixed pricing increasing at an increasing rate and distance based prices
increasing at a decreasing rate. With access mode, the magnitude of the mainline
mode also increased with VOT, but unlike access mode it primarily affected one mode,
highway users. Moreover, the prices for mainline modes were not only a subsidy or
surcharge for all users, but instead is a subsidy for low VOT users and a surcharge
for high VOT users. Interestingly, the transition from subsidy to surcharge occurs

approximately at the mean VOT value.

4.9.7 Distributed Value of Time — Equity

A fundamental disadvantage of a system optimum is the potential for users to
experience inequitable costs. This cost can be experienced across two user variables,
VOT or radii, and is measured either as the generalized time cost or as the general-
ized monetary costs. These costs are presented graphically by VOT and radii with
generalized monetary cost in Figure 4.16a and generalized time cost in Figure 4.16b.
When measuring generalized cost as a monetary cost, the wealthier VOT users appear
to experience the greatest cost burden, but when viewed from a temporal lens, the
poorest travelers experience the greatest burden. This is not just because wealthier
users experience greater pricing costs, but because the poorer users’ VOT is so low
their burden appears low from a monetary perspective. Time is a non-transferable
and an equally finite resource, because once expended time cannot be redeemed nor
can it be redistributed, and all users possess the same “wealth” of time by sharing
a 24-hour day. For these reasons, time will be used as the measure of equity, rather
than the monetary cost. Furthermore, it makes moral sense to use the measure that
exposes the cost burden on lower income users, not the inverse. The equity measure,
the Gini coefficient, is calculated using Equation (4.33) across VOT. It is calculated

across VOT for two reasons. First, because users can feasibly choose their location in
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the radii but they cannot so easily choose their VOT. Second, radii is a physical cost

based on location, it would make little sense to subsidize users to live further away.
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The overall results of the distributed VOT optimization achieved a 57% reduction
in generalized travel time from 256 minutes to 110 minutes. The resulting average
generalized time costs are higher than the single VOT validation example in Table 4.3.
This is because now the average cost accounts for the much higher costs experienced
by low VOT users whereas before it only considered the average VOT and the average
travel time. Despite this, the Gini equity measure improved by 86% from 0.21 to 0.03.
Figure 4.16¢ is a graphical representation of the Gini coefficient as the ratio of the
area under the Lorenz curve to the area under the diagonal. A perfectly equitable
society (i.e., Gini = 1) would be a diagonal line and a perfectly inequitable society
(i.e., Gini = 0) would be along the bottom edge. This is interesting result considering
that neither objective function directly contains any equity factor. This is because
when minimizing the total generalized time cost, the burden on low VOT users is
taken into accounted effectively using money is used as a transferable resource to
achieve this minimized overall cost. This is apparent in Figure 4.15¢ where low VOT

users are actually subsidized as an incentive to take the faster highway mode.

4.10 Summary of findings

The deterministic model yielded a good fit against both a logit-based counterpart
and the measured demand with an accuracy of 4% and 6%, respectively. The deter-
ministic model also can account for both distance-based and fixed monetary costs,
which when combined yield a more reliably accurate model regardless of value of time
magnitude. The importance of this is that the deterministic model can be deployed
more easily to explore policy decisions and their impacts, such as equity. Results of
which can then be further refined with the use of a stochastic model.

Through empirical analysis it was found that value of time is linearly proportional
to income. Thus, making the income distribution a realistic proxy for a value of time

distribution. The deterministic model is then extended to include varying values of
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time, resulting in a 57% reduction in generalized travel time and improved the Gini
inequity measure from 0.21 to 0.03. This shows that improving system efficiency does
not necessarily come at the cost of equity. In particular, transferable monetary costs
can be used to offset the non-transferable temporal cost burden experienced by users,

particularly by lower income.
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CHAPTER 5
CONCLUSIONS

This dissertation presents a deterministic approximation of a discrete choice model
for multi-modal access and mainline mode choice that can account for varying values
of time to allow for an evaluation of equity. The objective is to develop a choice model
that can be efficiently optimized through pricing schemes; a current challenge using
stochastic logit-based models. This is achieved by first optimizing demand using a
spatial model, then subsequently determining the pricing necessary to achieve the
optimal demand. The added complexity of nested mode choice is modeled using an
auxiliary spatial model to determine the mainline cost differential. In addition to
the model’s efficient optimization, it also possesses the ability to account for varying
values of time and the flexibility to set both fixed and distance-based pricing policies
for specific modes. This value of time heterogeneity is essential for assessing the
impacts of pricing intervention on equity, this heterogeneity was made possible by

the integrated population synthesis.

5.1 Dissertation Contributions

In summary, the dissertation makes the following contributions:
1. Population Synthesis

(a) Integrated population synthesis and fixed work-place assignment

(b) Faster non-negative least-deviation (NLAD) method for fitting

joint population of persons and households
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2. Mixed-access Model

(a) A congestion pricing model with multiple access modes
(b) Allows for value of time to vary across both income and mode

(c) Model framework allows flexible objective function (e.g., optimize eq-

uity directly)
(d) Measured impacts of transport system efficiency gains on user equity

(e) Computationally lightweight, meaning it requires little computational

resources and quickly reaches a solution

5.2 Summary of findings

The model was applied for a case study of commuting between Worcester and
Boston, Massachusetts, USA. The application utilized a synthetic population to gen-
erate a realistic household income distribution of travelers as the basis for the value
of time distributions. Through an empirical analysis of a travel survey it was found
that the value of time varies proportionally with income, making it possible to model
a value of time distribution for the synthetic population. The synthetic population
achieved accurate results with root mean squared normalized (RMSN) values of 0.0715
for marginals, 6.5779 for joint distribution cells, and 0.3889 for OD totals. Although
the joint distribution cell fit is less accurate, it is of less concern for this particular
application as population is re-aggregated into the VOT distribution.

The proposed integrated population synthesis process makes two contributions.
First by exploiting the common Iterative Proportional Fitting (IPF) algorithm com-
monly used in population synthesis and workplace assignment for an integrated
method for both. This minimizes errors that would be introduced through indepen-
dently estimated models. Second, the efficient joint person-household re-weighting

technique based on non-negative least absolute deviation (NLAD) fitting substan-
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tially reduces computation time by one-sixth compare to the conventional iterative
proportional updating (IPU) method. This new re-weighting technique makes the
integrated process possible by being able to efficiently handle additional shared at-
tributes in the population and workplace data (e.g., employment). The proposed
technique outperforms both the conventional IPU and non-negative least squares
(NNLS) methods in terms of computation time with result of similar accuracy.

Before the multi-modal model was applied to a varying value of time distribution,
it is first validated against a stochastic counterpart using numerical analysis for a
single value of time. The deterministic model achieved results within 4% accuracy of
the stochastic logit-based model, and within 6% of measured values. Once applied to
a varying value of time distribution, the model results show great potential, achieving
a 57% reduction in generalized travel time and improves the Gini inequity measure
from 0.21 to 0.03.

A summary of the major research findings are as follows:

1. The deterministic model provides an accurate approzimation of a stochastic
logit-based model. Meaning that the model can be deployed to easily explore
policy decisions and their impacts; results of which can then be further refined

with the use of a stochastic model if so desired.

2. Overall system travel times can be improved by manipulating access mode de-
mand. That is, mainline mode choice can be optimized by adjusting prices for
access modes. Mainline prices can then be used to achieve the optimal split for

drive-access users specifically.

3. Improving system efficiency does not necessarily come at the cost of equity. In
particular, transferable monetary costs can be used to offset the non-transferable

temporal cost burden experienced by users, particularly of lower income.
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5.3 Future work
Possible future work is focused primarily on the multi-modal system model as the
main thrust of the dissertation, but the population synthesis also possesses potential

for future work.

5.3.1 Population synthesis & workplace assignment
Regarding the population synthesis, the results a good fit, but there are two main

areas of potential refinement.

1. FExpand origin-destination stratification: This synthesis presents only a single
stratification variable that is for industry sector. Although using fourteen in-
dustry sectors is robust on its own, the workplace assignment can be modified
for any number of stratification variables (e.g., age and gender). Additional
stratification variables would effectively add more constraints to the integrated

process, improving the accuracy of the final workplace assignment.

2. Apply the integrated framework to probabilistic synthesis: A second, and more
worthwhile improvement would be to investigate the potential fusion of high-
resolution aggregated workplace data (i.e., LODES) with disaggregated proba-
bilistic simulation synthesis (PSS) methods (e.g., Bayesian Networks). If possi-
ble, this would likely provide a significant improvement to workplace assignment
while still generating high quality socio-demographic synthetic populations us-
ing advanced PSS methods. However, the feasibility of integrating PSS with
aggregated location data is uncertain as no examples have been found in the

literature.
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5.3.2 Multi-modal system model
There are several extensions or potential applications of the multi-modal model

that are worthy of future research.

1. Account for systematic error: Overall, the deterministic model provides a rea-
sonable approximation of its logit-based counterpart to within 4% error. How-
ever, much of this error is systematic when dissected by fixed and distance-based
pricing. It may be possible to correct this error for a more reliable solution.
Alternatively, the stochastic and deterministic models could be used together
where the efficient deterministic model is used to quickly find an approximate
deterministic solution that is then refined using a more computationally inten-

sive, but possibly more precise, stochastic model.

2. Network application: A major benefit of the deterministic model is that it
requires very little computational resources, allowing for future application in
a larger network. One such application could include a corridor of stations as
in Figure 5.1a that feed into a central business district in a commuter rail type
model. At a more macroscopic level, the model could be applied to a network of
cities, as in Figure 5.1b, and optimized to provide pricing schemes for inter-city

travel.
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- e Highway only

Highway & rail

(b) Network application

Figure 5.1: Possible model applications

3. Agency costs: The current model does not account for the agency costs in the

generalized cost function used. If the model is to provide robust insights into
system operations, as shown in Figures 5.1a and 5.1b, it is essential that the
model accounts for the operational costs associated with each mode. Fortu-
nately, this can be achieved relatively easily due to the deterministic form of
the presented model. Agency costs need only be formulated and incorporated
into the generalized cost function, such as a marginal operating cost per user

. . . . $
for a distance or time in operation (e.g., T ).

. Local congestion: The current model does not account for local congestion.

Although this is justifiable for walk and bike modes, this is not entirely valid
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for driving, especially if applying the model to a much larger scale (e.g., inter-
city travel). An additional sub-model will need to be formulated to account
for local travel time and the impact congestion has on it, much like it was for

mainline travel.

. Fquity as the objective: In the current model, pricing is determined by simply
minimizing the total magnitude of money changing hands. Although this inad-
vertently resulted in an improvement of equity, it is not necessary guaranteed.
It may be possible to more intelligently improve equity by directly optimizing
prices using equity as an objective function. The Gini coefficient calculation
is ill-suited as an objective function due to the permutations and subtraction
required. However, it is possible to reformulate or construct a proxy function

that can be optimized easily to minimize inequity.

. Ezploring trade off between efficiency and equity: Assuming that an objective
function is formulated to directly express some measure of equity, it would be
possible to explore whether a relationship exists between optimal efficiency and
optimal equity. If so, a bi-objective mathematical function could be developed
to explore whether the two are mutually exclusive and to what extend. Meaning,
to determine if there is a trade-off between efficiency and equity, and if perhaps

some compromise can be achieved (e.g., pareto).
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