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Abstract: Reactive oxygen species (ROS) play a key role in cell physiology and function.
ROS represents a potential source of damage for many macromolecules including DNA. It is
thought that daily changes in oxidative stress levels were an important early factor driving evolution
of the circadian clock which enables organisms to predict changes in ROS levels before they actually
occur and thereby optimally coordinate survival strategies. It is clear that ROS, at relatively low levels,
can serve as an important signaling molecule and also serves as a key regulator of gene expression.
Therefore, the mechanisms that have evolved to survive or harness these effects of ROS are ancient
evolutionary adaptations that are tightly interconnected with most aspects of cellular physiology.
Our understanding of these mechanisms has been mainly based on studies using a relatively small
group of genetic models. However, we know comparatively little about how these mechanisms
are conserved or have adapted during evolution under different environmental conditions. In this
review, we describe recent work that has revealed significant species-specific differences in the gene
expression response to ROS by exploring diverse organisms. This evidence supports the notion that
during evolution, rather than being highly conserved, there is inherent plasticity in the molecular
mechanisms responding to oxidative stress.

Keywords: ROS; light; DNA damage; evolution; D-box; cavefish; Spalax

1. Background

Since the origin of life on earth, oxidative stress has posed a major challenge for living systems.
From the evolution of the first plants and photosynthesis to the development of aerobic oxidative
respiration, living systems have faced the challenge of exposure to elevated oxygen levels and
consequently Reactive Oxygen Species (ROS) (including peroxides (e.g., H2O2), superoxide (O2

•−),
hydroxyl radicals (•OH) and singlet oxygen (1O2) [1]). Oxidative stress accompanies exposure to
environmental stressors such as hypoxia, UV radiation, as well as visible light and so frequently
changes across the day-night cycle. In more recent evolutionary time, in relation to the impact of
human activities on the environment, the toxic effects of many man-made compounds also induce
oxidative stress.

ROS levels are modulated by a balance between pro-oxidant and antioxidant elements.
When increased levels of ROS are not countered by increases of antioxidant activity or
reducing equivalents, a cell undergoes an oxidative stress state. Higher concentrations of ROS
represent a potential source of damage for many macromolecules due to the induction of single-
and double-stranded DNA breaks, oxidative decarboxylation of α-ketoacids such as pyruvate,
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and irreversible denaturation of proteins through oxidation and carbonylation of arginine, proline,
lysine, and threonine residues [2]. Many cellular mechanisms have evolved to counteract these effects
which are based on enzymatic as well as non-enzymatic processes. One of the best described is the role
of glutathione in its reduced state (GSH). GSH serves as an antioxidant in plants, animals, fungi and also
in some bacteria. It neutralizes ROS by directly donating a reduced equivalent (H+ + e−). Furthermore,
GSH activates oxidative stress response cascades by promoting transcription and post-translational
modifications of proteins that affect their functionality. Another conserved antioxidant mechanism is
based on the rapid rerouting of carbohydrate flux from glycolysis to the pentose phosphate pathway
(PPP) via inhibiting the activity of glycolytic enzymes such as GAPDH (glyceraldehyde-3-phosphate
dehydrogenase). The PPP pathway then has the role of regulating cellular NADPH levels that serve as
the fuel for antioxidant systems [3–5].

Important antioxidant enzymes used in nearly all cells exposed to oxygen are the superoxide
dismutases (SODs) and the catalases, as well as peroxiredoxins and glutathione peroxidases. SODs are
a group of metalloproteins catalyzing the dismutation of superoxide O2

•− radicals into two less
damaging species, O2 and H2O2. There are three major families of superoxide dismutase depending
on the metal cofactor used. The SOD Cu/Zn family which binds copper and zinc is mainly used in
eukaryotes including humans; the SOD families which either bind iron and manganese or nickel are
used by prokaryotic and protozoa. The physiological importance of SODs is illustrated by the severe
pathologies observed in genetically engineered model organisms lacking these enzymes spanning
from mouse and Drosophila to yeast [6,7]. Hydrogen peroxide is subsequently degraded by catalase
activity, usually localized in peroxisomes. This highly active enzyme that catalyzes the decomposition
of millions of H2O2 molecules to water and oxygen each second [8], also plays a central role in aging
and degenerative disorders in humans [9]. Other enzymes involved in scavenging H2O2 outside of the
peroxisomes are the Peroxiredoxins [10] and the Glutathione peroxidases [11] that detoxify a broad
range of peroxides to the corresponding alcohols or water.

Together with strategies aimed at reducing the levels of ROS, a key adaptation for surviving the
harmful effects is the evolution of DNA repair mechanisms such as base excision repair, (BER) [12,13],
which targets ROS-induced covalent modifications of bases. Several regulatory systems, including
cell cycle control and apoptosis, also protect organisms from the negative effects of ROS and are
themselves activated by oxidative stress. Cell fate decisions involving cell cycle arrest and apoptosis
represent key cellular responses to the damaging effects of ROS. Furthermore, it is increasingly clear
that ROS, at relatively low levels, can reversibly oxidize redox-sensitive cysteine and methionine
residues, acting as a second messenger via the targeted inactivation of enzymes bearing active site
cysteines, for example, phosphotyrosine phosphatases [14].

The gene expression control mechanisms that enable organisms to survive elevated ROS levels or
harness their effects are frequently ancient evolutionary adaptations that are tightly interconnected
with most aspects of cellular physiology. These mechanisms have received significant attention in
studies involving a small number of genetically accessible model organisms. However, comparatively
little is known about how these mechanisms are conserved or have adapted during evolution under
different environmental conditions.

Even the simplest unicellular organisms possess mechanisms to counter the damaging effects of
oxidative stress. Plants and animals frequently excrete hydrogen peroxide or superoxide-generating
redox-cycling compounds as a strategy to inhibit microbial growth [15,16] and so bacteria frequently
inhabit oxidizing environments. They protect themselves by activating regulons controlled by the
OxyR, PerR and, SoxR transcription factors [16–18]. In Escherichia coli, the SoxR transcription factor
induces the expression of the SoxS protein that in turn activates the transcription of several other
genes including the antioxidant enzyme superoxide dismutase [19]. In Rhodobacter, the redox signal
is detected by the membrane-bound sensor kinase, RegB via a redox-active cysteine located in its
cytosolic domain that in turn regulates autophosphorylation. The active form of RegB is able to
phosphorylate its regulatory partner RegA, capable of activating or repressing a variety of genes [20].
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The conservation of both RegB and RegA homologs in a broad range of bacteria points to a central role
for the RegB/RegA two component system in the transcriptional regulation of redox-regulated gene
expression [21].

In the yeast Saccharomyces cerevisiae, peroxiredoxins are ubiquitous, thiol-containing antioxidant
proteins that serve to reduce hydroperoxides. They also regulate hydrogen peroxide-mediated
signal transduction via activation of transcription factors such as NF-κB [22,23]. Particularly relevant
for the antioxidant function of the peroxiredoxins is a conserved protein called Sulphiredoxin.
Sulphiredoxin can reduce cysteine-sulphinic acid of the antioxidant peroxiredoxins via activation by
phosphorylation followed by a thiol-mediated reduction step. It has been speculated that Sulphiredoxin
is also involved in the repair of proteins containing cysteine-sulphinic acid modifications [24].

In higher organisms, there is evidence for diversity in the response to oxidative stress.
Particularly in plants, the production of O2 by photosynthesis represents a major potential source
of oxidative stress. Furthermore, the generation of H2O2 in response to various pathogens can
elicit localized cell death to limit pathogen spread [25] and thereby serves as part of a systemic
response involving the induction of defense genes regulating plant immunity [26]. Therefore, in plants,
regulatory systems are required to minimize ROS production without decreasing photosynthetic activity
or inhibiting the light-driven production of ROS that is an important signaling molecule controlling
plant growth and development [27]. The most abundant ROS scavengers in plants, ascorbate (AsA) and
GSH, are typically concentrated in chloroplasts. These metabolites function together in the AsA-GSH
cycle to metabolize H2O2 and thereby to dissipate excess excitation energy in chloroplasts. Moreover,
the AsA-GSH detoxification pathway cross-talks with other detoxification pathways including the
peroxiredoxin (PRX) and glutathione peroxidase (GPX) pathways which are also important for the
detoxification of lipid peroxides. It has been speculated that all these detoxification pathways are
tailored to suit specific stressors and that their relative importance probably varies according to the
prevailing environmental conditions [27].

In animals, there is evidence for species-specific differences in the exploitation of the effects of
ROS. For example, in echinoderms fertilization triggers a burst of extracellular production of H2O2 by
a plasma membrane NADPH oxidase with a simultaneous release of ovoperoxidase. This elevated
H2O2 is the oxidant responsible for the extracellular cross-linking reaction involving in the formation
of a protective envelope around the freshly fertilized oocyte [28].

In insects as in plants, reactive oxygen species can also function as immune effector molecules
which exert microbicidal activity. In Drosophila, a burst of ROS is generated by DUOX (dual oxidase)
upon gut microbe infection and regulates the production of antimicrobial peptides (AMPs) by the
fat body, a major immune organ in the fly [29]. As in mammals, the ROS dependent mechanism
which activates antimicrobial peptide production involves the activation of the Toll and the NF-κB
pathways which both play essential roles in antibacterial and antifungal responses [29,30]. At the
same time, the pathogen-induced ROS levels activate the JAK-STAT (Janus kinase–signal transducers
and activators of transcription) and JNK (c-Jun NH2 terminal kinase) pathways to induce stem cell
proliferation counteracting the cellular damage generated by the burst of ROS [31].

Another mechanism underlying oxidative stress tolerance in Drosophila that influences life-span and
xenobiotic response is the conserved Keap1 (Kelch-like ECH-associated protein (1)/Nrf2 (NF-E2-related
factor (2) signaling pathway [32]. The Keap1/Nrf2 dimer activated by ROS plays a crucial role in
reducing oxidative stress in the germline stem cells from Drosophila testis. This pathway regulates the
expression of antioxidant and detoxification genes [32,33] and has also been shown to play a critical
role in ROS detoxification in mammalian systems.

1.1. ROS Regulation of Gene Expression in Vertebrate Systems

Many studies have focused on the regulation of gene expression by ROS in mammalian systems.
It is well known that a moderate level of ROS synthesis is physiologically normal and acts as a
specific signal in the control of cell proliferation, blood circulation, myoblast differentiation and the
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regulation of immune and endocrine processes [34]. However, external factors such as xenobiotics
and UV-radiation as well as hormones, cytokines, and other physiological stimuli can enhance the
production of cellular ROS up to toxic levels [34–36]. To protect against the potentially damaging
effects of ROS, mammalian cells can enhance the level of endogenous non-enzymatic antioxidant
metabolites such as lipoic acid, glutathione, L-arginine and coenzyme Q10 [37] as well as inducing the
synthesis of several antioxidant enzymes including superoxide dismutase, catalase and glutathione
peroxidase. The mechanism underlying this transcriptional response to ROS involves the activation of
MAP protein kinases and redox-regulated transcription factors such as c-Jun, ATF2, ATF4, NFκB, Nrf2
and p53.

Mitogen-activated protein kinases (MAPKs) have been reported to orchestrate ROS-responsive
signaling pathways by activating redox-responsive transcription factors such as AP-1, NFκB/IκB
and the Nrf2/Keap1 systems. The prevention of ROS accumulation by antioxidants blocks MAPK
activation [38,39]. MAPK activation consists of a kinase cascade initiated by a MAPK kinase kinase
(MAPKKK), that phosphorylates and thereby activates a MAPK kinase (MEK, or MKK), which in turn
phosphorylates and activates one or more MAPKs. In vertebrates, three subtypes of MAPKs have been
described. The extracellular signal-regulated kinases (ERKs), the c-Jun N-terminal kinases (JNKs),
and the p38 MAPKs. MAPKs can be activated by a wide variety of different stimuli, but in general,
ERK-1 and ERK-2 are preferentially activated in response to growth factors, while the JNKs and
p38 MAPKs are more responsive to stress stimuli including elevated levels of ROS. The p38 MAPKs
represent stress-activated protein kinases activated by extracellular stress and cytokines, (e.g., tumor
necrosis factor-a (TNF-α) and interleukin-1b (IL-1β)), and are thereby involved in the inflammation
response [40].

The stress-activated protein kinases JNKs, were originally identified by their ability to activate the
transcription factor c-Jun via phosphorylation of its transactivation domain [41]. However, it is now
clear that they also phosphorylate other target proteins. A key question concerns precisely how ROS
activates the JNK and p38 MAPK pathways. Redox-sensitive proteins, such as Trx and glutaredoxin
(Grx) have been implicated in this regulatory mechanism [42]. For example, the oxidation of Trx by ROS
results in dissociation of the Trx/ASK-1 complex leading to the activation of the two stress-responsive
MAPK pathways [42]. ASK1 has been extensively characterized as a ROS-responsive kinase [43,44].

The protooncoprotein c-Jun, as well as ATF2 (Activating transcription factor 2) belong to the
activating protein-1 (AP1) transcription factor family. These factors regulate gene expression in the
context of homo- or hetero-dimeric complexes with other AP1 members (e.g., CREB, Fos, Maf, Jun-B
and Jun-D) [45–48]. AP1 dimers containing ATF2 and c-Jun have been reported to bind to the promoter
consensus sequence TG/TACNTCA that is encountered in the promoters of many genes involved in
DNA repair and apoptosis [49].

ATF2 was originally identified from a human brain cDNA library screen as a CRE-binding
protein [50]. It is activated by various stimuli including oxidative stress, growth factors, ultraviolet (UV)
radiation, and cytokines. ATF2 can shuttle between the nucleus and cytoplasm under basal conditions
and following stress stimuli via an autoinhibition mechanism. Specifically, in the inactive state, the ATF2
N-terminal transcriptional activation domain (TAD) interacts with its C-terminal basic leucine zipper
(bZIP) DNA-binding domain, inhibiting the ability of ATF2 to activate transcription. Following stress
stimuli, ATF2 undergoes phosphorylation at threonine (T69, T71) mediated by stress-activated protein
kinases (e.g., p38 and JNK) and is able to translocate to the nucleus as homo- or hetero-dimers with other
AP1 transcription factors to modulate the expression of hundreds of genes [47,51]. The proto-oncogene
c-Jun is the cellular homolog of the viral oncoprotein v-jun discovered in the avian sarcoma virus
17 [48,52,53]. The c-Jun protein was originally described as a driver of malignant transformation.
One characteristic of c-Jun is that it can activate its own expression [54] and therefore can drive
a positive autoregulatory loop. It has been shown that in response to oxidative damage, c-Jun is
phosphorylated at N-terminal serine residues (S63, S73) by JNK [41,55,56] and that c-Jun play an
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important role in cell cycle re-entry after DNA damage induced by UV exposure since immortalized
fibroblasts lacking c-Jun undergo a prolonged UV-induced growth arrest [57].

The nuclear factor NF-κB is a widely investigated dimeric transcription factor involved in the
regulation of genes that control various aspects of the immune and inflammatory response and is
responsive to ROS. Redox signaling plays a critical role in NF-κB activation by various stimuli via
thioredoxin peroxidases [23]. In unstimulated cells, NF-κB dimers are sequestered in the cytosol
through noncovalent interactions with inhibitory proteins termed IκBs [58]. The nuclear translocation
and activation of NF-κB as a transcription factor by cytokines, microbial agents, oxidative challenge
(ROS) and irradiation occurs through the signal-induced phosphorylation of IκB and its proteolytic
degradation by thioredoxin peroxidases. IκB degradation exposes the nuclear localization signal on
NF-κB, which allows its nuclear translocation and activation of the transcription of its target genes.
Interestingly, the DNA binding function of NF-κB is also regulated by the intracellular redox status.
Specifically, the p50 subunit is targeted by S-glutathionylation which reversibly inhibits its DNA
binding activity [59].

One of those NF-κB target genes which includes in its promoter the GGGDNWTTCC enhancer
element, is the redox-regulating thioredoxin gene (Trx). Trx is an oxidoreductase that works together
with the glutathione system to establish and maintain a reduced intracellular redox state. Other NF-κB
target genes that play a protective antioxidant role include the peroxiredoxin, heme oxygenase-1,
the cystine transporter xc2 and manganese SOD (mnSOD) genes [60].

The redox stress-sensitive transcription factor Nrf2 (nuclear erythroid-derived 2-like) regulates
the expression of several antioxidant and detoxification genes. In the absence of ROS, Nrf2 is retained
in the cytoplasmic compartment in complex with another protein, KEAP1, ensuring effective Nrf2
repression. Upon oxidative stress increase, NRF2 protein is rapidly released from KEAP1 and thereby
translocated into the nucleus of affected cells. Nuclear Nrf2 heterodimerizes with Maf and binds to
the antioxidant response element ARE sequence (ARE; 5′-A/GTGAC/GNNNGCA/G-3′) located in the
promoter regions of antioxidant and detoxification enzymes and by activating expression of these
target genes, counteracts oxidative stress [61–63]. Specific Nrf2-regulatory targets include elements of
the glutathione and thioredoxin antioxidant systems, as well as enzymes catalyzing the detoxification
of exogenous and endogenous products, NADPH regeneration and heme metabolism. Consistently,
loss of Nrf2 function is associated with increased susceptibility to many environmental stressors.
Recently, it has been demonstrated that Nrf2 can cooperate in a ROS detoxification program with
the cAMP responsive transcription factor ATF4 [64]. Moreover, Nrf2 is involved in other cellular
processes such as autophagy, metabolism, stem cell quiescence and unfolding protein responses [65].
More recently, De Nicola and colleagues [66] have pointed out a potential link between the “reduced”
cellular environment and tumor initiation. They have shown that oncogene-mediated induction
of Nrf2 in mice promotes ROS detoxification required for tumor initiation [66]. Furthermore, Nrf2
mutations have been isolated from patients with lung, gall bladder, head and neck cancers supporting
a pro-tumorigenic role for Nrf2 [62].

The cytokine responsive transcription factor STAT3 has also been shown to be regulated by the
redox sensor peroxiredoxin 2 (Prx2) [67]. Specifically, Prx2 act as a sensitive receptor for H2O2 and
transmits oxidative equivalents to STAT3. This, in turn, induces the formation of STAT3 oligomers
with reduced transcriptional activity. This observation is consistent with reports that ROS plays a key
role in the regulation of tissue regeneration and development [68].

The tumor-suppressor p53 is potently induced by oxidative stress and mediates all the
antiproliferative cellular responses to oxidative signals, including transient cell-cycle arrest, cellular
senescence and apoptosis [69,70]. Specifically, after oxidative stress the p53 transcriptional response is
dependent on the p66Shc protein, the redox enzyme implicated in ROS generation and the translation
of oxidative signals into apoptosis [71,72]. The tumor suppressor p53 is critically involved in oxidative
stress-dependent apoptosis and is upregulated upon treatment with H2O2 and UV [73]. Strikingly,
p53−/− MEFs show resistance to UV and H2O2-induced apoptosis [70]. p53 activation leads to a
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significant increase in ROS levels and apoptosome assembly via the release of cytochrome C from
the mitochondria. This release of cytochrome C upon oxidative stress is p66Shc-dependent since
p66Shc−/− cells fail to increase ROS levels. Therefore, p66Shc serves as a downstream effector of
p53 [72]. However, p66Shc is not involved in p53 functions such as cell cycle arrest but it does regulate
p53-dependent apoptosis pointing to a crucial role for p66Shc and p53 crosstalk in the regulation of
intracellular ROS levels [72].

1.2. Circadian Clocks and Timing of the Response to ROS

Close links exist between oxidative stress and the circadian clock. It has been speculated that
during the origin of life on earth, one of the first driving forces for the evolution of an internal timing
mechanism, was the great oxidation event that occurred following the evolution of green plants
and photosynthesis [74]. Hydrogen peroxide production and scavenging are strongly time-of-day
dependent, therefore, the evolution of an endogenous 24 h clock mechanism was a fundamental step
enabling a temporally coordinated homeostatic response to ROS.

The circadian clock is a highly conserved mechanism, from cyanobacteria to humans, that regulates
rhythms with a period of 24 h in almost every aspect of biology and behavior. The circadian clock is
regularly “reset” or “entrained” by external time cues including light, food and temperature (so-called
zeitgebers, time givers) to remain synchronized with the external environment. However, its timing
function also persists in the absence of zeitgebers with a rhythm of circa 24 h and based on this property
is termed “circadian” (for Latin: circa-diem, around one day). At the molecular level, the vertebrate
circadian timing system can be subdivided into three parts: an input pathway that detects and processes
zeitgeber information; a core oscillator that is entrained by the input pathway and generates endogenous
and self-sustained rhythms; and an output pathway that relays this integrated timing information
to various aspects of behavior and physiology [75]. Genetic screens for circadian clock mutants in
several model organisms (Drosophila, Neurospora, Arabidopsis and mouse) led to the identification
of many genes involved in this mechanism [76–81]. Although, the circadian clock genes identified
were not conserved between the different groups of organisms, they all share a functional property,
namely that they generate circadian rhythmicity by serving as elements of transcriptional-translational
feedback loops (TTFL) [81]. In vertebrates, the BMAL and CLOCK basic helix–loop–helix (bHLH),
Per-Arnt-Single minded (PAS) transcription factors serve as positive elements of the core TTFL clock
mechanism. CLOCK-BMAL hetero-dimers bind to E-box enhancer elements (5′-CACGTG-3′) located
in the promoter regions of the negative elements of the TTFL (the period (Per) and cryptochrome
(Cry) genes) as well as in the promoters of other clock-controlled genes [82,83], and thereby activate
their transcription. The induced PER and CRY proteins in turn form a hetero-dimeric complex and
translocate to the nucleus where they inhibit their own transcription by interfering with CLOCK-BMAL
driven transcriptional activation [81]. The stability of this core regulatory TTFL is enhanced by
additional feedback loops [84]. For their discovery of the first elements of the molecular mechanisms
generating circadian rhythms, Michael Rosbash, Michael W. Young and Jeffrey C. Hall obtained the
Nobel prize in Physiology and Medicine in 2017.

In mammals, cell autonomous clocks located in most cell types and tissues (so-called peripheral
clocks) are light-synchronized via systemic signals provided by a specialized clock located in the
SCN (Suprachiasmatic nucleus) of the hypothalamus, a paired neuronal structure located in the
anteroventral hypothalamus above the optic chiasm that is synchronized by light via light-dependent
input from the retina-hypothalamic tract [85,86]. In lower vertebrates, including fish and insects such
as Drosophila, peripheral clocks are reset directly by light without the presence of a light entrainable
central pacemaker [87].

Many lines of evidence point to extensive links between the circadian clock and the redox state of
the cell. Thus, model organisms with genetically disrupted circadian clocks show many features of
abnormal metabolism, such as obesity and diabetes [88–91]. Furthermore, the early aging phenotype
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observed in the clock protein BMAL1 knockout mouse has been attributed to an accumulation of ROS
due to mitochondrial uncoupling [92,93].

The core clock mechanism has been shown to respond to redox state in a range of model
organisms [94,95]. This enables the circadian clock to respond to changes in metabolic activity [96,97].
In vertebrates, a feedback loop links redox homeostasis and clock function. The circadian clock
controls the NAD pathway via regulation of the enzyme NAMPT, crucial for the synthesis of NAD [98].
This regulation governs the cellular NAD+:NADH ratio [99]. Conversely, a NAD+-dependent
deacetylase, the protein SIRT1, directly regulates the expression of clock and clock-controlled genes
via deacetylation of clock proteins and histones [100,101]. The mechanism of protein deacetylation by
SIRT1 is dependent upon the availability of NAD+. Both NADH and NADPH enhance the binding of
CLOCK:BMAL1 and NPAS2:BMAL1 hetero-dimers to the E-box enhancer element, whereas NAD+

and NADP+ inhibit this activity [102].
It has been shown that circadian clock regulation of the redox stress-sensitive transcription factor

NRF2 occurs via the E-box enhancer element. NRF2 regulates the circadian rhythmic expression of
antioxidant genes, and genes involved in NADPH production [103]. Consistent with a clock control of
ROS homeostasis, time of day dependent differences in the levels of DNA damage, lipid peroxidation
and protein oxidation have been documented [104,105].

The clock also regulates the production of the hormone melatonin, a potent antioxidant
molecule [106]. Melatonin can act as a direct free radical scavenger or as an indirect antioxidant by
stimulating antioxidant enzymes including SOD, GPX, and glutathione reductase [107]. Moreover,
melatonin is able to regulate the mitochondrial electron transport chain, thereby reducing electron
leakage and free radical generation [107]. In addition, it has also been hypothesized that intracellular
melatonin can directly neutralize H2O2 by generating N’-acetyl-5-methoxikynuramine (AFMK) [107].

1.3. Stress Response and Cytoplasmic Granules

Following exposure to environmental stress, cells can undergo two alternative fates, either inducing
apoptosis or cell cycle arrest to repair the stress-induced damage. The activation of one or the other
mechanism is strictly dependent on the extent of cellular damage. These processes minimize cell loss
and prevent the survival of cells with genetic and protein alterations. An additional evolutionary
conserved strategy for dealing with an imbalanced redox state is Stress Granule (SG) formation.
Stress Granules are cytoplasmic non-membrane bound aggregates of RNA and proteins whose
formation is associated with inhibition of translation initiation and the disassembly of polysomes [108].

In mammalian cells, stress granule formation is orchestrated by PI3K and p38MAPK that act in
a hierarchical manner to drive mTORC1 activity thus facilitating stress granule assembly [109]. SGs
are composed of only 10% of bulk mRNA molecules as well as some non-coding RNA (ncRNAs).
Recent transcriptomic analyses reveal that SGs are enriched with long mRNAs that exhibit poor
translation efficiency [110]. In addition to RNAs, SGs contain various proteins, including G3BP1, T-cell
restricted intracellular antigen-related protein (TIAR), PABP1, RACK1, HDAC6 and Y box binding
protein 1 (YB-1). Although the role of each protein in SG assembly is not fully elucidated, each
appears to play an essential role in SG-associated functions. For example, YB-1 directly binds to and
translationally activates the 5′ untranslated region (UTR) of G3BP1mRNAs, thereby controlling the
availability of the G3BP1 nucleator for SG assembly.

In mammals, irradiation and genotoxic drugs are prone to trigger apoptosis. Instead, arsenite,
hydrogen peroxide and heat shock treatment induce stress granule formation, that suppresses ROS
elevation and thereby inhibits apoptosis. This antioxidant property results from the function of two
key SG components, namely the GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and
ubiquitin-specific protease 10 (USP10). Under normal conditions, G3BP1 elevates ROS by inhibiting
the antioxidant activity of USP10. However, under oxidative stress or heat shock, G3BP1 and USP10
trigger SG formation, which then activates the antioxidant activity of USP 10 [111].
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Interestingly, it has been shown that upon oxidative insults, SG assembly is associated with
an enhancement of YB-1 protein secretion. Furthermore, an enriched fraction of extracellular YB-1
(exYB-1) caused a G2/M cell cycle arrest in receiving cells thus inhibiting cell proliferation [112].
These observations suggest that the release of extracellular YB-1 can function as a stress-dependent
paracrine/autocrine signal that controls cell cycle progression. Despite the considerable literature on
SGs in mammals, little is known about how much these membrane-less organelles and their functions
are conserved during evolution. Interestingly, it has been shown that the nuclear localization of the
SG marker YB-1 is robustly regulated in fish by the circadian clock [113]. Specifically, a daily nuclear
entry of YB-1 at the beginning of the light phase appears to be mediated by clock-controlled changes in
YB-1 SUMOylation. Moreover, in zebrafish, the YB-1 nuclear protein is able to downregulate cyclin A2
transcript levels thus providing a direct link between the circadian clock, YB-1 and the control of cell
proliferation. Thus, in response to oxidative stress, YB-1 seems to play distinct roles depending on its
subcellular localization. In the nucleus, YB-1 restrains cell cycle progression while in the cytoplasm it
participates in SG assembly and inhibition of translation. Overall, it appears that YB-1 acts to prevent
and then eventually repair genotoxic damage.

Thus, oxidative stress response pathways have been extensively studied in mammalian systems.
However, given the diversity of antioxidative stress pathways in other species, are these pathways
conserved in all vertebrates or may there be species-specific differences in their function depending on
the ecological niche occupied? In the next section, we will explore recent progress made in studying
the oxidative stress response in fish.

2. Fish as Models for Studying ROS Responses

Recent work has compared the response to oxidative stress in selected species of fish with
mammalian models such as human and mouse. Fish represent the most diverse and largest vertebrate
group which occupy an important ecological position and have great commercial value. Furthermore,
zebrafish and medaka are also powerful genetic models that provide a wealth of molecular and genetic
tools for studying various biological processes at the molecular level. Another unique and attractive
advantage of using fish for studying ROS pathways, is that their peripheral tissues are directly light
responsive [87] and central to these light-driven responses is an increase in intracellular ROS levels [114,
115]. Specifically, most tissues and cell types in fish express photoreceptors, directly light-regulated
clocks, light enhanced DNA repair capacity and importantly the expression of many genes is induced
in fish cells upon direct exposure to visible as well as UV light and ROS. This cell-autonomous
property is even observed in cell lines derived from various fish tissues [116–118]. Therefore, fish
cell lines represent powerful in vitro models for exploring the capacity of light via ROS to regulate
physiological mechanisms in vertebrates. The utility of fish also extends to studying the effects of
evolution in response to a changing environment. Notable examples are species of blind cavefish
that inhabit perpetually dark subterranean environments and exhibit a set of striking anatomical
adaptations including eye loss, enhancement of non-visual senses and loss of body pigment, so called
troglomorphisms. One particular species, the Somalian cavefish Phreatichthys andruzzii, represents one
of the most extreme examples of cavefish since it has been completely isolated from surface water and
surface-dwelling forms for at least 2–3 million years. Interestingly, this species also exhibits complete
loss of light, UV and ROS induced gene expression. Therefore, comparing the responses to ROS in
different fish species subjected to different evolutionary pressures, represents a unique approach to
gain insight into how the ROS response is shaped by the environment during evolution.

2.1. Sunlight, ROS and Regulation of the Circadian Clock in Fish

A remarkable feature of the organization of the circadian timing system in vertebrates is a
fundamental difference in the mechanisms whereby light entrains the multiple peripheral tissue
clocks. Thus, while peripheral clocks are directly light-regulated in lower vertebrates such as fish,
in modern mammals the photic entrainment of peripheral clocks is dependent upon a centralized,
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retina-based photoreception system [119]. These observations predict the existence of fundamental
changes in the regulatory networks of peripheral clocks over the course of vertebrate evolution.
In zebrafish, functional genomic analysis has identified more than 40 opsins of which 32 are non-visual
opsins expressed in peripheral organs [85,120]. It has also been shown that exposure to visible
light can stimulate H2O2 production in zebrafish embryonic cell lines and that this production
is a key signal for mediating light-dependent circadian gene expression [114,115]. It is also well
documented that exposure of cultured mouse, monkey and human cells to violet-blue visible
light, as well as UVA, also stimulates H2O2 production via photoreduction of flavoproteins [121].
Hirayama et al., in 2007 [115], demonstrated that ROS species act as a second messenger coupling
photoreception to circadian clock entrainment and consequentially regulate the circadian expression
and activity of clock genes as well as antioxidant enzymes such as catalase that is responsible for
H2O2 degradation. A more recent study [114], revealed a key role for NADPH-flavin-containing
oxidases (NOXes) in the regulation of light-inducible clock gene expression in zebrafish. Using a
pharmacological approach and by studying zebrafish cell lines, visible light was shown to trigger
increases in ROS levels via NADPH oxidase activity, which in turn activates the expression of the light
regulated clock genes zfcry1a and zfper2. This induction of zfcry1a and zfper2 gene expression is also
dependent on the activation of the JNK and p38MAPK stress pathways. Surprisingly, the promoter
enhancer elements targeted by these ROS pathways was not one of the classical enhancers regulated
by ROS. Instead, exposure to ROS species, as well as visible and UV light, activated the expression of
circadian clock and DNA repair genes via D-box enhancer elements located in their promoters [114,122].
Interestingly, in mammalian cells, neither blue light, UV nor H2O2 exposure activates gene expression
via D-box enhancer elements [114,122].

2.2. The D-Box and the Transcriptional Response to ROS

The D-box element was first described in mouse liver as one of the transcriptional enhancers
present in the albumin gene promoter [123]. In 1990, Uli Schibler’s group cloned the first transcription
factor that binds with high specificity to the D-box element of the rat liver albumin promoter, thereby
called DBP (D-binding protein) [124]. Subsequently, two other transcription factors were shown to bind
to the D-box element and to serve as transcriptional activators, namely the thyrotrophic embryonic
factor (TEF) [125] and the hepatocyte leukemia factor (HLF) [126]. DBP, TEF and HLF belong to
the so-called PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor
family which share a proline-and acidic amino acid-rich domain positioned proximal to a C-terminal
bZip domain as well as an extended basic region at their N-termini and which are highly conserved
throughout evolution [127,128]. These transcription factors constitute a subfamily of the basic leucine
zipper proteins (bZip), characterized by a C-terminal α-helical region that allows homodimerization
or heterodimerization between other bZip proteins [129]. All PAR bZip family members activate
transcription of downstream genes by binding as homo- or hetero-dimers to D-box elements matching
the consensus sequences RTTAYGTAAY [130]. These transcriptional activators compete for DNA
binding with another bZip protein which shares a similar DNA-binding profile but which lacks the
PAR domain and functions as a repressor, namely E4BP4 (E 4 binding protein 4) [129,131].

A striking observation is that the D-box enhancer element operates in a completely different
fashion in mammalian cells compared with fish cells. In mammalian species, the D-box is not involved
in the light input pathway of the clock. The expression of genes which contain D-boxes in their
promoters do not respond to visible light, UV or ROS exposure (Figure 1). Instead, the mammalian
D-box is clock regulated and thereby plays a role in the activation of genes belonging to the output
pathway of the clock machinery [132]. The expression of both DBP [133] and HLF [134] is strongly clock
regulated in the mammalian liver and the D-box enhancer has been shown to mediate the clock-driven
regulation of genes encoding enzymes such as CAT and SOD [115,135] as well as the production of
low molecular weight antioxidants such as glutathione (GSH) [136–138] with important functions in
the defense against xenobiotic and oxidative stress [139].
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In contrast, D-box regulation in fish is tightly linked with coordinating the gene expression
response to oxidative stress as well as sunlight. Furthermore, as a result of genome duplication events
in early teleost ancestors, fish species possess extra D-box binding factors (TEF1, TEF2, HLF1, HLF2,
DBP1, DBP2 and 6 E4BP4 homologs) [140]. These factors exhibit significant differences in their tissue-
and cell type-specific expression patterns and also can bind to D-boxes as hetero- or homo-dimers.
Therefore, it is clear that in fish, transcriptional regulation at the D-box is inherently complex. A clear
challenge for the future is to identify precisely how elevated ROS levels lead to the regulation of this
complex combination of transcription factors via activated JNK and p38 MAPK activity.

Figure 1. Light, reactive oxygen species (ROS) and the D-box enhancer. Schematic representation
of how D-box enhancer-driven gene expression is differentially influenced by blue light exposure in
mammalian, zebrafish and cavefish cells. In all three cell types light triggers an increase in intracellular
ROS levels that in turn activates the p-38 mitogen-activated protein kinase (MAPK) and c-Jun NH2

terminal kinase (JNK) stress pathways. In zebrafish cells (central panel), this signaling results in
the activation of D-box-driven gene expression, ultimately leading to circadian clock entrainment
(indicated by the green arrow). In mammalian cells (left panel) and in cavefish cells (right panel) this
signaling fails to activate gene expression via the D-box enhancer element and does not entrain the
circadian clock. The white arrow starting from the clock and pointing on the D-box element indicates
the circadian clock regulation of this enhancer in mammals [132]. The red cross over the clock in the
cavefish cells indicates the blind circadian clock observed in these cells [141].

2.3. Adaptation of Mechanisms Responding to Oxidative Stress during Evolution

Insight into how the light-ROS-D-box signaling pathway has adapted during evolution under
extreme environmental conditions has been gained from a set of comparative studies focusing on a
species of blind cavefish (Phreatichthys andruzzii). This species has evolved over 2–3 million years
completely isolated from sunlight, in layers of water locked beneath the Somalian desert [114,122].
Like other species inhabiting perpetually dark cave environments, these cavefish exhibit a set of striking
anatomical adaptations including complete eye loss and absence of body pigmentation, so-called
troglomorphisms. By comparing cavefish- and zebrafish-derived cell lines, it was revealed that light
entrainment of the clock as well as photoreactivation DNA repair has also been lost during evolution of
this cavefish [122,141,142]. Specifically, this originates from a loss of light-, UV- and ROS-induced gene
expression. Similar to the situation in zebrafish, blue or UV light triggers an increase in cellular ROS
levels as well as an activation of the MAP kinase stress pathways in the cavefish cell lines. However,
these events do not result in the transcriptional activation of D-box enhancer-regulated clock genes
such as per2 and cry1a or the CPD, DASH and 6-4 photolyase DNA-repair genes (Figures 1 and 2).
Precisely how the D-box regulatory factors have been modified during cavefish evolution remains
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unclear. Furthermore, it will be fascinating to compare these cavefish regulatory mechanisms with
those of mammals which also fail to respond to ROS.

Interestingly, the cavefish P. andruzzii appears to be only species described to date, apart from
placental mammals, that lacks the highly evolutionary conserved photoreactivation DNA repair
function. It has been speculated that in the DNA repair systems of P. andruzzii, we are witnessing the first
stages of a process that occurred previously in the ancestors of placental mammals during the Mesozoic
era. This speculation is based on the “nocturnal bottleneck” theory [143–145]. This theory predicts that
the ancestors of modern mammals became exclusively nocturnal in order to avoid predation by diurnal
carnivorous dinosaurs. This adaptation to a dark ecological niche may also explain many features of
present-day mammals including a general loss of extraretinal photoreception, as well as adaptations in
the eye and retina to facilitate vision under low-lighting conditions [143,145]. Adaptation to a nocturnal
lifestyle is also predicted to have entailed a general loss of light-dependent repair mechanisms that
target UV-induced DNA damage, namely the photolyase genes and photoreactivation function [143].
It is also interesting to note that similar to cavefish cells, in mammalian cell lines light and UV exposure
all trigger an increase in cellular ROS levels followed by activation of the MAP kinase stress pathways
but this does not result in activation of D-box enhancer-mediated gene expression [114,122].

Figure 2. Loss of D-box function in cavefish. Representative in vivo bioluminescence assays performed
in zebrafish (blue traces) and cavefish (orange traces) of cells transfected with the D-box enhancer
luciferase reporter derived from the zebrafish 6-4 phr promoter [122] (upper part of the figure).
Cells were exposed to three different stressors: light-dark cycles (left panel), a UVC pulse (central panel)
or 300 µM H2O2 (right panel). The grey (right panel) trace indicates luciferase expression of cavefish
cells not exposed to H2O2 (negative controls). Black and white bars below each panel indicate the
lighting conditions.

Another example where changes in the response to ROS are coupled with evolution in an extreme
environment is the naked blind mole rat (Spalax). These are small subterranean rodents common in the
Middle East that are distinguished by their adaptation to life in a hypoxic underground environment.
Specifically, these animals undergo cycles of digging closer to the surface and then burrowing in their
subterranean tunnel systems. As a consequence, at the cellular level, these animals experience cycles
of hypoxia followed by reoxygenation. In a normal animal, these alternating shifts in oxygen levels
can serve as a source of genomic instability, which underlies both aging and cancer. Severe hypoxia
results in S-phase arrest, dNTPs depletion and replication stress as well as a general repression of
DNA repair activity. Then, upon reoxygenation, S-phase restarts during an initial period when DNA
repair has still not recovered to normal levels. Therefore, DNA replication occurs in the presence of
ROS-induced DNA damage, leading to the accumulation of mutations. [146,147]. However, Spalax
exhibits remarkable longevity and a striking resistance to cancer [148]. It is therefore evident that a
key aspect of the adaptations Spalax has made for life in its hypoxic environment are fundamental
changes in the molecular mechanisms responding to cycles of hypoxia and oxidative stress. It has been
speculated that the cancer resistance in Spalax results from an amino acid substitution in the p53 gene
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leading to a R174K substitution. p53 serves as a master regulator of the DNA damage response and has
been termed the “guardian of the genome.” This amino acid substitution in Spalax impairs the ability
of the p53 protein to trigger apoptosis, although the protein is still able to induce cell cycle arrest [149].

3. Conclusions

Our current understanding of the molecular mechanisms responding to oxidative stress reveals
extensive conservation of many of the main regulatory pathways between organisms as diverse as
mammals, yeast and Drosophila. However, there are also examples of fundamental changes in these
mechanisms during evolution. For example, the switch in the function of the D-box enhancer from
a ROS regulatory target in fish, to a clock regulatory target in mammals as well as the loss of ROS
responsiveness of the D-box enhancer during cavefish evolution. Furthermore, fundamental changes
in the functionality of the p53 protein have accompanied the adaptation of the naked blind mole
rat to its life in a hypoxic environment. These findings reveal that the functions of ROS responsive
mechanisms are also potentially plastic and are shaped by the selective pressure of the environment.
By identifying precisely which elements of these regulatory mechanisms are “targeted” during the
process of evolution, we will gain considerable insight into how organisms adapt to oxidative stress
and damage over evolutionary time scales.
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