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Mesure vectorielle intégrée de circuits RF / micro-ondes dans la technologie LTCC  
 

Hana MOHAMED 

 
 

RESUME 

 
Alors que le nombre de systèmes et de normes sans fil continuent à augmenter, la 
réutilisation de matériel RF devient de plus en plus importante pour réduire les coûts et la 
taille et éliminer la redondance inutile des composants. Un moyen de maximiser la 
réutilisation du matériel RF consiste à déployer des circuits reconfigurables. Cela dépend à 
son tour de la mesure vectorielle intégrée pour garantir le bon fonctionnement du matériel 
reconfigurable. 
 
Les techniques classiques de mesure vectorielle nécessitent des analyseurs de réseau 
vectoriel  coûteux et encombrants ou des jonctions six ports légèrement plus compactes. Les 
deux options nécessitent l’utilisation de coupleurs directionnels pour l’échantillonnage des 
ondes progressives, ce qui augmente leur taille et limite leur aptitude à l’intégration dans du 
matériel RF reconfigurable. Les interféromètres à quatre ports non directionnels offrent une 
solution alternative pour la mesure vectorielle intégrée, caractérisée par une très petite taille, 
un très faible couplage et une facilité d'intégration. 
 
Dans le présent travail, un nouveau réflectomètre 3D non directionnel à 4 ports pour la 
mesure de coefficients de réflexion complexes est proposé. Le réflectomètre proposé 
comporte deux renifleurs non directionnels optimisés placés sous une ligne de transmission 
avec des lignes enterrées pour acheminer les signaux reniflés aux détecteurs de puissance de 
la technologie LTCC. Les transitions verticales des lignes enterrées à la surface sont conçues 
et optimisées. Des simulations de champs électromagnétiques en 3D permettent d'optimiser 
la conception proposée afin d'obtenir le paramètre S de la structure. Deux circuits de 
détection de puissance LT5582 avec une plage dynamique de 57 dB sont utilisés pour 
détecter la puissance couplée. Un prototype du réflectomètre proposé est fabriqué au LTCC 
(Ferro L8) dans le laboratoire LACIME et utilisé pour mesurer 45 charges complexes 
différentes. Les résultats obtenus montrent un excellent accord avec les mesures VNA 
montrant des erreurs inférieures à 0,3 dB pour l'amplitude et inférieures à 3 ° pour la phase. 
 
 
Mots clés: réflectomètre, coefficient de réflexion, puissance couplée, paramètres S, LTCC





 

Embedded Vector Measurement of RF/Microwave Circuits in LTCC Technology 
 

Hana MOHAMED 
 

ABSTRACT 

 
As the number of wireless systems and standards continues to increase, RF hardware re-use 
is becoming more and more important to reduce cost and size and eliminate unnecessary 
component redundancy. One way of maximizing RF hardware re-use is to deploy 
reconfigurable circuits. This is turn relies on embedded vector measurement to ensure the 
reconfigurable hardware operates as required. 
 
Conventional vector measurement techniques require costly and bulky Vector network 
analyzers or slightly more compact six-port junctions. Both options require the use 
directional couplers to sample forward and backward traveling waves, which increases their 
size and limits their suitability for embedding in reconfigurable RF hardware. Non-
directional four-port interferometersoffer an alternative solution for embedded vector 
measurement that is characterized bya very small size, very low coupling, and ease of 
integration. 
 
In the present work, a new 3D 4-port non-directional reflectometer for measuring complex 
reflection coefficients is proposed. The proposed reflectometer features two optimized non-
directional sniffers positioned below a transmission line with buried lines to carry the sniffed 
signals to power detectors in LTCC technology. Vertical transitions from the buried lines to 
surface are designed and optimized. 3D electromagnetic field simulations are used to 
optimize the proposed design in order to obtain the S-parameter of the structure. Two 
LT5582 power detector circuits with 57 dB dynamic range are used to detect the coupled 
power. A prototype of the proposed reflectometer is fabricated in LTCC (Ferro L8) in 
LACIME laboratory and used to measure 45 different complex loads. The obtained results 
show excellent agreement with VNA measurements showing errors below 0.3 dB for 
amplitude and below 3° for phase. 
 
 
Key words: Reflectometer, reflection coefficient, coupled power, S-parameters, LTCC 
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INTRODUCTION 

Microwave engineering and its applications have continued to grow over the last few years 

fueled by growth in many wireless communication technologies such as 5G (Wi-Fi) and the 

Internet of Things (IoT). By connecting more and more devices (such as cellphones, home 

appliance, vehicles, and others) that sense and collect data from different sources and share 

this data over the area where the Internet is accessible, there is an increased need for better 

electromagnetic spectrum usage with maintained high transmission quality. Recently, 

multiple antennas have been used in Multiple Input Multiple Output (MIMO) systems to 

increase spectrum efficiency, see for example (S. Abdulrab, M. R. Islam, M, et al, 2016). 

Cognitive Radio techniques offer even means for even further spectrum efficiency increase 

(C. Park, et al., 2007) while Software Defined Radio (SDR) techniques provide techniques 

that also help to maximize the use of limited spectrum (R. Zitouni and L. George, 2016). In 

many of these techniques, reconfiguration of the radio communication system is employed to 

achieve the desired spectrum efficiency improvement. At the RF level, this requires very 

wideband systems or, preferably, reconfigurable front-ends. Figure 0.1 illustrates a RF front-

ends configuration for multi-band communicating system which consists of   RFIC, PAs, 

LNAs, filters, duplexers, and antenna switches (H. Okazaki, T. Furuta, et al, 2013).  

 

 

Figure 0.1 RF front-end configuration of multi-band terminal. 
Taken from H. Okazaki, T. Furuta, and et al (2013, pg.432) 
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To adjust the front-end at the desired frequency, broadband matching and using 

reconfigurable or variable devices can be used. Figure 0.2 illustrates amplifier consists of a 

GaAs FET, two matching networks (MNs) at the input and output of the the transistor with 

MEMs switches(H. Okazaki, T. Furuta, et al, 2013) (F. Domingue, S. Fouladi, A. B. Kouki 

and R. Mansour, 2009). However, there is still  a challenge of determining the precise 

response of a front-end, or its sub-blocs, as it is being reconfigured or tuned to a different 

frequencies (Ammar B. Kouki et al, 2010). 

 

 

Figure 0.2 Block diagram of reconfigurable Amplifier 
Taken from H. Okazaki, T. Furuta, and et al (2013, pg.432) 

 

In this context, there is a need for embedded measurements of RF circuits and devices. In 

particular, embedded vector RF measurements, traditionally only accessible with commercial 

bulky and expensive vector network analyzers (D. Fei, 2013), are needed to enable in situ 

monitoring and reconfiguring of RF circuits and systems. One potential approach to achieve 

this is to use the 6-port technique (F. M. Ghannouchi& A. Mohammadi, 2009), which uses 

several individual power measurements along with a dedicated algorithm to perform vector 

measurements of reflection coefficients. Another alternative technique for RF vector 

measurements can be found in the gain and phase detection circuit made by Analog Devices, 

which includes demodulating logarithmic amplifiers with dynamic range of 60 dB.While 

either of the above-mentioned methods can be used with relative success, they have their 
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drawbacks. As discussed, vector network analyzers are expensive and bulky and are, 

therefore, not suitable for embedded measurements. The 6-port method requires two 

directional couplers, which are used to sample the forward and backward signal (A. Eroglu, 

et al,2010)and multiple power dividers and power detectors leading to a large circuit. Analog 

Devices’ gain and phase detection circuit also needs directional coupler as well and other 

analog components, which can lead to a large size not suitable for embedding in RF front-end 

circuitry (R. Malmqvist et al., 2010). 

 

In 2010, a new approach for embedded vector measurement was proposed based on a four-

port reflectometer that uses two non-directional signal sniffers and a signal carrying 

transmission line (TL) all in Microstrip technology. The sniffers were made of regular 

microstrip lines positioned close to the signal-carrying line at a 90o angle to it. One port of 

the signal carrying line is used to connect RF input signal while the other port is used to 

connect the load to be measured. At the end of each of the two sniffer lines, a power detector 

is connected to measure the non-directionally sampled power. These sniffers are extremely 

simple, have extremely small size, and provide very low coupling (-30 dB) which make the 

reflectometer more convenient for integration in the embedded system. Because of having a 

very low coupling factor, the sniffers will not have any effect on the propagation of the 

power signal in the system. This design provided a good agreement between the 

measurement using vector network analyzer and the proposed four-port reflectometer with 

magnitude errors less than 0.8 dB and phase errors less than 6o (A. B. Kouki, et al., 2010).  

 

Research Problem  

Having the sniffers and the signal carrying transmission line on the same layer can cause 

undesirableinterference and will increase the layout complexity when additional signal or 

bias lines need to be routed on the same layer. Therefore, finding novel four-port 

reflectometer structures that preserve the advantages of non-directional sniffers while 

addressing the potential interference and layout complexity problems constitutes the research 
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problem to be addressed in this project. LTCC technology will be used for the development 

and implementation of possible solutions to the stated problem. 

 

Research Objective 

The main objective of this work is to investigate and design four-port reflectometers in 3D 

multilayer structures using vertical non-directional sniffers (partially filled vias) that can be 

placed underneath the signal carrying transmission line instead of being on the same layer. 

The strategy of using vertical non-directional sniffers to design the reflectometer can provide 

very low coupling (below -30 dB), reduce the cost, not interfere with the signal/bias carrying 

lines, and lead to very small size. All of these features make the sought 3D four-port 

reflectometer appropriate for circuit integration and embedded vector measurement. LTCC 

technology is the suitable 3D multilayer fabrication technology that will be used for the 

design and fabrication of the proposed reflectometer. The targeted measurement precision is 

expected to be similar to commercial VNAs but without necessarily having comparable 

dynamic range as the reflectometer is not expected to serve as a measurement instrument. 

 

Contributions 

The results of the present project were the subject of a conference paper entitled: “3D 

Reflectometer Design for Embedded RF Vector Measurement” that has been accepted for 

publication at the 92nd ARFTG Microwave Measurement Symposium in Orlando, Florida. 

ARFTG is the main microwave measurement conference ( see APENDEX I). 

 

Thesis Organization 

In this thesis, chapter 1 presents different alternative techniques that provide RF vector 

measurements starting from vector network and its types: scalar network analyzer and vector 

network analyzer to the six-port technique to gain and phase detection using Analog Devices’ 

AD3202. Chapter 2 covers the alternative non-directional reflectometer technique with the 

ability of integration for embedded vector measurement. Both the planar version, using a 
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microstrip line and two very simple sniffers as well as will present the new 3D structure are 

presented. The theory for computing the reflection coefficient of a given load, or device 

under test (DUT) is also developed in this chapter. Chapter 3 presents the methodology for 

designing and simulating the 3D reflectometer using 3D electromagnetic field simulation. 

Fabrication of the proposed 3D reflectometer using LTCC technology is also discussed. 

Measurement of several loads using the fabricated reflectometer and a commercial VNA and 

presented and compared. Finally, a conclusion and recommendations for future works 

complete the thesis.  

 

 





 

CHAPTER 1 
 
 

VECTOR MEASUREMENT TECHNIQUES 

1.1 Introduction 

Microwave technology has experienced unprecedented growth over the past few decades. 

However, this growth spurt is also bringing with it some challenges with regard to the need 

for increasingly precise vector and scalar measurements. Scalar measurement is acquired 

viaamplitude only measurement while vector measurements are madeon signal phases as 

well as amplitutudes. For standing wave ratios, signal loss or power measurements, scalar 

measurements usually suffice, whereas for measuring antenna phasing, in-depth circuit 

descriptions and impedances, vector measurements instead of scalar are optimal. It is worth 

noting that vector measurements play a critical role in other fields besides microwave 

technolgy. For instance, they are key elements in diagnostics, medicine (W. C.Khor and M. 

E. Bialkowski, 2006) (W. C. Khor, M. E. Biakowski, et al, 2007, and a wide range of 

industrial applications (G. Vinci and A. Koelpin, 2016)(B. Sopori, et al, 2000). 

 

Vector measurements are typically made by employing a vector network analyzer. This tool 

enables precise measurements to be made across a broad frequency band, measuring for 

signal phases in addition to amplitude. However, vector network analyzers are currently quite 

costly due to their complex design. Therefore, researchers are looking to other strategies and 

approaches to obtain the required vector measurements. One of the more popular methods 

used in various fields today is the sixport method, which employs four separate power 

measurements as a means to find the reflection coefficient. Further, vector measurement can 

be accomplished by dedicated circuitry such as the commercial gain and phase detection 

circuits. In the following, embedded vector measurement through 3D reflectometers is 

presented as an alternative new technique that can address some of the limitations of the 

existing ones. 
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1.2 Architectures of Network Analyzers 

Scalar network analyzers have traditionally been used for network characterization of signal 

magnitude. Then, with the expansion of network analysis technology, refinements were made 

to digital components such as ADCs (analog-to-digital converters), boosting the potential 

capabilities of these types of analyzers. As a result, VNAs (vector network analyzers) are 

now easily able to measure signal data for both vector (phase and magnitude) and scalar 

(magnitude only). 

 

1.2.1 Scalar Network Analyzers 

Scalar network analyzers (SNAs) are able to pick up a signal in broadband and change it into 

low-frequency alternating current (AC) or direct current (DC) as a means to measure the 

radio frequency (RF) signal strength. The hardware used for the measurements include 

thermoelectric components and diodes. The hardware employed in power detection and 

down-converting is generally easy to access and relatively inexpensive, which is a beneficial 

feature of SNAs. At the same time, the receiver should be re-optimized in order to obtain 

accurate power measurements across a range of frequencies, as the detectors almost always 

are broadband components. Because of this, frequency sweeps can be easily accomplished 

by sweeping the RF source frequency while taking the power measurements for single 

frequencies traces (N. Instrument, 2014). 

 

Figure 1.1 illustrates how scalar analyzers perform S21measurements, which is accomplished 

by using a signal source to constantly sweep certain frequency ranges. The figure shows that 

a reference detector is utilized in the sweep. However, if a reference detector is unavailable, 

the transmission coefficient S21 can be determined using the transmitted signal’s power ratio 

either with or without a DUT (device under test). If this approach is adopted, two separate 

sweeps must be donein order to obtain proper characterization of the device. Conversely, 

when a reference detector is available, it can be used to formulate the transmission 

coefficient as the ratio of incident to transmitted power. Additionally, reflection 

measurements can be made using directional devices such as a bridge or a coupler shown in 
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Figure 1.1. In this case, the signal is detected by the DUT as a reflection, and the reflection 

coefficient is written as the reflected signal power’s ratio over the incident signal power for a 

specific component or piece of equipment placed at the test port. 

 

 

Figure 1.1Simplified depiction of scalar network analyzer (SNA). 
After N. Instrument, 2014 

 

As straightforward as these processes appear, SNAs are also known to experience 

measurement-related problems, including the intrusion of unwanted broadband noise. 

Furthermore, given the scalar aspect of the calibration, the test outcomes are relatively 

inaccurate compared to vector calibration. Moreover, the poor selectivity of SNAs means that 

they suffer from limitations to their dynamic ranges, whereas VNAs have much wider and 

less limited ranges. Finally, the use of couplers or bridges also leads to their relatively large 

size and bulkiness. 
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1.2.2 Vector Network Analyzers 

Although more accurate in measurement detail and less limited in range than SNAs, vector 

network analyzers (VNAs) typically employ full heterodyne receivers in order to measure 

both signal magnitude and signal phase. As well, VNAs are much more complicated in 

design than SNAs, but the added complexity means that VNAs have the benefit of enhanced 

accuracy over SNAs. Specifically, in comparing VNAs to SNAs, the receiver’s narrower 

bands can deal with unwanted broadband noise better, give a wider dynamic range, and 

employ error models that are more complex and therefore ultimately more accurate than 

models used in SNAs. The main disadvantage of VNAs is that the intricacies inherent in 

their heterodyne receiver architecture mean that the receivers must carry out frequency 

sweeps relatively slowly compared to broadband SNAs. This complexity also makes the 

technology much costlier than the other (K. Hoffmann and Z. Skvor, 1998). 

 

As mentioned in earlier section, the main purpose of VNAs has traditionally been measuring 

phase and amplitude for reflected and incident waves positioned near DUT ports. Moreover, 

the VNA’s relatively simplistic architecture enables it to be used for stimulating RF 

networks using signals from either a swept or stepped continuous wave (CW). VNAs are 

also designed for measuring travelling waves both near stimulus ports and along every port 

in the applied network that is terminated with 50- or 75-Ohm load impedances. Figure 1.2 

depicts the main building blocks of a VNA (N. Instrument, 2014). 
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Figure 1.2Diagram of VNA main block 
 

In the architecture of Figure 1.2, there is a synthesized RF source of Z0 output impedance 

(characteristic/line impedances) along with three RF ports in the standard network analyzer. 

A sample of the source signal is measured using the reference port R (reference), while ports 

A and B measure the reflected and incident waves on the DUT. Two sequences (Tektronix, 

2017)are needed for measuring the S-parameter matrices for a two-port network. The first 

sequence, illustrated in Figure 1.33, enables the measurement of the reflections at port 1, 

S11= ܾଵ ܽଵൗ , and the forward transmission from port 1 to port,S21= ܾଶ ܽଵൗ .The second 

sequence, illustrated in the sameFigure 1.3b, enables the measurement of the reflections at 

port 2, S22= ܾଶ ܽଶൗ , and the forward transmission from port 1 to port,S12= ܾଵ ܽଶൗ  where a1and 

a2are the forward waves and b1and b2are the backward waves. 
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Figure 1.3Measurement of forward-scattering parameters 
witha network analyzer and reverse scattering parameters  

measurements obtained by network analyzer 
 

VNA Calibration 

The main reason for developing VNAs is making magnitude and phase measurements for 

reflected and incident waves. Thisis accomplished through precise characterization of a 

device’s linear behavior. By obtaining magnitude and phase measurements from the waves, 

several different characteristics can be discovered concerning the device’s features, such as 

insertion loss, return loss, group delay as well as impedance. From this, it can be seen that a 

VNA’s precision in measuring a DUT’s behavior depends on the precision of the magnitude 

and phase relationship measurement for incidentand/or reflected waves. VNAs can be 

calibrated during manufacturing for factors like receiver accuracy. However, details on the 
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measurement setup in the post-manufacturing phases are far more important for obtaining 

better measurement precision (N. Instrument, 2014). 

 

There is much impairment which can hinder VNAs in making precise network analysis 

measurements, so calibration should be used first to measure the impairments individually 

and then to adjust the measurement results accordingly. Numerous approaches can be 

employed for VNA calibration. Which is the most appropriate method depends on a variety 

of factors, such as available calibration standards, frequency range, port number, and DUT 

port type. For instance, a VNA port type may be wave guide, in fixture, on wafer, or co-axial. 

Another major VNA calibration type differentiation involves the trade-off between speed and 

precision. Calibrating a two-port, full S-parameter VNA is typically done using one of the 

following three methods: full S-parameter calibration; one-path, two-port calibration; or 

frequency response calibration. 

 

1.3 Six-Port Techniques 

The most essential problem in microwave engineering and wireless communications system 

is to have a design with high performance and low cost measurement techniques. Thus, six-

port technique that will be reviewed in this section allows determining the efficient of the 

system or network.  

 

1.3.1 Overview 

The six-port method, which has undergone continuous development and improvements, was 

introduced as a measurement technique by Engen and Hoer in 1970s to determine the 

amplitude and phase of RF signals based on four scalar power readings (F. M. Ghannouchi, 

A. Mohammadi, 2009). A six-port junction is the essential part of the six-port technique that 

is well-suited for low-complexity network analyzer tasks as an alternative to conventional 

VNAs. Figure 1.4 shows a typical six-port junction which contains two directional couplers 

to sample the incident and reflected waves (D1, D2), five power dividers (PD1 – PD5) a and 

hybrid coupler (Q).Four power detectors connected to ports 3 to 6 are used to measurefour 
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magnitudes that help in computing the complex reflection coefficient value for the device 

under test DUT (Y. Cassivi, and al, 1992).   

 

 

Figure 1.4Six-port junction diagram 
taken from Y. Cassivi, and al( 1992, p.465) 

 

Because of the need to decrease the costof digital transceivers, several direct-conversion 

transceivers which used six-port technology are proposed in(C. A. Hoer, 1972), where simple 

techniques are usedfor measuring voltage, current, power, complex impedance, and phase 

angle utilizing a six-port coupler. The four side arms of this ideal six-port have output 

voltages proportional to the voltage as presented in Figure 1.5, current, incident voltage 

wave, and reflected voltage wave, respectively, all referred to some desired reference plane 

in the transmission line.  
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Figure 1.5Utilizing ideal hybrids, couplers, and voltage and current probes 
taken from C. A. Hoer(1972, p.468) 

 

In (G. F. Engen and C. A. Hoer,1972), a six-port homodyne method employed power 

detectors rather than mixers as in Figure 1.6, resulting in less complex circuits compared to 

the traditional six-port heterodyne approach. The benefits of using the six-port homodyne 

receiver include ultra-low power consumption, less costly transceivers, and easily obtained 

broadband specifications from passive elements. 

 

 

Figure 1.6Arbitrary six-port junction representation 
taken from G. F. Engen and C. A. Hoer(1972, p.471) 
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The RF circuit’s ultra-large frequency bandwidth is a crucial benefit of six-port design and 

the main reason why, in six-port transceiver architectures, it is used in applications such as 

ultra-wideband (UWB) systems and software-defined radio (C. A. Hoer,1977),the latest 

wireless applications. In (E. R. B. Hansson, G. P. Riblet, 1983), the researchers used a six-

port transceiver at 60 GHz in CMOS technology, intending to develop a low-cost, low DC 

power-consuming miniature transceiver. The proposed transceiver in (E. R. B. Hansson, G. 

P. Riblet, 1983) showed total DC power consumption under 100 mW. 

 

A new automobile radar based on the six-port phase/frequency discriminator where the block 

diagram of the proposed prototype as in Figure 1.7 includes microwave oscillator,  modulator 

and the VCO, the six-port, which plays the role of a mixer., and power detectors are placed at 

outputs 3–6. The frequency of the four signals that go into the analog–to–digital (A/D) 

converter is the Doppler frequency of the target. This technique forces the modulation 

frequency to be the half of the sampling to ensure the Nyquist theorem; the sampling 

frequency should be at least the double of the highest frequency that is expected to measure 

(C. Gutierrez Miguelez, and al,2000). 

 

 

Figure 1.7Block diagram of the proposed radar 
taken from C. Gutierrez Miguelez (2000, p.1417) 
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1.3.2 The Six-Port Reflectometer 

A six-port reflectometer is a passive microwave six-port junction that allows the 

measurement of the complex reflection coefficient ratio of two RF signals using four power 

detector circuits (D3, D4, D5, D6) only, (G. F. Engen,1977).Figure 1.8 illustrates a block 

diagram of a six-port reflectometer with a source connected at port 1 and the DUT connected 

at port 2.  

 

 

Figure 1.8Block diagram of six-port reflectometer 
taken from G. F. Engen(1977, p.44). 

 

The powers detected at ports P3-P6 are formulated in terms of reflected (b2) and forward (a2) 

waves as follows (G. F. Engen,1977): 

 

 ଷܲ=	|A ∗ aଶ 	+ 	B ∗ bଶ|ଶ (1.1) 

 

 ସܲ =	|C ∗ aଶ 	+ 	D ∗ bଶ|ଶ (1.2) 

 

 ହܲ =	|E ∗ aଶ 	+ 	F ∗ bଶ|ଶ (1.3) 

 

 ଺ܲ =	|G ∗ aଶ 	+ 	H ∗ bଶ|ଶ (1.4) 
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where A, B, C, D, E, F, G and H are complex constants specific to the six-port junction. 

Equations 1.1 to 1.4 can be reformulated in terms of the reflected power,|b2|ଶ, and the 

unknown load reflection coefficientΓ௅as: 

 

 ଷܲ =|A|2|bଶ|2		|Γܮ − q3|ଶ (1.5) 

 

 ସܲ =|C|2|bଶ|2		|Γܮ − q4|ଶ (1.6) 

 

 ହܲ =|E|2|bଶ|2		|Γܮ − q5|ଶ (1.7) 

 

 ଺ܲ =|G|2|bଶ|2		|Γܮ − q6|ଶ (1.8) 

 

where:  q3=-B/A, q4=-D/C, q5=-F/E, q6=-H/G. 

 

In (G. F. Engen,1977), Engen introduced a design where port 3 is used as a reference port 

and is coupled to the reflectometer’s port 1 directly. Port 1, being the injection site for input 

power, is insensitive to port 2, being the origin of the reflected wave. Under these conditions, 

Equation 1.1 becomes: 

 

 ଷܲ =	|	B ∗ bଶ|ଶ (1.9) 

 

Using thepower at port 3 as a reference power to find the reflection coefficient, the powers 

(i.e., power ratios) at the other ports are normalized as follows: P4/P3, P5/P3, and P6/P3. Based 

on this, we obtain the following equations:  

 

 
௉ర௉య = 				|୻ಽି୯ర|మ				|ಳ಴|మ  (1.10) 
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ܲ5ܲ3 = 			|Γܮ−q5|2			|2|ܧܤ  (1.11) 

 

 
ܲ6ܲ3 = 			|Γܮ−q6|2			|2|ܩܤ  (1.12) 

 

In this form, it is clear that the ‘q’ points in Equations 1.10 to 1.12are the centres for three 

circles in the complex plane. If we define the radii of these circles as R4, R5 and R6, then 

these equations can be re-written as: 

 

 	ܴସ = |Γܮ − q4| (1.13) 

 

 ܴହ = |Γܮ − q5| (1.14) 

 

 ܴ଺ = |Γܮ − q6| (1.15) 

 

The unknown load reflection coefficient, ΓL, is then found by the intersection of these three 

circles as illustrated in Figure 1.9.  
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Figure 1.9Geometric impact of Equations1.10 – 1.15 
in formulatingcomplex reflection coefficients 

taken from G. F. Engen(1977, p.46) 
 

By employing added detectors, the six-port approach can give a more cost-effective 

measurement for both phase and amplitude. At the same time, the six-port method can also 

provide more accurate power measurements as well as network parameters. Using the six-

port method enables impedance and power flow measurements to be performed at the same 

time by utilizing the amplitude measurements (i.e., no need for phase measurements). 

Additionally, as demonstrated in (A. L. Samuel,1974), if one or two six-port configurations 

is/are used along with a suitable calibration and test-set strategy, they can measure the four 

scattering parameters for two-port DUTs. The six-point design can also be used for 

directional finding of received waveforms (A. Koelpin, al,2010). Other applications of the 

six-port technology are polarization and near-field antenna measurement and in the radar 

system, giving the desired high performance/low cost in lucrative fields such as the 

automotive industry (C. Nieh, T. Huang, and J. Lin,2014). 
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1.4 Phase and Gain Detection 

Dedicated gain and phase detection circuits offer another alternative solution for measuring 

the amplitude and phase of two RF signals. The AD8302 from Analog Devices (Analog 

Devices, 2002) is one such circuit that includes demodulating logarithmic amplifiers with 60 

dB dynamic range as shown in Figure 1.10. So, by taking the difference between their 

outputs OFSA and OFSB, the magnitude ratio or gain between the input signals (INPA and 

INPB) can be gained. Further, it contains a phase detector of multiplier kind. The phase 

accuracy is not dependentof the level of signal over the large range. The AD8302 issues two 

voltages at the outputs VMAG and VPHS that are corresponding to the differences of gain 

and phase between the two measured branches. The practical block diagram of the AD8302 

present in Figure 1.10 bellow: 

 

 

Figure 1.10Functional photograph of the AD8302 
taken from Analog Devices data sheet(2002, p.1) 

 

It should be noted that the AD8302 requires the use the directional couplers to sample the 

waves, which increases the size and losses. Moreover, calibration at one of the inputs (INPA or 

INPB)as ACreference signalis requiredbefore carrying out measurements. 
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1.5 Conclusion 

This chapter presented different microwave scalar and vector measurement techniques. 

Starting from the best known technique widely used to measure the relative amplitude and 

phase of RF signal is vector network analyzer VNA. This VNA provides very high 

accuracyand wideband measurement over the frequency range. Because of the complexity of 

vector network analyzer, the six-port junction is an alternative technique that reduces the 

complexity of the measurements and provides the vector measurement by using couplers, 

dividers, mixers, and power detector circuits and other microwave components. Further, six-

port technique reduces the complexity of six-port junction by using only couplers and power 

detector circuits as well as Gain and Phase detection circuit with 60 dB dynamic range. 

Despite all the advantages of these techniques; from accurate measurement and wide 

frequency range, all of these approaches are use the directional coupler for sampling reflected 

and incident waves. Due to size issues with the coupler, integrating it into an embedded 

system is impractical, especially at low frequencies. Moreover, this architecture would 

demand additional calibration efforts and necessitate a directional coupler and multiple 

dividers/hybrids, again making the design unsuitable for current and future needs and trends. 

 

 

 



 

CHAPTER 2 
 
 

PROPOSED REFLECTOMETER 

Chapter 1 presented different alternative techniques for RF vector measurements using the 

directional couplers, which have the disadvantages of large size making them not suitable for 

circuit integration and embedded measurement. In this chapter, an alternative technique that 

is suitable for circuit integration and embedded measurement using a four-port reflectometer 

will be presented. The new optimized four port reflectometer will be descried and the theory 

for computing the reflection coefficient of the device under tests DUTs will be presented. 

 

2.1 Related Work 

In 2010, a novel design of four-port reflectometer was investigated(A. B. Kouki, et al., 

2010).  The reflectometer, see Figure 2.1, used (i) a microstripline (Signal-carrying 

line),where the RF source is connected at the input (port 1) and the device under test is 

connected to the output (port 2) of this signal-carrying line, (ii) two sniffers located close to 

the transmission line on the same layer and separated by the distance d, and (iii) two power 

detector circuits linked to the coupled ports 3 and 4 to measure the coupled power.   

 

Basically, the sniffers are very simple structures that have very small size and provide very 

low coupling (below -30 dB). This makes the reflectometer more convenient for integration 

in microwave circuits to enable embedded measurement. Because of having a very low 

coupling factor, the sniffers will not have any effect on the propagation of the power signal in 

the system. However, having the sniffers in the shown planner arrangement, i.e., close to the 

signal-carrying traces, will impose restrictions on the circuit design and the routing of 

additional traces. 
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Figure 2.1Four-port reflectometer topology 
Taken from A. B. Kouki, et al., (2010, p.2) 

 

2.2 Proposed 3D Four-Port Reflectometer Description 

To avoid the above-mentioned limitations explicitly, the sniffer lines must be designed so 

that they do not intersect other signal lines. To accomplish this, we proposed to perform 

signal sniffing differently. The proposed reflectometer uses new sniffers which are made of 

partially filled vertical vias in 3D placed under the signal carrying transmission line. In this 

manner, the surface of the circuit is freed from any complex routing of lines. Furthermore, 

these sniffers offereven more size reduction and are very well suited for circuit integration 

and embedded measurement. 

 

Figure 2.2 illustrates the proposed structure where port 1 of the transmission line is 

connected to the RF input power while port 2 of the transmission serves to connect the DUT.  

Thetwo sniffers are placed a distance d apart underneath of the transmission line in a 3D 

form to couple very small portions(-30 dB) of the companied forward and backward signals. 

These sniffers are connected to two power detector circuits, LT5582 (Analog Devices, 2010-

2018),for power measurement at ports 3 and 4 through a buried line.To route the sniffed 

signals to the surface of the circuit at its edges, transitions are needed. The design of these 

transitions uses vertical vias as shown in Figure 2.3 which are typically highly inductive. 
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Therefore, careful compensation of these transitions is required to keep a matched impedance 

from the sniffers to the surface lines. 

 
 

 

Figure 2.2The block diagram of proposed 3D four-port reflectometer 
 

 

Figure 2.3Buried line to microstripline vertical transition. 
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2.3 Reflection Coefficient Determination 

First, we assume that the S-parameters of the reflectometer are known. This can be 

accomplished by 3D field simulation of the reflectometer geometry or from measurement of 

the fabricated reflectometer prototype. Referring to Figure 2.1, the reflection coefficient of 

the DUT at port 2 is given by: 

 

 2

2
L

a
b

=Γ  (2.1) 

 

Further, the measured powers at ports 3 and 4 are given in terms of the waves b3 and b4 as 

follows (assuming well matched ports): 
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2

4 4bP =  (2.3) 

 

Next, we determine the transmission coefficients from port 1 to port 3, T31, and to port 4, T41. 

Using signal flow graph analysis and Mason’s rule (G. Gonzales, 1977), (A. B. Kouki, et al., 

2010) the following expressions in terms of the reflectometer’s S-parameters can be 

obtained: 	
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The S-parameters in the equations (2.4) and (2.5) can be grouped using six new variables, A1, 

A2, B1, B2, C, and D as:  

 

 21 32 31 22 21 42 41 221 2
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22
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 (2.6) 

 

Then ଷܶଵ and ସܶଵ can be rewritten explicitly in terms of these known new variables and the 

unknown DUT’s reflection coefficient as: 
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By using equations (2.7) and (2.8) in equations (2.2) and (2.3), the measured power at ports 3 

and 4 can be written as:  
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where P1 is the input power at port 1 (P1=|a1|2). 

 



28 

Writing ΓL= x+jy, equations (2.9) and (2.10) can be written as: 

 

 
22 2

33 3( )( ) yx rβα + − =−  (2.11) 

 

 
22 2

44 4( )( ) yx rβα + =−−  (2.12) 

 

whereα3, β3, α4, β4,r3, and r4 are six complex parameters which are expressed interms of A1, 

B1, A2, B2, C, D, and P1, all known quantities. These parameters are given by: 
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Equations (2.11) and (2.12) represent two circles in the complex plane centered at Q3of 

coordinates (α3, β3) and Q4of coordinates (α4, β4) and or radii r3 and r4, respectively. The 

solution to these equations can be found graphically by finding the intersection between the 

two circles as shown in Figure 2.4.  The existence and the positionsof the two intersecting 

points depend on the distance d that is separating the two sniffers. Additionally, of the two 

intersections one will be inside the unit circle on complex Γ plane while the other one will be 

outside of the circle as seen in Figure 2.4. For passive loads, the following condition must be 

met, which means that only the intersection point inside the unit circle is retained as a 

solution: 

 
2 22 1L yx= + ≤Γ  (2.19) 

 

 

Figure 2.4Two circles intersection in the complex plane todefine 
the reflection coefficient (Γ) 





 

CHAPTER 3 
 
 

PROPOSED REFLECTOMETER 

In this chapter, the proposed 3D four-port reflectometer will be implemented. The frequency 

of operation is chosen to be 1.2 GHz. The reflectometeris first simulated using a 3D 

electromagnetic field simulator HFSS and later fabricated in low temperature co-fired 

ceramics (LTCC) using four layers of Ferro L8 substrate as seen in Figure 3.1. Table 1 

summarizes the main characteristics of the substrate used. 

 

 

Figure 3.1illustrates the details of the stack of layers used 
throughout this chapter. 

 

Table 3.1Ferro L8 characteristics 

Parameters Values 

Dielectric Constant 7.2 

Loss tangent 0.002 @ 1.2 GHz 

Substrate thickness (before firing) 635 um 
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3.1 Microstripline Design and Simulation 

First, a microstripline will be designed to connect the source at port 1 and the device under 

test at port 2. Itswidth (W), as shown in Figure 3.2, can be calculated using the formulas in 

(David M. Pozar, 2011) below: 

 

  (3.1) 
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Figure 3.2Photograph of a microstripline structure 
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However, instead of using the above equations, the LineCalc tool in Advanced Design 

System ADS, see Figure 3.3, is used to compute the dimensions of a 50 Ω transmission line 

(Width, Length) on the Ferro L8 substrate with the characteristics given in Table 3.1.  

 

 

Figure 3.3LineCalc calculator layout 
 

Once the microstripline is dimensioned, we built its 3D model for simulation. Figure 3.4 

shows the designed microstripline in the3D high frequency simulator system HFSS, which is 

3D electromagnetic simulation. The dimensions used are: 853 um in width and a length of 15 

mm with a substrate thickness of 653 um. The first HFSS simulations confirm that this line is 

indeed a 50 Ω line. The next step is to introduce the sniffers under this transmission line in a 

3D structure. This will be detailed in the following section.  
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Figure 3.4Microstripline design in HFSS. 
 

3.2 Sniffer Design 

The aim of using sniffers, as explained in chapter 2, is to couple a small portion of the 

incident and reflected signals’ power in order to measure the reflection coefficient of the 

device under test. These sniffers could be in different shapes and at different positions, like 

planner sniffers in (A. B. Kouki, et al., 2010) where the sniffers were located close to the 

transmission line TL on top of the substrate. Similarly, they could be close under the 

transmission line in a vertical position through the LTCC layers as we propose to do in our 

3D reflectometerdesign. This can be achieved by using vias that are filled in several layers 

beneath the line without touching it. Cylindrical and rectangular vias are two kinds of vias 

that can be easily used to this end. Both types were simulated and their performance was 

found to be comparable. The diameter of the cylindrical via was 136.8 um while the 

rectangular vias measured 144.8um x 88.9 um, as shown in Figure 3.5. The viaswere 

centered under the microstripline with a vertical spacing of 127 um, which corresponds to the 

thickness of one layer. The coupling level was found to be -30 dB.As expected, it was found 

that the vertical spacing between the sniffer (vias) and the microstripline determines the 

amount of coupling that can be achieved. Therefore, depending on how much signal coupling 
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is needed, the thickness and number of layers that do not include vias can be adjusted to meet 

the desired coupling level. 

 

 

Figure 3.5(a) cylindrecal via (b) rectangular via 
 

To route the sniffed signals from underneath the microstripline to the surface of the circuit 

where power detectors can be mounted, a buried transmission line with a transition to the 

surface of the circuit are needed.  These must be carefully designed to maintain good 

impedance matching. 

 

3.3 Perpendicular Transition Design 

Figure 3.6 illustrates the geometry of the proposed transition design. It consists of a buried 

line (SL) connected to a surface microstrip line (ML) through a center via of 150 um 

diameter. The characteristic impedance of the buried line can easily be controlled by its 

width and does not pose a challenge in the design. However, the center via being much 
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smaller in diameter that the MS line width will introduce an inductive discontinuity that will 

cause impedance mismatch at the power detection ports. Therefore, this discontinuity must 

be compensated through the use of the additional grounded vias that surround the center via. 

All grounded vias have a diameter of 150 um. This structure approximates a vertical coaxial 

line whose characteristic impedance can be tuned by controlling the distance between the 

grounded and center vias. 

 

 

Figure 3.6Perpendicular transition models in HFSS 
 

The proposed vertical transition structure uses Ferro L8 substrate that has dielectric constant 

of 7.2 has the thickness of 635 um. All the grounded vias are connected to the ground plane 

which is located at the bottom of the last layer of the substrate. The width of the 

microstripline is W1= 853 um and that of the buried line is W2= 127 um as well as the height 

from the buried line to the grounded via was equal to 127 um as seen in Figure 3.1, The 

height of all vias is 508 um and the distance between the center via and the grounded (veil) 

vias is 1000 um. These dimensions have been optimized in order to obtain a coaxial line 

where the signal transmits according to TEM mode between the inner and outer connector. 

Figures 3.7 and 3.8 present the side and top views, respectively, of the proposed transition. 
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Figure 3.7Side view of vertical transition. D1=508 um and D2=127 um 
 

 

Figure 3.8Top view of the vertical transition with W1=853 um, 
W2=127 um, dv =150um,D1=1000 um 
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3.4 3D Four-Port Reflectometer: Version 1 

By combining the micostripline,the sniffers and the vertical transition, a new 3D 4-port 

reflectometer can be created with small size, low-cost, and ease of integration for embedded 

vector (amplitude and phase) measurement with good measurement accuracy and with no 

interfering between the sniffers and other transmission lines. Further, because of the simple 

structure of the sniffers, we can place them at any distance that is less thanߣ 4ൗ . So, we are 

able to design different structures of reflectometers with different spacing between the 

sniffersin order to obtain a vector measurement for different frequencies and applications. 

Figure 3.9a,b,c, d present the final design of the proposed reflectometer with different 

spacing (d) expressed in wavelength. For the four designs shown, the spacing between the 

sniffers sit at ߣ 11ൗ ߣ, 20ൗ ߣ, 25ൗ ߣ , 40ൗ .  

 

 

Figure 3.9 a, b, c, dDifferent 4-port reflectometers prototypes at varying sniffer spacing 
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3.4.1 EM Simulation 

The ANSYS HFSS is a 3D electromagnetic (EM) simulation for designing and simulating 

high- frequency electronic products such as antennas, antenna arrays. This simulator is used 

to compute the S-parameters of the proposed complete 3D reflectometer shown in Figure 3.9. 

 

Our focus is onobtaining good matching at all ports with less than -20 dB reflection 

coefficient for S11 and S22, a low coupling less than – 30 dB for S31 and S41. The simulation 

results show that S11 and S22 for all structures are below -20 dB and that the insertion loss, 

S21, is -0.1 dB as seen in Figure 3.1a,Similarly, S31 and S41in Figure 3.10b show low coupling 

around -30 dB, which is the coupling that we are expected to get at the coupling ports of the 

proposed reflectometer to measure the output coupled power. 

 

 

Figure 3.10(a) simulated S11 and S22 in dB, (b) simulated S31 and S41 in dB 
 

3.4.2 Fabrication in LTCC Technology 

The proposed reflectometer has been fabricated on low temperature co-fired ceramics 

(LTCC) substrate, which has advantages of low cost, high performance and the availability 

of a wide range of materials, such as Ferro A6 and Ferro L8. To fabricate our designed 

structure, Ferro L8 material is used. We usedthree layers of 10 mils thick sheets and one 5 
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mil-thick sheet in the stack. We also used silver paste to fill the vias and to print the 

microstrip and buried lines. 

 

The fabrication process proceeded as follows. First, the process is started with via punching 

on each single sheet, then via filling by the silver paste followed by printing the lines on the 

proper sheets. The next step was stacking all the sheets together to get a single stack. Because 

we included different designs on one 10 cm x 10 cm stack, cutting was the necessary next 

step to separate the designs into individual pieces. After that, the last step consisted of co-

firing the cut pieces into the oven between 4 to 6 hours following a specified temperature 

profile with a maximum of875଴	ܥ. Figure 3.11 shows different fabricated prototypes of the 

final proposed 3D four-port reflectometer configurations. 

 

 

Figure 3.11Fabricated prototypes of the different 4-port reflectometer configurations 
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3.4.3 S-Parameters Measurement of the 3D 4-port Reflectometer 

In order to measure the parameters of a multi-port network, waves must be inserted at the a 

selected port while each of the other portsisterminated by a matched load equal to 

system’sreference impedance Zo (usually 50 Ω). For a two-port network, the explicit 

definitions and measurement conditions of the S-parameters are as follows: 

 

 ଵܵଵ = ௕ଵ௔ଵݓℎ݁݊ܽ2 = 0 = ௏భష௏భశ  (3.4) 1	ݐݎ݋݌ݐܽݐ݂݂݊݁݅ܿ݅݁݋ܿ݊݋݅ݐ݈݂ܴܿ݁݁

 

 ܵଶଵ = ௕ଶ௔ଵݓℎ݁݊ܽ2 = 0 = ௏మష௏భశ  (3.5) 2	ݐݎ݋݌݋ݐ	1	ݐݎ݋݌݋݅ݐܽݎݎ݂݁ݏ݊ܽݎܶ

 

 ଵܵଶ = ௕ଵ௔ଶݓℎ݁݊ܽ1 = 0 = ௏భష௏భమశ  (3.6) 1	ݐݎ݋݌݋ݐ	2	ݐݎ݋݌݋݅ݐܽݎݎ݂݁ݏ݊ܽݎܶ

 

 ܵଶଶ = ௕ଶ௔ଶݓℎ݁݊ܽ1 = 0 = ௏మష௏భమశ  (3.7) 2	ݐݎ݋݌ݐܽݐ݂݂݊݁݅ܿ݅݁݋ܿ݊݋݅ݐ݈݂ܴܿ݁݁

 

It is worth noting that every parameter is a complex quantity. So, for instance, the angle 

indicates phase difference in degrees, whereas the magnitude indicates the ratio between the 

amplitudes in dB (David M. Pozar, 1998). 

 

 ௜ܵ௝ = | ௜ܵ௝|݁௝ఏ (3.8) 

 

 ௜ܵ௝ሺ݀ܤ) = 20 logଵ଴ | ௜ܵ௝| (3.9) 

 

The fundamental of vector network analyzers (VNAs) has been covered in chapter 2 as one 

of the techniques that measures the amplitude and phase of signal ratios. The use of a VNA 

requires a calibration prior to measuring devices. A full two-port calibration procedure is 

used to calibrate the Agilent HP8753ES VNA used to measure our reflectometer prototypes. 

This calibration is based on the SOLT (Short-Open-Load-Through) technique which 

achievescorrection for cable length and loss and all internal instrument impairments. The 
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calibration standards used are those of the 85052D 3.5 mm calibration kit. Calibration was 

carried out between 1 and 1.4 GHz with the center frequency being our design frequency, 

namely 1.2 GHz. 

 

The S-parameters of the fabricated prototype were obtained using the vector network 

analyzer VNA(Agilent HP8753ES) with the input power range of -5 t0 -10 dBm over the 

frequency range of 1 GHz to 1.4 GHz.  Since this VNA has only two ports, multiple 

connections and measurements were carried out sequentially by connecting the VNA to two 

of the ports and terminating the others with 50 Ω termination loads as shown in Figure 3.12.  

 

 

Figure 3.12S-parameters measurementsetup of the fabricatedreflectometer 
prototype using a commercial VNA 

 

The measured S-parametersof the proposed prototype are presented in Figure 3.13 The 

measured return losses RL of the prototype are marked around -15 dB which is higher than 

the simulation results. However, the measured coupling at ports 3 and 4 are around -30 dB as 
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predicted in simulation. The lack of good RL levels will have an impact on the precision of 

the measurements using the reflectometer and will be further addressed in section 3.5 where 

a second improved version of the reflectometer is proposed.  

 

 

Figure 3.13Measured S-parameters of the 4-port reflectometer 
 

3.4.4 Coupled PowerMeasurement using Power Meter 

The power meter is an instrument that is used to measure an RF signal’s power with high 

precision and over wide frequency ranges and power levels. In the previous work (A. B. 

Kouki, et al., 2010), power meters were used to measure the output power at port 3 and 4, 

namely P3 and P4, which are then used in equations 2.11 and 2.12 to determine the complex 

reflection coefficient. Here, we propose to also use power meters as first step and more easily 

integrable power detectors at a second step. To this end, an external Agilent E4417A power 

meter is connected to port 3 and 4. Next, a 0 dBm power input signal is injected at port 1 

while several different loads (DUTs) are connected at port 2 and the power meter readings at 

ports 3 and 4 are noted. This is repeated for three different frequencies, namely 1, 1.2, and 
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1.4 GHz. Table 3.2 summarizes the obtained measurements when DUT is a 50 Ω matched 

load. 

 

Table 3.2 Coupled power measurement using theE4417A power meter 
with 0 dBm input power and 50 Ω termination different frequencies. 

Loads Frequency Input 

power 

P3dBm P4dBm 

50 Ohm 1 GHz 0 dBm -27.989 -27.643 

50 Ohm 1.2 GHz 0 dBm -27.513 -27.556 

50 Ohm 1.4 GHz 0 dBm -27.413 -27.388 

 

 

3.4.5 Coupled PowerMeasurement using the LT5582 Power Detector Circuit 

The need for the integration to achieve small size and low cost embedded RF measurements 

means that power meters are not an option for power measurement. Indeed, the power meter 

is still an external instrument that cannot be integrated for embedded measurement. 

Therefore, we consider the alternative of using a power detector chip instead.  The LT5582 

RMS power detector, from Analog Devices, is capable for measuring the RMS power and 

has been used for several applications such as PA power control and receiving and 

transmitting gain control. Also, it has the features of the small size of the circuit which is 3 

mmx3 mm and a dynamic range of 57 dB. It also shows low linearity error over its entire 

dynamic range and covers a wide frequency range from 40 MHz up to 10 GHz. Figure 3.14a 

presents the circuit schematic from the data sheet with the LTC5582 IC and different 

resistors and capacitors at the input and the output of the circuit. This detector requires a 

3.3V supply voltage, a 3.3V enable voltage, and can has a maximum input power of 18dBm. 

It is rated to operate between-400 C to 850 C. A prototype of this detector was designed, 

following the company’s reference design, and fabricated on a Rogers’s substrate with 

dielectric constant 6.15 as shown Figure 3.14b. This design can be easily be implemented in 

LTCC as a step to reach the full circuit integration with the proposed reflectometer. 
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Figure 3.14(a) Shows the LTC5582 circuit from the 
datasheet(b) LTC5582 fabricated circuit on Roger Substrate 

 

In order to examine and test the fabricated circuit, we first characterize the detector response. 

To do this, the input of the circuit is connected to a signal generator which injects different 

input power levels while the output port is connected to an oscilloscope which reads the 

output voltage. This test setup is presented in Figure 3.15. The graph in Figure 3.10ashows 

the output voltage response versus the input power from the data sheet with linear response 

of the input power until -57 dBm for several frequencies between 450 MHz and 5.8 GHz. 

The graph in Figure 3.10b presented the measured response of the fabricated prototype for a 

similar power range at 1.2 GHz. The obtained result is quasi-linear which confirms that the 

fabricated circuit can operate close to the manufacturer’s specifications.  

 

With the basic detector circuit characterized and validated, next we produce two detector 

circuits and connect them to the coupling ports 3 and 4 of the reflectometer. Again, we apply 

a 0 dBm RF signal at input port (port 1) and place a 50 Ω termination load at the output port 

(Port 2). Table 3.3is sumurizes thecoupling measurement using the LTC5582 power detector 

circuits with 0 dBm input power at different frequencies. These results are similar to those 

obtained using power meter measurements. It is therefore possible to use the LTC5582 power 

detector circuits at different frequencies without loss of accuracy in measurements.  
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Figure 3.15Test setup to characterize the fabricated LTC5582 power detector 
 

 

Figure 3.16(a)Output Voltage vs RF Input Power (data sheet), 
 (b) The measured output voltage vs input power for  

the fabricated LTC5582 
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Table 3.3Coupling measurement using LTC5582 power 
Detector circuits with o dB input power at different frequencies 

Loads Frequency Input 

power 

P3dBm P4dBm 

50 Ohm 1 GHz 0 dBm -27.987 -27.621 

50 Ohm 1.2 GHz 0 dBm -27.523 -27.546 

50 Ohm 1.4 GHz 0 dBm -27.410 -27.375 

 

3.4.6 Reflection Coefficient Measurement 

At this stage, we are reaching at the last step of our research problem which is the validation 

of the theory in chapter 2 and the feasibility of the proposed 3D reflectometer as an 

embedded measurement circuit. To do this, we need to measure reflection coefficients of 

different loads using both the commercial VNA and our 3D reflectometer with the LTC5582 

power detectors. To generate different load impedances, we use a double stub tuner with one 

port terminated by a 50 Ω load and other port connected to the VNA, as shown in Figure 

3.17. We start with the VNA measurements at 1.2 GHz for a set of different loads 

corresponding to different double stub settings. In all 45 different loads are generated and 

measured. 
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Figure 3.17Test setup for reflection coefficient 
measurement using a VNA 

 

Second, we perform similar measurements using the proposed reflectometer with 0 dBm RF 

input power injected in port 1, while the manual double stub tuner is connected to port 2 as 

shown in Figure 3.18. The same double stub tuner settings for the 45 loads used with the 

VNA are repeated for the reflectometer. 
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Figure 3.18Test setup for reflection coefficient measurementwith the reflectometer 
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For each load, the stored S-parameters of the proposed reflectometer, obtained in 3.3, and the 

two measured powers (P3 and P4) with the LTC5582 are used to draw the intersection of two 

circles of equations 2.11 and 2.12 in Matlab (see APPENDIX II). The intersection point 

determines the precise complex reflection coefficient for the given load as shown in Figure 

3.19. 

 

 

Figure 3.19Intersections of two circles using Matlab todetermine 
the precise complex reflection coefficient 

(the unit circle is in green) 
 

Figure 3.20 presents the reflection coefficient measurements of 45 different loads using the 

VNA and the proposed 4-port reflectometer. This figure also shows the error in magnitude, in 

dB, and in phase, in degrees, between the VNA and reflectometer measurements. 
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Figure 3.20 Measured magnitude and phase of the reflection 
coefficientfor45 different loads and errors in magnitude  

and phase between the VNA and  reflectometer  
measurements with smith chart plotting 

 

 

3.4.7 Discussion of Results 

Based on Figure 3.14, the proposed reflectometer gives a maximum error in magnitude 

around 2 dB and a maximum error in phase of around 100. While such precision may be 

sufficient for many applications, we propose to investigate ways of improving the accuracy 

of our proposed reflectometer. As stated previously, the lack of good RL level at ports 3 and 

4, which is due to the vertical transition on the sniffer lines not being optimal, is expected to 

be the main cause for the accuracy performance obtained. Therefore, we propose to optimize 

the vertical transition further in a second prototype of the reflectometer. 
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3.5 Version 2: Prototype 3D Four-port Reflectometer 

In version 1, the proposed reflectometer included a vertical transition made of a central via 

surrounded by ground vias to approximate a coaxial line. The measured S-parameters of the 

fabricated prototype were different from simulation and displayed an insufficient level of 

matching.  This lack of performance is mainly due to the vertical transition. Therefore, we 

propose a new version of this transition where we focus on improving its S-parameters by 

achieving good matching at all ports. The vertical transition will therefore be further 

optimized through the use of more standard and non-standard vias. Once this is achieved, a 

similar methodology to what was done with version 1 will be followed for simulation, 

fabrication, and measurement. 

 

3.5.1 Optimization of the Vertical Transition 

To improve the transition, two main modifications were introduced and simulated. The first, 

consisted of using solid vias, i.e., the vias surrounding the center via are replaced by a single 

solid arc Figure 3.21 a. The second consisted of extending the vias alongside the buried line 

as shown in Figure 3.21. A third variation consisted of replacing all standard circular vias 

with solid rectangular vias as shown in Figure 3.21. The filled solid arc via has a radius (dr) 

of 420 um and the width (Wr) of 225 um. 
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Figure 3.21a) arc line with grounded lines b) circles of vias with grounded vias 
along the buried line c) Top view of the arc via and side view d) the  

side and top view of the circled vias 
 

3.5.1.1 Simulation and Measurement Result 

In order to simulate and measure the new proposed transition design, a back-to-back 

transition configuration was used as shown in Figure 3.22 using both rectangular and circular 

vias. Our target performance is a return loss less than -20 dB at both ports. Figure 3.23a 

shows the results of the HFSS simulation for the transition with rectangular vias while Figure 

3.23b gives the results for the transition with circular vias. As can be seen from these results, 

the return loss at both ports is below -25 dB over the entire frequency band from 100 MHz to 

3.5 GHz. Both transitions were fabricated side by side as shown in Figure 3.24. 
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Figure 3.22a) Back to back transition surrounded with rectangular vias 
b) Back to back transition surrounded with circular vias 

 

 

Figure 3.23Simulation result of vertical transitionsurrounded 
witha) rectangular viad, b) circular vias 
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Figure 3.24Fabricated optimized transition prototype 
 

To measure the S-parameters of the new transition design, the same measurement setup 

described in 3.4.3 is used. Figure 3.25 presents the measured S-parameters and shows that S11 

and S22 are better than -18 dB up to 2.8 GHz. The insertion loss does not exceed -0.932 dB. 

 

 

Figure 3.25 Measured s-parameters of the optimized transition 
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3.5.2 The Effect of Adding Grounded Vias on the Performance of the 3D 4-port 
Reflectometer 

Given the improvement achieved with the addition of vias in the previous section, in this 

section we apply grounded vias gradually to the full reflectometer structure. We choose a 

sniffer spacing of ߣ 40ൗ and compare different structures as shown in Figure 3.26. Figure 

3.26(a) shows the four-port reflectometer with the solid arc rectangular via only while 

Figures 3.25 (b)-(d) show the same structure with grounded circular vias added gradually.    

 

 

Figure 3.26a) Four-port reflectometer with arc solid line around the center 
vais b, c, d) four- port reflectometer with arc solid line around the 
center vais with gradual grounded vais added to each prototype 

 

Figure 3.27 (a, b, c, and d) present the simulated S-parameters for each the four structures of 

Figure 3.26. As can be seen from these simulation results, the more vias are added the better 

the matching is obtained. Next, the four structures were fabricated and measured between .5 

and 6 GHz. The measurement results are shown in Figure 3.28. While the measured results 

do not follow the simulation of the entire band, nonetheless, they are better than those of the 

first reflectometer prototype and show excellent performance at 1.2 GHz, our frequency of 

interest.  
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Figure 3.27Simulated S-parameters of 3D 4-port reflectometer with 

differentoptimized layouts 
 

 

Figure 3.28Measured S-parameters of 3D 4-port reflectometer 
for different sniffers optimizations 
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3.5.3 Reflection Coefficient Measurements using power Detector Circuits and 
Equation written on Matlab Code for Optimized Prototype 

Based on the results of the previous section, the fabricated prototype of Figure 3.29 is 

chosen, as it gives the best performance, to perform reflection coefficient measurements of 

varying loads. Here we repeat the measurements that were carried out with the first 

reflectometer prototype for the same 45 loads. We again compare the obtained results of the 

reflectometer measurements to those of the VNA in Figures 3.30 (a) and (b), for magnitude 

and phase, respectively. Figures 3.30 (c) and (d) present the error in magnitude and phase 

between the reflectometer and VNA measurements. As can been seen, the maximum 

magnitude error is around 0.3 dB, down from about 2 dB for the first prototype, and the 

maximum phase error is around 3o, down from 10o for the first prototype. Figure 3.31 

presents the measurement results of the reflection coefficient plotted on smith chart. 

 

 

Figure 3.29Photograph of proposed 4-port reflectometer 
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Figure 3.30(a) measured magnitude and (b) phase of reflection coefficient of 
different 45 loads, and its errors in magnitude (c) and phase (d) for version 2 

reflection coefficient measurement with errors around 0.3 dB 
in magnitude and 30 in phase 
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Figure 3.31 Measurement results of the reflection coefficient  
plotted on smith chart 

 





 

CONCLUSION 

Microwave engineering is improved to work in several most recent wireless systems with 

wide focus on better use of electromagnetic spectrum in different research interest. Vector 

network analyzer is reviewed as a traditional technique for vector measurement. Another 

alternative technique for vector measurement is found in six-port technique and gain and 

phase detection circuits are presented as well as the four-port interferometer as an alternative 

solution for  embedded vector measurement that is characterized with very small size, very 

low coupling, and integrated for embedded measurement with a good agreement results in 

amplitude and phase is presented.There are different techniques or solutions for providing RF 

vector measurement such as six-port junction, vector network analyzer, and phase and gain 

detection which are reviewed. Despite the high accuracyand wideband measurement over the 

frequency range of these techniques, they use directional coupler and other microwave 

components which make the device bulky in size with high losses. Thus, the alternate 

solution which is established based on non-directional 4-port reflectometer using sniffers 

which is characterized with very small size and non-directional which can be sited at 

minimum destination in order to measure the reflection coefficient is reviewed. A new 3D 

optimized 4-port non-directional reflectometer for measuring complex reflection coefficients 

is proposed. The proposed reflectometer features two optimized non-directional sniffers 

positioned in 3D below a transmission line with buried lines to carry the sniffed signals to 

power detectors in LTCC technology. Vertical transitions from the buried lines to surface 

Microstriplines are designed and optimized. 3D electromagnetic field simulations HFSS are 

used to optimize the proposed design to get the S-parameters of the structure. Two LT5582 

with 57 dBm dynamic range are used to detect the coupled power where the S-parameters 

and measured power are used as a part of the algorithm to compute the reflection coefficient 

of the DUT. A prototype of the proposed reflectometer is fabricated in LTCC in LACIME 

laboratory and utilized to measure 45 different complex loads. The obtained results present 

an excellent agreement with VNA measurements showing errors below 0.3 dB for amplitude 

and below 3° for phase.The non-directional four-port reflectometer is highly recommended 

for circuit integration because of its characteristics from small size and less losses. The 

accuracy of the measurement was accepted for ideal RF embedded system



 

Future Work 

• Instead of having the proposed 3D reflectometer and the LT5582 power detector 

circuit connecting together by SMA 50 Ohm connectors during the measurement 

process, it will be new approach when both circuits are integrated in one 

chip/circuitrydesign using multilayer substrate of LTCC technology where the 

resistors and capacitors components (RC) will be embedded within the LTCC 

substrate.  

• Performingfull two-port measurement system where the two circuits of the proposed 

3D reflectometer will place at the input and the output of the DUT. 
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Abstract — a novel 3D 4-port non-directional 

reflectometer for measuring complex reflection 
coefficients is proposed. The proposed 
reflectometer features two optimized non-
directional sniffers positioned below a transmission 
line with buried lines to carry the sniffed signals to 
power detectors in LTCC technology. Vertical 
transitions from the buried lines to surface 
microstrip lines are designed and optimized. 3D 
electromagnetic field simulations are used to 
optimize the proposed design. A prototype of the 
proposed reflectometer is fabricated and used to 
measure 45 different complex loads. The obtained 
results show excellent agreement with VNA 
measurements showing errors below 0.3 dB for 
amplitude and below 3° for phase.  

Index Terms — Reflectometer, Reflection coefficient, 
coupled power, LTCC. 

I INTRODUCTION 
Microwave engineering and applications have 

continued to grow over the last few years fueled 
by growth in many wireless systems such as 5G 
and the Internet of Things (IoT). Along with this 
growth, the need for embedded measurements of 
RF circuits and devices has also been increasing. 
In particular, embedded vector RF 
measurements, traditionally only accessible with 
commercial vector network analyzers [1], are 
needed to enable in situ monitoring and 
reconfiguring RF circuits and systems. Another 
classic approach is the 6-port method [2], which 
uses several individual power measurements to 
perform vector measurements of reflection 
coefficients.  

While either of the above-mentioned methods 
can be used with relative success, they have their 
drawbacks. As discussed, vector network 
analyzers are expensive, but they are also 
somewhat difficult to purchase commercially, 
while the 6-port method requires two directional 
couplers and multiple power dividers, which can 
lead to a large size not suitable for embedding in 
RF front-end circuitry. In 2010, a new approach 
was investigated in which a four-port 
reflectometer using non-directional signal 
sniffers were used leading to small size that is 
more convenient for embedded circuit 
integration [3]. This reflectometer was based on 
a planar circuit design where the sniffers were 
placed close to the signal-carrying  

Microstripline. This configuration provided 
relatively good performance with magnitude 
error less than 0.8 dB and phase error less than 
6o.  However, the presence of the sniffing lines in 
the same layer as the signal-carrying lines maybe 
inconvenient when additional signal or bias lines 
need to be routed on the same layer. In this work, 
a new four-port reflectometer structure that uses 
3D sniffers in LTCC technology, which do not 
interfere with the signal/bias carrying lines, is 
proposed. 3D electromagnetic field simulation is 
used to optimize the proposed sniffers and their 
vertical transitions to the surface.  Validation of 
the designs with LTCC fabricated 3D.  
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II PROPOSED 3D 4-PORT 

REFLECTOMETER 

The proposed system is shown in Fig. 1 and 
comprises a 3D 4-port reflectometer made up of 
a transmission line (TL) connected to the source 
(port 1), the device-under-test (DUT) (port 2) 
and two non-directional sniffers (ports 3 and 4) 
made of partially filled vais positioned 
underneath the TL and separated by a distance d, 
which should be much less than λ/4. This 
configuration insures that there is no interference 
between the surface components and the sniffers. 
Two RMS power detector circuits (LT5582 [4]) 
are placed at ports 3 and 4 to measure the 
sampled powers. 

 
Fig. 1.3D four-port reflectometer configuration. 
 

A Reflection Coefficient Determination 

First, for a given reflectometer geometry as 
shown in Fig. 1, its S-parameters can be obtained 
through 3D field simulation or measurements. 
These S-parameters are then combined with the 
measured powers at ports 3 and 4 of the passive 
sniffers to compute the complex reflection 
coefficient of the DUT at port 2.  

2
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Γ = = +  (1) 

The measured powers at ports 3 and 4 are related 
to the waves b3 and b4 by:  
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To compute ΓL, first the transmission 
coefficients between port 1 and ports 3 and 4, 

T31and T41, respectively, are expressed as follows 
using a signal flow graph and Mason’s rule [3]-
[5]: 
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Based on these equations, and assuming good 
matching at all ports, the six parameters of A1, 
A2, B1, B2, C and D can be determined from:  
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Thus, by inserting (3) and (4) into (2), the 
measured powers at ports 3 and 4 can be written 
as:  
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 (6) 

Next, to calculate ΓL, we explicit equations (6) in 
terms of the its real and imaginary parts as 
follows:  

( ) ( )2 2 2
3 3 3 x y r− α + −β =  (7) 

( ) ( )2 2 2
4 4 4 x y r− α + −β =  (8) 

Where α3, β3, α4, β4, r3, and r4 six actual 
parameters that can be presented in the 
expression of A1, B1, A2, B2, C, D, and P1, and 
Q3 and Q4 are the center of the circles. 
 

Equations (7, 8) are equations of circles in the 
complex Γ plane as shown in Fig. 2. To ensure 
that these equations have a solution, both circles 
must intersect. This requires that the spacing 
between the sniffers, d, be in an appropriate 
range as shown in [3]. Once this condition is 
stratified, there will be two intersections with 
one being inside the unit circle while the second 
is outside of it. For passive loads the following 
condition must also be satisfied:  
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2 2 2

L
   x y 1 = + ≤Γ  (9) 

Hence, the DUT’s ΓL can be determined by 
selecting the intersection point inside the unit 
circle.  

 
Fig. 2. Intersection for the two circles in Γ plane 

to calculate reflection coefficient. 
 

B Transition Design 

Fig. 3 shows the 3D model of the proposed 
reflectometer designed to operate between 1 and 
3 GHz in LTCC technology. Four layers of Ferro 
L8 (εr = 7.2) are used in this desing. The sniffers 
are filled vias in layers 2 and 3. The 
microstripline is on top the fourth layer while 
buried line to ports 3 and 4 are on layer 1. As can 
be seen, the sniffers are made of partially filled 
vias that are under the microstripline but do not 
touch it. One important design consideration is 
the matching of the transtions at ports 3 and 4, 
shown in a close-up view in Fig. 3 as well. 3D 
field simulation was used to optimize this 
transition, which is a type of microstrip-to-
strpiline transition [6]. Fig. 4 shows the 3D 
model of the optimized desing of two back-to-
back transitions suitable for fabrication 
measurement. Fig. 5 shows two fabricated 
models of this design while Fig. 6 presents the 
measurement results with good matching for the 
desired band. Slight dissemtry is observed due to 
the LTCC fabircation process.   

 
Fig. 3. 3D model of the full reflectometer with 
buried sniffers and vertical transition. 
 

 
Fig. 4.Photo of prototype of Microstripline-to-

buried line-to- Microstripline. 
 

 
Fig. 5.Measured S-parameters for prototype of 
microstripline-to-buried line-to-microstripline. 

C Reflectometer Design and Fabrication 

Once the transitions have been optimized, the 

full reflectometer structure, shown in Fig. 3, is 

designed and optimized. This consists of (i) 

optimizing the layer thicknesses to ensure that 

the sniffers achieve a coupling level on the order 

30 dB and (ii) proper dimensioning of the 
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spacing between the sniffers to ensure small size 

and good operation in the desired frequency 

band. The optimization of the sniffer to 

microstrip line spacing was achieved with a 

vertical separation of 89 μm, corresponding to a 

single 5-mil layer (before sintering). For sniffer 

spacing, a distance of 2 mm (or λ/40) was found 

to provide good operation with small size. Fig. 6 

shows the fabricated reflectometer with the 

through microstrip line and the buried sniffers 

and optimized transitions.  

MEASUREMENT RESULTS 

 
Fig. 6. Fabricated 3D reflectometer. 

 
To validate the operation of the fabricated 3D 

reflectometer, it’s measured four-port S-
parameters are first measured and stored. Next, a 
double stub tuner terminated by 50 Ω at one its 
ports is used to present a one port load of varying 
impedance. For a given tuner setting, a 
commercial vector network analyzer (Agilent 
VNA HP8753ES) is used to measure the 
corresponding load impedance. At the same 
setting, the tuner is then placed at port 2 of the 
reflectometer while port one is excited with 
signal generator (Agilent HPE4438C). The 
powers at ports 3 and 4 are measured using two 
LT5582 power detectors with a dynamic range of 
57 dB. The measured powers and reflectometer 
S-parameters are then used as described in 
Section II.A to determine the load impedance. In 
total, 45 different loads were measured at 1.2 
GHz. Fig. 7 shows a comparison between the 
VNA- and reflectometer-measure magnitudes of 

the reflection coefficient. Excellent agreement is 
observed with the difference not exceeding 0.3 
dB for all 45 measured loads. Similarly, very 
good agreement is observed in the measured 
phase of the reflection coefficient between the 
VNA and the reflectometer for all measured 
loads with the difference between the two not 
exceeding 3o as shown in Fig. 8.  

 
Fig. 7.Measured magnitude of Γ in dB. 

 

 
Fig. 8.Measured phase of Γ in degrees. 

CONCLUSION 

A novel four-port reflectometer realizable in 
3D LTCC technology was proposed. The design 
of the reflectometer and the optimization of the 
3D transitions needed for its operation were 
carried out using 3D electromagnetic field 
simulation. The optimization of the transitions 
was validated through fabrication and 
measurement of two back-to-back transitions. 
The operation and precision of the proposed 
reflectometer were demonstrated by comparing 
the measured reflection coefficient of 45 
different complex loads with the proposed 
reflectometer and a commercial VNA.   Given 
the its small size, the nature of its buried sniffers 
and the precision of the results it provided, the 
proposed reflectometer is well-suited of 
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integration into RF front-end circuits to provide 
embedded measurements.  
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APPENDIX II 

MATLAB CODES TO COMPUTE THE REFLECTION COEFFICIENT OF THE 

DEVICE UNDER TEST 

 

ZL=100+60i; 

gamma=(ZL-50)/(ZL+50); 

%***************** part 1 for 1.2 GHz ************** 

%******** step 1: insert the S parameters ****** 

S21dB=-0.12; S21Phase=175.2722o; 

S22dB=-30.385 ; S22Phase=39.037o; 

S31dB=-29.757; S31Phase=-174.480o; 

S32dB=-29.781; S32Phase=-43.980o; 

S41dB=-30.363; S41Phase=-167.271o; 

S42dB=-30.450; S42Phase=-54.176o; 

S21M=10^(S21dB/20); 

S22M=10^(S22dB/20); 

S31M=10^(S31dB/20); 

S32M=10^(S32dB/20); 

S41M=10^(S41dB/20); 

S42M=10^(S42dB/20); 

% S11M=10^(S11dB/20); 

% ******convert from dB to linear***** 

S21 = (S21M)*exp(1i*S21Phase*pi/180); 

S32 = (S32M)*exp(1i*S32Phase*pi/180); 
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S31 = (S31M)*exp(1i*S31Phase*pi/180); 

S22 = (S22M)*exp(1i*S22Phase*pi/180); 

% S11 = (S11M)*exp(1i*S11Phase*pi/180); 

S41 = (S41M)*exp(1i*S41Phase*pi/180); 

S42 = (S42M)*exp(1i*S42Phase*pi/180); 

%******** step 2: parameters calculation ****** 

A1 = S21*S32 - S31*S22 ; 

A2 = S21*S42-S41*S22 ; 

B1= S31 ; 

B2= S41 ; 

C= -S22 ; 

D= 1 ; 

Real and imaginary part  

A2r=real(A2); A2i=imag(A2);  

A1r=real(A1); A1i=imag(A1); 

B2r=real(B2); B2i=imag(B2); 

B1r=real(B1); B1i=imag(B1); 

Cr=real(C); Ci=imag(C); 

Dr=real(D); Di=imag(D); 

 

%*****input power and power at P3andP4***** 

 

P3dBm = -26.547; 

P1dBm =0; 
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P4dBm = -27.521; 

 

%*************convert power from dBm to mW 

 

P1 = 10^(P1dBm/10)/1000;P3 = 10^(P3dBm/10)/1000; 

P4 = 10^(P4dBm/10)/1000; 

Power at port 3 and 4 

Pr31=P3/P1; 

Pr41=P4/P1; 

 

 Circle equations to find ΓL 

 

alpha3=-((Dr*Cr+Di*Ci)*Pr31-(B1r*A1r+B1i*A1i))/(Pr31*(Cr^2+Ci^2)-(A1r^2+A1i^2)); 

beta3=-((Di*Cr-Dr*Ci)*Pr31-(B1i*A1r-B1r*A1i))/(Pr31*(Cr^2+Ci^2)-(A1r^2+A1i^2)); 

R3= sqrt((((B1i^2+B1r^2)-(Dr^2+Di^2)*Pr31)/(Pr31*(Cr^2+Ci^2)-
(A1r^2+A1i^2)))+alpha3^2+beta3^2); 

 

alpha4=-((Dr*Cr+Di*Ci)*Pr41-(B2r*A2r+B2i*A2i))/(Pr41*(Cr^2+Ci^2)-(A2r^2+A2i^2)); 

beta4=-((Di*Cr-Dr*Ci)*Pr41-(B2i*A2r-B2r*A2i))/(Pr41*(Cr^2+Ci^2)-(A2r^2+A2i^2)); 

R4=sqrt((((B2i^2+B2r^2)-(Dr^2+Di^2)*Pr41)/(Pr41*(Cr^2+Ci^2)-
(A2r^2+A2i^2)))+alpha4^2+beta4^2); 

 

%.................Plotting Circles of ΓL…. 

h1 = plotcircle(alpha3,beta3,R3,'r'); 
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holdon 

h2 = plotcircle(alpha4,beta4,R4,'b'); 

holdon 

plotcircle(0,0,1,'-g'); 

holdon 

plotcircle(real(gamma),imag(gamma), 0.05, '-b'); 

gridon 
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