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ABSTRACT 

Antioxidants are widely used as reactive oxygen species (ROS) scavenging 

agents in experimental research and in conditions where oxidative stress 

plays a primary role. However, the effect of antioxidant supplementation on 

white and brown adipose tissue functionality is understudied, and the role of 

ROS and/or antioxidant treatment during adipose tissue browning, a process 

in which the adipocytes’ mitochondrial density and activity increase, is 

largely unknown. In paper I, by using antioxidants and ROS-sensitive 

fluorescent probes in cultured β3-AR-stimulated adipocytes, we observed 

that 24-48-hour antioxidant treatment increases the mitochondrial ROS 

production associated with reduced respiration and increased glycolysis. 

Moreover, treatment of mice with the antioxidant N-acetylcysteine (NAC) 

blunted the β3-AR agonist-induced browning response of white adipose 

tissue and reduced the mitochondrial activity in brown adipose tissue even in 

the absence of β3-AR stimulation. Previous studies have shown positive 

effects of prolonged NAC treatment on whole-body metabolism in mice. In 

light of these seemingly contradictory results, we hypothesize that chronic 

antioxidant exposure, in a dose-dependent manner, can lead to so-called 

mitohormesis. Indeed, in paper II, by treating mice with a set of different 

NAC doses across a defined time course, we found that prolonged 

supplementation with a high dose of NAC leads to increased mitochondrial 

function of white adipose tissue, reduced fat mass and improved insulin 

sensitivity. In summary, this thesis demonstrates that the adipose tissue 

response to antioxidant treatment in mice is biphasic and tightly connected to 

the adipose tissue type, the dosage and the treatment duration. This thesis 

also provides an alternative explanation for previously reported controversial 

findings where antioxidants (such as NAC) have exerted deleterious effects 

on health. Finally, the results of this thesis provide new insights into the 

appropriate design of antioxidant treatment studies: optimizing treatment 

dosage and duration may be the key to achieve success with antioxidant 

therapy. 
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SAMMANFATTNING PÅ SVENSKA 

I denna studie har vi undersökt effekten av antioxidantbehandling på 

fettvävens mitokondriefunktion. Våra huvudsakliga fynd är att antioxidanter 

kan, beroende på dosering och behandlingslängd, öka den mitokondriella 

produktionen av fria syreradikaler. Detta är dock inte nödvändigtvis av ondo 

utan kan över tid leda till förbättrad mitokondriefunktion, åtminstone i 

fettväven. 

Fettväv som ökar sin mängd aktiva mitokondrier blir bättre på att ta upp fett 

och socker från blodbanan, vilket minskar risken för att kärl och andra organ 

förfettas. I mitokondrierna omvandlas näringsämnen till kemisk energi i en 

syrekrävande process som kallas cellandning. I denna process bildas även fria 

syreradikaler som kan orsaka skadlig oxidativ stress. Det är därför vanligt att 

kosttillskott innehåller antioxidanter som kan neutralisera dessa syreradikaler. 

Antioxidanter används även i forskningssammanhang för att försöka förbättra 

sjukdomstillstånd i vilka man tror att oxidativ stress är en bidragande orsak, 

som till exempel diabetes och neurodegenerativa sjukdomar. I flera 

vetenskapliga studier har det dock visat sig att antioxidantbehandling inte har 

några positiva effekter och i vissa fall har till och med negativa utfall 

rapporterats. 

I delarbete I fann vi att antioxidantbehandling paradoxalt nog kan öka den 

mitokondriella produktionen av fria syreradikaler i odlade fettceller. Denna 

effekt är kopplad till en sänkt cellandning. Vi fick liknande resultat i möss; 

möss behandlade med antioxidanten N-acetylcystein under två veckor fick 

försämrad mitokondriefunktion i fettväven än kontrollmössen. I andra 

musstudier har det dock rapporterats att långtidsbehandling med N-

acetylcystein ökar fettvävens mitokondriemängd samt förbättrar kroppens 

ämnesomsättning. I delarbete II förklarar vi dessa motsatta resultat genom att 

påvisa en så kallad hormetisk effekt av N-acetylcystein i musfettväv. 

Hormesis innebär att en giftig substans eller en stressor, i ett visst 

dosintervall, kan ge fördelaktiga effekter till följd av att cellen anpassar sig. 

Våra data tyder på att den paradoxala ökningen av fria syreradikaler till följd 

av N-acetylcysteinbehandling kan uppreglera fettvävsmitokondriernas egna 

antioxidantsystem samt produktion av fler och/eller effektivare mitokondrier, 

vilket resulterar i sänkt fettmassa och förbättrad ämnesomsättning. 

Resultaten från denna studie ger oss således fördjupad kunskap om möjliga 

utfall av antioxidantbehandling samt en ny förklaringsmodell för tidigare, 

tillsynes motsägelsefulla fynd. 
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1 INTRODUCTION 

Obesity is defined by the World Health Organization as an excessive fat 

accumulation in the body and is considered a major risk for diseases such as 

diabetes, cardiovascular diseases (mainly heart diseases and stroke) (Lavie, 

Milani et al. 2009), musculoskeletal disorders (especially osteoarthritis) 

(Wearing, Hennig et al. 2006) and several cancers (including endometrial, 

breast, ovarian, prostate, liver, gallbladder, kidney, and colon) (Stone, 

McPherson et al. 2018). However, it is not increased adiposity per se, but 

rather the obesity-associated adipose tissue dysfunction that increases the risk 

of developing co-morbidities. Dysfunctional adipose tissue contributes to the 

metabolic syndrome, whereas healthy adipose tissue, regardless of its size, is 

protective through its ability to remove excess nutrients from the blood 

stream. To increase our knowledge about the pathogenesis of obesity-related 

diseases and to identify new therapeutic targets it is, therefore, important to 

delineate mechanisms that regulate adipose tissue functionality. 

1.1 ADIPOSE TISSUE AND ADIPOCYTES 

The adipose tissue is distributed throughout the body and plays a central role 

in the regulation of whole-body energy homeostasis. It can expand and shrink 

dramatically to store and release energy to accommodate the body’s need. 

Adipose tissue displays thus an extreme flexibility compared to other tissues 

and organs. In mammals, the adipose tissue is classified as either white or 

brown containing respectively, white adipocytes, which are the primary site 

of triglyceride/energy storage, and brown adipocytes, which are mainly 

responsible of thermogenesis i.e. dissipating energy as heat (Gesta, Tseng et 

al. 2007). In humans, adipose tissue accounts for around 20 % of the total 

body weight and the amount increases to more than 40 % in obesity (Sepa-

Kishi and Ceddia 2018). 

1.1.1 WHITE ADIPOSE TISSUE 
The classical fat cell, the white adipocyte, is a spherical, large and 

expandable cell that usually contains one large lipid droplet accounting for 95 

% of the cell volume. Its mitochondrial content is relatively low and its main 

role is to store excess energy in the form of triglycerides and, when required, 

deliver energy back to the body through lipolysis leading to the release of 

glycerol and fatty acids. The adipocytes also have a very important role as 
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hormone/adipokine producers. For instance, the adipokines leptin and 

adiponectin contribute to the regulation of whole-body energy balance and 

metabolism (Balistreri, Caruso et al. 2010). Other cell types but adipocytes 

account for around 50 % of the total cell population in adipose tissue. They 

are collectively termed the stromal vascular fraction (SVF). The SVF 

includes preadipocytes, various immune cells such as macrophages and 

lymphocytes, endothelial cells and pericytes (Bourin, Bunnell et al. 2013) 

and these SVF cells provide the necessary means for normal adipose tissue 

growth and homeostasis. 

Anatomically, white adipose tissue (WAT) comprises two major depots: the 

subcutaneous and the visceral WAT. In humans, the subcutaneous WAT is 

mainly found in the abdominal, gluteal and femoral regions, while the 

visceral WAT is found around internal organs in the mesentery and the 

omentum. The same anatomical division holds true for mice. However, mice 

have a rather large fat depot surrounding their gonads, the gonadal WAT 

(GWAT), which is a visceral depot not found in humans (Chusyd, Wang et 

al. 2016). Although having the same lineage of origin, different anatomical 

location of adipose tissue is associated with different functionality, connected 

to the protein expression signature in both humans (Vidal 2001) and mice 

(Gesta, Blüher et al. 2006). Importantly, excess visceral WAT is highly 

correlated with increased risk of metabolic disorders such as insulin 

resistance and type 2 diabetes (Item and Konrad 2012), whereas increased 

subcutaneous WAT has been connected to low risk of the metabolic 

syndrome (Kissebah and Krakower 1994) (Figure 1). 

Figure 1. Fat distribution influences risks associated with obesity in humans. Gesta 

et al., published in Cell (2007).  
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1.1.2 BROWN ADIPOSE TISSUE 
In contrast to white adipocytes, brown adipocytes are ellipsoid-shaped small 

cells with multilocular lipid droplets. The brown color of brown adipose 

tissue (BAT) is primarily due to a high mitochondrial content of the resident 

adipocytes, which specifically express uncoupling protein 1 (UCP1) also 

known as thermogenin. Indeed, BAT is a specialized organ that is critically 

important for heat generation and lipid oxidation (Richard and Picard 2011). 

In humans, it is present in newborns (Cannon and Nedergaard 2004) but 

decreases quickly and has been considered insignificant in adults. However, 

more recent studies indicate that human BAT is not as insignificant as once 

believed (Nedergaard, Bengtsson et al. 2007), but may regulate whole-body 

metabolism even in adulthood (Cypess, Lehman et al. 2009). In rodents, BAT 

is mainly located in the interscapular region and plays an important role in 

temperature regulation and metabolism across their whole life. 

Interestingly, fate-mapping studies combined with cell sorting analysis have 

shown that distinct mesenchymal progenitors give rise to white and brown 

adipocytes. Skeletal muscle cells and preformed brown adipocytes share a 

common ancestry and originate from myogenic factor 5 (MYF5)-expressing 

precursor cells, while white adipocytes originate from precursor cells that are 

MYF5 negative (Timmons, Wennmalm et al. 2007). Brown and white 

adipocytes display in many ways opposite functions although both contain 

lipids and play a crucial role in whole-body metabolism. 

1.2 BROWNING 

Browning of WAT can be defined as a process where there is a significant 

increase in adipocyte UCP1 levels. The resultant adipocytes are referred to as 

beige, brite (brown-to-white), convertible, ectopic, inducible or recruitable 

adipocytes (Nedergaard and Cannon 2014). Simply speaking, adipose tissue 

browning is thus the process of turning white adipocytes into brown-like 

adipocytes that display increased mitochondrial content, increased UCP1 

levels and elevated metabolic rate. 

Adipose tissue browning can be triggered by cold temperature, food 

components, gene modifications or drugs. The list of browning agents is 

growing rapidly, and more than 50 agents have been identified (Wu, Cohen et 

al. 2013). The first report of a browning process shows increased UCP1 

expression in clusters of GWAT adipocytes in BALB/c mice exposed to cold 

temperature (Young, Arch et al. 1984). The browning process has thus been 
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studied during many years, but it was not until the last decade that the term 

“browning” became broadly used. The current paradigm is that browning can 

be triggered by two different pathways (Nedergaard and Cannon 2014): 

- Through pharmacological or sympathetic nerve 

system-mediated activation of β-adrenergic receptors 

(β3-AR) in white adipocytes. 

- Through pharmacological induction of the peroxisome 

proliferator-activated receptor γ (PPARγ) pathways. 

Both these pathways involve three master regulators of the browning process: 

PPARγ, PR domain containing 16 (PRDM16) and peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (PGC1α). 

In 2014, a new mechanism driving cold-induced browning process in vivo is 

suggested (Qiu, Nguyen et al. 2014). In brief, Qiu and colleagues propose 

that cold temperature is associated with an increased local production of 

catecholamines by WAT-resident M2-polarized macrophages. These 

catecholamines stimulate β3-ARs leading to increased expression of 

thermogenic genes in adipocytes. However, this suggested mechanism 

remains controversial (Fischer, Ruiz et al. 2017). Moreover, it is not clear 

whether cold temperature exposure and pharmacological activation of the β3-

AR stimulate the same cell populations that finally results in browning 

(Jiang, Berry et al. 2017). Thus, different browning agents are likely 

triggering distinct pathways in different adipocytes and/or precursor cells 

leading to slightly different browning processes although the final result may 

appear similar. One of the most used methods to study the browning process 

and its consequences is however pharmacological stimulation of the β3-AR. 

Amongst several options, a compound named CL316,243 is widely used 

because of its high specificity and potency (Peng, Gennemark et al. 2015). 

1.2.1 BEIGE ADIPOCYTES 
The beige adipocyte is considered to be a distinct cell type that has mixed 

characteristics from both white and brown adipocytes. They are spherical 

cells, smaller than white adipocytes with increased mitochondrial content and 

multilocular lipid content. Upon stimulation they can activate their 

thermogenic capacity through increased UCP1 expression. In mice, beige 

adipocytes are dispersed mainly across subcutaneous white adipose tissue 

while fewer are to be found in visceral depots (Wu, Boström et al. 2012). 

Furthermore, beige adipocytes have been suggested to possess a distinct gene 

expression signature as compared to white and brown adipocytes (Wu, 
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Boström et al. 2012, Harms and Seale 2013), although the full validity of this 

signature has been questioned and more flexible borders between adipocyte 

cell types have been described (de Jong, Larsson et al. 2015). 

There are studies showing that beige adipocytes share lineage of origin with 

white adipocytes (they are both MYF5
-
) (Seale, Bjork et al. 2008), but upon 

stimulation they can transform their morphology to acquire the appearance 

and protein expression profile of brown adipocytes (Seale, Conroe et al. 

2011). However, some beige cells have been shown to originate from the 

MYF5
+
 lineage, suggesting heterogeneity within beige adipocytes (Sanchez-

Gurmaches, Hung et al. 2012) (Figure 2). 

Figure 2. Model of adipose tissue (BAT, interscapular WAT (iWAT), retroperitoneal 

WAT (rWAT), inguinal (ingWAT) , perigonadal (pgWAT ) adipocyte development 

based on lineage analysis, image based on Sánchez-Gurmaches et al., in Cell 

Metabolism (2012) *Different acronyms are used on this figure compared to this 

thesis. 

Besides the origin of beige adipocytes, their formation is also debated. There 

are studies supporting the notion that beige adipocytes are recruited via de 

novo adipogenesis (Wu, Boström et al. 2012), but there are also several 

studies supporting the so-called transdifferentiation theory where beige 
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adipocytes originate from white adipocytes that are reprogrammed into 

brown-like adipocytes (Barbatelli, Murano et al. 2010). 

Regardless of their lineage of origin and their formation process, beige 

adipocytes have become of great interest as a potential therapeutic target to 

reduce obesity-related co-morbidities. Beige adipocytes may reduce body 

weight via increased non-shivering thermogenesis (Kopecky, Rossmeisl et al. 

2001, Kazak, Chouchani et al. 2015, Ikeda, Maretich et al. 2018) and/or 

increased oxidative capacity associated with improved whole-body 

metabolism (Granneman, Li et al. 2005, Duteil, Metzger et al. 2014). 

1.3 MITOCHONDRIA 

Mitochondria are cytoplasmic organelles found in most eukaryotic 

organisms. Their main role is energy biogenesis, typically providing 90 % of 

the cellular energy via the electron transport chain/ATP production. 

Therefore, they are usually termed the powerhouse of the cell. However, they 

are also involved in other cellular processes such as apoptosis, Ca
2+

-signaling 

and redox homeostasis (Duchen and Szabadkai 2010, Spinelli and Haigis 

2018). 

Mitochondria have a double membrane arrangement which separates the 

organelle into four distinct compartments: the outer membrane, the 

intermembrane space, the inner membrane, and the matrix. The outer 

membrane is quite permeable and controls diffusion of molecules into the 

space between the outer and inner membranes. The intermembrane space 

contains proteins that play major roles in mitochondrial energetics and 

apoptosis. In contrast to the outer membrane, the inner membrane is highly 

impermeable and most ions and molecules require transporters to cross. It 

contains around 20 % of the total mitochondrial protein composition, 

amongst which are protein transporters into the matrix (e.g. translocase of the 

inner membrane) and the enzymes of the electron transport chain. In order to 

expand the capacity for chemical reactions, the area of this membrane is 

increased by several cristae, i.e. folds in the inner membrane. The matrix 

contains most of the enzymes that are responsible for the reactions of the 

citric acid cycle (McCarron, Wilson et al. 2013). 

Mitochondria cannot be generated de novo, thus new organelles arise from 

pre-existing ones, through a multi-step process which involves both fusion 

and fission events. This is a tightly regulated process, dependent on the 

activity of both mitochondrial and nuclear factors. PGC1α is a major 
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regulator of mitochondrial biogenesis, activating different transcription 

factors such as nuclear respiratory factor 1 and 2, that further promote 

transcription of key mitochondrial enzymes (Jornayvaz and Shulman 2010). 

The cyclic adenosine monophosphate (cAMP) level is one of the upstream 

signals that regulate the expression of PGC1α. Interestingly, β3-AR 

activation results in increased cAMP levels, leading to the protein kinase A 

(PKA)-dependent activation of the cAMP response element-binding protein 

(CREB), which in turn upregulates PGC1α expression, resulting in new 

mitochondria. 

The mitochondrial content and function in adipocytes are tightly linked to the 

cell type. White adipocytes contain few mitochondria that primarily functions 

as ATP-producers, but they also provide key intermediates needed for de 

novo lipogenesis such as glycerol 3-phosphate and acetyl-CoA (Cedikova, 

Kripnerov et al. 2016). Beige adipocytes, prior activation, have a slightly 

higher mitochondrial content with similar basal UCP1 levels as white 

adipocytes (Wu, Boström et al. 2012). Upon stimulation, their UCP1 level 

increases together with an increment in mitochondrial content (Velazquez-

Villegas, Perino et al. 2018). Brown adipocytes contain many mitochondria, 

whose activity is dedicated mostly to non-shivering thermogenesis 

(Cedikova, Kripnerová et al. 2016). 

1.3.1 UCP1 
Non-shivering thermogenesis in brown (and beige) adipocytes’ mitochondria 

is essentially dependent on UCP1. This protein is a 33kDa monomer, 

composed by 306 amino acids, that is encoded by nuclear DNA. The 

structure of the UCP1 gene is highly conserved in mouse, rat and human: six 

exons encompass the coding sequence and each exon encodes a 

transmembrane domain (Ledesma, de Lacoba et al. 2002). Its sequence is 

also highly homologous among species, suggesting an important role in 

metabolism. It is mainly expressed in brown adipocytes but also in activated 

beige adipocytes (Nedergaard, Golozoubova et al. 2001, Wu, Boström et al. 

2012) and in other cell types such as thymocytes (Adams, Carroll et al. 

2008). 

UCP1 acts as a proton transporter over the mitochondrial inner membrane. It 

mediates the passive re-entry of protons into the mitochondrial matrix, 

producing heat and concomitantly decreasing the yield of ATP .Thus, UCP1-

mediated uncoupling of the electron transport chain enables the oxidative 

metabolism to run at maximal rate leading to increased heat production 
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(Labbe, Caron et al. 2015). Moreover, UCP1 is activated by fatty acids and 

inhibited by ATP (Jastroch, Divakaruni et al. 2010) and the Ucp1 gene is 

under extensive transcriptional control: in response to cold temperature or 

overfeeding, activation of β-ARs initiates a cAMP signal transduction 

pathway that activates Ucp1 transcription mediated by three nuclear 

receptors: PPARγ, thyroid hormone receptor (TR) and retinoic acid receptor 

(RXR) (Divakaruni and Brand 2011) and the essential coactivator PGC1α 

(Puigserver, Wu et al. 1998) as shown in Figure 3. 

Figure 3. Ucp1 transcription regulation through β-AR activation. Lowell et al., 

published in Nature (2000). 

1.3.2 REACTIVE OXYGEN SPECIES 
Reactive oxygen species (ROS) are chemically reactive species containing 

oxygen, generated by cells. There are radical molecules such as superoxide 

(O2
-•
), peroxyl (RO

•
) and hydroperoxyl (HO2

•
) and non-radical ones e.g. 

hydrogen peroxide (H2O2), but the degree of reactivity is independent of 

having unpaired electrons (Stowe and Camara 2009). In adipocytes, there are 

many ROS sources: 
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- Mitochondria, which harbor the bulk of oxidative 

pathways, contain many enzymatic complexes that 

potentially can transfer single electrons to oxygen and 

convert it into superoxide anion in a process referred to 

as electron leak (Jastroch, Divakaruni et al. 2010). 

- Nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase is described as a major contributor 

of ROS in adipocytes (Han, Umemoto et al. 2012). 

- Nitric oxide synthase can, under certain pathological 

conditions, be uncoupled to produce superoxide (Le 

Lay, Simard et al. 2014). 

The basic initiating step in ROS production is the single reduction 

(transferring of one electron) of molecular oxygen into superoxide 

(Andreyev, Kushnareva et al. 2015). This reaction is the rate-limiting step in 

the whole cascade. Once formed, it is involved in several reactions that, in 

turn, generate other ROS such as hydrogen peroxide, hydroxyl radical (OH
•
), 

peroxynitrite (ONOO
-
) and hypochlorous acid (HOCl) (Pizzino, Irrera et al. 

2017). 

ROS have long been considered inevitable by-products of cellular processes. 

0.15 to 2 % of the consumed O2 during respiration is reduced by single 

electrons, generating superoxide (Brand 2010). ROS can react with DNA, 

proteins and phospholipids leading to an irreversible damage to the cell. 

However, in recent years, accumulating evidence indicates that ROS also 

serve as critically important signaling molecules in cell proliferation and 

survival (Ray, Huang et al. 2012). Therefore, a tight control of ROS 

production and elimination is required for cell homeostasis. 

1.3.3 REDOX REGULATION 
Systems to control ROS and the redox state under physiological conditions 

are spread throughout the cell. Indeed, it is equipped with enzymatic and 

nonenzymatic antioxidants that eliminate ROS and maintain redox 

homeostasis. 

Superoxide dismutases (SOD) are a major class of enzymatic antioxidants, 

which catalyze the dismutation of O2
-•
 to H2O2 without any support of 

reducing equivalents for their ROS decomposition activity. There are 

multiple isoforms that can be found in different cellular compartments 

(Trachootham, Lu et al. 2008). SOD1, which contains Cu and Zn and is 

found in the cytoplasm, mitochondrial intermembrane space, nucleus, and 
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lysosomes, accounts for 70-80 % of the total cellular SOD activity (Halliwell 

1989). SOD2, a key mitochondrial antioxidant enzyme which contains Mn, is 

mainly found in the mitochondrial matrix (Fukui and Zhu 2010). SOD3 is an 

extracellular Cu/Zn dismutase that is expressed in a limited number of tissues 

(Ookawara, Imazeki et al. 1998). 

Hydrogen peroxide, the resulting product of SOD activity, can be neutralized 

by three different defense systems: catalases, thioredoxins (TRX) / 

peroxiredoxins (PRDX) and/or glutathione-based. 

Catalase is an enzyme that catalyzes dismutation of hydrogen peroxide to 

oxygen and water, and is present in all aerobic cells. It is located in 

peroxisomes and is one of the most efficient enzymes known, resulting in 

reaction rates approaching the diffusion-controlled limit (Vainshtein, Melik-

Adamyan et al. 1981). 

The second system for hydrogen peroxide clearance includes the tandem 

TRX / PRDX that, as a whole system, scavenge hydrogen peroxide and use 

NADPH as a reducing agent. Similarly to SODs, there are multiple isoforms 

of PRDX that can be found in different subcellular locations (Wood, 

Schroder et al. 2003). Briefly, hydrogen peroxide is reduced to water by 

PRDX, in a two-step reaction. The resulting oxidized form of PRDX is 

reduced back by TRX, which in the end will be reduced by NADPH 

(Hanschmann, Godoy et al. 2013). Interestingly, PRDX3, in the 

mitochondrial matrix, contributes to around 90 % of the total ROS removal 

(Andreyev, Kushnareva et al. 2015). 

The last system is based on glutathione. Glutathione (γ-glutamylcysteinyl-

glycine) is a thiol-containing tripeptide that is found at high concentrations 

(1–10 mM) in all eukaryotes and many prokaryotic species (Sikanyika, 

Aragao et al. 2019). Glutathione can exist in a reduced state (GSH) or an 

oxidized state (GSSG), which consists of two GSH molecules that are linked 

together by a disulfide bond. Different subcellular locations harbor different 

glutathione pools. For example, the cytosolic glutathione pool is highly 

reduced, with a GSH:GSSG ratio in the order of 100:1, whereas the ratio in 

the mitochondrial matrix is around 30:1 (Zhang, Limphong et al. 2012). GSH 

is exclusively produced in the cytosol and is further transported into the 

mitochondrial matrix (Calabrese, Morgan et al. 2017). Similar to 

peroxiredoxins, hydrogen peroxide in the mitochondria can be reduced by 

glutathione peroxidase, using GSH as substrate, producing GSSG. This 

oxidized molecule can be reduced back to GSH using NADPH as a reducing 

equivalent by glutathione reductase. 
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The hydrogen peroxide removal systems rely on the NADPH/NADP
+
 redox 

state to be efficient. Thus, optimal mitochondrial bioenergetics function is 

required for the proper antioxidant activity of these systems. Moreover, there 

is a complex interaction between PRDXs, TRXs and the glutathione systems 

in the mitochondrial matrix; a slight change in the balance of one of these 

systems may change the redox state of the whole cell and thereby affect many 

cellular functions including metabolic processes. 

1.4 MITOCHONDRIAL DYSFUNCTION 

Mitochondrial dysfunction is a term that has been used to define the 

incapacity of mitochondria to generate and sustain sufficient ATP levels, 

through oxidative phosphorylation (OXPHOS), in response to energy 

demands (Kusminski and Scherer 2012). However, it can also be applied to 

describe all maladaptive physiological responses of mitochondria involving 

processes such as substrate catabolism, calcium buffering, iron transport, 

intracellular mitochondrial shape and location, apoptosis, and ROS 

production. Specifically in white adipocytes, the alterations in mitochondrial 

function can e.g. involve impaired oxidative capacity, elevated ROS 

production and/or altered mitochondrial turnover (Boudina and Graham 

2014). 

Oxidative stress is the specific term to describe the mitochondrial dysfunction 

that includes an elevation in ROS production and/or incapacity of the cellular 

defense system to neutralize ROS (Schieber and Chandel 2014). Main 

consequences of oxidative stress in WAT are impairment in adipogenesis 

leading to adipocyte hypertrophy, tissue inflammation and insulin resistance 

(Castro, Grune et al. 2016). Etiology of obesity-associated type 2 diabetes has 

been connected to excessive nutritional overload, leading to increased lipid-

induced ROS formation (Kusminski and Scherer 2012) which, if sustained 

over time, can lead to chronic oxidative stress that results in e.g. insulin 

resistance (Houstis, Rosen et al. 2006) and reduced adiponectin secretion 

(Wang, Wang et al. 2013). 

On the other hand, reductive stress, a less appreciated concept than oxidative 

stress, is defined as an excess of reducing equivalents (NADPH and/or GSH) 

in the presence of intact oxido-reductive systems (Brewer, Mustafi et al. 

2013). However, similarly to oxidative stress, it has been connected to 

mitochondrial dysfunction (Zhang, Limphong et al. 2012), insulin resistance 

(Kobayashi, Matsuda et al. 2009) and etiology of many diseases (Pérez-

Torres, Guarner-Lans et al. 2017). 
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Overall, both alteration of the redox homeostasis, oxidative or reductive 

stress, have deleterious effects on mitochondrial function that if chronically 

sustained, have negative implications in metabolism. 

1.5 ANTIOXIDANTS 

Antioxidant supplementation has been suggested to assist the cellular 

defenses to overcome the excess of ROS in several pathologies. Vitamins and 

cofactors such as vitamin C, E or carnitine together with polyphenols and 

carotenoids, commonly used as supplements, have been tested due to their 

high availability in food sources (Abdali, Samson et al. 2015). These 

supplements have been studied in a broad range of diseases, such as 

diabetes/metabolic syndrome (Abdali, Samson et al. 2015), atherosclerosis 

(Packer, Weber et al. 2001), cancer (Sayin, Ibrahim et al. 2014) or processes 

where ROS are considered to play an important role e.g. physical exercise 

(Ristow, Zarse et al. 2009). 

More sophisticated compounds, that have a direct effect on mitochondria 

redox status, have also been studied. MitoQ, a derivative of ubiquinone 

conjugated to triphenylphosphonium (TPP
+
), is accumulated in the 

mitochondrial matrix and has been used in animal models and in patients 

(Oyewole and Birch-Machin 2015). 

N-acetylcysteine (NAC) has been suggested to possess antioxidant properties 

both by direct reaction of its sulfhydryl group with ROS or by increasing 

cellular GSH levels (Kelly 1998, Mokhtari, Afsharian et al. 2017). It has been 

broadly studied in animal models and patients in a wide range of conditions 

such as chronic obstructive pulmonary disease, HIV, cancer and insulin 

resistance (Kelly 1998, Fulghesu, Ciampelli et al. 2002, El Midaoui, Ismael 

et al. 2008). 

Antioxidant treatment studies in patients and mouse models have reported 

conflicting results i.e. positive effects where harmful oxidative stress is 

reduced (Udupa, Nahar et al. 2012), no impact on ROS levels (Choi and Ho 

2018) or deleterious outcomes such as increased levels of oxidative stress 

markers in blood, prevention of health-promoting effects of physical exercise, 

or increased melanoma progression (Kleinveld, Demacker et al. 1992, 

Ristow, Zarse et al. 2009, Le Gal, Ibrahim et al. 2015). 

For NAC specifically, there are experimental mouse studies where an 

improvement in mitochondrial function by reduction of oxidative stress is 
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reported (Wright, Renoir et al. 2015) whereas in in vitro, there are reports 

showing that NAC causes reductive stress, leading to mitochondrial 

dysfunction (Zhang, Limphong et al. 2012). 

Overall, the administration method, treatment length and dosage appear 

extremely important for the final outcome of antioxidant supplementation. 

1.6 HORMESIS 

Hormesis is defined as an adaptive response of cells and organisms to a 

moderate (usually intermittent) stress (Mattson 2008). It is a process that was 

first observed in the 19
th
 century in yeast exposed to small doses of toxins, 

which oppositely to what one expected, showed increased growth rate and 

metabolism. It was not until 1943 the term hormesis, using the Greek word 

for “excite”, was used to describe this U-shaped dose–response relationships 

(Southam 1943). The hormesis concept has thereafter been applied to 

different aspects of cellular behavior, but mitochondrial hormesis 

(mitohormesis) was not mentioned until 2006 (Tapia 2006). Analyzing 

previously published data, Tapia suggests that intermittent induction of ROS 

in mitochondria (mild oxidative stress), by different interventions such as: 

dietary restriction, exercise, consumption of pro-oxidant or mitochondrially 

injurious biochemical compounds might exert protective effects through 

beneficial cellular adaptations to these ROS increases. Since then, 

mitohormesis has been shown in C. Elegans using DNA mutagens (Yang and 

Hekimi 2010), using antioxidants (Oh, Park et al. 2015) and glucose 

restriction (Schulz, Zarse et al. 2007), in cardiac and skeletal muscles using 

statins (Bouitbir, Charles et al. 2012), myoblasts using antioxidants (Singh, 

Charles et al. 2015), in liver and fibroblasts from genetically modified mice 

(inducible SOD2 model) (Cox, McKay et al. 2018) and very recently in mice 

using radiation as a pro-oxidant agent (Zhang, Humes et al. 2018). 

Interestingly, nutrient restriction can lead to mitohormesis in adipocytes but 

treatment with antioxidants prevents this hormetic effect (Lettieri Barbato, 

Tatulli et al. 2015) (Figure 4). Thus, there are conflicting reports regarding 

the effects of antioxidant treatment also on mitohormesis. 
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Figure 4. Mitohormesis suggested mechanism of action. Ristow et al., published in 

Experimental gerolontogy (2010). 
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2 AIM 

The general aim of this thesis is to elucidate the effect of antioxidant 

supplementation on mitochondrial function in white and brown adipose 

tissue. 

The specific aims are: 

1. To delineate the role of ROS in chronic β3-AR activation-induced 

browning of white adipose tissue by the use of antioxidants as 

scavenging agents. 

2. To establish the pro-oxidative effect of antioxidants and their effect 

on mitochondrial function in white and brown adipocytes. 

3. To evaluate the effect of N-acetylcysteine supplementation on 

mitochondrial function of adipose tissue and whole-body 

metabolism. 
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3 METHODS 

In our studies, we have used a broad range of resources and analysis methods. 

We have performed in vitro and in vivo experiments, using C57BL/6J mice, 

primary cells and immortalized cell lines. We have studied functional 

processes with live cells and tissues, such as ROS production and cellular 

respiration. We have also analyzed cellular lipid and mitochondrial content in 

freshly dissected tissues. Moreover, we have analyzed the outcomes of the 

experiments in processed tissues and cells using commercially available kits 

to determine the levels of GSH, lactate, glycerol, free fatty acid (FFA) or 

insulin. These kits require tissue or cell processing to purify or concentrate 

samples for analysis. 

In this section, I will address the significant or controversial aspects of the 

most relevant methods and resources that I developed and used during this 

project. For descriptions of all methods, please read methods section of 

papers I and II. 

3T3-L1 adipocytes 

The murine 3T3-L1 cell line was established in 1974 and is a widely used in 

vitro adipocyte model that has been employed to study e.g. white adipocyte 

differentiation, lipid metabolism and endocrine function (Greenberger and 

Aaronson 1974). Untreated 3T3-L1 cells have fibroblast morphology and can 

be differentiated into lipid-storing adipocytes through a 10-day differentiation 

protocol. Their initial morphology i.e. multipolar and elongated shape is 

sequentially transformed into polygonal and rounded structure with 

multilocular lipid droplets (Figure 5). 

Figure 5. 3T3-L1 untreated (left) and after differentiation process (right). 

The differentiation protocol used in this project is essentially the same as 

described by Kohn and colleagues (Kohn, Summers et al. 1996). In brief, 
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addition of a differentiation cocktail containing insulin, dexamethasone and 

phosphodiesterase inhibitor, activates adipogenic processes resulting in the 

production of adipocyte-related proteins including the β3-AR (Komai, 

Musovic et al. 2016). Importantly, treatment of mature 3T3-L1 adipocytes 

with the β3-AR agonist CL316,243 induces a browning program as judged 

by upregulation of Prdm16, Pgc1α and Ucp1 (Duteil, Metzger et al. 2014). 

Thus, this model can be used to study, at least, some aspects of the browning 

process. 

The overall advantage of using an immortalized cell line as a model is its 

higher degree of reproducibility, i.e. its homogenous genotypic and 

phenotypic characteristics, compared to primary cells that typically show 

greater variability. On the other hand, during their immortalization process 

they might lose some characteristics that are key characteristics to the model 

of interest. 

Isolated primary adipocytes are non-attaching cells that are very fragile, and 

thus very difficult to handle and use in fluorescence microscopy or culture. 

Moreover, isolated adipocyte precursors, although being primary cells from 

the stromal vascular fraction, have to be differentiated ex vivo which gives 

them similar morphology as 3T3-L1 adipocytes and simultaneously also 

introduces an additional source of variability. 

Primary brown adipocytes 

Although there are several immortalized brown cell lines (Klaus, Choy et al. 

1994, Klein, Fasshauer et al. 2002), isolated and differentiated primary brown 

preadipocytes are more likely to resemble ‘real’ brown adipocytes and 

thereby we believe those cells are the better option to elucidate the 

mechanism for our observed effect of antioxidant treatment on brown adipose 

tissue in vivo. The method of isolation and culture of brown adipocytes was 

adapted from the method described by Néchad and colleagues (Néchad, 

Kuusela et al. 1983). Brown adipose tissue from young mice (younger than 4 

weeks), is required since there is a negative influence of age on the 

abundance of brown preadipocytes. Studies were performed in completely 

differentiated adipocytes (based on occurrence of multilocular lipid droplets) 

between days 8 and 9 from start of differentiation; only cultures in which >90 

% of cells displayed adipocyte morphology were used. 

Intracellular ROS generation in cultured adipocytes 

ROS are not one single entity but represent a broad range of chemically 

distinct oxidant molecules with different biological reactivity. One of the 
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most widely used tools to analyze ROS are fluorescent probes/dyes. They are 

reducing agents that become fluorescent when reacting with any oxidant 

molecule. Therefore, we cannot simply attribute their fluorescence to a 

specific reactive molecule but rather generalize the discussion to multiple 

ROS and speculate about the most probable substrate based on the probe 

cellular localization (Kalyanaraman, Darley-Usmar et al. 2012). However, 

probe-based fluorescence analyses together with measurements of cellular 

enzymes that possess well-established substrates facilitate the identification 

of the specific ROS compound that is most likely to be responsible for the 

ROS-associated fluorescence. The use of fluorescent probes for measuring 

ROS is complex since their nature as reducing agents interferes with cellular 

biochemistry in a dynamic manner. Their use requires therefore extensive 

titration to determine the minimum needed working concentrations (Polster, 

Nicholls et al. 2014), microscopy imaging to check cellular locations and 

distribution of fluorescent dyes and, most importantly, extra caution when 

drawing conclusions from measurements. Although other indirect methods 

could be used to estimate ROS levels, such as measurement of ROS-related 

damage e.g. protein oxidative modifications, it would be very difficult to 

determine the ROS origin and to follow changes in ROS production over 

time. Moreover, transiently increased ROS levels do not necessarily lead to 

measurable damage. Thus, we strongly believe that fluorescent probes, 

despite their complexity, are the best available option for ROS measurements 

in this project. 

CM-H2DCF-DA is a chloromethyl derivative of 2',7'-

dichlorodihydrofluorescein diacetate, a cellular probe that becomes 

fluorescent when it is oxidized by the loss of two electrons (Ex/Em: 495/520 

nm) in a two-step process. The chloromethyl presence provides better cellular 

retention of the probe. Indeed, this probe is commonly used to measure H2O2 

and other oxidants, or to monitor stimulation-induced changes in redox 

signaling in cultured cells (Wang, Si et al. 2010, Wojtala, Bonora et al. 

2014). Although this probe cannot identify specific oxidative species, it is - 

because of its homogeneous intracellular distribution through passive 

diffusion - a good indicator for the general ROS production. 

MitoSox Red, also called mito-hydroethidine or mito-dihydroethidium, is a 

fluorescent dye that measures O2
-•
 production in mitochondria (Ex/Em: 

520/580 nm). It is simply hydroethidine, a fluorescent probe, conjugated to 

triphenylphosphonium, which enables its accumulation in the mitochondrial 

matrix i.e. the positively charged MitoSox redistributes across the plasma and 

mitochondrial membranes according to its Nernst potential. Although some 

concerns about its subcellular location (Polster, Nicholls et al. 2014) and 
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reactivity with other oxidative species, it is considered suitable for measuring 

mitochondrial ROS, mostly O2
-•
, at least in normally polarized mitochondria 

(Kalyanaraman, Darley-Usmar et al. 2012). 

In order to quantify the effect of β3-AR stimulation on general ROS 

production, fluorescence images with laser scanning confocal microscopy 

(LSM 700 from Zeiss) were obtained at baseline followed by sequential 

measurements after addition of CL316,243 using different concentrations of 

CM-H2DCF-DA. After the minimum working concentration had been 

stablished, experiments in 12-well plates were performed and the total 

fluorescence level at every time point was quantified by calculating averages 

of 12-point readouts per well, covering the whole area of the well. 

Similarly, for titration and localization of MitoSox fluorescence together with 

the evaluation of the possibility of nuclear MitoSox staining, we used laser 

scanning confocal microscopy. The analysis of the resulting images, indicate 

that MitoSox nuclear-related fluorescence (Polster, Nicholls et al. 2014) is 

unlikely to contribute to the observed differences in the MitoSox 

measurements across groups. 

2-photon excitation fluorescence and coherent anti-Stokes Raman 

scattering microscopy 

Imaging lipids and mitochondria in freshly dissected tissues without any 

isolation or digestion is an extremely powerful tool that allows accurate 

measurements of cellular lipid content and mitochondrial density/activity. 

Coherent anti-Stokes Raman scattering microscopy (CARS) uses the inherent 

properties of stored lipids in cells, without any exogenous labeling. The 

specific vibration at 2845 cm
-1

 of carbon-hydrogen bonds in the alkylic 

chains of the highly dense triglycerides in lipid droplets is probed in a CARS 

process by overlapping two picosecond-pulsed laser beams at wavelengths 

817 nm and 1064 nm in the focal plane of an inverted optical microscope. 

Rhodamine 123 is a cationic fluorescent compound that binds specifically to 

mitochondria (Darzynkiewicz, Traganos et al. 1982) and displays fluorescent 

activity proportionally to the mitochondria’s membrane potential (Huang, 

Camara et al. 2007). It has an excitation wavelength that peaks at 505 nm and 

an emission wavelength at 560 nm. It can be excited with a laser emitting at 

817 nm following a 2-photon excitation (2-PE) process (Tehrani, Pendleton 

et al. 2017). By the use of an infrared wavelength laser, we reach more 

penetration in the sample together with reduced photobleaching. 



Adipose tissue mitochondrial function is modulated by antioxidants 

20 

A small piece of adipose tissue (<1 mm
3
) is collected from the same 

anatomical region in each animal and stained with Rhodamine 123. Indeed, 

taking adipose tissue pieces from the same region within a depot is critically 

important because of the heterogenic nature of adipose tissue. By means of 

dichroic mirrors and high optical-density filters, the forward-scattered CARS 

signal and backscattered 2-PE fluorescence signal are recorded using single 

photon counting detector technology. Multiple planes, each with 512x512 

pixels, are recorded resulting in 3D images of the tissues. Three different 

areas are recorded per sample. Quantitative data from the CARS and 2-PE 

fluorescence images are determined using ImageJ software. Regions of 

interest are defined by outlining the cell from autofluorescent images or by 

viewing z-stacks of the individual images. A voxel counting procedure is 

used to determine the number of voxels in the defined cell that meet a 

threshold intensity setting in the different analyzed channels (663 nm for 

CARS, 514 nm for Rhodamine 123) revealing cell size, lipid and 

mitochondrial content. In each image, 5 cells were analyzed. 

Gene expression analysis 

In order to quantify the messenger RNA (mRNA) expression levels of a gene, 

tissue or cells of interest were lysed and RNA was isolated using a 

commercial kit from Promega. When adipose tissue is processed, prior to 

isolation, an extra lipid elimination step is required. The concentration and 

quality of the isolated RNA was determined by absorbance measurement. 

Thereafter, the RNA was transcribed into complementary DNA (cDNA) 

generating the starting material for the quantitative real time polymerase 

chain reaction (qRT-PCR). Through continuous PCR cycles, a fluorescent 

(SYBR green)-tagged amplicon of the gene of interest was generated in a 

geometrical progression fashion, and its concentration was measured by a 

fluorometer. The threshold cycle, CT, indicates the fractional cycle number at 

which the amount of amplified target gene reaches a fixed threshold. It is 

inversely proportional to the expression of the target gene. For quantification 

purposes, there are two different methods: 

- Absolute quantification of a gene in the lysate can be 

calculated by interpolation of the readout in a 

calibration curve. This method is however not 

commonly used since accurate standard samples are 

required and it is usually unnecessary to know the 

absolute transcript copy number. 

- Relative quantification describes the change in 

expression of the target gene relative to either a 

standard sample (standard curve method) or the CT-
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value of a reference gene (comparative CT method) and 

then often relative to a reference group such as an 

untreated control or a sample at time zero in a time-

course study. 

In this work the comparative CT method was used and the gene-expression 

levels relative to untreated control were calculated using the 2
-∆∆CT 

formula 

(Livak and Schmittgen 2001). To use this method, two conditions need to be 

met: 

- Equal and high primer efficiency for all genes. To 

validate primer efficiency, a standard curve is created 

by serial dilutions (commonly 1:10) of a cDNA sample 

and qRT-PCR for each sample in duplicate is 

performed. Linear regression of results, allows 

calculating efficiency, which optimally should be 

found between 90 and 110 %. To keep constant 

efficiency across genes and samples one should also 

use the same transcription polymerase (in our case Fast 

SYBR-Green Master Mix) throughout the experiment. 

- Constitutive expression of the reference gene in all 

groups i.e. the expression should not be altered by the 

experimental conditions. Thus an equal amount of 

sample should, independently of the experimental 

group, result in the same CT value. 

Oxygen consumption rate 

One of the most informative analyses of mitochondrial function is 

quantification of cellular respiration, since it directly reflects electron 

transport chain performance/impairment and depends on many sequential 

reactions from glycolysis to oxidative phosphorylation. Oxygen consumption 

rate (OCR) is classically measured by the use of a Clark-type electrode, 

which is time-consuming, limited to whole cells or mitochondria in 

suspension and tied to manual injections of reagents (Yepez, Kremer et al. 

2018). The XF Seahorse instruments have, on the other hand, an integrated 

automatic drug delivery system and allow OCR measurements in several 

samples at the same time in a 24 or 96-well plate format. Samples can be 

either isolated mitochondria, cultured cells or even tissues. 

OCR analysis of isolated mitochondria provides useful information about 

their electron transport chain functionality without cellular interferences. In 

our case, we used succinate as the electron provider and rotenone to block 
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electron backflow to complex I to measure basal respiration of isolated 

mitochondria from adipose tissue. 

Cultured cells have the advantage of providing the machinery necessary for 

metabolizing and generating natural substrate to the mitochondria. By 

sequentially adding oligomycin (that blocks ATP synthase), FCCP (that 

uncouples mitochondria) and finally a mixture of antimycin A and rotenone 

(that completely stop electron flow through the transport chain) to plated 

cells, different mitochondrial characteristics can be calculated from the OCR 

data (Figure 6). 

Measurements of cellular respiration in white adipose tissue (Dunham-Snary, 

Sandel et al. 2014) allow mitochondrial status analysis without possible 

disturbances due to the cellular or mitochondrial isolation procedure. In our 

experimental conditions, the diffusion of drugs into the tissue pieces was 

however very heterogeneous. Thus, we could only with sufficient confidence 

record basal respiration while other mitochondrial parameters could not be 

accurately calculated. 

Seahorse is an extremely sensitive instrument that requires careful data 

analysis to remove non-responding wells or technical outliers. There can be 

significant variation between plates, i.e. a small variation in e.g. the amount 

of injected solutions and the quality of the starting material can lead to 

completely different absolute OCR values. To minimize this inter-plate 

effect, we therefore report ratios of OCR levels i.e. normalization to control 

OCR level and data are normalizing to the cell number for each well. As 

shown in Figure 6, basal respiration is calculated by subtracting the average 

of the last 3 measurements, which correspond to the non-mitochondrial 

respiration, to the average of the first 3 measurements. Then an average value 

is obtained for each group and finally values are normalized to a control 

group, thus obtaining a ratio. Statistical analyses are performed on these 

ratios.  
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Figure 6. Agilent Seahorse XF Cell Mito Stress test: (top) modulators of the 

electron transport chain are used to (bottom) calculate different respiration 

parameters that can be used to delineate the mitochondrial function of cultured 

cells, published by Agilent (2019). 

Body composition 

Dual-energy X-ray absorptiometry (DEXA) is a tool for determining body 

composition in vivo, providing measures of fat mass, bone-free lean tissue 

mass, total-body bone mineral, and total-bone mineral density. DEXA has 

been adapted to accurately measure body composition in anesthetized rodents 

by using specialized software in conjunction with clinical whole-body DEXA 

machines (Nagy and Clair 2000). It provides an accurate measurement on 

total body fat, but cannot accurately provide information about the fat 

distribution. Thus, other measurements such as weighing individual adipose 

depots and/or CT scans are necessary to fully draw conclusions about fat 

distribution. 

NAC treatment 

NAC has been used in therapeutic practices for more than 40 years. It was 

first used as a mucolytic agent, but soon new potential applications were 

found and nowadays it has more than 10 different clinical uses (Lasram, 

Dhouib et al. 2015) with a broad dosage range. Moreover, it has been studied 
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in many different conditions e.g. fatigue reducing agent in sports (Petersen, 

McKenna et al. 2012) or type-2 diabetes (Ho, Chen et al. 1999), and in 

different models i.e. cell lines (Liu, Liu et al. 2017), C. Elegans (Oh, Park et 

al. 2015), rodents (El Midaoui, Ismael et al. 2008) and humans (Kleinveld, 

Demacker et al. 1992). In in vivo use, different administration ways are 

reported e.g. intraperitoneal injection (IP) (Wright, Renoir et al. 2015), 

supplementation of drinking water (Ma, Gao et al. 2016), food 

supplementation (Ikonne, Vann et al. 2019) or tablets (Fulghesu, Ciampelli et 

al. 2002). In rodents, it is usually administered through drinking water, with 

doses going from 1 g/L (Jang and Sharkis 2007) to 20 g/L (Pinniger, Terrill 

et al. 2017). In in vitro models, the concentration range of NAC used is quite 

broad: from 5 µM (Calzadilla, Sapochnik et al. 2011), up to 20 mM (Toyoda, 

Hayashi et al. 2004). However, 1 mM is one of the most commonly used 

concentrations, and this concentration of NAC has proven to effectively 

scavenge ROS (Inoguchi, Li et al. 2000, Maheshwari, Misro et al. 2011, Ali, 

Qadir et al. 2017). Therefore, we decided to use 1 mM NAC in our in vitro 

experiments. 

In paper I, our initial aim was to study the role of ROS in adipose tissue 

browning in mice and to use NAC as our primary antioxidant. Thus, to start 

on the most conservative side to avoid potential deleterious effects that were 

reported with higher doses (>6.5 g/L), we picked the lowest reported dose (1 

g/L in drinking water) and short pretreatment (1 week) (Palmer, Doctor et al. 

2007, Sceneay, Liu et al. 2013). NAC supplementation was continued during 

the 10-day β3-AR stimulation period, but the total NAC exposure was still on 

the lower side compared to the majority of published studies. In paper II, our 

objective was to explore different doses and treatment length to evaluate the 

impact of both these factors on mitochondrial function in adipose tissue. We 

decided to use a very low dose, 0.5 g/L, which to our knowledge has not been 

tested in previously published studies, a middle range dose, 2 g/L, shown to 

be protective against high fat diet (HFD)-induced metabolic disorders (Ma, 

Gao et al. 2016) and a high dose, 10 g/L, reported to have deleterious effects 

(Palmer, Doctor et al. 2007). 

Statistical analysis 

GraphPad Prism 8 (GraphPad Software, San Diego, CA) was used for 

statistical analysis. Results in this thesis are represented as mean values ± 

SEM, expressed either as fold-change relative to controls or as absolute 

values. Comparisons were performed using one-way analysis of variance, 

two-way analysis of variance, or two-tailed Student’s t test depending on the 

experimental layout. Data were log-transformed as necessary to achieve 

normal distributions; and p<0.05 was considered significant. 
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4 RESULTS AND DISCUSSION 

Antioxidant treatment induces reductive stress associated 
with mitochondrial dysfunction in adipocytes (Paper I) 

Browning is a process that can be triggered by β3-AR activation leading to 

the conversion of white adipocytes into beige adipocytes which have 

increased mitochondrial content and express higher levels of UCP1 

(Nedergaard and Cannon 2014). Treatment of adipocytes with CL316,243, a 

potent and selective β3-AR agonist (Bloom, Dutia et al. 1992, Yoshida, 

Sakane et al. 1994, Li, Zhu et al. 2005), increases the intracellular levels of 

cyclic AMP, driving activation of the PKA complex leading to hormone-

sensitive lipase phosphorylation (activation) and thereby the breakdown of 

triglycerides to FFAs and glycerol, i.e. lipolysis (Arner and Langin 2007). 

Elevated fatty acid levels increase the ROS production from non-

mitochondrial sources such as NADPH oxidases in adipocytes (Han, 

Umemoto et al. 2012). Furthermore, β-adrenergic stimulation promotes 

OXPHOS in adipocytes (Duteil, Metzger et al. 2014) and consequentially 

mitochondrial ROS, as a by-product of oxidative metabolism, will also 

increase. We thus argue that β3-AR stimulation will, at least transiently, 

increase ROS levels in adipocytes. NAC is an antioxidant that can scavenge 

ROS both directly and indirectly as a precursor of glutathione (Kelly 1998, 

Mokhtari, Afsharian et al. 2017). Vitamin E, similarly, can directly scavenge 

oxidant radicals and alter redox status of the cell, i.e. glutathione cellular 

levels (Packer, Weber et al. 2001). Altogether, we hypothesize that such 

increase in ROS stimulates signaling pathways that trigger β3-AR activation-

induced adipose tissue browning and consequently pretreatment with NAC 

and vitamin E should reduce the browning response. 

ANTIOXIDANT EFFECTS IN 3T3-L1 ADIPOCYTES 

NAC and vitamin E alter glutathione levels in 3T3-L1 adipocytes 

To investigate the effect of antioxidant treatment in adipocytes’ redox status, 

we treated 3T3-L1 adipocytes with different antioxidants. As shown in 

Figure 7, NAC and glutathione ethyl ester raised the levels of reduced 

glutathione by respectively, 20 and 10 %, shifting the redox balance towards 

a more reduced status. Interestingly, vitamin E treatment increased GSH to 

similar levels of direct glutathione ester treatment. NAC treatment has been 

shown to increase systemic GSH levels mainly through hepatic GSH 

synthesis (Atkuri, Mantovani et al. 2007), but here we thus demonstrate that 

adipocytes also increase their GSH levels in response to NAC treatment. 
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Similarly, vitamin E treatment has been shown to increase GSH levels in 

erythrocytes in patients (Jain, McVie et al. 2000) and in liver in rats (Scott, 

Kelleher et al. 1977), but the mechanism of this upregulation has not been 

established. Our results indicate that vitamin E affects the redox status of 

adipocytes directly, and increase the GSH levels in adipocyte to a similar 

extent as Scoot and colleagues reported for liver and kidney. 

Figure 7. (left) Relative GSH and (right) GSSG levels in 3T3-L13 adipocytes treated 

with or without NAC, glutathione ethyl ester and vitamin E for 48 h. (n=4/group, 

*p<0.05, **p<0.01 and ****p<0.0001). 

The absolute levels of GSSG are at least 10 times lower than the GSH levels 

in 3T3-L1 adipocytes and are calculated from measurements of total 

glutathione and GSH (page 2349 in Paper I: Experimental procedures; 

Measurements of GSH and GSSG). We believe that these facts, combined 

with the reduced accuracy when estimating GSSG levels that are as low as 

we observe, make the ratio calculations very unreliable (SD in GSSG are 5 to 

7 times larger than in GSH levels). A slight variation in glutathione and GSH 

readouts during the analysis (optical density measurement) could thus easily 

have a strong impact of the estimated GSSG level and thereby lead to a 

misleading GSH/GSSG ratio. For this reason, we did not report the 

GSH/GSSG ratios. Rather our main conclusion is that the increase in GSH 

levels drives a change in the cells’ redox state since GSSG levels do not 

change (except for vitamin E). In fact, even though GSH levels increase in all 

antioxidant treated groups only vitamin E generates a significant change in 

the calculated ratio, and this is surprisingly a decrease. 

β3-AR activation has no effect on glutathione levels in 3T3-L1 adipocytes  

β3-AR stimulation of cultured adipocytes had no effect on the intracellular 

GSH or GSSG levels (Figure 8). This indicates that either adipocytes rapidly 

restore their GSH levels (that might have been decreased due to ROS 

generated by NADPH oxidases and/or from mitochondrial sources) or 
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changes in GSH are too small to be detected by this method. Surprisingly, 

when NAC-pretreated cells are stimulated with CL316,243, GSH levels are 

similar to the levels of untreated cells. From these data, we can infer that both 

compounds can interact, resulting in decreased GSH levels, either by an 

elevation of ROS levels or interference in GSH production. 

Figure 8.  (left) Relative GSH and (right) GSSG levels in cultured adipocytes 

treated with vehicle or 1 mM NAC for 48 h exposed to 1 µM CL316,243 or vehicle 

for. (n=4/group, *p<0.05). 

β3-AR activation increases ROS and Ucp1 production in 3T3-L1 adipocytes 

To confirm that the expected CL316,243-induced browning response is in 

place in our 3T3-L1 adipocytes, we analyzed Ucp1 mRNA expression. 

Indeed, CL316,243 treatment led to increased Ucp1 levels. However, 

contrary to our hypothesis, NAC pretreatment had no effect on Ucp1 

expression as shown in Figure 9. 

Figure 9. Ucp1 expression in cultured adipocytes pretreated with or without 1 

mM NAC for 24 h after 60’ incubation with 1µM CL316,243. (n=6/group). 

Palmitate can stimulate NADPH oxidase 4 (NOX4)-derived ROS production 

in adipocytes (Han, Umemoto et al. 2012). To elucidate the possibility of a 

similar effect through β3-AR-induced lipolysis, we measured transient effects 

on the ROS production in 3T3-L1-derived adipocytes using CM-H2DCF-DA 
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for 60 minutes. The ROS production increased 3-fold with adrenergic 

induction but, surprisingly, NAC pretreatment did not show any effect on the 

total ROS production in these lipolytic cells (Figure 10). 

Figure 10. (left) Representative ROS emission images (CM-H2DCF-DA) of cultured 

adipocytes before and 45’ after incubation with 5 µM CL316,243 and (right) 

quantification of the ROS emission of cultured adipocytes pretreated with or without 

1 mM NAC for 24 h after 60’ incubation with 1 µM CL316,243. (n=3/group, 

experiment repeated three times, **p<0.01). 

Next, we decided to selectively analyze the mitochondrial ROS production to 

investigate whether there is an effect of NAC treatment on the mitochondrial 

GSH pool leading to reduced ROS levels locally (that would not be picked up 

by measuring the total ROS levels by CM-H2DCF-DA). Indeed, it surely was 

an effect by NAC treatment, but rather than seeing a decrease, NAC 

increased the mitochondrial ROS production in CL316,243-stimulated cells. 

While this result may appear surprising, it has been previously reported that 

increased GSH levels can lead to a too reduced state in the mitochondria that 

increases the ROS production through reduction of oxygen to superoxide 

anion (Korge, Calmettes et al. 2015). Moreover. since ROS has been shown 

to inhibit respiration in adipocytes (Wang, Si et al. 2010), we analyzed the 

oxygen consumption and the glycolytic activity (lactate production) in NAC 

pretreated cells with and without CL316,243 stimulation. We found reduced 

oxygen consumption rate (OCR) and increased lactate production in NAC-

treated cells independently of adrenergic stimuli (Figure 11). Through 

analysis of the OCR in response to oligomycin, we found that this NAC-

induced decrease in respiration is not due to reduced uncoupled respiration 

but rather is an effect from reduced oxidative phosphorylation. 

  



Eduard Peris Franquet 

29 

Figure 11. (top) Area under the curve (AUC) quantification of MitoSox Red 

fluorescence of cultured adipocytes pretreated with or without 1 mM NAC for 24 h, 

30’ after incubation with 5 µM CL316,243. (n=3/group, **p<0.01). (bottom-left) 

Lactate levels in medium from cultured adipocytes incubated for 24 h with or without 

1 mM NAC in combination with CL316,243 (n=3/group, *p<0.05). (bottom-right) 

Oxygen consumption rate of cultured adipocytes treated in presence or absence of 1 

mM NAC for 48 h and thereafter exposed to 1 µM CL316,243 or vehicle during 20’ 

(n=12/group, ****p<0.0001). 

There were no morphological changes or signs of cell death through visual 

inspection indicating that the reduced respiration in NAC-treated cells is a 

successful adaptation that limits the buildup of too high mitochondrial ROS 

levels. However, Wang et al. shows that shorter-term NAC treatment actually 

can scavenge ROS and this effect is associated with increased oxygen 

consumption. To elucidate this discrepancy, we analyzed basal OCR in 3T3-

L1 adipocytes with different NAC concentrations during 30 minutes and a 

fixed dose for 24 and 48 h. Interestingly, the adipocytes display a completely 

opposite behavior depending on the exposure time. Short-time exposure leads 

to an increase in OCR i.e. under this condition NAC is likely acting as a ROS 

scavenger, leading to increased respiration (Figure 12).  



Adipose tissue mitochondrial function is modulated by antioxidants 

30 

Figure 12. (left) OCR of cultured adipocytes 30’ after NAC treatment, at indicated 

concentrations (n=10/group, ****p<0.0001). (center) OCR of cultured adipocytes 

treated with 1 mM NAC or 10 µM vitamin E (n=12/group, *p<0.05, ****p<0.0001). 

(right) NRF2 protein levels in cultured adipocytes treated with 1 mM NAC at the 

indicated time points (n=4/group, *p<0.05). 

Longer-term treatment (≥ 24 h) with NAC, on the other hand, resulted in 

reduced cellular respiration most probably due to a compensatory response to 

put a lid on the rising mitochondrial ROS levels. In line with this assumption, 

NAC treatment leads to activation of the Kelch-like ECH-associated protein 

1 (KEAP1)/Nuclear factor erythroid 2-related factor 2 (NRF2) pathway, a 

protective mechanism triggered by increased ROS-levels (Ma 2013), 

resulting in elevated levels of NRF2 protein (Figure 12) that in turn induce 

increased expression of cytoprotective proteins. 

The difference between short- and long-term effects of NAC could be 

explained on the basis of NAC acting as an antioxidant, scavenging ROS in 

the acute exposure setting but triggering reductive stress i.e. increased ROS 

production, due to increased mitochondrial GSH levels, and thus reduced 

oxygen consumption and activation of the KEAP1/NRF2 pathway when 

treatment is prolonged. 

Vitamin E effects in 3T3-L1 adipocytes 

Vitamin E is a member, together with vitamin C and thiols (e.g. glutathione), 

of the so called antioxidant protective network of the cell, as shown in Figure 

13 (Packer, Weber et al. 2001).  
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Figure 13. The antioxidant network showing the interaction among vitamin E, 

vitamin C and thiol redox cycles. Packer et al., published by The Journal of Nutrition 

(2001). 

Vitamin E had similar consequences in cultured adipocytes as NAC although 

to a lesser extent i.e. vitamin E increased glutathione levels (as shown in 

Figure 7), that further increased β3-AR stimulation-induced mitochondrial 

ROS production associated with reduced OCR. Interestingly, vitamin E 

treatment at a lower dose (1 µM) than we used, has been shown to have no 

impact in mitochondrial function in murine mesangial cells, but when 

conjugated to TPP
+
 to specifically target mitochondria, it reduces oxygen 

consumption by 30 % due to reduced oxidative phosphorylation associated 

with increased glycolysis (Reily, Mitchell et al. 2013). Thus, we propose that 

the higher vitamin E concentration and treatment duration in our adipocyte 

studies could lead to sufficient mitochondrial vitamin E accumulation to 

cause a negative impact on oxygen consumption. Considering the 

interconnection between vitamin E and the thiols in the antioxidant network, 

we hypothesize that treatment with vitamin E, through increased GSH 

mitochondrial levels, leads to similar consequences as treatment with NAC 

i.e. reduced basal OCR and increased mitochondrial ROS production. 

To summarize this section, β3-AR activation in 3T3-L1 adipocytes leads to 

an increase in ROS and Ucp1 expression, but 24 h antioxidant pretreatment 

does not prevent these effects. Furthermore, this NAC preconditioning of 

adipocytes increases the mitochondrial ROS levels associated with reduced 

oxygen consumption and elevated glycolysis. In conclusion, exogenous 
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antioxidants can, at least in adipocytes, lead to increased mitochondrial ROS 

production, likely through an elevation of mitochondrial GSH levels; 

therefore, they cannot be used as a tool to study the role of ROS in β3-AR 

activation-induced browning of adipose tissue. 

ANTIOXIDANT EFFECTS IN MOUSE ADIPOSE TISSUE 

NAC treatment leads to impaired fatty acid clearance in mice 

To elucidate whether the observed effect of antioxidants on mitochondrial 

ROS production in vitro could translate into a disturbance of the browning 

process in vivo, we treated mice with either regular or NAC-supplemented 

drinking water for a week. Then, we injected animals for 10 days with either 

vehicle or CL316,243 to induce browning of IWAT. Tissues and samples 

were collected at 3 h, 24 h and 10 days (daily injection) post injection. 

At all timepoints, no differences in total body weight across the four groups 

were observed. Furthermore, there were no differences in body weight-

normalized weight of IWAT, GWAT or BAT between animals injected with 

CL316,243 on regular and NAC-supplemented water. Relative gene 

expression analysis of browning markers in the collected adipose tissues, 

showed no effect of NAC treatment in CL316,243 injected animals after 3 

and 24 h. These data suggest that our antioxidant treatment regimen does not 

interfere with the acute browning response. 

Short-term NAC treatment (1.5 hours) has been shown to reduce ROS and 

lipolysis in cultured human adipocytes (Krawczyk, Haller et al. 2012). To test 

whether lipolysis is affected by antioxidant treatment in our experimental 

setting, mice were treated for a week with water or NAC and further injected 

with either vehicle or CL316,243. NAC had no effect on serum glycerol 

levels, neither in vehicle nor β3-AR-stimulated mice (Figure 14). 

Interestingly, serum FFA levels of NAC-treated mice were significantly 

higher compared to control animals receiving regular water. Thus lipolysis, 

as judged by glycerol levels, was not influenced by NAC treatment. 

However, the higher FFA levels suggest reduced fatty acid clearance, which - 

given our in vitro data - points towards a reduced mitochondrial metabolism 

in NAC-treated mice. 
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Figure 14. (left) Quantification, of a 60-minute time course, of glycerol and (right) 

FFA levels in serum of mice pretreated for 1 week with either water or NAC 1 g/L 

solution injected with either vehicle or 1 µg of CL316,243 per g of body weight and 

area under the curve (AUC) (n=5/group, ****p<0.0001, ≠p<0.0001). 

NAC treatment reduces browning of IWAT 

After 10 days of daily CL316,243 treatment (i.e. 2.5 weeks of antioxidant 

treatment), NAC reduced the CL316,243-induced mRNA and protein 

expression of several browning and mitochondrial markers in IWAT (Ucp1, 

Pgc1α, Cytochrome c oxidase subunit 4 isoform 1 (CoxIV) and 

mitochondrially encoded ATP synthase membrane subunit 6 (Atp6). 

Furthermore, the COXIV protein expression was reduced in NAC-treated 

mice even in absence of β3-AR activation (Figure 15). These data are thus 

consistent with mitochondrial dysfunction in white adipose tissue of NAC-

treated mice. 
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Figure 15. (top) Relative mRNA expression of Ucp1, Pgc1α, CoxIV and Atp6  in 

IWAT in response to the different treatment regimens in C57/BL6J mice, 

(n=10/group, *p<0.05, **p<0.01). (bottom-left) Relative UCP1 and (bottom-right) 

COXIV protein expression in IWAT (n=5/group, *p<0.05, **p<0.01 ****p<0.0001). 

To further explore the effect of NAC on adipocyte mitochondrial function, 

we analyzed lipid and mitochondrial density in freshly dissected mouse 

IWAT samples using combined CARS and 2-PE fluorescence microscopy. 

Stimulation of β-ARs in IWAT is typically associated with a reduction in 

lipid density (Granneman, Li et al. 2005) combined with increased number of 

mitochondria per cell (Barneda, Frontini et al. 2013). Through image 

analysis, both these effects could be observed in CL316,243-treated animals, 

but NAC preconditioning blunted this reduction in lipid density and 

mitochondrial increased density/activity (Figure 16). The CL316,243-induced 

difference in mitochondrial density/activity was significant between groups 

also when mitochondrial density/activity were analyzed as absolute areas, 

while the lipid density area was no longer different between groups arguing 

that reduced mitochondrial density/activity is the primary mechanism 

underlying the blunted IWAT browning in NAC-treated mice. 
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Figure 16. (top) Representative images of fresh pieces of IWAT of C57/BL6J mice 

pretreated for 1 week with either water or NAC 1 g/L solution followed by 10 days 

injection with either vehicle or 1 µg of CL316,243 per g of body weight of CARS 

(lipids, in purple) and 2-PE fluorescence microscopy (mitochondria, in green). 

(middle) Relative and (bottom) absolute quantification of (left) lipid content and 

(right) mitochondrial density/activity in experiments depicted (n=5/group, *p<0.05, 

**p<0.01). 

The average adipocyte size did not differ between groups, but there was 

considerable variability in cell size leading to larger variability in lipid 

density and mitochondrial density/activity when these parameters are 

analyzed as absolute area as opposed to % of cell area. No changes in 

morphology of lipid droplets could be observed in cells treated with NAC 

alone, neither with regard to total density nor number of droplets per cell 

(data not shown). 
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Another interesting consequence of NAC treatment in white adipose tissue 

was the increase in relative IWAT and GWAT weights (normalized to body 

weight (Figure 17). Oxidative stress has been shown to contribute to an 

upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in hepatocytes 

(Ito, Oumi et al. 2006). Indeed, Pepck, the rate-limiting enzyme for 

glyceroneogenesis and essential for re-esterification of fatty acids in adipose 

tissue (Hanson and Reshef 2003), was increased 3.5-fold by NAC treatment 

in IWAT. This increase in Pepck may at least in part explain the increased fat 

pad weight in NAC-treated control animals and could also be regarded as a 

secondary adaptation to reduce the risk of the lipotoxic effects from increased 

circulating fatty acid levels. 

We suggest that NAC-induced mitochondrial reductive stress in IWAT (as 

we demonstrated in 3T3-L1 adipocytes) interferes with both the components 

necessary to accomplish a complete β3-AR activation-induced browning 

response and the systemic FFA clearance, resulting in an increased FFA 

reuptake by WAT. 

Figure 17. (left) IWAT, GWAT and BAT weight (normalized to total body weight) in 

response to the different treatment regimens in C57/BL6J mice (n=10/group, 

*p<0.05, **p<0.01). (right) Relative Pepck levels in IWAT 10 days after CL316,243 

treatment (n=10/group, ***p<0.001). 

Effect of vitamin E treatment on IWAT browning 

To study whether the observed effect on white adipose tissue browning in 

NAC-treated mice could be reproduced with other antioxidant that also has 

an effect in glutathione levels, we investigated the effect of vitamin E 

treatment on CL316,243-induced browning in mice. 
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Figure 18. (left) IWAT, GWAT and BAT weight, normalized to total body weight, in 

response to the different treatment regimens in C57/BL6J mice (n=10/group). (right) 

Relative mRNA expression of Ucp1, Pgc1α, CoxIV, and Atp6 in IWAT, post chronic 

CL316,243 treatment (n=10/group, *p<0.05, **p<0.01). 

Vitamin E-treated mice did not show an increase in fat pad weights and no 

significant effect on Ucp1 and Pgc1α mRNA expression in IWAT (Figure 

18). However, vitamin E treatment reduced the CL316,243-induced 

expression of the mitochondrial markers Atp6 and CoxIV in IWAT. Thus, 

similarly to what we observed in vitro, vitamin E has a weaker effect on a 

white adipose tissue compared to NAC in this regard. Thus, both NAC and 

vitamin E interfered with CL316,243-induced mitochondrial changes, but 

NAC had a more potent effect than vitamin E. We hypothesize that the 

indirect effect of vitamin E treatment on mitochondrial glutathione levels, as 

we showed previously in 3T3-L1 cells, is not strong enough to exert 

sufficient reductive stress to cause the same negative impact as NAC 

treatment in adipose tissue. 

NAC treatment induces mitochondrial dysfunction in BAT 

NAC treatment had no effect on body weight-normalized BAT weight either 

in controls or in CL316,243 injected animals (Figure 19). Although no 

differences could be observed in Upc1 and Pgc1α mRNA levels, UCP1 

protein levels were upregulated in BAT of CL316,243 treated animals in line 

with previous studies (Park, Jung et al. 2015, Xiao, Goldgof et al. 2015). 

Importantly, this upregulation was slightly blunted in NAC-treated animals 

(Figure 19). Furthermore, NAC treatment blunted the CL316,243-induced 

increase in Atp6 and CoxIV mRNA levels in BAT. This effect on CoxIV 

mRNA expression was however not observed at the protein level. 
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Figure 19. (top) Relative mRNA expression of Ucp1, Pgc1α, CoxIV, and Atp6 in BAT 

in response to the different treatment regimens in C57/BL6J mice, (n=10/group, 

*p<0.05, **p<0.01). (bottom-left) Relative UCP1 and (bottom-right) COXIV protein 

expression in IWAT (n=5/group, *p<0.05). 

Moreover, NAC completely suppressed the CL316,243-induced reduction in 

lipid density and, even in the absence of CL316,243 stimulation, reduced the 

mitochondrial density/activity of freshly dissected BAT as judged by 

combined CARS and fluorescence microscopy (Figure 20). 

The difference in mitochondrial density/activity between NAC and their 

corresponding controls remained significant in CL316,243 treated mice even 

if when measured as absolute area. Similar to IWAT, lipid density measured 

as absolute area/cell and average brown adipocyte size did not differ between 

groups suggesting that the NAC-induced difference in mitochondrial 

density/activity is the primary driver of the observed BAT phenotype. 

Rhodamine 123 is a probe that is commonly used to locate mitochondria by 

fluorescence microscopy (Johnson, Walsh et al. 1980), but can also be used 

to monitor the membrane potential of mitochondria (Baracca, Sgarbi et al. 

2003), i.e. mitochondrial activity. The reduced Rhodamine 123 staining of 

freshly dissected BAT samples in NAC-treated mice may thus be due to both 

reduced mitochondrial density and blunted activity. However, measurements 

of the relative protein levels of four OXPHOS complexes in BAT showed no 

differences across the four groups thus arguing that it is the mitochondrial 

activity rather than the density that is affected. Activation of β3-ARs has 
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been shown to increase free fatty acid uptake and utilization in BAT in vivo 

(Warner, Kjellstedt et al. 2016). We thus suggest that these data provide a 

plausible explanation for the elevated CL316,243-induced FFAs levels in 

NAC-treated mice. 

Figure 20. (top) Representative images of fresh pieces of BAT of C57/BL6J mice 

pretreated for 1 week with either water or NAC 1 g/L solution followed by 10 days 

injection with either vehicle or 1 µg of CL316,243 per g of body weight of CARS 

(lipids, in purple) and 2-PE fluorescence microscopy (mitochondria, in green). 

(middle) Relative and (bottom) absolute quantification of (left) lipid content and 

(right) mitochondrial density/activity in experiments depicted (n=5/group, *p<0.05, 

**p<0.01). 

Data obtained from studies of 3T3-L1 adipocytes do not necessarily reflect 

the functionality of brown adipocytes. To further investigate the NAC-

mediated mitochondrial dysfunction in brown adipocytes, we therefore 
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isolated and differentiated primary brown preadipocytes into mature brown 

adipocytes in vitro. In this model of brown adipocytes, NAC treatment 

reduced basal respiration, uncoupled respiration, ATP-production linked 

respiration and spare respiratory capacity independently of adrenergic 

activation as judged by oxygen consumption rate analysis (Figure 21). 

Figure 21. (top) OCR of primary brown cultured adipocytes treated with 1 mM NAC 

for 48 h and 1 µM CL316,243 for 24 h analyzed using the Seahorse Technology; 

cells were sequentially treated (dashed lines show addition points) with 1 µM 

Oligomycin, 0.6 µM FCCP, and 0.5 µM Rotenone plus Antimycin A to assess 

mitochondrial function and (middle and bottom) calculate its main parameters 

(n=14/group, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 

In conclusion, we believe that 1) the reduction in FFA clearance in NAC-

treated mice, 2) the reduction in mitochondrial activity in BAT as judged by 

fluorescence microscopy in tissues, and 3) the reduction in oxygen 

consumption in cultured NAC-treated brown adipocytes, demonstrates that 

our chronic NAC treatment regimen leads to mitochondrial dysfunction in 

BAT.  



Eduard Peris Franquet 

41 

NAC supplementation leads to reductive stress in mouse adipose tissue 

Increased cellular ROS levels activate the NRF2/KEAP1 pathway, leading to 

increased levels of NRF2 (Bryan, Olayanju et al. 2013). This pathway 

stimulates the production of PRDXs (Miyamoto, Izumi et al. 2011) and 

SODs (Sun, Ren et al. 2015) that protect the cells from oxidative damage. 

IWAT Sod2 mRNA levels were upregulated in mice receiving both NAC and 

CL316,243 compared to their controls. Moreover, NAC-treated animals, 

independently of adrenergic activation, displayed significant upregulation of 

SOD2 protein expression levels compared to their controls. Similarly, but 

more dramatically, IWAT PRDX3 levels were also upregulated (Figure 22). 

Interestingly PRDX2, another peroxiredoxin enriched in the cytosol is 

equally expressed by all groups (Figure 22). In line with our ROS 

measurements in 3T3-L1 adipocytes, these PRDX data suggest that the 

increased reductive stress of IWAT in NAC-treated mice is localized to the 

mitochondria. 

Figure 22. (top-left) IWAT and BAT Sod2 mRNA expression after 10-day treatment 

with CL316,243 in C57/BL6J mice on either NAC-supplemented or regular water 

(n=5/group, **p<0.01). (top-right) SOD2, (bottom-left) PRDX3, and (bottom-right) 

PRDX2 protein levels in IWAT after 10-day treatment with CL316,243 in C57/BL6J 

mice on either NAC-supplemented or regular water (n=5/group, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. 
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Thus, NAC, although being antioxidant, upregulates the production of 

mitochondrial enzymes that are responsible to scavenge superoxide anion and 

hydrogen peroxide, i.e. signs of increased oxidative stress. This pro-oxidant 

behavior of antioxidants may appear surprising, but it is well in line with a 

previous myoblast study where NAC treatment, especially at low ROS levels, 

leads to an alteration of the GSH homeostasis resulting in mitochondrial 

oxidation (Zhang, Limphong et al. 2012). The alteration of GSH homeostasis 

has been linked to chemical reduction of oxygen to superoxide anion, 

resulting in increased ROS levels, in a process referred to as reductive stress, 

in opposition to oxidative stress (Korge, Calmettes et al. 2015) although the 

outcome in both is elevated ROS production with similar consequences. 

Oxidative stress is linked to increased mitochondrial fission (Ježek, Cooper et 

al. 2018), and reductive stress has been shown to increase the unfolded 

protein response in the endoplasmic reticulum. Under our experimental 

conditions, we could however not detect any effects of NAC treatment on 

either mitochondrial fission/fusion related genes expression or changes in 

Xbp1 mRNA expression, a marker of endoplasmic reticulum stress (Wang 

and Kaufman 2016). One possibility is that we fail to observe such 

phenomena due to the transient nature of transcriptional regulation. 

CONCLUDING REMARKS ON PAPER I 

Our adipose tissue data confirms the occurrence of reductive stress in 

antioxidant-treated mice likely due to increased GSH levels in adipocytes, 

driving the reduction of molecular oxygen to superoxide in the adipocytes’ 

mitochondria, i.e. elevation in ROS production. The adipocytes adapt to this 

pro-oxidant effect of chronic antioxidant treatment by activating the 

NRF2/KEAP1 pathway and reducing their mitochondrial oxidative 

metabolism as evident from e.g. the blunted β3-AR-activation induced 

browning of IWAT (Figure 23). 
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Figure 23. Model of antioxidant and β3-AR agonist effects on ROS and 

mitochondrial activity in adipocytes. 
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Prolonged N-acetylcysteine treatment induces 
mitohormesis in adipose tissue (Paper II) 

Antioxidants are commonly used for their potential to fight oxidative stress in 

conditions where imbalance in ROS production and neutralization plays a 

central role. In vitro studies of myocytes (Singh, Charles et al. 2015) and 

tumor cells (Sceneay, Liu et al. 2013), or in vivo (Fulghesu, Ciampelli et al. 

2002, Palmer, Doctor et al. 2007, Wright, Renoir et al. 2015, Ma, Gao et al. 

2016, Pinniger, Terrill et al. 2017) in mice and humans have investigated the 

effects of NAC treatment using a broad range of concentrations and 

durations, from 2 weeks to 4 months, describing both beneficial results (e.g. 

protection against HFD-induced obesity, improvement of insulin sensitivity 

in women with polycystic ovarian syndrome or protection against 

neurological diseases) and deleterious effects (mitochondrial dysfunction, 

increased metastasis or reduced growth). 

Temporary elevation of mitochondrial ROS levels (Lettieri Barbato, Tatulli et 

al. 2015, Zhang, Humes et al. 2018) or SOD2 levels (Yang and Hekimi 2010) 

trigger a coordinated response leaving the cell less susceptible to subsequent 

perturbations. We thus hypothesize that NAC treatment, although causing 

reduced mitochondrial function (as shown in paper I), also has the potential 

to enhance mitochondrial function in adipocytes in mice through 

mitohormesis. We also hypothesize that such hormetic effect of NAC is dose-

dependent. Based on reports from previous studies, we chose three different 

concentrations of NAC in drinking water to cover a broad range of doses: 

- Low dose, 0.5 g/L in drinking water, which is half of 

the dose used in the majority of mouse studies. 

- Middle range dose, 2 g/L in drinking water, used e.g. 

in a study on HFD-fed mice and was shown to reduce 

weight gain (Ma, Gao et al. 2016). 

- High dose, 10 g/L in drinking water to study the 

possibility of aberrant side-effects. 

Based on the analysis of published studies, we wanted to follow NAC-

treatment effects from relatively short (2 and 4 weeks) and chronic exposure 

(16 weeks). 
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SHORT-TERM NAC TREATMENT EFFECTS 

2-week high dose NAC treatment leads to reduced weight gain and reduced 

mitochondrial function in BAT  

Mice treated with the highest NAC dose (10 g/L) showed a 7.8 % lower body 

weight than controls after 2 weeks of treatment as shown in Figure 24. This 

effect was due to reduced weight gain, not detected in the lower dose groups. 

Body composition determined by DEXA revealed no differences in body fat 

percentage or bone mass. Body length was not different between control and 

NAC treated mice. Interestingly, the absolute lean mass was however lower 

in the 10 g/L NAC-group than in controls. 

Figure 24. (left) Total body weight and fat percentage of C57BL/6J mice treated for 

2 weeks with either water or NAC 10 g/L solution (n=5/group, *p<0.05). (right) 

Fasting glucose and insulin levels of mice treated with either water or NAC 10 g/L 

solution (n=5/group). 

Short-term NAC treatment can lead to reductive stress in myoblasts (Singh, 

Charles et al. 2015). Moreover, ROS can reduce lean body mass by 

stimulating the expression and activity of skeletal muscle protein degradation 

pathways (Abrigo, Elorza et al. 2018). Thus, the observed reduction in 

absolute lean mass in the 10 g/L NAC-group could be attributed to reductive 

stress in muscle. 

To further study the pro-oxidant effect of NAC in adipocytes that we 

established in paper I, we analyzed the functionality of isolated mitochondria 

from BAT of mice treated with 10 g/L of NAC for 2 weeks and their 

controls. There was a significant reduction of BAT mitochondrial OCR in 

NAC treated animals that we interpret as a sign of reductive stress. 

Mitochondrial oxidants have been shown to cause insulin resistance 

impairing the Glucose Transporter type 4 (GLUT4) localization to GLUT4 

storage vesicles without changes in the oxidative phosphorylation machinery 

in an in vitro model (Fazakerley, Minard et al. 2018). In our study, at 2 weeks 

of NAC treatment, there were no significant differences in basal insulin and 

glucose levels (Figure 24). This suggest that, although the body is under 

reductive stress as evident from the mitochondrial dysfunction in IWAT 
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(shown in paper I), reduced mitochondrial activity in BAT and reduced lean 

mass gain, there are sufficient compensatory mechanisms available to sustain 

glucose homeostasis and whole-body insulin sensitivity under unchallenged 

conditions. 

4-week high dose NAC treatment induces reductive stress in IWAT and BAT 

To explore the possibility of a dose-dependent reductive stress effect of NAC 

in white and brown adipose tissue, we exposed mice to the three different 

doses during 4 weeks. Indeed, there was a dose- and tissue dependent effects 

of antioxidant treatment on PRDX3 and SOD2, two enzymes whose 

expression is induced by oxidative stress (Whitaker, Patel et al. 2013, Candas 

and Li 2014). IWAT PRDX3 protein expression was increased in the 10 g/L 

NAC group, while IWAT SOD2 protein levels remained similar between 

groups. In BAT, on the other hand, the PRDX3 expression was unaffected, 

but SOD2 was upregulated in a dose-dependent manner, reaching 

significance at 2 and 10 g/L (Figure 25). To understand the different response 

of IWAT and BAT to NAC-induced reductive stress, we analyzed mRNA 

expression levels of several mitochondrial-related genes. In IWAT, along 

with the upregulated expression of PRDX3 protein, there was a simultaneous 

upregulation of peroxisome proliferator-activated receptor gamma 

coactivator 1-beta (Pgc1β), a well-stablished regulator of mitochondrial 

biogenesis and fatty acid β-oxidation (Bouitbir, Charles et al. 2012) 

suggesting that a mitohormesis process has been triggered. In BAT, the 

upregulation of SOD2 protein was connected to a significant reduction of 

Atp6 and cytochrome c oxidase subunit I (CoxI), two mitochondrial 

respiration related-genes, a possible sign of reduced activity in brown 

adipocytes. 
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Figure 25. (top-left) Relative protein expression of PRDX3 in IWAT and (bottom-left) 

relative protein expression of SOD2 in BAT (n=5/group, *p<0.05, **p<0.01, 

****p<0.0001). Relative mRNA expression of adipocyte, mitochondrial and energy 

disposal related genes in (top-right) IWAT and (bottom-right) BAT after 4-week NAC 

treatment (n=5/group, *p<0.05, **p<0.01). 

As an alternative to a mitohormesis-based explanation for the increased 

expression of Pgc1β,  the decrease in BAT mitochondrial activity can lead to 

a compensatory effect in IWAT, similarly to the effect shown in BAT-ablated 

mice (Piao, Zhai et al. 2018). 

Clearly, the response to short-term NAC treatment is cell-specific, and thus 

different between white and brown adipocytes. Different basal levels of 

antioxidant endogenous enzymes due to these adipocytes types’ different 

functions, might explain these protein expression differences after 4 weeks of 

NAC treatment. 

CHRONIC NAC TREATMENT LEADS TO MITOHORMESIS 

16-week high-dose NAC treatment leads to increased mRNA expression of 

browning markers in IWAT 

After 16 weeks of NAC treatment, IWAT and BAT PRDX3 and SOD2 

protein levels were no longer different between groups, implying that an 

adaptation to the reductive stress has occurred  thus normalizing the levels of 

the main components of the previously upregulated mitochondrial 

endogenous antioxidant system. Alternatively, the reductive stress has 

become chronic and no longer triggers an adaptive increase in antioxidant 
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enzymes. The transcriptional response in IWAT of mice treated with the 

highest dose of NAC had a browning-like profile, with significant 

upregulation of Ucp1 (also observed at the protein level in isolated 

mitochondria from IWAT (Figure 31)), Pgc1α, Pgc1β, CoxI and Atp6 

(Figure 26). The increased expression of Pgc1α and β suggest stimulation of 

mitochondrial biogenesis. Surprisingly, Pparγ, a marker of adipocyte 

differentiation and functionality (Chawla, Schwarz et al. 1994), was 

downregulated in IWAT, suggesting that NAC treatment downregulates 

adipocyte renewal or causes adipocyte dedifferentiation. In BAT, no major 

transcriptional differences could be observed, thus the expression of CoxI and 

Atp6 expression had returned to normal levels in the highest NAC dose. 

However, there were some minor differences depending on the dose: CoxIV 

was downregulated in the lowest NAC dose in BAT, and in IWAT from mice 

treated with 2 g/L. One could attribute these differences to a delayed 

hormetic response at the lower doses of NAC or the existence of the minimal 

dose threshold to trigger the hormetic response, i.e. 0.5 and 2 g/L are on the 

left part of the U-shaped typical dose-response of a hormetic process. 

Figure 26. Relative mRNA expression of adipocyte, mitochondrial and energy 

disposal related genes in (top) IWAT and (bottom) BAT after 16-week NAC treatment 

(n=5/group, *p<0.05, **p<0.01). 
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16-week high-dose NAC treatment is associated with reduced fat mass and 

increased mitochondrial function in IWAT 

Only the highest dose of NAC caused a difference in body weight and body 

mass composition. Although food consumption was similar between groups, 

16-week 10 g/L NAC treatment led to a 22 % reduction in body weight and a 

5.8 % reduction in body length compared to control (Figure 27). 

Figure 27. (left) Body weight, (center) fat percentage, (right) lean mass 

(normalized to body length) of C57BL/6J mice treated for 16 weeks with either 

water or NAC 0.5, 2 or 10 g/L solution (n=5/group, *p<0.05, **p<0.01). 

The reduced body weight gain was mainly due to a reduction in fat mass, 

responsible for 88 % of the lower body mass. A reduction in lean mass gain 

was thus responsible for the remaining 12 %. Moreover, the white adipose 

tissue weight was severely affected by 10 g/L NAC treatment with a 38 % 

reduction in GWAT weight and a 53 % reduction in IWAT weight (Figure 

28). 

Figure 28. (left) IWAT, (center) GWAT and (right) BAT weight of C57BL/6J mice 

treated for 16 weeks with either water or NAC 0.5, 2 or 10 g/L solution (n=5/group, 

**p<0.01, ***p<0.001). 

As judged by the mRNA expression, the primary target for a possible 

mitohormetic response of antioxidant treatment is white adipose tissue where 

chronic high-dose NAC treatment was associated with an upregulation of 

browning and mitochondrial genes. To further study the mitochondrial 

function in white adipose tissue at this stage, we performed OCR analysis of 

freshly dissected IWAT after 16 week-NAC treatment. IWAT samples from 

mice treated with the lowest dose of NAC showed a significant reduction in 
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OCR, while the OCR of IWAT samples from mice treated with higher doses 

was similar to the untreated control (Figure 29). This reduction in OCR in 

response to chronic low-dose NAC treatment can be interpreted as a sign of 

reductive stress, but the mitochondrial antioxidant enzymes PRDX3 and 

SOD2 were not different from controls. Altogether, we interpret these data as 

a sign of chronic reductive stress in IWAT from mice treated with the lowest 

NAC dose i.e the NAC dose is not high enough to trigger sufficient 

adaptation to the pro-oxidant effects of NAC leading to a sustained reduction 

of OCR limiting the mitochondrial ROS production. 

Figure 29. IWAT OCR measured in fresh tissue samples from C57BL/6J mice treated 

for 16 weeks with either water or NAC 0.5, 2 or 10 g/L solution (n=3/group, 

*p<0.05). 

Based on the transcriptional response, we had anticipated increased IWAT 

OCR in mice treated with the highest NAC dose. OCR measurements of 

whole adipose tissue have however its limitations as discussed previously in 

the Methods section. We thus decided to perform a more thorough 

examination of the mitochondrial function in IWAT and BAT through 

analysis of isolated mitochondria. In support of a mitohormetic response in 

IWAT in mice on chronic high-dose NAC treatment, we found increased 

basal and ATP production-linked respiration in isolated IWAT mitochondria. 

The uncoupled respiration and the respiratory control ratio (RCR) showed 

however no difference likely due to large variation within groups. In contrast, 

isolated BAT mitochondria showed no difference in OCR in any parameter 

(Figure 30 and data not shown). 
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Figure 30. (top-left) Basal respiration, (top-right) ATP production, (bottom-left) 

uncoupled respiration and (bottom-right) RCR measured in isolate mitochondria 

from IWAT samples from C57BL/6J mice treated for 16 weeks with either water or 

NAC 10 g/L solution (n=3/group, *p<0.05, **p<0.01). 

To delineate whether these changes in the mitochondrial performance can be 

attributed to changes in protein components of the electron transport chain, 

we analyzed OXPHOS proteins in isolated IWAT mitochondria (Figure 31). 

This analysis showed major differences between control mice and mice 

treated with the highest NAC dose; IWAT complex I and II protein members 

(NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 

(NDUF8B) and Succinate dehydrogenase [ubiquinone] iron-sulfur subunit 

(SDHB) respectively) were markedly upregulated in the NAC-treated group. 

Complex I and II are receiving electrons from respectively, NADH and 

FADH2 that should increase during reductive stress. Thus, it is possible that 

changed activity of these complexes is driving the observed mitochondrial 

changes in IWAT. There was also a trend towards an upregulation of 

complex IV. Complex V was however ubiquitously expressed and was 

therefore used as a loading control for the relative quantification of UCP1. 

Even though we did not detect increased uncoupled respiration, the 

mitochondria from NAC-treated animals displayed a 5-fold increase in UCP1 

protein expression. We attribute this discrepancy to the rather large 

variability in the OCR analysis. It is possible that the mitochondria function 

becomes more or less altered by the isolation procedure. 
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Figure 31. (top-right) UCP1 and (top-left) OXPHOS complexes protein expression: 

representative blot and (middle and bottom) quantification from isolate mitochondria 

from IWAT samples from C57BL/6J mice treated for 16 weeks with either water or 

NAC 10 g/L solution (n=3/group, *p<0.05, **p<0.01). 

Similar to our study, 8-week treatment with daily NAC IP injections has been 

shown to reduce body weight in a dose-dependent manner (Kim, Ryu et al. 

2006). This effect was in part explained by a reduction of GWAT weight, 

while IWAT weight remained unaffected (Kim, Ryu et al. 2006) possibly due 

to a different administration method and/or shorter treatment time compared 

to our study. The reduced GWAT weight gain detected by Kim and 

colleagues was attributed to NAC’s inhibitory effect on adipocyte 

differentiation (Kim, Ryu et al. 2006). The downregulation of Pparγ mRNA 

expression we observed in IWAT adds support for such hypothesis, but we 

propose that the IWAT browning phenotype also plays a role for the reduced 

fat mass through increased energy expenditure. On the other hand, we saw no 

signs of enhanced mitochondrial functionality in BAT, the primary site for 

non-shivering thermogenesis. Moreover, whole-body energy balance is 

regulated by the brain implying that it is likely to also be a central component 

involved in the lowered body weight in NAC-treated mice.  
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16-week high-dose NAC treatment is associated with improved whole-body 

insulin sensitivity 

To assess if the changes in body composition and IWAT mitochondrial 

function alter whole-body metabolism, we measured fasting glucose and 

insulin levels in mice treated for 16 weeks with of NAC. While basal glucose 

levels were similar between groups (data not shown), the insulin levels were 

affected in a NAC dose dependent manner. Mice receiving the highest NAC 

dose displayed a significant improvement in insulin sensitivity as judged by 

reduced fasting insulin levels and HOMA-IR index (Figure 32). 

Figure 32. (left) Fasting serum insulin levels and (right) calculated HOMA-IR 

indexes in C57BL/6J mice given water or NAC 0.5, 2 or 10 g/L solution (n=5/group, 

*p<0.05). 

Such NAC-induced improvement in insulin sensitivity has been reported 

previously in hyperinsulinemic patients (1.8 g/day for 6 weeks) (Fulghesu, 

Ciampelli et al. 2002), in an insulin resistant rat model (1-2 g/L, 

corresponding to 2 g/kg/day in drinking water) (El Midaoui, Ismael et al. 

2008) and in high-fat diet fed mice (2 g/L in drinking water for 11 weeks) 

(Ma, Gao et al. 2016). In all these studies, there was a reversal of insulin 

resistance, attributed to NAC’s antioxidant properties and the consequent 

anti-inflammatory effect. However, in our study mice are normoinsulinemic 

at the starting point with a completely unchallenged metabolic homeostasis, 

yet they are experiencing insulin sensitization together with a browning-like 

process in white adipose tissue when treated with 10 g/L of NAC for 16 

weeks. Moreover, mice treated with the lowest dose displayed significantly 

increased insulin levels without a change in their glucose levels, i.e. a sign of 

insulin resistance (although not severe enough to change the HOMA-IR). 

This increase in insulin levels could be attributed to the lack of a 

mitohormetic response and thus the chronification of reductive stress as 

evident from the reduced IWAT respiration. 
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CONCLUDING REMARKS ON PAPER II 

NAC treatment of unchallenged chow-fed mice results in a biphasic behavior 

of adipose tissue where the final outcome on mitochondrial function is tightly 

connected to both the adipose tissue type and the dosage. Short-term (2 

weeks) high dose NAC treatment (10 g/L) increases the levels of the 

mitochondrial antioxidant enzymes in IWAT and BAT, and reduces 

mitochondrial respiration in BAT. After 16 weeks of high dose NAC 

treatment, BAT shows neither signs of compromised nor improved 

mitochondrial function indicating that BAT adapts, but does not 

supercompensate, to the reductive stress. IWAT, on the other hand, shows 

improved mitochondrial function in response to 16-week high dose NAC 

treatment as judged by both gene expression and mitochondrial analyses. 

Interestingly, mice kept on the lowest NAC dose (0.5 g/L), develop slight 

insulin resistance and display reduced IWAT OCR. We believe this negative 

outcome from low dose NAC treatment is due to chronic reductive stress and 

thus insufficient upregulation of e.g. mitochondrial antioxidant enzymes, 

OXPHOS proteins and mitochondrial biogenesis. 

In conclusion, this study demonstrates that chronic NAC treatment, provided 

that the dose is adequate, can lead to a mitohormetic process in white adipose 

tissue associated with reduced fat mass and increased insulin sensitivity. 

Importantly, these results challenge the current paradigm where antioxidants 

primarily are thought to act as scavengers and thereby improve health by a 

simple reduction of oxidative stress. Moreover, our work may also explain 

the lack of effects or even the deleterious effects of NAC in some settings. 
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5 CONCLUSIONS AND FUTURE 
PERSPECTIVES 

In this thesis we have studied the effects of antioxidant treatment on 

mitochondrial function in white and brown adipose tissue in vitro and in vivo. 

Our main conclusions from these studies are: 

1. β3-AR activation in 3T3-L1 adipocytes leads to increased 

ROS production and increased UCP1 expression. These 

effects cannot be prevented by 24 h antioxidant 

pretreatment. 

2. 24 h NAC pretreatment of 3T3-L1 adipocytes drives 

mitochondrial changes resulting in reduced basal oxygen 

consumption associated with elevated glycolysis. Thus, 

antioxidants cannot be used as tools to study the role of 

ROS in β3-AR-mediated responses of adipocytes. 

3. 2-week NAC treatment (1 g/L in drinking water) of 

unchallenged chow-fed mice leads to reductive stress in 

adipose tissue, associated with reduced β3-AR agonist-

mediated browning of IWAT and mitochondrial 

dysfunction in BAT. 

4. NAC treatment of unchallenged chow-fed mice leads to a 

biphasic response where the effect on mitochondrial 

function in adipose tissue is tightly connected to the 

adipose tissue type and the treatment dose and duration. 

5. Chronic NAC treatment can lead to a mitohormetic process 

in IWAT i.e. supercompensation to reductive stress leading 

to increased mitochondrial function (browning) associated 

with reduced fat mass and increased insulin sensitivity. 

Antioxidant therapy is broadly used to treat conditions where oxidative stress 

is thought to play a central role. Antioxidants are also used in basic research 

due to their potential to scavenge ROS. The obtained results from clinical and 

experimental antioxidant studies are contradictory. We believe our data, 

which are summarized above, provide both a plausible explanation for many 

of these contradictory and/or controversial results and a new insight on how 

to better design antioxidant treatment studies. Nevertheless, further 

investigations are required to e.g. clarify the detailed mechanism that drives 

insulin sensitization or resistance depending on the dose, thus to understand 

the metabolic effects of antioxidants and the different effects that 
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antioxidants have on different adipose tissue types. Moreover, a more 

extensive study that includes also other types of antioxidants e.g. 

mitochondria-targeting antioxidants such as MitoQ, and other tissues (e.g. 

liver, pancreas or muscle) is highly recommended to evaluate possible pro-

oxidative or hormetic effects. Overall, a better understanding of the 

consequences of chronic NAC treatment or a combination of antioxidants 

could pave the way for new treatments and applications. 
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