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Abstract

Accelerating technological advances have allowed the widespread genomic profiling of tumors. As yet, however,
the vast catalogues of mutations that have been identified have made only a modest impact on clinical medicine.
Massively parallel sequencing has informed our understanding of the genetic evolution and heterogeneity of cancers,
allowing us to place these mutational catalogues into a meaningful context. Here, we review the methods used to
measure tumor evolution and heterogeneity, and the potential and challenges for translating the insights gained to
achieve clinical impact for cancer therapy, monitoring, early detection, risk stratification, and prevention. We discuss
how tumor evolution can guide cancer therapy by targeting clonal and subclonal mutations both individually and in
combination. Circulating tumor DNA and circulating tumor cells can be leveraged for monitoring the efficacy of
therapy and for tracking the emergence of resistant subclones. The evolutionary history of tumors can be deduced for
late-stage cancers, either directly by sampling precursor lesions or by leveraging computational approaches to infer the
timing of driver events. This approach can identify recurrent early driver mutations that represent promising avenues
for future early detection strategies. Emerging evidence suggests that mutational processes and complex clonal
dynamics are active even in normal development and aging. This will make discriminating developing malignant
neoplasms from normal aging cell lineages a challenge. Furthermore, insight into signatures of mutational processes
that are active early in tumor evolution may allow the development of cancer-prevention approaches. Research and
clinical studies that incorporate an appreciation of the complex evolutionary patterns in tumors will not only produce
more meaningful genomic data, but also better exploit the vulnerabilities of cancer, resulting in improved treatment
outcomes.

Background
Over time, the therapeutic approach to cancer is evolv-
ing from targeting the clinical phenotype (tumor size,
location, stage, histological type, and grade), to targeting
a molecular phenotype (such as surface receptor status
or the presence of activating or sensitizing mutations)
[1, 2]. The clinical phenotype can be targeted spatially
with surgery and radiotherapy or systemically using
cytotoxic chemotherapies. The molecular phenotype has
been targeted by both direct and indirect endocrine ma-
nipulation, by an array of small molecule inhibitors, and
by monoclonal antibody therapies. Both approaches typ-
ically consider the target to be static (to be treated until
clinical failure) and homogeneous (one sample repre-
sents all tumor cells).

The application of evolutionary concepts to cancer
was proposed several decades ago by Peter Nowell [3].
Reliable exploration of the degree of variation within
and between cancers has only become possible with the
increasing availability of next generation sequencing and
associated computational analysis [4–6].
All of the cells within a tumor are unique, comprising

different somatic variants and epigenetic and transcrip-
tomic states. Even normal cells are likely to accrue ap-
proximately three somatic mutations every cell cycle [7,
8]. Most of these changes will have no functional impact
and are ‘passengers’ on the cells’ evolutionary journey
(Box 1). Somatic mutations (or epigenetic changes) that
have an advantageous functional impact are ‘drivers’ and
will allow a cell to expand clonally and outcompete its
neighbors. When a clonal expansion goes to completion,
the entire population will be ‘clonally’ descended from
that founder cell, or clone. The last complete clonal ex-
pansion will have arisen from the most recent common
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ancestor (MRCA), defined as the most recent individual
cell from which all existing cancer cells in a cancer sample
are descendants. If a clonal expansion or sweep is incom-
plete, the expanded population is subclonal, comprising
only a fraction of the tumor cells. Diverging subclones
with mutually exclusive mutations can co-exist within a
tumor [9]. Intra-tumor heterogeneity, or the presence of
subclones possessing private mutations within a tumor,
has been observed across many cancer types and seems to
be nearly ubiquitous [10, 11].
The dynamics of evolution in cancer are still not fully

understood [12]. Traditionally, mutation and selection are
thought to be slow iterative processes that occur through-
out a cancer’s lifetime, a process of gradual evolution. The
patterns of mutations observed in some tumors, however,
suggest that mutations can also be acquired in sudden
bursts, leading to punctuated evolutionary steps [13–19].
An emerging wealth of cancer genome sequencing data

is informing our understanding of tumor evolution, and
will cause a fundamental paradigm shift in our approach
to cancer. This will impact all aspects of cancer manage-
ment, including cancer therapy, monitoring, early detec-
tion, and prevention (Table 1).

Measuring intra-tumor heterogeneity and tumor
evolution
Implicit in the heterogeneity of tumor cells and essential
for evolution is variation in either the genome or the epi-
genome [20–22]. Although epigenetic heterogeneity has
been shown to have prognostic utility [23–26] and is the
subject of intense study, genetic heterogeneity is better
understood at present, and is the focus of this review.
Intra-tumor heterogeneity and evolution can be inferred

from the pattern of mutations that is detected. Clonal mu-
tations, which are common to all cells within a tumor, were
present in the tumor cells’ most recent common ancestor,
whereas subclonal mutations were acquired later and are
therefore only found in a proportion of tumor cells (Box 1).
The frequency of a mutation in sequencing data (the vari-
ant allele frequency (VAF)) can be used to establish its

Box 1

Glossary

Clone A group of cells that are all descended
from a single ancestor. Mutations that are
shared between these cells are commonly
described as ‘clonal’.

Subclone Cells originating from a more recent cell
than the most recent common ancestor.
These will possess both the clonal
mutations and also subclonal mutations
that are private to the subclone.

Driver mutation A mutation with a beneficial functional
impact on a cell (for example, affecting
growth, invasion, or metastasis).

Passenger mutation A mutation with no functional impact.
Both driver and passenger mutations (the
latter representing the large majority of
mutations) can still be used to identify
clonal or subclonal populations.

Most recent common
ancestor (MRCA)

The theoretical founder cell of the tumor,
from which all cancer cells in a cancer
sample are derived. The most recent
common ancestor possesses all mutations
that are common to all of the tumor cells.

Branching evolution Divergence in tumor evolution leading to
separate subclonal populations.

Linear evolution The absence of apparent divergence or
branches in evolution. All evolution prior to
the MRCA will always appear linear as all
other pre-MRCA branches have become
extinct.

Gradual evolution An iterative pattern of mutation acquisition
and selection over time.

Punctuated evolution Discontinuous acquisition of mutations
over time with periods of relative stasis.
Mutations may be acquired in distinct
patterns and be co-located, or can be
distributed across the genome.

Table 1 Promises and challenges in translating insights into tumor evolution to clinical practice

Therapy Monitoring Early diagnosis
and stratification

Prevention

Promises • Clonal therapy targeting clonal
mutations to eradicate all tumor
cells (such as targeted therapy
or immunotherapy)

• Preempt resistance
• Adaptive therapy to chronically
control disease

• Bespoke monitoring based on
tumor-specific mutations

• Identify genetic changes
meriting intervention

• Mutational signatures can
suggest etiological factors
that drive early tumorigenesis

Challenges • Sampling strategy
• Inevitable clonal monotherapy
resistance

• Bespoke combination therapies
complicate toxicity and licensing

• High cost
• Novel mutations or subclones
may be missed

• Early detection of relapse may
not improve outcome

• Normal tissues contain
canonical cancer mutations

• Early diagnosis may not
improve outcome

• Exogenous factors may not
be preventable

• Some tumors may not be
preventable (such as those
of children or young adults)
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clonality. VAF is influenced by both the proportion of cells
that possess the mutation and the number of both mutated
and un-mutated copies of that DNA locus. Mutation fre-
quencies can be estimated by sampling, which has intrinsic
spatial, genomic, and statistical limitations (Fig. 1).
Intra-tumor heterogeneity has been extensively explored
using exome or genome sequencing of multiple regions of
resected primary tumors [9, 12, 19, 27–29]. Paired pri-
mary–metastasis studies and post-mortem studies have
allowed detailed insight into the evolution and patterns of
spread of metastases [30–33]. Intra-tumor heterogeneity
has been shown to be prognostic across cancer types [10,
34, 35], and is predominantly associated with the degree
and heterogeneity of aneuploidy. It has also been shown to
impact therapy: potentially targetable driver mutations can
be subclonal, suggesting that treatment would only be par-
tially effective [36].
Describing tumor evolution requires measurement

over time. Models of tumorigenesis, such as the ‘Vogel-
gram’, were created by sampling different stages of can-
cer progression across a population [37, 38]. The initial
Vogelgram in colorectal cancer was established by prob-
ing a limited number of putative oncogenes, identified
from hereditary cases, across the histologically defined
spectrum of disease [39]. Mutations that are found
across different stages of disease are assumed to arise
early in tumor evolution, whereas those found only in
established invasive cancers can be assumed to occur
later in tumor evolution. Rarely, in individuals with pre-
disposing risk factors such as those who have
colitis-associated colon cancer, the whole spectrum of
tumor progression can be observed simultaneously [27].
Despite applying modern genomic techniques, models of
progression can remain elusive if the genome is already
markedly aberrated in pre-invasive lesions, as in the pre-
cursors of lung squamous cell carcinoma [40]. This
modeling approach also relies on the assumption that
cancers of the same histology have a highly stereotyped
genetic progression that is common to different tumors.
Computational approaches have been developed to infer

the history of an individual tumor that is already established
from its own genome, as recently reviewed [41, 42].
Although these approaches typically allow only partial re-
construction of a tumor’s evolutionary history, from a single
biopsy, aggregating results across multiple tumors can be a
powerful approach [42]. Taking multiple samples from the
same tumor over time or across space can also significantly
increase the power of these reconstruction approaches [41,
42]. In metastatic solid organ tumors, repeated sampling
over time is challenging, so hematological malignancies
have been studied most extensively in this context [43–46].
Circulating tumor DNA (ctDNA) and cells shed from solid
tumors offer the potential to track subclonal mutations, al-
beit with limited sensitivity and specificity.

Most DNA sequencing has been performed on pooled
DNA from multiple cells and, consequently, ambiguity
can remain as to whether mutations co-occur in the same
cell. Single-cell sequencing can overcome this, albeit at
higher cost and at the expense of substantial sequencing
artifacts [47–50]. High-throughput techniques have been
developed for analyzing large numbers of single cells, al-
though these methods are most advanced for transcrip-
tome sequencing [51]. Single-cell sequencing of other
‘omic layers is currently relatively costly and available for
fewer cells [52], but exciting high-throughput approaches
are now emerging [53]. Techniques to analyze multiple
layers simultaneously have also been developed recently
[54–56], but these are currently costly and lower through-
put. These ‘multi-omic’ approaches are likely to signifi-
cantly improve the interpretation of non-genetic cellular
heterogeneity. Such interpretation is also confounded by
heterogeneity among non-tumor cells that results from
the variety of cell types and states within a tumor [57, 58].
Future approaches for measuring tumor heterogeneity

that could be used clinically would need to satisfy the
following criteria: (i) sampling should be minimally inva-
sive or performed as part of tumor resection; (ii) sam-
pling of the tumor should be as comprehensive as
possible, ideally without any spatial biases; (iii) sample
handling and preservation will need to be simple and
readily available in the clinic; (iv) simple proxy bio-
markers need to be available to assay heterogeneity reli-
ably; and (v) assays need to be rapid and cost-effective.
Recently, a conceptual consideration of how evolution

and heterogeneity could be summarized was explored in
a consensus statement by Maley et al. [59]. They pro-
posed binary divisions of the degree of heterogeneity (di-
versity, D) and evolution (rate of change, Δ) that could
be combined in a single four-level Evo-Index. As yet, it
is not clear how these scores would be generated or
whether such a simple binary system is informative.

Can tumor evolution guide cancer therapy?
The rational design of cancer therapies based on genomic
data has to date, with a few notable exceptions, been ex-
pensive and has delivered limited benefit to patients [60].
Even therapies specifically targeting prevalent tumor mu-
tations, such as the BRAF V600E mutation in melanoma
[61] and a variety of EGFR point mutations in lung cancer
[62], only lead to relatively short-lived tumor responses.
Understanding the heterogeneity that exists within tumors
and their ability to evolve in response to therapy may
allow more optimized treatment strategies (Table 1).

Individual clonal therapies
The simplest conceivable therapeutic approach is to tar-
get individual clonal mutations. By targeting mutations
that are present in all tumor cells, the entire tumor
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Fig. 1 (See legend on next page.)
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could in theory be eradicated. Previous targeted therap-
ies have, to some degree, implicitly relied on the pre-
sumption that mutations that are highly prevalent in
different tumors are probably early events in tumorigen-
esis and therefore likely to be clonal.
In most cases, single clonal mutations, which are

thought to be functionally relevant driver mutations, have
been targeted directly. In established cancers, this invari-
ably results in the acquisition of treatment resistance. The
simplest examples are the resistance to endocrine therapy
in metastatic breast and prostate cancer. The mechanisms
of these resistance phenomena are now relatively well
understood. Many breast cancers depend on estrogen sig-
naling and are initially sensitive to therapies that reduce
the level of circulating estrogen or that target the cellular
estrogen receptor, such as aromatase inhibitors or select-
ive estrogen receptor modulators, respectively. Treatment
resistance frequently arises when tumor cells develop con-
stitutive activity in the estrogen receptor through muta-
tion of its gene, ESR1 [63]. Likewise, prostate cancers are
almost ubiquitously driven by androgen signaling, sensitiz-
ing them to chemical or surgical castration. Prostate can-
cer cells compensate for medically depleted circulating
androgen levels through a number of different mecha-
nisms, including amplification of the androgen receptor
[64]. Gundem et al. [31] demonstrated that multiple separ-
ate tumor cell populations, across distinct metastatic sites,
can develop unique androgen receptor amplifications—a
demonstration of convergent evolution. The widespread
evolution of resistance suggests that clonal monotherapies
are unlikely to achieve permanent tumor control or cure.
For those with slow-paced advanced disease, or those who
would not tolerate more intensive therapy, individual
therapies will continue to play an important role. Most re-
sponses to targeted therapies, however, are both incomplete
and short-lived and require improvement (Fig. 2a).
Even when a mutation is not treated directly, tumors

can develop resistance. Synthetic lethality is a treatment
approach that exploits a cellular vulnerability exposed by
a clonal driver mutation. BRCA mutations in breast and
ovarian cancer, both inherited or acquired, increase gen-
omic instability due to disruption of the repair of
double-strand DNA breaks, which not only produces vari-
ation during tumorigenesis but also increases the reliance

of these tumors on other DNA-repair mechanisms. This is
exploited for therapy by inhibiting the single-stranded
DNA repair PARP enzymes [65, 66]. PARP inhibition
causes the accumulation of lethal DNA damage specific-
ally in tumor cells. BRCA mutations can, however,
undergo somatic reversal in multiple tumor subclones,
leading to resistance to PARP inhibition [67–69].
Resistance to therapy typically results from mutations,

which may pre-exist or can appear subsequent to the ther-
apy, or from non-genetic factors. Mutations that exist
prior to treatment exposure might be rare, and therefore
undetectable by present assays. Once treatment creates se-
lective pressure, resistant cells carrying these mutations
will persist and become apparent. It is possible, and per-
haps likely in larger tumors, that most resistance muta-
tions exist prior to therapy exposure, even for
conventional cytotoxic therapies [52]. Resistance muta-
tions may also occur de novo after treatment exposure,
perhaps having been induced by iatrogenic mutagenesis
[70, 71]. Unless these mutations are of a distinct type,
known to be induced by therapy, it is difficult to exclude
the possibility that they did not exist prior to treatment at
a very low and undetectable frequency. Resistance may
also be non-genetic and either related to cell state plasti-
city or to a specific molecular resistance pathway, such as
aurora kinase activation in anti-EGFR-treated lung cancer
[72, 73], but further understanding of these non-heritable
resistance mechanisms is needed. There are broad princi-
ples of treatment resistance that are common between
cancer and infectious diseases [74]: like tumor cell popula-
tions, pathogens can be also be genetically heterogeneous
[75], and as observed in the examples of HIV and Myco-
bacterium tuberculosis, they rarely have prolonged re-
sponses to monotherapy.
In principle, individual clonal therapies may still be

used curatively if employed very early in tumor evolu-
tion, as proposed by Mitchell et al. [76]. Clear cell kid-
ney cancers were modeled to have deleted VHL (on
chromosome 3p) several decades prior to a second mu-
tational hit to the remaining VHL allele. Proliferation
and tumorigenesis only accelerate after both alleles of
VHL are mutated. Therefore, the pool of mutated cells is
probably only a few hundred cells for a prolonged
period. Depleting this small cell population—even

(See figure on previous page.)
Fig. 1 Sampling decisions required for comprehensive and evolutionary description of tumors. Tumor genomic sampling can be considered to
fall into three separate domains. a Sampling of tumor material, either directly from a tumor mass or shed into the circulation. Samples from the
tumor mass can either be pooled as a bulk specimen or disaggregated into single cells. b Only portions of genomic material are sampled and
assessed; either targeted panels of a few hundred genes can be used or the whole exome or whole genome can be profiled. c Bulk DNA extractions
may contain millions of DNA molecules. These are contributed by different parental alleles from both tumor and normal cells. Samples frequently
contain 10–80% normal cells. Library preparation and sequencing only samples a tiny fraction of the available DNA fragments. The schematic shows a
representation of sampling at two different sequencing depths (100X and 6X) and illustrates how higher sequencing depths allow more accurate
determinations of the frequencies of specific mutations and their clonal or subclonal status. ctDNA circulating tumor DNA
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marginally—with a therapy, sensitized by 3p loss, would
reduce the probability of a cell with a second hit muta-
tion ever arising. This would have to be achieved de-
cades before these cells become detectable, and
therefore would most likely involve the preemptive treat-
ment of healthy individuals. However, considering that
most tissues may harbor equivalent cell populations [8,
77, 78], such prophylactic management may not be clin-
ically, economically, or ethically feasible.

Combined clonal therapies
Predictions of a tumor’s evolutionary response to a ther-
apy can allow pre-emptive measures to prevent resist-
ance. For example, ABL1 inhibition in chronic myeloid
leukemia (CML), characterized by clonal BCR–ABL1 fu-
sions, has revolutionized therapy for this disease, yet the
development of resistance remains a challenge in a pro-
portion of patients. Combining different classes of ABL1
inhibitors with mutually exclusive profiles of resistance
mutations can preempt the emergence of resistant sub-
clones (Fig. 2b). Preclinical application of this approach
has resulted in durable responses [79].

Combining different clonal therapies might also reduce
the emergence of resistance. Many breast cancers are
thought to have cell-cycle dysregulation related to the
cyclin-CDK-Rb pathway, in addition to estrogen sensitivity
[80]. The addition of CDK4/6 inhibition to aromatase in-
hibition does indeed prolong the response in patients with
metastatic disease. This delays the need for conventional
cytotoxic therapy, but at the price of increased toxicity
compared to endocrine therapy alone [81].
The development of effective combination therapies re-

quires a comprehensive understanding of mutation clonal-
ity and resistance mechanisms. Metastatic melanomas
frequently have activating mutations in the MAPK path-
way, and resistance to BRAF inhibitors was thought to re-
sult from downstream MEK activation [82, 83]. Trials
combining MEK and BRAF inhibition in melanoma have
demonstrated modest clinical benefit [84, 85]; however, re-
sistant tumors often have multiple different detectable
MAPK mutations, suggesting convergent evolution [86].
Ideally, larger numbers of drivers could be targeted

simultaneously or sequentially, depending on the pace
and nature of the evolutionary response of the tumor.

a b

c

Fig. 2 Evolutionary therapy strategies. Schematics of tumor populations in which each different color implies a new subclonal population. Therapies
are denoted by segmented ovals, in which the targeted populations are indicated by the segment shading. a Targeting a clonal mutation that
developed in or prior to the most recent common ancestor (MRCA). Resistance may emerge because a (rare) subclone with intrinsic resistance to that
therapy (for example, an ESR1-activating mutation) existed prior to therapy. b Targeting of multiple drivers is more likely to lead to tumor extinction. c
In adaptive therapy, treatment is discontinued before sensitive cells (pink) are eliminated, allowing them to grow back and suppress resistant cells (red).
The resistant subclone would be expected to have an intrinsic survival disadvantage that is related to its resistant phenotype, for example, it may have
lost the targeted driver mutation
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Such combination therapies will impact toxicity manage-
ment, although not always detrimentally. In fact, the
addition of MEK inhibition to BRAF inhibitors reduces
the cutaneous side-effects that are associated with BRAF
inhibitors. The toxicities resulting from combination
treatments may, however, require complex pharmaco-
logical adjustments that have implications for trial de-
sign, drug licensing and healthcare economic
assessments.
Many tumors have only few clonal driver mutations

and will require alternative strategies [87–89]. Effective
pharmacological options for targeting driver mutations
are also relatively limited. Some driver mutations may be
treatable indirectly, either by collateral lethality, whereby
susceptibilities created by the loss of genes adjacent to
deleted tumor suppressors are harnessed, or by synthetic
lethality [90, 91]. Alternatively, immunotherapy exploits
the antigenicity of mutations, regardless of their driver
status and without relying on the recurrence of muta-
tions in different patients. Where durable clinical re-
sponses to immunotherapy have been seen, they are
probably brought about by the simultaneous targeting of
multiple clonal mutations. Indeed, one of the potential
predictive markers of response to immune checkpoint
blockade in non-small-cell lung cancer and melanoma is
the clonal neoantigen load [92, 93]. If a common mech-
anism of resistance to an immunotherapy can occur,
(epi) genetic variation and selection could drive tumors
towards it, even when multi-pronged approaches are
used. These mechanisms of immune editing are still a
subject of intense study. They include an ability of tu-
mors to reduce their antigen-presenting capability. In
melanoma, lung, and ovarian cancer, these changes have
been shown to result in part from either somatic (often
subclonal) or germline loss of heterozygosity of the HLA
locus [94–96]. Equivalent loss of expression of class II
MHC may also result in treatment failure after allogen-
eic bone marrow transplant for acute myeloid leukemia
[97]. Without a full and diverse HLA repertoire, many
neoantigens cannot be successfully presented on the sur-
face of tumor cells and therefore are not recognized by
an adaptive immune response.

Targeting subclonal mutations
The detection of subclonal mutations is still an active re-
search topic and therefore potential strategies for their
therapeutic use are only conceptual at present. The sim-
plest approach is to target a combination of multiple
subclonal mutations, probably coupled with a clonal
therapy. In rare circumstances, such as those recently
suggested in pediatric brain tumors, subclonal popula-
tions might be highly functionally interdependent [98].
In these circumstances, even subclonal population de-
pletion might have a profound effect on the tumor as a

whole. Alternatively, if the relative importance and the
clinical impact of different subclonal populations can be
measured, then those causing the greatest symptomatic
burden could be prioritized. Implicit in this more stra-
tegic approach is the acceptance that other cell popula-
tions that cause lower symptomatic burden will not be
eradicated, representing a shift to managing cancer as a
chronic disease without the intent to cure [99].
A combination of conventional cross-sectional imaging

with the monitoring of circulating markers could be
used to identify spatially or mutationally distinct metas-
tases. If lesions are spatially segregated, they may be
amenable to local therapies: surgery, cryotherapy, fo-
cused ultrasound, or stereotactic radiotherapy. If they
are characterized by treatable mutations, additional sys-
temic therapies could be used. At present, proofs of this
concept are yet to emerge.
Finally, the concept of adaptive therapy has also been

proposed [100, 101]. Each of the subclones present in a
tumor may be either sensitive or insensitive to a potential
therapy. They compete for survival within the tumor en-
vironment and a mutation that confers resistance to a
treatment, possibly through the loss or alteration of an
oncogenic driver, might result in a growth disadvantage
when that treatment agent is not present. With an adap-
tive approach, sensitive subclones can be treated to the
point at which tumor size is reduced or growth is sup-
pressed to achieve symptomatic benefit. Response may
conceivably be monitored with a non-invasive surrogate
biomarker, such as serum prostate-specific antigen (PSA)
in prostate cancer. Thereafter, treatment can be reduced
or withdrawn to allow the competitive suppression of re-
sistant subclones (Fig. 2c). This approach is currently
under evaluation in metastatic prostate cancer with the
use of individualized PSA thresholds to guide the use of
abiraterone, a CYP17A1 inhibitor [102]. To date, only
small numbers of patients have been treated, albeit with
good clinical outcome and reduced cumulative exposure
to medication. It is worth noting that adaptive therapy is
not the same as intermittent therapy, in which treatment
may also be used discontinuously and with the monitoring
of a biomarker, but without any individualization of treat-
ment duration on the basis of response dynamics. For ex-
ample, intermittent hormonal therapy has been attempted
in prostate cancer. Crucially, trials such as TAP22 used
fixed PSA thresholds rather than individualized thresholds
[103, 104]. This could result in the depletion of
treatment-sensitive clones, reducing their ability to sup-
press their treatment-resistant cousins.

Therapy monitoring: circulating tumor DNA and
circulating tumor cells
Liquid biopsies sample more readily available body
fluids, mainly blood, for cellular or genomic material
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that has been shed from the tumor. They are heralded
for reducing the invasiveness of clinical assays used for
diagnosis [105, 106], prognosis [107, 108], molecular
profiling [109], and response assessment [110–114].
Monitoring the treatment of more advanced disease may
be substantially enhanced by monitoring the dynamics
of different tumor cell populations.
The therapeutic approaches discussed above, particularly

combination subclonal targeting and adaptive therapy, rely
on accurate information about the relative importance of
different subclonal populations in space and time. Liquid
biopsies allow non-invasive assays that can easily be re-
peated over time. In particular, ctDNA is relatively stable
and simple to handle, and its sequence content can be ana-
lyzed using a variety of approaches [115] (Fig. 1).
The detection of early subclinical relapse or minimal

residual disease after attempted curative therapy has re-
lied on detecting clonal mutations in circulation. Som-
atic structural variants are particularly amenable to
highly disease-specific PCR-based approaches. Canonical
disease-defining genomic rearrangements, such as the
BCR–ABL1 fusion in chronic myeloid leukemia, are rou-
tinely monitored in hematological malignancies to assess
treatment response [116, 117]. Solid organ malignancies
have fewer disease-defining rearrangements, but fre-
quently possess unique somatic rearrangements that can
be used to define bespoke monitoring panels [118, 119].
Monitoring of subclonal evolution has focused on

evaluating somatic point mutations. Murtaza et al. [120]
demonstrated that a dominant subclone, which was re-
sponsible for the progression of a chest wall breast can-
cer metastasis, was detectable by the increasing level of
mutations private to that subclone. O’Leary et al. were
able to use ctDNA in a small proportion of metastatic
breast cancer patients, who were treated with the
addition of the CDK4/6 inhibitor palbociclib, to both
predict longer progression-free intervals [111] and detect
emerging resistant subclones [121]. Furthermore,
Abbosh et al. [30] showed that ctDNA was detect-
able 10–346 days (median 70 days) prior to clinical de-
tection of relapsed lung cancer.
There are several challenges to the adoption of this ap-

proach. Clearly, bespoke ctDNA monitoring is costly.
Abbosh et al. [30] estimated that even a limited bespoke
monitoring panel, based on detected mutations from a
single primary tumor region, would cost USD 1750 per
patient. In addition, current analyses have only explored
minimal numbers of detectable subclones and give an in-
complete picture of their number and range. Whether
there are substantial biases in the tumor cells that contrib-
ute circulating DNA is currently not known. It is likely
that highly vascular and necrotic tumors will contribute
more to ctDNA than tumors in cryptic sites, such as the
central nervous system [122]. The use of other sources of

cell-free DNA, such as stool [123], urine, cerebrospinal
fluid, and effusions, may in part compensate for this [124,
125]. There are also likely to be genomic biases because
cell-free DNA is predominantly thought to be generated
by apoptotic nuclease activity which produces
nucleosome-associated DNA fragments [126, 127], result-
ing in distinct chromatin-associated patterns. These pat-
terns and the degree of apoptosis are likely to vary across
tumor cell populations, and result in a bias in circulating
tumor DNA.
The detection of subclonal mutations is also limited by

the sensitivity of detection assays. Next-generation se-
quencing approaches that seek to gain an unbiased view
of all detectable variants in circulation cannot identify
rare subclonal mutations. In the Murtaza et al. [120]
study, even clonal mutations had variant allele fractions
of 3.8–34.9%. To compensate for this, most approaches,
as exemplified by Abbosh et al. [30], use a specific amp-
lification method based on fixed expected mutations that
are detected in a sequenced primary tumor. This, by def-
inition, means that de novo mutations that arose subse-
quent to the sampling of the primary tumor will not be
detectable in circulation.
Circulating tumor cells (CTCs) can be analyzed using

single-cell sequencing approaches. In a study by Carter
et al. [128], the copy number profile of circulating tumor
cells at the time of diagnosis of small-cell lung cancer
predicted the duration of response to chemotherapy.
Cellular approaches are less likely to be confounded by
the genomic aberrations that arise in other cells than the
index tumor [129, 130]. As a result of the rarity of these
tumor cells, they require significant enrichment which is
likely to introduce biases, resulting in low sensitivity
even for clonal tumor populations [131, 132]. Interest-
ingly, Kwan et al. [133] demonstrated that after some
initial filtration, an RNA expression-based signature can
be used to detect breast cancer CTCs, and that the pres-
ence of these cells carried prognostic information in the
setting of neoadjuvant chemotherapy.

Can insight into tumor evolution improve early
diagnosis, risk stratification, and cancer
prevention?
In order to improve cancer outcomes, it is essential to
alter tumor evolution. This can be achieved throughout
the evolutionary timeline by preventing etiological fac-
tors, screening cell populations on the path to cancer, or
stratifying cancers that will pose the greatest threat.

Cancer screening
Cancer screening aims to reduce cancer mortality by in-
creasing detection at a curable stage [134]. This needs to
be carefully managed, however, as overtreatment of inci-
dental findings causes unnecessary cost, harm, and
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anxiety [135]. This problem has beset the introduction
of a prostate cancer screening strategy, as many
low-grade prostate cancers can be managed with obser-
vation alone [136, 137]. Reliable predictive biomarkers of
progression in detected lesions could increase the utility
of screening programs. To date, risk stratification has re-
lied almost exclusively on histological staging and
grading.
Methods are being developed that recapitulate the

early evolution of cancers using sequencing information
from later-stage cancers alone, as recently reviewed [42].
In general terms, these methods utilize the number of
copies of mutations on gained chromosomal segments
to infer whether these mutations happened before or
after that gain. For example, if a whole chromosome has
been duplicated and there are two copies of a mutation
found on that chromosome, then it is likely that the mu-
tation occurred first and was duplicated with the
chromosomal gain. By analysis of whole-genome sequen-
cing data from primary and metastatic prostate cancers,
Wedge et al. [138] have been able to retrospectively
identify chromosomal changes that developed earlier in
tumorigenesis. These findings, such as the early gain of
chromosome 8q, recapitulated those previously found in
prostate intraepithelial neoplasia (PIN), which is thought
to be a precursor of prostate adenocarcinoma [139].
These approaches have also been applied to invasive

cancers, which have less well characterized precursor le-
sions [76, 89]. Recently, the Pan-Cancer Analysis of Whole
Genomes (PCAWG) initiative leveraged whole-genome
sequencing data to infer evolutionary timelines across can-
cer types [140]. This work reproduced and refined classic
models of mutational progression such as for colorectal
cancer, in which APC mutations precede KRAS and TP53
mutations. This information could define mutations that
can be used to risk-stratify those pre-malignant or early
invasive lesions that require intervention and those that
do not. In addition, large datasets and novel computa-
tional methods [141, 142] may be able to detect
stereotyped evolutionary patterns and trajectories in
cancer evolution that may inform early diagnosis or
risk-stratification approaches.

Predicting tumor evolution—implications for risk stratification
A deeper and more comprehensive understanding of
tumor evolution should allow us to understand how a
cancer will behave in the future. This has specific impli-
cations for the risk stratification of established cancers.
Incidental findings, such as small renal lesions that are
often found during investigations for other conditions,
are a clinical challenge because definitive resection is
morbid but radiological and histological criteria are un-
reliable for prognostication [143]. In clear cell renal cell
carcinoma, Turajlic et al. [87] have modeled that

analyses of two biopsies can allow the quantification of
intra-tumor copy number heterogeneity. This can dis-
criminate lesions of higher and lower risk of progression,
thereby potentially assisting in the decision-making
process for small renal lesions. In a companion study,
the same authors also suggested that richer information
gleaned from more thorough tumor sampling can iden-
tify evolutionary profiles that are more likely to be asso-
ciated with the development of metastatic disease [88].
In other cancer types, patterns of heterogeneity, such as
copy number diversity in lung cancer [89] and
pan-mutational diversity (so-called regional ‘explosions’)
in childhood cancers [144], have also been shown to
carry prognostic information. More transformative
change to cancer prediction strategies will require the
development of more complex computational tools and
models [141, 142]. Much as weather forecasting models
require vast amounts of measured data from the real
world, cancer evolution models will require the
sequence-based profiling of the evolution of many more
cancers. Ultimately, this will allow these forecasts to
guide the optimal management for each patient.

Prevention of key early mutagenic processes
The identification of predisposing factors for cancer,
whether heritable, environmental, or infectious, has pre-
viously relied on a combination of epidemiological and
biological evidence. A deeper understanding of tumor
evolution can lead to new insights into the impact of
these factors on the genome.
Two clear examples of direct impact on the genome are

ultraviolet (UV) radiation exposure for sun-induced can-
cers, such as cutaneous squamous cell cancers, and
exposure to tobacco smoke carcinogens for smoking-re-
lated airway cancers. The epidemiological evidence for
both has long been established, although its popular ac-
ceptance took some time [145]. Mechanisms of mutation
as a result of each exposure have been identified: misre-
pair by transcription-coupled nucleotide excision repair of
UV-induced pyrimidine photodimers [146] and misrepair
of guanine damage by the same mechanism [147], respect-
ively. These specific mutational types can now be detected
across the genome as mutational signatures [70, 148], and
this allows estimation of the contributions of each muta-
tional signature (and potentially the level of mutagen ex-
posure) in any individual tumor [149].
The accrual of mutations over time can now be ex-

plored retrospectively in a whole-genome-sequenced
tumor. Nik-Zainal et al. [13] used a mutation timing ap-
proach to study changes in mutational processes over
the life history of breast cancers. By leveraging the
power of a large cohort of tumor samples, it becomes
possible to identify mutational processes that act early
or late in tumor evolution. In lung cancer, the
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proportion of mutations bearing a smoking signature de-
clines later in tumor evolution, despite ongoing smoke
exposure [150, 151]. Conversely, mutagenesis that is re-
lated to the activity of the APOBEC family of cytidine
deaminases increases later in lung tumor evolution. As
expected, inherited defects in DNA repair, such as the
deficient mismatch repair seen in Lynch syndrome, can
lead to steady and ongoing mutation throughout a tu-
mor’s lifetime [152].
Many mutational signatures do not have identified eti-

ologies, but direct genomic evidence can provide an ob-
jective starting point for both epidemiological and
biological study. Identifying causative environmental ex-
posures may suggest preventative measures, akin to
smoking cessation and UV protection.

The challenge of somatic variation in normal tissues
The challenge in identifying mutations that are acquired
early in tumorigenesis is that many canonical driver mu-
tations, which are thought to be specific and relevant to
cancer, may also occur in populations of phenotypically
normal cells (Table 1).
Martincorena et al. [77, 129] identified multiple clonal

expansions of cells, containing mutations in TP53,
NOTCH1, and other known cancer genes, in both
sun-exposed normal eyelids and in aging normal esopha-
gus. Interestingly, mutations were much more common
in NOTCH1 than in TP53 in normal esophagus, the in-
verse of the pattern seen in esophageal cancer, suggest-
ing that early NOTCH1 mutations may protect against
cancer development. Demeulemeester et al. [130] ana-
lyzed epithelial cells found in bone marrow aspirates of
breast cancer patients, identifying cells with copy num-
ber aberrations that were completely distinct from the
primary breast cancer and therefore from an unknown
origin. Gao et al. [153] also detected similar aberrant
cells in tissue adjacent to breast tumors that were once
again unrelated to tumor cells. Finally, clonal expansions
of hematopoietic cells containing leukemia-associated
mutations are reported in the circulation of otherwise
healthy adults [154, 155]. These confer an increased risk
of the subsequent development of a hematological ma-
lignancy, but clearly many do not progress [156, 157].
In order to truly reveal the early evolution of cancer,

we will need to understand the frequency of these muta-
tional events in the normal tissues in which cancers
arise. Cataloguing mutational events in normal tissues,
at rare frequencies, will help to identify the cells of ori-
gin of cancer as well as the early mutational steps that
occur in these cells [158].

Conclusions and future perspectives
Intra-tumor heterogeneity and the ability of cancers to
evolve continuously has proved a major challenge to the

implementation of precision anti-cancer medicine. Mo-
lecular therapies, predicted to be effective on the basis
of the presence of a sensitizing mutation in a single sam-
ple, may be of limited clinical benefit. Driver mutations
may be subclonal and resistance mechanisms can evolve
rapidly [31, 89]. Deeper understanding of this complexity
will allow the development of more robust therapeutic
strategies. Without doubt, the complexity of tumor evo-
lution is still far from being fully understood, and on an
individual basis, tumors will always make unanticipated
moves to evade even our best efforts. The recognition
that cancer is an evolving system offers a framework on
which to hang our clinical and research observations of
cancer behavior and biology. We have discussed the
more immediate opportunities for translating knowledge
of tumor evolution here, but it seems likely that deeper
insight will open additional unforeseen avenues.
Insight into the full spectrum of evolutionary paths

that cancers can take may lead to the stratification of
subsets of cancers that follow specific evolutionary
paths. Potentially, the earliest steps or the rate-limiting
steps in tumor evolution could be interrupted, either by
the identification of preventable etiological factors or by
timely medical interventions. These strategies may lead
to a significant reduction in the incidence of some can-
cers or to a high cure rate in early diagnosed cancers, re-
spectively. In addition, once diagnosed, treatment
pathways may be matched according to the anticipated
evolutionary path of the cancer, as opposed to classifica-
tion based on traditional histological tumor subtyping.
Patients with indolent tumors may be spared therapy
altogether. As future therapies emerge, insight into
tumor evolution is likely to inform their further develop-
ment and maximize their impact. Immune checkpoint
blockade is possibly the first class of therapy to emerge
in this context, reaping the reward of a better under-
standing of the spectrum of clinical response [92, 94,
159]. Many cancers will probably need an armory of af-
fordable, effective, and tolerable therapies that can be
used safely in combination and sequentially. It is likely
that conventional therapies—surgery, radiotherapy, and
cytotoxic chemotherapy—will continue to have crucial
roles in these treatment paradigms, but with a better un-
derstanding of the disease, these conventional therapies
could be rationally combined with approaches informed
by (epi) genomic insights into tumor evolution to
achieve improved outcomes for cancer patients.
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