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Abstract
The purpose of this review was to integrate leading paradigms in psychology and neuroscience with a theory of the embodied, situated
human brain, called the Hierarchically Mechanistic Mind (HMM). The HMM describes the brain as a complex adaptive system that
functions to minimize the entropy of our sensory and physical states via action-perception cycles generated by hierarchical neural
dynamics. First, we review the extant literature on the hierarchical structure of the brain. Next, we derive the HMM from a broader
evolutionary systems theory that explains neural structure and function in terms of dynamic interactions across four nested levels of
biological causation (i.e., adaptation, phylogeny, ontogeny, and mechanism). We then describe how the HMM aligns with a global
brain theory in neuroscience called the free-energy principle, leveraging this theory tomathematically formulate neural dynamics across
hierarchical spatiotemporal scales. We conclude by exploring the implications of the HMM for psychological inquiry.
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Since the turn of the century, we have made remarkable prog-
ress in our understanding of the human brain. This has been
facilitated in particular by improvements in neuroimaging,
coupled with analytical tools gleaned from mathematical
modeling. Concurrently, there has been a growing apprecia-
tion of the fact that in order to elucidate the fundamental

relationships between neural dynamics, structure, and
function—and the brain, cognition, and behavior—cognitive
scientists need to bridge intra- and interdisciplinary divisions
by exploring promising points of contact between different
paradigms. In psychology in particular, a fragmentation into
disparate fields of inquiry has long been recognized as an
impediment to progress (Buss, 1995; Henriques, 2011).

With this in mind, the purpose of this review is to
suggest that many extant models of the structure, dynam-
ics, and function of the brain can be integrated under the
unifying framework of the Hierarchically Mechanistic
Mind (HMM). Originally proposed to synthesize evolu-
tionary and developmental psychology (Badcock, 2012),
the HMM has since been leveraged to explain depression
(Badcock, Davey, Whittle, N.B. Allen, & Friston, 2017)
and forwarded as a biologically plausible model of the
human brain and biobehavior for the life sciences
(Badcock, Friston, & Ramstead, 2019; Ramstead,
Badcock & Friston, 2018a, 2018b). Drawing chiefly from
psychology and neuroscience, this model describes the
brain as an embodied, complex adaptive system that ac-
tively minimizes the entropy (i.e., the spread or decay) of
human sensory and physiological states by generating
adaptive action-perception cycles via dynamic interactions
between hierarchically organized, differentially integrated
neural subsystems (Badcock et al., 2019).
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Our paper comprises four sections. After providing an em-
pirically informed description of the structural (hierarchical)
organization of the brain in the first section, we introduce an
evolutionary systems theory that explains the origins of this
hierarchical organization in terms of causal interactions be-
tween the broader evolutionary, developmental, and
biopsychosocial processes that shape human phenotypes. In
the third, we submit that the ensuing perspective of the embod-
ied brain aligns with the free-energy principle (FEP) in neuro-
science. We leverage the FEP to supply a formal theory of the
brain, which can be used to derive empirically tractable process
theories of human neural dynamics. Briefly, the FEP describes
the brain as an Binference machine^ that optimizes the evidence
for the statistical model of the world that it encodes or em-
bodies, by minimizing an upper limit or bound on surprise
(i.e., variational free-energy). These three sections of our treat-
ment address complementary questions about the nature of the
human brain: what is the organization of this system, how does
it come to be, and why is it the way that it is? After bringing
these themes together to precisely define the HMM, we con-
clude by exploring its implications for theorizing and research
across the psychological sciences.

In summary, the HMM encapsulates: (1) an evolutionary
systems model of the human brain based on complementary
levels of analysis in the psychological sciences; and (2) a
mathematical model for formulating dynamics at (and across)
each of these levels, based on the FEP. Ultimately, we argue
that an interdisciplinary framework that calls upon both of
these approaches provides a more cohesive and powerful ex-
planation for the brain and behavior than either of them alone.
In and of itself, the FEP is simply an information-theoretic
formulation of the adaptive, self-organizing dynamics of sen-
tient systems; arguably, combining the FEP with theories and
research spanning psychologywill allow us to unpack system-
atically the various ways in which Homo sapiens exemplify
this principle (Badcock et al., 2019; Ramstead et al., 2018a,
2018b). With these distinctions in mind, the HMM can be
described as a process theory in two complementary ways: it
applies the FEP to the multiscale dynamics of the embodied
human brain and behavior; and it appeals to the nested evolu-
tionary, developmental, and real-time processes captured by
different levels of explanation in psychology. By combining
these approaches, psychologists will be better equipped to
unpack the complex relationships between the brain, our
minds, and our behavior.

The Hierarchical Architecture of the Human
Brain

The HMM rests on the architectural claim that the brain is a
hierarchically organized system of neurocognitive mechanisms
that interact in a dynamic, bidirectional fashion and that vary in

degrees of functional specialization and integration (Badcock
et al., 2019). According to this scheme, the lowest levels of the
cortical hierarchy comprise relatively segregated, specialized
neural mechanisms responsible for sensorimotor processing
(so-called Bdomain-specific^ systems); while its higher levels
comprise developmentally plastic, highly integrated (Bdomain-
general^) mechanisms that respond flexibly to input provided
by lower levels, feed information back for further processing,
and underlie our executive cognitive functions (e.g., meta-cog-
nition) (Badcock, 2012). Two key terms require clarification.

The first is Bhierarchy.^ There are many interpretations of
the neural hierarchy, but the one that we refer to here is a
fractal or self-similar hierarchy, which entails the repeated
encapsulation of smaller (neural) elements in larger ones
(Kaiser, Hilgetag & Kötter, 2010). This sort of hierarchical
organization is recapitulated across multiple (spatial, tempo-
ral, topological, and functional) neural scales (Breakspear &
Stam, 2005; Power et al., 2011). Otherwise, the HHM does
not commit to any particular form of hierarchy (e.g., subsump-
tion hierarchies). Although there is ample evidence from neu-
robiology for deep serial hierarchies in the cortex, there also
are violations of a simple serial architecture. Obvious exam-
ples are cortical hierarchies (e.g., cortico-cortical projections)
that are Bcrosscut^ with cortico-subcortical hierarchies (e.g.,
corticothalamic and thalamocortical projections).
Furthermore, even within serial cortical hierarchies there are
anomalies. For example, the frontal eye fields are paradoxi-
cally low in the visual hierarchy—based on their forward and
backward connectivity (Mejias et al., 2016). More generally,
the key aspect of a hierarchy is the emergence and mainte-
nance of the right sort of conditional dependencies (and im-
plicit connectivity) that allow the joint expression of function-
al segregation and integration—and an implicit separation of
temporal scales (Bullmore & Sporns, 2009; Friston &
Buzsaki, 2016; Markov et al., 2013; Sporns et al., 2005).

The second term is Bneurocognitive mechanism.^Here, we
refer to a neural subsystem at any spatial scale—from a neu-
ronal population through to macroscopic brain regions—that
can be characterized by: (1) specialized functional processing
mediated by dense, short-range connections intrinsic to that
scale (i.e., its local integration); and (2) its global (functional)
integration via relatively sparse, long-range (e.g., extrinsic
cortico-cortical) connections (Park & Friston, 2013). Under
this model, cognition emerges from the global integration of
local, functionally differentiated neural processing mecha-
nisms (Park & Friston, 2013). This definition implies a com-
plementary relationship between functional segregation and
integration: all neural subsystems comprise a subpopulation
of cells that have a common, specialized function, but they
also are integrated because of their connectivity with other
subsystems (Friston, 2003; Park & Friston, 2005). In network
neuroscience, this kind of subsystem is called a module
(Sporns & Betzel, 2016).
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It is important to clarify the difference between modularity
as it is used in the network neuroscience community, where it
refers to highly interconnected neural elements that are rela-
tively sparsely connected to other modules in the network, and
traditional notions of modularity stemming from evolutionary
psychology, where it refers to separately modifiable, function-
al specializations sculpted by evolution (Barrett & Kurzban,
2006; Buss, 1995; Fodor, 1983). The HMM borrows directly
from the former sense of Bmodule,^ not the latter. We suggest
that distinct patterns of adaptive behavior depend as much on
the functional integration of such modules as they do on the
operation of any given one—a claim that does not sit well with
massive modularity. The type of mechanism we refer to fol-
lows contemporary, neomechanistic approaches in the philos-
ophy of science that seek to explain the properties, functions,
and behavior of a system by elucidating the properties and
organized activities of its subcomponents and their interac-
tions (Craver, 2001, 2006; Piccinini & Craver, 2011). In this
context, a mechanism is broadly defined as a structure within a
system that performs a function through its component parts,
the operations of these parts, and their organization, which
contributes to global functioning in one or more ways
(Bechtel, 2008). With respect to the brain, the term
Bmechanism^ is simply synonymous with any neural
Bsubsystem^ or Bprocess^ that contributes to the dynamics
of the system itself—be it the form and function of any given
one (e.g., the amygdala), or the coordinated operations of
interactions between them (e.g., the activity of the limbic sys-
tem). A key property of such subsystems is hierarchical near-
decomposability: they are hierarchically organized, and unlike
informationally encapsulated modules, their functioning can-
not be completely individuated from other subsystems
(Bechtel, 2008; Simon, 1996). As will be seen, this is a hall-
mark feature of complex adaptive systems that flows directly
from the complementary relationship between natural selec-
tion and self-organization.

In sum, the hierarchical architecture that we describe fol-
lows a widespread consensus in cognitive neuroscience that
cognition emerges from the hierarchical dynamics of segre-
gated neural processing mechanisms that operate in a func-
tionally integrated, bidirectional fashion (Markov & Kennedy,
2013; Mesulam, 2012; Meunier, Lambiotte & Bullmore,
2010; C.J. Price & Friston, 2002). We turn now to the exten-
sive theoretical and empirical support for this view.

The Hierarchical Structure of the Brain: A Brief
Review of the Empirical Evidence

In psychology, the hierarchical architecture of the brain has
long been emphasized by two prevailing schools of thought.
On the one hand, evolutionary psychologists—particularly
proponents of massive modularity—have argued that the

brain comprises a large collection of functionally specialized
modules dedicated to solving specific adaptive problems
(Barrett & Kurzban, 2006; Buss, 1995). Drawing on evidence
from evolutionary developmental biology, genetics, brain
mapping, and comparative studies, H.C. Barrett (2012) has
argued that the sharp distinction between highly specialized,
domain-specific modules and general-purpose, domain-
general systems is a false dichotomy. Rather, functionally spe-
cialized modules are likely to be both heterogeneous and hi-
erarchically organized. Likewise, others have proposed that
the adapted mind entails a hierarchy of modules, ranging from
lower-order psychobiological mechanisms characterized by
automatic, serial processing, and a high degree of specializa-
tion, through to higher-level modules that are flexible in their
responses to input and production of outputs, allow us to gain
awareness of these outputs, and enable top-down cognitive
control (Cundall, 2006; Geary, 2005; Geary & Huffman,
2002; Merritt, 2008).

On the other hand, developmental psychologists have tra-
ditionally espoused a constructivist view that explains the hi-
erarchical organization of the brain in terms of the progressive,
ontogenetic modularization of the cortex (Karmiloff-Smith,
1992). According to this process-focused scheme, human cor-
tical development reflects the hierarchical construction of
Bmental representations,^ which involves the progressive,
experience-dependent elaboration of neural circuits from pri-
mary sensorimotor areas to higher, more combinatorially
complex (association) regions (Quartz, 1999). This provides
flexibility when faced with a dynamic environment, explains
cortical plasticity throughout the lifespan, and produces the
higher-order association cortices responsible for our executive
cognitive faculties. Unlike massive modularity, this view
maintains that infants begin with a limited set of innately
specified, domain-specific predispositions, allowing recursive
interactions between these low-level systems and the environ-
ment to produce the functional organization of the brain
throughout development (Karmiloff-Smith, 1998).

Despite longstanding debates between these schools about
the causal primacy of evolutionary versus developmental pro-
cesses (Badcock, 2012; Caporael, 2001; Frankenhuis,
Panchanathan, & Barrett, 2013), the hierarchical structure of
the brain has remained a central claim of both. This idea is
backed by a wealth of empirical support. By way of illustra-
tion, functional imaging work has shown that when
attempting to ascribe mental states based on incongruent so-
cial cues, participants’ exposure to conflicting nonverbal ver-
sus verbal cues both engaged the anterior cingulate and lateral
prefrontal cortex (components of a Bdomain-general^ cogni-
tive control system that resolves perceptual conflict by regu-
lating Bdownstream^ neural structures), while differentially
recruiting two lower-order systems sensitive to different types
of social stimuli: the mirror neuron system and mental state
attribution system, respectively (Zaki, Hennington, Weber &
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Ochsner, 2010). Such results imply that hierarchical interac-
tions between relatively segregated and integrated mecha-
nisms are involved in specific cognitive domains (i.e., social
cognition; also see Colombo, 2014; Merritt, 2008). Similar
evidence has emerged from research on Theory of Mind
(Gerrans & Stone, 2008), face recognition (Nakamura et al.,
2000), speech (Doupe & Kuhl, 1999), and working memory
(Hasson, Chen & Honey, 2015).

The idea that neurodevelopment produces a flexible net-
work of nested, increasingly domain-general systems is fur-
ther supported by large meta-analyses of neuroimaging data,
which have shown that individual brain regions are function-
ally diverse and have different functional partners in different
contexts (Anderson, 2014; Anderson, Kinnison, & Pessoa,
2013). Domain-general systems also have been identified by
imaging studies showing that specific frontal and parietal re-
gions are engaged by a wide variety of cognitively demanding
tasks (Fedorenko, Duncan, & Kanwisher, 2013). On the other
end of the spectrum, it has been found that even at the level of
the sensorium, highly segregated Bdomain-specific^ systems
process information in an integrated, bidirectional fashion.
This is exemplified by cross- and multi-modal context effects
in early sensory processing, where responses to unimodal sen-
sory input are affected by information processed by other sen-
sory modalities, with latencies suggesting that inputs in one
modality directly influence early responses to stimuli present-
ed to another (Giard & Peronnet, 1999; Spence, 2011).

Taken together, the work above speaks to a growing con-
sensus that neurocognitive mechanisms are organized and in-
teract in a hierarchical, bidirectional manner. There is now
extensive comparative evidence to suggest that this sort of
architecture is a hallmark of the mammalian brain, progressing
from highly segregated (subcortical, cerebellar, and sensori-
motor) systems common to all mammals through to the highly
interconnected cortical association areas (e.g., the default
mode, salience, and control networks) found in primates
(Buckner & Krienen 2013; Finlay & Uchiyama 2015; Gu
et al., 2015; Markov & Kennedy 2013; Mesulam, 2012).
These widely distributed systems integrate information across
large areas of cortical input, subserve Binternal mentation^ and
our remarkable cognitive abilities, and confer the adaptive
advantage of heightened cognitive control (Buckner &
Krienen 2013; Finlay & Uchiyama, 2015).

To date, however, the strongest evidence for a hierarchical
neural architecture has stemmed from network neuroscience,
which focuses on the distributed networks of neural popula-
tions and brain regions responsible for cognition and behavior
(Sporns & Betzel, 2016). Following graph theory, a neural
network is represented as a collection of nodes (i.e., individual
neural elements or interacting units of the network) and edges
(i.e., the connections between nodes), forming Bmodules^
comprised of densely connected nodes (i.e., network commu-
nities) that are sparsely connected to other nodes in the

network (Sporns & Betzel, 2016). Wide-ranging studies of
structural and functional connectivity in the brain suggest that
it is organized as a self-similar hierarchy: a given node (e.g.,
network, module or sub-module) comprises a network of
smaller interacting nodes at a lower (hierarchical) level, rang-
ing from macroscopic neural networks and brain regions
through to macrocolumns and neurons (Breakspear & Stam,
2015; Kaiser et al., 2010; Meunier et al., 2010; Park & Friston,
2013; Sporns, 2013). Fine-grained functional connectivity
studies have confirmed that a self-similar hierarchy allows
cortical networks to optimize the balance between local, spe-
cialized processing and global integration, while high-
resolution structural connectivity findings have furnished
complementary evidence that specialized motor tasks have a
structural (segregated or modular) counterpart (Hütt, Kaiser,
& Hilgetag, 2014; Kaiser, 2017; Taylor, Wang, & Kaiser,
2017).

The Functional Hierarchy of the Brain:
Predictive Coding as a Theory of Neural
Processing

How does this self-similar hierarchy relate to function? An
answer to this question has arisen from predictive coding in
neuroscience (Lee & Mumford, 2003; Rao & Ballard, 1999).
This is an influential paradigm that sees the brain as a hierar-
chical inference machine, which minimizes prediction error
by reducing discrepancies between incoming sensory inputs
and top-down predictions (A. Clark, 2013). According to this
perspective, the brain embodies a hierarchical generative
model: its physical (internal) states encode a hierarchy of hy-
potheses about the world that reflects a probabilistic mapping
from causes in the environment to observed consequences
(e.g., sensory data). Conditional expectations are thought to
be encoded by deep pyramidal cells (i.e., representation units)
at each level of the cortical hierarchy that convey predictions
downward to suppress errors at the level below, whereas pre-
diction errors (or deviations from expectations) are encoded
by superficial pyramidal cells (i.e., error units) that convey
errors forward to revise expectations at the level above, there-
by minimizing prediction error (Bastos et al., 2012; Brown,
Adams, Parees, Edwards & Friston, 2013; Mumford, 1992).
Prediction errors also are weighted by precisions, which de-
termine the relative influence of ascending (error) and de-
scending (representation) signals (e.g., a high precision on
error signals corresponds to low confidence in top-down ex-
pectations). Dynamic precision weighting is thought to be
mediated by neuromodulation and underwrites cognitive pro-
cesses such as attentional selection and sensory attenuation.

Arguably, predictive coding affords a plausible process the-
ory of the functional integration of hierarchically modular
networks. According to this scheme, minimizing prediction
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error entails the dynamic, online adjustment of edge strengths
(i.e., connectivity) within the network by changing synaptic
efficiency, with backwards connections delivering predictions
to lower levels, and forward connections conveying prediction
errors to higher ones (Park & Friston, 2013). Intrinsic states
and edge strengths are recursively revised to improve predic-
tions at each level of the hierarchy, while directed edge
strengths reflect the effective connectivity of a network (i.e.,
the directed causal relationships between modules or nodes)
when engaged during a specific task (Park & Friston, 2013).
Cognition can therefore be described as the global integration
of local (i.e., segregated) neuronal operations via hierarchical
(error minimizing) message passing between cortical areas, a
process that is facilitated by a hierarchically modular network
structure (Park & Friston, 2013).

The HMM: An Evolutionary Systems Theory
of the Embodied, Situated Human Brain

We have considered empirical evidence that the architecture of
the brain comprises a modular hierarchy of differentially inte-
grated neural subsystems. However, we have yet to relate this
neural architecture with a broader perspective on the embod-
ied human brain. How does this hierarchical organization
emerge from the evolutionary and developmental dynamics
of the human brain-body-environment system? What are the
various causal mechanisms particular to Homo sapiens re-
sponsible for producing and influencing it? To address these
questions, we will introduce a meta-theoretical approach to
psychological inquiry based on evolutionary systems theory.

Evolutionary Systems Theory: The Origins
of the Brain

Evolutionary systems theory (EST) is a prominent, transdisci-
plinary paradigm that hearkens back to the musings of
Schrödinger (1944) and rests upon the elegant principle of
co-action between general selection and self-organization to
explain the evolution, form, and functioning of any dynamic,
multicomponent system over time (Badcock, 2012; Ramstead
et al., 2018a).

Originating from biology, general selection is a
nonsubstantive, Darwinian process that involves three
interacting principles of change: variation, selection, and re-
tention (Caporael, 2001). This is a universal process that ex-
tends across statistical and quantum mechanics (Ao, 2008,
2014; Campbell, 2016), which not only applies to organisms
(i.e., natural, kin, and sexual selection) but acts on all dynam-
ically coupled systems, such as molecules, neural synapses,
ideas, cultural practices, and technological products
(Caporael, 2001; Cziko, 1995; Mesoudi, Whiten & Laland,

2006). Conversely, self-organization stems from dynamic sys-
tems theory in physics (Nicolis & Prigogine, 1977; Prigogine
& Stengers, 1984) and refers to the spontaneous emergence of
coherent, higher-order patterns resulting from recursive inter-
actions among the simpler components of a complex, dynamic
system (Lewis, 2000). There are four key properties of self-
organizing systems: (1) microscopic coordinations emerge be-
tween different components of the system that lead to new
macroscopic patterns, which perform unique functions that
entrain and reinforce particular lower-order patterns over time
(a process of circular causality between different levels of the
system; see Witherington, 2007); (2) on average, they become
progressively complex and ordered over time; (3) global reor-
ganizations toward complexity occur at phase transitions—
points of turbulent instability that allow old patterns to be
replaced by new ones; and (4) they are both stable and sensi-
tive to environmental conditions: emergent change is stabi-
lized through negative feedback loops and macroscopic func-
tional coordinations, while an interconnectedness with other
systems favors sensitivity to the environment, particularly dur-
ing phase transitions (Lewis, 2000). Notably, the interrelation-
ships between time and different levels of systemic organiza-
tion mean that dynamic activity within any one timescale
(e.g., neural activity) is continuous with, and nested within,
the dynamics of all other timescales (e.g., learning, develop-
ment, and evolution) (Ramstead et al., 2018a; Smith &
Thelen, 2003). Thus, an important extension of this approach
is the need to analyze dynamic interactions across timescales.

With these distinctions in mind, the central premise of EST
is as follows: given that certain functional (global or macro-
scopic) patterns of interacting (local or microscopic) compo-
nents are selected over competing alternatives to allow differ-
ent hierarchical levels of (physical, chemical, biological, psy-
chological, and sociocultural) organization to emerge, self-
organization and general selection represent the two funda-
mental, mutually reinforcing processes that drive any evolving
system (Badcock, 2012; Eigen & Schuster, 1979; Kauffman,
1993; Weber & Depew, 1996). Work in this area has mainly
centered on complex adaptive systems—a type of dynamically
coupled, self-organizing system that adapts to its environment.
This adaptation involves an autonomous process of selection
that recruits the outcomes of a diversity of locally interacting
components within that system to select a subset of those
components for replication or enhancement (Levin, 2003).
Prominent examples include the immune system (Holland,
1995), social systems (Lansing, 2003; Miller & Page, 2009),
ecosystems and the biosphere (Levin, 1998), and of particular
interest here, the brain (Haken, 1996; Kelso, 1996).

The relative validity of Darwinian versus dynamical ap-
proaches has long fueled debate in psychology, with evolu-
tionary psychologists favoring the former school and
developmentalists the latter (Badcock, 2012; Barrett &
Kurzban, 2006; Frankenhuis et al., 2013; Greenberg,
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Partridge, Mosack, & Lambdin, 2006; Lickliter & Honeycutt,
2003). More recently, however, there has been growing advo-
cacy of a dialectical approach that synthesizes these perspec-
tives (Badcock, 2012; Frankenhuis et al., 2013; Kenrick,
2001; Ploeger et al., 2008a). Similarly, the model of the brain
that we present is premised on the notion that these ap-
proaches are commensurate and complementary. Whereas
evolutionary hypotheses address the ultimate questions of
psychology by focusing on the adaptive properties of cogni-
tion and behavior, developmental systems approaches address
its proximate questions by illuminating the ontogenetic and
real-time processes responsible for producing them (Badcock,
Ploeger, & Allen, 2016; Kenrick, 2001; Ramstead et al.,
2018a). This line of thought resonates with growing evidence
in biology that ultimate and proximate causes have a recur-
sive, bidirectional relationship (Laland, Sterelny, Odling-
Smee, Hoppitt & Uller, 2011), which suggests that to under-
stand an adaptive trait, we need to consider how it emerges
from the complex interplay of activity across different time-
scales (Rittschof & Hughes, 2018; Trillmich, Günther, Müller,
Reinhold, & Sachser, 2015). The HMM builds on such think-
ing by situating the brain within a broader ESTof psychology.

The EST in question explains the human brain and its re-
lation to our phenotypes, cognition, and behavior in terms of
reciprocal interactions between selection and self-organization
acting across the four domains of biological phenomena artic-
ulated by Tinbergen (1963): adaptation, phylogeny, ontogeny,
and mechanism. These domains involve both a temporal di-
mension (i.e., evolutionary, intergenerational, developmental,
and real-time processes, respectively) and a systemic dimen-
sion, which relates to the unit over which selection and self-
organization operate at each timescale (i.e., all Homo sapiens,
social groups, the individual over its lifespan, and the individ-
ual in context, respectively). As discussed elsewhere
(Badcock, 2012), this schematic can be leveraged to organize
major paradigms in psychology into four distinct, but comple-
mentary levels of analysis (Figure 1).

As shown in the Figure 1, Bfirst-level^ analyses are taken
up by evolutionary psychology. This is a heterogeneous para-
digm that examines the influence of evolutionary processes
(particularly natural, kin, and sexual selection) on human psy-
chology and behavior, incorporating influential approaches
such as the massive modularity hypothesis, along with social-
ity, multilevel, and dynamic systems views (Caporael, 2001).
To date, the most widely recognized model to emerge from
this field is the massively modular mind, which states that the
human brain comprises a large collection of species-typical,
functionally specialized modules (Buss, 1995, 2016; Tooby &
Cosmides, 1992). As we mentioned earlier, these modules are
thought to reflect domain-specific adaptations—they have
evolved, through the process of natural selection, because they
solved distinct adaptive problems by responding to specific
input criteria (gleaned from an external environment or other

internal processes), and transforming this information into
output by influencing physiological activity, activating other
mechanisms and/or producing behavior in adaptive ways
(Buss, 1995). The validity of this view has attracted a lot of
debate; however, because authoritative discussions of this is-
sue are already available (Anderson & Finlay, 2014; Stephen,
2014; Zerilli, 2017), we will not dwell on this debate here. For
our part, we certainly endorse the broader evolutionary psy-
chological claim that selection favors the reliable emergence
of adaptive, species-typical cognitive and behavioral patterns.
We also believe that it is important to distinguish between
massive modularity as an explanatory claim about the form
and function of the brain and its apparent heuristic value
(Klasios, 2014; Stephen, 2014). Regardless of the veracity of
massive modularity, evolutionary computational theories con-
tinue to guide research in a systematic and highly productive
way, providing a wealth of insights into the adaptive signifi-
cance of our mental processes and behavior (Buss, 2016;
Dewsbury, 2009; Dunbar & Barrett, 2007; Frankenhuis &
Ploeger, 2007; Machery & Barrett, 2006; Pinker, 1997).
Indeed, the convenience of the phenotypic gambit is that it
can produce substantive, testable hypotheses of cognition
and behavior without requiring a mechanistic explanation
for how the brain produces it (Badcock et al., 2016). In this
way, the pitfalls of massive modularity by no means vitiate its
capacity to motivate meaningful research (Barrett, 2008). As a
fully accepted explanation for the adaptive properties of all
biological systems, it is also clear that natural selection repre-
sents a crucial explanatory principle for psychological inquiry
(Badcock, 2012; Burke, 2014; Frankenhuis & Ploeger, 2007;
Machery & Barrett, 2006).

As we noted earlier, however, the HMM offers a mecha-
nistic alternative to this hypothesis that enables researchers to
retain its heuristic benefits, while dispensing with its problem-
atic, explanatory claims. Specifically, a key difference be-
tween massive modularity and our own model is that we do
not place any emphasis upon modularity (i.e., functional spe-
cialization and computational encapsulation) or domain-
specific (vs. domain-general) cognitive processes. By appeal-
ing to neomechanistic philosophy (Bechtel, 2008; Craver,
2006), the HMM offers an alternative to modules, in the form
of dynamically interacting (and only partially segregated)
neurocognitive mechanisms. This approach attributes equal
weight to functional segregation and integration; it explains
adaptive biobehavioral patterns in terms of dynamic, coordi-
nated interactions between (hierarchically nested and func-
tionally differentiated) neural mechanisms, not separately
modifiable, functional modules per se. A similar claim has
recently been made by Anderson (2014, 2016), who suggests
that adaptive behaviors arise from transiently assembled local
neural subsystems that are able to respond flexibly to environ-
mental demands, not specialized modules dedicated to solving
specific adaptive problems.
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Returning to Figure 1, Bsecond level^ explanations appeal
to the extended evolutionary synthesis (Laland et al., 2015).
This is an emerging paradigm that incorporates insights from a
number of complementary fields that focus on the dialectical

relationship between ontogeny and phylogeny. The best
known of these is evolutionary developmental biology (evo-
devo), which explores the dynamic ways in which develop-
mental changes within one generation (i.e., ontogeny) relate to
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Fig. 1 The evolutionary systems theory of psychology. Human
phenotypes, cognit ion and behavior are produced by the
complementary influence of selection and self-organization acting across
four dynamically coupled levels of causation: adaptation, phylogeny, on-
togeny, and mechanism. Psychological paradigms shed light on this pro-
cess by concentrating differentially on four specific, interrelated levels of
analysis: functional hypotheses for adaptive, species-typical characteris-
tics (i.e., evolutionary psychology); explanations for intergenerational,
between-group similarities and differences (i.e., evo-devo and the

extended evolutionary synthesis); explanations for individual develop-
ment (i.e., developmental psychology); and mechanistic explanations
for real-time biobehavioral phenomena (i.e., the subdisciplines).
Informational exchange between these paradigms allows researchers to
integrate advances across different fields of inquiry and develop new
hypotheses, and the nonsubstantive meta-theories of (natural and general)
selection and self-organization interpenetrate all four explanatory levels
to promote their consilience. For further details, see Badcock (2012)
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changes across generations (i.e., phylogeny) (Hall, 1999,
2003). A key source of heritable ontogenetic variation is epi-
genetic inheritance, where adaptive behaviors and phenotypic
modifications are transmitted to subsequent generations with-
out directly altering the genome, supplying new targets for
selection (Jablonka & Lamb, 1995, 2005). Another relates to
exogenetic inheritance, which refers to the set of reliably
inherited environmental resources that are necessary for the
reproduction of the individual lifecycle, including adaptive,
constructed aspects of the ecological niche, and the intergen-
erational transmission of accumulated cultural information
through regimes of imitation, social learning, and explicit
teaching (Henrich, 2015; Sterelny, 2012; Stotz, 2017;
Tomasello, 2014). Rather than focusing on the endpoints of
selection, evo-devo concerns the mechanisms responsible for
the origin and development of adaptations over evolutionary
time (Oyama, 2000; Ploeger et al., 2008a; West-Eberhard,
2003), thereby synthesizing ultimate, adaptationist explana-
tions with proximate, ontogenetic models to explain evolu-
tionary change (i.e., phylogeny). An increasing number of
evolutionary psychologists have embraced the field, resulting
in the emergence of evolutionary developmental psychology
as a distinct subdiscipline (Bjorklund & Pellegrini, 2002;
Geary & Bjorklund, 2000). More recently, Heyes (2018, in
press) has advocated an approach called cultural evolutionary
psychology, which concentrates on the ways in which distinc-
tively human (adaptive) cognitive mechanisms emerge from
cultural rather than genetic evolution.

BThird-level^ explanations relate to developmental psy-
chology. Attempts to unify theorizing in this field have led
many to adopt a developmental systems approach, driving
myriad advances in the study of biological, cognitive, emo-
tional, language, neurological, and personality development
(Kelso, 1995; Lewis, 2000; Ploeger et al., 2008b; Thelen &
Smith, 1994). This is not surprising, given that dynamical
approaches echo the interactionist principles espoused by
developmentalists for years (Bronfenbrenner, 1977; Gottlieb,
1991; Karmiloff-Smith, 1992; Lickliter & Honeycutt, 2003;
Sameroff, 2010). Self-organization supplies a cohesive, bio-
logically plausible explanation for the appearance of novelty
within developing systems, the emergence of order and in-
creasing complexity over time, transition points that permit
both structural advances and individual diversification, and
our capacity for self-correcting stability and sensitive adapta-
tion to the environment (Lewis & Granic, 1999).

Finally, Bfourth-level^ mechanistic analyses concern the
dynamic ways in which ecobiopsychosocial interactions pro-
duce cognition and behavior in real-time. This final tier of
analysis is encapsulated by psychology’s subdisciplines, such
as cognitive, personality, social, and clinical psychology. By
analyzing data collected from particular individuals under spe-
cific conditions at a given point in time, subdisciplinary re-
search can be seen as targeting the most proximate, variable

level of explanation by exploring the innumerable ways in
which unique ontogenetic outcomes (i.e., our phenotypes
and behavior) interact with different environments in real-
time (Badcock, 2012).

This hierarchical structure of scientific theorizing has long
been recognized, particularly in relation to divisions between
the physical sciences, biology, psychology, and the social sci-
ences (Henriques, 2011). Analogously, the multilevel struc-
ture of different paradigms in psychology can be seen as an
expected consequence of scientific inquiry—by asking certain
questions, researchers must neglect others; resultant conclu-
sions should be appropriate for the sorts of questions being
posed; and we should not undermine a fruitful approach at one
level because it fails to address another (Dewsbury, 2009;
Marshall, 2013; Scott-Phillips, Dickins, & West, 2011).
Such different levels of analysis therefore should be seen as
providing distinct, alternate, and valid perspectives on the
same whole (Witherington & Lickliter, 2016). At the same
time, however, they are complementary and intersect.
Researchers can—and often do—exploit this sort of multilev-
el theoretical organization, because it allows theorizing at one
level of analysis to be refined and reinforced through reference
to models and findings at others. Clearly, understanding the
complexity of the human system also rests on appreciating
that different levels of biological activity are reciprocal or
co-acting, which means that we need to examine how these
levels interact (Marshall, 2013; Scott-Phillips et al., 2011).
Indeed, Tinbergen himself emphasized the importance of ex-
ploring how his four levels of analysis interrelate (Bateson &
Laland, 2013).

To this end, the EST described here adopts a process-
oriented approach to Tinbergen’s questions, which is based
on the relatively uncontentious claim that all human pheno-
types emerge from recursive, dynamically coupled interac-
tions between evolutionary (e.g., natural selection), intergen-
erational (e.g., epigenetic and cultural inheritance), develop-
mental (e.g., gene-environment interactions), and real-time
(e.g., biopsychosocial) processes (Badcock et al., 2019). For
instance, in this context, phylogeny refers to the dynamic
causal processes responsible for producing heritable changes
between generations, not to the outcomes of such processes
(i.e., our position on the Tree of Life). At the same time,
however, the EST also encapsulates extant research on the
outcomes of these processes at all four levels of psychological
explanation, begging the question of how the outcomes ob-
served at one level of inquiry emerge from the dynamics at
play in others. Such an approach satisfies the remit of evolu-
tionary psychologists by accommodating the influence of nat-
ural selection and other evolutionary forces. Conversely, it
appeals to the constructivist principles championed by
developmentalists, because it recognizes that adaptive pheno-
typic traits emerge from dynamic interactions between the
phenotype and its environment over the course of ontogeny.
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So how does this EST of psychology relate to the HMM?
Following models in computational neuroethology (Chiel &
Beer, 1997; Ramstead et al., 2018a), embodied cognition
(Clark, 1999; Wilson, 2002), and enactivism (Gallagher,
2017), the HMM is a theory of the embodied brain that ex-
plains neural dynamics, structure, and function in terms of
reciprocal interactions between human phenotypes and the
environment over four nested temporal scales. In other words,
it situates the brain within the multilevel dynamics of the
human brain-body-environment system (Bolis & Schilbach,
2018; Gallagher, 2017; Marshall, 2013). This system is pro-
duced by a temporal hierarchy of dynamically coupled pro-
cesses: evolutionary constraints on cognition run through in-
dividual development and learning, while effects at these
timescales can influence neural evolution in turn (Dickins &
Levy, 2001). Next, we briefly explore how this multi-level
theoretical framework can be used to explain the hierarchical
architecture of the brain.

Explaining Hierarchically Modular Neural
Networks with the HMM

The HMM is a global theory of human neurocognition and
biobehavior that follows from the broader meta-theory of EST
described above: it explains the hierarchical form and function
of the brain in terms of an embodied, complex adaptive sys-
tem that has been shaped differentially by evolutionary, inter-
generational, developmental, and real-time processes, which
themselves exhibit circular causality. This perspective aligns
with other dynamical proposals, according to which adaptive
psychobiological mechanisms (i.e., evolved, epigenetic
attractors) emerge from the repeated assembly of reliably re-
current developmental resources produced by reciprocal inter-
actions between an evolutionary history of selection, develop-
mental processes, and situational activities in species-typical,
real-time environments (Anderson & Finlay, 2014; Caporael,
2001; Hendriks-Jansen, 1996; Lickliter & Honeycutt, 2003).
In humans, an important constraint that extends across all of
these timescales is the sociocultural environment, because our
survival depends on our ability to leverage cultural informa-
tion and immersively participate in normative, culturally
adapted practices (Gallagher, 2017; Heyes, 2018; Ramstead
et al., 2018a, 2018b; Ramstead, Veissière & Kirmayer, 2016).
On the basis of these distinctions, the HMM suggests that
theories of human brain dynamics should be informed by
integrative, multilevel models in psychology that are able to
identify both why different neurocognitive and biobehavioral
patterns are adaptive; along with how they emerge from the
broader causal processes that act on human phenotypes across
various timescales (Badcock et al., 2017; Ramstead et al.,
2018a).

This temporal hierarchy of causal mechanisms is arguably
manifest in the development and morphology of the brain.
Comparative and human studies have shown that the phylog-
eny of the brain is reflected across nested levels of neural
organization—ranging from the genes inherited from our
hominid ancestors, to epigenetic transcription factors that
shape gene expression, to the synaptic epigenesis of neural
networks throughout development, and the long-range con-
nectivity that underpins daily consciousness (Changeux,
2017). Similarly, studies of the maturation of neural networks
over childhood and adolescence have shown that human cor-
tical development mirrors phylogeny, progressing from sen-
sorimotor hierarchies akin to those of other mammals through
to the recent association areas shared by humans and other
primates (Gogtay et al., 2004; Gu et al., 2015). In a review
of the comparative literature, Finlay and Uchiyama (2015)
describe how the hierarchical organization of the cortex
emerges from a rostro-caudal gradient in the duration of neu-
ron production—a phylogenetically variable phenomenon
found in every mammal studied to date. They contend that
this represents a highly conserved developmental mechanism
that directly impacts on brain evolution—producing a pro-
gressive increase in both the hierarchical structure and abso-
lute size of the cortex throughout ontogeny and conferring the
adaptive advantage of heightened cognitive control among
primates and other large brained animals (Finlay &
Uchiyama, 2015; also see Badre, 2008). The above findings
point directly to the complementary relationship between nat-
ural selection and self-organization: selection has canalized
early sensorimotor regions that serve as neurodevelopmental
anchors, allowing for the progressive self-organization of
highly integrated association cortices throughout development
that enhance evolvability by responding flexibly to environ-
ment change (Anderson & Finlay, 2014; Buckner & Krienen,
2013).

Importantly, we are not the first to apply EST to the brain
(Haken, 1996; Kelso, 1995). Of particular relevance, two car-
dinal properties of complex adaptive systems are that aggre-
gates of interacting units (e.g., modules) are organized in a
hierarchically nested manner (Holland, 1995) and that intra-
component (e.g., within-module) connections tend to be stron-
ger than inter-component (e.g., between-module) connections,
with neighboring components showing stronger connections
than distal ones (Eidelson, 1997). It is now widely accepted
that this type of hierarchical structure is strongly favored by
selection. It enhances evolvability because deleterious chang-
es to a single component of the system are unlikely to affect
the system itself, and it allows adaptive novelties to emerge
without disrupting global functioning (Sporns & Betzel,
2016). Computer simulations of evolving networks have
shown that a hierarchical organization conserves the (spatial,
processing, and metabolic) cost of neural connections and
adapts faster to new environments than nonhierarchical

Cogn Affect Behav Neurosci



structures, because it is able to solve problems by recursively
combining solutions to subproblems (Mengistu, Huizinga,
Mouret & Clune, 2016). Finally, the hierarchical brain is
thought to promote Bself-organized criticality.^ This is a dy-
namical state poised between completely ordered, stable cy-
cles of activity and highly complex, chaotic ones that opti-
mizes evolvability, because it allows small, extrinsic changes
to elicit large, intrinsic reorganizations (Bak & Chen, 1991).
Self-organized criticality is a central concept in complexity
theory, which has been widely adopted across the sciences to
shed light on the dynamics of complex adaptive systems (Bak,
2013). It has also been leveraged to explain the emergence of
healthy, optimal, or adaptive human phenotypes and behav-
iors, whereas deviations from this critical state are thought to
lead to aging and disease (Coey, Kallen, Chemero, &
Richardson, 2018; Delignières, & Marmelat, 2012). With re-
spect to the brain, the hierarchical segregation of neural net-
works into distributed neighborhoods has been found to
stretch the parameter range for self-organized criticality by
allowing subcritical and supercritical dynamics to coexist si-
multaneously (Hilgetag & Hütt, 2014). Because systems at
criticality have optimal information-processing capacities, a
structure that extends this critical region is likely to be natu-
rally selected (Hesse & Gross, 2014).

Explaining the Adaptive Mind: A Variational
(Free-Energy) Approach

We have considered a range of perspectives that converge on
the idea of a hierarchically structured brain that both instanti-
ates and engenders the complementary relationship between
natural selection and self-organization. We also have argued
that to understand the brain, one must consider causal interac-
tions between the broader evolutionary, intergenerational, de-
velopmental, and real-time influences that shape human phe-
notypes. However, what is missing from our account so far is a
neurobiologically plausible theory that is able to explain why
the brain is structured in the way that it is and functions in the
ways that it does. To address this, we will introduce the free-
energy principle (FEP) from computational neuroscience,
which can be used to formulate mathematically the dynamics
that obtain both within and across all four of Tinbergen’s
(1963) levels of causation. Leveraging the resources provided
by the FEP allows us to operationalize the HMM and to define
its multilevel dynamics formally.

The Free-Energy Principle

Originally proposed to explain perception, learning, and ac-
tion (Friston, 2003, 2005), the FEP since has been applied to
the evolution, development, form, and function of the brain

(Friston, 2010; Friston, Kilner & Harrison, 2006) and, more
recently, to the characteristic properties of life itself (Friston,
2013b; Ramstead et al., 2018a). The FEP is a simple postulate
with complex ramifications. It states that to remain alive, all
living systems must minimize the quantity Bvariational free-
energy^ to reduce the entropy (i.e., the decay or dispersion) of
their sensory and physiological states. Technically, variational
free energy is a formal, information theoretic quantity that
limits (by being greater than) the entropy of a generative mod-
el entailed by the state of a biological system (e.g., the brain).
As noted in our discussion of predictive coding, a generative
model refers to a probabilistic mapping from causes in the
environment to observed consequences (e.g., sensory data).
In this context, entropy refers to the (long-term) average of
surprise: the (negative log) probability of sensory samples
encountered by an agent (Friston, 2010). Intuitively, organ-
isms expect to remain within their phenotypic states; deleteri-
ous deviations from these expectations are in this sense sur-
prising and must be avoided.

The FEP builds on the idea that biological agents are dis-
tinguishable from other self-organizing systems because they
actively avoid deleterious (surprising) phase-transitions by
minimizing the entropy of their sensory and physical states.
Living systems are locally ergodic. They revisit a small num-
ber of states with a high probability (Friston, 2013b;
Schrödinger, 1944). In this context, ergodicity simply refers
to the tendency of an organism to revisit continually the same,
characteristic phenotypic states. It appeals to the (observable
and demonstrable) existence of an attracting set (i.e., pullback
attractor) in random dynamical systems, which means that
there is a finite probability that the neighborhood of any state
will be revisited over a suitably long period of time. That is,
the system will appear to be attracted to particular regimes of
state or phase space. Notably, this does not imply stationarity
or thermodynamic equilibrium. The dissipative processes
against which we struggle continue to exist, but our ability
to actively reduce surprise allows us to delay their deleterious
effects by repeatedly returning to the same, limited set of
(unsurprising) phenotypic states. This propensity to minimize
surprise (resp. free-energy) is the consequence of natural se-
lection: self-organizing systems capable of avoiding such
phase-transitions have been selected over those that could
not (Friston et al., 2006). Because the repertoire of functional
(i.e., adaptive) states occupied by an organism is limited,
mathematically, the probability distribution over these charac-
teristic states has low entropy: there is a high probability that
the organism will occupy a small number of states. Thus, an
organism’s distal imperative of survival and maintaining func-
tional states within physiological bounds (i.e., homeostasis)
translates into a proximal avoidance of surprise (Friston,
2010). Although surprise itself cannot be evaluated, because
free-energy imposes an upper limit on surprise, biological
systems can indirectly reduce surprise by minimizing their

Cogn Affect Behav Neurosci



free-energy. To do this, an organism uses sensations and its
predictions, which are based on the hierarchical generative
model encoded by its internal states (e.g., neuronal activity
and connection strengths). Importantly, the FEP generalizes
the theory of predictive coding: biological agents actively
minimize free-energy by reducing their prediction errors
(and indirectly, surprise).

Fundamentally, living beings can minimize surprise either
by changing their predictions by altering their internal states
(i.e., perception and learning) or by changing their relation
with the environment to alter what is predicted (i.e., action).
Thus, action and perception operate in a reciprocally causal
fashion to maintain homeostasis and optimize an organism’s
generative model of the world (Friston, 2010; Friston,
Breakspear, & Deco, 2012b). This process is encapsulated
by the theory of active inference: the idea that all behavior
involves the selective sampling of sensory data to ensure that
our predictions are self-fulfilling (Friston, Daunizeau, &
Kiebel, 2009; Friston, Daunizeau, Kilner & Kiebel, 2010;
Hohwy, 2016).

To summarize, minimizing free-energy simply means in-
ducing an upper bound on surprise by means of predictions,
and reducing this bound by optimizing the activity and con-
nectivity in our brains (resulting in action, perception, and
learning). Because surprise is mathematically equivalent to
the (negative log) of Bayesian model evidence, minimizing
free-energymaximizes the evidence for our generativemodels
of the world; it compels us to make Bayesian inferences about
our environment. A key extension of this view is that our
models of the world are optimized through evolution,
neurodevelopment, and learning (Ramstead et al., 2018a).
To discuss this further, we turn to the fundamental role of prior
beliefs in shaping our predictions, behavior, and the hierarchi-
cal structure of the brain.

Adaptive Priors and the Hierarchical Brain

If each individual is adapted or optimized to their own
environment—either at an evolutionary level or on a daily
basis due to learning—the expectations (encoded by neuronal
form and activity) of each individual must differ. However, we
also must inherit some aspect of these expectations to con-
serve the physical form that entails each generation’s model
of its eco-niche (e.g., the way the brain is wired). This brings
us to the crucial role of (Bayesian) prior beliefs about the sorts
of sensory experiences we expect to encounter in the world
(e.g., the fact that we have eyes suggests an environment
bathed in light) (Friston, Thornton, & A. Clark, 2012c;
Stamps & Frankenhuis, 2016). According to the FEP,
species-typical patterns of cognition and behavior can be ex-
plained in terms of adaptive priors: inherited expectations
about the causal structure of the world that have been shaped

by selection to guide action-perception cycles towards unsur-
prising states (e.g., BI will keep moving until I am rewarded^).

Where do these adaptive priors come from? Following
neural Darwinism, the FEP explains neurophysiological
changes in terms of the influence of selection acting on human
phenotypes over evolutionary time. The brain only labels a
sensory state as valuable (i.e., unsurprising) if it leads to an-
other valuable state, and selection ensures that an organism
moves through a succession of probable states with adaptive
value. Thus, natural selection reduces surprise by specifying
the value of sensory states through genetic and epigenetic
mechanisms, prescribing a small number of attractive states
with innate value (i.e., adaptive priors) that minimize surprise
by ensuring that an organism seeks out states consistent with
its phenotype and environment (Friston 2010). This explains
how one generation can pass on to the next what is valuable
(expected), without having to prescribe the details of how to
attain these valuable states. In short, natural selection is na-
ture’s way of performing Bayesian model selection to mini-
mize the free-energy of phenotypes (i.e., generative models;
also see Campbell, 2016).

Notably, the perspective outlined here connects with state-
dependent optimality modelling in biology, which concen-
trates on the properties of biological systems that natural se-
lection is likely to favor under certain ecological conditions
(Frankenhuis et al., 2013). This is a Bayesian approach that
seeks to understand how state-dependent systems change over
time and acquire new information via interactions between
their internal states and the environment, with a view to iden-
tify the optimal (fitness-maximizing) policy for each possible
state of the system (Houston &McNamara, 1999). Akin to the
FEP, state-dependent optimality modelling assumes that or-
ganisms evolve cognitive and behavioral Brules^ (e.g., prior
beliefs about states of the world) that perform well on average
in their natural environments. Notably, such a view is not
tantamount to genetic reductionism: organisms are able to
sample cues from the current environment to update the rules
that govern their behavior, resulting in posterior beliefs that
optimize their models of the local ecology (McNamara, &
Houston, 2009; McNamara, Green, & Olssen, 2006; Stamps,
& Frankenhuis, 2016). To date, support for these ideas has
chiefly been gleaned from simulation studies (Leimar, &
McNamara, 2015; Leimar, Dall , Hammerstein, &
McNamara, 2016; McNamara, Dall, Hammerstein, &
Leimar, 2016; Ramírez, & Marshall, 2017), although there is
some preliminary evidence—stemming largely from studies
of Daphia—that an organism’s genes and inherited physiolo-
gy provide developmental cues (i.e., priors) that facilitate its
flexible adaptation to local ecological conditions (Bell &
Stein, 2017; Dall, McNamara, & Leimar, 2015; Hales et al.,
2017). From our perspective, this form of optimization reflects
free-energy minimization across multiple timescales and has
close connections with second-order selection (i.e., selection
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for selectability), which favors phenotypic traits that optimize
an organism’s ability to minimize surprise by enabling it to
flexibly adapt to its eco-niche (e.g., phenotypic or
developmental plasticity; Houston & McNamara, 1999;
Stamps, & Frankenhuis, 2016). These ideas also fit comfort-
ably with the tenets of cybernetics that underpin much of the
work on self-organization—particularly the good regulator
theorem, which states that any system that can regulate its
environment must instantiate a (good or sufficient) model of
that environment (Conant & Ashby, 1970; Friston & Buzsáki,
2016; Seth, 2014).

To summarize, the basic tenet of the FEP is that all organ-
isms are compelled to model their world. This follows from
the fact that minimizing free-energy implicitly maximizes
(Bayesian) model evidence. The ensuing perspective on bio-
logical systems says something quite profound: all organisms
can be regarded as an embodied statistical model of the envi-
ronmental niches (i.e., eco-niches) that they inhabit. As such,
the FEP not only applies to cortical information processing,
but to every element of systemic organization, such as the
organization, development, and evolution of the brain
(Clark, 2013; Friston & Stephan, 2007). The brain does not
just contain a model of the world; it is (one aspect of) a statis-
tical model of the world that is realized by the whole
organism—a physical transcription of causal regularities in
the environment that is optimized by evolut ion,
neurodevelopment, and learning (Friston, 2013a). The upshot
of this is that we should expect to see causal structure in the
environment reflected in the anatomical structure of the hu-
man brain.

Of particular relevance to the HMM is the emergence of
hierarchical connections that speak to lawful statistical regu-
larities conserved over evolutionary timescales (e.g., the laws
of physics). For instance, the statistical independence between
the identity and location of objects in the visual world suggests
an anatomical dissociation between models or representations
of the Bwhat^ and Bwhere^ attributes of (hidden) causes of
visual input (i.e., knowing what an object is does not tell
you where it is). This is precisely what we see in the distinc-
tion between the ventral (Bwhat^) and dorsal (Bwhere^)
streams in the cortical hierarchy (Ungerleider & Mishkin,
1982), suggesting that independent environmental causes are
encoded in functionally segregated neuronal structures
(Friston & Buzsaki, 2016).

Similarly, the architecture of the brain transcribes the inher-
ent hierarchical structure of the world. The explanation for this
is fairly simple—any coupled dynamical system will neces-
sarily reflect a hierarchical causal structure that emerges from
a separation of temporal scales (Haken, 1983; Murray et al.,
2014). This is a cornerstone of many theories in the physical
sciences, such as synergetics and the centre manifold
theorem—for example, the fast thermal fluctuations at a mi-
croscopic scale cannot influence the motion of a massive body

at the macroscopic scale. This illustrates a key aspect of hier-
archical models: the conditional independence among levels.
A hierarchical model is not defined by its connections, but by
the absence of connections (i.e., conditional independence).
Mathematically, this means that a hierarchy rests upon condi-
tional independencies that are unavoidable in a world that
involves a separation of temporal scales. Consistent with this,
careful connectivity studies have now evidenced the sparse
hierarchical connectivity of the brain (Ercsey-Ravasz et al.,
2013; Markov et al., 2014; Mesulam, 2012). This structure
can be understood in terms of the hierarchy of temporal scales
at which representations evolve. The lowest levels of the brain
encode fast fluctuations in the environment associated with
sensory processing, whereas higher levels encode more com-
plex causal regularities associated with increasingly slower
contextual changes (Friston & Buzsáki, 2016; Kiebel,
Daunizeau, & Friston, 2008).

It is worth reiterating that the emergence of structural divi-
sions that reflect the causal structure of the world does not
preclude their functional integration. As mentioned, a key
property of neural subsystems is their near-decomposability;
their information-processing features cannot be fully separat-
ed from that of other subsystems (or only abstractly so).
Although the specialized processing of a given subsystem
depends on short-range connections between its subcompo-
nents, it remains functionally connected to other regions in the
network via long-range connections, which facilitates bidirec-
tional message-passing between regions (Park & Friston,
2013). Consistent with this, high-resolution, network-based
analyses have shown that different neural subsystems perform
discrete cognitive functions, while highly distributed
Bconnector^ regions allow for their functional integration by
coordinating effective connectivity between these subsystems
(Bertolero, Yeo, & D’Esposito, 2015; Taylor, Wang & Kaiser,
2017). Determining the extent to which a given neural region
is functionally segregated versus integrated is ultimately an
empirical affair, with recent advances in structural and func-
tional brain mapping providing a promising means to explore
this issue—as exemplified, in particular, by studies of the hu-
man connectome (Sporns, 2011; Sporns, Tononi, & Kötter,
2005; Van Essen et al., 2013).

So far, then, we have discussed the role of natural selection
in producing adaptive, phenotypic priors that are reliably
passed from one generation to the next. Before we conclude
this section, it is important to address the potential charge of
genetic reductionism by recognizing that such traits emerge
from multiscale interactions between (internal) biological
dynamics—ranging from genes, cells, and neural activity,
through to organs and the body—and the developmental en-
vironment in which such dynamics unfold. Crucially, this in-
cludes other human beings and our relations to them, as well
as a shared eco-niche (Constant, Ramstead, Veissière,
Campbell, & Friston, 2018b). Moreover, we do not mean to
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suggest that all adaptive priors are genetically inherited.
Instead, we are inclined toward an expanded view of inheri-
tance borrowed from evo-devo and the extended evolutionary
synthesis, which assumes a dynamic, bidirectional relation-
ship between ontogenetic and evolutionary processes
(Laland et al., 2015). This view extends beyond the gene as
the single unit of inheritance to incorporate other units of
information transmission, including RNA, cells, cytoplasm,
organelles, and the extracellular environment (Jablonka &
Lamb, 2002). It also incorporates exogenetic forms of inheri-
tance, which involve the intergenerational transmission of cul-
tural information, practices, and niches that shape adaptive
cognitive and behavioral policies across generations and over
the course of ontogeny (Constant, Ramstead et al., 2018b;
Griffiths, 2017; Heyes, 2018; Ramstead et al., 2016;
Sterelny, 2012).

With this in mind, we appeal to a multiscale formulation of
adaptive priors, only a subset of which are specified geneti-
cally. Some adaptive priors will indeed reflect the (epi)genetic
inheritance of species-typical traits favored by natural selec-
tion. But this is only part of the story. Others will
also instantiate empirical priors, which leverage information
obtained through experience to produce adaptive responses to
our eco-niche. The former, putatively Binnate^ priors will
show a strong genetic basis, will tend to be species-typical,
and might be found in other species (primates in particular).
Among others, exemplary candidates range from the gross
morphology of the brain (Friston, 2010), hormonal and
neuromodulatory systems (Heyland, Hodin, & Reitzel, 2005;
Katz & Harris-Warrick, 1999; McGlothlin & Ketterson,
2008), reward, mood, and affective systems (Adams et al.,
2016; Gray, 1972, 1994; Nettle & Bateson, 2012), personality
traits (Bouchard & Loehlin, 2001; Gosling, 2001; Nettle,
2006), cognitive biases that emerge early in infancy (e.g.,
attention toward faces and a phobia of snakes; LoBue &
Rakison, 2013; Salva, Farroni, Regolin, Vallortigara, &
Johnson, 2011), shared intentionality (Tomasello, 2010;
Tomasello & Carpenter, 2007), relational reasoning (Penn,
Holyoak, & Povinelli, 2008), and sensitive periods of devel-
opment (e.g., puberty) that fine-tune our adaptation to differ-
ent environments across the life course (Fawcett &
Frankenhuis, 2015; Frankenhuis & Fraley, 2017; Geary &
Bjorklund, 2000).

On the other hand, intergenerational, exogenetic resources
allow for the inheritance of adaptive, highly specialized
neurocognitive mechanisms (i.e., Bcognitive gadgets^; Heyes,
2018) that depend more on cultural evolution and social learn-
ing, such as language and mind reading (Heyes, 2018; Heyes &
Frith, 2014). As we have discussed elsewhere, the individual
also inherits adapted cultural practices from its eco-niche, which
have been shaped by other social members to motivate adaptive
behavior (e.g., shelters and desire paths; see Constant, Ramstead
et al., 2018b; Ramstead, Constant, Badcock & Friston, 2019).

Determining the extent to which an adaptive prior reflects innate
biobehavioral biases sculpted and scripted by natural selection,
or a flexible, adaptive response that relies more on cultural evo-
lution and social learning, is ultimately an empirical matter,
although we suspect that in most cases, the development of
the one (e.g., social learning) is likely to be intimately tied to
the other (e.g., an attentional bias toward faces; also see Heyes,
2018, in press). Our basic point is that adaptive priors arise from
the reliable transmission of adaptive (surprise-reducing) policies
from one generation to the next. They emerge, differentially,
from the evolutionary processes of adaptation and phylogeny
and drive developmental and real-time activity at the level of the
individual to reduce surprise.

To recapitulate, the FEP asserts that the fundamental im-
perative for all living systems is to minimize (a free-energy
bound on) surprise, which depends on predictions. This idea
appeals to ubiquitous procedures in Bayesian statistics –
namely, Bayesian inference and model selection, via free-
energy minimization (perception, action, learning, and evolu-
tion). According to this scheme, natural selection can be seen
as performing Bayesian model selection by optimizing phe-
notypes that are an embodied model of the world they inhabit,
exploring the model space proffered by genetic and epigenetic
variation—variation that is itself subject to selective
pressure—to successively optimize phenotypic models of
the eco-niche over evolutionary time (Campbell, 2016; de
Vladar & Szathmary, 2015; Harper, 2011). These models are
further optimized by niche construction and cultural evolu-
tion, which allow flexible, adaptive priors to be shaped by
one generation and passed on to the next (Constant,
Ramstead et al., 2018b; Ramstead et al., 2019).

In a nutshell, the FEP describes the brain as an adaptive,
hierarchically organized neurocognitive system (i.e., a genera-
tive model) that functions to minimize prediction errors (and
therefore surprise) by seeking to match incoming sensory in-
puts with top-down predictions. These predictions are
constrained by prior beliefs, which allow our physiology and
behavior to be optimized by evolution, neurodevelopment, and
experience. In the following section, we incorporate these ideas
into the HMM by formulating, mathematically, the dynamics
of the human brain at each descriptive level specified by the
HMM, and the broader ESTof psychology to which it appeals.

The HMM Revisited: Incorporating
the Free-Energy Formulation

Earlier, we proposed an EST of the brain (i.e., the HMM) pre-
mised on the influence of selection on dynamic interactions
between evolutionary, intergenerational, developmental, and
real-time processes. There are fundamental points of contact
between this theory and the FEP. Both conform to EST by
emphasizing the complementary relationship between natural
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selection and self-organization. They also both assume that
natural and cultural selection influence the evolutionary and
developmental trajectories of biological systems via the inher-
itance of distinctive neurocognitive patterns (e.g., adaptive
priors) that guide cognition and behavior in adaptive ways.
Finally, they assert that neural processing mechanisms are hi-
erarchically organized, interact in a recursive fashion, and in-
volve both specialization and integration. To synthesize these
models and precisely define the HMM, we will now return to
the schematic of the EST of psychology described earlier.

Beyond the fact that they are both hierarchical models that
draw from the principles of EST, the FEP converges with the
HMM in two fundamental ways.We have already noted in our
treatment of the FEP that although each individual is adapted
or optimized to his or her own eco-niche—meaning that ev-
eryone is different—the inheritance of adaptive priors sug-
gests the existence of species-typical phenotypic traits. Like
the HMM—and the EST to which it appeals—this denotes a
systemic dimension that extends from all Homo sapiens to a
specific individual in real-time.

The second, related similarity is that both models appeal to
recursive causal interactions between different temporal
scales. As displayed in Figure 2, this process can be expressed
formally according to the timescales over which free-energy
minimization optimizes the state (perception), configuration
(action), connectivity (learning and attention), anatomy
(neurodevelopment), and phenotype (evolution) of biological
agents that belong to a given class (species).

As shown in Figure 2, the FEP can be used to formulate
dynamics for phenomena at each of the levels of analysis
entailed by the HMM. Specifically, Level IV (i.e., mechanis-
tic) explanations relate to neurocognition, which entails two
sets of interacting processes. The first of these includes per-
ception and action, which optimize neuronal and neuromus-
cular activity to suppress an individual’s prediction errors
(resp. free-energy) based on generative models of fluctuating
sensory data (Friston, 2011). The second entails learning and
attention, which involve the optimization of synaptic gain and
efficiency over seconds to hours to encode the precision of
prediction errors and causal structure in the sensorium
(Friston, 2011). Level III (i.e., ontogenetic) explanations relate
to neurodevelopment, which involves generative model opti-
mization through activity-dependent pruning and the mainte-
nance of neuronal connections that are transmitted epigeneti-
cally (Friston, 2011). Level II (i.e., phylogenetic) explanations
refer to the optimization of the average free-energy over gen-
erations of individuals belonging to a particular subgroup
(e.g., kin) of a given class (i.e., conspecifics), via the exo-
and epi-genetic transmission of generative models. Finally,
adaptation can be described as the optimization of the average
free-energy over time and individuals of a given class (i.e.,
conspecifics) via the influence of selective pressure on their
generative models or adaptive priors.

In summary, the HMM offers an integrative theory of the
embodied human brain for the psychological sciences, based
on an EST of psychology that synthesizes evolutionary and
developmental explanations for the brain, mind, and behavior
(Badcock, 2012). The HMM also leverages the resources of
the FEP to formally operationalize evolutionary, developmen-
tal, and real-time influences on neural structure and function
(Badcock, 2019). The resulting perspective depicts the brain
as an evolved, self-organizing system comprising hierarchical
networks of neural subsystems that function collectively to
minimize the entropy or decay of our sensory and physiolog-
ical states. More precisely, the HMM defines the human brain
as a (situated and embodied) complex adaptive system that
actively minimizes the variational free-energy (and therefore
entropy) of (far from equilibrium) phenotypic states via self-
fulfilling action-perception cycles, which are mediated by dy-
namic interactions between hierarchically organized, func-
tionally differentiated neurocognitive mechanisms (Badcock
et al., 2019). This structure instantiates adaptive priors, which
have been shaped by evolutionary forces to guide our action-
perception cycles toward adaptive (i.e., unsurprising) states. In
closing, we turn now to the implications of this model for
theorizing and research in psychology.

Using the HMM as a Research Heuristic

Thus far, we have proposed an interdisciplinary model of the
embodied brain that bridges major schools of thought in neu-
roscience and psychology; furnishes both an ultimate, evolu-
tionary explanation for human phenotypes and a proximate,
process theory of our mental processes and behavior (i.e.,
adaptive free-energy minimization); and explains cognition
in terms of hierarchical neural dynamics that minimize predic-
tion error (resp. surprise) via bidirectional message passing
between differentially integrated subsystems. This model is
best understood as a first-level hypothesis predicated on the
meta-theory of EST. It therefore resembles other widely
known schemes of the brain, such as predictive coding and
massive modularity, in that it can be used as a systematic
heuristic to generate unique, integrative hypotheses from
which more specific, testable predictions can be derived.

At this juncture, it is important to address potential con-
cerns about our attempt to provide a unifying theory of the
brain. As Anderson (2014) points out, the sheer diversity
of cognitive and behavioral capacities observed in Homo
sapiens, and the surfeit of theories that we have developed
to explain them, suggests that a single theory of neural
dynamics is unlikely to be helpful and runs the risk of
obscuring important differences between highly
distinctive neurocognitive processes. In response to this
concern, we echo Clark (2013) by appealing to the histor-
ical debate between the Bneats,^ who maintained that

Cogn Affect Behav Neurosci



intelligence is underpinned by a small number of general
principles, and the Bscruffies,^ who thought that intelli-
gence arises from a motley collection of improvised solu-
tions to new ecological problems. Clark (2013) suggests
that the theory of predictive coding is capable of accom-
modating both of these camps: it provides a generalizable
account of global brain function that extends across all
neural processes; conversely, it fails to specify the precise
and manifold ways in which the brain implements this
scheme. Similarly, the FEP satisfies the Bneats^ by provid-
ing a single imperative that is realized by all of the quan-
tities that can change in a living system. However, it also
allows us to think of cognition as Bscruffy,^ because it only
imposes relatively modest (information-theoretic) con-
straints on neural structure and function, leaving ample
room for evolution and development to produce a wide
array of idiosyncratic (free-energy minimizing) strategies.
In much the same way, the HMM subsumes the FEP as a
generalizable principle of human neural and biobehavioral
dynamics, but it also demands recourse to substantive re-
search in psychology (and other allied sciences) to eluci-
date the distinctive ways in which this principle manifests
in humans (Badcock et al., 2019; Ramstead et al., 2018a).

We also believe that the explanatory value of any unifying
theory ultimately depends on its capacity to generate substan-
tive, testable hypotheses that are able to explain a diversity of
concrete phenomena in detail. To this end, both predictive
coding and the FEP have already proven to be enormously
fruitful (Clark, 2013; Hohwy, 2013; Friston, FitzGerald et al.,
2017a). We hope that the HMM follows suit. Indeed, although
it is important to remain skeptical of unifying theories, we do
not believe that this should preclude attempts to synthesize
paradigms in a meaningful way that promotes consilience
and offers new pathways to scientific progress. We join many
others by arguing that different theories can act synergistically
by creating new ways to improve our understanding of the
mind and behavior (Barrett, 2008; Caporael, 2001;
Frankenhuis et al., 2013; Kenrick, 2001; Ploeger, Van Der
Maas, & Raijmakers 2008a, 2008b).

Another likely concern is whether our model can be tested
directly. In response to this issue, we note that the HMM rests
on several empirically tractable claims that render the theory
itself open to scientific scrutiny. By way of illustration, con-
sider the ways that hierarchical predictive coding has been
tested empirically, which provide an informative exemplar of
how our own theory might be put to the test. Here, we focus
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Fig. 2 The hierarchically mechanistic mind. In this scheme,
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represents the free-energy of the sensory data (and its
temporal derivatives) ~s (a) and states μ of an agent m(i) ϵ s that belongs
to a subgroup sϵc of class c. Action (a) governs the sampling of sensory

data, and the physical states of the phenotype (μ) encode beliefs or ex-
pectations (and expectations about the mean of a probability distribution).
Reproduced from Badcock et al. (2019)
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on an elegant study by Harrison and colleagues that examined
the role of backward (i.e., top-down) connections in the visual
cortex in suppressing prediction error (Harrison, Stephan,
Rees, & Friston, 2007). This experiment involved measure-
ments of evoked responses to predictable and unpredictable
visual stimuli to test the hypothesis—derived from the theory
of hierarchical predictive coding—that evoked responses in
early (lower) visual areas would be reduced for predictable,
relative to unpredictable, stimuli. Because showing reduced
responses to predictable stimuli does not allow for the infer-
ence that this reduction is mediated by backward connections,
sparse stimuli were used that excited retinotopically mapped
responses beyond the range of horizontal connections in the
primary visual cortex (V1)—given that any component mo-
tion of a single stimulus that could be predicted by other stim-
uli can only be Bseen^ by higher visual areas with larger re-
ceptive fields (i.e., in V2 or higher), differences in V1 re-
sponses (due to predictability) must be mediated by backward
connections from V2 or higher. Accordingly, incoherent and
globally coherent sparse stimuli were presented to participants
every second or so, while hemodynamic responses were mea-
sured using fMRI. As predicted, V1 responses to predictable
(relative to unpredictable) stimuli were significantly reduced,
evidencing error suppression by backward connections. This
study offers a clear example of how exploiting known ana-
tomical characteristics of brain connectivity (in this case, the
range of the receptive fields of V1 versus higher visual areas)
can inform neuroimaging studies (for example) to demon-
strate the suppression of errors at lower cortical areas by pre-
dictions from higher regions (see also Friston, 2018). Of
course, this is only one way to test for predictive processing
via hierarchical message passing; others have been reviewed
extensively elsewhere (Adams, Huys & Roiser, 2016; Adams,
Stephan, Brown, Frith, & Friston, 2013; Bastos, 2012; A.
Clark, 2013, 2016; Hohwy, 2013). Nevertheless, we think it
suffices to show how one of the central assumptions of the
FEP—and by extension, the HMM itself—can be tested
empirically.

The question also arises as to what kind of observation
would be able to falsify the HMM. Clearly, robust evidence
against the nested, hierarchical organization of different neural
regions would call into question our central architectural
claim. One way to gather such evidence would be to use
structural and functional connectivity studies to compare the
anatomical segregation and/or integration of lower-order sen-
sorimotor regions with that of higher association areas
(Sporns, 2013; Rubinov, & Sporns, 2010). More broadly, as
a model that commits to the influence of selective pressure on
neural structure and function, one would expect to observe
species-typical, homologous characteristics in the basic wiring
and gross morphology of the brain (at least at some scale).
Evidence, for example, of substantial cultural variation in hu-
man neuroanatomy across all scales of interest would not sit

well with this assumption. Cases such as these show that some
of the foundational claims of the HMM can, in principle, be
examined empirically, and potentially falsified as well. Robust
evidence against any one of these claimswould cast into doubt
the HMM itself.

That being said, we believe the more important question is
not whether the HMM itself might be falsified, but instead,
how it might be used to generate testable, second-order hy-
potheses about specific phenomena, which can be compared
with hypotheses derived from competing theories (e.g., mas-
sivemodularity).We echo our earlier point that the HMM is as
much a framework to guide theorizing and research as it is a
model of the human brain (Badcock et al., 2019). In this spirit,
it is worth accentuating the heuristic benefits of the broader
EST to which the HMM belongs. Following seminal frame-
works like Tinbergen’s (1963) four research questions and
Marr’s (1982) tri-level approach to information processing,
the HMMclearly specifies the different explanatory levels that
should be targeted by researchers in psychology. More pre-
cisely, it emphasizes the need to exploit complementary con-
sistencies between theories and findings that have emerged
from evolutionary psychology, the extended evolutionary syn-
thesis, developmental psychology, and the subdisciplines
(Badcock, 2012; Ramstead et al., 2018a). This heuristic is
intended to promote sophisticated, multilevel hypotheses that
integrate insights drawn from disparate fields of inquiry and
inspire new avenues for research. The upshot of this modeling
strategy is that it should maximize the evidence for such hy-
potheses by requiring researchers to consolidate supportive
findings spanning all four of Tinbergen’s levels of inquiry
(Ramstead et al., 2018b). Encouragingly, dynamical methods
also are available that allow us to analyze the ways in which
different levels of activity interact, such as the use of dynamic
optimization to explore how selection influences human de-
velopment over time (Frankenhuis et al., 2013) and computer
simulations to examine how adaptive policies influence the
dynamics of social behavior (Kenrick, Li, & Butner, 2003).

Althoughwe lack the scope to explore this issue properly, it
should be noted that the HMM has important implications for
neuroscientists (Badcock, Friston, & Ramstead, 2019). As
mentioned, different organisms instantiate distinct Bembodied
models^ of their species-typical eco-niches (Friston, 2011).
This means that the FEP can accommodate all forms of biotic
morphology and behavior, but such a generalizable principle
only affords limited insight into the specific features of a given
species (Clark, 2013; Ramstead et al., 2018b). To explain the
human brain, we still require content—a substantive, evolu-
tionary account that sheds light on the particular adaptive so-
lutions responsible for the embodiedmodels ofHomo sapiens,
while also capturing the proximate processes that influence
every phenotype (Clark, 2013; Ramstead et al., 2018a).
Thus, substantiating the FEP demands recourse to psycholo-
gy, because it explicitly identifies the complex, multilevel
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processes responsible for human cognition and behavior in
particular (Badcock et al., 2019).

The HMM addresses this issue by situating the FEP within
a broader EST of human phenotypes. In this respect, it an-
swers repeated calls for a dialectical relationship between neu-
roscience and psychology, where insights gleaned from one
are actively exploited to inform and constrain theorizing and
research in the other (Barrett, 2009; Crone & Ridderinkhof,
2011; Pfeifer & N.B. Allen, 2012, 2016; Piccinini & Craver,
2011). More particularly, our model encourages methodolog-
ical approaches that are able to identify the psychological
factors responsible for different patterns of neural activity in
different contexts, such as analyses of large databases of task-
based fMRI activation studies to characterize the functional
fingerprints of specific neural regions across different task
demands (Anderson, 2014), or the development of cognitive
ontologies that systematically map relationships between spe-
cific cognitive functions and hierarchical neural dynamics
(Poldrack, 2010; Price & Friston, 2005). Furthermore, ap-
proaches in developmental psychology can be leveraged to
explore the dynamic ways in which human ontogeny differ-
entiates error-minimizing policies between individuals, such
as theoretically informed longitudinal designs that combine
neuroimaging work on brain maturation with appropriate bi-
ological, psychological, and social measures to examine how
different developmental contexts produce stable biases in per-
ceptual inference and behavior (Crone & Ridderinkhof, 2011;
Huys & Dayan, 2009). Capitalizing on the wealth of compar-
ative, cross-cultural, computational, and dynamical ap-
proaches in evolutionary psychology also promises to shed
light on the (epi- and exo-)genetic mechanisms that underlie
our species-typical adaptive priors (Badcock et al., 2016).
Finally, dynamical methods, such as computer simulations
and computational models, allow us to examine directly how
different levels of activity interact (Chiel & Beer, 1997;
Frankenhuis et al., 2013; Friston, Stephan, Montague, &
Dolan, 2014; Ramstead, et al., 2017), enabling neuroscientists
to explore how the phenomena highlighted by psychologists
reflect adaptive free-energy minimization under multifarious
evolutionary, intergenerational, developmental, and real-time
conditions. The outcomes of such analyses can then be con-
firmed through reference to real-world observations
(Ramstead et al., 2018a, 2018b). Having briefly discussed
the potential implications of our theory for neuroscience, we
will now take a closer look at how it might be leveraged by
researchers in psychology.

Implications for Theorizing and Research
in Psychology

A particularly important corollary of the HMM is the need to
extend the principle of free-energy minimization to all

domains of psychological inquiry. Traditionally, applications
in neuroscience have concentrated on fourth-level, mechanis-
tic phenomena, such as perception (Kiebel, von Kriegstein,
Daunizeau, & Friston, 2009), action (Friston et al., 2010),
attention (Feldman & Friston, 2010), and learning (Friston,
2008). Direct support for the FEP has mainly been gleaned
from computer simulations (Friston et al., 2009; Friston et al.,
2010; Friston, FitzGerald et al., 2017a), studies of the visual
system (Keller, Bonhoeffer & Hübener, 2012; Kok, Jehee, &
de Lange, 2012; Markov et al., 2014), and analyses of micro-
circuits in the brain (Bastos et al., 2012; Shipp, 2016).
Typically, researchers in this area have used computer simu-
lations, fMRI, and/or EEG to apply (computational) dynamic
causal models of interactions between hierarchically orga-
nized cortical regions to explain neural responses to unpredict-
able stimuli (Friston et al., 2006), along with increasingly
sophisticated phenomena, such as insight and curiosity
(Friston, Lin et al., 2017b; Moulin & Souchay, 2015).
Despite such progress in neuroscience, psychologists have
been relatively slow to exploit the explanatory power of the
FEP.

This is not to say that it has gone unrecognized. Indeed,
since the relevance of the FEP to all fields of psychological
inquiry was first recognized (Badcock, 2012), others have
taken up this theory to cast new light on human mental life
(Clark, 2013, 2016; Hohwy, 2013)—tackling subjective phe-
nomena such as anxiety (Hirsh, Mar, & Peterson, 2012), emo-
tion (Barrett & Simmons, 2015; Joffily & Coricelli, 2013;
Seth, 2013), illusions (Brown et al., 2013), delusions and hal-
lucinations in schizophrenia (Fletcher & Frith, 2009), and
consciousness itself (Hobson, & Friston, 2014; Wiese,
2018). Notably, the FEP also lends itself to methods that are
already familiar to psychologists, such as the P300. This is an
event-related potential that can be used as a noninvasive, tem-
porally sensitive proxy of surprise, allowing researchers to
capture dynamic error suppression over time by measuring
trial-by-trial fluctuations in P300 amplitudes (Kolossa,
Fingscheidt, Wessel & Kopp, 2013; Mars et al., 2008).

Indeed, one of the main virtues of the HMM is that by
invoking the FEP, it provides a new way of thinking about
cognition and behavior that can be fruitfully extended across
all levels of psychological inquiry. Promising parallels be-
tween the FEP and major traditions in psychology certainly
suggest as much (Friston, 2010). Of particular note, both the
FEP and HMM resonate with key principles of ecological
psychology. Based on the pioneering works of Gibson
(1966, 1979), Barker (1968), and Bronfenbrenner (1977,
1979), this is a relational approach that focuses on the ways
in which cognition and behavior emerge from reciprocal
organism-environment relations over time (see Heft, 2001,
2013). Central to this paradigm is the notion of an affordance,
which broadly refers to a relation between the abilities and
expectations of an organism and aspects of its material world
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(Chemero, 2009; Gibson, 1979). Consistent with the FEP,
which describes the processes responsible for policy selection
and adaptive behavior, ecological psychologists advocate a
pragmatic, action-oriented approach to cognition (Heft,
2013). The notion of organism-environment reciprocity also
clearly connects with the idea that human phenotypes instan-
tiate a generative model of their eco-niche (Constant,
Ramstead et al., 2018b; Friston, 2013b). Elsewhere, we have
explored in some depth how the FEP appeals to other major
foci in this field, such as hierarchical, multiscale interactions
(Ramstead et al., 2018a; Ramstead et al., 2019), as well as the
environmental affordances that guide our behavior, the influ-
ence of sociocultural dynamics on individual cognition and
enculturation, and the behavioral settings, physical artifacts,
and normative practices laid down by social groups (Constant,
Ramstead et al., 2018b; Ramstead et al., 2016).

It is worth noting that the FEP is also commensurate with
representationalism. This is because free-energy is defined in
relation to an approximate posterior probability distribution—
a Bayesian belief about hidden causes in the environment.
This is important for two reasons. First, such beliefs are quin-
tessentially representational, because they are Babout^ the
causes of sensory input. Second, it means that the level of
analysis afforded by the FEP can be cast in terms of (posterior
and prior) beliefs in a straightforward way that map quite
naturally to established constructs in psychology (Badcock
et al., 2017; Carhart-Harris & Friston, 2010).

Active inference has also been applied to reinforcement
learning in cognitive and behavioral psychology.
Approaches in this area typically operate under the framework
of expected utility theory. They are based on the idea that the
selected action maximizes the expected utility (or reward)
associated with the outcomes expected following that action.
The expected utility of a policy is determined by combining
the agent’s subjective probability assessments of states of the
world with its utility rankings over outcomes. These utility
rankings are modelled as value or cost functions that represent
the agent’s preferences (Ramsey, 1931; Von Neumann &
Morgenstern, 1945). A major problem with this approach is
that value functions are constructed in such a way that appeal-
ing to them as an explanatory account of the origin of the
values or preferences of agents, and of their corresponding
optimization schemes, is circular (Friston & Ao, 2011;
Friston, Adams, & Montague, 2012a; Friston et al., 2015;
Pezzulo, Cartoni, Rigoli, Pio-Lopez, & Friston, 2016).
Specifically, classical schemes define optimal behavior as
the policy that maximizes the probability of obtaining valu-
able outcomes, but value functions, in a circular fashion, are
defined as objective functions that describe optimal behaviors
(Friston, Shiner et al., 2012d). Although value functions can
be used to represent such preferences and describe decisions
based on them, what is lacking is an account of how these
preferences originate and change over time.

The FEP addresses this issue by formulating the utility or
value of a policy in terms of the (adaptive and empirical)
priors that organisms acquire over several nested timescales.
This solves some of the deep problems that attend classical
approaches by absorbing classical value functions into prior
preferences over outcomes, which are based on the biological
imperative to minimize surprise. Central to this approach is
the idea that living systems are not simply in the game of
reducing free-energy in the present moment; they must also
choose actions that reduce expected free-energy; i.e., the ex-
pected surprise or uncertainty associated with the outcomes of
action (Friston et al., 2017; Friston, Rosch, Parr, Price, &
Bowman, 2018). Expected free-energy can be decomposed
into epistemic value and pragmatic value, which connects
with the exploration-exploitation trade-off in ethology, game
theory, and economics (Cohen, McClure & Yu 2007; Ishii,
Yoshida & Yoshimoto 2002). Epistemic value corresponds
to the expected information gain that results from an action,
leading to explorative behaviors that seek out observations
that resolve uncertainty (e.g., foraging to find prey).
Pragmatic value refers to prior preferences over future out-
comes (i.e., those that are likely to minimize surprise) and
drives goal-directed, exploitative behavior. This latter con-
struct is basically equivalent to expected utility in classical
theories, where utility or reward is expressed in terms of a
log probability. In other words, an outcome with high utility
is simply an outcome that the agent, a priori, expects to
encounter.

In this context, the exploration-exploitation dilemma is re-
solved by the relative contributions of epistemic and pragmat-
ic value to expected free energy, and consequently, to policy
selection. When an agent is uncertain about the state of affairs
in the world, it will engage in epistemic or exploratory behav-
ior to gain information and thereby enable pragmatic action in
the future. When the agent is confident about environmental
states, pragmatic value will dominate and the behavioral pol-
icy switches to an exploitative one that seeks to fulfill goals
directly (Friston et al., 2015; Friston et al., 2018). In short,
active inference avoids the circularity of traditional ap-
proaches by replacing rewards with prior beliefs about how
the world should unfold. These are, in effect, normative be-
liefs motivated by the evolutionary and ethological imperative
to minimize surprise. Survival does not depend on seeking out
rewards per se; it depends on avoiding surprising states,
which, a priori, have low utility (Friston, Adams et al.,
2012). This scheme has been used to solve benchmark prob-
lems in optimal control theory, such as the mountain car prob-
lem (Friston et al., 2009), and has since gleaned support from
simulation experiments and studies of choice behavior in
humans (Friston et al., 2013; Schwartenbeck, FitzGerald,
Dolan, & Friston, 2013; Schwartenbeck et al., 2015).

To refer back to the four levels of psychological analysis
described earlier, the FEP has also inspired a number of
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models that appeal directly to the subdisciplines. Here, we will
concentrate on social psychology. Clearly, the sheer complex-
ity of interpersonal exchanges—and the evolutionary impera-
tive to navigate them successfully—alludes to the adaptive
benefits of a brain that has been designed by selection to
minimize (social) uncertainty. In this vein, it has been pro-
posed that predictive coding is able to explain mentalizing—
our ability to estimate the intentions, knowledge, and beliefs
of others (Frith & Frith, 2012; Kilner, Friston, & Frith, 2007).
Arguably, we use these estimations to predict others’ behav-
iors and then update our estimations based on the resultant
prediction errors (Frith & Frith, 2012; Veissière, 2018). On
the other hand, predictive processing has also been applied
to atypicalities in mentalizing, particularly by work on autism
(Constant, Bervoets, Hens, & Van de Cruys, 2018a; Palmer,
Lawson, & Hohwy, 2017).

Elsewhere, the FEP has been leveraged to explain self- and
other-representations. Under this model, the function of in-
ferred representations—of both the self and others—is to min-
imize interpersonal surprise by enabling us to predict and op-
timize the likelihood of preferred (i.e., unsurprising) social
outcomes (Moutoussis, Fearon, El-Deredy, Dolan, &
Friston, 2014a). For instance, evaluating one’s past successes
in a particular social context can be used to estimate future
outcomes in similar situations, while beliefs about others’
traits (e.g., Bcheater^) allow us to predict their intentional
mental states and interpersonal responses (e.g., Bcheating^).
Self-representations also guide behavior by serving as their
own desirable outcomes (e.g., BI would like to be
respectable^). Thus, both self- and other-representations can
be understood as heuristics (i.e., prior beliefs) that reduce un-
certainty and facilitate optimal behavior in social interactions.
Consistent with the HMM, these prior beliefs vary across in-
dividuals as a function of development and (epi)genetics, but
also incorporate implicit social, cultural and evolutionary
norms and goals (Moutoussis, Fearon et al., 2014a).
Following the FEP, prior beliefs about likely social outcomes
are weighted by their precision (i.e., one’s confidence in those
beliefs) and are successively updated with experience
(Moutoussis, Trujillo-Barreto, Deredy, Dolan, & Friston,
2014b). By way of demonstration, Moutoussis, Trujillo-
Barreto and colleagues (2014b) have used simulations of a
multi-round Investor-Trustee game to show how beliefs about
one’s own prosocial preferences and the traits of an opponent
are updated during iterated play and produce changes in inter-
personal behavior (i.e., entrusting different portions of one’s
wage to an unknown investor).

Intriguingly, the FEP has also been extended beyond social
cognition to explain interpersonal behaviors, such as dyadic
conversation. Following active inference, it has been proposed
that communication enables two actors to resolve the uncer-
tainty involved in simultaneously inferring each other’s men-
tal states by adopting a shared narrative (i.e., a generative

model), which is intermittently generated by both actors
(Friston & Frith, 2015b). This narrative allows each actor to
predict the sensations caused by the other (i.e., by listening)
and to predict sensations caused by the self by articulating the
narrative (i.e., by speaking) (Friston & Frith, 2015b). In other
words, two actors successfully predict both themselves and
each other by attenuating and augmenting their incoming sen-
sory signals (i.e., by speaking and listening, respectively),
thereby minimizing their mutual prediction errors (Friston &
Frith, 2015a). Interestingly, the turn taking mandated by this
sort of mutual prediction requires inference about agency (i.e.,
determining whose turn it is), which speaks to a close relation-
ship between dyadic coupling and a sense of agency and self-
hood. By producing a reciprocal exchange of sensory signals,
the shared narrative induces a generalized synchrony between
the neuronal states that generate predictions in both actors
(i.e., neural coupling), allowing them to change each other’s
minds and facilitate learning (Friston & Frith, 2015b). This
process has been demonstrated via simulations of birdsong
(Friston & Frith, 2015a), while a viable means to examine it
in humans would be to use brain activation studies to look for
intersubject correlations in patterns of brain activity between
speakers and listeners (Schoot, Hagoort & Segaert, 2016).

Finally, the FEP has recently been applied to large-scale,
sociocultural phenomena. In their work on cultural
affordances, Ramstead and colleagues describe how shared
expectations among members of a social group become
encoded neuronally as high-level priors through individuals’
immersive participation in social practices over the course of
ontogeny (Ramstead et al., 2016; Veissière, 2018). These
norms and conventions help us make sense of the world and
guide cooperative action in situationally appropriate ways,
reducing uncertainty (resp. free-energy) at both the individual
and group level by regulating joint attention and shared inten-
tionality (Ramstead et al., 2016). In a similar vein, Clark
(2013, 2016) has speculated that sociocultural systems mini-
mize prediction error for the members of social groups
through a process of cumulative, communally distributed rea-
soning. Under this scheme, material artifacts, institutions, and
cultural practices can be seen as products of sociocultural
generative models that facilitate adaptive (i.e., valuable) re-
sponses to shared environments.

Although the relevance of the FEP to social psychology has
only started to become clear, the applications described above
highlight its ability to contribute meaningfully to the field.
More particularly, the elegant idea that we operate together
to minimize collective uncertainly stands to cast new light
on classical phenomena, such as conformity, compliance,
and the self-fulfilling prophecy. It also lends itself to a range
of methodologies, such as multibrain imaging studies that are
able to unpack the hierarchical neural dynamics that minimize
shared prediction error, along with computer simulations and
social network analyses to test computational models of how
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group behavior reduces mutual surprise (Badcock et al., 2017;
Ramstead et al., 2018a). Conversely, evidence-informed the-
ories drawn from evolutionary, developmental, and social psy-
chology can facilitate progress in the active inference literature
by illuminating the distinct patterns of social cognition and
behavior that we should expect to observe in humans. As
such, the heuristic benefits of synthesizing the FEP with social
psychology are likely to run both ways.

On the other end of the meta-theoretical hierarchy, its em-
phasis on adaptive priors suggests that the FEP can readily
accommodate evolutionary psychology. Take, for example,
the cheater-detection module, which is thought to have
evolved to facilitate the detection and avoidance of social
contract violations (Cosmides & Tooby, 1992). Conceivably,
this phenomenon might reflect an adaptive prior that mini-
mizes specific prediction errors (i.e., absence of reward) by
instantiating expectations of an increased probability of
cheating in contexts involving uncertain social contracts for
mutual gain (e.g., exchange relationships; Fiske, 1991). By
combining standard ways to test this hypothesis (e.g.,
modified versions of the Wason selection task; Cosmides &
Tooby, 1994) with neuroimaging or electrophysiological mea-
surements that gauge error suppression in contexts involving
responses to predictable versus unpredictable stimuli (e.g.,
trial-by-trail fluctuations in P300 amplitudes; Kolossa et al.,
2013), evolutionary psychologists stand to provide support for
their models by shedding light on the hierarchical neural dy-
namics responsible for cognitive adaptations. Critically, the
HMM also suggests that adaptive psychobiological patterns
should be attributed to adaptive priors instead of separately
modifiable, functionally specialized modules. This idea still
allows for some form of adaptationism, but it avoids the pit-
falls of massive modularity by adopting a neurobiologically
plausible view that explains cognition and behavior in terms
of dynamic, hierarchical patterns of neural activity.

Ultimately, we believe the advantage of the FEP over other
predictive coding approaches is that much like psychology, it
encompasses behavior as well as cognition, the body as well
as the brain, along with human evolution and development. Its
roots in EST further suggests that it shares fundamental sim-
ilarities with psychological paradigms that emphasize the
complementary relationship between natural selection (resp.
adaptation) and self-organization (resp. phylogeny and ontog-
eny). Finally, it takes these dynamical principles and applies
them across multiple levels of causation, arguably recapitulat-
ing the meta-theoretical structure of psychological science
(Badcock, 2012). Indeed, although those unfamiliar with the
FEP may find its technical details inaccessible, under simpli-
fying (statistical) assumptions, it can be reduced to a simple
rubric that is readily applicable to all fields of psychological
inquiry: cognition and behavior work together to resolve un-
certainty and minimize surprise (i.e., active inference).
Expressed otherwise, everything we think and do stems from

the biological imperative to optimize our predictions about the
way the world unfolds and to behave in ways that confirm
them (Hohwy, 2016). As we have argued elsewhere, we be-
lieve this simple idea can provide a single common language
to synthesize and explain diverse findings in the field
(Badcock, 2012; Badcock et al., 2019; Friston, 2013b;
Ramstead et al., 2018a).

Nevertheless, an outstanding question is whether the rubric
of free-energy minimization offers more to psychologists than
Bjust so stories^ (Allen, 2018; Hohwy, 2015; Van de Cruys
et al., 2014). Whether it generates enough useful insights that
cannot already be supplied by existing paradigms remains to
be seen. There also are clear translational obstacles to be ex-
pected when applying a formal theory of the brain to the sorts
of subjective, behavioural, and social phenomena of interest to
psychologists. In a species known for its biases toward nov-
elty and misattribution, for its sensation seeking and openness
to experience, we also suspect that the FEPmay strike some as
counterintuitive. If organisms act to minimize surprise, how is
it that they can seek out novel and unexpected stimuli—a form
of behavior that is clearly very central to human life (think of
jazz and horror movies)?

Notably, this issue has been addressed in two complemen-
tary ways. The first concerns what has been called the Bdark
room problem^ (Friston, Thornton et al., 2012; Sims, 2017;
for a principled solution to this, see Parr & Friston, 2017). The
problem is simple: if organisms act to minimize surprise, why
don’t they seek out a dark, stimulus-impoverished room and
stay there? The answer to this question appeals to the adaptive
priors that are characteristic of humans, which specify
allostatic and homeostatic set points; i.e., stable, bounded
ranges in the values of blood pressure, heartrate, blood sugar
levels, etc. To remain alive, organisms must keep these vari-
ables within phenotypic bounds, which entails adaptive ac-
tion. As such, organisms do not seek out globally unsurprising
states (like a dark room where nothing happens), but instead
seek outcomes that are unsurprising, relative to their adaptive
priors. Evolution, development, and learning generate prior
beliefs about the sorts of states an agent should expect to
occupy, including preferences over outcomes and the specific
actions that it might perform in the future to remain within its
phenotypic bounds. Because these priors are embodied in
physiological and morphological states, which entail
behavior-inducing set points, organisms will mostly be on
the move, acting in the world to satisfy their set points and
remain within phenotypic bounds.

The second response to this issue appeals to the notion of
epistemic value, which we introduced earlier. To elaborate, the
idea of surprise minimization does not preclude active explo-
ration or an appreciation of novelty but suggests that such
behaviors are a valuable means by which to minimize expect-
ed free-energy, i.e., to select adaptive actions that minimize
expected surprise or uncertainty (Schwartenbeck et al., 2013).

Cogn Affect Behav Neurosci



This appeals to the fact that, under the FEP, the information
gained by sampling the world (e.g., through a visual saccade)
is quantified as the uncertainty resolved by that observation. In
this framework, the most informative observation is simply
the one that resolves the greatest uncertainty; as they plan their
actions and forage for information, organismswill tend to seek
out the most salient sensations in the service of improving
their models of the world. In other words, the FEP suggests
that human agents (and more generally, any agent that mini-
mizes expected free energy through policy selection) will seek
out novel stimuli that afford the opportunity to resolve uncer-
tainty through action (Friston, FitzGerald, Rigoli,
Schwartenbeck, & Pezzulo, 2016; Pezzulo et al., 2016). This
intrinsic imperative to resolve uncertainty about the world is
driven by the epistemic value of a particular action policy
(Parr & Friston, 2017; Ramstead et al., 2019). This is usually
framed in terms of salience in treatments of visual search (Itti
& Baldi, 2009). Exactly the same mechanics apply to the
parameters of our generative models—rendering novelty-
seeking a natural consequence of minimizing expected free-
energy (Parr & Friston, 2017). This is sometimes treated in
terms of artificial curiosity, intrinsic motivation, and
knowledge-seeking (Barto, Mirolli, & Baldassarre, 2013;
Friston, Lin et al., 2017b; Oudeyer & Kaplan, 2007;
Schmidhuber, 2006, 2010). Returning to more proximate
states, it is worth noting that the FEP has also been leveraged
to explain pleasant surprises (Friston & Friston, 2013; Vuust
et al., 2018). In this context, pleasure is thought to be experi-
enced because we move from a state of high to relatively low
free-energy. Consider, for example, the punchline of a joke,
which elicits the most pleasure the moment it is understood
and the right kind of narrative reveals itself (depending, mind
you, on the joke; see Joffily & Coricelli, 2013; Westbury,
Shaoul, Moroschan, & Ramscar, 2016).

Altogether, we believe that the FEP provides a compelling
explanation for biobehavioral dynamics that has now attracted
enough theoretical and empirical support across the cognitive
sciences to promote its widespread adoption in psychology.
To this end, we would strongly encourage the use of active
inference as an overarching principle to synthesize diverse
findings in the discipline. Following Holland (1998), a prom-
ising way to examine such integrative theories empirically is
to use dynamical computer simulations to explore how the
FEP explains situated biobehavioral patterns under the various
sorts of (evolutionary, developmental, and real-time) condi-
tions highlighted by psychologists (Frankenhuis et al., 2013;
Kenrick et al., 2002; 2003). The outcomes of such analyses
might be confirmed through experimental research, potentiat-
ing a fruitful dialectic between computational analyses and
real-world observations.

Arguably, the multilevel heuristic that we advocate
here also affords considerable protection against overly con-
jectural hypotheses. As mentioned earlier, the strength of an

evolutionary systems approach in psychology is that it de-
mands hypotheses rallied around theoretical advances and
empirical support gleaned from all four of Tinbergen’s levels
of inquiry. Unlike many of the traditional paradigms in psy-
chology, such as nativism and constructivism, it requires the-
ories that exploit consistencies across various levels of psy-
chological research to encapsulate the full continuum of ulti-
mate and proximate human processes, along with complex
interactions between them (Badcock, 2012; Badcock et al.,
2019). This implies that simply applying the FEP to explain
a given phenomenon—and describing how it manifests in the
brain—is not enough. The HMM also requires us to support
such models with research that extends across all four do-
mains of psychological inquiry. By imposing such stringent
criteria, it minimizes the risk of highly speculative Bjust so^
stories (Ramstead et al., 2018b).

We would also add that even without an understanding of
neural dynamics, the HMM is likely to have considerable
utility for researchers across the sub-disciplines. In this re-
spect, psychologists can proceed by asking three complemen-
tary research questions: (1) What, if any, is the adaptive func-
tion of a given trait? (2) What are the evolutionary, intergen-
erational, developmental, and real-time processes that produce
it? and (3) How does it manifest in beliefs, expectations, or
predictions that drive mutually reinforcing cycles of action
and perception in order to fulfill them? This is not to say,
however, that any hypothesis derived from the HMM is com-
plete without a concomitant model of how the phenomenon of
interest emerges from distinct patterns of hierarchical neural
dynamics. It is, after all, a theory of the brain. With these
considerations in mind, we will now exemplify the full model-
ing strategy promoted by the HMM by considering its only
application in the literature to date: namely, to the human
capacity for depression.

Applying the HMM to depression:
an exemplar

Although there is a wealth of Darwinianmodels of depression,
a central premise of many of these is that normative levels of
depressed mood reflect an adaptive strategy that conserves
(and typically reallocates) an individual’s energy and re-
sources in unpropitious social environments (Allen &
Badcock, 2006; Durisko, Mulsant, & Andrews, 2015). Such
Bresource conservation^ models suggest that depression is
caused by aversive social outcomes (e.g., exclusion, defeat,
or loss) that were typically associated with a loss of control
over interpersonal contexts that played a critical role in ances-
tral fitness (Gilbert, 2006). A model that subsumes many of
these views is the social risk hypothesis. This suggests that
depression reflects an evolved, biobehavioral strategy that pre-
vents the further deterioration of interpersonal relationships
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by: (1) increasing individuals’ cognitive sensitivity to environ-
mental cues of social risk; (2) reducing their behavioral pro-
pensity for taking social risks; and (3) generating signaling
behaviors that attract social support and defuse aggressive or
competitive encounters (Allen & Badcock, 2003, 2006).

The idea that depression reflects an evolved response to
adverse social conditions resonates with extensive evidence
across Tinbergen’s remaining levels of analysis. The intergen-
erational transmission of susceptibility to depressive disorders
due to deleterious social environments is widely documented
(Vialou, Feng, Robison, & Nestler, 2013; Weissman et al.,
2005), with animal and human studies showing that exposure
to social stressors (e.g., low maternal care) can produce heri-
table epigenetic changes that confer risk for disorder by
heightening stress reactivity (Meaney, 2001; Sun, Kennedy,
& Nestler, 2013). Developmentally, early exposure to social
stress (e.g., parental neglect) is thought to heighten depressive
vulnerability by leading to hyperactivity of the HPA axis and
up-regulating proinflammatory immune responses (Gold,
2015; Slavich & Irwin, 2014). Furthermore, behavioral and
neuroimaging studies suggest that the risk of depressive onset
rises markedly in adolescence because of an increased sensi-
tivity to social threats in this period (Lambin, Murawski,
Whittle, & Fornito, 2017; Silk, Davis, McMakin, Dahl, &
Forbes, 2012). Finally, research across the subdisciplines has
furnished convincing evidence that the precipitants and corre-
lates of depression directly relate to adverse social contexts
(Gotlib & Hammen, 2014; Joiner & Coyne, 1999). Consistent
with the social risk hypothesis, depressed mood is associated
with improved social problem-solving (Forgas, 2017) and an
increase in the accuracy of social inferences (e.g., depressive
realism; Moore & Fresco, 2012), along with a specific atten-
tional bias towards socially threatening stimuli (Allen et al.,
2001; Mathews, Ridgeway, & Williamson, 1996). Moreover,
behavioral correlates of depression, such as social withdrawal
and reassurance-seeking, reflect explicit attempts to elicit sup-
port and defuse potential conflict (Hagen, 2011; Sloman &
Gilbert, 2000). Other studies have provided direct support
for the social risk hypothesis itself (Badcock & Allen, 2003,
2007; Dunn, Whelton, & Sharpe, 2012).

Having briefly outlined a multilevel ESTof depression, the
next step is to consider how this proposed adaptive response
relates to free-energy minimization. Although it is important
to acknowledge that depression is a heterogeneous phenome-
non that stems from multiple etiologies, we have recently
suggested that depressive reactions commonly reflect a risk-
averse adaptive prior that minimizes uncertainty in the social
world when sensory cues indicate a high degree of
socioenvironmental uncertainty and an increased probability
of aversive interpersonal outcomes, such as rejection or defeat
(Badcock et al., 2017). Following the social risk hypothesis,
we have proposed that depression instantiates a biobehavioral
Bbetter safe than sorry^ strategy that causes adaptive changes

in perception (e.g., anhedonia and a heightened sensitivity to
social risks) and action (e.g., avoidant or cautious social be-
haviors such as withdrawal). Arguably, epigenetic and onto-
genetic mechanisms support this function by sensitizing the
individual to volatility in the social world when developmen-
tal insults indicate a high probability of aversive interpersonal
outcomes, producing hyperreactive stress response systems
that increase risk for disorder by heightening sensitivity to
social prediction errors and negative interpersonal events
(Badcock et al., 2017). In line with active inference, this can
generate ongoing depressive behaviors that seek to confirm
negative biases, creating a self-fulfilling prophecy (i.e., high
predictability) that springs from mutually reinforcing patterns
of cognition and behavior (Chekroud, 2015).

At this point, it is necessary to distinguish between depres-
sion as an affective state (e.g., sadness), as an adaptive mood
state, and as a chronic, pathological state. In the active infer-
ence literature, moods are viewed as hyperpriors that constrain
short-term emotional fluctuations by encoding higher-level
predictions about their long-term average, which suggests a
separation of temporal scales when responding to prediction
errors (Clark, Watson, & Friston, 2018). In the case of depres-
sion, this means that uncertain or negative social outcomes
will, on average, be predicted with high precision, suppressing
responses to proximate, positively valenced stimuli (Badcock
et al., 2017). In other words, depression is associated with
high levels of expected (socioenvironmental) free-energy. If
the depressive response performs its adaptive function prop-
erly, the consequent changes in the social environment should
facilitate the revision of expected free-energy (i.e., the depres-
sive hyperprior) over time, thereby alleviating depressed
mood. For example, depressed individuals display help-
seeking behavior, which is likely to prompt others to engage
in care taking (with the effect of reducing socioenvironmental
volatility). However, when the depressive response fails to
resolve or worsens social stress, this will perpetuate the de-
pressive state by confirming the hyperprior, and the individual
is at risk of entering a self-fulfilling dysregulated state, which
falls beyond the normal range of adaptive functioning (also
see Chekroud, 2015).

Incidentally, this idea concords with recent empirical work
arising from a symptom network approach to psychopatholo-
gy. According to this view, depression is characterized as a
complex dynamic system of causally interacting (psycholog-
ical, behavioral, and biological) symptoms, which can gener-
ate self-perpetuating feedback loops that reinforce the disor-
dered state over weeks, months, and even years (Borsboom,
2017; Borsboom & Cramer, 2013). Support for this view has
been gleaned from simulation studies (e.g., Cramer et al.,
2016), along with network analyses of symptom dynamics
in depressed individuals over time (Beard et al., 2016;
Epskamp et al., 2018; van Borkulo et al., 2015). One avenue
that has yet to be explored in this area concerns the ways in
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which symptom patterns vary according to individual differ-
ences in biological, psychological, and sociocultural factors
(Borsboom, 2017). Our analysis suggests that social stressors
may be particularly important foci for future research.

The fourth and final step of our modeling approach concerns
how this adaptive prior is implemented neurobiologically.
Following Price and Drevets (2012), we have argued that de-
pression is associated with dysfunction of the Bextended
visceromotor system,^ which mediates emotional processing
through the regulatory effects of the medial prefrontal cortex
on visceromotor output, via connections with the amygdala,
ventral striatum, hypothalamus, and other subcortical regions.
Importantly, many of the regions across this network regulate
motivation and reward-approach behaviors and are responsible
for processing social threats and rewards (Kupferberg, Bicks, &
Hasler, 2016; Nestler et al., 2002; Rushworth, Mars, & Sallet,
2013). We have proposed that this system responds to
socioenvironmental volatility by increasing sensitivity to (i.e.,

the precision of) social prediction errors, causing changes in
top-down expectations that produce social withdrawal and in-
crease attention to social stimuli, thereby motivating further
avoidance of interpersonal stressors (Badcock et al., 2017;
Figure 3). These neurocognitive patterns are adaptive when
the consequent changes in mood state and behavior reduce
uncertainty in the social world and lead to reengagement with
this environment when socioenvironmental volatility abates
(which should partly result from depressive behaviors; Allen
& Badcock, 2003). This depressive response becomes mal-
adaptive, however, when there are primary structural or func-
tional deficits in the (limbic) visceromotor brain network—
produced, for example, by chronic social stress—leading to
erroneous interoceptive prediction error signals that promote
ongoing hypersensitivity to interpersonal cues, often despite
any improvements in the social domain (Barrett & Simmons,
2015). Alternatively, the development of the PFC throughout
adolescence can increase vulnerability to depression by

Fig. 3 Schematic of the depressed brain. In active inference, action is
mediated by motor and autonomic reflexes that are driven by
descending (proprioceptive and interoceptive) prediction errors, such
that reflexes resolve sensory prediction errors. Action is accompanied
by the attenuation of (the precision of) ascending prediction errors.
However, if prediction errors cannot be resolved through action this
sensory attenuation is suspended—enabling ascending prediction errors
to revise posterior beliefs and provide more appropriate top-down predic-
tions. Under this model, adaptive states of depression entail an increase in
the precision of (bottom-up) social (interoceptive and affiliative) predic-
tion errors, which enables perceptual inference and learning about the
causes of (aversive) social stimuli. This increase in precision heightens
sensitivity (i.e., attention) to socio-environmental cues, while reducing
confidence in (top-down) social predictions. Cognitively, this is reflected

in the suspension of goal directed behavior (e.g., anhedonia), increased
rumination about self-other relations, and an attentional bias toward aver-
sive social cues. In pathological depression, we suppose a persistent fail-
ure of sensory attenuation that induces aberrant prior beliefs about the
probability of social rewards, producing negative expectations (e.g., pes-
simism, low self-worth). This failure can be pernicious and self-maintain-
ing, because it resolves uncertainty by soliciting sensory evidence that
social rewards are unlikely and precluding exploratory behaviors with
uncertain outcomes. In other words, both adaptive and aberrant depressed
states reduce uncertainty in the social world by suppressing confident or
acquisitive (reward-approach) behaviors, and by generating signalling
behaviors that seek reliable support (e.g., reassurance seeking) and defuse
conflict (e.g., submissive behaviors). Reproduced from Badcock et al.
(2017)
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allowing for the formation of abstract interpersonal goals
that—when frustrated by rejection or failure—can engender
depression by suppressing the brain’s reward system and
undermining our confidence in the precision of our beliefs
about our social behavior (Davey, Yücel, & Allen, 2008).
Thus, depressed states can either result from changes in limbic
neural threat systems or from the dysregulation of executive
prefrontal systems (Badcock et al., 2017; Pfeifer & Allen,
2012).

In closing, we would note that our model of depression is
capable of motivating new subdisciplinary research programs.
One way to test this hypothesis in the laboratory would be to
employ psychophysiological indices of error suppression
(e.g., trial-by-trial fluctuations in P300 amplitudes) to com-
pare the neural responses of depressed versus nondepressed
samples presented with unpredictable social stimuli (Badcock
et al., 2017). Otherwise, social psychologists could explore
whether mildly depressed individuals preserve instrumental
social relationships more effectively than nondepressed indi-
viduals by using paradigms from experimental social psychol-
ogy, along with longitudinal studies of interactions between
changes in mood, social behavior, social networks, and socio-
metric status (Allen & Badcock, 2003). In personality psy-
chology, our model calls for studies on how traits like
neuroticism—an endophenotype that confers vulnerability to
affective disorders (Badcock et al., 2011)—underlie individu-
al differences in the precision weighting of social prediction
errors and increase risk for psychopathology by heightening
reactivity to social stress. More generally, it also requires re-
searchers to couple predictive coding approaches with obser-
vational and longitudinal methods in psychology to explore
how genetic, epigenetic, and environmental influences shape
the development of individual differences in neurophysiolog-
ical responses to volatility in the social world. As discussed
elsewhere, our EST of depression also has important ramifi-
cations for diagnosis and treatment in clinical psychology
(Badcock et al., 2017). Although these examples are illustra-
tive rather than exhaustive, it should be clear that applying the
rubric of the HMM to complex phenomena, such as depres-
sion, not only promotes integrative, evidence-based hypothe-
ses, these can then be leveraged to drive new research pro-
grams across the subdisciplines.

Conclusions

Our purpose in this article was to present a unifying, transdis-
ciplinary theory for understanding human psychology and be-
havior. The HMM is a first-order hypothesis about the struc-
ture, function, and dynamics of the human brain. It explains
the hierarchical architecture of neural networks, it offers both
a formal and substantive explanation of neurocognition and
biobehavior that demands the synthesis of psychology and

neuroscience, and it harmonizes theorizing and research
across the manifold domains of psychological science. Of
course, it remains to be seen whether our theory inspires
new and productive research questions or facilitates collabo-
ration between psychologists and neuroscientists. The chal-
lenge of developing sophisticated theories of human brain
dynamics that synthesize the FEP with all four levels of psy-
chological analysis is obviously burdened by complexity, and
it is one that will require ongoing collaboration between cog-
nitive and behavioral scientists from diverse fields of inquiry.
Such pursuits are certainly worth the effort—although they are
perched high on the tree of knowledge, the fruits of such
labors are undoubtedly the sweetest.
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