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Foreword

Today the world is facing an unprecedented challenge: how to feed a growing

population predicted to reach over 9.1 billion people by 2050 on a resource base

threatened by climate change and with limited options for bringing new arable land

under cultivation. Associated challenges of high levels of women and child mal-

nutrition in Asia and sub-Saharan Africa and environmental degradation add to the

complexity threatening our future.

To meet these challenges, farmers need improved varieties of crops which give

higher productivity and economic returns while withstanding risks induced by

climate change such as high temperatures, changing spatial and temporal rainfall

distribution, and emerging pests and diseases. These new varieties must also

provide consumers, both rural and urban, with access to food that is highly

nutritious and safe.

A key task before the agricultural research community is to integrate genomics

into modern crop improvement to unlock the genetic diversity of food crops in ways

that maximize the availability of improved varieties with the range of production

and resilience traits (drought, heat, disease, and pest tolerance) alongside improved

nutritional value. Modern genomics provides new tools for increasing both the yield

and quality of crop products. Next-generation breeding will need to draw on

genomics as the “best bet” for sustainably eradicating hunger, malnutrition, and

poverty. Genomics coupled with advanced analytics and precision phenotyping can

dramatically increase our capacity to utilize genetic diversity and develop highly

nutritious, stress-tolerant crop varieties faster and cheaper than ever before and so

response with urgency to the realization of the Sustainable Development Goals by

2030.

Despite rates of genetic gain leveling off in many cropping systems, significant

efforts in genetic improvement have helped increase productivity and develop

climate-resilient varieties. Next-generation sequencing technologies are reducing

drastically the cost of genotyping and enabling genome-wide marker data to

support the design, development, and delivery of robust and nutritious crop

varieties.
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Genomic Selection for Crop Improvement is a timely resource to fill the gap

between genome science and crop breeding. In capturing the insights of global

leaders on genomics and crop improvement, I am confident that this resource will

advance our collective understanding and application of modern tools to unlock our

wealth of crop genetic diversity to deliver resilience and profitably for farmers and

nutritional value to consumers.

ICRISAT

Patancheru, Telangana, India

October 17, 2017

Dr. David Bergvinson
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Preface

The past decade has seen a tremendous shift toward using next-generation sequenc-

ing (NGS) technologies for development of powerful tools to identify underlying

genes for both simple and complex traits. The advent of NGS and high-throughput

genotyping technologies have reduced the genotyping cost significantly and made it

possible to use genome-wide marker data for prediction of phenotype to help reduce

the cost of phenotyping. Integration of genomics tools with conventional breeding

can forge new directions to meet environmental challenges efficiently in less time

and more accurately. First-generation molecular breeding approaches (marker-

assisted backcrossing (MABC) and marker-assisted recurrent selection (MARS))

require a lengthy process for developing genetic populations for identification of

linked markers for a few simply inherited traits but failed to improve complex traits

such as yield and drought tolerance due to their technical and genetic limitations. In

the case of complex traits which are generally controlled by large number of genes/

quantitative trait loci (QTLs) with small effect, “genomic selection (GS)” has

gained momentum in plant breeding due to the decline in the genotyping cost.

One of the strengths of GS lies in the ability to select an individual without

phenotypic data (predicting the individual’s breeding value) based on a prediction

model trained with phenotypes and genotypes. However, practicing GS is not as

simple as MABC and MARS and requires an understanding of complex statistical

models. GS has been widely used in cattle breeding and more recently has gained

popularity among plant breeders. This book is a timely effort to compile details

about GS for users providing basic as well as advanced understanding. The content

of this book will serve as a useful reference for users, covering the germplasm to be

used, phenotyping evaluation, marker genotyping methods, and statistical models

involved in genomic selection.

A total of 21 authors (Contributors) have contributed to the nine chapters of the

book. The editors of this volume are grateful to all the authors for their contribu-

tions and for their commendable effort in summarizing the published/unpublished

research work in a comprehensive, up-to-date manner. In addition, the cooperation

they have extended in terms of timely completion and revision of chapters from
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time to time is well appreciated. While editing this book, the strong support

received from many other colleagues (Drs. Aaron Lorenz, Isabel Vales, John M.

Hickey, and José Crossa) to review the chapters is greatly appreciated. Their

constructive comments and suggestions have been instrumental to further improve

the chapters.

The editors also would like to thank their respective families for their cooper-

ation and moral support as the editorial work for this book took away precious

moments that they should have spent together with their families. RKV is thankful

to Monika, his wife, for her constant encouragement and support and Prakhar (son)

and Preksha (daughter) for their love and cooperation. Similarly, MR is grateful to

his wife (Shweta) for her support and encouragement in doing editorial responsi-

bilities in addition to research duties at International Crops Research Institute for

the Semi-Arid Tropics (ICRISAT), with special thanks to Divit (son) for his

fondness. RKV and MR would also like to extend their sincerest thanks to

Dr. David J. Bergvinson, Director General, ICRISAT, and Dr. Peter S. Carberry,

Deputy Director General-Research, ICRISAT, for their help and support.

RKV and MR are also grateful to their colleagues from Center of Excellence in

Genomics (CEG), Research Program - Genetic Gains, ICRISAT, and the collabo-

rators for their direct/indirect suggestions during planning of the book. The coop-

eration and help received from Eric Stannard, Eric Hardy, and Rekha Udaiyar of

Springer during various stages of the development and completion of this book

project is gratefully acknowledged.

We hope that this book will be helpful and useful to students, young researchers,

and crop specialists.

Patancheru, Telangana, India Rajeev K. Varshney

Patancheru, Telangana, India Manish Roorkiwal

Ithaca, NY, USA Mark E. Sorrells
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and José Crossa
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Chapter 1

Genomic Selection for Crop Improvement:

An Introduction

Rajeev K. Varshney, Manish Roorkiwal, and Mark E. Sorrells

1.1 Introduction

Producing sufficient food to meet the demand of vastly growing population and

eradication of rural poverty is one of the critically important issues that the world is

facing. At the current pace, the world population is expected to cross the mark of

nine billion people by 2050 adding further pressure to already exhausted food

production systems. Considering the increasingly volatile climate, it will be diffi-

cult to maintain the crop production in conjugation with the demand, resulting in

increased food prices affecting people who already spend the highest percentage of

their disposable income on food. In addition to climate change, limited water

resource availability and poor soil health have the potential to restrict food crop

production. Furthermore, with increases in the world population, the availability of

agricultural land is decreasing. Under these constraints, to meet the rising demand

for food, agricultural production must increase by an estimated 50% without greatly

increasing water usage or expanding the total land area dedicated to agriculture.

Smallholder farmers, especially from underdeveloped and developing countries

with limited access to agricultural inputs or agricultural markets, are likely to be

affected by rising production costs and climate volatility. As per the United

R.K. Varshney (*) • M. Roorkiwal

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru,

Telangana, India

e-mail: R.K.Varshney@CGIAR.ORG

M.E. Sorrells

Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853,

USA
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Nations’ estimates, more than 790 million people globally do not have access to

sufficient nutritious food (https://sustainabledevelopment.un.org/sdg2), posing a

threat to achieving the Sustainable Development Goal (SDG) target of zero hunger

(universal access to safe, nutritious, and sufficient food at all times of the year).

In the event of these challenges, there is a need to look for new ways of breeding

for food crops and other plant species by using modern technologies. Modern

breeding approaches that have the capability to reduce breeding cycle time provide

more precision in selection, and more efficient use of genetic variation can be

exploited to increase the rate of genetic gains in breeding programs. The rapid

decline in the cost of sequencing and genotyping has led to the development of new

tools and strategies that can transform the way we breed plant species. In the past,

the cost of genotyping restricted the regular use of markers in breeding. In most

cases a limited number of markers for the target regions were used for selecting the

lines based on presence or absence of agriculturally important alleles. Development

of crop varieties using conventional breeding approaches has been effective but

time-consuming and labor-intensive. Recent advances in the next-generation

sequencing (NGS) technologies have been able to reduce the cost of genotyping

and sequencing. This has enabled the use of the high-throughput and cost-effective

high-density genotyping. These low-cost genotyping platforms have accelerated the

use of markers in the breeding programs using genome-wide approaches (Varshney

et al. 2014).

Integrating genomic tools with conventional breeding can have a major impact

for dealing with current and future environmental challenges more efficiently. In

such conditions, germplasm, genetic, and genomic resources are mandatory in all

plant species for rapid genetic gains in productivity of these species using decision

support tools. First-generation molecular breeding approaches (marker-assisted

backcrossing, marker-assisted recurrent selection) followed a lengthy process for

developing mapping populations for identification of markers linked to quantitative

trait loci (QTL) for a few simple traits. The majority of economically important

traits such as drought tolerance and yield are polygenic in nature and controlled by

multiple genes with small effects. In order to improve complex traits, such as

drought tolerance and yield, the modern breeding approach, genomic selection

(GS) (Meuwissen et al. 2001), can be deployed which specifically aims at improv-

ing quantitative traits by using genome-wide marker data without requiring iden-

tification of markers associated with QTL for traits of interest. GS uses a “training

population” of individuals that have been both phenotyped and genotyped to train a

prediction model for calculating genomic estimated breeding values (GEBVs).

Subsequently by using this model, GEBVs can be calculated for untested individ-

uals from a “candidate population”, and selection candidates (SCs) for making

crosses or for advanced yield trials can be identified. Although GEBVs do not

identify the function of the underlying QTLs/genes for the trait, they are an

excellent selection criterion (Jannink et al. 2010). GS attempts to capture the total

additive genetic variance with genome-wide marker coverage and effect estimates

(Rutkoski et al. 2011). Therefore, selection of an individual without phenotypic

data can be performed based on the individual’s predicted breeding value.

2 R.K. Varshney et al.
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The models can be used to calculate GEBVs that help the breeder to identify

offspring that will be good parents in the next generation, based solely on genotypic

information about an existing line. The use of GEBVs in the context of genome-

wide prediction promises to help accelerate the rate of genetic gain in breeding.

The purpose of this book is to bring up-to-date information on GS breeding and

its application for crop species improvement. The editors believe that this book can

serve as ready reference for geneticists and crop breeders. This chapter introduces

the book and provides a summary of different chapters included in the book.

1.2 Methodologies and Models for GS

The first step toward deploying GS in crop breeding is to define a training set, which

should be closely related to the selection candidate population. Chapter 2 entitled

“Training population design and resource allocation for genomic selection in crop

breeding” provides detailed information about composition and optimization of

training population design related to population and trait architecture. In this

chapter, Aaron Lorenz and Liana Nice highlight the importance of the training

population design for predicting the breeding value of lines. The chapter focuses on

the process to select a calibration set (training population) for model training and

optimizes the resource allocation for field trials. With the advent of new technol-

ogies, it has become possible to collect phenotyping data in a more precise manner

with decreased error and increased efficiency and in larger quantities. NGS tech-

nologies are contributing to a continuing decrease in the genotyping cost and are

enabling the prediction of breeding value using genome-wide marker profiling. This

chapter also discusses the possible resource allocation in terms of the number of

replications for calibration of GS models vs allocation of more plots for model

training and allocation of plots within and across environment replication.

The Chap. 3 entitled “Derivation of linear models for quantitative traits by

Bayesian estimation with Gibbs sampling” contributed by Akihiro Nakaya and

Sachiko Isobe provides detailed information about construction of a prediction

model using a linear model. Model parameters are determined using the Bayesian

estimation with Gibbs sampling providing a theoretical background sufficient to

implement practical software for the model construction. The chapter also provides

a sample output by the implemented software. The chapter describes the different

prediction models including linear models, one-marker model, two-marker model

without interactions, and two-marker model with interactions to predict the trait

value of a sample using the environment types and genotypes. Prediction of the trait

values of samples based on their genetic and environmental factors is explained

using a prediction model that describes the relationship between the explanatory

factors observed in the samples and the trait values. This chapter suggests that

defining a prediction model for the target trait enables the selection to be based on

the predicted trait values, making it an essential part of genomic selection. When

the number of markers is greater than the number of samples, the prediction model
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will be distorted. In order to address the issue related to model overfitting, detailed

inspection of the prediction model is necessary, and strategy based on the linear

mixed models and the Bayesian estimation may be useful in the prediction of trait

values of samples.

Montesinos-López and colleagues highlighted recent advances in models for

genomic-enabled prediction developed for ordinal categorical and count data in

Chap. 4 entitled “Bayesian genomic-enabled prediction models for ordinal and

count data”. Authors used these two models on simulated as well as a real dataset

using Bayesian framework suggesting that models used are a good alternative for

analyzing ordinal and count data in the context of genomic-enabled prediction.

Tested models have an advantage to perform an exact logistic or probit ordinal

regression without having to do approximations to perform a logistic ordinal

regression. Genotype (G) and environment (E) interaction is expected to affect

the prediction accuracies, and therefore modelling G� E in the context of genomic-

enabled prediction plays a central role in crop breeding for the selection of

candidate genotypes. In order to best use GS models, understanding the data type

being analyzed is important before deciding on the modelling approach to be

employed.

1.3 GS in Field Crop Breeding

GS has been used or is being used in several crop breeding programs. This book

includes three chapters on applications offering both constraints and opportunities

of GS in crop breeding. The Chap. 5 entitled “Genomic selection for small grains

improvement” by Rutkoski and colleagues presents an overview of GS efforts being

undertaken in the small grain cereals. Authors in the chapter have explained

different approaches for implementation of GS in applied breeding programs.

A total of 40 GS studies have been undertaken so far in small grains including

wheat, barley, oat, rye, durum wheat, perennial ryegrass, and intermediate wheat-

grass. This chapter also discusses the factors affecting the GS prediction accuracies

in small grains and highlights the applicability of GS for analyzing and predicting

G � E. They have discussed various scenarios affecting gain from selection and

cost relative to conventional breeding. Authors discussed the cost-benefit ratio for

deploying GS in cereal crops.

In Chap. 6 entitled “Current status and prospects of genomic selection in

legumes”, Jain and colleagues from ICRISAT provide an update on molecular

breeding in legumes and describe the ongoing GS efforts in some legume-breeding

programs including soybean, alfalfa, pea, chickpea, and groundnut. Legumes have

witnessed significant progress in the field of genomics and genetics in the past

decade, and efforts to deploy MAS have yielded some success for developing

superior legume varieties. However, as expected, MAS has not been that successful

for addressing complex traits such as drought and yield and therefore, efforts to

deploy GS in legume breeding were initiated. Authors have suggested that it is time
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for other legumes to start deployment of GS in those breeding programs to achieve a

higher rate of genetic gain.

Hybrid breeding has been successful over varietal improvement in several crops.

Schulthess and colleagues from the Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK), Germany, describe the basic concepts of hybrid breeding and

deployment of GS methods to simplify the philosophy underlying GS with hybrid

breeding in Chap. 7, “Genomic selection in hybrid breeding”. Authors have

explained the basic concepts relevant to hybrid breeding including dominance,

heterosis, combining abilities, and heterotic groups and patterns. The chapter also

describes the deployment of GS for hybrid genotypes using cross-validated predic-

tion accuracy, accommodating dominance effects within the GS model and other

GS approaches employed in hybrid breeding. Deployment of GS in hybrid breeding

is very challenging as many variables impact in hybrid breeding as compared to

pureline breeding. Authors propose an integrated plan with multidisciplinary skills

of breeders, scientists, and technicians before implementing GS in hybrid breeding.

1.4 GS for Improvement of Clonal Crops and Tree Species

Breeding in clonal crops and tree species is different from field crops. Therefore,

Gemenet and Khan in Chap. 8 entitled “Opportunities and challenges to

implementing genomic selection in clonally propagated crops” discuss issues

related to deployment of GS for improving the rate of genetic gain in clonal

crops. Authors highlight conventional breeding approaches for clonal crops that

involve crossing and planting of true seed plants in different generations followed

by evaluation of clones for several generations, making it a time- and resource-

consuming process. Therefore, GS-based selection of true seed plants can expedite

the breeding process. The chapter also describes the challenges including modelling

of genetic effects and heritability, linkage disequilibrium between markers and

QTLs, genetic architecture of traits, size of training population, and number of

generations following training model to deploy GS in clonal crops. For instance, GS

models generally handle additive effects and assume dominance and epistatic

effects as part of the residual which is not the case for clonally propagated crops,

as dominance and epistatic effects play an important role along with additive effects

and need special consideration. Therefore, for clonal crops, GS models with the

capability to include additive, dominance, and epistatic genetic effects need to be

employed for analysis.

For tree species, Dario Grattapaglia from EMBRAPA Genetic Resources and

Biotechnology, Brazil, provides perspectives of genomic selection and a compre-

hensive discussion on the factors relevant to GS in tree breeding in Chap. 9, “Status

and perspectives of genomic selection in forest tree breeding”. The chapter high-

lights the potential of GS in enhancing the rate of genetic gain in a tree breeding

program by reducing the selection cycle. In the case of a tree breeding program, the

long generation time typically necessary to complete a full breeding cycle can be
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reduced by genotyping young seedlings and predicting their phenotype instead of

waiting for long a breeding cycle of 4–20 years or more. The authors have compiled

and presented all GS experimental studies in forest trees along with their key

attributes and performance of predictive abilities for different traits in the chapter.

1.5 Summary

As can be seen from the introduction of eight different chapters, GS, a modern

breeding approach, is gaining popularity and becoming the choice for many

breeders for improving complex traits. The book provides up-to-date information

about models, methodologies, factors affecting prediction accuracy, and some

examples of deployment of GS for crop improvement. This book will serve as

reference for users that provides basic as well as advanced understanding about

GS. The book is expected to serve as a useful review for users that explains the

germplasm to be used, phenotyping, marker genotyping methods, and statistical

models involved in GS. It also includes some examples of ongoing activities of

genomic selection in cereal, legume, clonal crop, and tree species.
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Chapter 2

Training Population Design and Resource

Allocation for Genomic Selection in Plant

Breeding

Aaron Lorenz and Liana Nice

2.1 Introduction

Obtaining accurate and inexpensive estimates of genetic value is a fundamental

goal for plant breeders. To obtain these estimates and choose new varieties,

breeders continue to rely heavily on standard phenotyping practices for their

crops and traits of interest. Series of phenotypic testing procedures employed by

plant breeders can vary in scale, complexity, and relevance, both within and across

breeding programs. Scale can range from early generation, single plant observa-

tions to large, prerelease strip trials. Similarly, the complexity of phenotyping traits

within a breeding program can range from measuring flowering time, which can be

reliably phenotyped in a single environment in many cases, to drought tolerance

which can only be measured in a field setting if specific weather conditions occur or

if specially designed water stress nurseries are available. While phenotyping

followed by selection is the primary means of advancing lines, the time, cost, and

environmental error associated with obtaining phenotypic values leave room for

improvement. Advancements in phenotyping technologies have resulted in

decreased error, fewer inefficiencies in the phenotyping process, or larger quantities

of phenotypic data (Araus and Cairns 2014). An alternative yet complementary

approach to reducing phenotyping expenditures involves implementing genomic

selection using high-throughput molecular markers in breeding programs (Cabrera-

Bosquet et al. 2012).

Initially, molecular markers were used in the context of marker-assisted selec-

tion (MAS). This approach typically requires identification of tightly linked or

causal markers through mapping or cloning of quantitative trait loci (QTL) using

mapping populations or discovery panels. These markers are then used in parallel
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with measured phenotypes to make selections in the breeding program (Johnson

2004). The development of genomic selection techniques has altered the relation-

ship between markers and phenotypic data in breeding programs by introducing a

new role for phenotyping. Instead of using phenotypic data for direct measurement

of the phenotypic or breeding value of lines, phenotypic data in the context of

genomic selection is used to estimate marker effects and develop marker-based

predictive models. This is accomplished by developing calibration sets, or training

populations, that have been both phenotyped and genotyped with dense, genome-

wide markers. From this calibration set, a statistical model using all marker

information simultaneously is applied to predict the breeding values of individuals

that had not been phenotyped, known as the target population or prediction set.

With accurate predictive models, breeders can minimize the number of individuals

that are phenotyped and continue selection in environments that are not conducive

to obtaining quality phenotypes, such as off-season nurseries. Both scenarios can

effectively reduce the cost and/or time necessary for achieving the desired

genetic gain.

As genotyping costs continue to decrease, genomic selection will play an

increasingly important role in plant breeding. Research surrounding the hypothet-

ical and empirical implementation of genomic selection is an active field of study,

and the resulting techniques are being adopted by breeders in many crop species.

This movement toward an increasingly data-rich breeding process leads to ques-

tions surrounding the application of statistics, experimental design, and quantitative

genetics, to the selection of progenies for advancement and varietal release. While

the implementation of genomic selection may not affect the methods used for

phenotyping per se, breeders will need to consider training accurate genomic

prediction models when designing field trials, which would involve at least two

aspects: (1) selection of genotypes for field testing that are informative for model

building (i.e., training population design) in addition to those being advanced

toward variety release and (2) the allocation of field plots to genotypes. The

objective of this chapter is to review and discuss studies related to these two

important topics. It was our aim to provide the reader with a simple and hopefully

intuitive introduction to these topics.

2.2 Training Population Design

A critical first step toward the use of genomic selection is the establishment of the

training population (Jannink et al. 2010). Training population composition and the

way in which it’s established varies according to the role of genomic selection,

whether it be rapid recurrent selection within a closed population, selection within a

single biparental family, or selection among exotic plant accessions comprising a

germplasm collection. Approaches to compiling training populations include the

collection of new phenotypic data from targeted trials as well as the mining of

historical phenotypic data available on genotyped lines. Once again, the choice
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between these two basic strategies depends upon the role of genomic selection in a

crop improvement program. The most important consideration of training popula-

tion design is the target population. In other words, the target population should be

defined first and foremost, and then the training population is designed around the

target population. There are two basic aims of training population design: (1) min-

imize costs associated with phenotyping by selecting smaller training populations,

and (2) maximize prediction accuracy for the set of individuals being predicted.

Balancing these goals should help breeders avoid poor prediction accuracies or

wasted resources.

To aid in this decision process, we review a range of studies that explore

composition and optimization of training population design. Windhausen et al.

(2012) laid out four breeding scenarios under which genomic selection may be

used: (1) training and target populations are segregating progenies from the same

cross, (2) training and target populations include related and unrelated genotypes,

(3) training and target sets include lines from a diverse germplasm collection, and

(4) recurrent selection within a closed synthetic population. Literature on training

population design for the first three scenarios will be reviewed. Literature on

training population design for the case of synthetic populations is sparse at the

present time; however one recently published study sheds light on this topic

(Schopp et al. 2017). Following the discussion of breeding scenarios, we explore

methods of training population selection and other considerations for training

population design related to population and trait architecture.

2.2.1 Training and Target Populations Are Segregating
Progenies from the Same Cross

The most straightforward way to conduct genomic selection is to create family-

specific training populations. In this scenario, individuals from the same family, or

biparental population, are used as both the training population and target popula-

tion. This approach has been discussed extensively in the maize breeding literature

(Bernardo and Yu 2007; Windhausen et al. 2012; Lorenz 2013; Jacobson et al.

2014), where large biparental families of inbred or doubled haploid lines are

common, as well as the wheat breeding literature (Heffner et al. 2011). To perform

genomic prediction, the entire family is genotyped, with a subset of these lines

serving as the training population to train a model to predict the individuals that

were not phenotyped. The genomic prediction model can also be used to predict

future selection cycles created by intermating selected individuals within the family

(Bernardo and Yu 2007; Combs and Bernardo 2013; Massman et al. 2013; Lorenz

2013). This breeding method is similar to marker-assisted recurrent selection in

terms of family structure (Johnson 2004), and the first published studies on genomic

selection for plant breeding used this approach (Whittaker et al. 2000; Bernardo and

Yu 2007).
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Within-family predictions are often accurate, and only modest population sizes

and marker numbers are needed to achieve good prediction accuracy. High accu-

racy is possible because of the extensive linkage disequilibrium (LD) generated by

the initial hybridization event (Lorenzana and Bernardo 2009; Zhao et al. 2012).

This LD, which provides power for QTL mapping in biparental populations, also

leads to accurate predictions in the context of genomic selection. Generally, as

training population size increases within families, predictive ability increases

until a maximum has been reached. When working with high heritability traits,

the maximum prediction accuracy will be reached with a smaller training

population size.

In an era when genotyping can be less expensive than phenotyping, selecting a

subset of individuals to phenotype based on genotype data in order to reduce

population size (and thus cost of phenotyping) while maintaining QTL detection

power is a desirable goal. This is known as selective phenotyping. It has been

shown that selective phenotyping for QTL detection can enhance mapping power

and resolution depending on the number of QTL controlling a trait and their effect

sizes (Jannink 2005; Sen et al. 2009). Although the increase in power for QTL

mapping was minimal under optimized schemes, researchers have explored

whether similar optimizations could be used in genomic prediction. Marulanda

et al. (2015) simulated a biparental population with training population sets that

varied based on a large number of parameters. The parameters examined included

measures of collinearity among markers, LD, allele frequency, genetic relationships

among lines, diversity indices, mixed model parameters, and phenotypic variance

of the training population sets. While many of these factors varied with training

population size, none of the parameters derived from marker data were associated

with prediction accuracy. However, they did find that selection for enhanced

phenotypic variation of the training set led to greater prediction accuracy in the

case of smaller training populations. While marker-based optimization would be

ideal, the authors proposed that a first round of phenotyping with little replication

could be used for training population selection, followed by more intense

phenotyping of the optimized set across multiple locations (Marulanda et al.

2015). Ultimately, the lack of population structure in a biparental cross allows for

relatively good prediction from a random sample, as long as marker number and

population size are large enough to adequately train the selection model. The use of

genomic prediction to select non-phenotyped individuals within a single family,

however, needs to be carefully considered as studies on resource allocation have

suggested little to no benefit to only phenotyping a subset of a single family in order

to develop a model to predict the remaining individuals in a family, unless family

size is very large (Lorenz 2013; Endelman et al. 2014; Riedelsheimer and

Melchinger 2013).
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2.2.2 Training and Target Populations Include Related
and Unrelated Genotypes

Realistically, models built from single biparental populations are limited in their

applications outside of breeding systems with easy access to large population sizes

and efficient doubled haploid technologies. The time required to develop and

phenotype biparental populations diminishes the potential time savings of

implementing genomic selection in place of phenotypic selection. Therefore,

methods that combine data across multiple related and/or unrelated families

would be valuable for breeders. This can be a challenge because many additional

factors come into play when combining data across populations, and adding more

individuals to the training population does not necessarily result in greater predic-

tion accuracy as we will discuss below.

The inclusion of related and unrelated genotypes in training and target

populations can be further broken down into two scenarios for our purposes here.

One scenario includes the development and testing of large families, often

consisting of DH lines, as is used in hybrid maize breeding. Families often consist

of 150 progenies or more. Under this scenario, it would be possible and appropriate

to pool together a few well-chosen families into a single training population. A

second common scenario is the development of many, small families. This scenario

is common in crops such as soybean and small grains, where crossing is followed by

multiple generations of inbreeding followed by visual selection on simply inherited

traits and on molecular markers tagging large-effect QTL. The number of progenies

per family reaching the yield trial phase is typically small (~20–40) which excludes

the possibility of within-family training populations as well as the pooling together

of only a few families to form a training population. Rather, training populations

would need to be formed by pooling together progenies that are derived from

various pedigrees and genetic backgrounds, spanning levels of relatedness. If the

populations have been genotyped, ancestral relationships among individuals in the

training and the target populations can be used to optimize the selection of

training set.

Numerous studies in both plant and animal breeding systems have shown that

prediction accuracy suffers when training populations are not related to the target

population (Pszczola et al. 2012; Windhausen et al. 2012; Ly et al. 2013; Technow

et al. 2013; Albrecht et al. 2014; Lorenz and Smith 2015). Analysis of genomic

selection in sheep showed that the strongest predictor of prediction accuracy of each

individual was the strength of relationship between the individual being predicted

and the top ten relatives in the training population (Clark et al. 2012). In contrast,

the mean relationship of the training population to the individual being predicted

was a weak predictor of prediction accuracy. Therefore, for an individual to be

predicted well using genomic prediction, the training population must include

several close relatives to that individual.

Along these same lines, results looking at pooling together large families (first

scenario described above) to predict a specific target family have generally
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indicated that the best results are obtained when the families being pooled share one

parent with the target family. The addition of families sharing one parent with the

family-specific training population could increase model accuracy above the

family-specific training population, especially if the target family is small in size

(Schulz-Streeck et al. 2012; Jacobson et al. 2014). Lehermeier et al. (2014) found

that the predictive ability of pooled half-sib training populations could achieve

similar accuracy to family-specific training populations, but models built using

375 half-sib individuals were needed to reach the accuracy of models built using

only 50 full-sib individuals. Riedelsheimer et al. (2013) found that half-sib training

populations that shared one parent in common with the target population only

reached 50% of the predictive ability of family-specific training populations. This

study, however, only included a limited number of families (six), and in reality,

breeding programs would likely include many more families from which to

pool data.

The use of data from families unrelated to the target population (family) is more

problematic. Training populations consisting of only individuals unrelated to the

target population generally result in zero or near-zero prediction accuracy

(Riedelsheimer et al. 2013; Jacobson et al. 2014; Lehermeier et al. 2014). More-

over, the addition of unrelated families to a family-specific training population can

reduce prediction accuracy compared to the family-specific training population

alone (Riedelsheimer et al. 2013; Jacobson et al. 2014) or have no effect despite

increasing the training population size by up to sixfold (Zhao et al. 2012). Lorenz

and Smith (2015) showed a decline in prediction accuracy when individuals less

and less related to the target population were added to the training population.

Model accuracy was maximized by using smaller training populations that were

more closely related to the target population, and the addition of less related

individuals (mostly from a different breeding program) reduced accuracy of pre-

dictions for all traits. High marker densities may enhance the sharing of information

between families and improve prediction accuracy by pooling unrelated families

(Hickey et al. 2014). Hickey et al. (2014) found that training populations consisting

of families unrelated to the target family could produce models with accuracies

reaching 0.70, but only with population sizes approaching 20,000 individuals and

marker numbers greater than 10,000. It is possible that such training populations

could be constructed within the seed industry, but to our knowledge, nothing in the

public sector has yet come close to this scale.

2.2.3 Training and Target Populations Include Lines from
a Diverse Germplasm Collection

Besides predicting the genetic value of progenies comprising an active breeding

program, another role of genomic prediction includes the prediction of diverse

accessions comprising a germplasm collection. Germplasm collections can be very
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large, containing up to hundreds of thousands of plant accessions. Advancements in

genotyping have made it possible to genotype entire germplasm collections (Hearne

et al. 2015; Song et al. 2015), opening up the possibility of predicting the perfor-

mance of all accessions (Jarquin et al. 2016). Phenotyping entire collections, on the

other hand, is often not feasible.

In this scenario, the training and target populations are essentially two subsets of

the same population, and thus the training population should be selected to repre-

sent the entire population. Several studies have examined the performance of

chosen statistical criteria and accompanying optimization algorithms in choosing

informative training populations.

Two criteria for assessing population design derived from mixed linear model

theory have been proposed: prediction error variance (PEV) and the generalized

coefficient of determination (CD). The PEV quantifies the error of prediction of

each random effect in the model. It is a function of the ratio of the model error to

genetic variance, the number of times an individual is measured, the number of

relatives of the individual included in the dataset, and the strength of their relation-

ship. The CD is defined as the amount of variation in true contrasts of genetic values

by predicted contrasts of genetic values, where the contrast is between each

individual being predicted in the target population and target population mean

(Laloë et al. 1996). Optimizing the reliability of these contrasts rather than of the

predictions per se takes the covariances among the individuals comprising the

target population into account and thus prevents the selection of closely related

individuals for training population formation (Rincent et al. 2012). Because genetic

variance is not included in the calculation of PEV, using this method may result in

selecting a relatively narrow training population that contains many close relatives.

These statistics are calculated for each individual in the target population, and the

average value across the target population (i.e., PEVmean and CDmean) is the final

optimization criteria.

Criteria related to minimizing PEV have been previously used to optimize data

collection in animal breeding programs (Laloë and Phocas 2003; Kuehn et al.

2007). Rincent et al. (2012) expanded the use of these criteria for training popula-

tion design and genomic selection in plant populations by implementing them in

combination with a simple exchange algorithm. An exchange algorithm involves

removal and replacement of one individual in the training population, followed by

calculation of the optimization criteria (e.g., PEVmean, CDmean) for the newly

formed training population. If the removal and replacement results in an improve-

ment measured by the chosen criteria, then the newly added individual remains;

else it is removed in place of another randomly sampled individual from the pool of

candidates. Rincent et al. (2012) found that an optimization scheme based on a

CDmean-optimized training population resulted in models of higher accuracy

compared to random sampling. An optimized population of 100 individuals

achieved the same prediction accuracy as a randomly selected population of

200, indicating large reduction in costs associated with phenotyping if this method

is applied. The CDmean criteria typically outperformed PEVmean and other diver-

sity criteria such as mean genetic relatedness of the selected training population
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measured by the genomic relationship matrix. Isidro et al. (2015) applied these

same criteria to rice and wheat panels. These authors found that a simple, stratified

sampling method that ensured representation of each subpopulation in the training

set was superior for the highly structured rice population, whereas the CDmean

method was superior for the minimally structured wheat population. This indicates

that training population optimization does depend on the population, as well as the

trait.

Akdemir et al. (2015) also showed a consistent benefit to optimizing training

populations using relationship-based selection procedures. These authors focused

on a principal component-based approach that increased computational efficiency

and selected training populations with regard to a specified target population, rather

than relationships within the training population itself. Their results suggest that

such methods hold great potential to help choose maximally informative training

populations. Software that implement these methods have been made available to

the general user (Rincent et al. 2012; Akdemir et al. 2015).

2.2.4 Sources of Information and Population Genomic
Architecture Influence Training Population Design

The overall theme of the literature reviewed above is that relationships between

training and target populations are highly important for genomic prediction. It is

clear that small training populations can be used, and are likely superior, if they are

closely related to the target population. Very large training populations are needed

if little to no relationship exists. Some researchers (Campos de los et al. 2013;

Habier et al. 2013) have contributed a theoretical basis to the importance of

relationships and their interaction with marker density and prediction model. By

far the most common methods for performing genomic prediction are ridge regres-

sion best linear unbiased prediction (RR-BLUP) and genomic best linear unbiased

prediction (G-BLUP). Although these two models are mathematically equivalent

under the properties of the multivariate normal distribution (Habier et al. 2013),

practitioners of breeding and genomic selection view the information sharing of

these models from two different perspectives. From the RR-BLUP perspective,

information is shared between training populations and target populations through

the LD that exists between markers and QTL. Because of this, as marker-QTL LD

increases, prediction accuracy is expected to increase. From the G-BLUP perspec-

tive, information is shared via the realized genomic relationships of the training and

target individuals, which reflect the higher degree of resemblance of more closely

related individuals. Prediction of selection candidates is a function of the weighted

sum of phenotypes of individuals in the training population, with weights being

proportional to the genomic relationships (Campos de los et al. 2013). Depending

on the family structure and distribution of relationships, only a few close relatives

could be heavily weighted in the calculation of the genomic predictions, or weights
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could be more uniformly distributed among individuals in training populations that

are distantly related to the target population.

Ultimately, it is the genetic relationships at causal loci that influence the

effectiveness of training populations to predict trait values in prediction sets and

not genetic relationships calculated according to markers (Habier et al. 2013;

Campos de los et al. 2013). The genomic relationship matrix, calculated using

genome-wide markers, is an estimate of the genomic relationship matrix at the

causal polymorphisms. Therefore, the accuracy of this estimation is what deter-

mines the effectiveness of G-BLUP (Campos de los et al. 2013). The resemblance

between the genomic relationship matrix at causal polymorphisms and the esti-

mated genomic relationship matrix based on markers is determined by marker-QTL

LD, which in turn is determined by pedigree relationships of the population,

population history and diversity, and marker density. Formula for calculating

PEV and reliability of predictions using expected genomic relationships based on

pedigree data was derived by Henderson (1975). Under these expectations, the

reliability of predictions approach 1.0 as the population size goes to infinity. This is

even the case if the training population is distantly related to the target population,

although the number of individuals required to increase accuracy is much higher

compared to the addition of more closely related individuals (Campos de los et al.

2013). Campos et al. (Campos de los et al. 2013) showed that the marker-QTL LD

sets an upper limit to prediction accuracy. This limit is lowered when there is a lack

of relationship between the training and target populations due to a decrease in

marker-QTL LD. This is especially true for distantly related individuals where

genomic relationships can be variable with respect to which markers are in high LD

with QTL, leading to a major source of error in the G-BLUP model (Hill and Weir

2011). The expected value of realized or pedigree relationship decreases, while the

variance of the realized relationship increases (Hill and Weir 2011).

Another way to look at this problem is by partitioning the information contained

in the genomic relationship matrix into three components: (1) marker-QTL LD,

which is an association between alleles among the population founders; (2) linkage

or co-segregation of alleles created by pedigree relationships at QTL; and (3) addi-

tive genetic relationships captured by markers (Habier et al. 2013). Habier et al.

(2013) used simulations and models to partition these three sources of information.

First, they showed that large population sizes and high marker densities are needed

to exploit the LD source of information. Secondly, the proportion of accuracy from

shared additive genetic relationships is reduced if training populations are expanded

by adding unrelated individuals. Accuracy due to LD, however, might be able to

compensate for low relatedness if very large training population sizes and/or high

marker densities are available. Still, Habier et al. (2013) present an example from

cattle data where the increase in the accuracy from LD could not compensate for the

loss of information from additive genetic relationships, and an overall decrease in

accuracy was observed after the addition of unrelated individuals. However, in their

maize example, additive genetic relationship accuracy was not changed by increas-

ing training population size, possibly due to a stronger family structure with many

more close relatives in the maize training population.
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2.3 Resource Allocation for Phenotyping for Genomic

Prediction Model Calibration: To Rep or Not to Rep

A key design aspect of breeding programs is the allocation of resources among

breeding trials in terms of population size, number of replications, and locations.

Allocation decisions are multifaceted, involving consideration of trait logistics,

selection intensity, breeding stage of the materials being tested, and any associated

genotyping costs. These decisions affect the genetic gain that is possible, as well as

the power to detect QTL or accurately estimate marker effects. Considering selec-

tion in general, the fundamental trade-off is between achieving accurate estimates

of genotypic value by increasing replication and sampling a greater number of

individuals to increase the chance of identifying superior genotypes (Gauch and

Zobel 1996). Bos (1983) explored the optimum replication scheme for breeding

programs with respect to heritability. Because replication decreases phenotypic

variance, it also increases heritability. However, this increase only occurs to a point,

after which, fundamental changes to the experimental design would be needed to

improve heritability (Gauch and Zobel 1996). Therefore, more replication generally

results in better selection outcomes, with the exception of situations where herita-

bility is high and selection intensity is relaxed (Bos 1983). Gauch and Zobel (1996)

extended the scope of the Bos (1983) findings to consider the precision of data

collected and the relative efficiency of data collected. They found that in experi-

ments with high precision, adding replication beyond two is much less efficient than

in lower precision experiments that retain efficiency at greater replication numbers.

When considering markers, the focus changes from identifying the genotypic

value of individuals to estimating the additive genetic values of alleles. Knapp and

Bridges (1990) identified sources of variation in a QTL mapping experiment and

found that increasing population size instead of replication resulted in higher power

to detect QTL, particularly when residual genetic variation existed in the popula-

tion. Other studies reported similar findings, where larger population sizes gener-

ally result in higher power of QTL detection, and only moderately sized populations

of 150–300 individuals benefit from replication (Sch€on et al. 2004). Because of the
similarities between QTLmapping andMAS, resource allocation recommendations

for QTL mapping seem to transfer well to the context of MAS. Moreau et al.

(Moreau 2000) showed that larger population sizes resulted in maximum gain from

selection when traits were controlled by 5–10 QTL and when genotyping costs were

equal to phenotyping costs. The shift toward genomic selection has required a

reevaluation of these resource allocation recommendations in the context of a

cultivar development program.

In contrast to MAS, genomic selection aims to improve traits that are influenced

by many more QTL. In addition, because MAS considers marker effects as fixed

and statistical thresholds are used to determine which markers are used to calculate

marker scores, the success of MAS is closely related to QTL detection power. Here,

we will explore recent published literature that aims to address the resource

allocation questions relevant to genomic selection breeding programs and are not
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sufficiently addressed by previous MAS studies. Specifically, we review: (1) the

value of replication for calibrating genomic selection models, (2) allocation of plots

to stages within the breeding cycle, and (3) allocation of plots to within versus

across environment replication.

2.3.1 Replication and Plot Allocation for Calibrating
Genomic Selection Models

To determine whether resource allocation recommendations for MAS can be

extrapolated to genomic selection models, Lorenz (2013) compared the accuracies

of genomic selection models (RR-BLUP) and MAS models (ordinary least squares,

OLS) under varying resource allocation schemes. The factors studied included total

plot budget, relative cost of genotyping in comparison to phenotyping, population

size, number of replications, heritability, and percentage of phenotyped individuals.

A very clear distinction in resource optimization between GS and MAS models was

found. Prediction accuracy was always substantially lower with MAS, and the

effect of replication was more apparent for MAS. Within a set budget, the addition

of replications and a consequent reduction of total individuals screened lead to a

decrease in accuracy with MAS. In contrast, the RR-BLUP model remained fairly

constant across different resource allocation scenarios, with low heritability, high

marker cost scenarios slightly favoring fewer individuals, and more replication.

When the total number of individuals was varied, the accuracy of genomic selection

models began to level off around 50–75 individuals, whereas MAS models took

many more individuals to achieve moderate prediction accuracies and continued to

improve as the numbers increased. These results suggest that the underlying

considerations for MAS are different from genomic selection.

2.3.2 Allocation of Resources Across Preliminary
and Advanced Breeding Tests

Breeding programs are generally structured with less replications in early genera-

tion screening, followed by greater replication, larger scale, and higher-cost trials in

later generations (Bernardo 2010). Breeders must take this tiered structure of the

breeding program into account when planning for genomic selection implementa-

tion. The stage at which genomic selection is implemented can affect genetic gain

as well as costs. Bassi et al. (2016) compared a series of wheat breeding schemes

that implemented genomic selection starting in generations F2, F3, F4, or F7. They

found that without including phenotypic selection at some stage in the program,

early generation F2 implementation had the highest potential for gain per year, but

also the highest genotyping costs. Longin et al. (2015) found that genomic selection

2 Training Population Design and Resource Allocation for Genomic Selection. . . 17



without a stage of phenotypic selection would only be useful with very high

prediction accuracies, possibly unrealistically high accuracies.

When accuracies are low, genomic selection can fill the role of a pretest,

whereby a low selection intensity is applied to remove the lowest performing

individuals (Longin et al. 2015). Most studies have focused on overall accuracy

of genomic selection, without considering the effectiveness of these selection

schemes to accurately remove the worst individuals or include the best. Endelman

et al. (2014) proposed using a response to selection metric Rmax based on the

maximum genotypic value of selections instead of Rmean based on mean values

for selection to analyze genetic gain in preliminary yield trials. Because the mean of

the selected population decreases as more individuals are selected, the Rmean

measure of genetic gain may encourage overly stringent selection in early gener-

ations that have less precise phenotypic estimates. Additional studies are needed to

expand on the use of genomic selection for early generation screening.

In contrast to early generation genomic selection, Bassi et al. (2016) compared

intermediate and later generation schemes. They found that implementation in the

F3 and F4 was a good compromise between no stage of phenotypic selection and the

minimal benefits of F7 implementation. While F7 implementation might be attrac-

tive to breeders because of its ease of implementation and lower genotyping costs,

this scheme resulted in minimal benefit over phenotypic selection alone. Longin

et al. (2015) concluded that for traits such as yield in wheat, with prediction

accuracies of approximately 0.3, one stage of genomic selection followed by one

stage of phenotypic selection provides the best compromise between genomic and

phenotypic selection.

2.3.3 Across Environment Versus Within Environment
Replication

For simplicity, much of the literature surrounding the topic of resource allocation

focuses on trade-offs within single environments, but the distribution of plot

resources across environments is a major consideration for breeders. Riedelsheimer

and Melchinger (2013) attempted to tackle this issue by developing a resource

allocation planning tool for distributing plot resources across and within environ-

ments. Their tool is limited to a single cycle of selection in biparental populations,

and it requires some degree of estimation based on previous experimental data.

Their calculations extend those developed by Daetwyler et al. (2008) to include

considerations of multi-environment testing. They found that larger budgets

favored more environments, with a lower proportion of plots being allocated to

the training set. As the budget decreased, the training set became a larger proportion

of the plots, and the number of environments tested decreased. Furthermore, they

emphasize that under low-budget scenarios, the optimization has much less
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flexibility than under large-budget scenarios. Overall, their findings suggest rela-

tively few environments are needed for high prediction accuracy.

Endelman et al. (2014) looked at the effect of spreading replicates across

locations in preliminary yield trials under fixed budgets. They found that accuracy

increased as individuals were replicated across locations, but under a fixed budget,

the optimum accuracies were obtained without replication across locations, unless

the budget forced a relatively small training population size. That is, each individ-

ual should be phenotyped in only one environment, and population size should be

maximized to the extent the total number of plots across environments allows.

Markers provide the connectivity between environments. In contrast, across envi-

ronment phenotypic estimates based on phenotyping alone were poor when indi-

viduals were phenotyped in single environments. This reinforces the idea that

shared marker information does provide the connectivity between individuals,

providing potential cost savings for breeders implementing genomic selection.

2.3.4 Conclusions

The role of phenotyping in plant breeding is rapidly shifting from its previous sole

purpose of providing information for making breeding line advancement, parent

selection, and variety release decisions to providing the necessary data to train

genomic prediction models to enable genomic selection. As this new role of

phenotyping increases in relative importance, plant breeders need to rethink how

they design field trials, allocate plot resources to genotypes, and which individuals

are included in field trials. This review provides a short and simple introduction to

this literature. We have two basic conclusions at this time: (1) Training population

selection and design should take genetic relationships with the target population

into consideration, and optimization criteria such as PEVmean and CDmean com-

bined with exchange algorithms are useful methods for selecting training

populations. (2) The number of individuals phenotyped should be maximized by

allocating only one field plot to each genotype in most situations. Further research is

needed to develop a comprehensive theoretical framework for phenotyping for

genomic selection.
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Chapter 3

Derivation of Linear Models for Quantitative

Traits by Bayesian Estimation with Gibbs

Sampling

Akihiro Nakaya and Sachiko Isobe

3.1 Introduction

Prediction of the trait values of samples based on their genetic and environmental

factors is one of the vital steps in the genomic selection (GS) process used to

identify valuable individuals for the use in the breeding process (Meuwissen et al.

2001). The GS strategies are different from other marker-assisted selection (MAS)

strategies in that they use the predicted trait values. To obtain the estimated values

of a trait, a prediction model that describes the relationship between the observed

explanatory factors, e.g., the genetic and environmental factors, in the samples and

the trait values is derived using a training dataset consisting of the candidates of the

explanatory factors and the true values of the trait. Such a prediction model can be

composed of the effects by the explanatory factors selected, and when these effects

are thought to be additive, the trait value of a sample is estimated as their weighted

summation. The models based on the summation are referred to as linear models

and are suitable for focusing on the additive effects of the explanatory factors.

Aside from the genetic factors obtained by the genome-wide markers, the Bayesian

approach used in the derivation process is the key element for GS.

In this chapter, construction of a prediction model using a linear model and

determination of the model parameters using the Bayesian estimation with Gibbs

sampling are explained with an assuming dataset example for GS. Knowing the
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details of the model derivation, one can understand what is carried out during the

prediction of the trait values. This will also provide a theoretical background

sufficient to implement practical software for the model construction. A sample

output by the implemented software is presented.

3.2 A Dataset for Genomic Selection

We assume N samples and M genetic markers in a given dataset. The ith sample

(i¼ 1 , . . . ,N ) is associated with a numerical trait value yi and the genotype of the

jth genetic marker zij ( j¼ 1 , . . . ,M ). A tuple of the values (yi, zi1, . . . , ziM) repre-
sents the data of the ith subject (i¼ 1, . . . ,N ). If the samples are also associated

with L values indicating whether they have the hth environment type xih
(h¼ 1 , . . . ,L ), then the tuple of the values for the ith subject is (yi, xi1, . . . , xiL,
zi1, . . . , ziM). The dataset can be represented by a vector of the trait values, the

profiles of the environment types in an N� L matrix, and the profiles of the

genotypes in an N�M matrix. We assume there is no missing data.

Figure 3.1 shows an example of the dataset. The dataset consists of three parts: P,

E, and G, respectively, corresponding to phenotypes (trait values), environment

types (L¼ 2), and genotypes (M¼ 50) of the samples (N¼ 30). In this example, as

shown by the histogram in part P, the baseline values of yi follow N(0.75, 0.052) for
the upper 15 samples (i¼ 1 , . . . , 15) and N(0.25, 0.052) for the lower 15 samples

(i¼ 16 , . . . , 30). Here, N(μ, σ2) is the normal distribution with mean μ and standard
deviation σ (i.e., variance σ2). The 30 � 2 matrix in part E shows two environment

types of the 30 samples. The hth column (h¼ 1 or 2) of the matrix corresponds to

the hth environment type. For the 10 samples (i¼ 1 , . . . , 5 and 16 , . . . , 20), a
small value (0.3) is intentionally added to yi to reflect putative environmental

effects. According to whether or not a sample is associated with an environment

type, each element of the matrix in part E takes a value of 0 or 1, which are

respectively colored in white and gray. In this example, we assume that the

10 samples (i¼ 1 , . . . , 5 and 16 , . . . , 20) have environment type E1, and the

other samples have type E2. Part G shows the genotypes of the samples. The

element of the matrix in the ith row and jth column (zij) shows the genotype of

the jth genetic marker of the ith sample. The genotype of the sample is represented

using multiple colors. This example, which assumes that each genetic marker has

two genotypes, uses two colors (white and gray) to indicate the genotypes of the

samples. If a genetic marker has more than two genotypes, additional colors are

used. For example, white, light gray, and dark gray would be used for a genetic

marker with three genotypes. The 30 � 50 matrix in part G shows the genotypes of

the 30 samples at the 50 genetic markers (G1 to G50). The genotypes are randomly

generated except for the 10th and 40th genetic marker (G10 and G40), so that these

two genetic markers are associated with the distribution of the trait values (the

samples with higher trait values have the genotype in gray with high probability).

24 A. Nakaya and S. Isobe



3.3 Prediction Models

One goal of the GS is to predict the trait value of a sample using the obtained

environment types and genotypes; for this purpose, a prediction model that can

output prediction values for the trait is constructed.

3.3.1 Linear Models

One simple format of the prediction model for the target values (i.e., trait values) is

a summation of the effects by the multiple factors (e.g., environmental factors,

genetic factors, and interactions among them). A model with this format is referred

to as a linear model. Here, note that a matrix, A0, which is also denoted by AT, is the

transpose of a matrix, A, i.e., a matrix whose rows and columns are exchanged.

Note also that variables in bold fonts will hereafter refer to vectors and matrices.

A linear model for the target values of N samples is given as follows:

y ¼ Xβþ
XM

j¼1
Zjuj þ e: ð3:1Þ

Here, y¼ (y1, . . . , yN)
0 represents the target values of the N samples. Xβ is the

term representing the effects by the environmental factors (environment types),XM

j¼1
Zjuj are the terms representing the summation of the effects by the genetic

factors (marker genotypes), and e¼ (e1, . . . , eN)
0 are the random residuals.
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Fig. 3.1 A dataset example for genomic selection
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The target value of a sample is made up of two constituent values, one calculated

as the summation of the values by fixed effects and the other as the summation of

the values by random effects. The linear model given by Eq. 3.1 assumes that the

target value of a sample can be explained by the summation of the values from these

two types of effects, fixed effects and random effects. The reason why this model is

referred to as a linear mixed model is that these two types of effects are included in

it. In relation to Eq. 3.1, Xβ and
XM

j¼1
Zjuj, respectively, correspond to the fixed

effects and the random effects. We assume that the dimensions of X are N� L and

that X has full column rank, i.e., rank (X)¼ L. e¼ (e1, . . . , eN)
0 are the random

residuals that could not be explained by those effects. Letting σ2e be the variance of
the random residuals, the target values follow the normal distributions as follows:

yjβ, u1, . . . , uM, σ2e � NðXβþ
XM

j¼1
Zjuj,Rσ

2
eÞ, ð3:2Þ

where R is a known matrix of N�N dimensions. When we assume that the total

samples are divided into several groups according to their observed attribute values,

we can intuitively consider that the fixed effects represent the global baseline value

and the intergroup deviations, while the random effects correspond to the

intragroup deviations.

In relation to the linear models for the trait values, typically and naturally,

environmental factors constitute the fixed effects, while the genetic factors consti-

tute the random effects for the samples in the same environment group. In Eq. 3.1,

β¼ (β0, β1, . . . , βL)0 represents the effects of the environment types where β0 is a
variable for the global baseline and βh is the effect of the hth environment type

(h¼ 1 , . . . ,L ). The ith row of X is the vector of a dummy value for the global

baseline and the L observed environment types of the ith sample (1, xi1, . . . , xiL).
Here, xih is set to 1 if the ith sample has the hth environment type, and otherwise it is

0 (h¼ 1 , . . . , L). The ith row of the product Xβ gives the portion of the trait value

that is explained by the environmental factors, β0 + β1xi1þ . . . þ βLxiL. With

respect to
XM

j¼1
Zjuj, uj ¼ uj1; . . . ; ujqj

� �0
are the effects of the genotypes of the

jth genetic marker (qj is the number of the genotypes of the jth genetic marker), and

the ith row of Zj shows the observed genotypes of the ith sample, ðzji1, . . . , zjiqjÞ.
Here, zjit is set to 1 if the ith sample has the tth genotype for the jth genetic marker,

and otherwise it is 0 (t¼ 1 , . . . , qj). The ith row of the product Zjuj gives the

portion of the trait value that is explained by the jth genetic marker,

uj1zji1 þ � � � þ ujqj zjiqj . X and Zj are referred to as design matrices. Note that the

elements of X and Zj are constants that indicate whether the samples have specific

conditions (e.g., environment types and marker genotypes) in the given dataset. On

the other hand, the elements of β and uj are variables that must be determined so that

the resulting linear model fits the dataset well and the trait values are predicted with

high accuracy. Using the variables above, Eq. 3.1 can be rewritten as follows:
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y1
y2
⋮
yN

0
BB@
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CCA ¼

1

1
⋮
1
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⋮
⋮
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þPM
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0
@
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Aþ

e1
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⋮
eN

0
B@

1
CA:

ð3:3Þ

3.3.2 One-Marker Model

We first consider a simple example where no environmental factors (L¼ 0) and

only a single genetic marker (M¼ 1) are included as follows:

y ¼ Xβþ Z1u1 þ e, ð3:4Þ

where y¼ (y1, . . . , yN)
0, X¼ (1, . . . , 1)0, β¼ (β0)0, and Z1 ¼ 1

0
or

0

1
� � �

� �0
. Here,

we consider that the genetic marker has two genotypes γ1 and γ2 (e.g., homozygous

for an allele and heterozygous for two alleles), and a sample takes one of the two

genotypes at the genetic marker. Then, the ith row vector of Z1 is one of (1, 0) and

(0, 1), respectively, if its genotype is γ1 and γ2. In Eq. 3.4, u1¼ (u11, u12)
0 indicates

the effects of those two genotypes of the genetic marker. e¼ (e1, . . . , eN)
0 are the

random residuals. Then Eq. 3.4 can be rewritten as follows:

y1
⋮
⋮
yN

0
B@

1
CA ¼

1

⋮
⋮
1

0
B@

1
CAðβ0Þ þ

1 0

or

0 1
⋮

0
B@

1
CA u11

u12

� �
þ

e1
⋮
⋮
eN

0
B@

1
CA: ð3:5Þ

Here, yi¼ β0 + u11 + ei if its genotype is γ1, and yi¼ β0 + u12 + ei if γ2. Letting
a0¼ β0 + u11 and a1¼ u12� u11, we have:

yi ¼ a0 þ a1g1i þ ei, ð3:6Þ

where g1i¼ 1 if the genotype of the genetic marker in the ith sample is γ2, and
otherwise 0 (i¼ 1 , . . . ,N ).

Note that the number of the genotypes is not restricted to two. If the genetic

marker has a total of q genotypes, the size of the design matrix Z1 is N� q, and the
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tth column of its ith row vector is set to 1 if the ith sample has the tth genotype at

this genetic marker and otherwise is set to 0. u1 has q elements (u11, . . . , u1q).

3.3.3 Two-Marker Model Without Interactions

In a similar way as for the one-marker model, we can consider another example

where no environmental factors (L¼ 0) and two markers (M¼ 2) are included as

follows:

y ¼ Xβþ Z1u1 þ Z2u2 þ e, ð3:7Þ

where y¼ (y1, . . . , yN)
0, X¼ (1, . . . , 1)0, and β¼ (β0)

0. The terms Z1u1 and Z2u2,
respectively, represent the effects by the two genetic markers. e are the random

residuals. Here, we assume that the two genetic markers are mutually independent

and their effects contribute to the trait value in an additive manner. There are no

epistatic effects caused by their interactions. We also assume that the genetic

markers, respectively, have two genotypes (γ11 and γ12 for one genetic marker

while γ21 and γ22 for the other). Then, Eq. 3.7 can be rewritten as follows:

y1
⋮
⋮
yN

0
B@

1
CA ¼

1

⋮
⋮
1

0
B@

1
CAðβ0Þ þ

1 0

or

0 1
⋮

0
B@

1
CA u11

u12

� �
þ

1 0

or

0 1
⋮

0
B@

1
CA u21

u22

� �

þ
e1

⋮
⋮
eN

0
B@

1
CA: ð3:8Þ

According to the genotypes of the two genetic markers, which are either

(γ11, γ21), (γ12, γ21), (γ11, γ22), or (γ12, γ22), the trait value of a sample can be written

as follows:

yi ¼ β0 þ u11 þ u21 þ ei, ð3:9Þ
yi ¼ β0 þ u12 þ u21 þ ei
¼ ðβ0 þ u11 þ u21Þ þ ðu12 � u11Þ þ ei,

ð3:10Þ

yi ¼ β0 þ u11 þ u22 þ ei
¼ ðβ0 þ u11 þ u21Þ þ ðu22 � u21Þ þ ei,

ð3:11Þ

yi ¼ β0 þ u12 þ u22 þ ei
¼ ðβ0 þ u11 þ u21Þ þ ðu12 � u11Þ þ ðu22 � u21Þ þ ei:

ð3:12Þ
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Letting a0¼ β0 + u11 + u21, a1¼ u12� u11, and a2¼ u22� u21, we have

yi ¼ a0 þ a1g1i þ a2g2i þ ei, ð3:13Þ

where gji¼ 1 if the genotype of the ith sample is γj2, and otherwise 0 ( j¼ 1

or 2, i¼ 1 , . . . ,N ).

3.3.4 Two-Marker Model with Interactions

We can include the effects by the interactions among the markers, by adding a term

to Eq. 3.7 as follows:

y ¼ Xβþ Z1u1 þ Z2u2 þWρþ e, ð3:14Þ

where W is the design matrix for the interactions among the pairs of the genetic

markers and ρ is the vector of the effects by these interactions. Each column of W
corresponds to a pair of genotypes of the two genetic markers. When the two

genetic markers have, respectively, two genotypes (γ11/γ12 and γ21/γ22) as in

Eq. 3.7, an example of Wρ can be written as follows:

Wρ ¼
ðγ11 � γ21Þ1 ðγ11 � γ22Þ1 ðγ12 � γ21Þ1 ðγ12 � γ22Þ1
ðγ11 � γ21Þ2 ðγ11 � γ22Þ2 ðγ12 � γ21Þ2 ðγ12 � γ22Þ2

⋮ ⋮ ⋮ ⋮
ðγ11 � γ21ÞN ðγ11 � γ22ÞN ðγ12 � γ21ÞN ðγ12 � γ22ÞN

0
BB@

1
CCA

ρ11
ρ12
ρ21
ρ22

0
BB@

1
CCA:

ð3:15Þ

Here, the columns of W correspond to the combinations of the genotypes of the

genetic markers. In this matrix, ðγ1t1 � γ2t2Þi, which is for the ith sample, is 1 if the

first genetic marker has the t1th genotype and also the second genetic marker has

the t2th genotype, and otherwise it is 0 (t1 , t2¼ 1 or 2 in this example). The elements

of ρ¼ (ρ11, ρ12, ρ21, ρ22)0 are the effects by the combinations of the genetic markers.

In a similar way, we can arbitrarily include the additional terms in Eq. 3.7; for

example, we can include the combinations between an environmental factor and a

genetic factor, in addition to the combinations among genetic factors as given by

Eq. 3.14. Both the terms for the genetic factors and the terms for their interactions

are given by the products of the design matrix and the vector of the effects.

Therefore, they cannot be distinguished from each other merely by using the

numerical dataset described in the model: some interpretations specific to the

context are required for the modeling. In this sense, even with the interactions

among environmental and genetic factors, the values of the target trait can be

described using the linear mixed model given by Eq. 3.1.
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3.4 Decomposition of Variance and Contributions

of Genetic Markers

The linear model given by Eq. 3.1 is rewritten as follows:

y ¼ Xβþ
XM

j¼1
Zjuj þ e ¼ Xβþ Z1u1 þ Z2u2 þ � � � þ ZMuM þ e: ð3:16Þ

For the jth genetic marker, Zjuj is a vector of the genetic values of the samples.

Letting δji be the value associated with the ith sample, we have:

Zjuj ¼

1 or 0

⋮
⋮

1 or 0

� � �
⋮
⋮
� � �

� � �
⋮
⋮
� � �

1 or 0

⋮
⋮

1 or 0

0
BBB@

1
CCCA

uj1

uj2

⋮
ujqj

0
BB@

1
CCA ¼

δj1

δj2

⋮
δjN

0
BBB@

1
CCCA: ð3:17Þ

Here, only one element of the row vector of Zj is 1 (the rest of the elements are 0)

because a sample can have exclusively one genotype at the jth genetic marker.

Missing data is not considered. If all the pairs of the terms are not correlated

(independent and additive), i.e., their covariance is zero, the total variance V(y)
can be given by the summation of their variances:

V yð Þ ¼ V Xβð Þ þ V Z1u1ð Þ þ V Z2u2ð Þ þ � � � þ V ZMuMð Þ þ V eð Þ: ð3:18Þ

For the jth genetic marker, V(Zjuj) is the variance of the values, δj1 , δj2 , � � � , δjN
in Eq. 3.17. V(Xβ)¼ 0, if there are no environmental effects. Since the total

variance is obtained by V yð Þ ¼
XN

i¼1
yi � μð Þ2=N (μ is the mean of yi), the

contribution of the jth genetic marker is evaluated by

rj ¼ V Zjuj
� �

=V yð Þ: ð3:19Þ

This ratio shows the proportion of the variance explained by the jth genetic

marker. Note again that we are assuming the markers are not correlated and there

are no genetic interactions, i.e., linkage disequilibrium and epistatic effects are not

assumed.

Since the denominator of Eq. 3.19 is constant in a set of samples, the ratio rj is
determined by the product of Zj and uj. As shown in Eq. 3.17, the former represents

the distribution of the genotypes in the samples, while the latter represents the

effects of the genotypes. Therefore, if a portion of the elements of uj are diverse and
distributed in the samples, V(Zjuj) increases and the ratio has a higher value. On the
other hand, if all the row vectors of Zj are identical or all the elements of uj are
identical, the ratio is 0, showing that there are no differences among the samples in

relation to the genetic marker.
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Although the ratio of the variances by Eq. 3.19 provides an index for the

estimation of the effects of a genetic marker, it can fail to detect a genotype with

a strong effect but with a low frequency in the samples. To remedy this problem, the

variance of the elements of uj ¼ uj1; uj2; . . . ; ujqj

� �0
is evaluated as follows:

vj ¼
Xqj

k¼1
ujk � ujμ
� �2

=qj, ð3:20Þ

where ujμ ¼
Xqj

k¼1
ujk=qj. Once uj is obtained, vj is not dependent on the samples,

while rj is dependent on the distribution of the genotypes in the samples.

Even with a low frequency in the samples, a genotype highly correlated to the

trait of interest is important, especially in the selection process for the breeding

purposes. As described in the later sections, the variance given by Eq. 3.20 is one of

the key values for elucidating the factors that contributed to the trait.

3.5 Breeding Values and Heritability

To focus on the effects that are inherited from one generation to the next, a trait

value P (also referred to as a phenotype or a phenotypic value) of a sample can be

decomposed in a symbolic manner as follows:

P ¼ Gþ E, ð3:21Þ

where G (representing a genetic value or a genotypic value) is the portion that is

determined by the genetic factors, while E (representing an environmental value or

environmental deviation) is the portion that is not explained by the genetic factors

and is attributed to the nongenetic factors (i.e., environmental factors). Here, P is

the observed value in a sample, and G for the sample is the expected value of the

trait in samples with the same genetic background as the sample. E is the random

residual. The deviation from the mean of the trait values in the samples can be used

for the actual value of P for a sample. The deviation is partitioned into the effects of

the genetic factors and the environmental factors. The portion by the genetic factors

G is further divided as follows:

G ¼ Aþ Dþ I, ð3:22Þ

where A shows the deviations by the additive genetic effects, D shows the devia-

tions by the dominant genetic effects, and I shows the deviations by the effects of

interactions among genetic markers, also referred to as epistatic effects. Here,

A captures the effects of alleles in an additive manner. D captures the nonlinear

effects (i.e., deviations from the linear effects) caused by the combinations of

alleles (heterozygous genotypes) within a genetic marker, while I captures the

nonlinear effects (i.e., deviations from the linear effects) by the combinations of
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alleles or genotypes among multiple genetic markers. D and I, respectively, corre-
spond to the deviations by the intra- and inter-marker interactions among alleles.

Here, interactions among G and E are ignored. From Eqs. 3.21 and 3.22, we have:

P ¼ Gþ E ¼ Aþ Dþ Ið Þ þ E: ð3:23Þ

If there are no interactions among the terms of Eq. 3.23, the variance can be

decomposed as follows:

V Pð Þ ¼ V Gð Þ þ V Eð Þ ¼ V Að Þ þ V Dð Þ þ V Ið Þ þ V Eð Þ: ð3:24Þ

In the traditional GS, we usually consider that only the additive effect A is

transmitted to the progenies in the succeeding generations and only this effect is

referred to as a breeding value (BV). The pairs of alleles of the heterozygous

genotypes (dominant effects) and the combinatorial patterns of alleles among the

genetic markers (epistatic effects) are not entirely passed on to the offspring, and

therefore the effects that are expected to be the same in the progeny, i.e., the

additive effects, are emphasized.

The ratios of the variance of G (genotypic value) and A (additive genotypic

value) against the variance of P in samples are, respectively, referred to as the

broad-sense heritability and the narrow-sense heritability. The broad-sense herita-

bility is defined as follows:

H2 ¼ V Gð Þ=V Pð Þ: ð3:25Þ

The narrow-sense heritability is defined as follows:

h2 ¼ V Að Þ=V Pð Þ: ð3:26Þ

The genetic value of a sample is defined by the phenotypic value that can be

attributed to the genetic factors including nonadditive allele interactions. On the

other hand, the breeding value of a sample is defined by the phenotypic value that

can be attributed to only the additive genetic factors.

In this way, the GS is usually based on the effects of additive genotypic values.

One reason why such a strategy has been adopted might be that the decomposition

of phenotypic variance has been considered in a symbolic and abstract manner as in

Eq. 3.24, where the entity of the genetic factors is actually ambiguous. However,

the datasets obtained by the high-throughput sequencers (also known as the next-

generation sequencers (NGS)) and high-density microarrays provide the genotypes

of the samples at single base-pair resolution across their whole-genome sequences.

Consequently, such high-resolution data make it possible to evaluate the genotypic

values based on the actual variations of DNA sequences, e.g., single nucleotide

variations (SNVs), short insertion and deletions (Indels), and structural variations

such as copy number variations (CNVs) instead of putative genetic factors. Espe-

cially in relation to the SNVs, for example, the types of the alleles of a genetic
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marker are restricted to those that are represented symbolically by their nucleobases

(A, C, G, and T), and therefore the dominant effect by a heterozygous genotype at a

position in the DNA sequence will be expected to found again in the progeny.

Actually, such point mutations may alter the characteristics of the proteins that they

correspond to. If the trait is controlled by the point mutations, the problem will be

simple. The inter-marker interactions among plural genetic markers may have the

same characteristics because the probability that we will find the same genotype

patterns in the progeny is not zero even if it is low.

A genetic marker represents a chromosomal region which it belongs to, and its

genotype partially shows the way the region has been inherited from the ancestors.

However, even if the identical genotype at a genetic marker is found in the samples,

the genetic factors which were near to the genetic marker are not always the same in

those samples. It depends on how they are genetically related as determined by the

manner of crossing. The identical allele constituting a genotype at a genetic marker

can be found in the samples when it has been inherited from the independent

ancestors having it or it has been caused by spontaneous mutations (identity by

state (IBS)). The identical allele can be found in the samples also when it has been

inherited from the common ancestors (identity by descent (IBD)). If the founder of

the chromosomal regions can be traced back in the ancestors, detection of the

dominant effects by the accompanying genetic factors can be expected even in

their offspring for such regions. An increase in the number of the genetic markers

makes it possible to capture the genetic factors by the patterns of their genotypes

(haplotypes) instead of the genotype of a single genetic marker; however, improve-

ment of the resolution introduces nonadditive effects into the datasets. Linkage

disequilibrium (LD) among the genetic markers in a chromosome (cis-interactions)

must be taken into consideration in addition to their genetic relationships across

chromosomes (trans-interactions).

3.6 Determination of Model Parameters by Least-Squares

Estimation

The least-squares estimation approach can analytically determine the parameters in

the models. The random residuals, i.e., the deviations of the predicted values from

the observed real values, are minimized in the samples. The resulting models

identify the underlying causal factors in the given datasets and characterize the

target values by using those factors. We consider, for example, a one-marker model

by Eq. 3.6 for a dataset with N¼ 2 samples and M¼ 1 genetic marker. When the

target values and the 0/1-encoded genotypes are given, respectively, by y¼
(y1, y2)

0 ¼ (2, 1)0 and t1¼ (g11, g12)
0 ¼ (1, 0)0, the relationships among the parame-

ters in the model are given as follows:
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2 ¼ a0 þ a1 � 1þ e1
1 ¼ a0 þ a1 � 0þ e2

: ð3:27Þ

Letting the random residuals e¼ (e1, e2)
0 be 0, the equations can be uniquely

solved (a0, a1)¼ (1, 1). However, if an additional sample is given (y3, g13)¼
(2.1, 1), for example, the equations cannot be solved under the assumption that

the random residuals are 0. Some portion of the target values must be assigned to

the random residuals under the restriction that they are minimized, 0.1 from y3 to e3
in this case. If any genetic markers in a model are not associated with the target

values, by setting all the parameters except the random residuals to 0 and assigning

all the values to the random residuals, we have a trivial solution y¼ e. Thus, the
problem can be solved by minimization of the random residuals.

3.6.1 Least-Squares Estimation for One-Marker Model

From Eq. 3.6, we have ei¼ yi� a0� a1g1i. Letting J denote the squared error as

follows, a0 and a1 are determined so that J is minimized:

J ¼
XN

i¼1
e2i ¼

XN

i¼1
yi � a0 � a1g1ið Þ2: ð3:28Þ

Letting ∂J=∂a0 ¼ �2
XN

i¼1
yi � a0 � a1g1ið Þ ¼ 0, we have:

a0 ¼
XN

i¼1

yi
N
� a1

XN

i¼1

g1i
N

: ð3:29Þ

Similarly, letting ∂J=∂a1 ¼ 2
XN

i¼1
yi�a0�a1g1ið Þ∂ yi�a0�a1g1ið Þ=∂a1 ¼ 0

and replacing a0 with Eq. 3.29, we have:

∂J
∂a1

¼ 2
XN

i¼1
yi �

XN

i¼1

yi
N
� a1

XN

i¼1

g1i
N

� �
� g1ia1

n o
� g1i �

XN

i¼1

g1i
N

� �n o
¼ 0:

ð3:30Þ
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Manipulating Eq. 3.30, we have:

∂J
∂a1

¼�2
XN

i¼1
yi�

XN

i¼1

yi
N

� �
g1i�

XN

i¼1

g1i
N

� �
�a1

XN

i¼1
g1i�

XN

i¼1

g1i
N

� �2� 	

¼ 0:

ð3:31Þ

Equation 3.31 can be written as ∂J/∂a1¼ � 2N(σy1� a1σ11)¼ 0. Here, σy1 is

the covariance between y¼ (y1, y2, . . . , yN)
0 and t1¼ (g11, g12, . . . , g1N)

0. σ11 is the
variance of t1. If σ11 6¼ 0, we have:

a1 ¼ σy1
σ11

¼
PN

i¼1 yi �
PN

i¼1
yi
N

� �
t1i �

PN
i¼1

g1i
N

� �n o
=NPN

i¼1 g1i �
PN

i¼1
g1i
N

� �2
=N

: ð3:32Þ

The prediction value for the ith sample is given as follows:

pi ¼ a0 þ a1g1i: ð3:33Þ

3.6.2 Least-Squares Estimation for Two-Marker Model
Without Interactions

From Eq. 3.13, we have ei¼ yi� a0� a1g1i� a2g2i. In a similar way as for the

one-marker model, the squared error J is given as follows and minimized:

J ¼
XN

i¼1
yi � a0 � a1g1i � a2g2ið Þ2: ð3:34Þ

Letting ∂J=∂a0 ¼ �2
XN

i¼1
yi � a0 � a1g1i � a2g2ið Þ ¼ 0, we have:

a0 ¼
XN

i¼1

yi
N
� a1

XN

i¼1

g1i
N

� a2
XN

i¼1

g2i
N

: ð3:35Þ

Replacing a0 with Eq. 3.35 in Eq. 3.13, we have:

yi ¼
XN

k¼1

yk
N
� a1

XN

k¼1

g1k
N

� a2
XN

k¼1

g2k
N

þ a1g1i þ a2g2i þ ei

¼
XN

k¼1

yk
N
þ a1 g1i �

XN

k¼1

g1k
N

� �
þ a2 g2i �

XN

k¼1

g2k
N

� �
þ ei:

ð3:36Þ
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Using Eq. 3.36, Eq. 3.34 can be rewritten as follows:

J ¼
XN

i¼1
yi �

XN

k¼1

yk
N
� a1 g1i �

XN

k¼1

g1k
N

� �
� a2 g2i �

XN

k¼1

g2k
N

� �n o2

:

ð3:37Þ

Then, we have:

∂J
∂a1

¼ �2
XN

i¼1
yi �

XN

k¼1

yk
N
� a1 g1i �

XN

k¼1

g1k
N

� �
� a2 g2i �

XN

k¼1

g2k
N

� �� �n
� g1i �

PN

k¼1

g1k
N

� �o
¼ �2

PN

i¼1
yi �
PN

k¼1

yk
N

� �
g1i �

PN

k¼1

g1k
N

� �n
� a1
PN

i¼1
g1i �

PN

k¼1

g1k
N

� �2
� a2
PN

i¼1
g2i �

PN

k¼1

g2k
N

� �
g1i �

PN

k¼1

g1k
N

� �o
:

ð3:38Þ

Therefore, we also have:

∂J
∂a1

¼ �2N σy1 � a1σ11 � a2σ12
� � ð3:39Þ

and

∂J
∂a2

¼ �2N σy2 � a1σ12 � a2σ22
� �

: ð3:40Þ

Here, σy1 is the covariance between y and t1¼ (g11, g12, . . . , g1N)
0, σy2 is the

covariance between y and t2¼ (g21, g22, . . . , g2N)
0, and σ11 and σ22 are the variance

of t1 and t2. σ12 and σ21 are the covariance between t1 and t2 (σ12¼ σ21). Letting
∂J/∂a1¼ 0 and ∂J/∂a2¼ 0, we have:

a1σ11 þ a2σ12 ¼ σy1
a1σ21 þ a2σ22 ¼ σy2

�
: ð3:41Þ

If σ11σ22 � σ212 6¼ 0, we have:

a1 ¼ σy1σ22 � σy2σ12
σ11σ22 � σ212

and a2 ¼ σy2σ11 � σy1σ12
σ11σ22 � σ212

: ð3:42Þ

Equation 3.41 can also be described using matrices as follows:
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σ11 σ12
σ21 σ22

� �
a1
a2

� �
¼ σy1

σy2

� �
: ð3:43Þ

LettingΣ ¼ σ11 σ12
σ21 σ22

� �
and its determinant detΣ¼ σ11σ22 – σ12σ21, if detΣ 6¼ 0,

there exists the inverse of Σ, given by Σ�1 ¼ 1
detΣ

σ22 �σ12
�σ21 σ11

� �
. Then we have:

a1
a2

� �
¼ Σ�1 σy1

σy2

� �
¼ 1

detΣ
σ22 �σ12
�σ21 σ11

� �
σy1
σy2

� �
: ð3:44Þ

Equation 3.44 is equivalent to Eq. 3.42.

3.6.3 Number of Parameters

As shown in the examples in the previous sections, the number of parameters that

must be determined increases with the increase in the number of the genetic

markers in the model. Intuitively, N independent equations are required to uniquely

determine N parameters. In the typical datasets we use for the GS and the MAS, the

number of the genetic markers p is much greater than that of the samples N;
therefore, they cannot provide a sufficient number of equations for the parameters

that are associated with the genetic markers. We thus cannot uniquely determine the

parameters. This situation is sometimes referred to as the N� p problem.

Let f(gi)¼ a0 + a1g1iþ . . . þ aMgMi be the formula for the prediction model.

Letting a¼ (a0, a1, . . . , aM)
0 be the vector of the coefficients and gi¼ (g0, g1i, . . . ,

gMi) be the vector of the observed values (e.g., 0/1-encoded genotypes) for the ith
sample ( f(gi)¼ gia) with a dummy variable g0� 1, we have N predictions for

N samples. Letting G¼ (g1, g2, . . . , gN)
0, those predictions are written as Ga.

Then, the squared error J is given as follows:

J ¼ Ga� yð Þ0 Ga� yð Þ: ð3:45Þ

Equations 3.28 and 3.34 in the previous sections can be written in this format.

Here, y0Ga ¼ (y0Ga)0 ¼ a0G0y because it is a scalar, and we then have:

J ¼ a0G0 � y0ð Þ Ga� yð Þ ¼ a0G0Ga� 2a0G0yþ y0y: ð3:46Þ

The derivative of J with respect to a is given as follows:

∂J=∂a ¼ 2G0Ga� 2G0y: ð3:47Þ
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From Eq. 3.47, we have:

G0Ga ¼ G0y: ð3:48Þ

This equation is referred to as the normal equation. When G0G is a regular

matrix, there exists its inverse and a is uniquely determined in an analytical manner

as follows:

a ¼ ðG0GÞ�1G0y: ð3:49Þ

However, as noted above, the number of the parameters is greater than that of the

equations given by y¼Ga, and hence the parameters cannot be uniquely deter-

mined. Instead of solving the equations in an analytical manner, therefore, methods

based on model fitting to the data are used so that the squared errors are minimized.

Although the number of the parameters is greater than that required to solve the

equations, all the parameters do not contribute to the values of the dependent

variable, y. Therefore, in parallel with determining the values of the parameters,

the selection of the parameters is explicitly and implicitly carried out. As a result,

the parameters for the independent variables that do not contribute to the dependent

variable will converge to zero and be excluded from the prediction model.

3.7 Determination of Model Parameters by Bayesian

Estimation

The Bayesian approach can determine the parameters in the models. As we have

seen in the previous sections, the random residuals associated with the prediction

model can be assumed to follow some distribution, e.g., the normal distribution.

The characteristics of the distribution of the random residuals such as the mean and

the variance are important for evaluation of model fitting to a given dataset rather

than the values assigned to the samples. The random residuals can be thus evaluated

by using the distribution of a random variable. In a similar way, if we represent the

parameters in the prediction model by using the distributions of random variables,

we can intuitively introduce the Bayesian approach into the construction of the

prediction model. The ranges with high probability can estimate the likely values

for the parameters in a stochastic manner. A part of this section in relation to the

Gibbs sampling is based on Wang et al. (1993).

3.7.1 Basic Concepts of Bayes’ Theorem

The joint probability can be written as follows:
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P A;Bð Þ ¼ P AjBð ÞP Bð Þ ¼ P BjAð ÞP Að Þ: ð3:50Þ

Here, P(AjB) and P(BjA) are the conditional probabilities of A and B, respec-
tively, given B and A. P(A) and P(B) are the marginal probabilities. If P(B) 6¼ 0, we

have:

PðAjBÞ ¼ PðBjAÞPðAÞ
PðBÞ / PðBjAÞPðAÞ: ð3:51Þ

This relationship is referred to as the Bayes’ theorem and shows that the

probability of A given B is proportional to the product of the probability of A and

the probability of B given A. Using this relationship, we can estimate the posterior

probability P(AjB) from the prior probability P(A). The conditional probability

P(BjA) shows the probability of obtaining B under the condition A, which is referred
to as the likelihood.

In Eq. 3.50, the probabilities are assigned to discrete events represented by A and

B. This concept can be extended to the continuous distributions of a parameter θ as
follows:

π θjDð Þ / f Djθð Þπ θð Þ: ð3:52Þ

Here, a parameter θ is expressed by using a distribution of probability instead of
a single value. The value of θ with a high probability is likely to be the true value

of θ. In Eq. 3.52, the product of the prior distribution π(θ) and the likelihood of

obtaining the dataset D under the condition θ, i.e., f(Djθ), provide the evaluation for
the posterior distribution π(θjD).

3.7.2 Estimation of Parameters of Normal Distributions

Here, we consider the case that the dataset D consists of N observations of xi
(i¼ 1 , 2 , . . . ,N). We also assume the condition that the distribution of xi follows
a normal distribution with the mean μ and the variance σ2. Here, μ and σ2 are not

known, and they are the targets of the prediction. If the N observations are

independent of each other, the likelihood of obtaining the dataset D is given by

the product of the probability density functions as follows:

f ðDjμ, σ2Þ ¼
YN

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp �ðxi � μÞ2
2σ2

 !
: ð3:53Þ

If we set values for μ and σ2, the probability of the event that we obtained the

dataset D is given by f(Djμ, σ2). This value is referred to as the likelihood under the
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condition that the values follow the normal distribution. The plausible values for μ
and σ2 can be determined so that the likelihood is maximized.

3.7.2.1 Estimation of Mean with Known Variance

Suppose we are estimating μ under the condition that σ2 is known. As the prior

probability distribution for μ, we can use a normal distribution with a mean μ0 and a
variance σ20 as follows:

π μð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ20

p exp � μ� μ0ð Þ2
2σ20

 !
: ð3:54Þ

If σ20 is a very large value, the distribution is near to a flat distribution, showing

that there is no prior knowledge. Then, we have:

π μjDð Þ /
YN

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � xi � μð Þ2
2σ2

 !
� 1ffiffiffiffiffiffiffiffiffiffi

2πσ20
p exp � μ� μ0ð Þ2

2σ20

 !
: ð3:55Þ

Manipulating Eq. 3.55 by using xi � μð Þ2 ¼ �xi � �x þ �x � μ
�2

where

�x ¼
XN

i¼1
xi, we have:

πðμjDÞ / exp � μ� Nσ20 x
� þμ0σ

2

Nσ20 þ σ2

� �2

2
σ2σ20

Nσ20 þ σ2

� �� !
:

 
ð3:56Þ

Letting

μ1 ¼
Nσ20 �x þ μ0σ

2

Nσ20 þ σ2
and σ21 ¼

σ2σ20
Nσ20 þ σ2

, ð3:57Þ

we have:

π μjDð Þ / exp � μ� μ1ð Þ2
2σ21

 !
: ð3:58Þ

This shows that the posterior probability distribution is again a normal distribu-

tion and has its maximum value at μ1. Therefore, μ1 is adopted for the estimated

value of μ. This method is referred to as the maximum a posteriori probability

(MAP) estimation. Letting τ¼ 1/σ2 and τ0 ¼ 1=σ20 in Eq. 3.57, we have:
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τ1 ¼ 1

σ21
¼ 1

σ2
N þ 1

σ20
¼ τN þ τ0 and μ1 ¼

τN

τN þ τ0
�x þ τ0

τN þ τ0
μ0: ð3:59Þ

τ is the inverse of the variance and is referred to as the precision. Equation 3.59

shows that the precision is improved by the summation of the precision of the

samples observed (τN> 0) while the mean is updated to the weighted average of the

mean in the samples observed (�x ) and that of the prior probability distribution (μ0).

3.7.2.2 Estimation of Variance with Known Mean

On the other hand, suppose we are estimating σ2 (σ2 6¼ 0) under the condition that μ
is known. From Eq. 3.53, we have:

f Djσ2� � / 1

σ2ð ÞN=2
exp �

PN
i¼1 xi � μð Þ2

2σ2

 !
: ð3:60Þ

As the prior distribution for σ2, we can use a distribution with parameters ν0 (the
number of chi-squared degrees of freedom) and s20 (the scaling parameter) as

follows:

π σ2
� � / 1

σ2ð Þ1þν0=2
exp � νs20

2σ2

� �
: ð3:61Þ

Then the posterior probability distribution is as follows:

π σ2jD� � / 1

σ2ð ÞN=2
exp �

PN
i¼1 xi � μð Þ2

2σ2

 !
� 1

σ2ð Þ1þν=2
exp � ν0s20

2

� �
: ð3:62Þ

Manipulating Eq. 3.62, we have:

πðσ2jDÞ / 1

ðσ2Þ1þðν0þNÞ=2 exp �ðν0 þ NÞ ν0s
2
0
þ
PN

i¼1
ðxi�μÞ2

ν0þN

2σ2

0
B@

1
CA: ð3:63Þ

Letting

ν1 ¼ ν0 þ N and s21 ¼
ν0s20 þ

PN
i¼1 xi � μð Þ2

ν0 þ N
, ð3:64Þ
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we have:

π σ2jD� � / 1

σ2ð Þ1þν1=2
exp � ν1s21

2σ2

� �
: ð3:65Þ

This shows that the posterior probability is the same distribution as the prior

probability distribution. This distribution is referred to as the scaled inverse

chi-squared distribution, and the probability density function is given as follows:

f ðx; ν, s2Þ ¼ ðs2ν=2Þν=2
Γðν=2Þ

exp � νs2

2x

� �
x1þν=2

: ð3:66Þ

Here, Γ(x) is the gamma function and defined for positive real numbers as

follows:

Γ xð Þ ¼
Z 1

0

tx�1e�tdt, x > 0ð Þ, ð3:67Þ

where Γ(1)¼ 1 and Γ(xþ 1)¼ xΓ(x) for positive real numbers. Γ(x) can be consid-

ered to be the extension of the factorial of natural numbers, f(n)¼ n!.
The scaled inverse chi-squared distribution is derived from the normal distribu-

tion. When the values of the random variable x are independent and follow N(0, s2),

summations of the squares of the values of the random variable, z2 ¼
X ν

i¼1
x2i ,

follow the chi-squared distribution with ν degrees of freedom. The probability

density function of the chi-squared distribution (x� 0) is given as follows:

f ðx; νÞ ¼ ð1=2Þν=2
Γðν=2Þ

exp �x
2

� �
x1�ν=2

: ð3:68Þ

Letting y¼ νs2/x (i.e., x¼ νs2/y), the probability density function of y is given as
follows:

gðy; ν, s2Þ ¼ f ðx; νÞ dx
dy

����
���� ¼ ðs2ν=2Þν=2

Γðν=2Þ
exp �νs2

2y

� �
y1þν=2

: ð3:69Þ

This distribution is referred to as the scaled inverse chi-squared distribution.

Here, s2 is referred to as a scaling parameter. This shows that the values of νs2/z2

follow the scaled inverse chi-squared distribution. By νs2=z2 ¼ 1=
X ν

i¼1

xi=sð Þ2
ν

,

this implies that if the values of x follow N(0, s2), the inverses of the variances of the
values of x follow the scaled inverse chi-squared distribution, Scaled-inv-χ2(ν, s2).

Letting s2 ¼
XN

i¼1
xi � μð Þ2 in Eq. 3.64, we have:
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ν1 ¼ ν0 þ N and s21 ¼
N

ν0 þ N
s2 þ ν0

ν0 þ N
s20: ð3:70Þ

Equation 3.70 shows that the degrees of freedom are improved by the number of

the samples observed (N> 0), while the scaling parameter is updated to the

weighted average of the scaling parameter in the samples observed (s2) and that

of the prior probability distribution (s20).

3.7.2.3 Natural Conjugate Prior Probability Distributions

When the posterior probability distribution (or simply the posterior) is in the same

family as the corresponding prior probability distribution (or simply the prior) in

relation to a given likelihood function, they are referred to as conjugate distribu-

tions. Such a prior probability distribution is referred to as a (natural) conjugate

prior probability distribution. For example, the probability distribution of a normal

distribution has the maximum at the mean, and the estimator can be easily obtained

from the posterior probability distribution. However, this is not the case with the

arbitrary distributions. Generally, the characteristics of the posterior probability

distributions are not clear if the prior and posterior probability distributions are not

conjugate. When the posterior probability distribution is not well known, numerical

integration is required to obtain its characteristics (e.g., the mean and the variance).

However, this is not always easy for the unknown distributions or complex distri-

butions (e.g., high-dimensional distributions with multiple variables).

3.7.3 Estimation of Linear Mixed Models by Sampling

One method for obtaining the characteristics of the complex posterior probability

distributions is to approximate the distribution by sampling the distribution. This

sampling procedure is also sometimes referred to as simulation. Markov chain

Monte Carlo (MCMC) methods are a class of methods that simulate the distribu-

tions by iterated sampling. Monte Carlo (MC) methods are a class of methods for

numerical analysis using random numbers. Markov chain Monte Carlo methods are

categorized into Monte Carlo methods and are a class of algorithms that carry out

the sampling of the probability distributions based on the Markov chain that has the

target distribution as its equilibrium distribution. Here, a Markov chain is a sto-

chastic process that has the Markov property (also known as the property of

memorylessness), i.e., the conditional probability distribution of the future can be

determined only by the current state. The Gibbs sampling method is one of the

MCMC methods and is applicable when the conditional distribution of each

variable (full conditional distribution) is given.
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3.7.3.1 Parameters of Linear Mixed Models for Bayesian Estimation

Let us consider the linear model given by Eq. 3.1 again:

y ¼ Xβþ
XM

j¼1
Zjuj þ e: ð3:71Þ

We obtain the parameters of this model, θ ¼ β; u; v; σ2e
� �

, by Bayes’ estimation.

Here, u¼ (u1, . . . , uM) and v ¼ σ21; . . . ; σ
2
M

� �
. σ2j ( j¼ 1 , . . . ,M ) is the variance of

uj ¼ uj1; . . . ; ujqj

� �
, and σ2e is the variance of e¼ (e1, . . . , eN). All the parameters

are unknown. Note that σ2j is the variance of the effects of the genotypes, not the

variance of the genotypic values. If we obtain the estimation of uj, however, we can
derive the variance of the genotypic values. In the succeeding sections, the prob-

ability distributions required for Gibbs sampling, i.e., the prior probability distri-

butions (3.7.3.2), the joint posterior probability distributions (3.7.3.3), and the

conditional probability distributions for the parameters (3.7.3.4–3.7.3.6), will be

introduced in detail. Then, an implementation of Gibbs sampling using those

distributions will be introduced (3.7.3.7). Finally, the results of estimation of the

linear mixed model for the example given in Fig. 3.1 will be presented.

3.7.3.2 Prior Probability Distributions

Consider the case that the prior probability distributions for the parameters are as

follows. For the fixed effects, we will assume a flat prior probability distribution for

the naive prior probability distribution, which represents the case that we are not

given enough knowledge, as follows:

π βð Þ / constant: ð3:72Þ

When qj is the number of the genotypes for the jth genetic marker ( j¼ 1 , . . . ,M)

and uj follows a qj-dimensional multivariate normal distribution,

uj jGj, σ2j � Nqjð0,Gjσ2j Þ, where Gj is a known matrix indicating the relationships

among uj1, . . . , ujqj (the effects by the genotypes), the prior probability distribution is

given as follows:

π ujjGj; σ2j

� �
/ 1ffiffiffiffiffi

σ2j

q� �qj exp �1

2
uj

0 Gjσ
2
j

� ��1

uj

� �

/ 1ffiffiffiffiffi
σ2j

q� �qj exp � 1

2σ2j
uj

0G�1
j uj

 !
:

ð3:73Þ
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Letting s2e ¼ y� Xβ�
XM

j¼1
Zjuj

� �0
y� Xβ�

XM

j¼1
Zjuj

� �
=N and

s2j ¼ u0jG
�1
j uj=qj, the prior probability distribution for the variances is given using

the scaled inverse chi-squared distributions as follows:

π σ2e jνe, s2e
� � / 1

σ2e
� �1þνe=2

exp � νes2e
2σ2e

� �
ð3:74Þ

and

π σ2j jνj, s2j
� �

/ 1

σ2j

� �1þνj=2
exp � νjs2j

2σ2j

 !
: ð3:75Þ

Letting νe¼ 0 and νj¼ 0 in Eqs. 3.74 and 3.75 for the naive prior probability

distributions, we have:

π σ2e
� � / 1

σ2e
ð3:76Þ

and

π σ2j

� �
/ 1

σ2j
: ð3:77Þ

The joint prior density of θ ¼ β; u; v; σ2e
� �

is given by the product of the density

given by Eqs. 3.72, 3.73, 3.76, and 3.77 as follows:

π θð Þ ¼ π βð Þ �
YM

j¼1
π ujjGj, σ

2
j

� �
�
YM

j¼1
π σ2j

� �
� π σ2e
� �

: ð3:78Þ

3.7.3.3 Joint Posterior Probability Distributions

If we assume that R¼ I (the identity matrix) in Eq. 3.2, i.e., the samples are

independent to each other and the random residuals of all the samples have the

identical variance, the likelihood associated with the N samples is given as follows:

πðyjθÞ ¼
YN

i¼1

1ffiffiffiffiffi
σ2e

p exp � 1

2σ2e
y� Xβ�

XM

j¼1
Zjuj

� �0
y� Xβ�

XM

j¼1
Zjuj

� �� 	
:

ð3:79Þ
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By using Eqs. 3.78 and 3.79, the joint posterior probability distribution is given

as follows:

πðθjyÞ ¼ πðβ, u, v, σ2e jyÞ / πðyjθÞ � πðθÞ

/ 1

ðσ2eÞN=2
exp � 1

2σ2e
y� Xβ�

XM

j¼1
Zjuj

� �0
y� Xβ�

XM

j¼1
Zjuj

� �� 	

�constant�
YM

j¼1

1

σ2j

� �qj=2exp � 1

2σ2j
uj

0G�1
j uj

 !8><
>:

9>=
>;�

YM

j¼1

1

σ2j
� 1

σ2e

/ 1

σ2e
� �N=2þ1

exp � 1

2σ2e
y� Xβ�

XM

j¼1
Zjuj

� �0
y� Xβ�

XM

j¼1
Zjuj

� �� 	

�
YM

j¼1

1

σ2j

� �qj=2þ1
exp � 1

2σ2j
uj

0G�1
j uj

 !8><
>:

9>=
>;: ð3:80Þ

Here, θ ¼ β; u; v; σ2e
� �

. y are the trait values observed.

3.7.3.4 Conditional Probability Distribution for β

By setting a variable unknown under the conditions that all other variables are

known, as seen in the simple examples, we obtain the conditional posterior prob-

ability distributions. Letting u, v, σ2e , and y be known, we have:

π βju, v, σ2e , y
� � / exp � 1

2σ2e
Xβ� yþ

XM

j¼1
Zjuj

� �0
Xβ� yþ

XM

j¼1
Zjuj

� �� 	
:

ð3:81Þ

Note that y� Xβ�
XM

j¼1
Zjuj ¼ Xβ� yþ

XM

j¼1
Zjuj. Then, we have:

Xβ� yþ
XM

j¼1
Zjuj ¼ XX�1 Xβ� yþ

XM

j¼1
Zjuj

� �
¼ X β� X�1 y�

XM

j¼1
Zjuj

� �n o
: ð3:82Þ

Using (AB)0 ¼B0A0 for matrices A and B, the argument of the exponential

function in Eq. 3.81 can be rewritten as follows:
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π βju, v, σ2e , y
� � / exp � 1

2σ2e
Xβ� yþ

XM

j¼1
Zjuj

� �0
Xβ� yþ

XM

j¼1
Zjuj

� �� 	

¼ exp � 1

2σ2e
X β� X�1 y�

XM

j¼1
Zjuj

� �n oh i0
X β� X�1 y�

XM

j¼1
Zjuj

� �n oh i� 	

¼ exp � 1

2σ2e
β� X�1 y�

XM

j¼1
Zjuj

� �n o0
X0X β� X�1 y�

XM

j¼1
Zjuj

� �n o� 	

¼ exp �1

2
β� X�1 y�

XM

j¼1
Zjuj

� �n o0 X0X
σ2e

β� X�1 y�
XM

j¼1
Zjuj

� �n o� 	
:

ð3:83Þ

Using (AB)�1¼B�1A�1 for matrices A and B, we have

β ¼ X�1 y�
XM

j¼1
Zjuj

� �
¼ X0Xð Þ�1

X0 y�
XM

j¼1
Zjuj

� �
. Then we have:

π βju, v, σ2e , y
� � / exp �1

2
β� β
 �0

Σ�1
β β� β
 �� �

,

where Σβ ¼ X0Xð Þ�1σ2e (i.e., Σ
�1
β ¼ X0X=σ2e). Thus, we obtain:

β j u, v, σ2e , y � Nðβ�,ΣβÞ: ð3:84Þ

3.7.3.5 Conditional Probability Distribution for uj

In a similar way, we consider the case in which all variables except uj are known

( j¼ 1, . . . ,M ). Letting u�j be the vector obtained by removing uj from u and

pj ¼ y� Xβ�
XM

k¼1,k 6¼j
Zkuk, we have:

πðujjβ, u�j, v, σ
2
e , yÞ

/ exp � 1

2σ2e
Zjuj � pj

� �0
Zjuj � pj

� �� 	
� exp � 1

2σ2j
uj

0G�1
j uj

 !

¼ exp � 1

2σ2e
uj � Z�1

j pj

� �0
Zj

0Zj uj � Z�1
j pj

� �� 	
� exp � 1

2σ2j
uj

0G�1
j uj

 !

¼ exp � 1

2σ2e
uj � Z�1

j pj

� �0
Zj

0Zj uj � Z�1
j pj

� �
� 1

2σ2j
uj

0G�1
j uj

( )
: ð3:85Þ

Here, note that Zj
0Zj and G�1

j are symmetric (i.e., Gj is also symmetric), and

letting Zj¼ (z1, z2, � � � , zn) be a vector of row vectors, the (m, n)th and (n,m)th
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element of Zj
0Zj are, respectively, (Zj

0Zj)mn¼ zn
0zm and (Zj

0Zj)nm¼ zm
0zn. G�1

j is a

multiple of a covariance matrix. Here, (m, n)th element is in the mth row and in the

nth column. Generally, in relation to a summation of two quadratic forms, we have:

�
u� �u

�0
Z0Z

�
u� �u

�þ u0Gu

¼ u� Z0Zþ Gð Þ�1
Z0Z �u

n o0
Z0Zþ Gð Þ u� Z0Zþ Gð Þ�1

Z0Z �u
n o

þ �u 0 Z0Zð Þ�1 þ G�1
� ��1

�u : ð3:86Þ

Thus, we have:

πðujjβ, u�j, v, σ
2
e , yÞ

¼ exp � 1

2σ2e
uj � Z�1

j pj

� �0
Zj

0Zj uj � Z�1
j pj

� �
� 1

2σ2j
uj

0G�1
j uj

( )

¼ exp �1

2

�
uj� �u j

�0 Zj
0Zj

σ2e
þG�1

j

σ2j

 !�
uj� �u j

��1

2
�u j

0 Zj
0Zj

σ2e

� ��1

þ G�1
j

σ2j

 !�1
0
@

1
A

�1

�u j

8<
:

9=
;

/ exp �1

2

�
uj � �u j

�0 Zj
0Zj

σ2e
þ G�1

j

σ2j

 !�
uj � �u j

�( )
: ð3:87Þ

Here,

�u j ¼ Zj
0Zj

σ2e
þ G�1

j

σ2j

 !�1

Zj
0ZjZ

�1
j pj

¼ Zj
0
Zj

σ2e
þ G�1

j

σ2j

 !�1

Zj
0 y� Xβ�

XM

k¼1,k 6¼j
Zkuk

� �
, ð3:88Þ

and

Σ�1
j ¼ Zj

0
Zj

σ2e
þ G�1

j

σ2j

 !
and Σj ¼ Zj

0
Zj þ G�1

j

σ2e
σ2j

 !�1

σ2e : ð3:89Þ

Thus, we have:

uj j β, u�j, v, σ
2
e , y � Nð �u j,ΣjÞ: ð3:90Þ
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3.7.3.6 Conditional Probability Distributions for σ2j and σ2e

We then consider the case in which all variables exceptσ2j are known ( j¼ 1, . . . ,M).

Letting v�j be the vector obtained by removing vj from v, we have:

πðσ2j jβ, u, v�j, yÞ / 1

ðσ2j Þqj=2þ1
exp � 1

2σ2j
uj

0
G�1

j uj

 !
: ð3:91Þ

Thus, we have:

σ2j j β, u, v, y � Scaled�inv�χ2ðqj, uj
0
G�1

j ujqjÞ: ð3:92Þ

In a similar way, considering the case in which all variables exceptσ2e are known,
we have:

πðσ2e jβ, u, v, yÞ
/ 1

ðσ2eÞN=2þ1
exp � 1

2σ2e
y� Xβ�

XM

j¼1
Zjuj

� �0
y� Xβ�

XM

j¼1
Zjuj

� �� 	
:

ð3:93Þ

Thus, we have:

σ2e j β, u, v, y � Scaled�inv�χ2ðN, s2eÞ, ð3:94Þ

where s2e ¼ ðy� Xβ�PM
j¼1 ZjujÞ

0 ðy� Xβ�PM
j¼1 ZjujÞ=N

3.7.3.7 Gibbs Sampling

Based on the probability distributions in the preceding sections, we can implement

a program that carries out the Gibbs sampling procedure. By Eqs. 3.84, 3.87, 3.92,

and 3.94, we have the conditional probability distributions for β, uj, σ
2
j , and σ2e .

Setting a portion of the parameters in Eq. 3.78 as known, we obtain the multivariate

normal distributions for the coefficients for the fixed and random effects (β and uj)
and the scaled inverse chi-squared distributions for the variances of their elements

(σ2j and σ2e).

We can obtain the values by sampling (simulating) using the conditional prob-

ability distributions. The values are obtained as the random numbers generated by

the given normal distribution and the scaled inverse chi-squared distributions.

Starting with arbitrary initial values for the parameters (for the round 0), the

following steps are iterated T rounds until the values converge ( j¼ 1 , . . . ,M ):
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1. Update β by Eq. 3.84 under the condition that u, v, and σ2e are known.

2. Update uj by Eq. 3.87 under the condition that β, u�j, v, and σ2e are known.

3. Update σ2j by Eq. 3.92 under the condition that β, u, v�j, and σ2e are known.

4. Update σ2e by Eq. 3.94 under the condition that β, u, and v are known.

Here, u�j and v�j are, respectively, the vector obtained by removing the jth
element uj from u, and the vector obtained by removing the jth element vj from v.
Accumulating the values sampled and obtaining the frequencies of those values (the

histograms of the frequency distributions), the posterior probability distributions of

the variables are estimated.

In the rounds above, normally distributed random numbers are obtained by

using, for example, the Box-Muller method (Box and Muller 1958), which trans-

forms uniformly distributed random numbers to normally distributed random num-

bers. Random numbers following the scaled inverse chi-squared distribution are

obtained by using the gamma distribution. When X ~ Scaled-inv-χ2(ν, τ2), we can

generate the random numbers that follow the distribution using the inverse gamma

distribution and the gamma distribution as follows:

X � Inv�Gammaðν=2, ντ2=2Þ and 1=X � Gamma
�
ν=2, 2=ðντ2Þ

�
ð3:95Þ

The random numbers following the gamma distribution can be procedurally

generated (Tanizaki 2008).

To avoid dependency on the initial values, the initial rounds are discarded as the

burn-in period. Also, to avoid dependency among the nearby rounds, the values are

adopted to construct the distributions (i.e., frequencies of the values sampled) at

intervals (thinning). Using the values obtained, the target distributions are

estimated.

3.7.3.8 An Example of Parameter Estimation by Gibbs Sampling

Consider the case of a linear mixed model with five genetic markers (G10, G20,

G30, G40, and G50) with two environmental factors (E1 and E2) as follows:

y ¼ X
β0
β1
β2

0
@

1
Aþ Z10

u11
u12

� �
þ Z20

u21
u22

� �
þ Z30

u31
u32

� �
þ Z40

u41
u42

� �

þ Z50
u51
u52

� �
þ e: ð3:96Þ

The results of the estimation of the parameters by the Gibbs sampling explained

in the preceding sections can be visualized as in Fig. 3.2. The line graphs in the right

panels present the values of the parameters sampled (T ¼ 1000 rounds), showing
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Fig. 3.2 Estimation of the parameters by Gibbs sampling
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that the values converge after the initial disturbance. The histograms in the left

panels present the estimated distributions (posterior probability distributions) of the

parameters by using the sampled values obtained in the right panels. For each of uj
( j¼ 1, . . . , 5), the red and blue bars, respectively, correspond to uj1 and uj2. The red
and blue bars, respectively, correspond to β1 and β2 for β. The first hundred rounds

were discarded as the burn-in period (i.e., the size of the burn-in period is 100).

Thinning was not carried out in this example, and all the values after the burn-in

period were adopted to construct the distributions.

Among the five genetic markers, the 10th genetic marker (G10) has the differ-

ence between the effects of the two genotypes against the target quantitative trait.

All the genetic markers except for G10 have variances equal to zero or less than a

sufficiently small number. Their effects of the genotypes (uj) also have similar

characteristics. Thus, the genetic markers with such small effects can be excluded

from the linear model, matching the expectation initially made for the dataset in

Fig. 3.1.

If we exclude the genetic markers with small variance (σ2j ) and coefficients (uj)

other than the 10th genetic marker (σ21 ¼ 0.04) from the model, we have:

y ¼ X
β0
β1
β2

0
@

1
Aþ Z10

u11
u12

� �
þ e: ð3:97Þ

Using the values obtained by the Gibbs sampling (Fig. 3.2), we have:

y ¼ X
0:59
0:25
�0:03

0
@

1
Aþ Z10

0:19
�0:31

� �
þ e: ð3:98Þ

If a sample has the genotype encoded as 1 (gray color in Fig. 3.1) in the design

matrix at the 10th genetic marker, the value by the model is 0.59 + 0.19 ¼ 0.78. On

the other hand, if a sample has the genotype encoded as 0 in the design matrix at the

10th genetic marker, the value by the model is 0.59�0.31¼ 0.28. The contributions

of the environmental factors, E1 and E2, are, respectively, 0.25 and �0.03 and

cause a difference in the trait value of 0.25 + 0.03¼ 0.28, meaning that the samples

in E1 have a gain of 0.28 relative to E2. Using the model obtained, we can predict

the trait value of a sample.

3.8 Summary and Conclusions

A typical framework of GS requires prediction of the trait values of the samples to

determine the candidates for the selected individuals. Finding the genetic markers

associated with a target trait might not be sufficient for GS, even if the genetic
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markers are distributed in a genome-wide manner. Therefore, deriving the predic-

tion model of the target trait is an essential part of GS, since it enables the selection

to be based on the predicted trait values. Once such a prediction model is

established, the samples with the identical genetic characteristics can be evaluated

even if they do not have the trait values observed. When, however, the number of

genetic markers is excessive relative to the number of the samples, or the number of

the samples is not sufficient for the number of the genetic markers, several assump-

tions for the estimation of the model parameters—e.g., the genetic markers are

independent of each other—break and the prediction model will be distorted.

Linkage disequilibrium (LD) actually appears among the genetic markers in a

dataset with a small number of samples. Although it is not clear that such depen-

dence among the genetic markers reflects the true biological or genetic mecha-

nisms, the number of the genetic markers sharing the same or a similar genotype

pattern increases at least in those small datasets, detracting from the prediction

ability. The problems related to overfitting must also be taken into account to assure

the generalization ability. The accuracy in the prediction of the hidden trait values

of the samples that are independent from the model construction can be evaluated

by methods such as the cross-validation test and the bootstrapping test. Although it

will be necessary to carry out further inspection of the prediction model for

practical use, the strategy based on the linear mixed models and the Bayesian

estimation will be useful as a fundamental step in the prediction of trait values of

samples based on their genetic and environmental factors.
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Chapter 4

Bayesian Genomic-Enabled Prediction Models

for Ordinal and Count Data

Osval A. Montesinos-López, Abelardo Montesinos-López, and José Crossa

4.1 Introduction

Animal and plant breeding have been revolutionized by genomic-enabled predic-

tion models. This tool is powerful for predicting the genomic merit of animals and

plants based on high-density single nucleotide polymorphism (SNP) marker panels,

and it has been implemented for genomic prediction for the predisposition to some

diseases in human health (Yang and Tempelman 2012). However, most existing

genomic-enabled prediction models assume normality (in the phenotype and error),

linearity in the model parameters, and a constant variance. To translate these

models for a non-Gaussian context is a complex task because integrating over the

random effects is intractable (McCulloch and Searle 2001). For this reason,

researchers normally approach non-Gaussian phenotypes in three ways: (a) they

assume normality in the phenotypes, (b) they approximate to normality the

non-normal response transforming the phenotype, or (c) they model the appropriate

distribution of the phenotype using generalized linear mixed models (GLMMs)

(Stroup 2015).

The first approach is justified for large sample sizes by the central limit theorem.

However, empirical and simulation studies have shown that this first approach

produces highly biased results for small and moderate sample sizes (Stroup 2012,
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2015). Transformations originally were proposed for variance stabilization of

non-normal data to obtain a homogeneous variance (Bartlett 1947); this approach

is still popular in many agricultural disciplines. The transformed phenotypes are

assumed normally distributed variables and are implemented with the traditional

linear model. However, often these remedial measures produce a great loss of

accuracy and power (Stroup 2015), mostly in small sample sizes.

GLMMs unify models characterized as being linear on the systematic compo-

nent (model predictors). For this reason, they are appropriate for normal and

non-normal data with heterogeneous variance and even correlated observations

(Nelder and Wedderburn 1972). GLMMs are very popular in many areas (finance,

healthcare, biostatistics, etc.) but, to date, still underutilized in the agricultural

research community. Empirical and simulation studies on small sample investiga-

tions show that GLMMs produce more accuracy and power than approaches (a) and

(b) previously described. Also, for implementing GLMMs there are textbooks and

software available, although implementation of approaches (a) and (b) are the

dominant approaches in agricultural research (Stroup 2015). The use of GLMMs

in genomic-enabled prediction is new because their implementation is not straight-

forward given that the number of observations usually is smaller than the number of

covariates. In addition, the joint involvement of biological processes and pathways

complex dependence structures are observed among markers and lines.

In the pre-genomic era, the use of models for non-normal data is not new. Wright

(1934) developed the threshold concept to map a normally distributed underlying

variable to the observed categorical phenotypes, and the ordinal categorical phe-

notype is assumed to be the visible expression of an underlying continuous variable

(de Maturana et al. 2009). Gianola (1980, 1982) and Gianola and Foulley (1983)

proposed a probit (threshold) model for ordinal categorical traits in animal breeding

and Gonzalez-Recio, Forni (González-Recio and Forni 2011) and Villanueva et al.

(2011) for binary trials. Authors Wang et al. (2013) and Montesinos-López et al.

(2015a) extended to threshold model for more than two ordinal categories to deal

with p� n in the genomic era. Also, de los Campos and Perez-Rodriguez (2013)

developed the BGLR package for genomic-enabled prediction for normal, binary,

ordinal, and censored data. A log transformation is often used for counts to satisfy

normality rather than being modeled on the basis of a count distribution. This

transformation for count data is inefficient when there are zeros as observations,

because with only one observation with zero, the entire data set needs to be shifted

by adding an arbitrary value (usually 1) before transformation. Also, many times

this transformation performs poorly, except when dispersion is small and mean

counts are large (O’Hara and Kotze 2010). Next we present a review of the existing

methods for genome-enabled prediction models for ordinal and count data that give

a better idea of the need to develop this type of models.

Kizilkaya et al. (2014), in their paper titled “Reduction in accuracy of genomic

prediction for ordered categorical data compared to continuous observations,”

pointed out that methods used to analyze continuously distributed traits are not

optimal for analyzing categorical traits; therefore, it is important to develop appro-

priate methods for categorical ordinal data. Many low heritability traits have
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ordered categorical scores, such as susceptibility or resistance to a disease and

reproductive traits such as calving difficulty (Kizilkaya et al. 2014). The goal of this

study was to quantify reductions in accuracy for ordinal categorical traits relative to

continuous traits (Kizilkaya et al. 2014).

For the above reasons, Kizilkaya et al. (2011) used a BayesC threshold model to

analyze the ordinal categorical trait infectious bovine keratoconjunctivitis in Angus

beef cattle. The same model was used for the genome-wide association analysis of

pregnancy in Brangus heifers and first service conception (González-Recio and

Forni 2011) and for insect bite hypersensitivity (Schurink et al. 2012).

Kizilkaya et al. (2014) show that genome-wide analysis of ordinal categorical data

produced substantially lower accuracy of genomic expected breeding values (GEBV)

than the analysis of a continuous phenotype. Kizilkaya et al. (2014) also found that a

2.25 larger training population size for ordinal categorical phenotypes analyzed using

a threshold model is required to achieve an accuracy equal to or greater than that for

continuous phenotypes for a training population size of 1000 animals. However,

using a linear model (assuming normality), a more than 2.25-fold increase in the size

of the training population would be required to achieve the same accuracy as a

continuous trait with 1000 observations for analyzing an ordinal categorical pheno-

type. They also found that GEBV accuracy increased significantly when the training

population size and heritability increased for the threshold model and for all number

of categories in the ordinal categorical data (Kizilkaya et al. 2014).

Kizilkaya et al. (2014) also concluded that when analyzing categorical data, the

threshold model had higher accuracies than the linear model (which assumes

normality in the phenotype). The research of Varona et al. (1999) also reached

similar conclusions when comparing linear and threshold models in conventional

pedigree-based evaluations (EBV) using simulated data sets for calving difficulty.

A study of Ramirez-Valverde et al. (2001) also supports this finding; they compared

EBV accuracy of threshold animal, threshold sire-maternal grandsire, linear animal,

and linear sire-maternal grandsire models for calving difficulty in beef cattle and

determined that EBV accuracy of the threshold model was 10% higher than EBV

accuracy of the linear model for animal and sire-maternal grandsire models. Casella

et al. (2007) analyzed litter size using linear and threshold models and found better

goodness of fit and predictive ability for EBV in a threshold model than in a linear

model (Kizilkaya et al. 2014). These results are in agreement with those reported by

Villanueva et al. (2011), who developed a version of the BayesB method for

dichotomous traits and concluded that the threshold BayesB method improves

prediction accuracy when dealing with disease-resistant dichotomous phenotypes,

compared with accuracies obtained with the linear model. The threshold model

showed an increase in accuracy of up to 16%, as well as significant advantages

when heritability and disease prevalence were low and individuals were genotyped

but not measured (testing set).

Kizilkaya et al. (2014) concluded that bias in predictions is reduced in the

threshold model when heritability and training population size increase. Although

this bias is considerable, it is worse when the data are categorical ordinal but

analyzed as if they were continuous using a linear model. Kizilkaya et al. (2014)
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also point out that linear model analyses perform as well as threshold model

analyses when the number of categories is large. However, when training

populations are small, the accuracies of GEBV for ordinal categorical phenotypes

analyzed by the threshold model are higher than those analyzed with a linear model

applied to the ordinal data.

On the other hand, Wang et al. (2013) showed that Bayesian threshold methods

(BayesTA, BayesTB, and BayesTCπ) performed better than the corresponding

normal Bayesian methods (BayesA, BayesB, and BayesCπ) in all cases (with

20, 50, 200, and 500 QTL), except in the case of 20 QTL, where BayesB, BayesCπ,
BayesTB, and BayesTCπ gave almost the same accuracies. Wang et al. (2013) also

found that BayesTB, BayesTCπ, BayesB, and BayesCπ were sensitive to the

number of QTL, and their accuracies decreased rapidly when the number of

simulated QTL increased from 20 to 200. In contrast, BayesTA and BayesA

accuracies did not change (were not sensitive) to the number of simulated QTL.

Wang et al. (2013) also found that when the incidence of the binary trait

decreased from 50% to 5%, the accuracies of GEBV decreased consistently. But

the three Bayesian threshold methods (BayesTA, BayesTB, and BayesTCπ)
performed better than the corresponding normal Bayesian methods in all cases.

BayesTB and BayesTCπ produced similar accuracies, and their advantage over

BayesB and BayesCπ increased as incidence decreased. Wang et al. (2013) also

found that as the number of phenotypic categories increased, the accuracies of

GEBV for all the Bayesian methods increased, but the superiority of the three

BayesT methods over the corresponding normal Bayesian methods decreased as the

number of categories increased, and with eight or more categories, the three BayesT

methods completely lost their advantage. BayesA was the most sensitive of all

methods to the number of categories, while BayesTA was not sensitive to the

number of categories.

Wang et al. (2013) found that the accuracies in generation 2 improved by 30.4%,

2.4%, and 5.7% for BayesTA, BayesTB, and BayesTCπ, respectively, when the

number of categories ¼ 2, incidence ¼ 0.3, number of QTL ¼ 50, and heritabil-

ity ¼ 0.3. They also concluded that the performance of the methods (threshold and

normal) significantly is affected by the genetic architecture underlying the traits

since the accuracies of all methods declined with the decrease of the heritability

when increasing the number of QTL.

The threshold model above mentioned were developed and applied in the

context of animal breeding. However, the study by Montesinos-López et al.

(2015a) titled “Threshold models for genome-enabled prediction of ordinal cate-

gorical traits in plant breeding,” was conducted, in the context of plant breeding.

Montesinos-López et al. (2015a) extended the so-called genomic best linear unbi-

ased predictor (GBLUP) model for Gaussian phenotypes to ordinal data with probit

link (TGBLUP). The main contributions of Montesinos-López et al. (2015a) are

summarized as:

(a) Real data were used, not simulated data as in Wang et al. (2013) and Kizilkaya

et al. (2014).
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(b) They take into account genotype � environment interaction (G � E)

interaction.

(c) They provide a very clear description of the threshold model and provides R

code for its implementation.

(d) They provide an alternative metric (Brier score) for assessing prediction accu-

racy for categorical ordinal outcomes.

(e) They take into account epistatic additive � additive terms, even though this did

not help much to increase prediction accuracy.

Montesinos-López et al. (2015a) found that models that take into account G � E

have higher prediction accuracy than those that ignore the G � E term. Relative to

models based on main effects only, models that include G � E gave gains in

prediction accuracy between 9% and 14%.

Due to their connection to odds ratios and since it provides regression coeffi-

cients that are more interpretable, the ordinal logistic regression model is often

preferred over the ordinal probit model in statistical applications (Zucknick and

Richardson 2014). However, only the Bayesian probit ordinal regression (BPOR)

model is frequently implemented in genomic-enabled prediction (when p � n),
given that Bayesian methods that introduce sparseness through additional priors on

the model size are very well suited to this problem. Due to the lack of a Bayesian

logistic ordinal regression (BLOR) model analogous to the BPOR model that uses a

data augmentation approach, Montesinos-López et al. (2015b) proposed the BLOR

with logit link, without taking into account G � E interaction. This BLOR model

was developed using the Pólya-Gamma data augmentation approach that produces

a Gibbs sampler with similar full conditional distributions as the BPOR model, with

the advantage that the BPOR model is a particular case of the BLOR model. The

authors evaluated the proposed BLOR model using three sets of data. Results from

Montesinos-López et al. (2015b) indicate that BLOR model is an alternative for

analyzing ordinal data in the context of genomic-enabled prediction with the probit

or logit link.

For count data, only two models for genomic-enabled prediction were found.

The first one was proposed by Montesinos-López et al. (2015c) titled “Genomic

prediction models for count data,” extended the GBLUP to count data (CGGLUP),

and allows modeling count data without assuming that the data are normally

approximated and without using transformation, which many times produces esti-

mations and predictions outside of nonnegativity, which makes no sense for count

data. However, this model does not take into account G � E interaction. For this

reason, Montesinos-López et al. (2016) extended this model to incorporate G � E

interaction. They found that the Bayesian negative binomial regression (BNBR)

model with G � E improved prediction accuracy compared to the normal model

and to a normal model that uses log-transformed responses.

For both models (BLOR and BNBR), there are Bayesian implementations that

estimate the posterior distribution of the required parameters via the Markov chain

Monte Carlo (MCMC) algorithm with Gibbs sampling; however, full conditionals
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for the above models do not have analytic solutions. Therefore, this approach is not

useful for large data sets that are commonly used in genomic selection.

For the above reasons, in this chapter, we provide an extension of the BLOR

taking into account G � E interaction for ordinal categorical phenotypes; we also

provide details of the derivation and implementation of the BNBR model for count

data proposed by Montesinos-Lopez et al. (Montesinos-López et al. 2016) that

include the G � E term. The full conditionals of the parameters required in both

models were obtained analytically using the Pólya-Gamma augmentation approach

(Polson et al. 2013) that allows the implementation of an efficient Gibbs sampler for

the BLOR and BNBR models with G � E. These models could be very useful for

genomic-enabled prediction in plant breeding because they take into account G� E

interaction and are powerful enough to deal with large numbers of covariates and

small numbers of observations. We illustrate our proposed method with simulation

and a real data set.

4.2 Materials and Methods

4.2.1 Data Sets

4.2.1.1 Gray Leaf Spot and Septoria Data Sets

Gray leaf spot (GLS), caused by Cercospora zeae-maydis, is a foliar disease of

global importance in maize production. The disease was evaluated using an ordinal

scale [1 (no disease), 2 (low infection), 3 (moderate infection), 4 (high infection),

5 (complete infection)] in three environments (Mexico, Harare, and Colombia). Of

the 278 maize lines evaluated, only 240 were the same in the three environments.

For this reason, we used only the 240 lines to illustrate our methods with real data.

The use of a Poisson random variable for analyzing ordered categorical responses is

not new; for example, Vazquez et al. (2009) compared Poisson and threshold

models for genetic analysis of clinical mastitis in the US Holsteins. These data

are part of a data set that was previously analyzed (Crossa et al. 2011; González-

Camacho et al. 2012) under the assumption of normality and using a threshold

model for ordinal data (Montesinos-López et al. 2015a; Montesinos-López et al.

2015b). Genotypes of all 240 lines used were obtained using the 55 k single

nucleotide polymorphism (SNP) Illumina platform. SNPs with >10% missing

values or a minor allele frequency of �0.05 were excluded from the data. After

line-specific quality control (applying the same quality control to each line sepa-

rately), the maize data still contained 46,347 SNPs, which were used in the analysis.
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4.2.1.2 Fusarium Head Blight Data

From a total of 297 spring wheat lines from CIMMYT evaluated for resistance to

Fusarium head blight (FHB), 182 were used for implementing the models for count

data because only for these lines had complete marker information. The

phenotyping was measured in three environments (El Batan 2012, El Batan 2014,

and Ecuador 2014). In each environment the genotypes were arranged in a ran-

domized complete block design. The response variable FHB severity data were

collected shortly before maturity by counting symptomatic spikelets on ten ran-

domly selected spikes in each plot. DNA samples were genotyped using an Illumina

9 K SNP chip with 8632 SNPs (Cavanagh et al. 2013). After filtering the markers

for 0.05 minor allele frequency (MAF) and deleting markers with more than 10% of

no calls, the final set of SNPs was 1635 SNPs (Montesinos-López et al. 2016). This

data set was only used for the models for count data.

4.2.2 Statistical Models

We use yijt to represent the response for the tth replication of the jth line in the ith
environment with i¼ 1 , . . . , I ; j¼ 1 , 2 , . . . , J , t¼ 1 , 2 , . . . , nij, and we propose

the following linear predictor that takes into account G�E:

ηij ¼ Ei þ gj þ gEij ð4:1Þ

where Ei represents the environment i and is assumed fixed, gj is the marker effect

of genotype j, gEij is the interaction between genotypes and environments, I¼ 3

(Colombia, Zimbabwe, and Mexico), J¼ 240 (i.e., the number of lines under

study), and nij represent the number of replicates of each line in each environment.

The number of observations in environment i is ni ¼
X J

j¼1
nij, while the total

number of observations is n ¼
X I

i¼1
ni: Rewriting the linear predictor (Eq. 4.1) as

ηij ¼ xTi βþ b1j þ b2ij ð4:2Þ

with xTi ¼ ½xi1, xi2, xi3�, where xi1 , xi2, and xi3 are indicator variables that take the
value of 1 if the observed environment i is 1, 2, or 3, respectively, and 0 other-

wise, βT¼ [β1, β2,, β3,] because three is the number of environments under study,

xTi β ¼ Ei, b1j¼ gj and b2ij¼ gEij. Three models are proposed using the linear

predictor given in Eqs. (4.1) and (4.2).

Model BLOR In thismodel, the linear predictor is ηij(c)¼ γc� ηij, where ηij(c) denotes
the cth link (c¼ 1 , 2 , . . . ,C� 1) for the fixed and randomeffects combination, γc is the
threshold(intercept) for thecth link,andηij isexactlyasdefinedinEq.(4.2).Distributions:

yijt(1) , yijt(2) , . . . ,yijt(C)|ηij~Multinomial(1 ,πij(1) ,πij(2) , . . . ,πij(C)). b1 ¼ ðb11, . . . ,b1JÞT
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� Nð0,G1σ2b1Þ, b2i¼ (b2i1, . . . ,b2iJ)
T, b2 ¼ ðbT

21, . . . ,b
T
2IÞT �Nð0,G2σ2b2Þ. Link func-

tion: cumulative logit { ηij cð Þ ¼ log
πij cð Þ

1�πij cð Þ

� �
, c¼ 1 , 2 , . . . ,C� 1)}, since there are

C categories, a total of C� 1 link functions are required to fully specify the model.G1

and G2 were assumed known, withG1 computed from markerW data (form¼ 1, . . . ,

qmarkers) as G1 ¼ WWT

q ; this matrix is called the genomic relationship matrix (GRM)

(VanRaden 2008). The G1 matrix is a covariance matrix that contains the similarity

between individuals based on marker information, rather than on expected similarity

basedonpedigree, thatcanhelp to improvepredictionaccuracy.WhileG2 iscomputedas

G2¼ II
N

G1 of order IJxIJ and
N

denotes the Kronecker product, II means that we

assume independence between environments (Montesinos-López et al. 2016).

Model BNBR Linear predictor as given in Eq. (4.1). Distributions: yijt|ηij~NB(μij , r),
NB stands for negative binomial distribution with r being the dispersion parameter

(shape parameter), μij¼E(yijt|ηij)¼ exp(ηij). Note that the BNBR has expected value

μij ¼ rπij
1�πijð Þ and variance

rπij

1� πij
� �2 ¼ μij þ

μ2ij
r
, with the variance greater than the

mean (Montesinos-López et al. 2016).

Model Pois Everything is the same as inmodel BNBR, except that yijt|ηij~Poisson
(μij). Since according to Zhou et al. (2012) and Teerapabolarn and Jaioun (2014),

the lim
r!1NB μij; r

� � ¼ Pois μij
� �

, model Pois was implemented using the same

method as model BNBR, but fixing r to a large value, depending on the mean

count. We used r¼ 1000, which is reasonable when the mean count is less than

50 (see Fig. 4.1). However, for mean counts between 50 and 200, we suggest using

r¼ 5000, and for counts larger than 200, we suggest a value of r¼ 10000 or larger.

Figure 4.1 supports these suggestions where we plot the mean and variance of
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Fig. 4.1 Plot of the mean

count versus the variance of

NB distribution as a function

of the scale parameter (r).
Good approximations are

obtained when the mean and

variance are very similar; in

the plot, they should follow

the diagonal that plots μ¼ σ2

(Extracted from

Montesinos-López et al.

2016)
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model BNBR as a function of the scale parameter r, with three values of r (1000,
5000, 10,000). Acceptable approximations to the model Pois with the model

BNBR occur when the mean and variance are very similar. For this reason, good

approximations are those that follow the diagonal in Fig. 4.1, where μ¼ σ2. The
mean count and variances are very similar for mean counts of less than 50 with

r¼ 1000; however, when the mean count is larger than 50 and less than 200, we

should use r¼ 5000, and for counts greater than 200, we suggest using a value of

r¼ 10,000 or larger. In our applications with simulated and real data, the mean

count is less than 50; for this reason, we used a value of r¼ 1000. Next, we provide

details of the derivation of the full conditional distribution for each model

(Montesinos-López et al. 2016).

4.2.2.1 Bayesian Logistic Ordinal Regression (BLOR)

Let yij ¼ yij1; . . . ; yijnij

h iT
, yi ¼ yT

i1; . . . ; y
T
iJ

� �T
, and y ¼ yT

1 ; . . . ; y
T
I

� �T
; in this

model, the response variable yijt represents an assignment into one of C mutually

exclusive and exhaustive categories that follow an order. Therefore, the ordinal

logistic regression model can be written in terms of a latent response variable lijt as

lijt ¼ xTi βþ b1j þ b2ijþεijt ð4:3Þ

where lijt are called “liabilities,” εijt ~ L(0, 1), where L(.) denotes the logistic distri-
bution, and the remaining terms are as defined in Eq. (4.2). Since lijt are

unobservable and can be measured indirectly by an observable ordinal variable

yijt, then yijt can be defined by

yijt ¼
1 if �1 < lijt < γ1,
2 if γ1 < lijt < γ2,

⋮
C if γC�1 < lijt < 1

8>><>>:
This means that lijt is divided by thresholds into C intervals, corresponding to

C ordered categories. The first threshold, γ1, defines the upper bound of the interval

corresponding to observed outcome 1. Similarly, threshold γC� 1 defines the lower

bound of the interval corresponding to observed outcome C. Threshold γc defines the
boundary between the interval corresponding to observed outcomes c� 1 and c for
(c¼1,2,.., C -1). Threshold parameters are γT¼ (γmin< γ1< � � � < γC� 1< γmax) with
γmin¼ �1 and γmax¼ 1 .

Because that the error term εijt of the latent response lijt is distributed as L(0, 1),
the cumulative response probability for the c category of the ordinal outcome yijt is
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Pðyijt � cjβ,b1,b2Þ¼ πijðcÞ ¼Pðlijt � γcjβ,b1,b2Þ¼ PðxTi βþb1jþb2ijþ εijt � γcÞ
¼ Pðεijt � γc � xTi β� b1j � b2ijÞ, for c ¼ 1, 2, . . . ,C� 1:

¼ expðγc � xTi β� b1j � b2ijÞ
1þ expðγc � xTi β� b1j � b2ijÞ ð4:4Þ

Similarly, Eq. (4.4) can be written as a cumulative logit model:

log
πijðcÞ

1� πijðcÞ
Þ ¼ γc � xTi β� b1j � b2ij, for c ¼ 1, 2, . . . ,C� 1:

�
Using the inverse link for this model, P(yijt¼ c|β, b1, b2)¼ πij(c) can be calculated

as follows:

πijðcÞ ¼ Pðγc�1 < lijt < γcÞ

¼ expðγc � xTi β� b1j � b2ijÞ
1þ expðγc � xTi β� b1j � b2ijÞ �

expðγc�1 � xTi β� b1j � b2ijÞ
1þ expðγc�1 � xTi β� b1j � b2ijÞ :

Since we have latent variables lijt distributed as L xT
i βþ b1j þ b2ij; 1

� �
and we

observe yijt¼ c if, and only if, γc� 1< lijt< γc, then the joint posterior density of the
parameter vector and latent variable becomes

f ðβ, γ, b1, b2, σ2β, σ2b1 , σ2b2 ljyÞ / f ðyjl, γÞf ðθTÞ

where f ðθTÞ ¼ f ðljβ, b1, b2Þf ðγÞf
 
βjσ2β

!
f ðb1jσ2b1Þf ðb2jσ2b2Þf ðσ2βÞf ðσ2b1Þf ðσ2b2Þ: Then

assuming a scaled independent inverse chi-square χ�2(νh, Sh) prior for σ2bh for

h¼ 1 , 2, a normal prior distribution for f

 
βjσ2β

!
� Nðβ0,Σ0σ2βÞ, a normal prior

distribution for f ðb1jσ2b1Þ � NJð0,G1σ2b1Þ, a normal prior distribution for

f ðb2jσ2b2Þ � NIJð0,G2σ2b2Þ, and also a χ�2(νβ, Sβ) prior was given for σ2β (Gianola

2013). Following Sorensen et al. (1995), a prior for the C� 1 unknown thresholds

has been given as order statistics from U(γmin, γmax) distribution,

P γð Þ ¼ C� 1ð Þ! 1

γmax � γmin

� 	C�1

I γ2Tð Þ

where T¼ {(γ1, . . . , γmax)|γmin< γ1< � � � < γC� 1< γmax}.
The full conditional posterior distributions are provided below and in Appendix

A are all details of these derivations.
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4.2.2.2 Liabilities and ωijt

The fully conditional posterior distribution of liability lijt is a truncated normal

distribution and its density is

f ðlijtjELSEÞ

¼
ϕ
� ffiffiffiffiffiffiffi

ωijt
p ðlijt � xTi β� b1j � b2ijÞ

�
Φð ffiffiffiffiffiffiffi

ωijt
p ðγc � xTi β� b1j � b2ijÞÞ �Φ

� ffiffiffiffiffiffiffi
ωijt

p ðγc�1 � xTi β� b1j � b2ijÞ
�
ð4:5Þ

For simplicity, ELSE is the data and the parameters, except for the one in

question. ϕ and Φ are the density and distribution function of a standard normal

random variable, and the full conditional posterior distribution of ωijt is

f ðωijtjELSEÞ � PGð2, � lijt þ xTi βþ b1j þ b2ijÞ ð4:6Þ

where PG stands for the Pólya-Gamma distribution.

4.2.2.3 Regression Coefficients (β)

The full conditional posterior of β is

f
�
β ELSE

��� � Np

�
~β0; ~Σ0

� ð4:7Þ

where ~Σ 0 ¼ ðΣ�1
0 σ�2

β þ XTDωXÞ�1
, and ~β 0 ¼ ~Σ 0ðΣ�1

0 σ�2
β β0 � XTDω

P2
h¼1

Zhbhþ

XTDωlÞ. With l ¼ lT1 ; . . . ; l
T
I

� �T
, li ¼ lTi1; . . . ; l

T
iJ

� �T
, lij ¼ lij1; . . . ; lijnij

h iT
,

Xij ¼ 1T
nij

O
xi

h iT
, Xi ¼ XT

i1; . . . ;X
T
iJ

� �T
, X ¼ XT

1 ; . . . ;X
T
I

� �T
,

Dωij ¼ diag ωij1; . . . ;ωijnij

� �
, Dωi¼ diag(Dωi1, . . . ,DωiJ), Dω¼ diag(Dω1, . . . ,DωI),

b1¼ [b11, . . . ,b1J]
T, b2i¼ [b2i1, . . . ,b2iJ]

T, b2 ¼ bT
21; . . . ; b

T
2I

� �T
, Z1i ¼

1n1i1 0

0 1n1i2

� � �
� � �

0

0
⋮ ⋮ ⋱ ⋮
0 0 � � � 1n1iJ

2664
3775,Z1 ¼ ZT

11; . . . ;Z
T
1I

� �T
, andZ2¼Z1

∗~X, where∗~indi-

cates the horizontal Kronecker product between Z1 and X. The horizontal Kronecker
product performs aKronecker product ofZ1 andX and creates a newmatrix by stacking

these row vectors into a matrix. Z1 andXmust have the same number of rows, which is

also the same number of rows in the resulting matrix. The number of columns in the

resulting matrix is equal to the product of the number of columns in Z1 and X. It is
important to point out that if we use a prior for β/Constant (improper uniform

distribution), then in ~Σ 0 and ~β 0 we need to make 0 the term Σ�1
0 σ�2

β .
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4.2.2.4 Polygenic Effects (bh)

The full conditional distribution of bh with h¼ 1 , 2, is given as

f ðbhjELSEÞ � N
�
b
�
h ¼ FhðZT

h Dωl� ZT
h Dωη

hÞ,Fh

¼ ðσ�2
bh
G�1

h þ ZT
h DωZ

T
h Þ�1

�
ð4:8Þ

with η1¼Xβ+Z2b2 and η2¼Xβ+Z1b1.

4.2.2.5 Variance of Polygenic Effects ðσ2bhÞ

Next, the full conditional posterior of σ2bh is

f ðσ2bh jELSEÞ � χ�2
�
ν
�
h ¼ νh þ nbh , S

�
b ¼ ðbT

h G
�1
h bh þ νhShÞ=νb þ nbhÞ ð4:9Þ

with nb1 ¼ J and nb2 ¼ IJ.

4.2.2.6 Threshold Effects (γc)

The density of the full conditional posterior distribution of the cth threshold, γc, is

f ðγcjELSEÞ
¼ 1

minfminðlijtjyijt ¼ cþ1Þ,γcþ1,γmaxg �maxfmaxðlijtjyijt ¼ cÞ,γc�1,γming
ð4:10Þ

4.2.2.7 Variance of Regression Coefficients

The full conditional posterior of σ2β is

f σ2βjELSE
� �

� χ�2 ~νβ ¼ νβ þ p; ~Sβ ¼ β� β0ð ÞTΣ�1
0 β� β0ð Þ þ νβSβ

h i
=νβ þ p

� �
ð4:11Þ
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4.2.2.8 The Gibbs Sampler for model BLOR

The Gibbs sampler is implemented by sampling repeatedly from the following

loop:

Step 1. Sample liabilities (lijt) from the truncated normal distribution in (4.5).

Step 2. Sample ωijt values from the Pólya-Gamma distribution in (4.6).

Step 3. Sample the regression coefficients (β) from the normal distribution in (4.7).

Step 4. Sample the polygenic effects (bh) for h¼ 1 , 2, from the normal distribution

in (4.8).

Step 5. Sample the variance effect (σ2bhÞ for h¼ 1 , 2,from the scaled inverted χ2

distribution in (4.9).

Step 6. Sample the thresholds (γc) from the uniform distribution in (4.10).

Step 7. Sample the variance of regression coefficients (σ2βÞ from the scaled inverted

χ2 distribution in (4.11).

Step 8. Return to step 1 or terminate if chain length is adequate to meet convergence

diagnostics.

Ignoring the polygenic effects (bh), the Gibbs sampler given above can be used

only by deleting steps 4 and 5. If all marker effects are considered fixed effects and

included in the design matrix, X, with a priorβ � Npð0, Ipσ2βÞ for the beta regression
coefficients, we end up with a threshold Bayesian ridge regression. This is the ridge

estimator of Hoerl and Kennard (1970) for ordinal categorical data, since the

posterior expectation of β is equal to E βj ELSEð Þ ¼ XTDωXþ Ipσ
�2
β

� ��1

XTDωl

with pseudo-response l. Also, note that setting each ωijt¼ 1, the Gibbs sampler

given above for the BLOR with the logistic link is reduced to the Gibbs sampler

with the probit for the BPOR link proposed by Albert and Chib (1993). Therefore,

our proposed BLOR model is more general and includes the Gibbs sampler for the

BPOR model as a particular case as implemented in BGLR package.

4.2.3 Bayesian Mixed Negative Binomial Regression

Note that under the model BNBR, because μij¼E(yijt|ηij)¼ exp(ηij), conditionally
on b1j and b2ij, the probability that the random variable Yijt takes the value yijt is
equal to

Pr Yijt ¼ yijt ηij
��� �

¼ yijt þ r � 1

yijt

� 	
1� μij

r þ μij

 !r
μij

r þ μij

 !yijt

for yijt

¼ 0, 1, 2, . . .

4 Bayesian Genomic-Enabled Prediction Models for Ordinal and Count Data 67



¼
Γ yijt þ r
� �
yijt!Γ rð Þ

exp η∗ij

� �h iyijt
1þ exp η∗ij

� �h iyijtþr , yijt ¼ 0, 1, 2, . . . ð4:12Þ

We arrive at Eq. (4.12) because we make
μij

rþμij
¼rμij

r rþμij
� �¼ μij=r

1þμij=r
¼ exp ηij

� �
exp �log rð Þð Þ

1þexp ηij
� �

exp �log rð Þð Þ¼
exp ηij�log rð Þ� �

1þexp ηij�log rð Þ� �¼ exp η∗ij

� �
1þexp η∗ij

� �,
with η∗ij ¼xT

i β
∗þb1jþb2ij,β

∗¼ β∗1 ;β
∗
2 ;β

∗
3

� �
and β∗i ¼βi�log rð Þ. Therefore, in

Eq. (4.12) we have the connection between the probability distribution of the response

(Yijt) induced by the assumed relation between the linear predictor (ηij) and the expected
value of Yijt (μij) undermodel BNBR. Then we can rewrite the Pr(Yijt¼yijt|ηij) given in
Eq. (4.12) as

Γ yijt þ r
� �
yijt!Γ rð Þ 2�yijt�rexp

yijt � r

2
η∗ij

� � ð1
0

exp �
ωijt η∗ij

� �2
2

264
375f ωijt,yijt þ r; 0
� �

dωijt

ð4:13Þ

Expression (4.13) was obtained using the following equality given by Polson

et al. (2013):
eψð Þa

1þ eψð Þb ¼ 2�beκψ
ð1
0

e�
ωijtψ

2

2 f ωijt; b; 0
� �

dωijt, where κ¼ a� b/2 and

f(., b, 0) denotes the density of the Pólya-Gamma distribution (ωijt) with parameters

b and c¼ 0 (PG(b, c¼ 0)) (see Definition 1 in Polson et al. 2013). From here,

conditioning on ωijt ~PG(yijt + r, c¼ 0), we have that

Pr Yijt ¼ yijt ηij
�� ;ωijt

� �
¼

Γ yijt þ r
� �
yijt!Γ rð Þ 2�yijt�rexp

yijt � r

2
η∗ij

� �
exp �ωijt η∗ij

� �2
=2

� 
ð4:14Þ

To be able to get the full conditional distributions, here we provide the prior

distributions, f(θ), for all the unknown model parameters β∗, σ2β∗ , b1, σ
2
b1
, b2, σ

2
b2 ,

and r. We assume the following prior between the parameters, that is,

f ðθÞ ¼ f

 
β∗jσ2β∗

!
f ðσ2β∗Þf ðb1jσ2b1Þf ðσ2b1Þf ðb2jσ22Þf ðσ2b2Þf ðrÞ

We assign conditionally conjugate but weakly informative prior distributions to

the parameters because we have no prior information. The prior specification in

terms of β∗ instead of β is for convenience. We adopt proper priors with known
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hyper-parameters whose values we specify in model implementation to guarantee

proper posteriors. We assume that f
�
β∗ σ2β∗

���� � NI β0;
X

0
σ2β

� �
, f σ2β∗
� �

� χ�2

νβ; Sβ
� �

where χ�2 νβ; Sβ
� �

denote a scaled inverse chi-square distribution with

shape νβ and scale Sβ parameters, f ðb1jσ2b1Þ � NJð0,G1σ2b1Þ,
f σ2b1
� � � χ�2 νb1; Sb1ð Þ, f

 
b2jσ2b2

!
� NIJð0,G2σ2b2Þ, f σ2b2

� � � χ�2 νb2; Sb2ð Þ, and f

(r) ~G(a0, 1/b0). Next we combine (4.14) using all data with priors to get the full

conditional distribution for parameters β∗, σ2β∗ , b1, σ
2
b1, b2, σ

2
b2 , and r.

4.2.4 Full Conditional Distributions

The full conditional distribution of β∗ is given as

f β∗jELSEð Þ � N
�
~β0; ~Σ0

� ð4:15Þ

where ~Σ 0 ¼ Σ�1
0 σ�2

β þ XTDωX
� ��1

, ~β 0 ¼ ~Σ 0 Σ�1
0 σ�2

β β0 � XTDω

X2
h¼1

Zhbhþ
 

XTκÞ, κij ¼ 1
2
yij1 � r; . . . ; yijnij � r
h iT

, κi ¼ κT
i1; . . . ; κ

T
iJ

� �T
, and κ ¼ κT

1 ; . . .
�

; κT
I �T ,

where X , Zh andDω are defined exactly as inModel BLOR. When the prior for β∗

/constant, the posterior distribution of β∗ is also normally distributedN
�
~β0; ~Σ0

�
, but

we set the termΣ�1
0 σ�2

β to zero in both~Σ 0 and~β . InAppendixB are given in details the

derivations of the full conditional distributions for the BNBR model.

The full conditional distribution of ωijt is

f

 
ωijtjELSE

!
� PGðyijt þ r,xTi β

∗ þ b1j þ b2ijÞ ð4:16Þ

The full conditional distribution of bh, with h¼ 1 , 2, is given as

f bhjELSEð Þ � N
�
~bh; Fh

� ð4:17Þ

If η1¼X β∗+Z2b2, then F1 ¼ σ�2
b1
G�1

1 þ ZT
1 DωZ1

� ��1

, ~b 1 ¼
F1 ZT

1 κ� ZT
1 Dωη1

� �
, and then b1 j ELSE � N

�
~b1; F1

�
. By defining η2¼X β∗

+Z1b1 in a similar way, we arrive at the full conditional of b2 as

b2 j ELSE � N
�
~b2; F2

�
, where F2 ¼ σ�2

b2
G�1

2 þ ZT
2 DωZ2

� ��1

, bb 2 ¼ F2 ZT
2 κ�

�
ZT

2 Dωη2Þ.
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The full conditional distribution of σ2bh is

f σ2bh jELSE
� �

� χ�2 ~νb ¼ νbh þ nbh ; ~Sb ¼ bT
h G

�1
h bh þ νbhSbh

� �
=νbh þ nbh

� �
ð4:18Þ

The conditional distribution of σ2β∗ is

f ðσ2β∗ jELSEÞ
� χ�2

�
ν
�
β∗

¼ νβ∗ þ I, S
�
β

¼ ½ðβ∗ � β0ÞTΣ�1
0 ðβ∗ � β0Þ þ νβ∗Sβ∗ �=νβ∗ þ IÞ ð4:19Þ

Taking advantage of the fact that the NB distribution can also be generated using

a Poisson representation as pointed out by Quenouille (1949) as Y ¼
XL

l¼1
ul,

where ul � Log πð Þ and is independent of L ~Pois(�r log(1� π)), where Log and

Pois denote logarithmic and Poisson distributions, respectively. Then we infer a

latent count L for each Y�NB(μ, r) conditional on Y and r. Therefore, following
Zhou et al. (2012), we obtain the full conditional of r by alternating

f rjELSEð Þ � G a0 �
XI
i¼1

XJ
j¼1

Xnij

t¼1
log 1� πij
� �

;
1

b0 þ
P I

i¼1

P J
j¼1

Pnij
t¼1 Lijt

 !
ð4:20Þ

f LijtjELSE
� � � CRT yijt; r

� �
ð4:21Þ

where CRT(yijt, r) denotes a Chinese restaurant table (CRT) random count variable that

can be generated as Lijt ¼ Σ
yijt
l¼1dl, where dl � Bernoulli

r

l� 1þ r

� 	
and πij ¼

exp η∗ijð Þ
1þexp η∗

ijð Þ.

4.2.5 Gibbs Sampler for Model BNBR

The Gibbs sampler for the latent parameters of model BNBR with G�E can be

implemented by sampling repeatedly from the following loop:

Step 1. Sample ωijt values from the Pólya-Gamma distribution in (4.16).

Step 2. Sample Lijt ~CRT(yijt, r) from (4.21)

Step 3. Sample the scale parameter (r) from the gamma distribution in (4.20).

Step 4. Sample the location effects ( β∗) from the normal distribution in (4.15).
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Step 5. Sample the random effects (bh) with h¼ 1 , 2, from the normal distribution

in (4.17).

Step 6. Sample the variance effect (σ2bhÞ with h¼ 1 , 2, from the scaled inverted χ2

distribution in (4.18).

Step 7. Sample the variance effect (σ2β∗Þ from the scaled inverted χ2 distribution in

(4.19).

Step 8. Return to step 1 or terminate when chain length is adequate to meet

convergence diagnostics.

4.2.5.1 Simulation Examples

We performed a simulation study under linear predictor (Equation 4.1) with two

scenarios (S1 and S2) to show the performance of the proposed Gibbs sampler for

ordinal categorical and count phenotypes that takes into account G�E. Scenario
1 has three environments (I¼ 3), 20 genotypes (J¼ 20), G1¼ I20, G2¼ I3

N
G1,

and σ2b1 ¼ σ2b2 ¼ 0:5, with four different numbers of replicates of each genotype in

each environment, nij¼ 5 , 10 , 20 , and 40. Scenario 2 is equal to scenario 1, except

that G1¼ 0.7I20þ 0.3J20, where J20 is a square matrix of ones of order 20� 20; this

second scenario was done with the intention of mimicking the correlation between

lines of real data available in genomic selection. We computed 20,000 MCMC

samples. Bayes estimates were computed using 10,000 samples because the first

10,000 were discarded as burn-in, and we performed 50 replications for each

scenario in both models. Next we provide the details of the simulation under each

model.

4.2.6 Model BLOR

Under the model BLOR, we simulated data from the following liability:

lijt ¼ xTi βþ b1j þ b2ij þ εijt

since i¼ 1 , 2 , 3, j¼ 1 , . . . , 20, and t¼ 1 , . . . , nij, β
T¼ [�6, 5, 7], and the vectors

xTi ¼ ½xi1, xi2, xi3�, where xi1 , xi2 , and xi3 are indicator variables that take the value
of 1 if the observed environment i is 1, 2, or 3, respectively, and 0 otherwise. The

threshold parameters used were γ1¼-3, γ2¼ � 1, γ3¼ 1, and γ4¼ 3. The error terms

(εijt) were obtained from an L(0, 1). Then the response variable was generated as
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yij ¼
1 if �1 < lij < γ1,
2 if γ1 < lij < γ2,

⋮
5 if γ4 < lij < 1

8>><>>:
The priors used were not informative for

f
�
β σ2β

���� � N βT
0 ¼ 0; 0; 0½ �; I3 � 10000

� �
, f ðb1jσ2b1Þ � Nð0,G1σ2b1Þ, a normal prior

distribution for f ðb2jσ2b2Þ � Nð0,G2σ2b2Þ, with G1 and G2 as defined above for

scenarios 1 and 2, and for the hyper-parameters for thresholds, we used γmin¼ � 4

and γmax¼ 4. Results of this simulation study are given in Table 4.1.

4.2.7 Model BNBR

Also in this model, the priors used for both scenarios (S1 and S2) in the simulation study

were not informative for all parameters: for

f
�
β∗ σ2β∗

���� � N βT
0 ¼ 0; 0; 0½ �; I3 � 10000

� �
, for f(r) ~G(0.001,1/0.001), for σ2b1 and

σ2b2 a ~χ�2(0.50002,4.0002), while for f ðb1jσ2b1Þ � NJð0,G1σ2b1Þ and

f ðb2jσ2b2Þ � NIJð0,G2σ2b2Þ, with G1 and G2 as defined above for scenarios S1 and S2.

We report average estimates obtained by using the proposed Gibbs sampler along with

standard deviations (SD), which are given in Table 4.2.

4.2.7.1 Model Implementation

The Gibbs samplers described above (for model BLOR and model BNBR) were

implemented using the R-software (R Core Team 2015). For the implementation of

the proposed models, we used MCMC with the Gibbs sampler algorithm (Gelfand

and Smith 1990).We performed a total of 60,000 iterations, and 30,000 samples were

used for inference since 30,000 were used as burn-in. Thinning of the chains was not

applied following the suggestions of Geyer (1992), MacEachern and Berliner (1994),

and Link and Eaton (Link and Eaton 2012). For the implementation ofmodel BLOR

for the real data sets, we used the following hyper-parameters νβ¼ 3,

Sβ ¼ 0:001, βT
0 ¼ 0; 0; 0½ �,Σ0 ¼ I3 � 10000, γmin¼ � 1000, and γmax¼ 1000 for

threshold parameters; these hyper-parameters lead weakly informative priors. For

model BNBR, the priors used were f

 
β∗jσ2β∗

!
� Npðβ0 ¼ 0T

3 , I3�

10, 000Þ; f ðb1jσ2b1Þ � NJð0T
nb1,G1σ2b1Þ, whereG1 is the GRM, that is, the covariance

matrix of lines; f σ2b1
� � � χ�2 νb1 ¼ 3; Sb1 ¼ 0:001ð Þ;

f

 
b2jσ2b2

!
� NIJð0T

nb2,G2σ2b2Þ, G2 is the covariance matrix that belong to the

72 O.A. Montesinos-López et al.
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G�E term; f σ2b2
� � � χ�2 νb2 ¼ 3; Sb2 ¼ 0:001ð Þ; and f(r) ~G(a0¼ 0.01,1/

(b0¼ 0.01)). These hyper-parameters produces weakly informative priors.

4.2.7.2 Measures of Predictive Performance

Scoring Rules

Here we present the scoring rules (scoring functions) for assessing prediction

accuracy for ordinal categorical and count data. A scoring rule provides a summary

measure for evaluating probabilistic predictions by assigning a numerical score

based on the predictive distribution on the value or event that materializes

(Garthwaite et al. 2005). Assuming that with both prediction models (for ordinal

and count) we return a predictive distribution P for each observed outcome (y) in
the data set, then we can use a scoring function to give a reward of s(P, y) if the kth
event occurs. We write s(P,Q) for the expected value of s(P, .) under Q. When a

proper scoring rule is implemented, the highest expected reward is obtained by

reporting the true probability distribution (Czado et al. 2009). Proper scoring rules

always encourage the forecaster to be honest and maximize the expected reward.

Usually the mean score is reported, which can be expressed as

S ¼ 1

n

Xn
k¼1

s P kð Þ; y kð Þ
� �

,

where y(k) and P(k) denote the kth observed outcome and the kth predictive

distribution.

Proper Scoring Rules

A scoring rule is strictly proper if it is uniquely optimized by true probabilities.

Suppose that our best prediction with our model is the predictive distribution Q. Let
us assume that our prediction model has no incentive to predict any P 6¼Q and is

encouraged to quote its true belief, P¼Q, if

s Q;Qð Þ � s P;Qð Þ,

with equality if, and only if, P¼Q. A scoring rule with this characteristic is said to

be strictly proper if s(Q,Q)� s(P,Q) for all P and Q. Propriety is an essential

property of a scoring rule that encourages coherent and honest predictions. Strict

propriety ensures that both calibration and sharpness are being addressed (Czado

et al. 2009), understanding sharpness as the concentration of the predictive distri-

bution, and the shorter the sharper the predictions and the sharper the better, subject

to calibration.
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Examples of Proper Scoring Rules

The logarithmic score is defined as

logs P; yð Þ ¼ �logpy

where py refers to the probability mass function at the observed outcomes (Czado

et al. 2009). This is the only proper scoring rule that depends on the predictive

distribution P through its probability mass ( py). The quadratic score or Brier score
is defined as

qs P; yð Þ ¼ �2py þ k p k2, ð4:22Þ

where k p k2 ¼
X1
k¼1

p2k , which can frequently be computed analytically for the

Poisson and the negative binomial distribution. The spherical score is defined as

sphs P; yð Þ ¼ � py
k p k

The ranked probability score (Czado et al. 2009) was originally proposed for

ranked categorical data. It is defined as

rps P; yð Þ ¼
X1
l¼1

Pl � 1 y � lð Þf g2,

In practice it is not easy to choose a scoring rule, unless there is a unique and

clearly defined underlying decision problem. However, it is always preferable to

use a proper scoring rule instead of a classical measures of predictive performance

that is not proper, such as the mean absolute error, mean square error of prediction,

and mean squared Pearson residuals. However, in many situations, probabilistic

predictions have multiple simultaneous uses, and it may be appropriate to use a

variety of tools and scores, to take advantage of their different emphases and

strengths (Czado et al. 2009). For example, Wecker (1989) used the Brier score

(quadratic score) in the assessment of time series predictions of counts.

Montesinos-López et al. (2015a, 2015b) also used the Brier score for assessing

prediction accuracy for ordinal data in the context of genomic-enabled prediction.

4.2.7.3 Assessing Prediction Accuracy

Following Burgue~no et al. (2012), we implemented the cross-validation scheme

(CV2). Cross-validations mimic real situations that a breeder might face. This

cross-validation scheme (CV2) mimics a situation where lines were evaluated in
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some environments but missing in others. In this case, information from relatives is

used, and prediction assessment can benefit from borrowing information between

lines within an environment and between lines across environments.

For this cross-validation, we used tenfold cross-validations; each time, ninefolds

were used for training and onefold for testing. The training set was used to fit the

model, and the validation set was used to evaluate the prediction accuracy of the

proposed models. However, only the information of 10% of the lines in one

environment was missing. Among the variety of methods for assessing prediction

accuracy for ordinal categorical and count data, we used the Brier score for the GLS

data set and the Spearman correlation (Cor) and mean square error of prediction

(MSEP) for the FHB data set. These two criteria were used to obtain comparable

predictions between the proposed models for counts (BNBR and Poisson) and

models for normal and lognormal data. However, we need to point out that proper

scoring rules (as the Brier score) should be preferred since classical measure of

predictive performance as the MSEP and Cor are not proper and are not the best

option for ordinal or counts data. For the GLS data sets with ordinal categorical

data, the Brier score (Brier 1950) was computed as

BS ¼ n�1
Xn
k¼1

XC
c¼1

�bπkc � dkc
�2 ð4:23Þ

where BS denotes the Brier score, bπk denotes the predictive distribution derived

from the estimated model for observation k, and dkc takes a value of 1 if the ordinal
categorical response observed for individual k falls into category c; otherwise,
dkc¼ 0. The range of BS in Eq. (4.23) for ordinal data is between 0 and 2. For

this reason, we divided BS/2 to get the Brier score bounded between 0 and 1; lower

scores imply better predictions. For count data, the Brier score was computed using

Eq. (4.22) but computing py and kpk2 depending on the model used, e.g., with the

Poisson probability mass function if the Pois model was used for fitting the data, or

the negative binomial probability mass function if the BNBR model was used.

Here, the Brier score can be any real value, and the lower the value, the better the

model.

The Brier score rule uses all the information contained in the predictive distri-

bution, not just a small portion like the hit rate or the log likelihood score.

Therefore, it is a reasonable choice for comparing ordinal categorical and count

regression models, although there are other scoring rules that also have good

properties.

4.3 Results

In the following sections, we investigate the performance of the proposed BLOR

and BNBR models through a simulation study and with real data.
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4.3.1 Simulated Data Sets

The only purpose of the simulations performed in this section is to show that the

proposed methods work well in terms of parameter estimation.

4.3.1.1 Model BLOR

In Table 4.1, we report average estimates obtained by all methods, along with

standard deviations (SD) for both scenarios (S1 and S2) under study. Table 4.1

shows that the bias in the estimation of the parameters is a little larger in S1

compared to S2 (which takes into account the GRM). Also, parameter β1 is the

parameter with larger bias (underestimated) when the sample size is nij¼ 5 and 10.

Both variances ( σ2b1 , σ2b2 ) are overestimated under scenario 1, but only σ2b1 is

overestimated under scenario 2. From Table 4.1, it is clear that as the sample size

increases, the average biases and SD decrease in all cases. This confirmed the

consistent properties of all the estimates.

4.3.1.2 Model BNBR

Table 4.2 gives the results of the simulation study under both scenarios (S1 and S2).

Again, the bias in the estimation of the parameters is a little larger in S1 compared

to S2. Table 4.2 shows that parameter β0 is the parameter with larger bias

(underestimated). Both variances ( σ2b1 , σ2b2 ) are overestimated under scenario

1, but only σ2b1 is overestimated under scenario 2. Also, with sample size nij¼ 5,

the parameter r shows the larger SD; however, for larger sample sizes (nij¼ 20 , 40),

the SD are considerably reduced. In general, there is no large reduction in SD when

the sample size increases from 5 to 10, 20, and 40, the exception being the

estimation of r under both scenarios and the estimation of β0 under scenario

1, where there is a large reduction of SD when the sample size increases. Even

though the estimations under both models are not perfect, the proposed Gibbs

samplers for ordinal and count data that take into account G�E do a good job

for estimating the parameters since the estimates are close to the true values and

with a SD of reasonable size. However, in both models, a more in-depth simulation

study is required to ensure that these findings are valid for all possible scenarios.

4.3.2 Real Data Sets

Using the real data sets, we compared four scenarios for each model (Table 4.3).

The table shows that scenarios S1 and S2 do not take into account interaction effects

in the linear predictor, only main effects. Also, scenarios S1 and S3 do not use
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marker information. These four scenarios are studied with the goal of investigating

the gain in model fit and prediction ability taking into account the interaction effect

and using the marker information available.

4.3.3 Model BLOR for GLS Data Set

Table 4.4 depicts the posterior mean and posterior standard deviation of the

parameter estimates with the model BLOR using the GLS data set. The parameter

estimates and posterior mean log likelihood (postMeanLogLik) of S1 and S2 are

alike, as are the parameter estimates and posterior mean log likelihood

(postMeanLogLik) of S3 and S4. The postMeanLogLik favors models S3 and S4.

In Table 4.5, we see that in Colombia, the best model in terms of prediction

accuracy using the Brier score was S4, while the worst was S1. In Harare, the best

model was S3 and the worst was S1. In Mexico, the best model was S2 followed by

S4, while the worst model was S3. It is important to point out that prediction

accuracy were best in Mexico and worst in Colombia. Because the differences

between scenarios in each country are not large, it is not easy to discriminate

Table 4.3 Scenarios

proposed to fit the real data set

with both models
Scenario

Main effects Interaction effects

E L G EL EG

S1 X X

S2 X X

S3 X X X

S4 X X X

E denotes environments, L lines, G lines with markers, EL inter-

action effect between environment and line, and EG interaction

effect between environments and lines with markers

Table 4.4 Posterior average values (mean) and standard deviation (SD) for the GLS data set with

model BLOR for each scenario given in Table 4.3

S1 S2 S3 S4

Parameter Mean SD Mean SD Mean SD Mean SD

β1 �0.422 0.063 �0.217 0.069 �0.324 0.108 �0.415 0.093

β2 0.167 0.056 0.376 0.064 0.524 0.099 0.342 0.089

β3 �0.254 0.070 �0.047 0.075 �0.042 0.111 �0.273 0.094

γ1 �1.625 0.053 �1.430 0.061 �2.084 0.076 �2.200 0.070

γ2 �0.434 0.041 �0.227 0.056 �0.278 0.057 �0.447 0.039

γ3 0.546 0.041 0.751 0.064 1.105 0.061 0.905 0.050

γ4 1.355 0.047 1.566 0.070 2.182 0.072 1.964 0.070

σ2b1 0.205 0.030 0.200 0.032 0.097 0.075 0.321 0.072

σ2b2 1.488 0.144 1.525 0.164

postMeanLogLik �3489 �3482 �2729 �2769
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between models; even though in two of the three locations, scenario S4 was

identified as the best model for prediction.

4.3.4 Model BNBR for GLS Data Set

The posterior means, posterior SD of the scalar parameters, and deviance informa-

tion criteria (DIC) for model BNBR and model Pois are given in Table 4.6. The

table shows that the posterior means of the beta regression coefficients (β∗1 , β
∗
2 , and

Table 4.5 Brier scores (mean and standard deviation (SD)) from model BLOR evaluated for

validation samples for each scenario given in Table 4.3 for the GLS data set. Lower scores indicate

better predictions

Colombia Harare Mexico

Scenario Mean SD Mean SD Mean SD

S1 0.417 0.020 0.388 0.016 0.360 0.044

S2 0.407 0.015 0.382 0.019 0.353 0.039

S3 0.404 0.023 0.363 0.015 0.367 0.035

S4 0.399 0.021 0.383 0.025 0.359 0.038

Table 4.6 Estimated fixed effects, variance components, and deviance information criteria (DIC)

for models BNBR and Pois for the GLS data set

S1 S2 S3 S4

Parameter Mean SD Mean SD Mean SD Mean SD

Model BNBR

β∗1 �4.002 0.071 �4.007 0.062 �4.001 0.055 �4.003 0.045

β∗2 �3.828 0.074 �3.833 0.064 �3.822 0.057 �3.812 0.05

β∗3 �3.961 0.075 �3.966 0.066 �3.957 0.059 �3.954 0.053

r 143.656 9.771 144.249 8.745 141.124 7.339 139.77 6.627

σ2b1 0.032 0.004 0.034 0.005 0.033 0.005 0.037 0.005

σ2b2 – – – – 0.034 0.004 0.0368 0.005

DIC 8516.966 (3) 8484.151 (2) 8564.722 (4) 8462.392 (1)

Model Pois

β∗1 �5.952 0.026 �5.95 0.022 �5.968 0.029 �5.982 0.024

β∗2 �5.772 0.019 �5.772 0.015 �5.785 0.022 �5.781 0.016

β∗3 �5.907 0.03 �5.909 0.029 �5.924 0.034 �5.925 0.029

r 1000 _ 1000 – 1000 – 1000 –

σ2b1 0.033 0.004 0.035 0.005 0.034 0.005 0.037 0.005

σ2b2 – – – – 0.034 0.004 0.037 0.004

DIC 8488.566 (3) 8457.023 (2) 8533.377 (4) 8427.161 (1)

() denotes the ranking of the four scenarios with the DIC for each model
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β∗3 Þ, variance components and scale parameter (r) were similar for the four pro-

posed scenarios formodel BNBR with the exception of scenarios S3 and S4, where

the parameter r was lower, while the posterior SD of scenarios S3 and S4 were

lower than those of scenarios S1 and S2. With regard to the DIC in model BNBR,

the scenarios rank as follows: rank 1 for scenario S4, rank 2 for scenario S2, rank

3 for scenario S1, and rank 4 for scenario S3. Figure 4.2 shows a histogram

representation of the posterior distributions for scalar parameters, and in all plots,

the priors for each parameter in model BNBR are not informative.

Table 4.6 also shows that the posterior means and posterior SD of the beta

regression coefficientsðβ∗1 , β∗2 , and β∗3 Þ and variance components for model Pois

are similar between the four proposed scenarios. In terms of DIC, the scenarios rank

as follows: rank 1 for scenario S4, rank 2 for scenario S2, rank 3 for scenario S1,
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Fig. 4.2 Histogram representation of posterior distributions of scalar parameters for scenario S4

and model BNBR fitted with the whole data set GLS for ðaÞ β∗1 , ðbÞ β∗2 , ðcÞ β∗3 , ð dÞr, ðeÞ σ2b1, and
ðfÞ σ2b2 with priors superimposed as dashed lines at the bottom
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and rank 4 for scenario S3. Figure 4.3 also shows that the priors for each scalar

parameter in model Pois are not informative.

Table 4.6 indicates that model Pois fits this real data set best, since comparing

the DIC for these two models there is a clear superiority ofmodel Pois overmodel

BNBR. This means that model Pois is enough for this data set.

In Table 4.7 we present the mean and SD of the Brier scores resulting from the

tenfold cross-validation performed. The Brier scores given in Table 4.7 were

calculated using the testing set. According to the Brier scores, in model BNBR,

the best model for prediction was S3 in the three environments. Undermodel Pois,

the scenario with the best prediction accuracy was scenario S3 for Harare and

Mexico, but scenario S2 in Colombia. It is not clear which model is the best (model

Pois ormodel BNBR) since the Brier scores are very similar for both models. This

may be due to the fact that the data are not really count, because we used the GLS

data set that has the response variable as categorical ordinal.
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4.3.5 Model BNBR for FHB Data Set

These results were taken from the paper of Montesinos-López et al. (2016). For this

data set (FHB data) was implemented with the following linear predictor:

ηijk¼Ei +R(E)ik+ gj + gEij with i¼ 1 , . . . , I ; j¼ 1 , 2 , . . . , J , k¼ 1 , . . . ,K ,

t¼ 1 , 2 , . . . , nijk, where Ei represents environment i, R(E)ik represents the effect

of block k within environment i, gj is the marker effect of genotype j, and gEij is the

interaction between markers and the environment. This predictor is very similar to

that given in Eq. (4.1) with the term R(E)ik added. We assume that yijkt represents
the count response for the tth replication of the jth line in the kth block in the ith
environment. Four models were implemented using the linear predictor given

above: model BNBR, model Poisson, normal, and lognormal (LN). Also for each

model, the four scenarios given in Table 4.3 were studied. These models were

implemented under a Bayesian approach (these Bayesian models were

implemented through Gibbs sampler since all full conditionals were derived ana-

lytically, for the BNBR and Poisson model the Pólya-Gamma augmentation

approach explained above was used, see Montesinos-López et al. Montesinos-

López et al. 2015a, 2015b, 2015c and Montesinos-López et al. 2016 for details of

all derivations). The Gibbs samplers for the four models were implemented in R

Core Team ( 2015) using 60,000 iterations with a burn-in of 30,000, so that 30,000

samples were used for inference. The prediction accuracy of the proposed models

were evaluated with the Spearman correlation (Cor) and the mean square error of

prediction (MSEP), both calculated using the observed and predicted response

variables of the validation set resulting of a tenfold cross-validation implemented

for the four models and four scenarios. In this example we used the Spearman

correlation and the MSEP to compare the results with models normal and

lognormal.

Table 4.7 Brier scores (mean and standard deviation (SD)) from the BNBR and Pois models
evaluated for validation samples for each scenario given in Table 4.3 for the GLS data set

Colombia Harare Mexico

Model Mean SD Mean SD Mean SD

BNBR model

S1 �0.224 0.013 �0.232 0.013 �0.219 0.023

S2 �0.226 0.010 �0.229 0.012 �0.219 0.020

S3 �0.233 0.011 �0.242 0.011 �0.233 0.014

S4 �0.221 0.008 �0.225 0.011 �0.219 0.017

Pois model

S1 �0.228 0.019 �0.216 0.027 �0.264 0.028

S2 �0.231 0.018 �0.218 0.020 �0.248 0.028

S3 �0.194 0.174 �0.228 0.036 �0.281 0.025

S4 �0.208 0.015 �0.218 0.016 �0.234 0.025

Lower scores indicate better predictions
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In Table 4.8 we can see that the ranking of scenarios for the BNBR model were

as follows: in Batan 2012, 1 for S4, 2 for S3, 3 for S1, and 4 for S2. In Batan 2014,

the ranking was 1 for S4, 2 for S3, and 3 for S1 and S2. In Ecuador 2014, the ranking

was 1 for S3, 2 for S2, 3 for S1, and 4 for S4. With the MSEP, the ranking formodel

BNBR in Batan 2012 was 1 for S3, 2 for S4, and 3 for S1 and S2. In Batan 2014, the

ranking was 1 for S2, 2 for S1, 3 for S3, and 4 for S4. In Ecuador 2014, the ranking

in terms of MSEP was 1 for S3, 2 for S2, 3 for S4, and 4 for S1. Undermodel Pois,

the ranking of the four scenarios in each locality was exactly the same as the

ranking reported for model BNBR. For model normal in terms of the Spearman

correlation, S1 was the best in prediction accuracy in Batan 2012, while S4 was the

worst in all three locations. In terms of MSEP, the best scenario was S3 in Batan

2012 and Ecuador 2014, and the worst was S4 in Batan 2014 and Ecuador 2014. For

model LN in terms of the Spearman correlation, the best scenarios were scenarios

S1, S2, and S3, and the worst was S4 in Batan 2012. In Batan 2014, the best

scenario was S1, then scenario S3, and the worst was scenario S4. In Ecuador 2014,

the best scenario was scenario S1 and S3, then S2 and S4. In terms of MSEP for

Batan 2012, the best scenario was S3, then S1 and S2, and the worst was S4. In

Batan 2014, the best scenario was S1, then S2, and the worst was scenario S4.

Finally, in Ecuador 2014, the best scenario was S3, then S2, and the worst was

scenario S1.

Table 4.9 gives the average of the ranks of the two posterior predictive checks

(Cor and MSEP) that were used. Since we are comparing four scenarios for each

model, the values of the ranks range from 1 to 4, and the lower the values, the better

the scenario. For ties we assigned the average of the ranges that would have been

assigned had there been no ties. Table 4.9 shows that the best scenarios were

scenarios S3 and S4 under models BNBR and Pois in Batan 2012. In Batan

2014, under models BNBR and Pois, the best scenario was S2, while in Ecuador

2014, the best scenario was S3. Under model normal, the best scenario was S1 in

Batan 2014, S1 and S3 in Ecuador 2014, while in Batan 2012, the best scenarios

were S2 and S3. Finally, under model LN, the best scenario was S3 in Ecuador

2014, S3 in Batan 2012, and S1 in Batan 2014. Then according with results of

Tables 4.8 and 4.9, the best models in terms of prediction accuracy are models

BNBR and Pois, since they had better predictions in the validation set based on

both the posterior predictive checks (Cor and MSEP) implemented. Also, we

observed that in models BNBR and Pois, taking into account G�E considerably

increased the prediction accuracy, which was expected since there is enough

scientific evidence that including G�E interaction improves prediction accuracy.

However, to use these models correctly, it is important to first understand the types

of data we have before deciding on the modeling approach to be used.
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Table 4.8 Estimated posterior predictive checks with cross-validation for models BNBR, Pois,
normal, and LN for the FHB data set

Batan 2012 Batan 2014 Ecuador 2014

Scenario Cor MSEP Cor MSEP Cor MSEP

Model BNBR

S1 Mean 0.43 (3) 0.98 (3.5) 0.43 (3.5) 1.39 (2) 0.18 (3) 11.733 (4)

SD 0.33 0.72 0.33 1.35 0.40 9.471

S2 Mean 0.42 (4) 0.98 (3.5) 0.43 (3.5) 1.38 (1) 0.20 (2) 11.222 (2)

SD 0.33 0.72 0.33 1.36 0.37 8.614

S3 Mean 0.54 (2) 0.49 (1) 0.52 (2) 1.48 (3) 0.22 (1) 8.645 (1)

SD 0.28 0.38 0.29 2.32 0.39 5.688

S4 Mean 0.56 (1) 0.61 (2) 0.56 (1) 1.85 (4) 0.12 (4) 11.343 (3)

SD 0.24 0.44 0.22 2.68 0.41 8.154

Model Pois

S1 Mean 0.43 (3) 0.98 (3.5) 0.43 (3.5) 1.39 (2) 0.18 (3) 11.733 (4)

SD 0.33 0.72 0.33 1.35 0.40 9.471

S2 Mean 0.42 (4) 0.98 (3.5) 0.43 (3.5) 1.38 (1) 0.20 (2) 11.222 (2)

SD 0.33 0.72 0.33 1.36 0.37 8.614

S3 Mean 0.54 (2) 0.48 (1) 0.52 (2) 1.48 (3) 0.22 (1) 8.645 (1)

SD 0.28 0.38 0.29 2.32 0.39 5.688

S4 Mean 0.56 (1) 0.61 (2) 0.56 (1) 1.85 (4) 0.12 (4) 11.343 (3)

SD 0.24 0.44 0.22 2.68 0.41 8.154

Model normal

S1 Mean 0.36(1) 1.10 (4) 0.37 (1.5) 1.79 (1) 0.15 (1.5) 7.425 (2)

SD 0.28 0.88 0.39 1.70 0.32 4.151

S2 Mean 0.34 (2) 0.99 (2) 0.33 (3) 2.01 (3) 0.07 (3) 7.454 (3)

SD 0.33 0.65 0.44 2.46 0.33 4.339

S3 Mean 0.33 (3) 0.81 (1) 0.37 (1.5) 1.96 (2) 0.15 (1.5) 7.318 (1)

SD 0.30 0.46 0.40 2.99 0.29 4.159

S4 Mean 0.27 (4) 1.03 (3) 0.24 (4) 2.37 (4) 0.04 (4) 8.482 (4)

SD 0.34 0.73 0.45 3.42 0.24 4.326

Model LN

S1 Mean 0.51 (2) 0.66 (2.5) 0.46 (1) 1.60 (1) 0.15 (1.5) 8.10 (4)

SD 0.21 0.42 0.31 2.35 0.38 5.11

S2 Mean 0.51 (2) 0.66 (2.5) 0.43 (3.5) 1.78 (2) 0.09 (3.5) 7.82 (2)

SD 0.22 0.39 0.35 2.82 0.46 5.31

S3 Mean 0.51 (2) 0.64 (1) 0.45 (2) 1.871 (3) 0.15 (1.5) 7.76 (1)

SD 0.21 0.45 0.31 3.16 0.37 5.21

S4 Mean 0.43 (4) 0.72 (4) 0.43 (3.5) 1.95 (4) 0.09 (3.5) 8.04(3)

SD 0.25 0.42 0.33 3.15 0.41 5.18

The numbers in () denote the ranking of the four scenarios set for each posterior predictive check

(extracted from Montesinos-López et al. 2016)
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4.4 Conclusions

Generalized linear mixed models (GLMMs) are considered to be one of the major

methodological developments of the second half of the last century. The main

factor contributing to their wide applicability over the last 30 years or so is their

flexibility, because they can be applied to different types of data (Berridge and

Crouchley 2011), including continuous interval/scale, categorical (including binary

and ordinal) data, count data, beta data, and others. Each member of the GLMMs

family is appropriate for a specific type of data (Berridge and Crouchley 2011).

However, GLMMs for non-normal data are scarce in the context of genomic-

enabled prediction, since most of the models developed so far are linear mixed

models (mixed models for Gaussian data). For these reasons, we believe that

developing specific methods for categorical ordinal and count data for genomic-

enabled prediction can help to improve the selection of candidate genotypes early

when the phenotypes are ordinal and counts. Because using transformation to

approximate the ordinal data and counts to normality or assuming that these types

of data are normally distributed frequently produces poor parameter estimates and

lower power, parameter interpretation is more difficult when transformation is used

(Stroup 2015). However, in genomic selection, phenotypic data (dependent vari-

able) are currently not taken into account before deciding on the modeling approach

to be used, mainly due to the lack of genomic-enabled prediction models for

non-normal phenotypes. Although our proposed Bayesian regression models are

only for categorical ordinal and count data, they help fill this lack of genomic-

enabled prediction models for non-normal data.

This chapter presents recent advances in models for whole genome prediction

for ordinal categorical and count data. These models were built using the Pólya-

Gamma data augmentation approach of Scott and Pillow (2013), which produces a

Table 4.9 Rank averages for the four scenarios resulting from the tenfold cross-validation

implemented for the FHB data set

Scenarios

Batan

2012

Batan

2014

Ecuador

2014

Batan

2012

Batan

2014

Ecuador

2014

Model BNBR Model normal

S1 3.25 2.75 3.5 2.5 1.25 1.75

S2 3.75 2.25 2 2 3 3

S3 1.5 2.5 1 2 1.75 1.75

S4 1.5 2.5 3.5 3.5 4 4

Model Pois Model LN

S1 3.25 2.75 3.5 2.25 1 2.75

S2 3.75 2.25 2 2.25 2.75 2.75

S3 1.5 2.5 1 1.5 2.5 1.25

S4 1.5 2.5 3.5 4 3.75 3.25

Each average was obtained as the mean of the rankings given in Table 4.8 for the two posterior

predictive checks (Cor and MSEP) in each scenario (extracted fromMontesinos-López et al. 2016)
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Gibbs sampler with full conditional distributions similar to that of the Bayesian

probit ordinal regression (BPOR) model of Albert and Chib (1993). The proposed

Bayesian logistic ordinal regression (model BLOR) is reduced to the BPOR model

of Albert and Chib (1993) when the sampled values, ωijt, from the Pólya-Gamma

distribution in Eq. (4.6) are set to 1. This is an advantage because researchers can

perform an exact logistic or probit ordinal regression with the proposed model

without having to do approximations to perform a logistic ordinal regression. The

performance of the proposed model BLOR without interaction was compared to the

BPOR model using the approximation (logit(u)¼ (1.75)Φ�1(u)) in a small simula-

tion study and with real data sets using a 4- and 5-point ordinal scale by

Montesinos-Lopez et al. (Montesinos-López et al. 2015b). They found that the

estimation of parameters using the approximation logit(u)¼ (1.75)Φ�1(u) produces
a considerable amount of bias and can give rise to wrong conclusions in association

studies. However, they observed no differences between the two models in terms of

prediction ability with two real data sets. For this reason, the proposed BLOR

model is a viable alternative for analyzing ordinal data since it is more robust for

dealing with outlying data. This is because the logistic distribution has heavier tails

and provides regression coefficients that are more interpretable due to their con-

nection to odds ratios (Zucknick and Richardson 2014). This last advantage does

not make sense when p� n,since the main driving force in Bayesian models in the

case of p� n is the prior and not the data (Gianola 2013). Even with this restriction,
the proposed BLOR model unifies logistic and probit ordinal regression under a

Bayesian framework and is a useful alternative for genomic-enabled prediction of

ordinal categorical trials where available data sets have a larger number of param-

eters to estimate than observations.

The proposed Bayesian method for count data describes the work done by

Montesinos-López et al. (2016), which extended the work of Montesinos-López

et al. (2015c) to incorporate the G� E term. Modeling G� E for categorical ordinal

and count data in the context of genomic-enabled prediction plays a central role in

plant breeding for the selection of candidate genotypes that present high adaptation

to a wide range of environmental conditions including local conditions. Also,

incorporating G � E helps to predict yet-to-be observed phenotypes when the

relative performance of genotypes varies across environments. To the best of our

knowledge, this is the first work on genomic-enabled prediction that uses the NB

and Poisson distributions with G � E.

It should also be noted that to use these models correctly, it is important to first

understand the types of data being analyzed before deciding on the modeling

approach to be employed. If the phenotypic data are normally distributed, the linear

mixed models for genomic-enabled prediction developed so far for Gaussian

phenotypes should be used. If the phenotypic data are binary or categorical ordinal,

the methods proposed by Montesinos-López et al. (2015a, 2015b) and their exten-

sions given in this chapter with the logit link should be preferred. If the phenotypic

data are counts (number of panicles per plant, number of seeds per panicle, weed

count per plot, etc.) and the counts are small, the models developed in this study

(BNBR and Pois models) and those proposed by Montesinos-López et al. (2015c,
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2016) are the best option, since they have more advantages over the conventional

linear mixed models with Gaussian response, as was observed when we applied

them to the real data set. However, Montesinos-López et al. (2015c, 2016) also

found that when the count response is log transformed, the prediction accuracies are

better than when using the counts as if they were normally distributed.

Finally, it is important to extend the proposed methods of Montesinos-López

et al. (2015a, 2015b, 2015c, 2016) developed under the work of Scott and Pillow

(2013) for ordered categorical responses and count data for multiple traits. Our

methods are elegant, easy to implement, and produce a unified Gibbs sampler

framework useful for both types of phenotypic responses. This is important

because, of all the computational intensive methods for fitting complex multilevel

models, the Gibbs sampler is the most popular due to its simplicity and ability to

effectively generate samples from high-dimensional probability distributions (Park

and van Dyk 2009). For this reason, we believe these methods are appealing

alternatives for plant and animal researchers. Both models can be easily extended

to take into account epistatic effects for the joint modeling of multiple traits, which,

as is well documented, can increase the prediction accuracy of the models.
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Appendix A: Derivation of Full Conditional Distributions

for Model BLOR

Liabilities and ωijt. The fully conditional posterior distribution of liability lijt is

P ljELSEð Þ / P lj β, bð ÞP yjl, γð Þ

/
YI
i¼1

YJ
j¼1

Ynij
t¼1

f ðlijtÞ
XC
c¼1

Iðyijt ¼ cÞIðγc�1 < lijt < γcÞ

/
YI
i¼1

YJ
j¼1

Ynij
t¼1

expð�lijt þ xTi βþ b1j þ b2ijÞ
½1þ expð�lijt þ xTi βþ b1j þ b2ijÞ�2

XC
c¼1

Iðyijt ¼ cÞIðγc�1 < lijt < γcÞ

/
YI
i¼1

YJ
j¼1

Ynij
t¼1

2�2

ð1
0

exp �ωijtð�liljt þ xTi βþ b1j þ b2ijÞ2
2

" #
Pðωijt; b ¼ 2, d ¼ 0Þ

�dωijt

XC
c¼1

Iðyijt ¼ cÞIðγc�1 < lijt < γcÞ
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The last inequality was obtained using a technique called the Pólya-Gamma

method (Scott and Pillow 2013), which is useful when working with logistic

likelihoods, and has the form

eψð Þa
1þ eψð Þb ¼ 2�beκψ

ð1
0

e�
ωψ2

2 P ω; b; 0ð Þdω

where κ¼ a� b/2 and P(ω; b, d¼ 0) denotes the density of the random variable

ω ~PG(b, d¼ 0), where PG(b, d) denotes a Pólya-Gamma distribution lijt with
parameters b and d and density

P ω; b; dð Þ ¼ coshb
d

2

� 	� �
2b�1

Γ bð Þ
X1
n¼0

�1ð Þn Γ nþ bð Þ 2nþ bð Þ
Γ nþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffi
2πω3

p exp
�� 2nþ bð Þ2

8ω
� d2

2
ω
�
,

where cosh denotes the hyperbolic cosine.

Then the joint posterior distribution of lijt and ωijt is equal to

Pðl,ωjELSEÞ /
YI
i¼1

YJ
j¼1

Ynij
t¼1

2�2exp �ωijð�lijt þ xTi βþ b1j þ b2ijÞ2
2

" #
Pðωijt; 2, 0Þ

�
XC
c¼1

Iðyijt ¼ cÞIðγc�1 < lijt < γcÞ

Therefore, the fully conditional posterior distribution of liability lijt is a truncated
normal distribution and its density is

f ðlijtjELSEÞ

¼
ϕ
� ffiffiffiffiffiffiffi

ωijt
p ðlijt � xTi β� b1j � b2ijÞ

�
Φð ffiffiffiffiffiffiffi

ωijt
p ðγc � xTi β� b1j � b2ijÞÞ �Φ

� ffiffiffiffiffiffiffi
ωijt

p ðγc�1 � xTi β� b1j � b2ijÞ
�

For simplicity, ELSE is the data and the parameters, except for the one in

question. ϕ and Φ are the density and distribution function of a standard normal

random variable and the fully conditional posterior distribution lijt of ωijt is

f ðωijtjELSEÞ / 2�2exp �ωijtð�lijt þ xTi βþ b1j þ b2ijÞ2
2

" #
Pðωijt; 2, 0Þ

/ exp �ωijtð�lijt þ xTi βþ b1j þ b2ijÞ2
2

" #
Pðωijt; 2, 0Þ

From here and from Eq. (4.5) of Polson et al. (2013), we get that
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f ωijtjELSE
� � � PG 2;�lijt þ xT

i βþ b1j þ b2ij
� �

Regression Coefficients (β) First note that the fully conditional posterior of l , β ,ω
is

P l, β,ωjELSEð Þ / P lj β, b1, b2ð ÞP yjl, γð ÞP ωð ÞP�β σ2β
����

/ exp �1

2
�lþ Xβþ

X2
h¼1

Zhbh

 !T

Dω �lþ Xβþ
X2
h¼1

Zhbh

 ! !
P ωð ÞP�β σ2β

����
where P ωð Þ ¼

Y I

i¼1

Y J

j¼1

Ynij
t¼1

P ωijt; 2; 0
� �

. Then, the full conditional posterior

distribution of β is

P βjELSEð Þ

�/exp �1

2
�lþXβþ

X2
h¼1

Zhbh

 !T

Dω �lþXβþ
X2
h¼1

Zhbh

 ! 

�1

2
β�β0ð ÞT Σ�1

0 σ�2
β

� �
β�β0ð ÞÞ

/exp �1

2
½βTðΣ�1

0 σ�2
β þXTDωXÞβ�2

�
Σ�1
0 σ�2

β β0�XTDωð
X2
h¼1

ZhbhÞþXTDωl
�T

β�Þ
 

/ exp �1

2

�
β� ~β 0

�T~Σ �1
0

�
β� ~β 0

�h i� 	

where Σ
�
0 ¼ ðΣ�1

0 σ�2
β þ XTDωXÞ�1

, β
�
0 ¼ Σ

�
0

�
Σ�1
0 σ�2

β β0 � XTDωð
P2
h¼1

ZhbhÞþ

XTDωl
�
. It is important to point out that if we use a prior for β/Constant

(improper uniform distribution), then in ~Σ 0 and ~β 0 we need to make 0 the term

Σ�1
0 σ�2

β . Finally, the full conditional) posterior of β is

β ELSEj � NI

�
~β0; ~Σ0

�
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Polygenic effects (bh) Now the full conditional posterior of bh is given as

LðbhjELSEÞ
/ exp �1

2
ð�lþ Xβþ

X2
h¼1

ZhbhÞTDωð�lþ Xβþ
X2
h¼1

ZhbhÞ
 !

Pðbhjσ2bhÞ

/ exp �1

2
bT
h σ�2

b G�1 þ ZT
h DωZh

� �
bh � 2 ZT

h Dωl� ZT
h DωXβ

� �T
bh

h i� �
/ exp �1

2

�
bh � ~b h

�T
F�1
h

�
bh � ~b h

�� �
This implies that the full conditional posterior of bh is

f ðbhjELSEÞ � N
�
b
�
h ¼ FhðZT

h Dωl� ZT
h Dωη

hÞ,Fh ¼ ðσ�2
bh
G�1

h þ ZT
h DωZ

T
h Þ�1

�
with h¼ 1 , 2, η1¼Xβ+Z2b2 and η2¼Xβ +Z1b1.

Variance of polygenic effects ðσ2bhÞ: Next, the conditional distribution of σ2bh is

obtained. If σ2bh � χ�2ðνh, ShÞðshape and scaleÞ, then

Pðσ2bh jELSEÞ /
1

ðσ2bhÞ
νhþnh

2 þ1
exp � bT

h G
�1
h bhh þ νhSh
2σ2bh

 !

This is the kernel of the scaled inverted χ2 distribution; therefore, the full

conditional posterior is

f ðσ2bh jELSEÞ � χ�2
�
ν
�
h ¼ νh þ nh, S

�
b ¼ ðbT

h G
�1
h bh þ νhShÞ=νb þ nhÞ

Threshold effects (γ) The density of the full conditional posterior distribution of

the cth threshold, γc, is

P γjELSEð Þ / P yjl, γð ÞP γð Þ

/
YI
i¼1

YJ
j¼1

Ynij
t¼1

XC
c¼1

Iðyijt ¼ cÞIðγc�1 < lijt < γcÞIðγ2TÞ ð4:A:1Þ

If Eq. (4.A.1) is seen as a function of γc, it is evident that the value of γc must be

larger than all the lijt|yijt¼ c and smaller than all the lijt|yijt¼ cþ 1. Hence, as a

function of γc, Eq. (4.A.1) leads to the uniform density
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P γc ELSEjð Þ ¼ 1

min lijt yijt ¼ c
�� þ 1

� �
�max lijt yijt ¼ c

��� � I γ2Tð Þ ð4:A:2Þ

Equation (4.A.2) corresponds to a uniform distribution on the interval [min

{min (lijt|yijt¼ cþ 1), γcþ 1, γmax },max{max(lijt|yijt¼ c), γc� 1, γmin}] (Albert and

Chib 1993; Sorensen et al. 1995).

Variance of location effects (σ2β
�

If we give σ2β � χ�2 νβ; Sβ
� �

shape and scaleð Þ,
then

P σ2βjELSE
� �

/ P σ2β

� �
P βj σ2β
� �

¼ 1

σ2β

� �νβ
2
þ1

exp �νβSβ
2σ2β

 !
P βj σ2β
� �

/ 1

σ2β

� �νβþI

2
þ1

exp � β� β0ð ÞTΣ�1
0 β� β0ð Þ þ νβSβ
2σ2β

 !

This is the kernel of the scaled inverted χ2 distribution; therefore, the full

conditional posterior is

σ2β j ELSE � χ�2 ~νβ ¼ νβ þ I; ~Sβ ¼ β� β0ð ÞTΣ�1
0 β� β0ð Þ þ νβSβ

h i
=νβ þ I

� �

Appendix B: Derivation of Full Conditional Distributions

for Model BNBR

Full conditional for β∗

f β∗jELSEð Þ ¼
YI
i¼1

YJ
j¼1

Ynij
t¼1

Pr Yijt ¼ yijtjxT
i , r,ωijt, b1j, b2ij

� �
f β∗ð Þ

/ exp κTX β∗ þ κT
X2
h¼1

Zhbh � 1

2
X β∗ þ

X2
h¼1

Zhbh

 !T 

Dω X β∗ þ
X2
h¼1

Zhbh

 !
� 1

2
β∗ � β0ð ÞTΣ�1

0 σ�2
β β∗ � β0ð Þ

!

92 O.A. Montesinos-López et al.



/exp �1

2
β∗T Σ�1

0 σ�2
β þXTDωX

� �
β∗�2 Σ�1

0 σ�2
β β0�XTDω

�h�
P2
h¼1

ZhbhþXTκÞTβ∗�Þ

/ exp �1

2

�
β∗�~β 0

�T~Σ�1
0

�
β∗�~β 0

�h i� 	
/N

�
~β0; ~Σ0

�
where ~Σ 0 ¼ Σ�1

0 σ�2
β þ XTDωX

� ��1

, β
�
0 ¼ Σ

�
0ðΣ�1

0 σ�2
β β0 � XTDω

P2
h¼1

Zhbhþ
XTκÞ.

Full conditional for ωijt

f ðωijtjELSEÞ / exp �ωijtðxTi β∗ þ b1j þ b2ijÞ2
2

" #
f ðωijt; yijt þ r, 0Þ

/ exp �ωijtðxTi β∗ þ b1j þ b2ijÞ2
2

" #
f ðωijt; yijt þ r, 0Þ

/ PGðyijt þ r,xTi β
∗ þ b1j þ b2ijÞ

Full conditional for b1
Defining η1¼X β∗+Z2b2, the conditional distribution of b1 is given as

f b1jELSEð Þ / exp κTZ1b1 � 1

2
Z1b1 þ η1
� �T

Dω Z1b1 þ η1
� �� 	

f b1jσ2b1
� �

/ exp �1

2
bT
1 σ�2

b1
G�1

1 þ ZT
1 DωZ1

� �
u� 2 ZT

1 κ� ZT
1 Dωη

1
� �T

b1

h i� �
/ exp �1

2
ðb1 � b

�
1ÞTF�1

1 ðb1 � b
�
1Þ

� �
� Nðb�1,F1Þ

where F1 ¼ σ�2
b1
G�1

1 þ ZT
1 DωZ1

� ��1

and ~b 1 ¼ F1 ZT
1 κ� ZT

1 Dωη
1

� �
.

Full conditional for σ2bh

f σ2bh jELSE
� �

/ 1

σ2bh

� �νbh
þnbh
2

þ1
exp � bT

h G
�1
h bh þ νbhSbh
2σ2bh

 !
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/ χ�2 ~νb ¼ νbh þ nbh ; ~Sb ¼ bT
h G

�1
h bh þ νbhSbh

� �
=νbh þ nbh

� �
with nb1 ¼ J and nb2 ¼ IJ.

Full conditional for σ2β∗

f ðσ2β∗ jELSEÞ /
1

ðσ2
β∗
Þ
νβ∗þI

2
þ1

exp �ðβ∗ � β0ÞTΣ�1
0 ðβ∗ � β0Þ þ νβ∗Sβ∗

2σ2
β∗

 !

/ χ�2
�
ν
�
β∗ ¼ νβ∗ þ I, S

�
β ¼ ½ðβ∗ � β0ÞTΣ�1

0 ðβ∗ � β0Þ þ νβ∗Sβ∗ �=νβ∗ þ IÞ

Full conditional for r
To make the inference of r, we first place a gamma prior on it as r ~G(a0, 1/b0).

Then we infer a latent count L for each Y�NB(μ, r) conditional on Y and r. Since
L ~Pois(�r log(1� π)), by construction we can use the Gamma-Poisson conjugacy

to update r. Therefore,

f rjELSEð Þ / f rð Þ
YI
i¼1

YJ
j¼1

Ynij
t

f yijtjLijt
� �

f Lijt
� �

/ ra0�1exp �rb0ð Þ
YI
i¼1

YJ
j¼1

Ynij
t

�rlog 1� πij
� �� �Lijtexp r log 1� πij

� �� �
/ r

a0þ
P I

i¼1

P J

j¼1

Pnij

t¼1
Lijt�1

exp½�ðb0 �
XI
i¼1

XJ
j¼1

Xnij

t¼1
logð1� πijÞrÞ�

/ G a0 �
XI
i¼1

XJ
j¼1

Xnij

t¼1
log 1� πij
� �

;
1

b0 þ
P I

i¼1

P J
j¼1

Pnij
t¼1 Lijt

 !
ð4:A:5Þ

According to Zhou et al. (2012), the conditional posterior distribution of Lijt is a
Chinese restaurant table (CRT) count random variable. That is, Lijt ~CRT(yijt, r) and

we can sample it as Lijt ¼ Σ
yijt
l¼1dl, where dl � Bernoulli r

l�1þr

� �
:
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Genomic Selection for Small Grain
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BB BayesB

BRR Bayesian ridge regression

CIMMYT International Maize and Wheat Improvement Center

DArT Diversity Array Technology

DHs Doubled haploids

DON Deoxynivalenol

ECs Environmental covariates

FHB Fusarium head blight

GBS Genotyping by sequencing

GEBV Genomic estimated breeding value

GS Genomic selection

GxE Genotype-by-environment interaction

h2 Heritability

HTP High-throughput phenotyping

LD Linkage disequilibrium

MAS Marker-assisted selection

MEs Mega-environments
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MET Multi-environment trials

MxE Marker-by-environment interaction

PS Phenotypic selection

QTL Quantitative trait loci, RR-BLUP, ridge-regression best linear

unbiased prediction

SNP Single nucleotide polymorphism

TPE Target population of environments

5.1 Introduction

Small grains include sorghum (Sorghum bicolor), wheat (Tritcum aestivum L.), oats

(Avena sativa L.), barley (Hordeum vulgare L.), rye (Secale cereale L.), rice (Oryza
sativa), millet (Pennisetum glaucum), and triticale (Triticosecale) but not the

pseudo-cereals such as buckwheat (Fagopyrum esculentum) and quinoa

(Chenopodium quinoa). Most of the small grain cereals are self-pollinated with

the exception of rye. Consequently, this chapter will focus on genomic selection

(GS) research conducted on wheat, oats, barley, and rice. GS in hybrid cereals will

be covered in Chapter 7.

Animal breeders initiated GS research, in part, because of the high cost of

phenotyping and the inability to replicate individual genotypes. Meuwissen et al.

(2001) conducted foundational work in GS development by simultaneously estimat-

ing all genetic marker effects. Their simulation results showed up to a 0.84 correla-

tion between estimated breeding values obtained through GS and the true breeding

value. Based on these results, they proposed that GS could have significant impact in

plant and animal breeding programs by using dense markers to predict performance

of individuals that did not have phenotypic records. The genetic gain per unit time

achieved by a breeding program can be summarized by the breeder’s equation:

G ¼ irσA

Y
ð5:1Þ

where G is the gain per year, i is selection intensity, r is selection accuracy, σA is the
square root of narrow-sense heritability, and Y is time in years to complete a cycle

of selection (Falconer and Mackay 1996). By combining GS with methods to

shorten the breeding cycle, significant gains should be achieved (Meuwissen et al.

2001), with gains proportional to the reduction in breeding cycle time. Plant

breeders lagged behind in the use of mixed models and pedigrees for predicting

breeding value because phenotyping was relatively less expensive and genotypes

using inbred lines could be replicated to increase heritability. However, that has

changed rapidly as plant breeders have begun to incorporate GS into their breeding

programs. Although it is not considered a small grain, among the earliest publica-

tions on GS in crops was a simulation study by Bernardo and Yu (2007) using maize

as an example. Using a population derived from a biparental cross of maize inbreds
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as a training population, they found that the predicted increase in selection gain

from ridge-regression best linear unbiased prediction (RR-BLUP) was 18% greater

than that from marker-assisted recurrent selection for a highly heritable trait (h2 ¼
0.8) and 43% for a trait with low heritability (h2 ¼ 0.2). In 2009, Heffner et al.

(2009) published a review and interpretation paper on GS highlighting the potential

as well as the challenges of applying GS in an applied breeding program. They

highlighted the importance of estimating allele effects rather than genotype effects

using many unreplicated lines. They also noted that genotype-by-environment

interaction (GxE) is likely to be much more problematic for plant breeders than

for animal breeders. These were among the earliest publications on GS in plants,

and publications that followed shortly thereafter were also simulations. The section

that follows reviews the main body of literature on GS in small grains.

5.2 Overview of GS Research in Small Grains

At least 40 GS studies have been published in small grains to date (Table 5.1).

Twenty-nine of them were conducted in bread wheat, five in barley, two in oat and

rye, and one in durum wheat (Triticum turgidum L. spp. durum), perennial ryegrass
(Lolium perenne L.), and intermediate wheatgrass (Thinopyrum intermedium).
Across all studies Diversity Array Technology (DArT) was the most frequently

used marker platform followed by genotyping by sequencing (GBS) and single

nucleotide polymorphism (SNP). Taken together, these studies indicate that GS

could be successfully applied in cereals breeding to increase rates of genetic gain.

The first few GS studies in small grains were published between 2009 and 2011

(Crossa et al. 2010; Heffner et al. 2011a; de los Campos et al. 2009). Both de los

campos et al. (2009) and Cross et al. (Crossa et al. 2010) used data from the

International Maize and Wheat Improvement Center (CIMMYT) wheat breeding

program. A 13–42% increase in correlation between predicted values and observed

values was reported by de los Campos et al. (2009) using Bayesian LASSO

compared to prediction models using pedigree alone. Crossa et al. (2010) used

CIMMYT wheat breeding data from the international yield trials as well as

CIMMYT maize data to evaluate parametric and semi-parametric prediction

models based on pedigree and/or genomic relationship. Both de los Campos et al.

(2009) and Crossa et al. (2010) concluded that models that used genomic markers

were superior to those that used only pedigree relationships. Heffner et al. (Heffner

et al. 2011a) used data from a soft white wheat breeding program for multiple traits

to compare prediction models, GS to marker-assisted selection (MAS) and pheno-

typic selection (PS) accuracies, and to look at the impact of training population size

and number of markers on the GS accuracy. The authors concluded that based on

their results, GS could increase the rate of genetic gain per unit time and cost if

applied in a wheat breeding program. Many other studies of GS in cereals were

published thereafter, and here we highlight a few key studies.

5 Genomic Selection for Small Grain Improvement 101
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In 2011, Asoro et al. published the first GS study in oat using data from an oat

breeding program for multiple traits to evaluate GS accuracies and to assess factors

affecting accuracy. This study was also the first GS study in small grains that

examined how characteristics of the training population affected GS accuracy.

The authors found that including older lines in the training set either increased or

had no impact on accuracy, suggesting that an appropriate model training popula-

tion can be constructed by accumulating breeding program data over time. The first

study in small grains that aimed to increase prediction accuracy by modeling

genotype-by-environment interaction was by Burgue~no et al. (Burgue~no et al.

2012). This study used the same data as in Crossa et al. (2010) and evaluated

whether modeling covariance between environments could improve prediction

accuracy. The results of this study indicated that modeling covariance between

environments could increase accuracy when predicting performance within specific

environments when the lines were observed in some environments but not others.

This highlights that phenotypes of the selection candidates observed in one envi-

ronment can be used to improve genomic prediction of selection candidates’
breeding values in other environments.

In 2012, the first study in small grains using GBS for genomic selection was

published by Poland et al. (2012). This study found that GBS led to greater GS

accuracies compared to current DArT markers. A later study by Heslot et al.

(2013b) followed up on this observation and found that GBS leads to higher GS

accuracies compared to DArT because GBS produces a larger number of

non-redundant, evenly distributed markers. Although many researchers are

concerned that the relatively large amount of missing data commonly observed in

GBS datasets may impede downstream analyses, Rutkoski et al. (2013) found that

the amount of missing data commonly observed in wheat GBS datasets has very

little impact on GS prediction accuracies.

The first report of realized gain from a GS experiment in small grains was

published by Asoro et al. in Asoro et al. 2013. Working in oats, the authors

compared GS, MAS, and phenotypic selection for beta-glucan concentration. In

both the GS and MAS schemes, phenotypic data on the selection candidates were

used in addition to marker data. The authors found that more superior individuals

originated from the populations developed using GS or MAS, demonstrating the

value of markers for improving selection. Rutkoski et al. (2015a) published the first

realized gain from GS experiment in wheat. This study compared GS with PS for

breeding for quantitative adult plant resistance to stem rust. Unlike in Asoro et al.

(2013), in the GS scheme, phenotypic data were not available on the selection

candidates prior to selection. The authors found that GS and PS lead to equal rates

of genetic gain per unit time, but GS led to a faster loss of genetic variance because

with GS two cycles were completed, while with PS only one cycle was completed.

The lack of improvement in genetic gain per unit time from GS over PS in this case

was due to the relatively low prediction accuracy in the first cycle of selection when

the model training population is not closely related to the selection candidates. The

University of Minnesota barley breeding program has implemented GS since 2010

for Fusarium head blight (FHB) resistance as well as for yield, winter hardiness,
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and malting quality resulting in reduced time and labor for phenotyping (Bernardo

2016). In evaluating dynamic germplasm from the barley breeding program, Sallam

et al. (2015) found prediction accuracies that ranged from 0.03 to 0.99 for traits

including plant height, yield, FHB resistance, and deoxynivalenol (DON)

concentration.

5.3 Factors Affecting GS Prediction Accuracies

5.3.1 Theoretical Considerations of GS Accuracies

Utilizing foundational genetic theory, irrespective of species, we can predict GS

accuracy based on the heritability of the trait, the number of independent chromo-

some segments, and the number of individuals in the training population

(Daetwyler et al. 2010). For the simplest GS examples, this assumes (1) there is

perfect linkage between markers and quantitative trait loci (QTL), (2) the model

training and selection candidate individuals are sampled from the same population,

and (3) the trait of interest is conferred by a large number of additive loci. A large

body of work has extended these concepts to understand how GS performs in real-

world applications when germplasm and phenotypic data diverge from the ideal

conditions. For example, when markers are not in complete linkage disequilibrium

(LD) with QTL, increasing the number of markers so that more markers are in LD

with QTL leads to higher accuracies (Heffner et al. 2011b; Muir 2007). If model

training and selection candidates are sampled from different populations, the level

of relationship between the two populations is another factor affecting accuracy,

with increasing levels of relationship leading to higher accuracies (Pszczola et al.

2012). Lastly, when the trait of interest is conferred by few loci, the choice of

prediction model will affect accuracy.

5.3.2 Research to Increase GS Accuracy

Many of the research studies of GS in small grains have examined factors affecting

prediction accuracy. In small grains, at least 29 studies have looked at the effect of

prediction model on the GS accuracy, at least nine studies have examined how the

relationship between the training population and the selection candidate population

affects accuracy, and at least 16 studies have looked at other factors affecting

accuracy including training population size and number of markers.
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5.3.3 Effect of GS Model

The vast majority of studies looking at the effect of prediction model on accuracy

report either no or only a small effect of the prediction model on the accuracy

(Heslot et al. 2012; Sallam et al. 2015). Among studies that have compared additive

and nonadditive GS models, Mirdita et al. (2015), He et al. (2016), Endelman et al.

(2011), Perez-Rodriguez et al. (2013), and Rutkoski et al. (2012) observed that

nonadditive GS models led to higher accuracies compared to additive models. In

contrast, Ornella et al. (2012) reported that in biparental populations, nonlinear

models led to lower accuracies compared to linear models.

5.3.4 Relationship of Training and Validation Population

Studies in small grains that have examined the effect of the relationship between the

individuals in the training and validation population on the GS accuracy have

observed that having a closer relationship between training and validation

populations leads to higher GS accuracies (Asoro et al. 2011; Lorenz et al. 2012;

Rutkoski et al. 2015b; Wang et al. 2014; Zhang et al. 2016). Interestingly, Rutkoski

et al. (2015b) found that including oldermodel training data after updating themodel

training population could lead to decreased prediction accuracy but only if the older

model training data had a low heritability. On the other hand, Lorenz et al. (2012)

found that including individuals from a different subpopulation in themodel training

set neither increased nor decreased accuracy. Asoro et al. (2011) reported that

including older individuals in the model training population either slightly increased

or did not affect the accuracy. In a study by Zhang et al. (2016) about GS in

intermediate wheatgrass, the authors reported that accuracies increased with increas-

ing numbers of families and genotypes per family in the training set, but after

30 families and six genotypes per family, the increase in accuracy was very small.

The potential to select subsets of the model training population of a given size

that lead to the highest possible accuracy, referred to as training population

optimization, has been investigated for wheat by Isidro et al. (2015) and Rutkoski

et al. (2015b). Both studies found that training population optimization was better

than random sampling for selecting subsets from a population for model training.

This could be useful for selecting which set of lines to phenotype for prediction

model updating to ensure the highest accuracy given the resources available.

Overall, studies in small grains generally confirm that GS model training

populations should be related to the selection candidates and should be frequently

updated to maintain accuracy. While most envision updating the GS model with

phenotypic data generated on the lines selected in the breeding program because of

their superior breeding values, it may be wise to use training population optimiza-

tion to select a set of lines to phenotype specifically for GS model updating. This

would include lines that would ordinarily get discarded in the breeding program.
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More research is required in this area to determine if the benefits of selecting lines

to phenotype specifically for model training outweigh the costs.

5.3.5 Effect of Number of Markers and Individuals

Studies in small grains that have examined the effect of the number of markers and

number of individuals in the training population on the GS accuracy have observed

similar trends where accuracy increases linearly with marker number and training

population size until a plateau is reached, and a plateau in accuracy is reached

sooner with marker number than with training population size (Arruda et al. 2015;

Heffner et al. 2011a, b; Lorenz et al. 2012). Heffner et al. (2011a) observed that for

predicting within biparental populations, increasing training population size from

24 to 96 leads to a linear increase in accuracy, while increasing marker number

beyond 256 did not improve prediction accuracy. For predicting within a population

of advanced breeding lines, Heffner et al. (2011b) found that accuracy increased

linearly with TP size from 96 to 288 and very gradually when the number of

markers was increased beyond 384. Lorenz et al. (2012) reported that in a popula-

tion of barley breeding lines from different breeding programs, accuracy reached a

plateau at a population size of 200 and that marker number could be decreased to

384 without losing accuracy. Other work in barley by Sallam et al. (2015) found

that DON concentration level predictions plateaued at a TP of 75, while grain yield

prediction did not plateau based on the TP size, suggesting the TP size may be trait

specific. The occurrence of plateaus in accuracy at relatively low numbers of

markers and population sizes is a reflection of the low rate of LD decay with

physical distance, or in other words, a low number of independent chromosome

segments in the small grain breeding populations are used for GS studies.

In a population consisting of advanced wheat breeding lines from breeding

programs across the Midwestern and Eastern United States, Arruda et al. (2015)

found that for most traits, a plateau in accuracy was reached when the training

population was larger than 192 lines, and, depending on the trait, a plateau in

accuracy occurred when the number of markers was greater than 1500 or 3000. In

a breeding scenario where older breeding lines are used to predict newer breeding

lines, larger training population sizes and more markers may be required compared

to what cross validation studies would indicate because generations of recombina-

tion have taken place leading to faster rates of LD decay among the combined model

training-selection candidate population. This was observed in a study by Rutkoski

et al. (2015b) where the authors examined the increase in accuracy with increasing

training population size for two training sets, one distantly related and one closely

related to the selection candidates. They found that accuracy increased linearly with

training population size in the more distantly related training set, while accuracy

reached a plateau at 292 individuals with the more closely related training set.

Research on training population size and number of markers will ultimately need

to be conducted using forward validation within individual breeding programs.
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5.4 Breeding Methods for Variety Development in Cereals

While any implementation of GS involves identifying high-performing individuals

based on a genomic prediction model, the methods that different breeding programs

could use may look quite different depending upon the budget and resources available

to the breeding program, the relative cost of genotyping vs. phenotyping, the gener-

ation time that can be achieved, and the heritability of the traits of interest. An

important feature of GS is that it is complementary to MAS. Marker-assisted

selection is most effective for simply inherited, high heritability traits, whereas GS

is relatively more effective for low heritability traits conferred by many QTL. Both

methods could be readily incorporated into a molecular breeding program and used in

concert to enable breeders to select for simply inherited traits with MAS and for

quantitative traits using GS. Applications such as spiked GBS (Rife et al. 2015) which

combine whole-genome profiling along with known marker assays could allow

breeding programs to efficiently and affordably integrate both GS and MAS.

5.4.1 Timing of GS Application Within Breeding Programs

Implementation of GS in cereal crops can be imposed in early or late generations

(Fig. 5.1). In early generation implementation, GS is applied to the selection

candidates directly after crossing prior to any selfing or after one generation of

selfing. Implementing GS in this way leads to a greater reduction in the breeding

cycle duration because the two or more growing seasons that would normally be

needed for selfing are eliminated (Heffner et al. 2010; Hickey et al. 2014). Selected

individuals are cycled back into the crossing block as parents. This rapid cycling

(Fig. 5.1) program allows individuals selected based on their genomic estimated

breeding value (GEBV) to be planted, cross- or self-pollinated, and harvested two

or more times a year for many cereal species. This would ordinarily not be possible

because many important traits must be evaluated on fixed lines using relatively

large quantities of seed. One consideration for implementing GS in this way is that

model updating will need to come from inbred lines derived from the selection

candidates in earlier cycles and potentially several cycles of GS selection could be

conducted for every single cycle of training population updating that is completed.

Once early generation lines are selected as parents in the rapid cycling program,

they can begin the inbreeding phase where culling based on MAS and PS can be

applied at any generation until the F4 or F5 generations as preferred. At that stage,

the candidates should be whole-genome genotyped and phenotyped to train the

model to predict GEBVs in the breeding population. The genome-wide marker data

and phenotypic data can also be fit in a model that captures nonadditive genetic

effects to improve selection accuracy on the lines per se for promotion as varieties.

Phenotyping and genotyping all selection candidates have been shown to be more

favorable for improving rates of genetic gain compared to only phenotyping a
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subset of the genotyped selection candidates (Endelman et al. 2014). GS can also be

applied only among lines, without a rapid cycle program. Compared to a rapid

cycling approach, applying GS only among lines would enable higher selection

accuracies but would not reduce the breeding cycle duration as dramatically.

Different GS breeding schemes should be evaluated for each specific situation to

understand the trade-offs in cycle time and selection accuracy and to optimize gain

from GS. Deterministic and stochastic simulations can be useful tools for this

purpose.

Most of the GS research in cereal crops has been conducted using inbred lines. In

a deterministic simulation study by Heffner et al. (2010), GS among inbred lines

was found to increase gain from selection per unit time twofold compared to MAS

among inbred lines for known QTL. Examining how to optimize preliminary yield

trials, Endelman et al. (2014) found that a 5% increase over phenotypic selection

could be achieved by using GS in inbred lines.

Other authors have reported evaluations of various GS schemes (Longin et al.

2015). The study by Longin et al. (2015) evaluated GS using GS alone, GS followed

by one or two rounds of PS, and the comparison to PS only. At an estimated GS

accuracy of 0.3, the authors found that GS followed by one round of PS produced

the highest genetic gain; however, the rankings of methods were dependent upon

GS accuracy. For example, if GS accuracy could exceed 0.65 using GS only with no

Fig. 5.1 Integration of GS in a pure line breeding program. In the rapid cycling phase, GS is used

to enhance gain per unit time. In the inbreeding phase, MAS and PS can be imposed until the F4 or

F5 generation, and then whole-genome genotyping is used to select individuals that enter the

training population or are recycled in the crossing program. Each phase is conducted simulta-

neously, and the GS models are updated annually
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PS provided the highest genetic gain, but under more realistic conditions

(GS accuracy 0.3), combinations of GS and PS were more productive. The use of

doubled haploid lines would preclude the use of MAS and PS during the inbreeding

phase of line development (Fig. 5.1).

5.4.2 Genomic Selection for Germplasm Improvement
Through Introgression of Alleles

While the previous GS strategies have focused mainly on reducing the length of the

breeding cycle or increasing the selection accuracy to increase the rate of genetic

gains, GS could also be used for introgression of exotic alleles into elite germplasm.

Crossa et al. (2016a) evaluated GS in landraces populations including over 2000

Iranian and 8000 Mexican lines. They found good GS prediction accuracies even

with GxE and population structure. They proposed that GS could be used to predict

genotype performance of all genotyped accessions within a germplasm collection

and then phenotyping could be conducted on the most promising lines, followed by

introgressing the selected exotic alleles into elite germplasm. Bernardo (2009)

simulated the effect of introgressing exotic alleles into adapted maize germplasm.

His results showed that GS could be used to rapidly incorporate exotic alleles into

elite germplasm. Additionally, this work provided some guidance on the number of

cycles of GS that could be used with exotic alleles and where to apply GS in the

introgression program. He found that the best starting material for GS was an F2
cross between exotic and adapted germplasm rather than a BC1 or BC2. In general

the rate of genetic progress declined after 7–8 cycles of GS, but assuming three

cycles of GS could be completed per year resulted in an equivalent time frame of

two rounds of PS (2 years per cycle). The 7–8 cycles of GS resulted in 1.25–2.4

times the rate of gain compared to the two cycles of PS depending on the number of

favorable alleles in the exotic germplasm and a trait heritability of 0.8. Another

simulation study in maize suggested that GS should be applied in exotic-by-exotic

crosses and used to increase the frequency of favorable alleles (Gorjanc et al. 2016).

This was because using GS with exotic-by-elite crosses quickly resulted in

reconstructing elite material. In practice, applying GS among exotic-by-exotic

crosses could be problematic due to poor adaptation. For example, if the exotic

individuals are photoperiod sensitive in the environments of interest, it will not be

possible to gather meaningful grain yield data for prediction modeling. Importantly,

Bernardo (2009) found that the quality (accuracy) of the phenotypic data and the

quantity (number) of phenotyped individuals were crucial for ensuring success of

GS in introgressing exotic germplasm. Thus, training population size and compo-

sition needs to be carefully considered. Bernardo (2009) suggested that if trait

heritability was low (h2¼0.2), then more field testing (replication) across multiple

environments should be used to increase the entry-mean heritability (accuracy).

Along with replication to improve the entry-mean heritability, Bernardo (2009)
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suggested that training populations should be larger, 288 compared to 144 in

adapted-by-adapted crosses. Additionally, to achieve sufficiently high prediction

accuracy, GS for introgression of exotic germplasm would need to be within

biparental populations, which have slower rates of LD decay and fewer segregating

chromosome segments compared to populations derived from multiple families.

5.4.3 Combining Genomics and Phenomics for Increased
Precision

As reported by Endelman et al. (2014) and Lorenz (2013), phenotypic data on the

selection candidates per se can be used in GS models to increase selection accuracy

and gain from selection. With decreasing genotyping costs, phenotypes are quickly

becoming the most valuable asset to breeding programs. Field-based phenomics or

high-throughput phenotyping (HTP) is an active area of research that is working to

provide image and sensor data for traits that are correlated with the phenotypes of

interest (Cobb et al. 2013; White et al. 2012) which could be useful for prediction

modeling. Using a variety of proximal sensors, researchers have mapped QTL for

biomass growth in triticale (Busemeyer et al. 2013) as well as assessing differences

in crop response to well-watered and drought conditions in cotton (Andrade-

Sanchez et al. 2014). The ability to generate large volumes of data quickly and at

multiple time points possibly before grain yield testing has led to efforts to combine

phenotypic data within the GS model. There are several methods by which both GS

and HTP could be integrated into a breeding program. Low-cost HTP could be used

to evaluate lines in early generations to both provide data to train GS models and

make screening decisions when thousands of lines need to be evaluated (Araus and

Cairns 2014). Along with providing information about the crop, HTP could allow

breeding programs to increase population size of material evaluated while increas-

ing selection intensity resulting in higher genetic gain (Crain and Reynolds 2016).

Additionally, HTP and GS combinations could also be used for evaluating more

advanced lines. Using spectral indices and canopy temperature, Rutkoski et al.

(2016) and Crain et al. (unpublished) reported higher GS prediction accuracies by

including HTP data in the GS model. Rutkoski et al. (2016) found up to a 70%

increase in prediction accuracy for grain yield by including HTP traits of canopy

temperature and vegetation indices. By including canopy temperature and spectral

reflectance (Crain et al. unpublished) found an average of a 12% increase in GS

model accuracy compared to GS models utilizing only marker information. By

using multiple traits (phenotypes) from HTP data, the goal is to enhance model

prediction accuracy. Previous work with multiple traits has shown that prediction

accuracy of a low heritability trait can be greatly increased when a second or

multiple traits that have higher heritability are added to the model (Jia and Jannink

2012). They found that with a low heritability trait (h2 ¼ 0.1), prediction accuracy

went from 0.49 to 0.64 assuming a genetic correlation of 0.1. As the genetic
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correlation increased, the prediction accuracy further increased. Along with

increasing prediction accuracy, they also found that prediction accuracies could

be increased when there was missing information. While these are some of the

earliest efforts to incorporate phenotypic data, HTP is offering many possibilities to

further increase the genetic gains from GS. The utilization of HTP along with GS

has the potential to provide scientists with rich datasets that adequately reflect real-

world conditions. For example, Montesinos-López et al. (2016) utilized the same

data presented by Rutkoski et al. (2016) to develop multi-trait, multi-environment

models. Employing these types of complex models that account for the genotypic

relationship between multiple traits and environmental factors (multiple environ-

ments) should allow breeders to get a more complete picture of how genetics are

expressed in different conditions allowing for more accurate selection decisions to

be made.

5.4.4 Additional Breeding Program Considerations

Along with increasing the accuracy of phenotyping, the design of the breeding

program can be modified to take full advantage of GS. With whole-genome

genotyping, testing more lines at different locations, rather than all lines at one

location or fewer lines at all locations, Endelman et al. (2014) found that prediction

accuracies were increased. This potentially surprising result comes from the fact

that in GS, the alleles are under selection rather than an individual genotype. Thus,

in field trials the goal is replication of alleles, but the replication of alleles is not

limited to specific genotypes (Lorenz et al. 2011).

The adept use of data and training populations has allowed GS to predict new

genotype performance in multiple environments as well as hybrid performance.

Lado et al. (2016) found that using related genotype information at multiple

locations could be used to predict new genotype performance with high (0.5)

accuracy. Zhao et al. (2015) used GS to predict performance of hybrid lines to

develop heterotic groups. While this application was for hybrid breeding, the ability

to predict hybrid (cross) performance without testing the phenotype could be

applicable for the pure line breeder as well. Both of these examples along with

others (e.g., Endelman et al. 2014; Hickey et al. 2014) highlight the importance of

training population design (size and quality) and genotyping (number of markers)

in making accurate predictions.

GS can be incorporated into a breeding program in several different facets.

Breeders could use GS to provide more information about the selections they are

making or to make all selection decisions. In practice, GS will probably be applied

somewhere in between these two extremes whether it be to increase favorable

alleles, rapidly cycle germplasm, or introgress exotic alleles. The success that GS

has will be dependent on the resourcefulness of the researcher and his/her ability to

fully utilize molecular, phenotypic, and environmental information in an efficient

way based on careful assessment of different breeding schemes.
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5.5 GS for Analyzing and Predicting GxE

Plant breeders are concerned about GxE because it amplifies the phenotypic

variation without contributing to the additive genetic variation, thereby reducing

heritability across environments. The challenges of GxE have been with plant

breeders since the beginning. However, whole-genome genotyping and GS present

some opportunities to the modern plant breeder that are already changing our

strategies for dealing with GxE, for both genotype selection and multiple environ-

ment trial evaluation methods.

5.5.1 Target Population of Environments

Fundamental to the concept of GxE is the definition and sampling of a target

population of environments (TPE). The TPE represents the biotic and abiotic

factors that released varieties are likely to encounter during their production.

Because genotypes respond differently to environmental factors, in multi-

environment trials (MET), varieties perform differently resulting in relative differ-

ences in performance as well as rank changes. Rank changes or crossover interac-

tions complicate selection because one variety is not the best for all environments.

The challenge is to adequately sample environments, especially over years where

climate can be more variable. Generally, the composition of the TPE is unknown.

Years with insufficient precipitation may be more common than those with ade-

quate precipitation, and a streak of dry years could bias the evaluation of experi-

mental lines. One approach to managing environmental variability is to classify

environments based on historical data and then weight the trials by their expected

frequency of occurrence in the TPE (Podlich et al. 1999). This approach effectively

adjusts for the negative effects of unrepresentative environments on selection

resulting in increased gain from selection.

5.5.2 Application of GS Models to GxE

GxE was recognized as a major issue for applying GS in plants (Crossa et al. 2010;

Heffner et al. 2009). Crossa (2012) reviewed GxE and marker-by-environment

interaction studies and discussed models for assessing marker effects, QTL, and

marker effect by environment interactions and for studying the pattern of

covariability ofmarker effects across environments. Hemade the case for evaluating

different models from different areas of statistical research to better understand

genetic effects and their interaction with environment. Studies that have evaluated

GS predictions that model genotype-by-environment interaction report an increase

in accuracy from modeling the interaction rather than ignoring it (Burgue~no et al.

118 J.E. Rutkoski et al.



2012; Heslot et al. 2014; Jarquı́n et al. 2014; Lado et al. 2016; Lopez-Cruz et al.

2015). Within GS accounting for GxE remains an active area of research with

numerous methods proposed for utilizing GxE including marker-by-environment

interactions (Heslot et al. 2013a), using genetic correlations between TPE

(Burgue~no et al. 2012), and using environmental covariates (Heslot et al. 2014).

5.5.3 GxE by Modeling Marker Replication and Interaction

By design, plant breeding MET data are unbalanced, thus limiting the kinds of

analyses that can be performed on the data because all genotypes are not

represented in all environments. The transforming principle first employed by

Heslot et al. (2013a) is that even though all genotypes are not represented in all

environments, all marker effects are represented in all environments. This allows

one to measure the relative similarities among environments based on marker

effects as well as similarities based on prediction of marker effects. This approach

is especially useful in cases where a factor analytic model fails convergence.

Similarities based on marker effects can be determined using Euclidean distances

and visualized using cluster analysis (Fig. 5.2, Heslot et al. 2013a). Using multi-

environment yield trial data from a commercial barley breeding program, the

authors found that outlier environments were readily identified. Additionally, the

breeder field notes corroborated the results; however, for this dataset, grouping

environments based on similarity of marker effects did not increase prediction

accuracy. Likewise, prediction of marker effects in other environments can be

calculated with a simple correlation analysis and visualized in a heat map. Although

the patterns were not as clear as the marker effects, grouping environments based on

average reciprocal prediction accuracies increased prediction accuracy for yield

across environments (Heslot et al. 2013a).

In a second experiment designed to optimize the composition of the training

population, Heslot et al. (2013a) used the average predictive ability of each

environment for predicting performance of lines in the other environments in the

same dataset. The environments were then ranked from least predictive to most

predictive, and starting with the least predictive, one environment was removed at a

time, and then the model was retrained on the remaining environments to determine

if prediction accuracy improved (Fig. 5.3, Heslot et al. 2013a). The environments

that were removed were placed in an unpredictive set, and the prediction accuracy

of that set was calculated. When the prediction accuracy of the predictive set

dropped and/or the unpredictive set increased, the remaining environments were

considered to be the optimal set, and, in this study, accuracy was increased from

0.54 to 0.61. Out of the 58 environments, 18 unpredictive environments were

removed. Interestingly, some outlier environments were included, and only one

barley line was excluded in the optimal set of environments.
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Another benefit from whole-genome genotyping is that by modeling MxE, we

can begin to understand what genetic regions have main (stable) effects and which

ones interact with the environment. Lopez-Cruz (2015) modeled MxE using regres-

sion of wheat phenotypes on markers or using covariance structures (a genomic best

linear unbiased prediction-type model) to estimate main (stable) effects and

environment-specific (interaction) effects. Environments that were correlated

exhibited lowMxE, and those that were not correlated showed high MxE. Modeling

MxE in general improved prediction accuracy over models that did not take MxE

into account. The MxE model limits the ability to interpret patterns of GxE that are

not positive leading the authors to conclude that the model is best suited for the joint

analysis of positively correlated environments (Lopez-Cruz et al. 2015).

Model development to represent GxE is a research area that is continually

advancing. To further extend research on MxE, Crossa et al. (2016b) explored the

use of priors that produce shrinkage and variable selection including Bayesian ridge

regression (BRR) and BayesB (BB) in durum wheat. They evaluated the genomic

prediction accuracy of MxE models within and across environments. The MxE

model minimized the model residual variance and improved data-fitting gain for

Fig. 5.2 Heat map showing the similarity of environments based on Euclidian distances computed

using marker effects. Environment comparisons with red shading are more dissimilar, and those

environments with blue shading are more similar (Fig. 5.3 from Heslot et al. 2013a)
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more simply inherited traits compared to more complex traits such as grain yield

and test weight. The MxE model identified markers for the major genes for heading

date including Ppd-A1, Ppd-B1, and TaFT-A on chromosomes 2A, 2B, and 7A, and

their effects were stable across environments. For grain yield, several additional

chromosome regions with large marker effects were identified in all chromosome

groups. Another example of modeling GxE was given by Cuevas et al. (2016) in

which nonlinear Gaussian kernels were used to model MxE. Because this model

allowed for small, complex MxE interactions, they were able to capture up to 60%

greater predictions compared to models using a single environment.

5.5.4 GxE by Treating Environments as Multiple Traits

Genotype-by-environment interactions can be analyzed by treating different envi-

ronments as multiple traits and considering variety performance in different envi-

ronments as correlated traits (Falconer and Mackay 1996) or, in the case of strong

Fig. 5.3 Optimization of the training population. The blue dots are cross-validated accuracies for

the selected training population (predictive set), and red triangles are prediction accuracies for the

environments removed from the training population (unpredictive set). Green squares are the

prediction accuracies for a validation set observed in 2011 (Fig. 5 from Heslot et al. 2013a)
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GxE, a lack of correlation among environments. Consequently, genetic correlations

among environments in the TPE can be used to increase the prediction accuracy

across environments in the target region (Burgue~no et al. 2012). In one of the earlier
papers involving GxE, Burgue~no et al. (2011) compared linear mixed models and

factor analytic models for their predictive ability. When GxE was important,

modeling GxE using the factor analytic model improved prediction accuracy;

otherwise when GxE was not significant, most models gave relatively high predic-

tion accuracies. Burgue~no et al. (2012) examined wheat MET using GS multi-

environment (multi-trait) models and evaluated their predictive accuracy with and

without pedigree and marker information. In their cross validation, they predicted

either the performance of untested genotypes or the performance of genotypes that

had been evaluated in only some environments. Models that included both markers

and pedigrees were superior to those that included either alone. Additionally,

prediction accuracies were higher for predicting the performance of genotypes in

untested environments than for predicting untested genotypes. They concluded that

prediction accuracy could be improved using multi-environment GS models.

Modeling GxE when genotypic and environmental data are highly dimensional

can present computational problems. More recent papers have focused on marker-

by-environment interaction (MxE) effects. Jarquin et al. (2014) proposed a variance

components approach where they used covariance functions to model high-

dimensional interactions between markers and environmental covariates (ECs) for

wheat and maize. In principle, it should be possible to model GxE by regressing

phenotypes on markers and ECs and partitioning the GxE. In the reaction norm

model, genetic and environmental gradients are described using a linear regression

on genetic markers and on ECs. They used 68 ECs related to different crop

developmental stages and compared interactions with main effects. Prediction

models that included the interaction terms were 17–34% more accurate than models

based only on main effects.

Lado et al. (2016) also used the correlations among environments to design sets

of environments having low GxE to try and better predict genotype performance in

untested environments. They used mixed models to generate the variance–covari-

ance matrix across environments in a large, highly unbalanced, historical dataset

from a wheat breeding program to obtain predictions within or across different sets

of environments. They grouped environments into three mega-environments (MEs)

based on a genotype-by-GxE biplot. The best predictions were within years across

locations or within MEs for a given year or location. They concluded that borrow-

ing information from environments using a variance–covariance matrix was useful

for predicting new genotypes prior to phenotyping. Cuevas et al. (2017) presented

results using a Bayesian genomic kernel model to account for the correlation

between environments. This model accounting for GxE always showed superiority

to models that only assessed one environment.
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5.5.5 Dissecting GxE Using Environmental Covariates
and Crop Models

As described above, GxE can be taken into account using multiplicative mixed

models such as the factor analytic structure to model the covariance between

environments responsible for GxE. However, those approaches have numerical

limitations because of the highly unbalanced nature of multi-environment plant

breeding datasets. Also, because they are based on observed covariance among

environments, they are only explanatory of past performance rather than predictive

of future performance. Another interesting approach to better understand and

predict GxE involved the integration of ECs into the genomic selection framework

to predict GxE deviations for unobserved environments (Heslot et al. 2014).

Including environmental covariates in the analysis presented some of the same

issues encountered using GS methods such as a high number of covariates, each

explaining a small amount of the total variance while being highly correlated with

each other.

Heslot et al. (2014) modeled genome-wide markers and their differential

response to the environment to better understand the genetic architecture of GxE.

Using more than 2000 winter wheat lines grown in 44 environments over 6 years in

France, daily weather data (AGRI4CAST), and a wheat crop model known as

SirusQuality (Martre et al. 2006), they first synchronized the developmental stages

of the crop with the climatic conditions during those stages. Stress covariates

(climatic variables at a specific developmental stage) were derived by developmen-

tal stage by using knowledge about the sensitivity of specific growth stages to

abiotic stresses. The stress covariates were then used as independent variables in

statistical genetic models for effect estimation and prediction. The factorial regres-

sion model was extended to the genomic selection context, and for each marker,

they fit a main effect and a sensitivity to each of the stress covariates. A machine-

learning algorithm was used to capture the interactions between markers and stress

covariates as well as nonlinear effects. Genotype performance was predicted as a

main effect plus a GxE deviation.

To deal with the high dimension of n markers by n covariate predictors, they

assessed the variance of marker effects across environments and eliminated those

explaining little or no variation. The photoperiod sensitivity gene Ppd-D1 had the

highest variance but alone did not capture a significant part of the GxE variance.

The optimal model based on cross validation used 250 markers plus the nonlinear

soft rule fit component. The most important stress covariate was the sum of the

average daily temperature between meiosis and flowering. The second most impor-

tant was drought in the early spring measured by “total number of dry days to

350 degree days” and the “sum of precipitation and evapotranspiration potential.”

Heat stresses before flowering and during early grain fill were also important

covariates.

A factor analytic model predicted a GxE response for any genotype in any

environment, even if an environment had no phenotypic data for that genotype.
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Euclidean distances could be calculated for all environments based on the predicted

level of genetic correlation between environments, and a cluster analysis can be

used to reveal the structure of the TPE. By including the GxE component, they were

able to increase prediction accuracy for genotype performance in unobserved

environments by 11.1% on average and the variability in prediction accuracy

decreased by 10.8%. In contrast to the approaches that used covariances among

environments to improve prediction accuracy, the use of carefully selected stress

covariates allowed for prediction in unobserved environments rather than a retro-

spective view of GxE. This approach provides important information to the breeder

because it offers a mechanism to leverage agronomy and physiology knowledge,

reduce dimensionality and nonlinearity, use existing breeding data, and interpret

results to identify specific environmental stresses.

Although their research involved maize, it is important to consider the applica-

tion of the crop growth model and whole-genome prediction proposed by Technow

et al. (2015) and empirically evaluated by Cooper et al. (2016). Cooper et al. (2016)

were able to predict drought tolerance of a set of doubled haploids (DHs) (from the

same cross) in maize hybrids using five measures of crop growth in a model that

incorporated whole-genome prediction and an algorithm based on approximate

Bayesian computation. As expected, prediction accuracies were high when

predicting entries in the same environment (0.53–0.82) but generally low when

predicting test DH entries in a new environment (0.22–0.38). If this approach is able

to deliver a means for predicting genotype performance in the environments and

management practices of the TPE, the breeder could use predicted performance of

genotypes for important environment types of the TPE instead of using predictions

based only on performance across environments.

5.6 Cost Benefit Analysis of GS

The breeder’s equation (Eq. 1) provides the information needed to optimize selec-

tion strategies for different GS applications. While manipulation of any of the

variables in the formula can drive the rate of genetic gain, the majority of GS

work has focused on shortening the length of time per cycle as the increase in

genetic gain would increase proportionally. Any strategy that increases genetic gain

could be used in a breeding program; however, only strategies that allow GS to

surpass the rate of gain achieved by PS or where GS is sufficiently cheaper than PS

will find applications in breeding programs.

Heffner et al. (2010) addressed this question by comparing the cost and genetic

gain per unit time for conventional MAS and GS. Their results indicated that GS

could achieve greater genetic gain than MAS on a per-year basis, even when GEBV

accuracies are low. They predicted that given a prediction accuracy of 0.5, the

expected annual gain from GS would exceed that of MAS by up to threefold for a

high-intensity maize breeding program and up to twofold for a low-intensity winter

wheat breeding program. The advantage realized by GS was almost entirely due to
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the shorter breeding cycle. The case for decreasing breeding cycle time has also

been shown for introgressing wild alleles where Bernardo (2009) showed that the

rate of genetic gain using 7–8 cycles of GS was higher than two cycles of

phenotypic test-cross selection in maize.

Genomic selection may also find use where the trait of interest is challenging to

measure. For example, FHB susceptibility and mycotoxin DON levels require

laborious and expensive phenotyping. Using GS to predict FHB susceptibility and

DON levels, Lorenz et al. (2012) found high prediction accuracy 0.72 and 0.68 for

FHB and DON, respectively. These accuracies were equal to phenotypic selection

and were estimated to cost only 25% as much as PS. Rutkoski et al. (2012) also

reported high prediction accuracies (>0.62) for DON when markers were used in

combination with phenotypes.

Early work in wheat quality by Heffner et al. (2011a) found that low marker

density (256 markers) and small training population sizes (96 genotypes) in bipa-

rental crosses resulted in 0.66 ratio between the GS prediction and PS. Assuming

that two GS cycles could be completed per year, they estimated that GS could

provide more gains than PS for all nine of the wheat quality traits studied at 1/3rd

the cost of PS. Further work in wheat by Battenfield et al. (2016) demonstrated that

application of GS for predicting milling and baking quality traits in wheat had the

potential to substantially outperform PS. The prediction accuracies for complex and

expensive phenotypes in the CIMMYT bread wheat breeding program such as

mixing time and loaf volume in the quality lab were moderate ranging from 0.32

(grain hardness) to 0.62 (mixing time). However, even with these moderate levels

of prediction accuracy, the lower cost and higher throughput of genotyping relative

to phenotyping for milling and baking gave substantial advantage to GS. Based on

the current implementation of ten times more samples being genotyped in the

breeding program than the capacity to phenotype for quality, they calculated a

1.4–2.7 higher rate of genetic gain for GS over PS for the quality traits.

Heslot et al. (2015) made a case for consideration of the problem of optimal

resource allocation to obtain maximum genetic gains. One example of optimizing

resources (Endelman et al. 2014) evaluated the optimal design of the preliminary

yield trial. Using biparental barley and maize populations, they found that up to a

5% increase in genetic gain could be achieved if genotyping was 25% of the cost of

one yield plot unit assuming a breeding program with 250 yield plot units per

family. While GS prediction accuracy shows positive genetic gain, more cost

benefit studies are needed (Heslot et al. 2015).

5.7 Summary

Breeding programs are dynamic entities, and consideration of the cost at each stage

is required to optimize gain. For example, there will be questions about what

germplasm to use, correlations among traits, trade-offs between family size and

number of families, balance between phenotypic and GS or MAS at a constant
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budget, relationship between the training or mapping population, and the breeding

germplasm. Some of the efficiencies that can be realized with GS and whole-

genome genotyping include increased gain by genotyping individuals that are

also phenotyped, more efficient experimental designs (sparse testing), reduced

nursery sizes, and selection for costly traits or traits that are not expressed in each

season. While researchers have worked to provide answers to many of these

questions (e.g., Endelman et al. 2014; Heslot et al. 2015; Hickey et al. 2014),

there are still many uncharted courses for how GS could play within individual

breeding programs that are driven by different goals, environments, and policies.

GS has considerable potential for improving quantitative traits, and new approaches

for implementation of GS will continue to evolve in applied breeding programs.
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Fè D, Cericola F, Byrne S, Lenk I, Ashraf BH, Pedersen MG et al (2015) Genomic dissection and

prediction of heading date in perennial ryegrass. BMC Genomics 16(1):921

Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta

185:1–17

Gianola D, Van Kaam JBCHM (2008) Reproducing kernel Hilbert spaces regression methods for

genomic assisted prediction of quantitative traits. Genetics 178(4):2289–2303

Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using

genomic selection to harness polygenic variation from landrace populations. BMC Genomics

17(1):30

Habier D, Fernando RL, Kizilkaya K, Garrick DJ (2011) Extension of the bayesian alphabet for

genomic selection. BMC Bioinformatics 12:186

5 Genomic Selection for Small Grain Improvement 127



Habier D, Tetens J, Seefried F-R, Lichtner P, Thaller G (2010) The impact of genetic relationship

information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42(1):5

Hayashi T, Iwata H (2010) EM algorithm for Bayesian estimation of genomic breeding values.

BMC Genet 11:3

He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R et al (2016) Genomic selection in a

commercial winter wheat population. Theor Appl Genet 129(3):641–651

Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME (2011a) Genomic selection accuracy for

grain quality traits in biparental wheat populations. Crop Sci 51(6):2597–2606

Heffner EL, Jannink JL, Sorrells ME (2011b) Genomic selection accuracy using multifamily

prediction models in a wheat breeding program. Plant Genome 4(1):65–75

Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection:

gain per unit time and cost. Crop Sci 50(5):1681–1690

Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci

49(1):1–12

Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and

crop modeling into the genomic selection framework to predict genotype by environment

interactions. Theor Appl Genet 127(2):463–480

Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and

research in plants. Crop Sci 55(1):1–12

Heslot N, Jannink JL, Sorrells ME (2013a) Using genomic prediction to characterize environments

and optimize prediction accuracy in applied breeding data. Crop Sci 53(3):921–933

Heslot N, Rutkoski J, Poland J, Jannink JL, Sorrells ME (2013b) Impact of marker ascertainment

bias on genomic selection accuracy and estimates of genetic diversity. PLoS One 8(9)

Heslot N, Yang H-PP, Sorrells MEMEME, Jannink J-LL (2012) Genomic selection in plant

breeding: a comparison of models. Crop Sci 52(1):146

Hickey JM, Dreisigacker S, Crossa J, Hearne S, Babu R, Prasanna BM et al (2014) Evaluation of

genomic selection training population designs and genotyping strategies in plant breeding

programs using simulation. Crop Sci 54(4):1476–1488

Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization

under population structure in genomic selection. Theor Appl Genet 128:145–158

Jarquı́n D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J et al (2014) A reaction norm

model for genomic selection using high-dimensional genomic and environmental data. Theor

Appl Genet 127(3):595–607

Jia Y, Jannink JL (2012) Multiple-trait genomic selection methods increase genetic value predic-

tion accuracy. Genetics 192(4):1513–1522

Jiang Y, Reif JC (2015) Modeling epistasis in genomic selection. Genetics 201(2):759–768

Jiang Y, Zhao Y, Rodemann B, Plieske J, Kollers S, Korzun V et al (2015) Potential and limits to

unravel the genetic architecture and predict the variation of Fusarium head blight resistance in

European winter wheat (Triticum aestivum L.) Heredity (Edinb) 114:318–326
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temperature and vegetation indices from high-throughput phenotyping improve accuracy of

pedigree and genomic selection for grain yield in wheat. G3 Genes|Genomes|Genetics 6

(9):2799–2808

Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL et al (2015a) Genetic gain

from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant

Genome 8(2):1–10

Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink JL et al (2015b) Efficient use

of historical data for genomic selection: a case study of stem rust resistance in wheat. Plant

Genome 8(1):1–10

Rutkoski JE, Poland JA, Singh RP, Huerta-espino J, Barbier H, Rouse MN et al (2014) Genomic

selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7(3):1–10

5 Genomic Selection for Small Grain Improvement 129



Rutkoski JE, Poland J, Jannink JL, Sorrells ME, Breeding P, York N (2013) Imputation of

unordered markers and the impact on genomic selection accuracy. G3 Genes|Genomes|Genet-

ics 3(3):427–439

Sallam AH, Endelman JB, Jannink J-L, Smith KP (2015) Assessing genomic selection prediction

accuracy in a dynamic barley breeding population. Plant Genome 8(1):1–15

Schmidt M, Kollers S, Maasberg-Prelle A, Großer J, Schinkel B, Tomerius A et al (2016)

Prediction of malting quality traits in barley based on genome-wide marker data to assess

the potential of genomic selection. Theor Appl Genet 129(2):203–213

Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y (2016) Multiple-trait- and

selection indices-genomic predictions for grain yield and protein content in rye for feeding

purposes. Theor Appl Genet 129(2):273–287

Smola AJ, Sch€olkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat

breeding program. Plant Genome 6(1):1–9

Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole

genome prediction through approximate Bayesian computation. PLoS One 10(6):e0130855

Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of genomic selection models to

predict flowering time and spike grain number in two hexaploid wheat doubled haploid

populations. G3 Genes|Genomes|Genetics 5(October):1991–1998

Tibshirani R (1996) Regression selection and shrinkage via the lasso. J R Stat Soc B 128:267–288

Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC et al (2014) The accuracy of

prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of

marker-assisted selection and is equally augmented by multiple field evaluation locations

and test years. BMC Genomics 15(1):556
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Chapter 6

Current Status and Prospects of Genomic

Selection in Legumes

Ankit Jain, Manish Roorkiwal, Manish K. Pandey, and Rajeev K. Varshney

6.1 Introduction

Availability of proper nutrition is of extreme importance as malnutrition at an early

age may lead to reduced physical and mental development and limits the capacity to

learn. UN World Food Program has reported that more than 900 million people in

the world do not get nutritious food to eat. Global population has been growing at a

fast pace, and feeding the ever increasing population with nutritious food is

becoming more difficult day by day. This will continue until there is significant

genetic gain by increasing crop productivity with enhanced nutrition. Although

significant efforts have been focussing on enhancing the crop production to feed the

world, still there are famines occurring in several parts of the world (http://www.

latimes.com/world/africa/la-fg-southsudan-famine-20170220-story.html). Consid-

ering this alarming situation, the United Nations and other affiliated organizations

have a challenge to eradicate hunger and malnutrition to ensure food and nutrition

security by responding to nutritional needs, addressing emerging threats and meet-

ing the zero hunger challenge. To overcome this devastating situation of malnutri-

tion, legumes are expected to play significant role, and there is a dire need to

enhance the productivity of these legumes.

Legumes have been cultivated since early civilizations and have been the major

source of nutrition for humans and animals (Power 1987; Graham and Vance 2003;

Varshney et al. 2013a; Rubiales and Mikic 2015; Pandey et al. 2016). Legumes

have been recognized as most valuable food to meet the dietary requirements of

undernourished or underserved global populations (Rebello et al. 2014). Research

has shown that replacement of energy dense foods with legumes offers various
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health benefits (Tarawali and Ogunbile 1995). In addition, legumes have the ability

to fix atmospheric nitrogen, which is vital for improving the soil nutritional profile,

thereby reducing the requirement for nitrogen fertilizers enabling legumes more

suited for crop rotation programs.

Legumes are among the important crop commodities and have high demand

being a major supplement of protein, but the productivity is low compared with the

increasing demand resulting from several biotic (Rubiales and Mikic 2015) and

abiotic stresses (Araújo et al. 2015). The productivity trends for these legumes in

the last five decades suggest very little improvement leading to low productivity in

most of the legumes compared with cereal crops (FAOSTAT 2014). Nevertheless,

several efforts made in these years identified the genetic variations for various traits

of interest in these legumes to enhance the crop productivity. So far, limited success

could be achieved with the application of conventional breeding approaches for

enhancing the crop productivity by overcoming key constraints. It is time to adopt

modern and new technologies for enhancing the rate of genetic gain, so that

improved varieties can be developed faster and more precisely equipped with

essential traits to face the climate and other stress factors.

A paradigm shift is required in approaches and breeding methodologies to

develop superior varieties for the future. In this context, deployment of genomics

tools and technologies has shown great potential in understanding the complex

genetics and breeding problems. It has been realized that genomics-assisted breed-

ing (GAB), with integration of conventional breeding is the key to overcome

conventional breeding limitations (Varshney et al. 2013a). Further in the case of

legumes, a journey from a status of orphan crops with a dearth of genomic resources

a decade ago, to current well-enriched genomic resource crop status, opened the

possibility of deployment of GAB for these crops. Additionally, recent advent of

the next-generation sequencing (NGS) technologies had brought down the sequenc-

ing and genotyping cost significantly. As a result, draft genomes have become

available for several legume crops including model legumes, i.e., Medicago
truncatula (Young et al. 2011), Lotus japonicus (Sato et al. 2008) and crops such

as Glycine max (Soybean) (Schmutz et al. 2010), Cajanus cajan (Pigeonpea)

(Varshney et al. 2012), Cicer arietinum (Chickpea) (Varshney et al. 2013b; Jain

et al. 2013); Lupinus angustifolius (Lupin) (Yang et al. 2013), Vigna radiata (Mung

bean) (Kang et al. 2014) and Arachis duranensis and A. ipaensis (progenitors of
cultivated groundnut) (Bertioli et al. 2016; Chen et al. 2016). Genome sequencing

efforts followed by large scale re-sequencing efforts in each crop led to availability

of millions of structural variations leading to availability of large numbers of

genetic markers (see Varshney et al. 2013a; Bohra et al. 2014; Pandey et al. 2016).

Availability of large scale genome-wide genetic markers led to establishment of

several high-throughput genotyping platforms, offering precise, rapid and cost-

effective solutions to genotyping of large populations. For instance, informative

single nucleotide polymorphisms (SNPs) with high genome density are being

chosen and used to design assays/platforms for legumes such as in Vigna
unguiculata (Egbadzor et al. 2014; Huynh et al. 2013; Lucas et al. 2013, Mu~noz-
Amatriaı́n et al. 2016), Pisum sativum (Deulvot et al. 2010; Bordat et al. 2011;

Tayeh et al. 2015), Lens culinaris (Sharpe et al. 2013; Kaur et al. 2014a), Vicia faba
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(Kaur et al. 2014b), soybean (Lee et al. 2015; Wang et al. 2016), chickpea (Gujaria

et al. 2011; Hiremath et al. 2011; Roorkiwal et al. 2014), pigeonpea (Saxena et al.

2012) and groundnut (Pandey et al. 2017). Other alternative SNP detection systems

like competitive allele-specific PCR (KASPar) (Cottage et al. 2012; Hiremath et al.

2012; Kumar et al. 2012; Saxena et al. 2012; Xu et al. 2012; Fedoruk 2013; Khera

et al. 2013; Sharpe et al. 2013), custom-designed Illumina VeraCode assay

(Deulvot et al. 2010; Roorkiwal et al. 2013, Duarte et al. 2014) have also been

employed for various applications. The development and deployment of different

genotyping platforms provide cost effective and precise genotyping solution to

many legume crops leading to enhanced rate of progress in legume genomics.

NGS-based genotyping by sequencing (GBS) allows simultaneous marker discov-

ery as well as genotyping of the populations even in the absence of a reference

genome (Davey et al. 2011). Among legumes, the GBS approach has been success-

fully used in lentil (Ates et al. 2016) and chickpea (Deokar et al. 2014; Jaganathan

et al. 2015; Verma et al. 2015) for genome-wide SNP discovery and genetic

mapping. Further, whole genome re-sequencing (WGRS) and restriction site-

associated DNA (RAD) sequencing approaches have also been used to capture

the variations in the genome and to understand diversity prevailing in the germ-

plasm (see Varshney et al. 2013b).

GAB aims at to accelerate crop improvement by establishing and exploiting the

relationships between genotype and phenotype. Of the three GAB approaches,

marker-assisted backcrossing (MABC), marker-assisted recurrent selection

(MARS) and genomic selection (GS), MABC has been deployed in most of the

crops and proved to be an effective approach for development of improved varieties

and lines in many legume crop plants (see Pandey et al. 2016). MABC uses markers

linked to agronomical important traits and mainly aims at introgression of a limited

number of alleles from one genetic background (donor) to other (recipient) (Hos-

pital 2005). Further, the improved varieties developed as a result of MABC contain

one or a few alleles at major gene/QTLs from the donor genotype, keeping intact

the rest of the genome from recurrent parent (see Varshney et al. 2013a). For

instance, one “QTL-hotspot” region having QTLs for several drought tolerance-

related root traits was introgressed into JG11, a desi chickpea cultivar from the

drought tolerant line ICC4958 (Varshney et al. 2013c). Similarly introgression lines

developed using MABC for fusarium wilt (FW) and ascochyta blight

(AB) resistance in the background of C214 have shown enhanced resistance for

FW and AB (Varshney et al. 2014). In the case of groundnut, MABC has been

exploited to introgress major QTLs for leaf rust resistance from GPBD 4, a leaf rust

resistant cultivar into ICGV 91114, JL 24 and TAG 24 cultivars (Varshney et al.

2014). MABC along with MAS was further deployed in enhancing the oil quality

by increasing oleic acid in three different groundnut varieties, viz. ICGV 06110,

ICGV 06142 and ICGV 06420 (Janila et al. 2016). In the case of pea, Aphanomyces

root rot resistance QTLs (Lavaud et al. 2015) and frost tolerance QTLs (Hascoët

et al. 2014) were introgressed using MABC into different agronomically important

genetic backgrounds. Likewise in soybean, MABC was deployed successfully to

improve resistance to a defoliating insect (Zhu et al. 2007), bacterial leaf pustule
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resistance (Kim et al. 2008) and to reducing a kunitz trypsin inhibitor (Kumar

et al. 2015).

In order to address the limitations of MABC approach for improving multiple

complex traits, MARS has been proposed for combining major and minor QTLs in

several crops. In the case of MARS, the de novo QTL identification is carried out in

a breeding population derived from the crosses of superior varieties followed by

crossing genotypes with superior alleles for pyramiding targeted QTLs into one or

more genetic backgrounds (Bernardo and Charcosset 2006). However, the MARS

approach was not effective for increasing yield in chickpea (Pandey et al. 2016).

MARS was suggested a method for improvement of drought tolerance in ground-

nut, however more than 100 main and epistatic effect QTLs were reported

because handling these small effect QTLs through MABC was not possible

(Gautami et al. 2012).

GS utilizes phenotypic as well as genome-wide marker data to predict the

genomic-estimated breeding values (GEBV) for selecting the superior lines. In

brief, two populations, training population and testing population (sometimes, it

is part of training population, hence known as validation set as well) are used.

Training population is the one with comprehensive phenotypic data under different

environmental conditions, that is, different locations/seasons/treatments. Genome-

wide genotypic and phenotypic data for the training population are used to train

different statistical GS models. The training population can be subdivided into five

to ten groups, and then, cross validation is used to evaluate the GS models and

prediction accuracy. Trained models, are used to calculate GEBV of a testing or

selection candidate population that has been genotyped but not phenotyped. The

predicted GEBVs are used to select superior lines from the population. One of the

advantages associated with GS is that it reduces the selection cycle length by

eliminating the phenotyping that is required for multiple rounds of selection

hence reducing time and cost, leading to genetic gain.

Genomic prediction is a key to success in GS breeding, and it depends on high-

throughput and high-density genotyping along with accurate, multilocation

phenotyping data. Availability of ample genomic resources and affordable high-

density and high-throughput genotyping in several legumes will facilitate deploy-

ment of GS in legumes. This chapter briefly describes the critical factors determin-

ing the success of genomic selection and summarises the ongoing efforts to deploy

genomic selection in legumes and further the existing possibilities by integrating

available genomic resources to harness the full potential of modern breeding

approaches.

6.2 Critical Factors in Deployment of Genomic Selection

High-precision prediction accuracies are the most critical point that determines the

success of any GS breeding program. Multiple simulation and empirical studies

involving estimation of prediction accuracies rely on multiple factors viz. number
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and type of markers (Chen and Sullivan 2003; Poland and Rife 2012), population

structure (Nakaya and Isobe 2012; Spindel et al. 2015), training population size

(Daetwyler et al. 2008), heritability and architecture of target traits (Zhong et al.

2009; Zhang et al. 2014, 2016) and the relationship between training population and

selection candidates.

Numerous GS models have been proposed to address the diverse requirements

for achieving satisfactory prediction accuracies. Some of the routinely used GS

models include Random Regression Best Linear Unbiased Predictor (RR-BLUP;

Meuwissen et al. 2001; Liu et al. 2008; Zhang et al. 2010), Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani 1996; de los Campos

et al. 2009a), semiparametric strategies (Kinship GAUSS), Bayesian approach

viz. Bayesian Ridge Regression, Bayesian LASSO (de los Campos et al. 2009b;

Legarra et al. 2011), Bayes A (Meuwissen et al. 2001), Bayes B (Meuwissen et al.

2001) and Bayes Cπ (Habier et al. 2011) and machine learning Random Forest

Regression (RFR) (Breiman, 2001), and Support Vector Regression (SVR)

(Drucker et al. 1997). Various comparative accounts have been drawn to assess

the performances of these GS models among different organisms (Moser et al.

2009, Heslot et al. 2012, Resende et al. 2012a, b). Selection of an appropriate GS

model varies from case to case, and hence, multiple models should be considered in

any GS study.

Size of training population is another important factor that has significant impact

on prediction accuracies. Bernardo and Yu (2007) suggested that a minimum size of

the training population to be 100–150 genotypes to obtain the optimum prediction

accuracy. In the case of genetically diverse populations, larger training populations

are required to attain better prediction accuracies (Mujibi et al. 2011). Genetic

relatedness of the individuals in the training and selection populations is known to

affect the accuracies of GS studies (Asoro et al. 2011). Among cattle, GEBVs

estimated within breed were found to be more accurate than the ones estimated

across breeds (Hayes et al. 2009). Price et al. (2010) and Guo et al. (2014)

demonstrated significant reduction in prediction accuracies in structured

populations.

Application of genome-wide markers results in better prediction accuracies

(Meuwissen et al. 2001; Calus and Veerkamp 2007). Higher marker density has

been demonstrated to produce higher genomic prediction accuracy (Zhong et al.

2009; Asoro et al. 2011; Heffner et al. 2011; Poland et al. 2012; Heslot et al. 2013).

Low marker densities in some cases result in lower prediction accuracies, that could

be explained as lower probability of LD between markers and QTLs, because of the

smaller fraction of variation (Solberg et al. 2008). Hickey et al. (2014) reported that

a small number of markers (200–500) and phenotypes (1000) are required in a

closely related biparental population to achieve effective prediction accuracies,

whereas for a population that is unrelated to the selection candidates, a much larger

number of markers and phenotypes are required for the same prediction accuracy. A

large mixed training population set with higher marker density is recommendable to

achieve high prediction accuracies rather than using multiple training populations

representing one germplasm group (Asoro et al. 2011). In another study, De Roos
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et al. (2009) suggested that a high marker density is required if training and

selection populations are highly divergent.

High-throughput genotyping platforms such as DArT, SNP array and GBS are

being used based on different needs. GBS has been deployed in almost all the crops

in the initial genetic analysis as it provides a low cost option to plant species where

there is no reference genome (Poland et al. 2012). A comparison made by Poland

et al. (2012) using GBS for de novo genotyping of testing populations in case of the

wheat (Triticum aestivum L.) genome showed higher prediction accuracies of

0.3–0.5 in comparison to established marker platforms.

Enhancing the marker numbers while imputing the missing marker data has been

reported to improve in prediction accuracies. For instance, Poland et al. (2012)

showed an improvement of prediction accuracies with the genotyping data set

consisting of 35,000 SNPs with up to 80% missing data points, over the prediction

accuracies estimated from 2000 DArT markers with missing data points up to 2%.

In various studies including maize, wheat, barley and forest trees, a positive

relationship between the trait heritability and prediction accuracies has been

observed (Lorenzana and Bernardo 2009; Albrecht et al. 2011; Heffner et al.

2009, 2011; Grattapaglia et al. 2011; Guo et al. 2012; Combs and Bernardo

2013). In another study, Zhang et al. (2014) established higher prediction accura-

cies for less complex traits. Most of the results discussed here form the basis of

ongoing efforts in legume genomic selection and serve as the guidelines for

strategizing the future efforts. GS efforts in different legumes have been described

below in detail.

6.3 Soybean (Glycine max)

Deployment of GS among legumes first started with improving yield and agro-

nomic traits in soybean. A set of 301 elite breeding lines was genotyped with GBS

and phenotyped for grain yield at multiple locations (Table 6.1) (Jarquı́n et al.

2014). By keeping a randomly selected set of 50 accessions for a validation

population, a positive relationship was observed between the size of training

population and prediction accuracy, which began to plateau at a training population

size of 100; however, it continued to increase until the maximum available size. The

study included the evaluation of three different imputation methods to impute the

missing data for soybean. However, not many differences were obtained using these

imputation methods. Although, random forest imputation produced the highest

accuracies, no significant differences were observed. A high prediction accuracy

(0.64) reflected high potential of GS for yield in soybean (Table 6.1) (Jarquı́n et al.

2014).

Further, exploiting the GAB, genotyping data for 31,045 SNPs on 309 soybean

germplasm accessions were used to estimate the prediction accuracy for seed

weight (SW) (Zhang et al. 2016). Five-fold cross validation (CV) was applied by

randomly assigning 20% of the association panel as validation set and remaining
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80% as the training set. Based on the number of SNPs used and the size of training

population, the prediction accuracies were found to vary between 0.75 and 0.87.

Like other studies (Asoro et al. 2011; Jarquin et al. 2014), on size of the training

population, smaller populations resulted in lower prediction accuracies. Another

observation was the prediction accuracy using all 2000 SNPs was found to be same,

even reducing it to 500 SNPs. Higher prediction accuracies were observed com-

pared to Jarquı́n et al. (2014) with same number of markers, similar population size,

and broad sense heritability of traits, pointing towards the impact of genetic

architecture of traits in populations under investigation.

6.4 Alfalfa (Medicago sativa)

Alfalfa is a perennial legume with a long breeding cycle, which limits crop

improvement efforts. Selection cycle duration can be reduced by deploying GS

for complex traits such as yield by using GS for predicting the breeding values

(Li et al. 2015). Prediction accuracies were obtained using phenotyping data for

yield traits during two selection cycles from three locations and using genotyping

data for ~10,000 SNPs (Li et al. 2015). Varying levels of missing values from the

marker data set were used for GS modelling using random forest method for

missing values imputation. Validation of genomic prediction models was

performed by cross validation, in which randomly selected 90% genotypes were

used as training population and 10% was used for testing/validation. Marker data

sets with more missing values resulted in a large number of markers and resulted in

increased prediction accuracies. Prediction accuracies were validated for both the

generation viz. cycle 0 and cycle 1. In individual generation analysis, prediction

accuracies validated within locations were found to be much higher than prediction

accuracies across the locations, possibility due to G � E interaction for biomass

yield. Prediction accuracies of 0.43–0.66 for total biomass yield in a synthetic

alfalfa breeding population showed the underlying potential of further application

of GS in other complex traits (Li et al. 2015) (Table 6.1).

In total, 278 elite genotypes adapted to two different environments with a

different genetic base were genotyped using GBS and phenotyped for dry matter

yield of their densely planted half-sib progenies in separate environments

(Annicchiarico et al. 2015). Prediction accuracies were higher using joint SNP

calling in comparison to separate SNP calling for the two data sets. Random forest

was used for missing marker imputation. A comparison of prediction accuracies

within and across populations was performed with the same set of markers, and it

was observed that within-population prediction accuracies were higher than across-

population prediction accuracies, probably due to a high level of intra-population

variation. Results indicated a greater than three-fold higher prediction for yield gain

per unit time though GS in comparison to conventional selection (Annicchiarico

et al. 2015) (Table 6.1).
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6.5 Pea (Pisum sativum)

In the case of pea, SNP markers were used to predict the phenotypes using different

statistical methods (Burstin et al. 2015). Phenotyping data for two seasons and

genotyping data generated with 331 SNPs on>350 accessions representing various

cultivars, diverse wild types, landraces, etc. were used to estimate the prediction

accuracies (Table 6.1). To minimize the impact of population structure leading to

spurious associations, authors used the approach recommended by Johnson et al.

(2007). Thousand seed weight (TSW) was predicted better than the beginning of

flowering (BegFlo) and number of seeds per plant (NSeed). During the same year,

they reported deployment of a high-density genotyping platform for GS (Tayeh

et al. 2015). Similarly, genotyping data from the GenoPea 13.2 K SNP Array on a

collection of 339 accessions along with the phenotyping data for TSW, BegFlo and

NSeed were used for estimating genomic prediction values using five different

statistical methods (Tayeh et al. 2015). To estimate the impact of the training

population size over the prediction accuracies, different sizes of training

populations were selected randomly with multiple repetitions; however, the test

set was fixed with 99 accessions. Similarly, to assess the effect of marker density on

prediction accuracies, evenly distributed SNP subsets were selected for estimation.

Of five models considered in the study, four showed equivalent performance,

whereas performance of LASSO was less than others. Another highlight of the

study was that no significant differences were observed whether or not the markers

with low minor allele frequency (MAF) were included. The effect of a reduction in

the size of the training population was reduction in accuracy of the prediction

models (Q2). In addition, reducing the marker density but retaining only a single

marker per unique map position did not affect prediction accuracy. However, a

further reduction in the number of markers led to reduced Q2. Q2 values obtained in

Tayeh et al. (2015) were found to be higher than in Burstin et al. (2015).

6.6 Chickpea (Cicer arietinum)

In case of chickpea, there is only one report coming from ICRISAT about deploying

GS breeding and conducting initial studies of standardizing different GS models

(Roorkiwal et al. 2016). In this context, a training population containing 320 elite

chickpea breeding lines consisting of desi and kabuli seed types, from the Interna-

tional Chickpea Screening Nursery (ICSN), was genotyped using the DArTseq

platform. This platform generated 3000 polymorphic markers. Phenotyping data

were generated for yield and yield-related traits viz. seed yield (SY), 100 seed

weight (SDW), days to 50% flowering (DF) and days to maturity (DM), at two

different locations during two different crop seasons for two different treatments,

that is, rainfed and irrigated conditions. Six different statistical models were used to

calculate prediction accuracies and perform five-fold cross validation to estimate
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the prediction accuracies by randomly selecting 80% of the lines for the training

population and the remaining 20% as the testing population (Roorkiwal et al. 2016).

A large variation in prediction accuracies were observed among the traits under-

taken in the study, but overall performance of the models were found to be similar

for every trait. The effect of G � E interaction was observed in the prediction

accuracies of individual traits. For instance, the best prediction accuracy was

observed for SDW (trait least affected by G x E interaction and treatments, etc.);

however, prediction accuracies were lower for SY trait, which is known to be

affected by G � E. The impact of missing marker data and MAF on prediction

accuracies was assessed for 100 seed weight, using nine different combinations of

missing marker data and MAF (including markers in combination with 0%, �10%

and �30% missing data, and 0%, �5% and �10% MAF). The results showed that

the random forest model at 0% missing marker data and �5% MAF combination

had the best prediction accuracy, whereas the Bayes B model with 0% missing

marker data and �10% MAF produced lowest accuracies. This study also assessed

the impact of population structure on GEBV prediction accuracy. Desi and kabuli

seed types were undertaken as separate groups and also grouped together to

calculate prediction accuracies. The results reflected a higher prediction accuracy

using the complete set in comparison to different seed types considered separately,

which might be attributed to a larger population size (Roorkiwal et al. 2016)

(Table 6.1).

6.7 Groundnut (Arachis hypogaea)

In case of groundnut, ICRISAT has taken some initiatives towards deploying GS

breeding and conducting initial studies of standardizing different GS models

(Pandey et al. 2016).While undertaking deployment of GS in groundnut, the

focus of the study was to assess the impact of associated markers on prediction

accuracies for three important traits viz. days to flowering (DF), seed weight

(SW) and pod yield (PY) with different heritabilities (Pandey et al. 2014a, b;

Pandey et al. 2015). Six seasons of phenotyping data for these traits and genotyping

of the reference set with 2356 DArT markers were used for GS analysis (Table 6.1).

When comparing the prediction accuracy for total and associated markers, the

impact of population size and two different approaches were used to estimate the

prediction accuracies. In the first approach, the whole population set was consid-

ered as a training population, and a part of the training population was considered as

validation set to calculate the prediction accuracies. However, in another approach,

the whole population was fractioned into five random smaller sets, of which one set

was used to train the GS model, hence acted as training population, and the rest four

were used as validation sets. Associated markers were compared with using all

markers and the associated marker set showed higher prediction accuracies. How-

ever in a second approach where randomly selected smaller sets were used to

genotype the training population, prediction accuracies obtained with associated
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markers were less predictive than all genome-wide markers. Overall, only marginal

differences were observed between the prediction accuracies estimated using total

genome-wide markers by both the approaches. As expected, the traits with higher

heritability showed higher prediction accuracies in comparison to those with lower

heritability. A positive relation between the heritability and prediction accuracies

was observed, supporting similar observations in maize, wheat, barley, etc.

(Lorenzana and Bernardo 2009; Albrecht et al. 2011; Heffner et al. 2011; Guo

et al. 2012; Combs and Bernardo 2013). So far, the lack of a high-throughput

genotyping platform to generate high-density genotyping data has been the major

obstacle in deploying the GS breeding in groundnut. However, the availability of

genome sequences of a diploid progenitor species and 58 K Axiom_Arachis SNP
(Pandey et al. 2017) array during 2016 will further boost the deployment of GS

breeding in groundnut.

6.8 Conclusions

The majority of legume crops lacked the attention of researchers for generating

genomic resources for a longer time compared with cereal crops. Nevertheless, the

speedy development in NGS technologies and assembly methodologies made

generating genomic resources affordable and technically sound over the time.

The legume crops have made much progress from poor resource to highly enriched

genomic resourced crops. This has provided many opportunities to implement

advanced genomic-assisted breeding. GS breeding has demonstrated its great

value to the ongoing conventional breeding programs of cattle and in some plant

species. This approach is gaining attention from other crop breeders including

legumes as it promises greater genetic gain by improving complex traits in less

time with more precision. Seeing the benefits achieved in the maize and wheat

breeding programs, legume crops are now looking forward to deploying GS breed-

ing to address its some of the most complex problems that are the key obstacles in

achieving higher productivity. Selected studies conducted so far in legumes have

suggested the possibility of achieving high prediction accuracies. These prelimi-

nary studies also indicated the potential role of GS in developing superior varieties

with enhanced genetic gain and ability to overcome various stresses, hence ensuring

food security with higher productivity. Currently, the majority of the legume crops

are in the process of deploying GS in their breeding program; however, it will take a

few years for GS to become routine similar to other major crop breeding programs.
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Chapter 7

Genomic Selection in Hybrid Breeding

Albert Wilhelm Schulthess, Yusheng Zhao, and Jochen C. Reif

Abbreviations

BLUP Best linear unbiased prediction

e-Bayes Empirical Bayes method

GCA General combining ability

GS Genomic selection

LD Linkage disequilibrium

MAS Marker assisted selection

PS Phenotypic selection

RE Relative efficiency

REML Restricted maximum likelihood

RKHS Reproducing kernel Hilbert space

RR-BLUP Ridge regression best linear unbiased prediction

RRS Recurrent reciprocal selection

SCA Specific combining ability

SNP Single nucleotide polymorphism

W-BLUP Weighted best linear unbiased prediction

7.1 Introduction

A “hybrid variety” will be understood as the offspring of a controlled cross of two

or more different (inbred or not) genotypes (Becker 2011). The ultimate goal of

hybrid breeding is the exploitation of the phenomenon known as “heterosis”
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(Whitford et al. 2013), in which the performance of hybrids is superior to the mean

of its parents (Bernardo 2010; Falconer and Mackay 1996). However, there are

additional reasons why hybrid breeding is preferred to line breeding (Longin et al.

2012):

(i) Hybrids have greater yield stability, which is a major advantage for agriculture

in marginal environments.

(ii) Heterozygosity allows the potential combination of dominant major genes in

the hybrid genotype.

(iii) Hybrids offer a built-in plant variety protection system by means of inbreeding

depression when growing farmed-saved seeds.

In the last years, the plant breeding community started to look at genomic

selection (GS) as a promising tool to reduce the costs and to accelerate plant

breeding programs (Desta and Ortiz 2014; Jannink et al. 2010; Zhao et al.

2014b). The main objective of this chapter is to explain the basic concepts of

hybrid breeding and to integrate them with methods of GS. Thereby, it is expected

that these concepts and methods allow the reader to understand the philosophy

underlying GS in hybrid breeding.

7.2 Basic Concepts Relevant to Hybrid Breeding

Even though heterozygosity does not necessarily imply the occurrence of domi-

nance, heterozygosity is fully required for its existence (Bernardo 2010). This

contrasts with the situation observed for fully inbred genotypes used in line

breeding, in which heterozygosity is practically residual (Bos and Caligari 2008)

and, as a result, dominance effects are expected to be negligible or absent within

this particular system. Therefore, dominance will be considered as a particular

feature of hybrid breeding and will receive special attention in the following

sections. Furthermore, heterosis is of special interest to hybrid breeding, and thus,

basic concepts related to this topic will be presented. Finally, the breeding concepts

of combining ability and heterotic groups will be introduced to understand the

philosophy of hybrid breeding.

7.2.1 Dominance

We will first consider a single-locus model to explain the concept of dominance

(Fig. 7.1). Given two homozygous but contrasting genotypes for locus A, coded as

A1A1 and A2A2, the genotypic values, i.e., the effect of the genotype on the

phenotype, of them and their cross A1A2 can be denoted as: MP� a, MPþ a, and
MPþ d, respectively, where MP corresponds to the average of the phenotypes of

parents with genotypes A1A1 and A2A2. The value a stands for the additive effect at
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locus A and is defined as half the difference between the genotypic values of A1A1

and A2A2. When dominance is present at locus A, the value d will differ from zero,

being 0< d< a, d¼ a or d> a, in the cases of incomplete dominance, complete

dominance and overdominance, correspondingly (Falconer and Mackay 1996).

Nevertheless, when crosses are performed, the unit of inheritance corresponds to

an allele and not to the genotype itself; therefore, an allelic value should be defined.

The average effect or value of an allele is defined as the mean of individuals

(expressed as a deviation from the population mean) that inherited that particular

allele provided that the second allele was inherited at random (Falconer and

Mackay 1996). In consequence, the genotypic value (g12) of the cross

A1A1�A2A2 is denoted as

g12 ¼ μþ α1 þ α2 þ δ12, ð7:1Þ

where μ refers to the mean of population in Hardy-Weinberg equilibrium; α1 and α2
are the allele effects of the genes inherited from parents A1A1 and A2A2, respec-

tively; and δ12 represents a residual value, which cannot be explained by the

average allelic effects. This residual term δ12 will be denoted as the dominance

deviation (Falconer and Mackay 1996).

Fig. 7.1 Schematic representation of the dominance effect (d ) at locus A according to different

levels of dominance: no dominance (d¼ 0), incomplete dominance (0< d< a), complete domi-

nance (d¼ a) and overdominance (d> a). A1A1 and A2A2 represent two homozygous but

contrasting parents at locus A, whereas A1A2 corresponds to the offspring of the cross between

them. MP stands for the mid-parent value between parents A1A1 and A2A2, and a is the difference
between parent A1A1 or A2A2 and the MP value at the phenotypic scale

7 Genomic Selection in Hybrid Breeding 151



7.2.2 Heterosis

Quantitative geneticists use the term heterosis to make reference to the superiority

of a hybrid over the mean of its parents, a term known as mid-parent heterosis. In

addition, plant breeders tend to use the term better-parent heterosis, in which the

economic advantage of a hybrid is defined as the superior performance over both of

its parents (Becker 2011). Furthermore, in crops such as wheat or barley, where line

breeding historically played a major role compared with hybrid breeding, plant

breeders often use the concept of commercial heterosis, in which the superiority of

the hybrids is judged based on comparison(s) with the best available inbred line(s)

(Longin et al. 2012). Nevertheless, in this chapter, the term “heterosis” will be

understood, if not explicitly stated otherwise, as midparent heterosis.

The genetic causes of heterosis are still a topic of debate in quantitative genetics.

However, there are two main hypotheses that have been proposed to explain this

phenomenon (Bernardo 2010; Whitford et al. 2013):

(i) Dominance hypothesis:

Hybrids are expected to be superior to their homozygous parents because of

the masking of unfavorable recessive alleles in the heterozygous genotype.

Then, at a single locus level, the heterozygote would be expected to not exceed

the genotypic value of the better parent (0< d� a in Fig. 7.1). Nonetheless, it

is very likely that neither of the homozygous parents carry all positive alleles at

all loci for a particular polygenic trait, implying that the hybrid could be

superior to both parents (Bruce 1910; Collins 1921; Jones 1917; Keeble and

Pellew 1910).

(ii) Over-dominance hypothesis:

Hybrids are expected to be superior to their parents because of the inherent

superiority of the heterozygous genotype over both homozygotes (d> a in

Fig. 7.1). In consequence, a single locus would be enough to explain heterosis

(Crow 1948; East 1936; Hull 1945).

Last but not least, even in the absence or with very low degrees of dominance

effects, a situation which could be expected for autogamous species, heterosis could

be present for a particular trait (Bernardo 2010; Whitford et al. 2013). In this case,

epistasis would play an important role in heterosis (Richey 1942; Schnell and

Cockerham 1992). It is likely that a mixture of the above-mentioned mechanisms

ultimately underlies heterosis (Whitford et al. 2013).

7.2.3 Combining Abilities

Once it is known that heterosis guarantees the successful development of commer-

cial hybrid genotypes for a particular species, plant breeders are in general no more

interested in heterosis itself, but rather in the performance of hybrid genotypes.
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In this sense, hybrid breeders’ efforts and resources will be completely allocated to

the development of hybrids with superior performance, independently of whether

the superior performance is due to heterosis between the parents or because the

parents have a high per se performance (Bernardo 2010).

Hybrid crop studies have shown for complex traits such as grain yield that hybrid

performance cannot be predicted with high accuracy using the per se performance

of the parents (for review, see Becker 2011 and Hallauer et al. 2010). Therefore,

plant breeders normally evaluate and select good parents based on their perfor-

mance as parents of hybrids, which is often referred to as the combining ability of

the parent lines (Hallauer et al. 2010). Given a pool of parent lines to select, the

hybrid performances of their crosses are evaluated. Then, the mean hybrid perfor-

mance of a particular cross Fi�Mj (μFi�Mj
) can be expressed using the combining

abilities of parent lines as follows (Bernardo 2010; Falconer and Mackay 1996):

μFi�Mj
¼ μþ GCAFi

þ GCAMj
þ SCAFi�Mj

, ð7:2Þ

where μ is the mean of all hybrids, whereas GCA and SCA correspond to the

general and specific combining abilities of parents, respectively. The GCAFi
and

GCAMj
are the mean values expressed as deviations from μ of all F1 hybrids having

Fi orMj as one of the parents, correspondingly. However, even ignoring nongenetic

sources of error, there would be a remaining proportion of variability for the hybrid

performance, which could not be explained by the GCA of both parents. This last

term, referred to as SCAFi�Mj
, measures the interaction between parents Fi and Mj

which cannot be accounted by the main effects of their GCAs. The combining

abilities are assumed as independent from each other. Hence, assuming no error

variance, the total variance between hybrids can be decomposed as

σ2GCAF
þ σ2GCAM

þ σ2SCA, if parent lines conform groups by sex or factors (denoted

as F for female or M for male) or alternatively as 2σ2GCA þ σ2SCA, if they do not

configure any kind of groups (Falconer and Mackay 1996).

GCA is often interpreted as the influence of additive effects, whereas SCA as an

indication of genes having dominance and epistatic effects (Hallauer et al. 2010).

Moreover, provided that both parents are completely homozygous inbred lines and

assuming the absence of epistatic effects, σ2GCA and σ2SCA are equal to the variances

due to α (σ2A) and δ effects (σ2D), respectively (Wricke and Weber 1986).

7.2.4 Heterotic Groups and Patterns

A heterotic group is defined as a group of genotypes that display similar combining

ability and heterotic response when crossed with genotypes from other genetically

distinct germplasm groups. In addition, a pair of specific heterotic groups with a

high hybrid performance in their cross will conform a heterotic pattern (Melchinger

and Gumber 1998). It has been suggested that using genetically divergent
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populations is relevant for the establishment of heterotic groups and patterns.

Genetically diverse heterotic groups do not only allow the maximum exploitation

of heterosis and hybrid performance but also lead to a lower σ2D=σ
2
A ratio or,

equivalently, to a lower σ2SCA=σ
2
GCA proportion. The latter implies that hybrid

performance could be predicted using Eq. (7.2) only relying on GCAs of parents

(Reif et al. 2007). Furthermore, because combining ability can be exploited in a

recurrent fashion, breeding efforts within a hybrid breeding program can then be

allocated to the selection of the best parents for each heterotic group within a specific

and previously identified heterotic pattern mainly based on their GCA (Hallauer et al.

2010). This breeding method is known as recurrent reciprocal selection (RRS).

Briefly, provided that at least two heterotic groups or pools are available, genotypes

to be tested of one pool are testcrossed with a small number of random sampled

genotypes that belong to the opposite pool. Therefore, a small number of crosses for

each tested genotype are generated. Later, all seeds pertaining to crosses of a

particular tested parent are harvested and bulked together as a single progeny.

Thus, each parent will be represented by its corresponding progeny in field trials

during the next season. Then, the best parent lines of each pool are recognized and

selected based on the performance of each progeny. Subsequently, selected parents

are inter-mated within each pool and serve as base material for their respective

heterotic group during the next breeding cycle. This whole process is repeated in

parallel for each considered pool (Comstock et al. 1949). The RRS method has been

widely and successfully used for hybrid breeding in crops such as maize, where

heterotic groups and patterns were empirically developed by observingwhich crosses

produced superior hybrid performance and which do not (Tracy and Chandler 2006).

7.3 GS for Hybrid Genotypes

7.3.1 Cross-Validated Prediction Accuracy of GS

Studies on GS often mix the concepts of prediction ability (or predictability) and

prediction accuracy. Nevertheless, prediction ability is expressed as the correlation

between genomic predictions and observed phenotypes, whereas prediction accu-

racy is generally defined as the prediction ability divided by h (the square root of the
heritability h2) for the trait being predicted (Lorenzana and Bernardo 2009;

Riedelsheimer et al. 2012; Zhao et al. 2012b). In this sense, the prediction accuracy

value is interpreted as prediction ability for a trait with heritability equal to 1, and,

in consequence, prediction accuracies are expected to be higher than prediction

ability values. Moreover, because prediction accuracies provide an estimate of the

genotypic correlation, they are more relevant for the estimation of the effects of

indirect selection by means of GS (Zhao et al. 2013b). However and for simplicity,

both terms will be indistinctly used in the present chapter, unless the contrary is

stated.
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Predictabilities of GS are overestimated when the same genotypes used for the

estimation of marker effects are considered for prediction (Krchov et al. 2015; Xu

et al. 2014), even if the observed phenotypes used for the computation of pre-

dictabilities are different from those considered for marker effects estimation

(Krchov et al. 2015). Such approaches to compute predictability do not properly

mimic the situation faced in practice by plant breeders: genomic models will be

trained with an estimation set of genotypes for which phenotypic and genomic data

are available and predictions will be obtained for a group of genotyped, but not

phenotyped, selection candidates, which are in principle independent from the

estimation set. Therefore, validation of the predictability is crucial to show the

actual potential of GS in plant breeding and can be efficiently achieved by means of

cross-validations (Hjorth 1994). In k-fold cross-validation, for instance, the popu-

lation with available genomic and phenotypic data is divided in k subgroups of

similar size. Then, the first k� 1 subgroups are used to predict the effects of

markers, and the genotypes included in the kth subgroup are predicted and compared

with their observed values. This process can be iteratively repeated to obtain robust

estimates for the cross-validated prediction accuracy of GS.

7.3.1.1 Relatedness Plays a Major Role in Determining the Cross-

Validated Prediction Accuracy of GS in Hybrid Breeding

From simulation and experimental plant data studies, it is well known that related-

ness between estimation and validation sets influences the prediction ability of GS

(Gowda et al. 2014; Habier et al. 2007; Meuwissen 2009; Meuwissen et al. 2001;

Mirdita et al. 2015; Technow et al. 2012, 2014; Zhao et al. 2013b, 2015). In this

sense, the more related these two sets are, the higher would be the predictability. In

addition, relatedness will be present at different levels of a plant breeding program,

and, in consequence, this should be taken into account at the moment of performing

GS and interpreting predictability levels. The current section aims to illustrate this

point in detail.

Relatedness and Its Implications on the Predictabilities of GS Within Hybrid

Breeding Programs

Different levels of relatedness can be found within the plant material used in a

hybrid breeding program. This is schematically represented in Fig. 7.2 by consid-

ering factorial single crosses between biparental populations of pools A and

B. First, elite genotypes A1 to A4 (belonging to pool A) and B1 to B4 (coming

from pool B) will be crossed within each pool for the generation of segregating

inbred populations. In Fig. 7.2, the inbred progenies are represented by genotypes

a* to t* and a to t for pools A and B, correspondingly. Nowadays, inbreds can be

obtained in a singlegeneration by means of doubled haploid techniques (Becker

2011). Thus, eight different populations of full-sib lines are generated, with four
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populations for each pool. Subsequently, the generated lines are crossed in a

factorial way with genotypes of the opposite pool to evaluate their performance

as parents. For simplicity, only the two extreme levels of relatedness will be

considered as examples. At one extreme, the most related individuals correspond

to hybrids derived from crossing genotypes of a biparental population with the same

genotype of the opposite pool. For instance, this situation is well represented by

hybrids d*�b and d*�c in Fig. 7.2. At the other extreme, there are less related

hybrids like h*�n and q*�s, in which the genotypes being crossed do not share any
of the elite lines involved in the generation of biparental populations. Nevertheless,

according to Sect. 7.2.4, in RRS, the best parent lines recognized within each pool

Fig. 7.2 Illustration of a hybrid breeding program using a factorial cross-design between bipa-

rental populations of two pools (namely pools A and B). Genotypes A1 to A4 and B1 to B4 represent

different elite lines belonging to pools A and B, respectively. Circles correspond to the different

families generated by crossing elite lines within each pool (denoted by the � symbol), whereas

genotypes a* to t* and a to t are the corresponding progenies from these crosses. Progenies

connected to the same node (family) are assumed as full-siblings. The squares in the center of the

figure represent the 400 possible hybrids obtained between inbreds a* to t* and a to t of pools A
and B, correspondingly. The empty white squares denote hybrids with available phenotypic data,

whereas the shaded ones indicate missing hybrids
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will be subsequently used as founder material of the upcoming segregating inbred

populations during the next breeding cycle. Presumably, it is possible that in some

occasions, two or more of these good parent lines belong to the same biparental

cross (for example, genotypes p and q in Fig. 7.2), which implies that the elite pool

available to serve as parent lines of the different segregating populations would not

always include completely unrelated individuals (Bernardo 1994). Moreover, it is

also anticipated in Fig. 7.2 that the phenotypes of some hybrids will be missed

(represented as shaded squares). This could be because of some evaluation plots

that were missed during the crop season, an insufficient number of seeds available

for field testing, a limited budget for the plant breeding program that ultimately

limited the number of hybrids tested, among other reasons. Furthermore, this

unbalanced scenario provides a very good opportunity to perform GS for the

individuals without phenotypic records. For example, implementing GS to perform

within-population prediction could allow plant breeders to partially testcross a

particular segregating population and then to predict the untested individuals with

a model whose marker effects were estimated using the tested population fraction

(Krchov and Bernardo 2015; Windhausen et al. 2012). This particular breeding

scenario can be found in an illustrative manner in Fig. 7.2 by crossing individuals

from the A1 � A2 population with the tester m of the opposite pool, being three of

the five possible hybrids available for marker effects estimation. Later, perfor-

mances of the two remaining hybrids, i.e., b*�m and e*�m, could be predicted

by GS. Accordingly, within-population prediction schemes have been applied in

GS studies to obtain cross-validated prediction accuracies for testcross performance

of biparental populations in crops like rye (Wang et al. 2014), sugar beet

(Würschum et al. 2013) and maize (Albrecht et al. 2011; Krchov and Bernardo

2015; Lorenzana and Bernardo 2009; Zhao et al. 2012a). Prediction within families

is a closed system and corresponds to the most favorable scenario for GS, which

results in the maximum attainable GS predictabilities (Crossa et al. 2013). This is

mainly because of the combination of high levels of relatedness between estimation

and prediction sets plus the long-range haplotype blocks within families leading to

high linkage disequilibrium (LD) between markers and the loci with true effects on

traits (Albrecht et al. 2011) in addition to the absence of population structure

expected for this situation (Crossa et al. 2013). However, this approach has two

main limitations:

(i) If the estimated marker effects are used for prediction of selection candidates

that are less related to the estimation population, there is a potential risk of drop

in predictability (Albrecht et al. 2014; Habier et al. 2007; Meuwissen 2009;

Meuwissen et al. 2001; Wang et al. 2014).

(ii) Predictability levels in within-population prediction could be constrained by a

limited number of genotypes used for marker effect estimation (Albrecht et al.

2014; Lehermeier et al. 2015; Meuwissen 2009). In this sense, increasing the

size of the estimation set is expected to create more recombination events that

allow an increased resolution for marker effects estimation, ultimately leading

to a model with superior predictability for progenies, which are several gener-

ations away from the estimation set (Lorenz 2013).
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Therefore, it has been proposed that a way to obtain robust marker effect

estimates would be to combine the data from different biparental populations in a

single and comprehensive estimation set followed by within-population prediction

(Albrecht et al. 2014; Lehermeier et al. 2015; Wang et al. 2014; Zhao et al. 2012a).

For instance, all the phenotypic data available in Fig. 7.2 could be used to estimate

marker effects, and the remaining missing hybrids would be predicted by

GS. Nevertheless, in some occasions, it seems that marker � population interac-

tions (when marker effects are not the same in all populations) could negatively

impact the predictabilities obtained by approaches like this one (Albrecht et al.

2011, 2014; Lehermeier et al. 2015; Zhao et al. 2012a). In general, neither of the

following GS approaches could improve predictabilities compared with a model, in

which marker effects are simply estimated across testcross populations: including a

general population effect, excluding markers with significant marker � population

interaction (Zhao et al. 2012a), or modeling population-specific marker effects

considering a variance–covariance structure between populations (Lehermeier

et al. 2015). Presumably, the different levels of relatedness expected in breeding

programs allow keeping acceptable within-population predictability levels when

marker effects are assumed constant across populations, and all these populations

constitute a big combined estimation set. In consequence, this last GS approach

could be a good choice for robust marker effects estimation due to its simplicity.

Cross-Validation Methods Considering Different Levels of Relatedness

in Factorial Crosses

In complete factorial mating designs, a� b combinations are possible, with a and

b being the number of lines belonging to pools A and B, respectively (Fig. 7.3,

based on schemes from Schrag et al. 2009). A basic scheme to perform cross-

validation in factorial crosses is the leave-one-out method (Fig. 7.3a). In this cross-

validation scheme, a� b – 1 hybrid genotypes are used as the estimation set to

predict the remaining (a� b)th genotype. Then, after obtaining genomic predictions

for all the a� b hybrids in an iterative manner, these values are compared with the

observed ones (Jacobson et al. 2014). The concept behind this method is the

prediction of a small number of unintentionally missing hybrids that in practice

failed (Schrag et al. 2009). Predictions of testcross performance in maize (Jacobson

et al. 2014) and of sunflower hybrid performance (Reif et al. 2013) correspond to

some examples in which this cross-validation method has been applied. In practice,

however, a large number of early candidate lines of each pool will be only tested as

parents with the best lines of the opposite group because the evaluation of an

extremely large number of hybrids from the a� b combination becomes unfeasible

(Schrag et al. 2009). This situation is better represented by the L-shaped cross-

validation scheme (Fig. 7.3b), which has been used as the T2 validation sets in

simulated and experimental data for testcrosses in maize (Technow et al. 2012,

2014) and experimental data for factorial crosses of diversity panels in wheat

(Gowda et al. 2014; Mirdita et al. 2015; Zhao et al. 2015).
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In the leave-one-out and L-shaped schemes, both parents of the predicted

hybrids in the validation set were already evaluated as parents for other hybrids

in the estimation set (hybrids denoted with the number 2 in Fig. 7.3a, b). Never-

theless, although estimation and validation sets are related through common parents

in these situations, this does not mean that these cross-validation schemes imply

overoptimistic outcomes and should be avoided. This is mainly because both

Fig. 7.3 Methods of cross-validation for genomic selection (GS) in factorial crosses: (a) Leave-

one-out, (b) L-shaped, (c) Chess-board-like and (d) Mixed scheme. In all cases, two pools of

parent lines (namely pool A and B) were considered. Each square corresponds to a different hybrid

between pools A and B. The empty white squares represent hybrids with available phenotypic data

(estimation set), whereas the shaded ones correspond to different hybrids being predicted by GS

(validation sets). The degree of shading denotes the level of expected relatedness between

estimation and validation sets (the darker the shading, the higher the relatedness), according to

the number of parent lines shared between the hybrids of the estimation and validation sets.

Numbers 0, 1 and 2 indicate none, one or two parents in common between estimation and

validation sets, respectively (based on schemes presented by Schrag et al. 2009)
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methods were designed for scenarios in which predictions rely mainly on related-

ness and plant breeders want to profit from it. In contrast, when the objective is the

introduction of new parent lines into the breeding program, the level of relatedness

between the estimation set and the predicted selection candidates is expected to

decrease. In this situation, only one or none of the parents (hybrids represented by

the numbers 1 and 0 in Fig. 7.3c, correspondingly) will be shared between the

estimation set and the predicted hybrids (Schrag et al. 2009). Therefore, LD should

play a more important role than relatedness for the predictability of GS at this point

(Habier et al. 2007). The chess-board-like scheme mimics this scenario (Fig. 7.3c)

and corresponds to the T1 and T0 validation sets used in simulated and experimen-

tal data for factorial crosses in maize (Technow et al. 2012, 2014) and experimental

data for factorial crosses in wheat (Gowda et al. 2014; Mirdita et al. 2015; Zhao

et al. 2015). In addition, a cross-validation scheme with no shared parents between

estimation and validation sets has been used for GS in wheat (Miedaner et al. 2013;

Zhao et al. 2013a, b, 2014a). Last but not least, in reality, plant breeders would use

the same estimation set for all the above-mentioned prediction scenarios; in con-

sequence, a mixed cross-validation scheme (Fig. 7.3d) will be expected in hybrid

breeding programs (Gowda et al. 2014; Mirdita et al. 2015; Technow et al. 2012,

2014; Zhao et al. 2015). Interestingly, prediction accuracy levels for hybrid grain

yield performance of the T2 validation set were similar in maize (Technow et al.

2014) and wheat (Zhao et al. 2015), but even though prediction accuracies

decreased when shifting from T2 to T0 validation sets in both species, this decay

in prediction accuracy was much more pronounced in wheat than in maize. One

possible explanation for this phenomenon is that Zhao et al. (2015) based their

conclusion on a data set concerning factorial crosses of a diversity panel in wheat,

whereas Technow et al. (2014) relied on factorial crosses of maize lines belonging

to a RRS program. As it was already mentioned in section “Relatedness and Its

Implications on the Predictabilities of GSWithin Hybrid Breeding Programs”, lines

belonging to a particular pool can be closely related in a RRS program, implying

that there could be some degree of residual relatedness between the estimation and

the T0 validation sets in this particular breeding scheme.

7.3.1.2 Discrepancies Between Test and Target Environments Are

Expected to Impact the Cross-Validated Prediction Accuracy

of GS

Genotype � environment interaction is expected to negatively impact predictabil-

ities of GS when the target environments for the selection candidates differ from the

environments considered to test the genotypes used in the estimation set (Albrecht

et al. 2014; Krchov et al. 2015; Schulz-Streeck et al. 2013; Wang et al. 2014;

Windhausen et al. 2012). Furthermore, even though the target locations could be

exactly the same between the estimation set and the selection candidates, the

genotype � year interaction can still have a potential negative impact on pre-

dictabilities (Krchov et al. 2015; Wang et al. 2014). Moreover, different
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agronomical practices can also derive in different environments. For instance,

phenotypic data coming from field trials with high levels of nitrogen fertilization

could be used as estimation set for genomic predictions of selection candidates

targeted to marginal environments agriculture. In consequence, across-environment

cross-validation schemes have been applied to mimic this situation in studies on GS

for testcross performance in maize (Albrecht et al. 2014; Krchov et al. 2015;

Schulz-Streeck et al. 2013; Windhausen et al. 2012; Zhang et al. 2015) and rye

(Wang et al. 2014). Nevertheless, although these approaches are expected to give

more realistic predictability estimates than cross-validating with the same group of

environments used for the estimation set, most studies on GS for hybrid crops have

ignored this issue (Krchov et al. 2015). Hopefully, future studies would consider

across-environment cross-validation approaches more often, leading to potentially

lower but more realistic predictability values for GS.

7.3.2 Accommodating Dominance Effects Within the GS
Model

Because dominance is a particular feature of hybrid genotypes, the accommodation

of dominance effects within the GS models will receive special attention in this

section.

7.3.2.1 Model Based on Marker Effects

A general model for GS including the dominance component is defined as follows

(Zhao et al. 2013b):

Y ¼ 1nμþ ZAaþ ZDdþ e, ð7:3Þ

where Y is the n-length vector of phenotypic values pertaining to a particular trait,

1n corresponds to a n-length vector of ones, μ stands for the general mean, whereas

ZA and ZD are n�m design matrices for additive and dominance effects of m bi-

allelic markers, respectively. The elements of ZA are coded as 0, 1, 2 according to

the homozygous (first allele), heterozygous and homozygous (second allele) states,

whereas the elements of ZD are 0, 1 for the homozygous and heterozygous states at

the ith locus, correspondingly. The m-length vectors a¼ (a1, a2, . . .am)
T and d ¼

(d1, d2, . . .dm)
T contain the elements ai and di, which denote the additive and

dominance effects for the ith marker, respectively, whereas e¼ (e1, e2, . . .en)
T is a

vector of length n and ej is the residual for the jth genotype (Zhao et al. 2013b).

Equation (7.3) could be modified and alternatively expressed in terms of combining

abilities (Piepho 2009).
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Ridge Regression Best Linear Unbiased Prediction

An efficient way to obtain the estimate of μ (bμ) along with the predictions for a (â)
and d ðd̂Þ of Eq. (7.3) is by means of Ridge Regression-Best Linear Unbiased

Prediction (RR-BLUP) (Whittaker et al. 2000). In this method, it is assumed that ai
and di marker effects follow the normal distributions N 0; σ2a

� �
and N 0; σ2d

� �
,

correspondingly, being σ2a and σ
2
d the constant variances of additive and dominance

effects, respectively (Zhao et al. 2013b). A normal distribution is assumed for the

residuals ej � N 0; σ2e
� �

, where σ2e is the residual variance of Eq. (7.3). Then, the

solution of the mixed-model equations (Henderson 1984), allowing the obtainment

of bμ, â, and d̂ , corresponds to:

bμ
â

d̂

264
375 ¼

n 1TnZA 1TnZD

ZT
A1n ZT

AZA þ λAIm ZT
AZD

ZT
D1n ZT

DZA ZT
DZD þ λDIm

264
375
�1

1TnY

ZT
AY

ZT
DY

264
375, ð7:4Þ

where Im stands for an identity matrix of size m and the shrinkage parameters λA
along with λD are accordingly defined as the ratios λA ¼ σ2e=σ

2
a and λD ¼ σ2e=σ

2
d

(Meuwissen et al. 2001; Zhao et al. 2013b). The λ terms (λA and λD) prevent over
fitting the model and thus allow the estimation of effects for all markers (Piepho

2009).

Bayesian Approaches

Briefly, Bayesian approaches provide a description of how existing knowledge is

modified by experience. The central concept within Bayesian learning is to com-

bine what is already known about the statistical ensemble before the data are

observed—such knowledge is represented in terms of prior probability distribu-

tions—with the information coming from the data. As a result, a posterior distri-

bution is obtained, from which inferences are made using standard probability

calculus techniques, and the outcomes are interpreted probabilistically (Sorensen

and Gianola 2002). In GS, Bayesian statistics are mainly used to relax some of the

assumptions used within the genomic prediction models (Jannink et al. 2010). In the

pioneering study of Meuwissen et al. (2001), two Bayesian methods were intro-

duced, namely BayesA and BayesB. The linear model at the level of the data is

equal to that used for the RR-BLUP approach in Eq. (7.3), excepting for the

assumptions made for σ2a and σ2d (Meuwissen et al. 2001; Zhao et al. 2013b).

BayesA

In RR-BLUP, σ2a and σ
2
d are assumed as common variances for all loci effects, being

this assumption not necessarily realistic for all genetic architectures. BayesA
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(Meuwissen et al. 2001; Zhao et al. 2013b) gives solution to this problem because

each of the i loci has its own additive (σ2ai) and dominance (σ2di) variances. Then, the

prior probability distributions for σ2gi in BayesA (denoting g the a or d effects in

Eq. (7.3), irrespectively) correspond to a scaled inverted chi-square distribution in

the way χ�2 vg; S
2
g

� �
, where vg and S2g are the degrees of freedom and the scale

parameter associated to g, respectively. However, these prior probability distribu-

tions will lead to posteriors which cannot be directly used for estimation, because

they would be conditioned to the unknown value of g (Meuwissen et al. 2001). In

consequence, samples are obtained from full-conditional posterior distributions

using methods like Gibbs sampling. The full-conditional posterior for

g corresponds to a normal distribution N ZT
Gi

ZGi
gi þ eð Þ=~θ i; σ2e=~θ i

� �
, being

~θ i ¼ ZT
Gi
ZGi

þ σ2e=σ
2
g, whereas ZGi

denotes the ith column of ZA or ZD from

Eq. (7.3), irrespectively. For σ2gi , the full-conditional posterior is a scaled inverted

chi-square distribution denoted as g2i þ vgS
2
g

� �
χ�2
vgþ1 (Zhao et al. 2013b).

BayesB

There could be many loci that do not contribute to the variation on traits with less-

complex genetic architectures (loci withσ2gi ¼ 0); however, this is not considered by

BayesA (Meuwissen et al. 2001). RR-BLUP and BayesA always fit all markers in

the GS model, even if they truly have zero effects on the trait under study. Although

these markers without true effects are expected to have small predicted effects, they

would add noise to the genomic predictions (Habier et al. 2011). In contrast,

BayesB considers a proportion π of markers whose σ2gi ¼ 0 and (1� π) with

σ2gi > 0. Nonetheless, this new consideration makes the usage of Gibbs sampling

unfeasible; hence, the Metropolis-Hastings algorithm has been recommended for

sampling (for a detailed explanation refer to Meuwissen et al. 2001). In addition, in

Sect. 7.3.1.1, it was already mentioned that relatedness between estimation and

validation set influences the prediction ability of GS, and, interestingly, a simula-

tion study showed that BayesB is less impacted by the genetic relatedness among

individuals than RR-BLUP because the former model uses better the information

due to LD (Habier et al. 2007).

BayesCπ

BayesA and BayesB treat π as known, with π¼ 0 for BayesA and an arbitrary π
value within the range 0 and 1 for BayesB (Habier et al. 2011; Meuwissen et al.

2001), which is in contradiction with the concept of Bayesian learning (Habier et al.
2011; Sorensen and Gianola 2002). To give solution to these drawbacks, Habier

et al. (2011) proposed a new Bayesian approach called BayesCπ, which treats a

common σ2g and π as unknown with a scaled inverted chi-square and a uniform (0,1)

distribution as prior probability distributions, respectively. An extension for
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BayesCπ accommodating dominance effects is described in detail by Zhao et al.

(2013b). Based on results using simulated and animal breeding data, Habier et al.

(2011) recommended BayesCπ for routine applications because of its relatively

short computational time among other advantages.

7.3.2.2 Model Based on Genotypes and Relationship Matrices

Provided that normally the number of loci (or molecular markers) surpasses the

number of genotypes, models based on marker effects are expected to be less

computationally efficient than a model based on genotypic effects (Hayes et al.

2009). By far, the most applied genotype-based method of GS is the one proposed

by VanRaden (2007, 2008). In the literature, this method is often referenced as

GBLUP (Guo et al. 2014; Habier et al. 2011; Su et al. 2012) because of its

similarities with the original best linear unbiased prediction (BLUP) method for

breeding value prediction using pedigree records information presented by Hen-

derson (1984). Considering only additive effects and that the sum ZAa from

Eq. (7.3) corresponds to the breeding value of individuals (VanRaden 2008),

Hayes et al. (2009) demonstrated that GBLUP is equivalent to the mixed models

methods based on markers effects (like RR-BLUP) when the matrix of relationships

among genotypes is calculated from marker profiles. Consequently, there is no

reduction in the prediction accuracy of breeding values by shifting to GBLUP. The

extension of GBLUP for the inclusion of dominance effects is originally defined in

the classical work of Henderson (1985), and it has been lately implemented using

marker-estimated relationship matrices (Da et al. 2014; Su et al. 2012). Hereafter,

we will refer to this method as DGBLUP. In Henderson’s nomenclature, the linear

model underlying DGBLUP looks like Eq. (7.3), but in this case, ZA and ZD are the

design matrices for the a and d vectors of additive and dominance genetic effects of

n genotypes, correspondingly. In addition, a and d vectors follow normal distribu-

tionsN 0;A∗σ2A
� �

andNð0,D∗σ2DÞ, respectively, where σ2A and σ2D are now the total

additive and dominance variances, correspondingly. Regarding A and D, they now

correspond to the additive (VanRaden 2007, 2008) and dominance (Da et al. 2014;

Su et al. 2012) marker-estimated relationship matrices, respectively. Then, the

mixed models equations (Henderson 1985) for the DGBLUP are

bμ
â

d̂

264
375 ¼

n 1TnZA 1TnZD

ZT
A1n ZT

AZA þ A�1σ2e=σ
2
A ZT

AZD

ZT
D1n ZT

DZA ZT
DZD þ D�1σ2e=σ

2
D

264
375
�1

1TnY

ZT
AY

ZT
DY

264
375: ð7:5Þ

Subsequently, the variance component estimates along with the predictions of

genetic effects in Eq. (7.5) are simultaneously computed by the restricted maximum

likelihood (REML) algorithm. Moreover, based on relationship matrices, the mixed

models for hybrid prediction can be modified to accommodate random terms such

164 A.W. Schulthess et al.



as the GCA effects of parents and their corresponding SCAs. For instance, Bernardo

(1994, 1996) used a relationship matrix termed S for the SCA component, which

was expressed as the direct product between the relationship matrices pertaining to

the GCAs of two heterotic groups (Stuber and Cockerham 1966). In recent years,

the GCA plus SCA model using marker-estimated relationship matrices has been

implemented in the context of hybrid genomic prediction (Massman et al. 2013;

Piepho 2009).

7.3.2.3 Classical Mixed Models or Bayesian Approaches?

There are no GS methods that are suitable for all genetic architectures and/or

breeding schemes. Therefore, the superior performance in terms of predictability

of different GS approaches relies always on the context of their applications.

Interestingly, most studies on GS for hybrid genotypes have relied on classical

mixed model predictions by means of GBLUP (Albrecht et al. 2011, 2014; Guo

et al. 2013; Massman et al. 2013; Riedelsheimer et al. 2012; Technow et al. 2014;

Zhao et al. 2015) and RR-BLUP (Gowda et al. 2014; Guo et al. 2013; Hofheinz

et al. 2012; Jacobson et al. 2014; Lorenzana and Bernardo 2009; Massman et al.

2013; Miedaner et al. 2013; Mirdita et al. 2015; Riedelsheimer et al. 2012;

Windhausen et al. 2012; Würschum et al. 2013; Zhao et al. 2012a, b, 2013a, b,

2014a). In contrast, lesser studies have applied Bayesian approaches for hybrid

performance prediction (Lorenzana and Bernardo 2009; Miedaner et al. 2013;

Mirdita et al. 2015; Technow et al. 2014; Zhao et al. 2013a,b, 2014a, 2015). One

reason for these observations could be that the understanding and implementation

of classical mixed model methods is much more straightforward than for Bayes

approaches, which is also facilitated by the large number of user-friendly REML

and BLUP packages available (Guo et al. 2014). However, as it was already

mentioned in section “BayesB”, Bayesian methods like BayesB, which assign

effects equal to zero to a proportion π of markers, are expected to be less impacted

by the relatedness between estimation and validation sets than methods conferring

nonzero effects to all markers available, like RR-BLUP. This particular issue is not

trivial if one takes into consideration that the information from genetic relationships

is halved with each additional generation and that LD information is more persis-

tent through time (Habier et al. 2007). Nevertheless, in situations in which pedigree

relatedness can be efficiently exploited by plant breeders, RR-BLUP could be

valuable for predicting hybrid performance (Zhao et al. 2013b, see Sect. 7.3.1.1

for a detailed explanation). Moreover, in practice, the joint evidence of studies on

hybrid performance prediction has been inconclusive about the superior predict-

ability of Bayesian over classical mixed models approaches (Lorenzana and

Bernardo 2009; Miedaner et al. 2013; Mirdita et al. 2015; Technow et al. 2014;

Zhao et al. 2013a, b, 2014a, 2015). For instance, although it was expected that

predictions obtained by means of BayesCπ outperformed RR-BLUP predictions for

the medium-complexity trait Fusarium head blight resistance in hybrid wheat, both

methods performed equally (Mirdita et al. 2015). The joint evidence suggests, in
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consequence, that both groups of methods are in practice relatively equivalent, and

also that GS methods must be ultimately selected based on their implementability

and understandability, which makes methods like GBLUP and RR-BLUP the

preferred ones.

7.3.2.4 Benefits of Modeling Dominance Effects

Studies based on simulated data have shown that the higher the relative importance

of dominance versus additive effects is, the more beneficial (in terms of predict-

ability) the inclusion of dominance over additive effects within the GS models

would be (Guo et al. 2013; Nishio and Satoh 2014; Technow et al. 2012; Zhao et al.

2013b). Nevertheless, evaluating the benefits of including, in general, any effect

within the GS model using empirical data is challenging because often it is not

exactly known which of the following situations is being confronted when no

benefits are observed: a) some assumptions of the GS methods that include the

particular effect evaluated are disrupted; thus, the methods cannot accurately

capture the true effect; b) the GS methods can accurately model the effect under

evaluation, but the influence of the true effect is extremely low and c) the GS

methods cannot accurately capture the effect evaluated, and the influence of the true

effect is also negligible. A study on genomic predictions for grain yield in a

population of 1604 wheat hybrids found some predictability improvements by

using DGBLUP over GBLUP (Zhao et al. 2015), but these benefits were not

observed by means of RR-BLUP and Bayesian approaches in a population

compromising 90 wheat hybrids (Zhao et al. 2013b). In addition, genomic pre-

dictions considering additive plus dominance effects were not superior to predicting

frost tolerance exclusively by additive effects in hybrid wheat, presumably because

of the low contribution of dominance compared with additive effects for this trait

(Zhao et al. 2013a). However, Guo et al. (2013) observed using experimental data

for different traits in an F1 maize population that, in general, the benefits of

including dominance over additive effects were more pronounced when the differ-

ences between broad-sense and narrow-sense heritabilities for the traits were

higher. They expressed broad-sense heritabilities as the ratio of the additive plus

dominance variances estimates to the total phenotypic variance, whereas in the

narrow-sense heritability, only the additive variance was considered as the numer-

ator. Therefore, their findings suggest that the more different were these two values,

the higher was the importance of the dominance variance and, in consequence, the

higher the benefits from including dominance over additive effects. Moreover, in

general, accommodating dominance over additive effects has been also beneficial

in GS for plant height and heading date in a hybrid population of wheat (Zhao et al.

2014a). In conclusion, joint evidence of simulated and experimental data studies

points out that modeling dominance over additive effects is beneficial when dom-

inance effects have an important contribution to the total genetic variation

(Bernardo 1994; Gowda et al. 2013; Guo et al. 2013; Nishio and Satoh 2014;

Reif et al. 2013; Technow et al. 2012; Zhao et al. 2013a, b, 2014a, 2015).
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Estimation of genetic parameters such as variance components could give some

insights for the relative contribution of dominance effects to total genetic variance,

which also highlights the importance of phenotypic analyses as a decision tool

before performing GS.

7.3.3 Beyond the Modeling of Dominance

7.3.3.1 Accommodating Epistasis

Using simulated data, Guo et al. (2013) showed that epistasis can bias the pre-

dictions achieved by GS models based solely on additive and dominance main

effects. In the past, models including epistasis were presumably avoided because of

their high computational burden, especially if a large number of markers was

available (Jiang and Reif 2015). Nevertheless, this limitation has also encouraged

scientists to search for more efficient GS methods accommodating epistasis. In

principle, GBLUP can be extended for the inclusion of any order of epistatic

interactions by approximating the epistatic genomic relationship matrix of the

interaction effects with the Hadamard product operation (denoted as #) between

the relationship matrices of main effects (Henderson 1984; Jiang and Reif 2015; Su

et al. 2012). For instance, additive� additive, additive� dominance and additive�
additive � dominance interactions are represented as A #A, A #D and A #A #D,

respectively. Hereafter, this method will be called EGBLUP (Jiang and Reif 2015).

Another approach for GS considering epistatic interactions corresponds to the semi-

parametric reproducing kernel Hilbert space (RKHS) regression method (Gianola

et al. 2006; Gianola and van Kaam 2008). Recently, it has been demonstrated that

both RKHS and EGBLUP considering epistasis are similar approaches and, as a

result, reach comparable levels of predictability (Jiang and Reif 2015). Solely

taking into account the additive effects and their interactions, the RKHS method

is at first sight similar to the additive effects GBLUP (VanRaden 2007, 2008), but a

K matrix is used instead of the original A matrix. The K matrix is a n� n kernel

matrix whose entries are functions of marker profiles of pairs of genotypes in the

way K¼ (k(xi, xj)), where k ( ) represents a particular function (e.g., the Gaussian

kernel function), whereas xi and xj are the rows of the marker profile matrix

pertaining to genotypes i and j, correspondingly (Jiang and Reif 2015). Further-

more, Bayesian approaches have been also to accommodate epistatic interactions,

like the empirical Bayes (e-Bayes) method, in which marker additive main effects

and second-order epistatic interactions are calculated based on estimates of true

marker variances (Lorenzana and Bernardo 2009). However, only few studies have

used GS models taking into account epistatic interactions for hybrid performance

prediction. Lorenzana and Bernardo (2009) observed that ignoring epistatic inter-

actions within the GS model leads to higher predictabilities than accommodating

epistasis by means of e-Bayes for different traits in maize testcross populations. In

addition, two recent crop plant studies considered additive, dominance and their
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second-level interactions in GS for hybrid performance by means of EGBLUP

(Xu et al. 2014; Zhao et al. 2015). Xu et al. (2014) concluded that in general, adding

dominance plus epistasis over the main additive component did not help to improve

genomic predictions for hybrid performance in rice, whereas Zhao et al. (2015) only

observed some benefits from including the dominance over the additive component,

but there was no further accuracy improvement from including epistasis in hybrid

wheat. Moreover, both authors partly attributed this issue to the fact that the A and

D matrices are correlated with the relationship matrices of epistatic effects; hence,

the two former matrices already capture much of the variation for hybrid prediction.

Nonetheless, Xu et al. (2014) observed by means of simulated data that for large

estimation sets, there is a benefit in prediction by including the epistatic effects

within the model, reflecting the need of large population sizes to accurately take

advantage of epistasis prediction in GS. In consequence, more studies on hybrid

performance prediction are needed to explore the benefits and limitations of GS

approaches, which accommodate epistatic effects.

7.3.3.2 Other GS Approaches

W-BLUP Method

Recently, a new GS method, named weighted best linear unbiased prediction

(W-BLUP), was designed to properly incorporate the information of previously

known functional markers (Zhao et al. 2014a). Alternatively, Bernardo (2014)

suggested modeling known functional markers as fixed effects. In the study of

Zhao et al. (2014a), it was observed that the predictability values for heading date

obtained by means of marker assisted selection (MAS) using the functional marker

Ppd-D1 were higher than by performing GS based on 1280 single nucleotide

polymorphism (SNP) markers in a hybrid wheat population. Nevertheless, when

both types of information were combined using W-BLUP, predictability values

surpassed the ones obtained by MAS or GS alone. In consequence, W-BLUP holds

the promise to bridge the gap between MAS and GS when known functional

markers are available.

Multiple-Trait GS

Simulation studies have shown that prediction accuracies for a trait with relatively

low heritability can be improved when a genetically correlated trait with higher

heritability is included within a multiple-trait GS model (Guo et al. 2014; Hayashi

and Iwata 2013; Jia and Jannink 2012). However, plant studies exploiting these

benefits are scarce, and, to the best of our knowledge, there are only a couple of

studies evaluating the advantages and limitations of these methods for hybrid

prediction. In a study concerning two testcross populations of rye (Schulthess

et al. 2016), grain protein content predictions markedly benefited from the
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availability of grain yield information in one of the two testcross populations. These

benefits were even more pronounced when a few phenotypic records were available

for the predicted target trait, but many more phenotypic records were at hand for the

indicator trait during the estimation of marker effects. In addition, Lehermeier et al.

(2015) performed genomic predictions in ten different testcross populations of

maize by means of a multiple-trait GS approach called MG-GBLUP, which con-

sidered each testcross population as if it were a different trait. Nevertheless,

MG-GBLUP was, in general, less than or equivalently accurate to estimating

marker effects by means of a much simpler GS model that assumes the same

marker effect for all testcross populations. In the future, more studies are needed

to evaluate in detail the routine implementation of multiple-trait GS approaches for

hybrid breeding.

Metabolomic Prediction

In the omics era, metabolomics corresponds to the systematic study of metabolite

profiles pertaining to a particular process at the organism, tissue or cell level.

Metabolomics provides a tool for measuring biochemical activity directly by

monitoring the substrates and products transformed during metabolism (Patti

et al. 2012). Nowadays, the availability of massive and automated analytical

platforms has facilitated the routine generation of this high dimensional data

(Patti et al. 2012; Ward et al. 2015). The weak correspondence between the

information of genetic and metabolic profiles obtained from leaves of maize

(Riedelsheimer et al. 2012) and wheat (Zhao et al. 2015) suggests that both

information sources content connected but, at the same time, different biological

information (Riedelsheimer et al. 2012). In this sense, it is expected that metabolite

profiles condense genetic and environmental influences together (Feher et al. 2014).

The basic model of metabolomic prediction is similar to Eq. (7.3) but omitting the

dominance term and respecifying the design matrix for a, corresponding this last

term now to the vector of metabolite effects. Accordingly, the new Z matrix for

metabolite effects contains the normalized metabolite levels instead of the �1, 0, 1

nomenclature originally used for additive effects of bi-allelic markers

(Riedelsheimer et al. 2012). However, it should be noted that metabolite profiles

from parental lines interact in a very complex way to determine the metabolite

profiles of hybrids. For example, a particular metabolite found at low levels in

parents A, B and C can be at high and low levels in the hybrids A � B and B � C,

respectively. This could be a consequence of variation in a second metabolite at the

average parental levels of crosses A� B and B� C, implying that metabolite levels

cannot be regarded as independent from each other. In addition, the influence of

dominance between parental metabolite profiles can make the situation even more

complex (Feher et al. 2014). Riedelsheimer et al. (2012) performed metabolomic

prediction for different traits in maize testcrosses by using 130 leaf metabolite

profiles and reported prediction accuracy levels that were only slightly lower than

those achieved based on highly dense genomic profiles of 38,019 SNP markers.
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Nevertheless, the results of this comparison should be carefully interpreted, because

accuracies of metabolomic prediction were previously normalized by the repeat-

ability of metabolite profiles, leading to an overestimation of the predictabilities

achieved by metabolomic prediction. Lately, Zhao et al. (2015) found that pre-

dictions for grain yield based on 34 leaf-extracted metabolomic profiles reached

substantially inferior prediction accuracies compared with GS based on 17,372 SNP

markers in hybrid wheat. Furthermore, Riedelsheimer et al. (2012) and Zhao et al.

(2015) observed no benefits in terms of prediction accuracies from combining

genomic and metabolomic information into a single prediction model. In the future,

further studies on prediction by means of models that simultaneously integrate

genomic, transcriptomic, proteomic, and metabolomic information would be

needed; thus, helping to understand how these different layers of biological infor-

mation interact to shape the complex phenotypes of hybrid plants.

Considering Marker � Environment Interactions

It was already mentioned in Sect. 7.3.1.2 that genotype � environment interactions

have the potential to negatively impact the predictability of GS. Considering this

issue and by means of single-stage RR-BLUP approaches, Schulz-Streeck et al.

(2013) partitioned the additive marker effects of Eq. (7.3) into main and marker �
environment interaction effects for testcross performance prediction in maize. In a

first attempt, the authors predicted untested genotypes in tested environments (i.e.,

environments already included within the estimation set), and they observed that

GS predictabilities improved when shifting from a model with only additive effects

to a model including main additive plus marker � environment interaction effects.

Moreover, similar results were in general obtained by Zhang et al. (2015) for

testcross performance prediction of grain yield considering well-watered and

water-stressed environments, although the advantages of accommodating genotype

� environment interactions within the GS model were less pronounced for days to

anthesis and plant height prediction. Nevertheless, Schulz-Streeck et al. (2013) also

found that these benefits disappeared when predictions were performed for untested

genotypes in untested environments, highlighting the importance of across-

environment cross-validation schemes to evaluate the prospects of GS in a more

realistic manner. More studies should be conducted in this research area to elucidate

if GS models including marker � environment interactions or approaches that

dissect these interactions by considering environmental covariates (Heslot et al.

2014) have promising applications in hybrid crop species.
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7.3.4 Implementation of GS in Hybrid Breeding

So far, the reader has probably realized that most studies on GS for hybrid

performance in plants have mainly focused on the factors influencing the predict-

ability of GS. For sure, this vast amount of knowledge has helped researchers and

the plant breeding community in how to carefully interpret predictability values

according to different biological and breeding scenarios and also in how to improve

it when possible. Lately, studies have started to extensively discuss the implemen-

tation of GS in plant breeding. Because prediction within families corresponds to

the most favorable scenario for the implementation of GS (Crossa et al. 2013),

implementation studies have mainly focused on plant breeding programs based on

biparental populations (Endelman et al. 2014; Krchov and Bernardo 2015; Longin

et al. 2015; Lorenz 2013; Riedelsheimer and Melchinger 2013). In general, the

authors concluded that GS should be considered as a tool to assist plant breeding in

a similar way as MAS; hence, it is not intended to completely replace phenotypic

selection (PS). Therefore, as already stated in section “Relatedness and Its Impli-

cations on the Predictabilities of GS Within Hybrid Breeding Programs”, the main

idea would be to partially testcross a particular biparental population and then to

predict the remaining individuals using a model previously trained with the tested

population fraction (Krchov and Bernardo 2015; Windhausen et al. 2012). Here lies

the paradigm shift of GS because the purpose of phenotypic evaluations turns from

exclusively guiding PS toward additionally calibrating statistical models for GS

(Lorenz 2013). Subsequently, selection is supposed to be simultaneously performed

in, both, estimation and prediction sets (Endelman et al. 2014; Krchov and

Bernardo 2015; Riedelsheimer and Melchinger 2013). Certainly, one general ques-

tion that arises in studies on GS implementation is: Given a limited budget, what is

the optimal allocation of resources between estimation and prediction sets that

maximizes the ratio of selection gains per unit of time between GS and pure PS? In

principle, the essence of this problem can be represented by means of a mathemat-

ical model, in which a particular objective function, which is subjected to some

constraints, aims to be maximized based on the optimization of some decision

variables according to certain parameters. Moreover, this dissected representation

can potentially clarify the interrelationships between the different components of

the problem, thus, facilitating its comprehension and analysis (Hillier and

Lieberman 2001). In fact, GS implementation has been already described as a

nonlinear optimization problem (Endelman et al. 2014; Riedelsheimer and

Melchinger 2013). Relying on the available literature along with our own concepts

and criteria about the topic, the current section of this chapter aims to introduce the

problem of GS implementation for a testcrossed biparental population pertaining to

a hybrid breeding program.
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7.3.4.1 Towards a Successful Implementation of GS in Hybrid

Breeding

Objective Function: The Relative Efficiency of GS over Pure PS

The objective function is the particular value aimed to be maximized

(or minimized) throughout the optimization process and should be one of the first

model components to be identified or defined. This value measures the performance

expressed as a mathematical function of the decision variables (Hillier and

Lieberman 2001). For instance, plant breeders rely on the selection gain (ΔG) to

compare and measure the performance of different selection methods. In principle,

ΔG is the difference of the mean genetic value between the offspring of the selected

fraction and the whole population before selection. This value can be predicted as:

ΔG ¼ ihσG, ð7:6Þ

being i the selection intensity, whereas h and σG denote the square roots of the

heritability (h2) and the genetic variance of the population (σ2G), correspondingly. In
truncation selection (one-tail selection), the i term is a function of the proportion of

individuals being selected according to a particular threshold located away from the

mean phenotype of the original population before selection (Falconer and Mackay

1996). Moreover, h2 is expressed as follows:

h2 ¼ σ2G

σ2G þ σ2
G�E

Nr: Env þ σ2e
Nr: Env�Nr: Rep

, ð7:7Þ

where σ2G�E and σ2e correspond to the genotype � environment interaction and

residual variance components, respectively, whereas Nr. Env and Nr. Rep are the

number of environments and replicates used in balanced field tests, correspondingly

(Holland et al. 2003; Piepho and M€ohring 2007). Then, h is interpreted as the

accuracy of PS (Endelman et al. 2014; Lorenz 2013; Riedelsheimer and Melchinger

2013), whereas the accuracy of GS can be mechanistically decomposed as:

GS accuracy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λh2

λh2 þ 1

s
, ð7:8Þ

being λ ¼ NE

Me
, where NE is the number of genotyped and phenotyped individuals in

the estimation set and Me is the effective number of loci (Daetwyler et al. 2008).

Nevertheless, Eq. (7.8) is presented here only for explanatory purposes because the

relationship between NE and GS accuracy should be ultimately determined in an

empirical manner based on previous available genomic and phenotypic data from

plant breeding institutions (Endelman et al. 2014; Krchov and Bernardo 2015). On

top of this, considering that selection would be simultaneously performed within,
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both, estimation and prediction sets, the overall ΔGGS of plant breeding programs

based on GS should be a function of the ΔG achieved by GS for the genomic

predicted fraction in addition to the ΔG within the estimation set (Endelman et al.

2014; Krchov and Bernardo 2015; Riedelsheimer and Melchinger 2013). In this

sense, because genomic predictions can also be obtained for the genotypes

conforming the estimation set at no extra costs, these predictions could also be

combined with the phenotypic data in a molecular selection index (Endelman et al.

2014; Lorenz 2013; Riedelsheimer and Melchinger 2013) as originally proposed for

MAS more than two decades ago by Lande and Thompson (1990). Therefore,

accuracies of selection within the estimation and prediction sets will be differen-

tially denoted as rE and rP, correspondingly. Consequently and according to

Eq. (7.6), ΔGGS can be expressed as:

ΔGGS ¼ SE
S

� �
iErE þ S� SEð Þ

S

� �
iPrP

� �
σG, ð7:9Þ

where S and SE are the number of genotypes selected from the whole population and

the estimation set, respectively, whereas iE and iP are the selection intensities within
the estimation and prediction sets, correspondingly (Endelman et al. 2014;

Riedelsheimer and Melchinger 2013). A similar formulation to Eq. (7.9) was

presented by Krchov and Bernardo (2015). Ultimately, the relative efficiency

(RE) of GS compared with pure PS should be maximized. This metric is defined

as the ratio between ΔGGS and the previously maximized ΔG for pure PS given the

same assumptions or conditions. In this sense, ΔGGS should be compared with the

bestΔG attainable by means of pure PS in the same biparental population. Thus, the

breakeven point for a successful GS implementation is when the RE of GS reaches

unity because values above this threshold reflect a better competitiveness for GS

over pure PS (Endelman et al. 2014; Krchov and Bernardo 2015; Riedelsheimer and

Melchinger 2013). Last but not least, because GS has the potential to accelerate

plant breeding programs by reaching more selection cycles than pure PS within the

same amount of time, more important than the direct comparison between ΔGGS

and ΔG of pure PS is the contrast between their ΔG per unit of time (Longin et al.

2015). Examples of GS implementation with more than one stage of selection can

be found elsewhere (Endelman et al. 2014; Longin et al. 2015; Lorenz 2013);

however and for simplicity, we will approach the optimization problem by solely

considering one-stage selection.

The Main Constraint: The Budget

The constraints are any restrictions on the values that the decision variables can

take, and they are mathematically expressed by means of inequalities or equations

(Hillier and Lieberman 2001). In other words, restrictions basically shape the space

of all possible (optimal and suboptimal) solutions for the optimization problem.
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In consequence, the basic constraint for any plant breeding strategy would be that

its costs do not exceed the available budget. In the context of GS, this is well

represented by the following inequation:

NECE þ N � NEð ÞCP � Budget, ð7:10Þ

where CE and CP correspond the costs of estimation and prediction sets, respec-

tively, whereas N is the total number of individuals in the biparental population

before selection. Costs and budget can be conveniently expressed in plot equiva-

lents or yield plot units, that is, the cost of phenotyping one yield plot (Endelman

et al. 2014; Riedelsheimer and Melchinger 2013). Moreover, costs can be further

decomposed as follows: CP corresponds to the costs of producing a line (CL) plus

the costs of genotyping (CG), whereas CE¼CL+CG+CF, being CF the cost of the

field trials using a number of plots determined by the Nr. Env�Nr. Rep combina-

tion. In this sense, Eq. (7.10) represents the trade-off existent in GS between the

number of plots used for field evaluations (phenotyping intensity) and NE (Lorenz

2013). In parallel, the constraint for pure PS is reduced to: N(CL+CF)� Budget,

reflecting that the trade-off between the number of individuals and phenotyping

intensity is also present in pure PS (Endelman et al. 2014). Similar formulations of

costs can be found in studies on GS implementation (Endelman et al. 2014; Krchov

and Bernardo 2015; Longin et al. 2015; Lorenz 2013; Riedelsheimer and

Melchinger 2013).

So far, studies on GS implementation have considered, either explicitly or

indirectly, that the quantity of seed pertaining to the F1 of the testcross will be

enough to perform sufficient field trials. However, the production of F1 seeds is a

well-known constraint in hybrid breeding, especially in naturally self-pollinated

species (Longin et al. 2012; Whitford et al. 2013). Plant breeding institutions give

solution to this problem, for instance, by increasing the planting area for the parent

line(s), which in turn results in higher costs (Longin et al. 2012). Nevertheless, GS

could allow the prediction of testcross performance for parent lines, which do not

produce enough F1 seeds for testing in field trials. Being this an advantage for GS

over PS, future studies on GS implementation should consider a seed quantity

constraint to explore this potential benefit of GS.

Decision Variables

Decision variables are a quantitative representation of the decision to be made.

They conform the group of all quantities that will be changed (optimized) along the

space of solutions (determined by the constraints) during the optimization process

and, ultimately, leading to the maximization (or minimization) of the objective

function at their optimum values (Hillier and Lieberman 2001). According to the

objective function and constraint presented, the decision variables for the optimal

allocation of resources in GS correspond to:
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(i) NE: provided N was previously optimized for pure PS, optimizing NE would

elucidate which proportion of the population should be, both, phenotyped and

genotyped, or only genotyped to maximize the RE of GS considering a

particular budget and other assumptions.

(ii) iE and iP: given N and NE along with preknown properties of the probability

distributions for the testcross performances of estimation and prediction sets,

the optimization of iE and iP would determine the fraction of top-ranking

genotypes that should be selected within each respective set (Burrows 1975;

Falconer and Mackay 1996). Ultimately, this optimized fraction would set the

optimum values for SE and (S-SE), indicating the number of individuals that

should be selected from estimation and prediction sets, respectively, and

allowing the maximization of the RE of GS according to the particular budget

and other assumptions.

(iii) Nr. Env and Nr. Rep: the optimization of the Nr. Env�Nr. Rep combination

will indicate the phenotyping intensity within the estimation set, which is

necessary to maximize the RE of GS taking on count the particular budget

limitation and other assumptions.

Parameters

Parameters are the constants (coefficients and right-hand sides) present in the

constraints as well as in the objective function (Hillier and Lieberman 2001) and,

in contrast to the decision variables, they are assumed as fixed known values. The

main parameters considered in the present formulation of GS implementation

problem are the budget and costs (CL, CG and CF). However, because of the

uncertainty associated to the actual values of parameters, assigning the proper

quantities to them is a very delicate task. In consequence, it would be important

to investigate how the solution for the optimization problem would change if other

possible values were assigned to the parameters. Accordingly, sensitive parameters

will correspond to all those constants whose value cannot be modified without

changing the optimal solution of the problem. Thus, special care should be allo-

cated to the assignment of values for those particular parameters (Hillier and

Lieberman 2001). For instance, even though it has been shown that there is a

great amount of flexibility in choosing the optimal NE and phenotyping intensity

levels that maximize ΔGGS (Lorenz 2013; Riedelsheimer and Melchinger 2013),

this flexibility for the optimal solution strongly relies on the available budget

because smaller budgets will restrict the set of possible solutions that maximize

ΔGGS in one-stage selection (Riedelsheimer and Melchinger 2013). In addition, the

budget and CG will determine whether or not GS can compete with pure PS

(RE � 1), with higher budgets (Krchov and Bernardo 2015; Riedelsheimer and

Melchinger 2013) and lower CG (Endelman et al. 2014; Krchov and Bernardo 2015;

Riedelsheimer and Melchinger 2013) having in general positive effects on the RE

of GS. Furthermore, the influence of CG on RE of GS becomes more important with

smaller budgets (Riedelsheimer and Melchinger 2013). Therefore, studies on GS
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implementation often speculate about a future decline of CG, implying a more

favorable scenario for GS implementation (Endelman et al. 2014; Krchov and

Bernardo 2015; Riedelsheimer and Melchinger 2013).

Last but not least, Me, σ
2
G, σ

2
G�E and σ2e are estimated values according to a

particular population, test environments and target trait. Like any estimator, they

would rely on the sample used for estimation, and hence, their values would be also

subjected to uncertainty. Nevertheless, the impacts of changes in these parameters

on the decision-making process in GS have been less studied. Briefly, high values of

Me would reflect the polygenic nature of a particular trait (Falconer and Mackay

1996). Assuming differentMe values for grain yield testcross performance in maize,

Riedelsheimer and Melchinger (2013) observed thatMe has a negative influence on

the RE of GS, being this trend more pronounced when low budgets are available.

Additionally, these authors also studied the influence of the importance of σ2G�E and

σ2e relative to σ
2
G (σ2G�E : σ2G and σ2e : σ

2
G ratios, respectively) on the solutions for the

optimal allocation of resources in GS. Under the assumption of a high budget, and

that CG is less than the cost of phenotyping one plot, Riedelsheimer and Melchinger

(2013) showed that the RE of GS stays nearly constant at �1.3 regardless of the

assumed value for σ2G�E : σ2G and also, that increasing the σ2e : σ
2
G ratio has a positive

effect on the RE of GS. The authors attributed their observations to the differences

in reallocation of resources between GS and pure PS that concomitantly occurred

when varying σ2G�E : σ2G and σ2e : σ
2
G. Nonetheless, future studies should evaluate if

these last observations hold truth for a less favorable scenario with more severe

budget limitations and current genotyping costs.

7.3.4.2 Model Recalibration After a Successful GS Implementation

in Early Breeding Stages: A Proposal

It was already highlighted in section “The Main Constraint: The Budget” that the

decisions of plant breeders are always restricted by a limited budget; hence, they

will always confront a trade-off between phenotyping intensity and the number of

individuals being tested in field trials. Moreover, from section “The Main Con-

straint: The Budget”, it is also concluded that even ignoring budget limitations, the

limited quantity of seed belonging to the F1 of a testcross would be an additional

constraint for the phenotyping intensity of the testcross performance, especially

during early breeding stages. In addition, it becomes clear from Eq. (7.7) that a

restriction in phenotyping intensity is expected to decrease the potentially achiev-

able h2, and, according to Eq. (7.8), this limitation in h2 will constrain the GS

accuracy at any given NE. Nevertheless, as a plant breeding program proceeds, the

phenotyping intensity will be increased for the individuals being selected. Thus,

incorporating this high-quality phenotypic data into the estimation set has the

potential to improve prediction accuracies for future lines from (or very close

related to) the biparental population in which GS was originally implemented.

Consequently, new marker effects will be obtained by using updated estimation
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sets, allowing the recalibration of GS models. At the same time, new phenotypic

data will be available for those genotypes whose early selection relied only on

genomic predictions and this new information could be used to increase the size of

the estimation set, which in turn would further improve GS accuracy according to

Eq. (7.8). However, there are two important points that should be taken on count

before proceeding with the GS recalibration:

First, there is an intrinsic issue of selection in plant breeding which has being

ignored within the present proposal for GS recalibration: plant breeders want to

increase the frequency of favorable alleles within the selected set (Bernardo 2010),

leading to a decrease in σ2G and to the misrepresentation of alleles with negative

effects for a particular trait in the selected fraction. In this sense, updating the

estimation set with the new information would mostly increase the phenotyping

intensity for favorable alleles and, at the same time, would increase the frequency of

favorable alleles within the estimation set. The impacts of PS within the estimation

set on GS accuracy were studied by Zhao et al. (2012b) using grain yield testcross

performance data of maize. They observed that using one-tail selection combined

with high selection intensities within the estimation set led to a substantial decrease

in GS accuracy compared with unselected estimation sets of the same size. In

addition, they found that unselected estimation sets with low phenotyping intensi-

ties reached higher GS accuracies than estimation sets with much higher

phenotyping intensity but subjected to one-tail selection and high selection inten-

sity. Interestingly, their results also showed that estimation sets subjected to

bidirectional selection (two-tails selection) in combination with high selection

intensities reached superior GS accuracies than unselected estimation sets of the

same size. Moreover, they concluded that just a small proportion of low performing

genotypes (10–15% of the total fraction selected from both tails) would be enough

for this purpose. Nevertheless, updating the estimation set by means of this last

strategy implies a paradigm shift of selection within plant breeding programs and,

consequently, should be further analyzed under the eye of the “economics” of GS

for its wide acceptance by the plant breeding community.

Second, a simulation study showed that GS predictability does not always

coincide with the accuracies at the individual level (Clark et al. 2012), implying

that even though GS could reach high predictability or accuracy levels (according

to the definitions in Sect. 7.3.1), some genotypes within the predicted set would be

very accurately predicted and others would not. Prediction accuracy at the genotype

level is often termed as “reliability,” and it has been extensively used in the field of

animal science (Clark et al. 2012; Mrode 2005; VanRaden 2008) and later in the

context of GS in hybrid crops (Akdemir et al. 2015; Rincent et al. 2012). Further-

more, the simulation study of Clark et al. (2012) also showed that the reliability is

highly associated to the maximum level of relatedness between estimation set and

the particular genotype being predicted. In other words, highly reliable predictions

are expected for genotypes, which were very well represented by a few or even by a

single extremely closely related genotype(s) within the estimation set. Additionally,

the reliability criterion has been used to identify individuals that are best suited for
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the conformation of the estimation set within diverse populations of maize

(Akdemir et al. 2015; Rincent et al. 2012). In this sense, both studies in maize

demonstrated that, in general, estimation sets that maximize the average reliability

of the prediction set lead to higher GS predictabilities or accuracies than estimation

sets constructed by random sampling. Nonetheless, the impacts of using the reli-

ability of predicted genotypes as threshold criteria for updating the information

within the estimation set of biparental populations have not been evaluated so far;

therefore, studies will be needed to elucidate if reliabilities are also useful to further

improve or maintain accuracies in the context of GS recalibration.

7.3.4.3 Final Words for the Implementation of GS in Hybrid Breeding

GS implementation in hybrid breeding is challenging because of the number of

variables and imponderables involved in the optimal allocation of resources

between estimation and prediction sets that influence the RE of GS under a given

budget constraint. The current section was intended to give readers the basic

conceptual framework of this problem considering biparental populations. It is

anticipated that the problem formulation presented here is a simplification of the

real picture; hence, readers are encouraged to make use of available decision

support software (e.g., Endelman et al. 2014; Riedelsheimer and Melchinger

2013) to get further insights into how decision variables and parameters influence

the RE of GS. Furthermore, readers with intermediate to advanced programming/

planning skills are invited to elaborate their own models to find an optimal solution

for the GS implementation problem. Preferably, the GS implementation should be

planned and evaluated in an integrated manner and from a multidisciplinary point

of view, considering together the skills and knowledge of plant breeders, scientists,

technicians, process engineers and managers. In the future, once several plant

breeding institutions and companies have already implemented GS, people should

start to analyze successful and unfortunate cases of study to gain the empirical

knowledge that is necessary to bridge the gap between theory and practice for the

GS implementation problem in hybrid breeding.
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Chapter 8

Opportunities and Challenges to Implementing
Genomic Selection in Clonally Propagated
Crops

Dorcus C. Gemenet and Awais Khan

8.1 Clonally Propagated Crops

Clonal, or vegetative, crops are asexually propagated, that is, successive mitoses of

specialized plant tissues develop into a new clonal population from a single mother

plant (Bisognin 2011). Asexual propagation is used in all important root and tuber

crops, many forage crops, almost 75% of perennial fruit trees, wooden ornamentals,

many cut flowers, pot plants, and forest trees (Miller and Gross 2011; Denis and

Bouvet 2013; Grunenberg et al. 2009), and presents a number of advantages. It can

lead to increased levels of heterozygosity, fix favorable combinations of important

traits, eliminate undesirable crosses and the resulting deleterious effects, and allow

easy identification and propagation of favorable mutations. It is also an efficient

method for maintenance, conservation, and in vitro and ex vitro propagation of

cultivars with no viable seeds (Bisognin 2011). Despite these benefits, breeding of

clonally propagated crops also includes several challenges. Most clonal fruit and

forest trees have long juvenile phases, extensive outcrossing, widespread hybridi-

zation, limited population structure, multiple origins, and ongoing crop–wild gene

flow, and have suffered from mild domestication bottlenecks due to clonal propa-

gation (Miller and Gross 2011). Many clonally propagated crops are polyploid,

which enables them to adapt to rapidly changing environment by maintaining

increased heterozygosity, thus reducing inbreeding depression (Griffin et al.

2011). The high natural heterozygosity means that these crops are not amenable
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to self-pollination due to high inbreeding depression. These effects lead to

decreased second- and third-order favorable interactions and a reduced frequency

of trigenic and tetragenic loci interactions, as well as the possibility to accumulate

masked deleterious recessive alleles (Bradshaw 1994). Overdominance and epi-

static interactions at a given locus of a heterozygous genotype can mask deleterious

effects, but they can emerge after selfing. Genetic studies in polyploid crops are

often further complicated by the presence of different ploidy levels. Cultivated

potato (Solanum sp.) could be diploid (2n ¼ 2x), triploid, (2n ¼ 3x), tetraploid,
(2n ¼ 4x), or pentaploid (2n ¼ 5x) (Spooner et al. 2010); cultivated sweet potato

(Ipomoea batatas) is hexaploid (2n ¼ 6x) (Jones 1965); and the ploidy level of

sugarcane is yet unknown (Gouy et al. 2013), whereas Musa species are triploid

(2n ¼ 3x) (Simmonds 1962). In these crops, genetic analysis is complicated by the

presence of multiple alleles at a given locus, mixed inheritance patterns, association

between ploidy and mating system variation, among others (Dufresne et al. 2014).

The presence of several segregating alleles at each locus of highly heterozygous

clonally propagated crops make their breeding challenging. For example, in potato,

an autotetraploid, four alleles per loci could be segregating, meaning that crossing

two tetra-allelic potatoes could result in 32 genetically distinct genotypes with

different levels of trait expression, different from the original parents. Therefore,

potato breeders need to evaluate large populations to find at least one genotype with

the desirable allelic combinations (Jansky et al. 2016). Expanding to the six

different alleles possible for autohexaploid sweet potato, the number of genotypes

to be screened will be far too large to find desirable trait combinations from

multiple different loci. In this chapter, we discuss conventional breeding methods

and their challenges, the potential of genomic selection (GS), challenges for its

implementation with some examples, and outlook of GS as a population improve-

ment strategy in clonal crops.

8.2 Breeding Strategies for Clonal Crops

According to Simmonds (1979), breeding clonal crops requires a crossing step to

provide sexual seeds, as a break from the normal clonal propagation, and to create

genetic variation that can be exploited during selection in subsequent cycles, before

reverting to clonal selection. This crossing step involves two heterozygous parents

to produce clonally propagated hybrids and is a distinctive feature in these crops.

The resulting hybrids are therefore heterozygous and heterogeneous, and can

display all forms of genetic effects (additive, dominance, overdominance, and

epistatic; Ceballos et al. 2015). The cross is followed by phenotypic mass selection

or recurrent selection. These conventional approaches are both time and resource

consuming, as they involve crossing in one generation, planting of true seed plants

in another generation, and observation of clones from selected true seed plants over

several generations and different environments, to evaluate genotype-by-environ-

ment (G x E) interactions (Gruneberg et al. 2009). Another challenge in breeding,
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selection, and conducting yield trials for clonally propagated crops is producing

enough planting material. Due to their heterozygosity and self-incompatibility,

selfing may result in inbreeding depression, and crossing to make seed can take a

long time. Therefore, vegetative propagules are produced and then used for field

and selection trials. However, each plant can only make a fixed number of vegeta-

tive propagules, and multiplication can thus be slow and costly. For example, it

takes about 45 years from a cross to have enough planting material for replicated

multienvironment field trials in cassava (Ceballos et al. 2015), whereas in tree fruits

the breeding cycle may extend to a dozen years or more (van Nocker and Gardiner

2014). Another challenge, in several clonally propagated crops, is maintaining

disease-free (“clean” “good seed quality,” or low disease) stocks (clones) during

the clonal-increase phase; otherwise, trait evaluations could be significantly

affected. Genome-based selection, especially at the seedling stage of true seed

plants, can be an important approach towards expediting the breeding process by

shortening the lengthy selection cycle, removing the need of several subsequent

clonal selection cycles and reducing the time required for multiplication (Myles

2013). Resources are also saved by maintaining fewer genotypes for phenotypic

evaluation. Genome-based selection can be achieved through using either one of

two methods: Firstly, conventional marker-assisted selection (MAS) using diag-

nostic markers linked with a few qualitative and quantitative trait loci (QTL) with

large effects; secondly, GS using genomic estimated breeding values (GEBVs)

predicted by high-density genome-wide molecular markers to select superior prog-

eny (Meuwissen 2007) or combining both (Spindel et al. 2015). Conventional

selection (phenotypic selection, PS) is usually based on multiple traits. In both PS

and GS, a multistep selection and/or indexes could be developed to filter and select

clones with the best combinations of traits of interest (Fig. 8.1).

8.3 Key Features of Genomic Selection

Genomic selection (GS) is a method of selection proposed by Meuwissen et al.

(2001) using genome-wide genotypic data to predict the phenotypic performance of

a genotype by estimating its breeding value or total genetic value, referred to as

GEBV. In the GS process, statistical models are used to estimate the relationship

between phenotypes and genotypes in a subset of the population normally referred

to as a training population. The models developed are then tested with a validation

set, which is a subset of the population phenotyped in the same environment(s) as

the training set, a process called cross-validation. Validated models are then applied

to a breeding population with only genotypic data to determine GEBV of the

genotypes, and finally, elite individuals with desirable trait combinations are

selected based on these GEBVs only (Nakaya and Isobe 2012). Several statistical

models have been proposed for GS, each with different assumptions on marker

effects and the relationship between the markers. However, for a given predictive

model to perform well for a given trait, it has to follow the continuum of the genetic
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architecture of that trait (Poland and Rutkoski 2016). For quantitative traits, mixed

models such as genomic best linear unbiased prediction (G-BLUP) and ridge-

regression best linear unbiased prediction (RR-BLUP) are widely used, as they

mimic the conventional best linear unbiased prediction (BLUP) normally used in

phenotypic selection (PS). Several Bayesian models work better for traits that fall

in-between quantitative and qualitative, that is, they are regulated by a few major

genes. These include BayesA, BayesB (Meuwissen et al. 2001), BayesCπ (Habier

et al. 2011), and Bayessian LASSO (least absolute shrinkage and selection operator;

Park and Casella 2008). However, all these methods assume additive genetic

effects, which is not the case for clonally propagated crops. For clonal crops,

these methods would be adequate if GS was only applied to select for new parents

for the crossing step, in which case, additive genetic variation would be important.

However, for variety development in clonal crops, both additive and nonadditive

genetic effects are important. Methods that model both additive and nonadditive

effects would then be required if GS was to be successfully deployed for variety

development in these crops (Azevedo et al. 2015). For these crops, models such as

reproducing kernel Hilbert space (RKHS; Gianola and van Kaam 2008) and random

forest (RF; Breiman 2001), which have been shown to capture both additive and

nonadditive effects, could be applied. The predictive ability for each model is

estimated as the correlation between the observed breeding values and the predicted

breeding values from GS, whereas the prediction accuracy is calculated by dividing

the predictive ability by the mean heritability of the validation set (Poland and

Rutkoski 2016). As such, this prediction accuracy is affected by several factors.

Fig. 8.1 (a) A conventional breeding scheme for clonally propagated crop includes crossing,

selection, and yield trials. (b) A genomic-assisted scheme for clonally propagated crop includes

crossing, selection, and yield trials
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These include the size of the training set: the larger the training set, the better the

accuracy of prediction; the heritability of the trait: the higher the heritability of the

trait, the better the accuracy; relationship between training and breeding

populations: the closer the relationship, the better the accuracy; linkage disequilib-

rium (LD) between the marker and the trait: the higher the LD, the better the

prediction accuracy. The LD between markers and QTLs (traits) also determines

the number of markers required to perform GS: plants with rapid LD decay, like

outcrossing species, require more markers, whereas less markers may be required

for inbreeding species (Spindel et al. 2015; Nakaya and Isobe 2012). Other factors

reported to affect prediction accuracy include population structure (pedigree),

environment, data redundancy, epistasis, type of cross-validation (i.e. fivefold,

tenfold, Jacknife), GS prediction models and accuracy calculation approach. GS

requires a clear definition of the breeding scenario in which selection will be

implemented and a detailed analysis of the population structure. Larger training

sets that are closely related to the target breeding and selection populations give

higher prediction accuracy. GS studies in maize have shown that a major portion of

the prediction accuracy estimated using prediction models developed with

unrelated populations comes from population structure and is affected by environ-

ment. Higher prediction accuracy can be achieved by also modeling GE (Genotype

� Environment) and borrowing information from related environments (Crossa

et al. 2014; Windhausen et al. 2012).

8.4 Challenges to Implementing Genomic Selection
in Clonal Crops

8.4.1 Modeling of Genetic Effects and Heritability

The unique features of the population and quantitative-genetic parameters of

clonally propagated crops may pose challenges to the adoption of GS models

currently developed for seed-propagated crops. Most of the proposed models in

GS mainly model additive effects and assume dominance and epistatic effects as

part of the residual. This holds true for seed-propagated crops, as it is not possible to

transfer nonadditive genetic effects to the next generation sexually, rather new

nonadditive combinations are formed during each sexual recombination cycle.

However, for clonally propagated crops, dominance and epistatic effects play an

important role beside additive effects and need special consideration. This is

because the whole set of alleles, together with their interactions, are passed to the

next generation through clonal propagation. Ceballos et al. (2015) demonstrated the

presence of additive, dominance, and epistatic effects in cassava whose magnitudes

differed for individual traits. Because gene action is locus and trait specific, the

currently available GS models will give different prediction accuracy for different

traits in clonally propagated crops. In sugarcane, Gouy et al. (2013) reported similar
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predictive accuracy for several GS models on a single trait but significantly

different predictive accuracy for each model on different traits. This means that

additive, dominance, and epistatic genetic effects must be properly analyzed for

every trait to select the best model for each. Most often, specialized populations

with specific mating designs are needed to estimate the extent of these gene actions,

and so far, these populations have not been properly defined for most traits of

importance in clonally propagated crops. Furthermore, estimation of narrow sense

heritability, one of the key factors affecting prediction accuracy in GS (Nakaya and

Isobe 2012), is mainly based on additive genetic variation, which holds true for

seed-propagated crops, but not for clonal crops. This then calls for the use of

additive, dominance, and epistatic genetic effects in calculating broad sense heri-

tability estimates used in GS for clonally propagated crops. Munoz et al. (2014)

used both pedigree-based and marker-based information to model additive, domi-

nance, and first-order epistatic interaction effects in the tree species Pinus taeda.
They concluded that prediction accuracy of GEBV improved by including additive

and nonadditive effects to the predictive models. Wolfe et al. (2016) used both

additive only and additive plus nonadditive effect models to show that including

nonadditive effects in the model improved prediction accuracy. On the other hand,

including large effect QTL as fixed effects in additive-only model improved

prediction accuracy for cassava mosaic disease resistance. Prediction accuracies

ranged from 0.53 to 0.58 with different models, indicating that GS would be useful

for selecting cassava mosaic disease resistance.

8.4.2 Linkage Disequilibrium between Markers
and Quantitative Trait Loci

Linkage disequilibrium (LD), the nonrandom association of alleles at different loci,

is another factor affecting prediction accuracy in GS (Nakaya and Isobe 2012). As

opposed to linkage, which refers to the physical connection of loci on a chromo-

some and are inherited together, LD refers to the correlation among alleles in the

whole population (Flint-Garcia et al. 2003). LD breaks down both by recombination

(intrachromosomal LD) and independent assortment (interchromosomal LD), as

well as by other factors that affect the Hardy–Weinberg equilibrium (Flint-Garcia

et al. 2003). Estimation of LD in clonally propagated crops is only possible during

the true seed plant stage resulting from meiotic events at the crossing step. The

heterozygosity and heterogeneous nature of most clonal species ensures a large

breakdown of LD at this crossing step. Because GS assumes that the marker density

used is large enough that all genes are in LD with some of the markers (Meuwissen

2007), this implies that several markers are required to ensure higher prediction

accuracy of the GEBV in clonally propagated crops relative to seed-propagated in

which selfing may be possible. There has been little systematic evaluation of the

extent of LD in most clonally propagated crops; in most cases, the effective number
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of markers required for efficient GS is unknown. Even for those crops where LD has

been studied a little, there are contrasting findings regarding LD depending on the

marker systems used. In potato, Simko et al. (2006), using SNPs within 100 bp

derived from bacterial artificial chromosome (BAC) ends, reported LD extending to

10 cM possibly due to the shorter physical distance of the SNPs, whereas D’hoop
et al. (2010) reported LD extending to 5 cM using over 3000 AFLP markers,

whereas Stich et al. (2013) reported LD decay after 275 bp using genome-wide

SNPs from the SOLCAP array. In sugarcane, Jannoo et al. (1999) reported LD

extending to 10 cM, whereas Raboin et al. (2008) reported LD ranging from

0–30 cM. In case of cassava, LD analysis based on SNPs from GBS showed

decay between 10–50 kb (Wolfe et al. 2016). In banana (Musa sp), Sardos et al.

(2016) showed that LD extended to 10–100 kb. In apple, Kumar et al. (2013)

reported LD persisting to approximately 1 cM. For crops like sweet potato and

yam, efforts are still underway at the International Potato Center (CIP) and the

International Institute of Tropical Agriculture (IITA). Findings from the above

studies, with the exception of the findings by Stich et al. (2013), indicate that LD

persists longer for polyploid clonal crops compared with diploid clonal crops. This

can be attributed to the bottleneck in breeding polyploid crops using only few

parents and the confounding effects of polyploidy on marker identification. Despite

this, LD in clonal crops in general persists longer compared with outcrossing seed-

propagated crops. In maize, Yan et al. (2009) showed LD decay within 1–10 kb on a

global maize collection. This aspect can be attributed to clonal propagation that

ensures reduced meiotic events. It is important to precisely estimate LD for most of

these crops if GS were to be successful as this will enhance determining effective

population sizes and genotyping densities that have great impact on the accuracy of

genomic prediction (Grattapaglia and Resende 2011).

8.4.3 Genetic Architecture of Traits and Size of Training
Population

The genetic architecture of a trait of interest affects prediction accuracy of GS

(Nakaya and Isobe 2012). Genetic architecture of a trait is a complex of factors,

including the number of genes controlling the trait and their genomic location, the

effects of substituting alleles of these genes and the heritability of a trait (Poland

and Rutkoski 2016). Many clonally propagated crops are self-incompatible and

polyploid, resulting in multiple alleles and dosages at a given locus (Slater et al.

2016). Therefore, the allele combinations responsible for a given trait are numerous

and mostly unknown. To apply GS in a breeding program, the training population

used to develop prediction models should be large enough to capture representative

combinations of alleles for traits of interest in the breeding population (Jannink

et al. 2010). This is important because selection reduces additive genetic variation

and reduces genetic gains in subsequent generations, whereas development of
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commercial varieties requires simultaneous improvement of many quantitative

traits (Poland and Rutkoski 2016). For clonal crops, there has been little genetic

gain for complex traits like yield compared with cereals, possibly due to using only

a few parents and reduced meiotic combinations due to clonal propagation (Slater

et al. 2016). So, to avoid bottlenecks from breeding, the effective population sizes

may need to increase with increasing ploidy levels. Effective population size refers

to the number of individuals who contribute offspring to the next generation while

meeting the Hardy–Weinberg equilibrium. However, increasing effective popula-

tion size also leads to more rapid decay of LD and reduced prediction accuracy

(Grattapaglia and Resende 2011). No systematic analysis of the effective popula-

tion sizes required for accurate estimation of GEBV has been studied in most

clonally propagated crops. Initial estimation of effective population size for tetra-

ploid potato did indicate the need for 79 initial parents (Slater et al. 2016).

Furthermore, traits controlled by several small effect loci across the genome with

complex genetic architecture are more responsive to genotype-by-environment

interaction (G x E). Ly et al. (2013), using 17 traits in cassava, showed that

prediction accuracy reduced between 0.01 to 0.18 for different locations compared

with the training set, indicating a strong relationship between prediction accuracy

and G x E. Resende et al. (2012) also showed reducing prediction accuracies with

geographical distance between the model development sites and validation sites in

loblolly pine (Pinus taeda). Because cassava and loblolly pine are diploid clonally

propagated crops, it could be speculated that prediction accuracy for higher ploidy

levels will be further reduced for traits showing strong G � E interactions. There-

fore, the initial investment in development of GS models may be higher for clonally

propagated crops compared with seed-propagated crops because of the need to

evaluate larger numbers of training sets across several target environments, where

environment here refers to both sites and seasons.

8.4.4 Number of Generations Following Training Model

One of the main attractions to implementing GS for crop improvement programs is

the potential of lower costs and shorter generation intervals, arising from the ability

to predict GEBVs with high accuracy, early in the breeding cycle, over several

generations, without phenotyping selection populations. Prediction accuracy of GS

depends on LD between markers and QTL, and is expected to decline in the

generations following the population initially used for developing the training

model for the estimation of GEBVs (Habier et al. 2007; Nakaya and Isobe 2012).

The composition and genetic distance of individuals in a training population also

affects prediction accuracy and differs for traits and the heritability of traits (Weng

et al. 2016a, b). This is expected to be much more important in seed-propagated

crops, where new combinations of nonadditive genetic effects are formed during

each sexually reproductive cycle (Grattapaglia and Resende 2011). This may be

less of a problem in clonally propagated crops, especially if the training population
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is sufficiently related to the breeding population because there is only one recom-

bination step (the crossing step) per selection cycle, which can recur, and fixed

genetic effects are fully passed on to the next generation through clones. Ly et al.

(2013) did not find significant reduction in prediction accuracy due to relatedness or

lack of relatedness between training and prediction sets in cassava. So, although

initial investment for developing GS models may be higher for clonally propagated

crops due to the higher marker density required to cover for a relatively large

number of effective population size, the cost may be evened out by application of

the same models for longer than for seed-propagated crops.

8.5 Examples of Genomic Selection in Clonal Crops

Most of the GS carried out in clonally propagated crops thus far has been proof-of-

concept, that is, developing GS models on training sets, estimating prediction

accuracies, and testing models in validation sets. Extension and implementation

into practical breeding and selection programs has not been achieved fully, espe-

cially in the public sector. Here, we enumerate a few examples where GS has been

tested in clonally propagated crops. de Oliveira et al. (2012) used the random

regression-best linear unbiased prediction model (RR-BLUP) to estimate prediction

accuracies in shoot weight (SW), fresh root weight (FRW), dry matter content

(DMC), and starch yield (SY) in cassava. They showed that using only informative

markers associated with a trait results in higher prediction accuracies for the

respective traits. Prediction accuracies ranging from 0.67 to 0.83 were reported

for SW, FRW, DMC, and SY. Given that prediction accuracies are always less than

1, phenotypic selection (PS) is always more efficient at selection that GS. However,

GS becomes advantageous when considering the shortening of generation cycle

involved in PS. de Oliveira et al. (2012) estimated genetic gains of GS versus PS for

the above traits and concluded that reducing the generation cycle by half with GS

would increase genetic gains by 39.4%, 56.9%, and 73.96% for DMC, FRY, and

SW, respectively. In sugarcane, another complex, polyploid, clonally propagated

crop, Gouy et al. (2013) tested four statistical models, Bayesian LASSO, ridge

regression, reproducing kernel Hilbert space, and partial least square regression,

showing correlations ranging from 0.11 to 0.62 between phenotypes and genotypes

during cross validation, depending on the trait. Equal accuracy was seen for all

models within a trait but with marked differences between traits. They concluded

that their marker density (1499 dominant markers) may not have been large enough

to cover the large sugarcane genome and capture the whole haplotype diversity, and

suggested using multi-allelic markers to improve prediction. In oil palm (Elaeis
guineensis), prediction accuracy ranged from 0.41 to 0.94, depending on the trait

and the relationship of the population to the training set, but was not affected by the

statistical method used (Cros et al. 2015). This was attributed to the small size of the

training population and markers used, as well as to the complex genetic architecture
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for different traits. In potato, Habyarimana et al. (2014) used three GS models,

Bayesian LASSO, genomic best linear unbiased prediction (G-BLUP), and

reproducing kernel Hilbert space (RKHS), to evaluate prediction accuracy for

yield, yield components, and quality traits. They reported prediction accuracy of

r > 0.60 for several traits including carotenoids, tuber dry matter, and total yield.

Meanwhile, in apple, prediction accuracy for ten traits (median of 0.19 and a

maximum of 0.5) was strongly affected by distribution of traits and their heritability

(Muranty et al. 2015). Traits with high heritability and normal phenotypic distri-

bution showed response to selection. Furthermore, Kumar et al. (2012) used an 8 K

Illumina Infinium chip to demonstrate the potential of GS for fruit quality traits at

seedling stage, reducing the generation interval for the apple fruit trees with long

juvenile phases. They compared RR-BLUP and Bayesian LASSO methods to show

prediction accuracies ranging from 0.7 to 0.9 according to the trait analyzed but

with little difference between the prediction models. They concluded that GS could

accelerate the breeding process for fruit quality by making selections prior to the

lengthy fruit quality phenotyping. Resende et al. (2012) showed prediction accura-

cies differing for different methods depending on genetic architecture of the traits in

loblolly pine (Pinus taeda). Bayesian methods outperformed RR-BLUP for oligo-

genic traits because RR-BLUP assumes equal contribution of all markers and

can overparameterize by fitting a large number of markers to a trait that is con-

trolled by a few major genes. In other clonally propagated crops like horticultural

and forest trees, sweet potato, yam, and banana, efforts are still underway to

develop and implement GS models and to estimate prediction accuracy for traits

of importance.

8.6 Outlook for Implementing Genomic Selection in Clonal
Crop Breeding Programs

Genomic selection has great potential to expedite the breeding process in clonally

propagated crops by shortening their long breeding cycle. However, the examples

above show relatively moderate prediction accuracies for GS models in different

crops, indicating room for improvement and refinement. Therefore, before the full

potential for GS can be exploited for clonal crops, the challenges associated with

population structure, architecture of traits, polyploidy, rapid LD decay, and hetero-

zygosity have to be addressed in the GS models (Dufresne et al. 2014).

Distinguishing between paralogous copies and the presence of high copy numbers

of repetitive elements is difficult and poses a challenge for full genome annotations

in polyploid crops (Leitch and Leitch 2008). The majority of conventional

SNP-genotyping platforms and analytical tools have been developed for diploid

crops and are often not suited to clonal crops. High heterozygosity and multiple

alleles per locus in many of the clonally propagated crops is a challenge in

developing pipelines for generating the high-density markers necessary for
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GS. Further analytical solutions and pipelines are therefore required to allow these

platforms to incorporate partial heterozygosity and allele dosage determination.

Voorrips et al. (2011) developed models that estimate partial heterozygosity in

tetraploid potato. Their methods efficiently assign bi-allelic marker scores in

tetraploid species. Such a method could also be applied to higher ploidies if the

data are of high quality, as more closely spaced peaks are expected at higher

ploidies, which makes efficient assignment to classes a challenge if the data have

too much noise. Serang et al. (2012) developed an algorithm that can estimate

SNP-allele frequencies in individuals with multiple ploidy. They tested the methods

on potato and sugarcane data and found that the methods identified the correct

ploidies for all potato genotypes, whereas a few differences were observed in

sugarcane, in agreement with the unknown ploidy levels of sugarcane genotypes.

These studies are in the right direction but should be validated further in other

polyploid species to allow genetic study of clonally propagated crops to benefit

from next generation sequencing techniques. Once genotype calling and phasing

can be done properly to allow development of high-density markers, efforts should

be put into developing QTL, association mapping, and GS models that account for

all quantitative-genetic (additive, dominant, and epistatic effects) parameters.

Then, proper analysis of such parameters should be performed in available breeding

populations to allow advancement from proof-of-concept status to applied breeding

status.
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Chapter 9

Status and Perspectives of Genomic Selection

in Forest Tree Breeding

Dario Grattapaglia

9.1 Introduction: From Trait Dissection to Genomic

Prediction in Forest Trees

Advanced tree breeding involves a large number of steps around the basic concept

of increasing the frequency of favorable alleles for a number of traits simulta-

neously in the target population. Recurrent cycles of selection, mating, and testing

are used to develop genetically improved seeds or elite clonal stocks by maximizing

genetic gain per unit time at the lowest possible cost (Namkoong et al. 1988; White

et al. 2007). Trees have long life cycles and become reproductively active only after

several years. The progress and success of tree breeding programs are therefore

strongly dependent on the time needed to complete a breeding generation. This may

last several years to decades depending on the biology of the species, the age at

which phenotypes can be accurately measured, and the deployment plan of

improved material, whether seeds or clones. Additionally, the uncertainties associ-

ated with conducting decade-long breeding programs can be high. Breeding invest-

ments are made several years before the eventual utilization of genetically

improved material, making it susceptible to changes in the economic objectives

of the forest products, market demands, and management policies.

The time challenges faced by tree breeders have historically led to substantial

efforts to understand juvenile-mature correlations for late-expressing traits

(Namkoong et al. 1988), devise ways to accelerate recombination by artificial

flower induction (Greenwood et al. 1991; Hasan and Reid 1995), and practice

early selection on juvenile traits (Williams 1988). In the early 1990s, when DNA

marker technologies became more accessible, marker-assisted selection (MAS) was
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immediately seen as a powerful tool to overcome some of the challenges. MAS

could shorten breeding cycles by early selection for late-expressing traits such as

wood properties. Furthermore, MAS could also be applied to increase selection

intensity, reduce the effort of field-testing, and possibly improve selection precision

for low-heritability traits such as volume growth (Grattapaglia et al. 1992; Neale

and Williams 1991; Williams and Neale 1992). Nevertheless, the potential of MAS

for forest trees was immediately questioned based on the state of linkage equilib-

rium that the typically large, random mating population with recent domestication

history would be found and the concerns regarding stability of QTLs across the

highly variable genetic backgrounds of breeding populations and environments

(Strauss et al. 1992).

Despite those early, well-grounded arguments, linkage mapping and QTL detec-

tion experiments in species of pines, spruces, poplars, and eucalypts were carried

out based on the implicit assumption that it would be possible to map and estimate

the effects of all the relevant genes for traits such as growth and wood quality

during the life of the tree, in every population and environment. A considerable

number of studies describing QTLs and gene-trait associations in forest trees were

reported (reviewed in (Grattapaglia et al. 2009, 2012; Harfouche et al. 2012; Neale

and Kremer 2011). Mirroring what was the canonical approach to QTL mapping in

the major crops and model systems, QTL mapping in forest trees was carried out

using single biparental populations of relatively limited size. The difference was

that two-generation pedigrees were used because any cross between heterozygous

parents would provide a segregating F1 population under a pseudo-testcross

(Grattapaglia and Sederoff 1994). Several “major effect” QTLs were mapped in

early studies. However, later multifamily experiments conducted with larger

populations revealed many more QTLs with smaller effects and largely inconsistent

across backgrounds and environments (Dillen et al. 2008; Freeman et al. 2013;

Gion et al. 2011; Novaes et al. 2009; Rae et al. 2008; Thumma et al. 2010). With the

exception of a few QTLs of moderately large effect mapped for disease resistance

(Junghans et al. 2003; Stirling et al. 2001; Wilcox et al. 1996), and candidate-gene

associations for phenological traits (Ingvarsson et al. 2008), results generally

showed that QTL and association mapping do not explain sufficient genetic vari-

ation to lead to any effective implementation of MAS for complex traits in forest

trees. On hindsight, it is perplexing to consider how far removed from the reality of

forest tree breeding were those biparental mapping populations and the QTL

mapping data derived from them.

The ineffectiveness in dissecting complex traits, i.e., determining the position,

variation, and magnitudes of allelic effects at QTLs underpinning quantitative traits

and the consequent failure to implement MAS, has not been exclusive to forest

trees. With the exception of a few simple qualitative or monogenic traits in crops

(Bernardo 2008), major genes in fruit trees (Arus et al. 2012), and recessive genetic

defects in domestic animals (Charlier et al. 2008), this has been the general

conclusion for the vast majority of species undergoing selective breeding. This

fact has caused a major paradigm shift in animal and plant molecular breeding in

the last 10 years. The field has now moved from trying to a priori discover, validate,
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and use marker-trait associations to dealing with the aggregate of the whole-

genome effect, much like quantitative genetics always did. This revolution was

only possible following the development of large numbers of markers, mostly

SNPs, together with cost-effective platforms to query them genome-wide and

new statistical methods to deal with large datasets accounting for the large numbers

of markers ( p) and relatively small number of individuals (n) problem. The

approach termed “genomic selection” (GS) estimates all marker effects simulta-

neously, retaining all of them as predictors of performance and precluding the prior

search for significant marker-trait associations but focusing exclusively on predic-

tion efficiency (Goddard and Hayes 2009; Meuwissen et al. 2001).

Genomic selection has become a theme of considerable interest in the tree

genetics and breeding community worldwide in the last few years since the first

perspectives based on simulations (Grattapaglia and Resende 2011; Iwata et al.

2011) and experimental results (Resende et al. 2012a, b) were reported. In this

chapter, an update is provided of an earlier review on this topic (Grattapaglia 2014).

However, a more comprehensive discussion of the main factors (theoretical and

practical) relevant to GS in tree breeding that has emerged from experimental

studies in the last few years is provided. This discussion is preceded by a concise

explanation of the basic insights of GS and its perspectives and challenges in tree

breeding. An updated compilation of all published experimental GS studies in

forest trees follows, highlighting their main contributions to our current under-

standing of this new approach for tree breeding. The conclusion finally summarizes

the main lessons learned so far in an attempt to provide a nine-point tentative

roadmap for implementing GS in a tree breeding program.

9.2 Genomic Selection: Reviewing the Basic Principles

Nejati-Javaremi et al. (1997) were probably the first ones to show that “total allelic”

relationship estimated from marker data would be a powerful alternative to the

pedigree-derived additive genetic relationship to derive best linear unbiased pre-

diction estimates (EBV) of breeding values using mixed model equations. Haley

and Visscher (1998) proposed the idea of “total genomic selection,” that is, that by

genotyping at the genome-wide scale with sufficient marker density and low cost, it

would be possible to assure that markers will be in complete association with any

trait locus and, therefore, capture the most genomic effects underlying complex

traits. However, it was the groundbreaking paper by Meuwissen et al. (2001) that

anticipated that selection on genetic values predicted from markers could consid-

erably increase the rate of genetic gain in animal and plant breeding programs. They

also outlined the statistical approach and potential caveats to estimate the genetic

value of unphenotyped individuals based exclusively on phenotype and genotype

data of a reference ancestral population using “genomic selection” (GS), a term

surprisingly not used in the main text but only in the running title of that paper.
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Both MAS and GS start by establishing associations between discrete marker

genotypes and continuously distributed phenotypes in relevant populations. How-

ever, they are fundamentally different following this initial step. MAS typically

targets the discovery of marker-trait associations in one or a few biparental

populations or association mapping panels using rigorous significance tests, with

the later goal of using such marker-trait associations for selection. GS instead uses a

dense genome-wide panel of markers whose effects on the phenotype are estimated

simultaneously in a large and representative “training” population of individuals

without applying rigorous significance tests. All or a subset of markers are retained

as forecasters of phenotypes in prediction models to be later applied to “selection

candidates” for which only genotypes are collected. Thus, in GS a marker effect

does not need to exceed a stringent significance threshold to be used in the

subsequent breeding phase, and the effects of the marker alleles are estimated in

a much larger and more representative population rather than within one or a few

mapping families. The “training” population involves at least several hundreds to a

few thousand individuals representative of the target breeding population, which

are genotyped for the marker panel and phenotyped for all traits of interest. The

prediction models developed for each trait are cross-validated in a “validation”

population, a randomly sampled subset of individuals of the same reference pop-

ulation that did not participate in the estimation of marker effects. Once a prediction

model is shown to provide satisfactory accuracy, i.e., correlation between the

observed and predicted breeding values following cross-validation, it can be used

in the breeding phase to calculate the genomic estimated breeding values (GEBV)

or total genomic estimated genotypic values (GEGV) (when nonadditive effects are

also included in the model) of the selection candidates. Put simply, a GEBV is

calculated by multiplying the genotypes at all markers by their effect estimated by,

for example, random regression best linear unbiased prediction (RR-BLUP) or any

other statistical method that adequately avoids model over-fitting by marker-

specific shrinkage of regression coefficients (Crossa et al. 2010; Lorenz et al.

2011). There is also a second approach to use genotypic data in GS. Marker

genotypes are used to estimate a genomic relationship matrix between individuals

with genotypes and phenotypes of the training population and the yet-to-be

phenotyped selection candidates for which only genotypes are available. This

genomic relationship matrix can then be used to estimate a variance/covariance

matrix between the genetic values in a mixed model generally called G-BLUP that

stands for genomic BLUP. It has been shown that RR-BLUP and G-BLUP are

statistically equivalent under theoretical conditions that are generally met in prac-

tice (Habier et al. 2007).

GS exploits both the linkage disequilibrium (LD) between the dense marker data

and all QTL effects associated and the genetic relationship between the training

population and the prospective selection candidates. By avoiding prior marker

selection and estimating marker effects in a large and representative population,

GS potentially captures all genetic variance for the trait explained by the large

numbers of small effects that QTL or association genetics-based MAS does not

capture. Genomic selection also known as genome-wide selection (GWS) has now
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become the paradigm for marker-assisted selection (MAS) of complex traits in

plants and animals. GS is the standard molecular breeding technology in dairy cattle

and increasingly been adopted in other animal species such as swine and broiler

(Van Eenennaam et al. 2014). The most extraordinary example continues to be in

dairy cattle where progeny testing of young bulls has been replaced by GS, resulting

in rapid improvements across multiple traits. By 2011 over 40% of the market share

of tested bulls across several countries was composed of bulls without milking

daughters, exclusively selected based on GS (Pryce and Daetwyler 2012).

While GS was rapidly being adopted in animal breeding, it also became a topic

of interest in plants, starting with the influential papers by Bernardo (2008) and

Bernardo and Yu (2007), soon followed by others that discussed the potential of

genomic prediction in crops (Heffner et al. 2009; Jannink et al. 2009) and forest tree

improvement (Grattapaglia et al. 2009). An exponential growth of published studies

about GS in all major cultivated plant species has taken place in the last 5 years.

Following the early enthusiasm and prospects fueled by several simulation-based

studies validated by experimental results, we have now moved to a phase where

several detailed and careful considerations are necessary (Heslot et al. 2015; Jonas

and de Koning 2015). These include the strategic breeding and tactical logistics and

resource allocation aspects of implementing GS, the issues related to the optimal

planning of training populations and phenotyping efforts associated to them, the

marker platforms to be used, and a thorough cost-benefit analysis of the entire

process.

9.3 Perspectives of Genomic Selection in Tree Breeding

The objective of selective breeding is to accelerate the rate of genetic improvement

or selection response per unit time. As noted above, the time factor is extremely

relevant to tree breeding due to the long generation times typically necessary to

complete a full breeding cycle. To go back to the classic breeder’s equation is

therefore useful to understand how GS can have a tremendous impact on the rate of

genetic gain. In the equation (ΔG ¼ irσA/L), i is the selection intensity (the

proportion of trees that are selected to become parents of the next generation);

r is the accuracy of selection, i.e., the correlation between the estimated breeding

value (EBV) and the true breeding value; σA is the additive genetic standard

deviation of the trait of interest, i.e., the genetic variation available in the population

for selection; and L is the generation interval or time needed to achieve the genetic

gain. GS can directly increase the rate of genetic gain of a tree breeding program by

increasing the selection intensity (i), because many more young seedlings can be

genotyped and their phenotypes predicted by GS than the number of seedlings

typically planted and managed in field trials. This is particularly relevant for traits

expensive to measure or expressed late in the life of the tree. However, the largest

impact of GS on the rate of genetic gain will result from radically reducing the

generation interval (L). Phenotypes of the selection candidates can be predicted at
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ultra-early ages, for example, when the seedlings are a few weeks old, still in the

nursery, instead of waiting half of the breeding cycle (usually 4–20 years or more,

depending on the species) before having access to their phenotypes, especially

those expressed late in the life of the tree. The accuracy of selection (r) evidently is
also a main driver of the genetic gain. In standard breeding this accuracy is provided

by the square root of the heritability, i.e., the proportion of the phenotypic variance

explained by genetic components. In GS the accuracy of selection is estimated by

the correlation between the genomic estimated breeding value (GEBV) and the true

breeding value. When the breeding objective is to select individuals to be deployed

as clones, this correlation needs to involve not only the additive effects but also the

nonadditive component, such that r measures the correlation between the genomic

estimated genotypic value (GEGV) and the true genotypic value. Finally, without

genetic variation (σA) for the target trait, no progress will happen.

The implementation of a genomic selection program for tree breeding encom-

passes essentially two stages (Fig. 9.1). The first one involves the definition of a

“training population” of individuals that are genotyped and phenotyped to develop

and cross-validate predictive models to be later used in the second stage, where GS

is actually put in practice. A training population is usually sampled from an existing

progeny trial derived from inter-mating a group of elite parents that were

established as the population to undergo breeding for the subsequent generations.

Usually this group of elite parents will have an effective population size (Ne)

between 30 and 100 and a census number (N ) that will be in that same range or

slightly larger, taking into account any cryptic relatedness that exists between the

individuals. The training population will have at least 1,000–2,000 individuals.

However, the more individuals are genotyped and phenotyped, the better will the

marker effects be estimated and more robust will become the predictive model.

In the second stage, GS will be effectively employed on the selection candidates,

typically an array of full of half-sib families derived from intercrossing either the

original elite parents or elite individuals selected in the progeny trial used as

training population. These selection candidates are genotyped and have their

breeding values (GEBV) and/or genotypic values (GEGV) estimated using the

predictive model developed earlier. Top ranked seedlings for GEBV are subject

to early flower induction and inter-mated to create the next generation of breeding.

Top ranked seedlings for GEGV are clonally propagated and tested in verification

clonal trials where elite clones are eventually selected for operational plantation.

Additionally, a random subset of the already genotyped selection candidates could

be planted in experimental design and phenotyped at the target age to provide

genotype and trait data for GS model updating as generations of GS advance,

mitigating the erosion of marker-QTL LD and decay of relationships, and

maintaining accuracy of GS predictions over generations.

Simulation-based and experimental reports outlined the promising prospects of

GS to increase the efficiency of tree breeding programs (see below). In eucalypts

and poplars, GS not only could eliminate the progeny trial but would also reduce the

time and costs involved in the clonal testing phase by reducing the number of

selected trees that are evaluated as clones in a preliminary, typically large-scale,
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clonal trial. In conifers, as pointed out by Resende et al. (2012b), GS combined to

somatic embryogenesis (SE) could considerably boost the efficiency of current

clonal propagation protocols by allowing preselection of zygotic embryos based

on their GEBV and their immediate expansion into elite SE lines for the establish-

ment of clonal trials or directly into commercial plantations. Besides the time gain,

a less mentioned advantage of GS is related to the possibility of efficiently carrying

out selection for several traits simultaneously in large numbers of individuals. It is

virtually impossible for any breeding program to complete a rigorous assessment of

all traits of interest in all trees in a progeny trial. Traits usually include wood

volume, stem taper and straightness, physical and chemical wood properties,

sprouting and rooting abilities, nutritional efficiency, and tolerance to pests, dis-

eases, drought, and frost. In tropical eucalypts, for example, even in clonal trials,

this is typically accomplished only in the very final stages of selection and for a very

limited number of clones (20–50) that had been preselected for volume growth and

wood density (Rezende et al. 2014). In traditional breeding, a sequential approach is

typically used that combines different forms of selection indices and independent

culling levels for estimating the ultimate value of candidates. In GS, because

breeding values are predicted for each trait separately (i.e., a separate GEBV for

each measured trait), selection indices can be used to combine data from all the

traits under analysis into a single value for each candidate. The validity of this

multiple-step approach rests on a property that the BLUP of any linear combination

of traits is equal to that linear combination of the BLUP predicted values of the

individual traits (White et al. 2007). Therefore, the net effect of GS would be a

remarkable increase in selection intensity at the seeding stage for all traits simul-

taneously, considerably improving the overall efficiency of the breeding program.

Additionally, applying GS to multiple traits could significantly increase the predic-

tion accuracy for a low-heritability trait or for traits with a limited number of

phenotypic records when a correlated high-heritability trait is available (Jia and

Jannink 2012).

9.4 Genomic Selection: Experimental Results in Forest

Trees

A compilation of all experimental GS studies in forest trees published to date is

provided in a format that allows a quick perusal of their key attributes and

performance of predictive abilities for different traits (Table 9.1). Reports of GS

in forest trees have been unique in that they used considerably larger training

population sizes and numbers of markers when compared to GS studies in crop

plants. Experiments have typically mirrored the structure of true breeding

populations and adopted designs that accounted at satisfaction with the theoretical

expectations of higher diversity and the necessary relationship between training and

validation sets. Another distinctive aspect has been the attempt to evaluate the
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impact of different issues particularly relevant to tree breeding on the accuracy of

prediction. These included the level of relationship between training and validation

sets, the effect of genotype by environment (G*E), the influence of age-age

correlations, and the performance of different analytical approaches that use vari-

able underlying assumptions of trait architecture. Nevertheless, all studies until

recently were not able to evaluate the actual performance of GS across generations,

i.e., using training data of an ancestral generation to predict and validate phenotypes

of progeny individuals. Cross-validation and estimation of predictive accuracy was

carried out exclusively within the same generation. Recently, however, studies with

Pinus pinaster that had access to three generations (G0, G1, and G2) showed

encouraging results of intergeneration prediction both by mixing parents and

progeny in the same training set (Isik et al. 2016) and later using only G0 and G1

individuals to predict in the G2 generation (Bartholome et al. 2016). Reported

prediction accuracies of experimental studies have been generally very satisfactory,

in line with the expectations from previous simulations (Grattapaglia and Resende

2011; Iwata et al. 2011) and results in crop plants and domestic animals.

Two experimental studies pioneered the field of genomic prediction in forest

trees. A report in Eucalyptus involving two independent genetically unrelated

breeding populations with contrasting effective population sizes assessed in

completely different environments (Grattapaglia et al. 2011b; Resende et al.

2012a) and a second one involving a cloned set of loblolly pine full-sib families

assessed across four different environments and two different ages (Resende et al.

2012b). Predictive abilities between 0.26 and 0.60, with an overall average of 0.44,

were estimated by cross-validation for a range of growth and wood quality traits.

These results approximated well to the accuracies predicted from deterministic

(Grattapaglia and Resende 2011) and stochastic simulations (Iwata et al. 2011) for

similar parameters of trait heritability, effective population size, and genotyping

density. These experimental results suggested that potential gains of 50–200% in

selection efficiency predicted by simulations could be achieved, if adequate pre-

diction abilities would be kept across generations. These studies also showed that

prediction accuracies strongly depend on the existence of genetic relationship

between training and validation sets and are impacted by G*E and age-age corre-

lations such that predictions will be effective when carried out in the same envi-

ronment and same age as where and when the training data was collected. Studies in

white spruce soon followed where the impact of G*E and the key significance of

having genetic relationships between training and validation were thoroughly

evaluated and corroborated (Beaulieu et al. 2014a, b). Recently published reports

in eucalypts (Lima 2014), spruce (El-Dien et al. 2015; Ratcliffe et al. 2015), and

maritime pine (Bartholome et al. 2016; Isik et al. 2016) provided additional

promising results on the ability to predict complex traits in forest trees and

confirmed what had been previously observed as far as the impact of relationship,

G*E, and age. The main results and contributions of all these studies are detailed

below, while discussing the main factors that affect the prospects of GS to forest

tree breeding.
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9.5 Factors Affecting the Success of Genomic Selection

in Tree Breeding

The success of GS is dependent on a number of factors including both the funda-

mental aspects predicted from population and quantitative genetics theory and the

more practical and logistics aspects of resource allocation and cost-benefit analysis.

The following discussion tries to cover the main factors in these two realms

reminding that they are in many ways interconnected and interdependent. The

accuracy of a genomic prediction model, i.e., the correlation between the genomic

estimated breeding value (GEBV) and the true breeding value, is undoubtedly the

key factor that will have the major impact on the success of GS. Four fundamental

factors from the theory of population and quantitative genetics are known to affect

the accuracy of genomic prediction: (1) the effective population size (Ne) and

genotyping density that in turn determines the extent of LD between markers and

QTLs; (2) the size and composition of the training population, i.e., the number of

individuals with phenotypes and genotypes from which the marker effects are

estimated; (3) the heritability of the trait in question; and (4) the genetic architecture

of the target trait, i.e., the distribution of QTL effects (number of loci and size

effects) (Hayes et al. 2009a; Lin et al. 2014). An assessment of the impact of each

one individually in the context of tree breeding was reported early on, providing

some broadly useful guidelines for GS regardless of the target species, recombinant

genome size, or breeding cycle length (Grattapaglia and Resende 2011).

When considering the practicalities of tree breeding, some of the most relevant

factors that impact the prospects of GS include (1) the size, composition, and

phenotyping effort devoted to the training population; (2) the genotyping platform

employed and the resulting data quality, cost, turn-around time, and breeder’s
friendliness; (3) the extent of genotype by environment interaction; and (4) the

long-term performance of genomic prediction models, including the need for model

retraining and the potential effect on loss of diversity and increased inbreeding.

With all these issues considered, an attempt is made here to answer a common

question posed by tree breeders: what are the main issues that one should be aware

of when considering the investment in a GS program?

9.5.1 Effective Population Size of the Tree Breeding
Population

The main issue generally considered to determine the accuracy of GS is the extent

of linkage disequilibrium, i.e., the nonrandom association between marker alleles

and QTL alleles. This factor in turn directly depends on the effective population

size (Ne) and genotyping density. The effective population size corresponds to the

number of breeding individuals in an idealized population that would show the

same amount of dispersion of allele frequencies under random genetic drift or the
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same amount of inbreeding as the population under consideration (Wright 1931).

As the effective population size gets smaller, the effect of genetic drift gets

stronger, and more LD is generated because it is unlikely that combinations of

marker alleles and QTL alleles get sampled at a frequency that corresponds to the

product of their individual frequencies. The resulting nonrandom association

between alleles at marker loci and QTLs allows marker alleles to predict the allelic

state of nearby QTL and thus to predict phenotypes. At equilibrium, the LD

generated by random drift is balanced by recombination that takes place as breeding

generations advance, causing it to dissipate, such that closer loci are expected to be

in higher LD than more distant ones. Consequently, the relationship between Ne and

LD affects the marker density needed to achieve and sustain adequate prediction

accuracy of a GS model across generations. In other words, marker density needs to

scale with the effective population size, and the level of LD between markers and

QTL can be increased by reducing Ne (Grattapaglia 2014).

The discussion of the extent of LD in forest trees takes us back for a moment to

the original criticism about the prospects of MAS in forest trees seen in those early

days (Strauss et al. 1992). Given the preferentially outbred nature and large Ne of

natural populations of trees, the claim was that the state of linkage equilibrium

would therefore be such that prohibitively large training populations and marker

density would be required to attain success of MAS. That original prediction was

correct in that it would apply to very conservative breeding programs that aim not

only at genetic gain but also at preserving diversity by managing breeding

populations with very large Ne > 300. However, the reality of more advanced

breeding programs where genetic gain is prioritized and alternative strategies are

devised to maintain diversity (White et al. 2007) is not one of very large effective

population sizes. Rather, small effective population sizes in the range of

Ne ¼ 10–100 are used to maximize gain. On a genome-wide basis, genetic drift is

the main contributor to LD, and drift is generated by the breeder when a closed,

selected breeding population is established. The effective population size influences

the number of independently segregating chromosome segments expected in the

population (Me) which in turn will determine the necessary genotyping density to

capture all the effects of the QTLs co-segregating with those segments. To under-

stand this relationship, a common derivation proposed for Me in populations is

Me ¼ 2NeL (Hayes et al. 2009b) where L is the genome size in Morgans. Larger Ne

and recombinationally larger genomes result in more independently segregating

chromosome segments requiring more markers. On the other hand, the smaller the

Ne, the closer the genetic relationship among individuals, the longer the indepen-

dent chromosome segments, the smaller becomes Me, and less markers are needed

to reach a certain accuracy of GS. It is important to note that the key parameter here

is not the physical genome length but rather the recombination size and number of

chromosomes. The fact that conifer genomes are very large (~20–23 Gbp) does not

matter here. Their recombination size in Morgans, ~15 M in Pinus taeda (Echt et al.
2011) to ~18 M in Picea (Pelgas et al. 2005) for 12 chromosomes, is not that

different from the recombination size of Eucalyptus, ~13 M in 11 chromosomes

(Brondani et al. 2006) with a much smaller physical genome (~0.65 Gb).
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Calibrating the extent of LD by managing the effective population size, such that

near-maximum genetic gain can be achieved in a long-term breeding program, is

thus a key element when adopting GS. Theoretical studies and practical consider-

ations regarding the appropriate size of a tree breeding population have shown that

Ne between 20 and 50 will support selection with appreciable genetic gains for

several generations (Namkoong et al. 1988; White et al. 2007). Although suitable

for short-term genetic gains, such constrained Ne may be subject to larger devia-

tions of actual versus predicted progress and may result in a faster buildup of

relatedness. To remain on a conservative side in sustaining long-term gains,

effective population sizes between Ne ¼ 40 and 100 have been used, typically

corresponding to a census number (i.e., the total number of selections retained in the

breeding population in any given generation) around 200 individuals with some

level of relatedness (White et al. 2007). As examples, the third breeding cycle of

loblolly pine in the Southeastern USA has adopted a highly selected group of

40 selections to provide rapid gains (McKeand and Bridgwater 1998). In Eucalyp-
tus, populations with Ne between 30 and 60 are typically used for each species in

reciprocal recurrent selection strategies for hybrid breeding. Similar effective

population sizes are also used in recurrent selection programs based on synthetic

hybrid populations, an approach that exploits the variation derived from multiple

species aiming at the selection of elite hybrid clones for deployment (Assis and de

Resende 2011; Kerr et al. 2004). In conclusion, the effective population sizes

currently used in most tree breeding programs largely fit within the perspectives

of reaching high GS accuracies, provided that sufficient genotyping densities are

used, so that the number of independently segregating chromosome segments is

adequately tracked.

9.5.2 Genotyping Density and SNP Platforms for GS
in Forest Trees

“Recent advances in molecular genetic techniques will make dense marker maps

available and genotyping many individuals for these markers feasible.” This far-

seeing statement that introduces the seminal paper on genomic selection

(Meuwissen et al. 2001) was written when SNP discovery by Sanger sequencing

was still a prohibitively expensive endeavor for most species and SNP genotyping

platforms were in their infancy. However, it clearly recognized the key role that the

advent of faster and cheaper DNA marker genotyping would have for the new

breeding method proposed in that article. In the last 15 years, a major revolution

took place in the ability to discover large numbers of SNPs and develop new

methods to assay DNA polymorphisms, starting in 2005 with the advent of next-

generation sequencing technologies based on miniaturized and parallelized plat-

forms. What makes genomic selection different from what breeders have done so

far using the tools of quantitative genetics is the adoption of dense DNA marker
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data instead of relying solely on the expected pedigree relationships. Marker data

allows one to build a genomic relationships matrix that precisely determines the

realized kinship among individuals in a breeding population. This procedure not

only allows correcting pedigree errors but, more importantly, captures the random

Mendelian sampling term resulting from gamete formation, such that the realized

genetic covariances are now based on the actual proportion of the genome that is

IBD or IBS between any two individuals (VanRaden 2008). Genomic selection

based on realized genomic relationships can produce more accurate predictions

than the pedigree-based method precisely because it exploits the variation created

by Mendelian segregation. It is therefore relevant to devote some time to discuss the

advantages and limitations of the different marker technologies currently available

for the application of GS.

Prior to the times of easy SNP discovery and genotyping, microsatellite markers

were the workhorse of genetic analysis in forest trees, and they still are for many

applications. Microsatellite genotyping has been adopted into breeding practice to

resolve clonal identity, verify parentage, and reconstruct pedigrees as a way to

reduce costs of controlled crosses (El-Kassaby and Lstiburek 2009; Grattapaglia

et al. 2004; Lambeth et al. 2001). Usually between 10 and 20 microsatellites have

been used providing abundant power to resolve parentage even with relatedness

between alleged parents. In a recent study, it was shown that some 100 selected

high-frequency SNPs are needed to match the power of 16 microsatellites for such

applications in eucalypts (Telfer et al. 2015). However, typical microsatellite

marker density is not sufficient to estimate the genome fraction shared by two

individuals and to apply this information to genomic predictions. The genotyping

density together with the effective population size showed by far the largest impact

on the prospects of GS in forest tree breeding (Grattapaglia and Resende 2011). The

upper bound benchmark accuracy of phenotypic BLUP selection, set at 0.68 in that

study, can be reached at a relatively low marker density, around 2–3 markers/cM, as

long as the effective population size is kept below Ne ¼ 60. For an average genome

of 1,500–2,000 cM, some ~5,000 SNPs would be necessary. For larger effective

population sizes up to Ne ¼ 100, however, 10 or up to 20 markers/cM would be

necessary for keeping high accuracies of GS. Such a target genotyping density will

require genotyping platforms to yield somewhere between 20,000 and 50,000

informative markers depending on the size of the recombining genome and the

effective population size of the breeding population.

The impact of the genotyping density used in the practice of GS will become

even more important as generations of selection advance. In the absence of selec-

tion, increasing marker density is beneficial to the persistence of GEBV prediction

accuracy over generations (Solberg et al. 2009) because higher marker densities

enable GEBV accuracy to persist over time due to a slower decay of LD among

tightly linked marker and trait loci. However, directional selection following the

initial training population is expected to result in a rapid decline of accuracy (Muir

2007). High-density genotyping was shown to be essential to sustain accuracy and

keep selection effective for more generations in the presence of directional selec-

tion when a finite number of QTL loci are assumed rather than an infinitesimal
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model (Long et al. 2011). In such cases, selection, together with recombination,

may change the pattern of LD between markers and QTLs. The new LD generated

by selection can be unfavorable for GEBV prediction which was based on the

original marker-QTL LD structure in the training population. Although the

decrease of accuracy of GS over time can be mitigated by reestimating marker

effects or varying the weight given to markers, the possibility of using higher

genotyping densities is generally preferred.

The use of lower-density marker panels has been an interesting option to reduce

genotyping cost (Habier et al. 2009). The training population is genotyped with a

full set of markers, but selection candidates are genotyped with a smaller selected

subset. The pattern of linkage disequilibrium among markers in the training pop-

ulation is used to predict genotypes for the missing markers in the candidates. This

strategy has been successfully implemented in dairy cattle (Berry and Kearney

2011) and became a standard practice in operational GS (Boichard et al. 2012). It

could become an important strategy for GS in forest trees as well. Although theory

predicts that a lower marker density would make GS more susceptible to the decay

of LD with recombination, if prediction accuracies are mainly driven by relation-

ship, low-density marker panels would be perfectly suitable together with contin-

uous model retraining strategies. However, in forest trees the much wider genetic

diversity across breeding programs might be such that the shared use of a common

high-density SNP panels instead of each program developing a custom low-density

panel could be economically more advantageous at least in the initial stages of

GS. As GS programs of each individual organization advance and larger numbers of

samples are genotyped by each breeding program, low-density SNP panels might

become the standard practice.

9.5.2.1 Fixed Content SNP Arrays

The easy availability of shared commercial SNP chips has been a major strength of

specific communities in advancing genomic selection into operational use. The best

example of a widely uses common SNP platform for GS is the 50K bovine chip

(Matukumalli et al. 2009). Large-scale genome-wide SNP discovery projects

started relatively recently for forest tree genera such as Picea (Pavy et al. 2006),

Eucalyptus (Novaes et al. 2008), Populus (Geraldes et al. 2011), and Pinus (Eckert
et al. 2010; Lepoittevin et al. 2010). These efforts resulted in the development of

some fixed content low-density arrays with hundreds of SNPs for Pinus (Chancerel
et al. 2011; Eckert et al. 2009), Picea (Pavy et al. 2008), and Eucalyptus
(Grattapaglia et al. 2011c). Moderate-density Infinium arrays were reported for

Pinus taeda with 7,216 SNPs (Eckert et al. 2010), Picea with 9,539 SNPs (Pavy

et al. 2013), Pinus pinaster with 9,000 SNPs (Plomion et al. 2016), and higher-

density array with 34,000 SNPs for Populus (Geraldes et al. 2013). Although the

SNP contents for these arrays were published, their use was restricted to those that

developed it. They did not become commercially available products that one could

order from a vendor or buy service from a provider.
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Recently, however, a high-density multispecies SNP chip for eucalypts was

developed from whole-genome resequencing of a large sample of 240 trees of

12 species (Silva-Junior et al. 2015). The EuCHIP60K, the highest-density SNP

platform so far for a forest tree, provides close to 60,000 polymorphic SNPs across

all the most widely planted and bred Eucalyptus species worldwide, providing a

96% genome-wide coverage and a density of one SNP every 12–20 kb or ~20–30

markers/cM. More importantly, however, not only its content is open source, but it

was deliberately developed as a commercial product. The EuCHIP60K was made

possible by a sort of community crowd-funding effort where eucalypt-based forest

companies mainly from Brazil agreed to genotype at least 960 trees of their

breeding programs, such that the minimum number of 15,000 samples was reached

to cover the upfront cost of chip fabrication. This SNP chip is fully available to

every interested institution, public or private, at a very competitive price through

GeneSeek (NE, USA), an agricultural genomics service provider.

Over 30,000 Eucalyptus trees have already been genotyped with the

EuCHIP60K at the time of this writing, the vast majority of the data used to start

eucalypt GS experiments and pilot programs in several forest-based companies

across the world. The use of a common genotyping platform across breeding

programs should become a very valuable asset for future research and utilization

of genomic selection. Common high-quality SNP data will allow, for example, the

development of large-scale meta-analyses of GS data opening possibilities to

develop and test prediction models based on much larger training populations.

Furthermore, genomic selection experiments carried out with this chip are now

providing the necessary information for the development of lower-density SNP

chips for specific applications.

9.5.2.2 Genotyping-by-Sequencing (GbS) Approaches

Due to the general lack of accessible SNP arrays for the majority of forest tree

species, GbS methods have been a useful entry technology to develop SNP

resources and, in some cases, carry out high-density genotyping of forest tree

populations. GbS allows capturing SNP diversity of much larger numbers of

samples and carrying out SNP discovery even in very large and complex genomes

with no reference. Large numbers of SNPs were discovered using RAD sequencing

in Eucalyptus (Grattapaglia et al. 2011a), while GbS was used to mine SNPs in

Picea glauca (Chen et al. 2013) and to carry out a genome-wide association study in

Pinus contorta (Parchman et al. 2012). Optimized GbS methods were recently

reported for three Pinus species (Pan et al. 2015). Sequence capture-based

genotyping has also been successfully applied for a more targeted complexity

reduction SNP discovery and genotyping in Populus trichocarpa (Zhou and

Holliday 2012) and Pinus taeda (Neves et al. 2014). The first study to use GbS to

carry out a GS study in forest trees was reported for Picea engelmannii (El-Dien
et al. 2015).
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GbS allows simultaneous discovery and genotyping of large numbers of markers

with essentially no upfront costs (Davey et al. 2011). These methods require a

genome complexity reduction step targeting a portion of the genome for selective

enrichment, carried out either by PCR, restriction enzyme digestion, or sequence

capture, followed by high-throughput NGS to ensure high sequence coverage of the

targeted reduced representations (Cronn et al. 2012). Dominant presence/absence

variants (PAVs), derived from polymorphism in the restriction recognition sites,

and codominant single-nucleotide polymorphisms (SNPs) within the sequence tags

are detected after aligning the sequence reads with or without the aid of a reference

genome sequence. Restriction enzyme-based genome complexity reduction was

also the basic approach of the widely used Diversity Arrays Technology (DArT)

genotyping method (Kilian et al. 2012). This technology was successfully used to

develop a fixed 7,680 probe array for Eucalyptus that allowed the first reported

experimental results of genomic selection in forest trees (Grattapaglia et al. 2011b).

This highly validated hybridization-based platform was later converted to an

NGS-based assay named DArT-Seq, significantly improving throughput and

marker number for Eucalyptus (Sansaloni et al. 2011).

9.5.2.3 Fixed Content SNP Arrays Versus GbS for Genomic Selection

in Forest Trees

GbS methods have been attractive for they provide large numbers of SNPs at a

relatively lower cost per sample when compared to fixed SNP arrays. GbS does not

require prior sequence information, and there is no need to assemble a minimum

number of samples of several hundred or thousands to defray the cost of chip

fabrication. One only pays for the samples genotyped. The downside of GbS,

however, is that to keep sample costs down, the sequencing coverage is generally

low and therefore highly variable across the sampled loci in the genome (Beissinger

et al. 2013). Technical issues associated with DNA digestion, PCR amplification of

libraries, and sequencing process itself add a considerable amount of variation in

what genomic loci are sampled and at what sequence depth during sequencing. This

fact results in large proportions of missing data, usually around 40% up to 80%

depending on the depth of sequencing employed (Poland and Rife 2012). This

problem is mitigated by SNP imputation in inbred species where reference haplo-

types are easily determined by deep sequencing of founder lines and expected

genotypes are homozygous. In outbred forest trees, however, genotype imputation

is not straightforward as genomes are highly heterozygous, and multiple unrelated

parents are used such that reference haplotypes are not easily determined.

The problem of missing data in GbS tends to become substantial when

attempting to genotype complex and highly heterozygous genomes of forest trees

due to much higher restriction-site variation across individuals causing presence/

absence variants and the need of higher coverage to declare heterozygous geno-

types with confidence. This in turn leads to genotype reproducibility issues when

one attempts to genotype the same sample across independent experiments.

9 Status and Perspectives of Genomic Selection in Forest Tree Breeding 219



Genomic loci and SNPs contained into them may be sampled or not in the

replicates, and provided that the genomic locus is sampled, the genotype declared

could match or not between replicates. In a study with Poplar, out of 16 GBS

replicates of the same exact Populus trichocarpa tree Nisqually-1, the genotype

used for genome sequencing, only 27% of in silico predicted restriction sites were

sampled. Across the 16 replicates, on average, 26% of the SNPs were detected in

only one of the 16 replicates, and only 9.6% were detected in all 16 replicates. Still,

this amounted to ~34,000 loci out of the 334,000 total loci sampled. It is expected,

however, that with a larger number of samples, the proportion of SNPs genotyped

across all samples with high call rates would drop considerably. Genotype mis-

matches between replicated samples were largely due to low read coverage and

were about 2% after heavy filtering (Schilling et al. 2014). These results are in line

what has been reported for larger sample sizes genotyped by GbS in Pinus
engelmannii (El-Dien et al. 2015). Out of 1.2 million initially sampled SNPs and

after filtering by allowing 30% or up to 60% of missing data, the number of useful

SNPs dropped to 8,868 or 62,198 depending on the different imputation approaches

used. An imputation accuracy of 0.77–0.82 indicates that some ~20% of the

genotype data could still be incorrect. No mention was made of genotype repro-

ducibility in that study or the impact of such inaccuracies on genomic predictions.

It is intuitive that the success of genomic selection is dependent on SNP data

quality. One has to be able to repeatedly genotype the same set of SNPs across

generations with which the prediction models were initially developed in the

training population. It is therefore not clear at this point whether the current GbS

methods will be able to provide such data quality or, conversely, what is the

tolerable genotyping inaccuracy for successfully applying GS. Demonstration GS

proof-of-concept experiments are probably okay when carried out using GbS.

However, to implement a professional routine of long-term GS into an industrial

breeding program, very high standards of data quality should be sought. Currently

only fixed SNP array provides the gold standard of data reproducibility (>99%),

both in terms of sampling the same SNP loci and declaring the same exact genotype

for the same individual across different sample batches and laboratories. This is

probably one of the reasons why fixed SNP arrays have been the only platform used

so far in domestic animal breeding, animal model research, and human genomic

medicine.

Additionally, fixed SNP array data are breeder friendly and easily manageable

and stored without the bioinformatics burden associated with GbS data. The

common criticism of ascertainment bias of fixed content chips, a potential problem

for population genetic studies, does not represent an issue for GS (Heslot et al.

2013), reminding that any GBS method is equally subject to such bias due to the

genome complexity reduction methods involved, the biases inherent to next-

generation sequencing, and the filtering pipeline applied for data analysis. Despite

the falling prices of sequencing, the cost advantage of GbS in relation to fixed SNP

arrays has dropped substantially in recent times with more flexible chip fabrication

formats and competition among the main SNP chips vendors. It is therefore likely

that fixed arrays will also become the standard for GS in breeding of the major tree
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species. Besides the EuCHIP60K already fitting such requirements, similar “com-

munity” chips are currently in development for loblolly pine (F. Isik, ‘Technical

meeting on Pine SNP chip development’ 9 September 2016). It is also true,

however, that novel, targeted GbS methods based on amplicon sequencing,

sequence capture, or padlock probes will continue to evolve in parallel to dropping

prices and increased precision of NGS platforms and analytical software. Once

quality and cost issues are carefully evaluated, the key feature in choosing a SNP

platform will be the flexibility that a new method provides to move seamlessly from

one SNP platform to another while querying the same SNP set.

9.5.2.4 Whole-Genome Sequence Data for GS

With the evolution of sequencing technologies, a discussion has taken place on the

value of moving from sparse SNP data to whole genome sequence data for the

practice of genomic selection. Notwithstanding the challenge of managing massive

NGS datasets for large numbers of individuals, in theory, if sequence data were

used instead of dense SNPs, accuracy should increase because rare causal alleles

would be better captured in the predictive models, and these in turn could be more

stable as generations advance. However, simulation studies have shown that whole-

genome sequence data does not bring any advantage in accuracy when the effective

population size is reduced and LD is longer range which is usually the case in

breeding programs (MacLeod et al. 2014). Another study found no justification to

move to whole-genome sequencing for genomic selection unless accurate prior

estimates on the functionality of SNP data could be included in the model (Perez-

Enciso et al. 2015). If all SNPs within causal genes were included in the prediction

model, accuracy could increase by ~40%. However, this advantage would be

quickly lost if incorrect or incomplete biological information regarding SNP func-

tion was used.

9.5.3 Training Population: Size, Composition,
and Phenotyping

Assembling a large number of trees into a training population to accurately estimate

SNP effects is generally not a problem in forest tree breeding, although

phenotyping costs can be an issue especially for traits that are expensive to measure.

Choice of a training population evidently will depend in large part on the breeding

strategy adopted. Training populations are typically established by sampling sev-

eral hundred or a few thousand trees in existing progeny trials at ages that will allow

extensive high-quality phenotyping of all traits targeted by the breeding program.

These trials are derived from the inter-mating (open pollinated or controlled) of a

set of a few to several dozen elite parents representative of the target germplasm,
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encompassing an adequate effective population size to provide sustained gains for a

few generations ahead. Combining training sets from different populations can be

useful to boost accuracy when individual populations lack sufficient size, although

considerable risks exist of lowering the performance of such multi-population

prediction models because relatedness with the prospective selection candidates

is reduced or eliminated.

Howmany individuals should be included in a training population for GS in forest

tree breeding?With up toN¼ 1,000 individuals, the selection accuracy was shown to

rapidly increase, reaching satisfactory levels. With 2,000 individuals an improvement

of ~10% in the accuracy would be expected, and larger improvements can be

achieved under conditions of lower-heritability traits, larger numbers of QTLs

involved, and larger effective population sizes. After N ¼ 2,000 simulations have

shown that the accuracy tends to plateau irrespective of the effective population size

and genotyping density (Grattapaglia and Resende 2011). However, if the QTL

distribution violates the infinitesimal model assumption of equal size effect and

common variance, not all of the genetic variance is explained, and the selection

accuracy can be lower depending on the method used to calculate the GEBV (Coster

et al. 2010). Using training sets around N ¼ 2,000 might, therefore, be warranted to

protect against such model violations or cases where several hundred QTLs control

trait variation. Simulation studies mirroring a eucalypt breeding scheme showed a

considerable improvement of genomic prediction accuracies when increasing the

training population size by consolidating phenotypic and genotypic data of individ-

uals from previous breeding cycles (Denis and Bouvet 2013). Furthermore, larger

training populations mitigate the probability of losing rare favorable alleles from the

breeding population as generations of selection advance, although some will inevi-

tably be lost because they are in low LD with any marker. A higher marker density

will also help in this respect, i.e., in preserving rarer alleles in the breeding

populations, thus allowing better long-term gains from selection.

Phenotyping large training populations of forest trees can be challenging and

expensive. To mitigate this problem, a common approach widely used in forest tree

breeding is to use indirect phenotyping methods such as NIRS (near-infrared

reflectance spectroscopy) or X-ray diffraction for high-throughput measurements

of chemical and physical wood properties. Although data collected by such

methods are generally precise, they might not be accurate to the actual whole tree

value, but they still allow confident raking of trees, which is generally satisfactory

for GS. These methods were employed in the first experimental assessments of GS

in Eucalyptus (Resende et al. 2012a) and white spruce (Beaulieu et al. 2014a, b) and
recently for the assessment of a large set of chemical and physical traits in a GS

study in Eucalyptus (Lima 2014). With current drops in genotyping costs, while

phenotyping costs remain constant or increase, considerations have been given to a

reverse approach in defining training populations so that individuals to be

phenotyped are chosen on the basis of their genotypes. For example, Rincent

et al. (2012) proposed different metrics to maximize the reliability of genomic

predictions by optimizing the composition of individuals in the training population

based exclusively on their genotypic data. Different criteria based on the diversity
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or on the prediction error variance from G-BLUP prediction were proposed to select

reference individuals.

9.5.3.1 Clonal Replication of the Training Population

A common question made for tree species amenable to cloning, such as eucalypts

and poplars, is whether vegetatively propagating the individuals of a training

population would benefit the accuracy of a predictive model. In principle, by

clonally replicating individuals, trait heritability would be increased, with a likely

positive impact of accuracy. However, the impact of heritability on accuracy of GS

has been shown to be very modest when genotyping is dense (see below). To

answer this question it is relevant to remember that a key feature of GS is that

phenotyping of the training population is done to train a model, not to directly select

individuals. Selection subsequently proceeds on the basis of genomic estimated

breeding values (GEBVs) such that prediction based on allele effects is now the

selection criterion and the allele becomes the unit of evaluation. Alleles are

therefore the units that need to be replicated not individuals (Lorenz et al. 2011).

Therefore, when establishing a training population under a fixed phenotyping

budget, it is more beneficial to increase the number of individuals phenotyped

than clonally propagating and phenotyping a smaller number of individuals. Evi-

dently, however, when no budget restrictions exist as far as phenotyping, clonally

propagating a large number of individuals (N � 2000) as a training population

would be advantageous, probably increasing the prediction accuracies, especially

for low-heritability traits. Additionally, clonally propagating a training population

would allow replicating it in several different environments and thus implementing

a strategy in which the same breeding population is used to breed improved genetic

material for different environments instead of a more costly option of advancing

different populations for different environments. Phenotypes collected on the same

genotypes in each environment would be used to build different prediction models

for each environment therefore optimizing budgets even in the presence of signif-

icant genotype x environment interaction.

9.5.3.2 Genetic Relationship Between Training and Selection

Candidates

The importance of relationship as a driver of accuracy in GS was shown early on

from simulation studies and underscored in all recent reviews on the perspectives

GS in plant and domestic animals breeding (Heslot et al. 2015; Lin et al. 2014; Van

Eenennaam et al. 2014). Individuals closely related to the training population are

always expected to have an advantage in accuracy over distantly related individ-

uals. The demonstration that RR-BLUP and G-BLUP are equivalent implicitly

showed that no LD between markers and QTLs is required for GS to work. The

accuracy of GEBV is nonzero even without LD. However, when SNPs are the QTL

themselves or in LD with the QTLs, RR-BLUP will provide better accuracy than
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G-BLUP (Habier et al. 2007). This expectation was corroborated experimentally in

forest trees where models developed for one population had limited or no ability of

predicting phenotypes in an unrelated one (Beaulieu et al. 2014a, b; Resende et al.

2012a). These results indicate that the relatively low marker density used in these

experiments has not been able to capture LD between QTLs and markers, such that

prediction models have relied essentially on relatedness and are in principle pop-

ulation specific. Using stochastic simulations of a typical eucalypt breeding pro-

gram (Denis and Bouvet 2013) also showed a marked decrease of the prediction

accuracy at a rate of 10–15% per breeding cycle as the relationship between the

training and candidate populations decreased.

Increasing the genetic relationships between training and selection candidates

effectively has the same consequence as reducing the effective population size such

that the stronger the relationship, the higher is the accuracy. Furthermore, in maize

biparental populations it was shown that it is better to increase the accuracy of

prediction by increasing relatedness between training and validation populations,

rather than by increasing the size of the training set with less relatedness to

predicted individuals (Riedelsheimer et al. 2013). Increased relatedness reduces

the number of independently segregating chromosome segments (Me) therefore

increasing the probability that chromosome segments identical by descent sampled

in the training population are also found in the selection candidates. For the

successful implementation of GS it is therefore crucial that the selection candidates

are genetically related to the training population.

The issue of relationship is one that should also be carefully considered when cross

validating prediction models. The individuals on whom the models will be applied

are the selection candidates, but the accuracy of predicting their phenotypes cannot be

estimated because their phenotypes are not available. The models are therefore tested

by cross-validation, typically using a subsample of the training population. Because

relatedness is an important component of prediction accuracy, the most important

principle of selecting a testing population is that it should mirror the relationship of

the selection candidates to the training population (Daetwyler et al. 2013). If the

testing population is more or less related to the training population than the selection

candidates, then the prediction accuracy will be over- or underestimated, respec-

tively. In replicated cross-validation, the manner in which individuals are assigned to

particular folds affects accuracy. Random assignment of individuals to training or

testing sets is prone to inflate accuracies because of within-family components

driving them. A more realistic approach is to randomly assign whole full- or half-

sib families to training or testing sets to evaluate prediction accuracy across families

or to design cross-validation schemes that use genomic relationship data to partition

individuals into the various folds to minimize the relationships between training and

testing populations (Saatchi et al. 2011).

Beaulieu et al. (2014a) carried out the most informative study so far to evaluate

the impact of genetic relationship on the accuracy of genomic prediction in outbred

forest trees. A training population of 1,694 trees representative of 214 open-

pollinated families was phenotyped for 12 wood and growth traits and genotyped

for 6,385 SNPs. Three cross-validation schemes were applied with decreasing
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relationship between training and validation sets. CV1 involved allowing half-sib

relationships between the sets, CV2 was performed by eliminating all maternal

relatedness by assigning entire families to folds of the training and validation sets,

and CV3 was designed to control for any possible contribution of the pollen parent

to relatedness, thus eliminating as much as possible any possibility of coancestry

between training and validation sets. Confirming expectations, they found that

predictive ability between remotely related individuals (CV2) was only slightly

lower (5–20% depending on the trait) than that of those built for closely related

individuals (CV1). When the possibility of coancestry between cross-validation

sets was eliminated and confirmed by an average estimated kinship coefficient of

zero, the prediction accuracy was considerably reduced but still clearly different

from zero for several of the traits supporting the putative presence of historical LD

between SNPs and trait loci, despite the relatively sparse SNP data. In a subsequent

study (Beaulieu et al. 2014b), this time dealing with two totally unrelated breeding

groups, good predictions were obtained within each breeding group. However a

sharp drop of accuracies near zero was seen when training was carried out in one

group and cross-validated in the other. SNP genotyping was low density (6,932

SNPs) for an estimated recombining genome of 2,100 cM, and SNPs on the chip

were not evenly distributed across the genome but rather targeted a limited set of

candidate genes. The ability to capture historical LD was therefore very limited, if

any, further confirming the key role of relationship as the pivotal driver of accuracy

in these genomic prediction experiments.

Understanding the drivers of prediction accuracy in GS is a relevant issue

because it has a direct impact on the ability of GS models to predict phenotypes

in future generation removed from training. The concept of GS, as originally

outlined, was based on the understanding that LD alone would explain the predic-

tive ability of a model (Meuwissen et al. 2001). Later, however, it became clear

both from simulation and experimental studies that prediction accuracy was also

affected by genetic relationships between training and validation sets captured by

SNP data (Habier et al. 2007; Legarra et al. 2008). The relative contributions of LD,

additive genetic relationship, and cosegregation to the accuracy of predictions were

modeled under different scenarios and their persistence over generations assessed

(Habier et al. 2013). Among the several results that those simulations revealed, it

was shown that the correlation between GEBVs within families depends largely on

additive genetic relationship, which is determined by the size of the training

populations and the effective number of SNPs. This latter one was defined as the

number of ideal SNPs that provides the same accuracy due to additive genetic

relationships as the actual number of SNPs in the model. It decreases with the

increasing range of LD and therefore with decreasing effective population size,

explaining why the accuracy due to additive genetic relationships does not improve

beyond a certain SNP density. The lack of improvement in accuracy with increasing

number of SNPs or, conversely, the rapid attainment of a plateau of accuracy with

relatively few hundred SNPs has been a common observation in almost all GS

studies in forest trees to date (Beaulieu et al. 2014a, b; Resende et al. 2012a, b).

Surprisingly, the same prediction accuracies were seen whether using SNPs
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selected based on highest estimated effects for any particular trait or chosen

randomly (Beaulieu et al. 2014b) providing strong evidence in support of relation-

ships as the main source of accuracy. While the LD component of predictive

accuracy is expected to persist over generations without the need for retraining,

the component due to additive genetic relationships is anticipated to decay rapidly

with the successive generations of recombination.

9.5.3.3 Populations for GS in Hybrid Breeding

Breeding for interspecific hybrids is an established strategy in some of the main

plantation forest tree species. Hybrids combine desirable traits from two or more

species through complementation of additive gene action. The best documented

example in trees is the E. grandis x E. urophylla hybrid that combines growth and

fungal disease resistance, respectively, and displays a heterotic effect due to

nonadditive gene action. Elite hybrid individuals are clonally deployed, frequently

exhibiting greater phenotypic stability that allows extending plantation range to

sites where one or both parental species have a suboptimal performance (Rezende

et al. 2014). Exploiting hybrid breeding in eucalypts can be done in a single

synthetic population where the original species are hybridized at the outset to

form a single breeding population which is then advanced by conventional recur-

rent selection (Kerr et al. 2004). Alternatively, reciprocal recurrent selection

between the two species can be adopted, and the breeding goal in the pure species

is to optimize the performance of hybrid descendants that are deployed either as

clones or hybrid seed varieties.

The question arises on what would be the population to train a model for hybrid

breeding under such a reciprocal recurrent selection strategy. Would it be the hybrid

population or the pure species populations? The maintenance of predictive ability

of a GS model across different populations or species will essentially rely on the

consistency of LD across them, which in turn depends on the recombination rate

between marker and QTLs and the time since the two diverged. The less diverged

the populations are and the higher the marker density, better performance of the

predictive model is expected across populations. An analogous situation takes place

in bovine breeding in which selection is carried out in pure breeds, but the aim is to

improve crossbred performance. Results from simulation studies generally show

that training on crossbred data provides good prediction accuracy for selecting

purebred individuals for crossbred performance. The incorporation of dominance in

the model and the use of high-marker densities are generally beneficial (de Roos

et al. 2009; Ibanz-Escriche et al. 2009; Kizilkaya et al. 2010; Zeng et al. 2013).

When crossbred data is not available, separate purebred training populations can be

used either separately or combined depending on the correlation of LD phase

between the pure lines (Esfandyari et al. 2015).

In trying to make a parallel between the bovine breeding scenario and the case of

eucalypt hybrid breeding, a prediction model could be trained on a hybrid popula-

tion, i.e., a hybrid progeny trial, and used to select individuals in the two pure
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species for their performance as parents of hybrids. It is important to note, however,

that while the estimates of the age of the most recent common ancestor of domes-

ticated cattle range from 200 to 300 KYA (Murray et al. 2010), the estimated

divergence time between the Eucalyptus species used in hybrid breeding is much

older at 2–5 MYA (Silva-Junior and Grattapaglia 2015) such that it is not clear at

this point if such an approach would actually work given the much wider diver-

gence. If such a strategy proves effective, however, the hybrid progeny trial would

also serve to train a model to select hybrid candidates to be deployed as clones. In

other words, a prediction model involving additive effects would in principle be

developed to select for high GEBV individuals in each species separately to serve

as parents of the subsequent generation. If nonadditive effects are relevant to the

target traits, a separate model including also nonadditive components would better

serve to select individuals based on their genomic estimated genotypic value

(GEGV) for clonal deployment. A simulation study showed that a GS model

including dominance effect outperforms an additive model only when the training

population is large and updated by combination of data from previous breeding

cycles (Denis and Bouvet 2013). Clearly, experimental examination of the potential

approaches and feasibility of applying GS to reciprocal recurrent selection in hybrid

eucalypt populations deserve further attention.

9.5.4 Trait Heritability and Genetic Architecture

Theory predicts that the number of QTLs underlying trait variation will have an

important impact on the accuracy of GS. Fewer loci controlling larger fractions of

the phenotypic variance are more easily captured relative to a more complex

genetic architecture involving larger numbers of loci with smaller effects. As

pointed out earlier, QTL mapping experiments in forest trees have revealed increas-

ing numbers of QTLs controlling each trait as more and larger mapping populations

were used. It is reasonable, therefore, to assume that quantitative traits are con-

trolled by several tens to hundreds of QTLs. Simulations have shown that the

reduction of GS accuracy with an increasing number of QTLs tends to be more

pronounced at lower-marker densities or larger effective population sizes. Assum-

ing a total of 200 QTLs, marker densities �5–10 markers/cM would be necessary

assuming a simpler genetic architecture, while 20 markers/cM would be necessary

with larger numbers of QTLs (Grattapaglia and Resende 2011).

Heritability on the other hand was shown to have a relatively minor impact on

accuracy when the training population size is large enough so that marker effects

are adequately estimated. GS accuracy is directly proportional to the product of the

heritability and the ratio between the number of phenotypic records in the training

population and the number of QTLs involved (Daetwyler et al. 2008). Therefore,

by simulating a scenario with a rather modest training set for a tree breeding

situation of N � 1000 individuals, a trait controlled by 100 QTL, and an effective

population size Ne¼ 60, the GS accuracy increased only slightly, from 0.71 to 0.83,

as the heritability went from 0.2 to 0.6 (Grattapaglia and Resende 2011).

9 Status and Perspectives of Genomic Selection in Forest Tree Breeding 227



Simulation studies for animal breeding scenarios also showed that a decrease in

accuracy with decreasing heritability is readily compensated by using larger train-

ing sets (Meuwissen et al. 2001; Nielsen et al. 2009).

9.5.5 Data Analysis Approaches for GS in Forest Trees

Genomic prediction requires methods that are capable of handling cases where the

number of marker variables ( p) greatly exceeds the number of individuals (n) (the
large p small n problem) while mitigating the risk of model over parameterization.

Several analytical approaches have been proposed and used for prediction of

genome-estimated breeding or genotypic values. Ideally, a genomic prediction

method should provide high accuracy, limit over-fitting on the training population,

and preferably capture marker-QTL LD rather than relatedness for higher long-term

stability. A good method should be easy to implement, reliable across a wide range

of traits and datasets, and computationally efficient (Heslot et al. 2012). Several

thorough reviews are available regarding the features of the main prediction

methods for GS (de los Campos et al. 2013; Heffner et al. 2009; Lorenz et al.

2011), guidelines to compare them (Daetwyler et al. 2013), and comparative

benchmark assessments in animal (Moser et al. 2009), crops (Heslot et al. 2012),

and forest trees (Resende et al. 2012c). The current methods basically differ with

respect to the assumptions regarding the genetic architecture of the trait for which

genomic predictions are sought.

For the scope of this discussion, it is relevant to highlight the fact that across

several reports in crops, trees, and domestic animals, the ridge regression best linear

unbiased prediction (RR-BLUP)method using a mixed model has been very effective

in providing the best compromise between computation time and prediction effi-

ciency (Lorenz et al. 2011). RR-BLUP assumes that the trait is controlled by many

loci of small effect, so that all marker effects are treated as random, normally

distributed, and with a common variance. Results therefore suggest that most eco-

nomically important quantitative traits adequately fit into the assumption of an

infinitesimal model. In a loblolly pine study, for example, the performance of

RR-BLUP and three Bayesian methods was only marginally different when com-

pared across 17 traits with distinct heritabilities, with a small improvement using

BayesA only for fusiform rust resistance where loci of relatively larger effect had

been described (Resende et al. 2012c). Equivalent results were obtained for growth

and wood traits in other forest trees showing no performance difference between

RR-BLUP and Bayesian methods (Beaulieu et al. 2014b; Isik et al. 2016; Lima 2014;

Ratcliffe et al. 2015). Considering the overall efficiency of RR-BLUP or the equiv-

alent G-BLUP, a general recommendation has been made to use it as a starting point

from which to explore additional alternative models (Heslot et al. 2012; Lorenz et al.

2011), although additional research in this area is warranted. Additional models

would include Bayesian methods, when suspicion or prior information exists re-

garding the existence of loci of larger effect, or machine learning methods when

nonadditive effects are known or presumed important.
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9.5.5.1 Modeling Nonadditive Effects in Genomic Prediction

In several plant species, and particularly in some forest trees such as eucalypts,

vegetative propagation of outstanding individuals is a key strategy for deploying

elite genetic material. Clones maximize gains from selection by capturing additive

and nonadditive effects. In forest trees, it is also common to observe that top parents

may not be top clones and vice versa, suggesting considerable levels of nonadditive

variation depending on the trait. A dominance to additive variance ratio close to 1.2

for growth was estimated in E. grandis x E. urophylla (Bouvet et al. 2009), while in
E. globulus this ratio was 0.8 with indications that epistasis might be the main

component of the nonadditive variance (Araujo et al. 2012). GS for tree breeding

has therefore received increased attention in evaluating models including nonaddi-

tive effects. A simulation study directed to Eucalyptus breeding showed that a

model including dominance effects performed better for clone selection only when

dominance effects were preponderant (i.e., a dominance to additive variance ratio

approaching 1.0) and heritability was >0.6 (Denis and Bouvet 2013).

Genomic data has also been successfully used to understand the relative impor-

tance of additive versus nonadditive variation and its implication in tree breeding. A

number of studies have shown that the accuracy and stability of prediction models

were improved by using marker-based instead of pedigree-based relationship

matrices (Beaulieu et al. 2014a; Bouvet et al. 2016; Munoz et al. 2014; Zapata-

Valenzuela et al. 2013). Besides correcting pedigree errors, marker-based matrices

capture both the Mendelian segregation within full-sib families and genetic links

through unknown common ancestors which are not available in the known pedi-

gree. In Pinus taeda the use of a genomic relationships matrix yielded a better

separation of additive and nonadditive components of the variance in height growth

when compared to the pedigree-based model. Results provided evidence that

additive pedigree-based models tend to inflate breeding values by capturing a

large proportion of variance due to interaction terms. Additionally, it was shown

that models including nonadditive relationship were more stable than traditional

G-BLUP at predicting breeding values (Munoz et al. 2014). In hybrid eucalypts,

using genome-wide information was also shown to improve the variance partition

(Bouvet et al. 2016). At this point, however, no experimental data exist yet in forest

trees regarding the ability of GS in predicting the total genotypic value of individual

trees including additive and nonadditive effects, across generations. Research into

this topic is one of the top priorities for forest tree species that are deployed as

clonal varieties.

9.5.5.2 Genomic Prediction as a Ranking Problem

When judging the potential value of genomic prediction for selection, it is essential

that the training and validation scheme adopted must reflect the way genomic

prediction will be used in practice. The discussion on the feasibility of selecting

individual trees for clonal propagation takes us to the recognition that until now, the

predictive accuracy of a model has been typically assessed using the Pearson
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correlation between the observed trait values and the predicted trait values. GS has

been essentially formulated as a regression problem. However, in tree breeding

programs where clonal propagation is possible and clones are a genetic “dead end,”

i.e., they are not used back in breeding, it is common that the unit of selection and

deployment is the individual tree. The breeder is simply interested in ranking

individuals for their own merit from the best to the worst, without necessarily

predicting their breeding value. This is particularly relevant to hybrid breeding

strategies in eucalypts where individual trees are selected, ranked, tested, and

eventually deployed as clones. When evaluating what individual tree ranking

would GS reveal as compared to standard BLUP phenotypic selection, Lima

(2014) reported a coincidence above 70% when selecting the top 30 trees out of

the 1,000 of the training population by leave-one-out cross-validation and of 60%

when tandem selection for volume growth and wood density was applied.

In a recent study, particularly relevant to tree breeding strategies that target

individual tree selection for clonal propagation, Blondel et al. (2015) proposed to

formulate GS as a ranking problem, showing that Pearson’s correlation may

correlate poorly with individual ranking accuracy. The approach also involves

model estimation and candidate selection stages. However, instead of imposing

that the model satisfies the equivalence of predicted with observed value, a score is

assigned to each candidate, and the scores are used to rank the candidates. Machine

learning methods were employed to rank individuals in six different datasets of both

inbred and outbred plants. The approach showed a significantly higher efficiency to

correctly rank individuals when compared to several standard regression methods.

Clearly, this study opens a new avenue of GS research to develop methods that

better fit the case of selecting top individuals for clonal propagation.

9.5.6 Genomic Prediction Accuracy Across Environments
and Ages

G*E is essentially a lack of consistency in the relative performance of individuals

when they are grown in different environments. Genotype by environment (G*E)

interaction is a fact that all tree breeding programs commonly deal with. G*E can

be of different levels, depending on the species, environmental variability and

extent of the intended forest plantation sites, and type of planting material,

whether families or clones, with clones typically being more interactive than

families. Interactions can be more subtle when differences in performance are

observed, but the relative ranking of tested individuals does not change across

different environments (termed scale-effect interaction) or more severe types of

interactions when rank changes are observed. Correct ranking of individual trees

by their genetic value is a key component of the successful implementation of

GS. Therefore, while the presence of scale-effect interactions should not represent

a major limitation of a prediction model, rank changes are critical. When large
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rank change interactions are found, the GS strategy must account for this

(Grattapaglia 2014).

Considerations and treatment of the interaction between genome predictions and

environment will follow the same procedures used in dealing with standard G*E

effects. Technically, there is nothing different between dealing with conventional

G*E or genomic effect by environment interaction. The same consideration regard-

ing the definition of breeding or management zones (i.e., the set of environments for

which an improved variety is being developed), commonly applied to tree breeding

programs, will apply to GS as well. Prediction models might be accurate across

sites within the same breeding zone but probably not across breeding zones.

However, the need to develop specific GS models for each breeding zone will

largely depend upon the type of interaction observed, whether scale effect or rank

change.

In forest trees multi-environmental G*E interaction not only is commonplace,

but it is used to assess the performance of the same clones or families across

different environmental conditions, to study genotype stability and to predict the

performance of untested genotypes. Heffner et al. (2009) pointed out that GS opens

the opportunity to evaluate the effect of particular genomic segments that are shared

between lines across multiple environments. This information sharing should

provide GS with stability of predictions even in the presence of G*E. This concept

was put in practice by Burgueno et al. (2012) using a multi-environment dataset of

wheat lines, showing that combining pedigree and marker data can yield substantial

increases in prediction accuracy relative to traditional pedigree-based prediction

and to single-environment pedigree and genomic prediction models. Multi-

environment GS models enhanced predictive power in across-environment predic-

tion, i.e., predicting the performance of genotypes that were evaluated in some

environments but not in others.

The impact of environmental variation on the success of genomic predictions in

forest trees has been evaluated, corroborating the expectations based on previous

knowledge of G*E trends. Generally, all studies showed an important impact of

environmental variation, but its magnitude and variation across traits followed what

was already known from G*E studies, with growth traits showing higher interaction

than wood properties. Resende et al. (2012b) clonally propagated and deployed the

same set of 951 loblolly pine individuals in four locations on a north-south gradient

along the Southeastern USA. Prediction models trained using the local phenotypes

provided good predictions within site, but predictions got increasingly poorer as the

geographical distance between training and testing sites increased along the latitu-

dinal gradient. In white spruce, across-environment predictions were essentially the

same as those within environment for wood traits but dropped for growth traits,

confirming the contrasting behavior previously seen for these traits in typical G*E

studies (Beaulieu et al. 2014b).

The accuracy of GS models in predicting the GEBV was assessed in interior

spruce (Picea glauca x P. engelmannii) using a set of 1,126 38-year-old trees

planted across three different sites originating from 25 open-pollinated families.

Predictions of seven growth and wood traits were evaluated using four

9 Status and Perspectives of Genomic Selection in Forest Tree Breeding 231



cross-validation scenarios: (1) training and validation within each individual site;

(2) cross-site validation (all possible combinations); (3) within multisite, i.e., the

three sites combined into a single training set; and (4) multisite training and

validation in each individual site (El-Dien et al. 2015). Good accuracies were

obtained when training and testing were carried out within each site despite the

small training population available within each site, but, as expected, they dropped

across sites. The estimated type-b genetic correlations between sites closely

reflected the trend observed for the GS accuracy observed across sites. Prediction

accuracies of a single multisite training model were higher for all seven traits when

compared to the accuracies estimated in within-site validations, likely driven by the

considerably larger training population used in this scenario with all 1,126 trees.

Similarly, when the multisite model was validated on each separate site, accuracies

were essentially as good as within site, suggesting that the positive effect of

increasing the training population size counterbalanced the effect of environmental

variation.

Another key aspect in forest tree breeding is the impact of age on the accuracy of

predictions. Ideally, selection should be applied on trees at the same age when they

are usually harvested. However, it is common for tree breeders to make selections at

an earlier age in an attempt to accelerate a breeding program. The feasibility of such

an approach will depend essentially on the magnitude of the age-age or juvenile-

mature correlations which can be relatively high for wood quality traits but low for

growth traits, although ample variation exists depending on species, environment,

and ages considered (White et al. 2007). GS accuracy across ages was assessed in

loblolly pine using diameter and height growth measurements obtained over mul-

tiple years (Resende et al. 2012b). As expected, given the weak juvenile-mature

correlations typically observed in conifers (Namkoong et al. 1988), GS models

trained on phenotypes measured at ages 1–2 years had unacceptable accuracy in

predicting phenotypes at age 6 years. Equivalent results were reported in a recent

study in Picea engelmannii using a series of repeated tree height measurements

through ages 3–40 years on a population of 769 trees belonging to 25 open-

pollinated families. Prediction accuracies varied substantially through time

mirroring the spatial competition among trees. As expected, the behavior of geno-

mic prediction accuracies across time was highly correlated with age-age genetic

correlations and decreased substantially with increasing difference in age between

the training and validation populations (Ratcliffe et al. 2015).

Results of the experimental studies reported to date on the impact of environ-

ment and age on the accuracy of genomic prediction in forest trees lead to a general

conclusion. Existing data from traditional G*E or age-age correlation studies will

inform with good precision what to expect from genomic prediction across envi-

ronments and ages. As a rule, accurate predictions will require training models on

traits measured at the same age and environment as the ones where predictions on

selection candidates are planned. As age-age correlations between training and

testing age improve and the magnitude and trend of the G*E interaction becomes

inconsequential between training and testing sites, predictions will tend to be
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satisfactory, provided that genetic relationship between training and selection

candidates is kept in the population.

There is an additional aspect to be considered about the prospects of GS across

environments that was examined in the context of GS in crops (Heslot et al. 2015),

but that will potentially be much more relevant and challenging in forest trees due

to their longer life span. We have seen above that the appropriate tree phenotypes to

train a prediction model should be collected at or very close to harvest age, which

usually spans several years or decades, and preferably in the same target environ-

ment as the one where GS will be practiced on future selection candidates. The

target environment of a forest tree is a consolidation of the action of several abiotic

and biotic factors during the long and variable preceding life of the tree, including

severe droughts, frosts, pest, and diseases attacks. Assuring that the target environ-

ment where phenotypes are collected for model training will be the same for the

future selection candidates may therefore be much more critical (and challenging)

for GS than in conventional phenotypic selection. In the latter, phenotypic data are

used only to rank and select individuals on which phenotypes were measured. Thus,

if a particular year of data is a misleading sample of the target environment due to

some severe climate fluctuations during the life span of the tree, it will impact

genetic gain for only that particular generation of selection. In GS, on the other

hand, the unrepresentative data may affect genetic gain over a much longer period

of time, as it will influence marker effect estimates that, in turn, will affect selection

criteria going several generations forward. Periodical retraining with phenotypes

collected in more recent generations of breeding might help mitigate this problem.

Finally, despite the challenges of dealing with G*E, GS provides opportunities to

integrate environmental covariates (e.g., climate data) to predict G*E deviations for

unobserved environments. This approach can in turn allow prediction of individual

stability, identification of important stresses, and understanding of the target envi-

ronmental variation that is critical for breeding strategies (Heslot et al. 2015;

Jarquin et al. 2014).

9.5.7 Performance of GS Across Generations

Proof-of-concept experiments in forest trees have been carried out by sampling

training and validation sets within the same generation, usually the same progeny

trial or different progeny trials, involving the same set of half- or full-sib families.

Marker density was generally low, with a few thousand markers only, and accuracy

was mostly driven by relatedness and not by marker-QTL LD. Not only experi-

mental data is still lacking on simple two-generation cross-validation, but nothing is

known about the performance of GS for long-term gain. The duly posed question by

breeders is how accurate will the genomic predictions be on individuals several

generations removed from the training population? As generations advance, recom-

bination will erode both marker-QTL LD and links of relatedness between training

and selection candidates reducing accuracy, while directional selection may change
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both the genetic architecture of the trait, via changes in allele frequencies, and the

patterns of LD making them potentially unfavorable for GEBV prediction.

Recently, the first GS studies to evaluate GS accuracy by training and validating

models using individuals of three generations G0, G1, and G2 were carried out in

maritime pine (Pinus pinaster). In a first study, 184 individuals of the G0 parental

and 477 of the G1 progeny generation were used (Isik et al. 2016). Mixed sets of

parents and progeny were used for training and validation, resulting in good

predictive abilities (0.43–0.49) for stem sweep, total height, and tree diameter.

Recently, that population was expanded by including individuals of a G2 popula-

tion. G2 individuals were preselected to include exclusively individuals that would

limit the effective population size to Ne ¼ 25, fully confirmed pedigree and highest

BLUP for volume and stem straightness. Following simulations to select the best

subsample of G2 individuals to maximize prediction accuracy, models trained on

46 G0 and 62 G1 individuals and validated on 710 G2 individuals showed high

(0.70–0.85) predictive abilities despite the very small training population size,

possibly a result boosted by the preselection of G2 individuals maximizing relat-

edness. Therefore, while promising results of GS have been reported in essentially

all forest tree studies (Table 9.1), strictly speaking only one result of genomic

prediction across generations is available so far, although several experiments are in

the ground as we speak. Despite the inherent limitations of GS models validated

exclusively within generation, they could still be quite useful in situations where the

same crosses are repeated and prediction is applied on sibs of the original training

set to increase selection intensity. This approach would be particularly useful to

select top individuals to be deployed as clones by capturing additive and nonaddi-

tive effects, especially for late-expressing traits. However, when GS is applied to

advance generations, selection candidates will rarely belong to the same population

as the training set and may well be several generations removed from it.

Experimental studies assessing the performance of GS across multiple genera-

tions of breeding take some time to happen or rely on existing individuals of

ancestral generations like the Pinus pinaster described above. However, several

studies approached this issue by simulations. In the seminal study of Meuwissen

et al. (2001), the decline of GS accuracy over generations was estimated at 5% per

generation, getting smaller in later generations. Other studies under more complex

models including the effect of directional selection and the structure and depth of

the training population have been reported (Bastiaansen et al. 2012; Iwata et al.

2011; Jannink 2010; Long et al. 2011; Muir 2007; Sonesson and Meuwissen 2009).

All these studies fundamentally converged to a similar recommendation: marker

effects have to be reestimated frequently in order to maintain accuracy of pre-

dictions over generations. The issue of model updating was specifically assessed for

a 60-year conifer tree breeding program by comparing the performance of GS with

conventional phenotypic selection using stochastic simulations (Iwata et al. 2011).

Results showed that GS outperformed phenotypic selection in the short term

(30 years) but not in the long term (60 years). When the prediction model was

updated, however, the genetic gain of GS was nearly twice that of phenotypic

selection, even for low-heritability traits, with a greater advantage of GS as
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genotyping density increased. Two model updating strategies were tested. In a more

conventional one, the prediction model generated in the initial cycle of selection is

updated after three (or more) generations of GS by carrying out a progeny trial of

already genotyped selection candidates, and their data is used to reestimate the

marker effects. In a second strategy, in each cycle of GS, a subset of the genotyped

selection candidates of that cycle is planted in a progeny trial. After a few years

(depending on the species), phenotypes for that subset of trees become available

and are used to update the prediction model. From that point on, every year the

prediction model gets updated with the inclusion of phenotypic data of the extra

subset of trees from previous generations. Because a set of trees from every cycle of

GS is actually field grown, this second updating strategy allows continuous verifi-

cation of the genetic progress of the GS program, although it involves greater costs

of growing and measuring trees every generation and could theoretically increase

the probability of unintended fixation of unfavorable alleles (Iwata et al. 2011). A

significant advantage of model updating on GS accuracy by including phenotypic

data from previous cycles was also shown by simulations in the context of Euca-
lyptus breeding (Denis and Bouvet 2013).

From the practical standpoint of a breeding program, continuously associating

phenotypic data from previous cycles of GS and thus progressively updating

prediction models and increasing the size and pedigree depth of the training

population seem to be a very sensible and feasible approach to adopt. The cost of

genotyping the subsets of selection candidates would have already been covered in

the GS cycle, and growing and measuring a few hundred trees would not represent a

significant cost while allowing for permanent monitoring of the realized perfor-

mance of GS. Such a continuous retraining approach would allow the additive

relationship component of predictive ability to be sustained across generations such

that GS could be successfully practiced despite a limited ability to capture

SNP-QTL LD due to the lower genotyping densities necessary to keep costs

affordable in a breeding program.

9.5.8 Inbreeding and Maintenance of Genetic Diversity
with GS

Finally, two additional issues have been raised regarding the performance of GS

over the long term: inbreeding and loss of useful variation. GS could potentially

result in a fast and unintended frequency increase of deleterious alleles causing

inbreeding depression or fixation of unfavorable QTL alleles due to the progressive

effect of drift with the restriction of effective population size. Daetwyler et al.

(2007) showed that GS reduces the rate of inbreeding per generation when com-

pared with sib and BLUP selection. High accuracies of estimated breeding values

are achieved through better prediction of the Mendelian sampling term. This

genomic-level resolution increases differentiation among sibs, allowing the breeder
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to better manage coancestry and to mitigate the rate of inbreeding even when

selecting related individuals in breeding programs that are pushing for high genetic

gains. Consistent with this expectation, the effect of nonrandom mating on the rate

of inbreeding was found to be smaller for breeding schemes that adopt genome

predictions when compared to conventional mating and selection designs (Nirea

et al. 2012).

While GS is more efficient in reducing pedigree-based inbreeding when com-

pared to BLUP by increasing emphasis on the individual rather than family

information, pedigree inbreeding might not accurately reflect loss of genetic vari-

ation and the true level of inbreeding due to changes in allele frequencies and hitch-

hiking. Liu et al. (2014) evaluated this issue using simulations, concluding that GS

can have a greater impact than pedigree-based BLUP on the reduction of genetic

diversity surrounding QTLs by a “hitch-hiking” effect because GS leads to a higher

accuracy of selection on the QTL. Another reason might be that instead of directly

selecting the QTL, selection acts on markers in LD with the QTL. This effect

becomes more important when QTL effects are large, such that when implementing

long-term genomic selection, genomic control of inbreeding is therefore essential to

reduce the considerable hitch-hiking effects that are associated with genomic

selection, regardless of the prediction model used.

The second issue regarding the impact of GS over time relates to the loss of

favorable alleles with the faster successive cycles of breeding, potentially causing a

progressive reduction of response to selection. Besides the loss of useful diversity,

the hitch-hiking effect could also increase the frequency of linked deleterious

alleles. Measures to mitigate this effect include using higher genotyping densities,

periodical model updating, and verification of performance of a subset of selected

trees along the GS cycles of breeding to monitor any possible reduction of vigor

attributable to weakly or moderately deleterious mutations (Iwata et al. 2011).

Additionally it has been shown that adopting weighed GS (Goddard 2009) together

with using a larger training set (Jannink 2010) will help reducing the loss of

low-frequency favorable alleles in the breeding population, although some will

inevitably be lost due to low LD with any genotyped marker. In a simulation study,

Jannink (2010) showed that placing additional weight on low-frequency favorable

marker alleles allowed GS to increase their frequency earlier on, causing an initial

increase in genetic variance. This procedure led to higher long-term gain while

mitigating losses in short-term gain. Weighted GS also increased the maintenance

of marker polymorphism, ensuring that QTL-marker linkage disequilibrium was

higher than in conventional unweighted GS.

9.6 Conclusions and Perspectives

A number of recent experimental reports have now showed that the prospects of GS

applied to forest tree breeding are very encouraging. To illustrate how one would

envisage the operational flow of GS in tree breeding, Fig. 9.2 outlines the
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comparative timelines of breeding by GS and breeding by standard phenotypic

selection for a recurrent selection strategy in tropical Eucalyptus. Both methods

start at year zero with the same breeding population, and in the GS route, it is

assumed that predictive models were previously developed. In a GS breeding cycle,

following SNP genotyping and genomic prediction of all target traits (i.e., growth,

Fig. 9.2 Comparative timelines of genomic selection (GS) breeding and phenotypic selection

(PS) breeding for tropical Eucalyptus (see text for details) (Modified from Grattapaglia (2014))
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form, wood properties, disease resistance, etc.), selection candidates can follow

three possible nonexclusive routes:

1. Top ranked seedlings for GEBV (genomic estimated breeding value) are imme-

diately routed to flower induction treatment and recombined to create the

improved population (green boxes) completing the recurrent breeding cycle

(green boxes);

2. Top ranked seedlings for GEGV (genomic estimated genotypic value) are

cloned directly by mini-cutting methods and deployed in field verification clonal

trials and ultimately submitted to a final selection for elite operational clones for

plantation (red boxes);

3. A random subset of a few hundred selection candidates in each GS cycle can be

planted in field trials to provide in due course additional phenotypic data to be

added to the initial training dataset allowing continuous predictive model

updating (gray boxes).

In the proposed scheme, GS is expected to eliminate the field progeny trial

phase, accelerating the completion of a breeding cycle by allowing the selection of

elite clones much faster. With GS, a cycle of recurrent selection in tropical

Eucalyptus breeding, going from an original population to an improved population,

will last 5 years, while in standard breeding it lasts at least 10 years. Two gener-

ations of elite clones can be developed by GS in 14 years, while standard pheno-

typic selection will only provide one generation in 15 years. Note that in standard

breeding the verification clonal trial lasts 5–6 years to allow adequate phenotyping

of wood properties traits. In GS, although accurate predictions of wood properties

traits should obtained by GEBV, still this 5–6 years verification clonal trial is kept

mostly to validate the general field performance and adaptability of the prospective

clones. Depending on the performance of GS as the program proceeds, it might

eventually be possible to preclude or shorten this final verification clonal trial,

therefore further accelerating the deployment of new clones into the commercial

forest.

The effective application of genomic prediction in a tree breeding program will

vary on a case-by-case basis following a detailed cost-benefit analysis. GS might

not be an option for small-scale breeding programs for tree species with a limited or

niche market share, little prior genetic information on the species, and modest

budgets. On the other hand, for aggressive breeding programs of the major tree

species that support large industrial forest-based operations, it seems clear that time

gains by eliminating progeny testing and streamlining clonal trials of young

genomically ranked trees for multiple traits should be valuable. The adoption of

GS might therefore become a competitive advantage in turning breeding genera-

tions quicker and thus deploying improved genetic stocks in the commercial forest

at a faster rate. In concluding this chapter, it seems therefore useful to review the

main lessons learned that have emerged so far from the experimental reports of
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genomic prediction in forest trees. They are summarized in a nine-point tentative

roadmap that should assist tree breeders and managers when considering research

or operational implementation of GS in their organizations:

1. Starting Population for Training GS Models. Leveraging existing progeny trials
of the current breeding program, consisting of several tens of half- or full-sib

families with relatively constrained effective population sizes, has been a suc-

cessful approach to establish training populations. By mirroring actual tree

breeding settings, the satisfactory prediction abilities estimated in essentially

all studies and for all traits are good indications of the promising operational

prospects of GS. Sampling preferably 2,000 individuals or at least 1,000 from

such progeny trials for detailed phenotyping and SNP genotyping should be an

effective way to establish a robust training population to start a GS program.

2. Genetic Relationship Between Training Population and Selection Candidates.
For the successful implementation of GS, it is crucial that the selection candi-

dates are genetically related to the training population. Studies that evaluated the

impact of removing relatedness between training and validation sets have pro-

vided strong evidence in this respect. Higher genotyping densities and evalua-

tion across multiple generations of breeding will now be needed to assess the

relative importance of the decay of relatedness versus the SNP-QTL LD in

maintaining satisfactory prediction abilities. Model updating strategies will

likely be very important to counteract the expected decay of relationship and

LD such that good prediction abilities might still be maintained with relatively

sparse SNP genotyping densities.

3. Genotyping Platform. Studies in forest trees have shown satisfactory predictive

abilities using relatively modest genotyping densities (2,500 ~ 10,000 SNPs)

likely due to the leading role of relatedness as driver of accuracy. Higher marker

densities should however be recommended to capture true LD and sustain long-

term accuracies. There is ample room for improvement of SNP genotyping

platforms in parallel with the development and experimental assessment of

lower-density marker panels. While improved genotyping-by-sequencing

(GbS) methods will likely surface in the near future, at this point fixed SNP

array technologies unquestionably constitute the gold standard for data quality

and breeder friendliness. Costs of such arrays have dropped significantly in

recent years, although they still require upfront development costs which can

be easily shared by interested organizations. This has been successfully done for

species of Eucalyptus where a public SNP chip is available. Similar efforts are

underway for species of Pinus such that high-standard public SNP genotyping

platforms are today realistic targets for the mainstream plantation forest tree

species.

4. Genotype by Environment and Age Interactions. Studies that evaluated the

impact of G*E on the efficiency of GS showed that predictive abilities were

reduced when models trained in one environment were validated in a different

one, although the magnitude of such reduction varied across traits. Data from
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traditional G*E or age-age correlation studies will inform with good precision

what to expect from genomic prediction across environments and ages. As a

general rule, accurate predictions will require training models on traits measured

at the same age and environment as the ones where predictions on selection

candidates are planned. As age-age correlations between training and testing age

improve and the magnitude and trend of the G*E interaction becomes inconse-

quential between training and testing sites, predictions will tend to be satisfac-

tory, provided that genetic relationships between training and selection

candidates are kept in the population.

5. Data Analysis. A genomic prediction method should provide high accuracy,

limit over-fitting on the training population, and capture marker-QTL LD

besides relatedness for higher long-term stability. A good method should be

easy to implement, reliable across a wide range of traits and datasets, and

computationally efficient. Across several reports in crops, trees, and domestic

animals, the RR-BLUP method and the G-BLUP equivalent have been effective

in providing the best compromise between computation time and prediction

efficiency. RR-BLUP assumes that the trait is controlled by many loci of small

effect, therefore suggesting that most economically important quantitative traits

in forest trees adequately fit into the assumption of an infinitesimal model.

Several open-access softwares are available to implement this method, and

training courses on their use are regularly offered by several institutions world-

wide. Still, research on the subject is warranted to develop improved approaches

including methods to efficiently incorporate nonadditive variation and individ-

ual ranking of trees for clonal selection.

6. Logistics. Logistic issues such as specific nursery infrastructure, sample collec-

tion and tracking system, large-scale DNA extraction and qualification,

genotyping service providers, and data analysis pipelines are equally important

modules for the successful implementation of a GS operation but beyond the

scope of this chapter. Nevertheless, several of these components are either

already routinely used in standard nursery operations of large forest-based

companies or can be easily established in-house (e.g., DNA extraction lab) or

accessed through specialized service providers in agricultural genomics.

7. Cost-Benefit Analysis. A detailed cost-benefit analysis of adopting GS using net

present value methodologies is an absolutely necessary step before considering

its implementation. The groundbreaking advance that GS caused in dairy cattle

breeding is frequently used as an example of the economically successful use of

this technology. It has been questioned whether it is an adequate benchmark for

annual crops, although not so for forest trees where GS was considered to be

potentially even more successful than in dairy cattle (Jonas and de Koning

2013). Still, while cattle and trees share the same challenge of long generation

times, the logistics and cost of progeny testing a bull is substantially higher than

progeny testing a tree, such that the cost of genotyping is easily justified and a

remarkable gain in selection intensity has been possible. Current cost of
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genotyping a sample even at USD ~40 is still expensive for many forest tree

breeding programs and more so for those that run on very tight budgets.

Assembling very large numbers of samples across breeding programs of several

organizations on the same SNP genotyping array in long-term contracts is

expected, however, to provide the necessary economy of scale to drive costs

down in the near future.

8. Prediction Across Generations. Despite the encouraging estimates of predictive

ability so far, it should be stressed once again that all studies but a recent one

only evaluated the potential of GS within the same generation. In other words,

training and validation sets were contemporary. Results of GS across indepen-

dent generations of parents and progeny are limited so far and much less the

performance of GS in generations farther removed from training. Moreover, the

impact of recombination and selection across generations on prediction ability

could not yet be assessed too, an issue that might become more relevant as

generations of GS advance. There is a general urgency among research groups

working in the area to provide additional experimental data on actual genomic

selection across generations. Several experiments are underway especially in

eucalypts, to compare the ranking of individual trees predicted at seedling stage

based on genomic data with their realized ranking at rotation age for growth and

wood quality traits.

9. Changing Environment and Model Retraining. Assuring that the target environ-

ment where phenotypes are collected for model training will be the same for the

future selection candidates is a challenging issue for GS. In conventional

breeding, phenotypic data are used only to rank and select individuals on

which phenotypes were measured. Thus, if a particular year of data is a mis-

leading sample of the target environment, it will impact genetic gain for only a

short period of time. In GS, on the other hand, unrepresentative phenotypic data

collected in the training population will affect genetic gain over a much longer

period of time, affecting selection criteria going forward. Periodical retraining

with phenotypes collected in more recent generations of breeding that were

exposed to more recent environments should mitigate this problem.

GS is definitely a hot topic in tree breeding and a fast-moving area of research in

several organizations worldwide, both public and private, working on the interface

of genomics and quantitative genetics. While some of the fundamental genetic

aspects discussed here are not likely to change much, or are valid under current

technologies and circumstances, some others will almost unquestionably change in

the future as new genotyping and sequencing technologies materialize and

improved statistical approaches are developed. As GS adoption evolves and large

experimental datasets are gathered across unrelated populations of tens of thou-

sands of trees, the accumulation of genomic prediction data should also provide a

powerful experimental framework, beyond QTL mapping and association genetics,

toward the fundamental investigation of complex trait variation. The evolution of

integrative approaches based on such large genotype and phenotype datasets should
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deliver important additional hints toward understanding the connections and inter-

actions between the multitude of discrete genome-wide elements and the continu-

ous phenotypic variation in complex traits. The full elucidation of such connections

will nevertheless continue to be a very challenging endeavor due to the time and

space dynamics of the effects of these genomic elements and the stochastic pro-

cesses that thwart the expected one-to-one relationship between genotypes and

phenotypes.
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