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Only a few dozen firms across different industries have been able to appropriate a large share of the trillions of
dollars of total net value appropriation in US markets over the past decades. This dissertation examines, using
formal modeling, how resource dynamics in competitive markets shape such long term profit patterns.
Chapter 1 introduces the main questions and concepts, including a general formal framework that can be used
to represent RBV-based theories in terms of stochastic state space models, as well as a five-step program to do
so. In chapter 2 a new measure of long-term firm performance is developed: LIVA (long-term investor value
appropriation). This measure helps to address a disconnect between the common theoretical assumption that
managers optimize firm value, and the widespread empirical practice of measuring performance using short-
term ratios such as ROA (return on assets). Chapter 3 describes a dynamic model and empirical inference of
the relation between resource competition and the decomposition of variations in returns into firm-specific
and industry components. The model shows that the investment dynamics for scarce resources amplify any
idiosyncratic shocks to their resource positions, thus providing a very general mechanism for the empirical
regularity that variations in return have a high firm-specific component. Empirical results from a Bayesian
hierarchical analysis of stock market returns support the model predictions. Chapter 4 describes a formal
model to analyze how profit persistence is affected by higher order resources, which are an abstract
representation of dynamic capabilities. The model in this chapter indicates that higher order resources should
lead to the presence of a second order autoregressive term in profit time series. Empirical estimation of the
model using both classical and Bayesian hierarchical methods indeed provides evidence for the existence of
such a second order autoregressive term.

The models in these final two chapters are implementations of the formal RBV framework introduced in
chapter 1, and thus exemplify the value of such a framework to the strategy field.
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ABSTRACT

EXPLORING THE MULTI-TRILLION DOLLAR QUESTION:

HOW RESOURCE DYNAMICS SHAPE LONG-TERM PROFIT PATTERNS

Phebo D. Wibbens

Nicolaj Siggelkow

Only a few dozen firms across different industries have been able to appropriate a large

share of the trillions of dollars of total net value appropriation in US markets over the

past decades. This dissertation examines, using formal modeling, how resource dynamics

in competitive markets shape such long term profit patterns. Chapter 1 introduces the

main questions and concepts, including a general formal framework that can be used to

represent RBV-based theories in terms of stochastic state space models, as well as a five-

step program to do so. In chapter 2 a new measure of long-term firm performance is

developed: LIVA (long-term investor value appropriation). This measure helps to address a

disconnect between the common theoretical assumption that managers optimize firm value,

and the widespread empirical practice of measuring performance using short-term ratios

such as ROA (return on assets). Chapter 3 describes a dynamic model and empirical

inference of the relation between resource competition and the decomposition of variations

in returns into firm-specific and industry components. The model shows that the investment

dynamics for scarce resources amplify any idiosyncratic shocks to their resource positions,

thus providing a very general mechanism for the empirical regularity that variations in

return have a high firm-specific component. Empirical results from a Bayesian hierarchical

analysis of stock market returns support the model predictions. Chapter 4 describes a

formal model to analyze how profit persistence is affected by higher order resources, which

are an abstract representation of dynamic capabilities. The model in this chapter indicates

that higher order resources should lead to the presence of a second order autoregressive

term in profit time series. Empirical estimation of the model using both classical and
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Bayesian hierarchical methods indeed provides evidence for the existence of such a second

order autoregressive term. The models in these final two chapters are implementations of

the formal RBV framework introduced in chapter 1, and thus exemplify the value of such

a framework to the strategy field.
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CHAPTER 1 : Introduction

The fundamental quest of the strategy field is to understand why some firms perform better

than others, and how managers can influence those outcomes. The resource based view

(RBV) is one of the core theories to explain the origins of performance variations: given

that some firms perform persistently better than others, apparently the better performing

firms must have access to certain resources that are not readily available on strategic factor

markets (Wernerfelt, 1984; Rumelt, 1984; Barney, 1986; Dierickx and Cool, 1989; Barney,

1991; Peteraf, 1993). However, the largely verbal nature of the RBV has made this theory

vulnerable to several fundamental critiques (Priem and Butler, 2001; Kraaijenbrink et al.,

2010). One of the most pressing critiques is that the RBV would be tautological in nature;

in short, the accusation is that resources need to explain firm value, but are also defined in

terms of value to the firm, and thus do not explain much at all.

Providing a more formal fundament to the RBV would help to alleviate such critiques,

as formal theories help provide rigorous and internally consistent explanations. For these

reasons, several scholars have called for more formal theory in management research (e.g.,

Adner et al., 2009; Oxley et al., 2010). Given the importance of the RBV in the academic

management literature, it is all the more surprising that only a handful of papers have

attempted to formalize some of its features (e.g., Makadok and Barney, 2001; Pacheco-de

Almeida and Zemsky, 2007; Jacobides et al., 2012; Knudsen et al., 2014), and even fewer

have linked such formal foundations directly to empirical data (Knott et al., 2003).

With this dissertation I aspire to address this gap, and thus lay a new piece of the puz-

zle to understand firm performance. Specifically, I use formal modeling techniques from

several academic fields, including finance (performance appraisal), industrial organization

economics (dynamic games), engineering (state space models), and statistics (Bayesian in-

ference and time series analysis) to formalize core tenets of the RBV. Moreover, I use

empirical performance data to test the formally derived propositions, and thus make in-
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ferences about the underlying resource dynamics that drive long-term firm performance.

Finally, I show how the types of models used are part of a more general formal framework

that can be used as a program to develop and investigate formal models based on the RBV.

1.1. LIVA and its distribution

In chapter 2, based on a joint paper with my advisor Nicolaj Siggelkow, we introduce LIVA

(long-term investor value appropriation) as a new measure of long-term firm performance.

We introduce this measure to address a gap in the literature between the theoretical tenet

that firms ought to optimize long-term value, in absolute terms (e.g., in dollars), and the

empirical practice to measure performance using short term relative measures (e.g., return

on assets, total shareholder return, or Tobin’s q, expressed as a percentage or ratio instead

of dollar figure). In order to develop a measure consistent with the theoretical managerial

goal of value maximization, LIVA operationalizes the long-term ex post net present value

(NPV) at the firm level, based on stock market data. Hence, LIVA is measured in monetary

amounts (e.g., dollars), and its total across all firms is equal to zero—the latter property

follows immediately from the definition of NPV, and the fact that the cost of capital is

based on the average firm performance (see section 2.3.3 on page 18 for details).

The bars in Figure 1 show the empirically observed distribution of LIVA for all US listed

firms over the 20-year period 1995 to 2014. Note that both the negative and positive x-axes

of this chart are on a logarithmic scale; the distribution of LIVA is thus heavily skewed on

both sides of the distribution. In fact, a mere 10 firms appropriated 2.9 trillion dollars over

this period (see Table 3 Panel a on page 22 for an overview of these companies). Table 1

shows the same distribution in numbers. This table shows more detail of the asymmetry

between positive- and negative-LIVA firms. Clearly, many more firms have a negative LIVA

than a positive one, but this is offset by more firms having an extremely positive than an

extremely negative LIVA. In chapter 2 we discuss further operational details of LIVA, how

to interpret it, its potential uses in strategic management, as well as some caveats.

2



Figure 1: LIVA distribution

 

LIVA (two−sided log axes)

−$1T −$1B −$1M // $1M $1B $1T

Note. Observed distribution of LIVA per firm over the period 1995-2014 (bars) and distribution function of

simulated dynamic model (line). Both negative and positive x-axis are on a logarithmic scale, i.e. LIVA is

transformed using the function x 7→ sign(x)(log |x|+ c) for a suitable offset c such that log |x|+ c > 0.

Table 1: LIVA distribution

Negative LIVA Positive LIVA

Absolute LIVA No. of Total No. of Total
per firm ($B) firms LIVA ($B) firms LIVA ($B)

0-0.1 2,465 -109 1,288 51
0.1-1 5,295 -2,098 1,838 727
1-10 2,310 -6,413 1,235 4,106
10-100 255 -6,071 314 8,182
>100 14 -2,551 21 4,176

Total 10,339 -17,242 4,696 17,242
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A more fundamental question, though, is the origin of the process that drives the at first

maybe surprising distribution in Figure 1 and Table 1. It turns out that such a distribution

can be derived from a surprisingly simple process, based on Gibrat’s law (Gibrat, 1931;

Knudsen et al., 2017). This law states that firm growth rates do not depend on their size,

and thus that the growth process follows a geometric random walk:

dxt = σ xt dzt (1.1)

For simplicity, this is a process without drift (µ = 0); xt is the size variable, σ the volatility

parameter, and dzt a Wiener process—the continuous-time analogue of a Brownian motion

of accumulating independent random shocks εt with a standard normal distribution. This

leads to a size distribution of xt that is log-normal at any time t > 0. The LIVA distribution

can be generated by assuming an initial log-normal size distribution of firms exp(x0) ∼

N (µ, σ), an initial LIVA of y0 = 0, and a LIVA growth process equal to the size growth

process dyt = dxt.
1 The line shows the distribution function for yt generated by such a

process with suitable parameters—it matches strikingly well with the observed data.

The process in equation (1.1) also explains why there are so many more firms with a

negative than with a positive LIVA. Due to the geometric random walk, a firm that has

had a negative LIVA (∆y1 = ∆x1 > 0) over a certain period, in a future period will have

a lower xt, thus a smaller shock size |∆y2|, and thus a lower probability to catch up on its

negative negative ∆y1 (note that this process only leads to a negative median and mode

for yt; the mean always remains zero). On the other hand, a firm that has had a positive

LIVA, will in a future period receive a larger shock size, and thus get a higher probability

to get to an extremely positive LIVA than an extremely negative LIVA, consistent with

the empirical data in Table 1. Thus, the LIVA distribution is at a very fundamental level

shaped by an evolutionary process in which more profitable firms, on average, grow faster

1Note that the “size” variable xt does not in general correspond to an observable size in terms of, for
instance, market capitalization or balance sheet assets; rather it parameterizes the size of the standard devi-
ation of future shocks dyt = dxt, which will certainly be related to, for instance, the market capitalization,
but in general not equal or even proportional to it.
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and subsequently have larger variances in profit.

1.2. A state space model for resource dynamics

What does it mean that the distribution of long-term value appropriation can be described

by a very simple geometric Brownian motion? It certainly does not mean that because

everything is just a random process, that no-one can influence it. Rather, it signifies that

it is fruitful to view performance as driven by a dynamic stochastic process for which we

need to understand what firms do to get “good shocks” dzt.

In very general terms, one can describe the state of a firm i at a certain time t in terms

of a long vector (Xi1t, Xi2t, . . . , XiKt). This state vector should encode anything that can

affect competitive positions (and hence performance) currently or in the future. Then the

cumulative LIVA yit of any firm i must be some function of the states of all economic actors

k = 1, . . . ,K at that time, denoted by XXXt = (X11t, . . . , XIKt):

yit = fi(XXXt) (1.2)

The evolution of the state can then be described by a stochastic process:

dXXXt = µµµ(XXXt) dt+ Σ(XXXt) dzzzt (1.3)

In this equation, µµµ and Σ are respectively vector and matrix valued functions of the state,

and dzzzt is a vector of independent Wiener processes. Because yit must be a zero drift pro-

cess2 (by definition of LIVA), it follows from Itô’s lemma that the rate of value appropriation

dyit is described by:3

dyit = f ′i(XXXt)
T Σ(XXXt) dzzzt (1.4)

The framework in equations (1.2), (1.3), and (1.4) can provide a more formal foundation

2The requirement that yit is a zero drift process puts certain constraints on the functions fi, µµµ, and Σ
that can be derived directly from Itô’s lemma.

3f ′i is the gradient vector of the function fi.
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to the RBV. The firm-specific state vector (Xi1t, Xi2t, . . . , XiKt) can be seen as a formal

definition of a resource bundle. This definition corresponds to the broad concept of a

resource in for instance Helfat et al. (2007) as “something that the organization can draw

upon to accomplish its aims” (p. 4). Indeed, in the above framework, the resource bundles

of firms both determine value appropriation (equation (1.2)) as well as the probability

distribution of future resource bundles (equation (1.3)). Ultimately, these two equations

determine the stochastic evolution firm profits over time. In fact, according to equation

(1.4), if one wants to understand the evolution of value appropriation, one “just” needs to

know the functions fi and Σ, which describe, respectively, how firm profits relate to resource

bundles, and how the standard deviations and correlations of the future evolution relate to

the current resource bundles.

Of course, in practice there is no hope to of finding such functions that will be valid for all

firms under all circumstances. However, these equations do provide a sufficiently general

framework to develop models that focus on a specific theoretical mechanism of resource

dynamics, and relate it to empirically observable performance data. Chapters 3 and 4 of

this dissertation provide two such models, investigating, respectively, the effects of resource

competition, and the effects of higher order resources on performance.

The model in chapter 3 describes how endogenous investments in competitive resource

markets shape the emergence of firm-specific vs. industry-level components of profit het-

erogeneity. In the language of above framework, the state space XXXt consists of two firms’

resource positions in a single market qi and qj and an industry state ak (which can be

thought of as the collective impact of other economic actors on the industry in which the

two focal firms play). The Bellman equation (3.5) is the analogue of equation (1.2), de-

scribing how economic value relates to the state space.4 The equations (3.2), (3.3), and

(3.4) determine the state space evolution of equation (1.3)—the details are described in

4The naming conventions in chapter 3 are different from above: s denotes the state XXXt, and V (s) the
value function f1(XXX). Note that as required V (s) is indeed a zero drift process by construction. Also note
that the model in chapter 3 is formulated as a discrete-time model, but by taking a small ∆t it approaches
a continuous-time model to arbitrary precision.
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appendix A.3. Because this model cannot be solved analytically, I use iterative econometric

techniques to estimate the evolution of value. Of primary interest in this chapter is to what

extent rents are firm-specific—or in the language of this chapter: to what extent dy1t and

dy2t are uncorrelated for two actors playing in the same industry.

The model in chapter 4 describes how higher order resources shape profit persistence pat-

terns. Higher order resources are an abstract representation of dynamic capabilities, and

are defined as resources that do not directly affect current profits, but do affect profit evo-

lution in the future. The state space XXXt of the model in this chapter consists of two types

of resources for a single firm: an operating resource, and a higher order resource. The

operating resource directly affects expected profit in the presence (equation (4.1)), while

the higher order resource affects the evolution of operating resources (equation (4.3)), and

thus only affects expected future profits.5

5Also the model in this chapter is formulated as a discrete time model. Note moreover that the dependent
variable yt in the model is a measure of operating profits (instead of LIVA), which will in general not be a
zero drift process.
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CHAPTER 2 : Introducing LIVA to measure long-term firm performance

This chapter is based on a joint paper with Nicolaj Siggelkow.

2.1. Introduction

Core theories in the strategy field, such as the resource based view, the positioning school,

transaction cost economics, and value-based strategy, assume that firms and their man-

agers seek to maximize appropriation of long-term value (Barney, 1986; Brandenburger and

Stuart, 1996; Porter, 1980; Williamson, 1979). Likewise, formal models in strategy usually

assume some form of maximization of profit or long-term value appropriation (e.g., Gans

and Ryall, 2017; Jacobides et al., 2012; Levinthal and Wu, 2010). This core theoretical

assumption contrasts with how performance is usually measured in empirical studies: an

analysis of all 2016 issues of Strategic Management Journal (SMJ) shows that a significant

majority of studies use short-term relative accounting metrics (such as quarterly or annual

return on assets), instead of the long-term value appropriation that managers are supposed

to maximize, even though previous literature has shown that optimizing such short-term

relative accounting metrics in general does not correspond to long-term value maximiza-

tion. For instance, firms that create economic value for their investors can actually have

an accounting return on capital (ROC) below the cost of capital and vice versa (Fisher and

McGowan, 1983). Likewise, firms that invest in initiatives that have a positive net present

value might decrease their ROC (Levinthal, 1991).

To address this apparent disconnect between the theoretical performance goal of firms and

the empirical measurement of it, we develop an empirical performance metric that measures

whether firms created value for their investors over long time periods: LIVA (long-term

investor value appropriation). We investigate its properties and derive how it relates to

common performance measures in the literature, such as total shareholder return (TSR),

economic profit and ROC.
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In order to develop a measure that is consistent with the theoretical notion of value max-

imization, we define LIVA in terms of the backward looking net present value (NPV) of

returns over time. We show that the definition of LIVA based on NPV is equivalent to the

discounted sum of absolute excess stock market returns, and moreover that in the long run,

LIVA becomes approximately equal to the sum of discounted economic profits as calculated

from accounting statements. These measures converge because short-term differences be-

tween stock returns and accounting profits tend to cancel out in the long run when properly

discounted: essentially, the use of different measures shifts profits forward or backward over

time, but in the long run this does not affect the total.

We perform three analyses to show how LIVA can bring new strategic insights. First, we

analyze rankings of the best and worst performing companies using LIVA and other common

performance measures. We find that top performers in terms of LIVA correspond to often

lauded companies, such as Apple, Microsoft and Wal Mart. These companies end up much

lower in lists that are based on relative measures such as excess return and ROA. These

latter lists are dominated by relatively small companies, because only a small base allows a

stellar performance in terms of measures relative to size. Additionally, we show that LIVA

provides a useful measure of corporate decline, particularly in cases of bankruptcy, when

measures such as excess return are hard to define meaningfully.

Second, a regression analysis of the performance of mergers & acquisitions (M&A) shows

that using LIVA typically produces more stable and more economically significant results,

because regression analyses using relative measures such as ROA, ROC or TSR as dependent

variable are strongly skewed towards smaller firms, with more volatile performance and less

economic relevance. We show how this effect can potentially explain some of the conflicting

findings relating deal frequency and deal experience to acquirer performance (King et al.,

2004; Laamanen and Keil, 2008). Moreover, our LIVA analysis suggests that deal size

rather than frequency is a statistically and economically more significant variable that has

been largely overlooked: both very small and very large deals underperform deals that are
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approximately half of the acquirer market capitalization. Moreover, mega-mergers perform

particularly badly: deals over $10B are associated with an average negative LIVA of $26B.

Third, we perform a case study of Circuit City and Best Buy which shows how LIVA can be

decomposed into specific sources of value creation and destruction. The LIVA decomposition

indicates, for instance, that despite Circuit City’s bankruptcy, it destroyed relatively little

investor value due to its successful spin-off of Car-Max.

Finally, we discuss the advantages and disadvantages of LIVA. Advantages of LIVA are

that it increases with NPV-positive investments; it accounts well for major corporate events

such as mergers and bankruptcy; it measures magnitude of economic impact; and it can be

decomposed into different sources. Potential disadvantages of LIVA are that it depends on

stock market expectations; and it measures returns absolutely instead of relative to size.

We discuss how the advantages and disadvantages compare under various conditions, and

thus when LIVA can lead to new strategic insights as a complement to existing performance

measures.

2.2. Literature review

Explaining organizational performance is at the heart of the strategy literature. Though

there are many ways to measure performance, financial performance for investors plays a

central role. The main theories of the strategy field, including the resource based view (Bar-

ney, 1991), the positioning school (Porter, 1980), transaction cost economics (Williamson,

1979), and more recently value based strategy (Gans and Ryall, 2017), all assume some

form of profit maximizing behavior of firms, and seek to explain differences in the profit ap-

propriated across firms, and ultimately their investors. Though some scholars have argued

for measuring performance of other stakeholders too (Coff, 1999; Lieberman et al., 2017),

measuring financial performance (for investors) has remained important in the empirical

literature. For instance, out of all 119 empirical papers published in SMJ in 2016 using

quantitative methods, 55 used some measure of financial performance, almost half of them
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as a dependent variable. These numbers are consistent with an earlier review of accounting

metrics in the strategy literature by Richard et al. (2009, Table 1).1

We also looked more specifically which performance measures were used in SMJ. Figure 2

shows the results, split by accounting versus stock market measures, as well as by absolute

measures (in dollar amounts) versus ones that are relative to size (ratios). Clearly, relative

measures based on accounting returns are by far the most widely used, with return on

assets (ROA) leading the pack (34 out of 55 studies2). In contrast, only four studies used

an absolute measure based on accounting returns, and six studies used a relative measure

based on stock market measures. Not a single paper used an absolute measure based on

stock market returns. The key reasons for the ubiquity of relative measures based on

accounting returns are presumably that they are easy to obtain, easy to use, and have been

widely used in the past. At the same time these relative accounting measure are not without

long-standing and well-known critiques.

For instance, in a widely cited American Economic Review classic, Fisher and McGowan

(1983) use a formal model to investigate the theoretical relation between accounting re-

turns and the underlying economic returns (which they define as the cash returns from

investments). They find that “there is no way in which one can look at accounting rates

of return and infer anything about relative economic profitability” (p. 90). They base

this conclusion on several example firms with realistic underlying economic assumptions

exhibiting very high accounting returns despite earning an economic return well below the

cost of capital, and vice versa. Though the conclusion of this paper might be overly stark,

the examples should still provide a serious exhortation to interpret accounting returns with

great care.

1Additionally, several papers in the accounting literature review and compare measures of firm perfor-
mance (e.g., Goetzmann and Garstka, 1999; Ittner and Larcker, 1998). These papers mainly assess short-
term measures based on accounting data that can inform managerial decision making to optimize shareholder
value, while our goal is to find a long-term backward looking measure that is consistent with the managerial
goal of value optimization.

2Note that the total number of studies that use a performance measure does not equal the total of all
numbers in Figure 2, because some studies use multiple measures, while other studies use different measures
from the ones described in the figure, such as Tobin’s q.
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Figure 2: Performance measures used in SMJ in 2016 and number of studies that use them

EBIT(DA): 4 none 

ROA: 34 

ROS: 6 

ROE: 4 

ROC: 2 

TSR: 3 

CAR: 3 

Accounting Stock market 

Relative 

Absolute 

Note. Analysis of all quantitative empirical studies in Strategic Management Journal volume 37 (2016) that

use a measure of financial returns, split by accounting and stock market based measures, as well as by

relative (i.e., ratios), and absolute (i.e., in dollar amounts) measures. EBIT(DA) = earnings before interest,

taxes, (depreciation and amortization); ROA = return on assets; ROS = return on sales; ROE = return on

equity; ROC = return on capital; TSR = total shareholder return; CAR = cumulative abnormal returns.

Another long-standing critique is the use of relative measures (or ratios) in regressions,

summarized specifically for a strategic management audience by Wiseman (2009) though

the original critique is more than a century old (Pearson, 1897). Wiseman (2009) shows

that the use of ratios such as ROA and ROC is likely to lead to biases and unstable results

primarily due to confounding correlations in the numerator (e.g., absolute profits) and

the denominator (e.g., assets). Moreover, he provides specific guidance on using absolute

measures instead of ratios in regressions, and how issues that might result from using

absolute measures such as the fact that bigger firms in general will have bigger absolute

profits can be resolved, for instance by careful inclusion of additional independent variables

(or controls) or using a weighted least squares regression.

Finally, Levinthal and Wu (2010) argue that firms ought to optimize absolute value and

not relative returns. For instance, a firm that has a cost of capital of 10% and a return on

capital (ROC) of 20%, will appropriate additional value for its investors if it invests in a
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project earning 15% returns, despite the fact that the investment will decrease the ROC for

the firm. Thus, a firm with a lower ROC might in fact appropriate more value than a firm

with a higher ROC, because the latter might artificially forego positive NPV opportunities

that would lower its ROC. Indeed, theoretical papers almost never use accounting ratios

such as ROA: of the six theoretical models in SMJ in 2016 that use a performance measure,

five use absolute profit and one total shareholder return (TSR) as a dependent variable.

A few empirical studies in our SMJ sample use measures other than accounting ratios. Four

studies use Earnings Before Interest, Taxes (Depreciation and Amortization) (EBIT(DA)),

an absolute measure of operating profits, sometimes citing similar reasons as above for us-

ing absolute instead of relative measures. Six studies use stock market based measures.

Total shareholder return (TSR) is the buy-and-hold return of an investment: the percent-

age return from dividend yield and share price appreciation, with dividends reinvested.

Cumulative abnormal return (CAR) is a market-adjusted TSR-based measure, indicating

how well a stock has done relative to the overall market. CAR is typically used in event

studies, for instance to judge the performance of mergers, acquisitions or alliances around

an announcement date. An advantage of using TSR or CAR is that it immediately relates

to economic returns that are realizable by investors, and thus is not prone to the Fisher

and McGowan critique.

We did not include Tobin’s q and related measures such as market to book ratio in our

analysis of performance measures, because they are valuation measures at a certain time,

while we are mainly interested in measures of profitability over a certain time period (to

address the question of long-term firm performance). Note though that Tobin’s q would be

prone to similar critiques as relative accounting returns, because its denominator is usually

based on some accounting measure of assets. Recent work in finance including intangible

capital in the denominator of q (Peters and Taylor, 2017) alleviates some of the issues raised

by Fisher and McGowan (1983), but is still prone to the ratio issue (Wiseman, 2009) and

the relative vs. absolute optimization issue (Levinthal and Wu, 2010).
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While the strategy literature is mainly concerned with measuring past performance, there

exists a significant literature on investment appraisal the evaluation of future investment

opportunities. The gold standard is appraisal based on net present value, NPV (Brealey

et al., 2006; Koller et al., 2010). The basic idea is that an investment should be made if and

only if it is expected to return more than the cost of capital, reflected by a positive NPV.

The NPV is defined as the sum of expected cash flow (CF) from an investment, discounted

by a cost of capital r:

NPV =
∑
t

CFt
(1 + r)t

Jacobides et al. (2012) highlight the importance of NPV for the strategy field: “[...] a

cautionary point is that apparently high profits (accounting net income) can derive from

sunk investments that are actually failing to yield a normal rate of return. To address

this issue, we view financial performance in terms of the potential gains of investors in the

firm over longer periods, focusing on net present value (NPV) of cash flows [...]” (p. 1386;

emphasis in the original). In other words, NPV measured over a long time period captures

the extent to which strategic investments have been (financially) successful.

2.3. LIVA and its properties

The literature review highlights an interesting disconnect between the theoretical and em-

pirical strategy literature regarding performance measurement: while theoretical models as-

sume that firms maximize absolute profits, and ultimately long-term NPV, empirical papers

usually assess performance using short-term ratios such as ROA, which might not properly

reflect underlying economic performance, even over long time periods. In this section, we

want to fill this gap by developing an empirical measure of long-term firm performance

based on a backward-looking measure of NPV, using data that are publicly available for

listed companies. We call this measure long-term investor value appropriation (LIVA).
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2.3.1. Defining LIVA

To define LIVA based on NPV, we want to estimate the ex post discounted value of all

cash flows to and from investors between two time points t = 0 and t = T . This value is

equivalent to assuming that at time 0 investors invest V0, the value of the firm at that time;

in subsequent periods t, investors receive the free cash flow generated by the firm FCFt;

and at time T investors sell the firm for its market value VT .3 (The free cash flow (FCF)

is the cash that is available to all investors (debt and equity holders), which is equal to the

cash flow from operations net of capital expenditures.) Taking the sum of the present value

of these cash flows at time t = T yields, with r denoting the cost of capital:

LIV A = VT − V0(1 + r)T +
T∑
t=1

FCFt
(1 + r)t−T

(2.1)

In appendix A.1, we show that when taking the starting and ending value Vt equal to the

enterprise value of the firm (i.e., the market value of equity plus the book value of debt),

the above equation is equal to:

LIV A =

T∑
t=1

ERt
(1 + r)t−T

(2.2)

In this equation, ERt is the excess return (the total shareholder return above the cost

of equity) over period t, and MCt−1 is the market capitalization (the market value of all

shares) at the beginning of period t. In words: LIVA is equal to the sum of the discounted

absolute excess returns to shareholders over a given period.

The excess return (ERt) per period can be operationalized in several ways. All methods

are based on total shareholder return (TSR), also called buy-and-hold returns, which are

equal to the dividend yield plus stock price appreciation with dividends reinvested. The

3Throughout the chapter, we use the convention that state variables at a certain point in time (such as
market capitalization) are measured at the end of a period, and that flow variables (such as FCF) start in
period 1. Thus, t = 0 reflects the moment before any flows have started.
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simplest way to calculate excess return is to take the difference between the company TSR

and the value-weighted market returns. More involved methods would use the capital asset

pricing model (CAPM), based on which the excess returns are the residuals of a regression

without intercept of TSR on the market return. Additionally, other factors than just the

market return could be included; common methods in the finance literature include a three

factor (Fama and French, 1993) or four factor model (Carhart, 1997).

We prefer to use the simplest method (TSR minus market average), because it has a clear

interpretation, and is least prone to errors and dependencies on methodological choices

(CAPM or multi-factor models, for instance, require choosing rolling time windows over

which to perform the regressions, the choice of which will affect the results). Moreover, Fama

and French (1997) show that in practical applications the factor loadings (i.e., the betas)

usually have such high error margins that differences across companies and industries are

usually not statistically significant. Indeed, we did not find material differences in outcomes

across the various methods for calculating excess return, and thus for most analyses use the

simplest one (details are available upon request).

2.3.2. Numerical example

Table 2 shows a numerical example of a LIVA calculation. The hypothetical firm has its

initial public offering (IPO) of 1 million shares of $10 each in year 0, acquires another firm

by issuing 1 million shares at a price of $100 each in year 10, and is acquired at a share price

of $80 in year 20. For simplicity, we assume that the shares do not pay dividends, and that

the cost of capital throughout the entire period is constant at 8% per year. Thus, there are

three cash flows over the entire 20-year period: investors pay $10M in year 0, pay another

$100M in year 10, and receive $160M in year 20. In present values (as of year 20), these are

-$47M, -$216M and +$160M, respectively. Adding these cash flows leads to a total LIVA

of -$103M using the discounted cash flow formula from equation (2.1).

Alternatively, one can calculate LIVA with equation (2.2) using shareholder returns. In the
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Table 2: LIVA example

Year 0 Year 10 Year 10 Year 20
(IPO) (pre-M&A) (post-M&A) (acquired) Total

Share price $10 $100 $100 $80
Shares outstanding 1M 1M 2M 2M
Market capitalization $10M $100M $200M $160M
Discounted market cap $47M $216M $432M $160M
Discounted cash flow -$47M -$216M $160M -$103M
TSR† 25.9% -2.2% 11.0%
Cost of capital† 8.0% 8.0% 8.0%
Excess return† 16.6% -9.5% 2.7%
LIVA $169M -$272M -$103M

Note. Numerical example of LIVA and shareholder return calculations for a firm that has its initial

public offering (IPO) for 1 million non-dividend paying shares of $10 each in year 0, acquires another

firm by issuing 1 million shares at a price of $100 each in year 10, and is acquired at a share price of

$80 in year 20. See the text for further details.
†TSR, cost of capital and excess return are annualized.

first decade, the annualized excess return4 is 16.6%, and in the second -9.5%. Using these

figures leads to a LIVA of $169M for the first decade and -$272M for the second. The sum

of these two is again -$103M, the same as the figure from the discounted cash flow method.

Interestingly, total LIVA over the entire 20-year period is negative, even though both the

TSR (of 11% per year) and the increase in market capitalization (of 15% per year) are

well above the cost of capital (of 8% per year), and annualized excess returns are positive

(2.7% per year). The reason is that though the negative excess returns in the second decade

(-9.5%) are smaller in magnitude than the positive excess returns in the first (16.6%), the

negative returns are on a much larger base than the positive ones, due to the acquisition.

Hence, despite the fact that an investor holding a constant set of shares over the entire time

period would have made a better return than the market, the company destroyed value for

the investor base as a whole.

4This uses the continuous compounding equation for calculating excess return: ER = (1+TSR)/(1+r)−1.
The LIVA for each decade can then be calculated using the total, non-annualized excess returns. For
instance, for the first period, the total excess return is (1 + 16.6%)10 − 1 = 363%, which multiplied by the
initial discounted market cap of $47M leads to a LIVA of $169M in the first decade. Alternatively, one could
employ equation (2.2) to the discounted market cap and excess returns in each individual year, leading
exactly to the same results.
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This example is not a mere theoretical possibility. For instance, in the merger of AOL and

Time Warner, both companies had positive excess returns (5% per year for Time Warner

from 1995 until 2000 when they were acquired, and 11% per year for AOL for the entire

time period from 1995 to 2014). However, an analysis of LIVA shows that AOL destroyed

more than $150 billion of value, and still over $100 billion after taking into account the

value created for Time Warner shareholders. The reason for this result is similar to the

above example: unlike excess return, the LIVA calculation takes into account that AOL’s

positive returns were on a much smaller base than its collapse after the merger.

2.3.3. Interpreting LIVA

The interpretation of LIVA is very similar to the interpretation of NPV. For instance, over

the 20-year period 1995-2014, Apple generated a LIVA of $658 billion. This means that

Apple investors earned 658B more than if they had invested their money in a market-wide

index over the same period. More precisely, if an investor had bought the outstanding

shares of Apple in 1995 at the market price, borrowing the money at a cost equal to the

average market return, sold all Apple shares again at the end of 2014 at the market price,

and using that money as well as any intermediate cash returns (dividends and share buy

backs) to repay her “debt”, then she would have had 658B left in her bank account.

One important property to keep in mind when interpreting LIVA is that its average across

all firms is zero. Though at first maybe surprising, this property follows immediately from

the definition in equation (2.2): because excess return is a comparison to the market average,

the (value-weighted) average excess return must be zero (hence the name excess return),

and hence its discounted sum over time LIVA must be zero on average as well. Note

that this property does not hinge on any assumptions about efficient markets, but rather

results from the fact that returns are compared to the cost of capital, and the average cost

of capital is by definition equal to the average market return. Because the average deviation

from an average is always zero, the average return above the cost of capital is always zero,

and thus the average LIVA is zero.
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2.3.4. LIVA and accounting returns

Though we have defined LIVA in terms of shareholder returns, it is insightful to relate it to

accounting returns. Intuitively, the two must be related, because ultimately the shareholder

cash distributions (dividends and share buy backs) must be paid by the operating profits

of the firm. In appendix A.1, we derive the relation between LIVA and a commonly used

accounting-based operationalization of economic profit (EP):

LIV A = [EVT −BVT ]− [EV0 −BV0](1 + r)T +

T∑
t=1

EPt
(1 + r)t−T

(2.3)

In this equation, EVt is the market value and BVt the book value of the firm’s operating

assets. The economic profit EP is operationalized based on the net operating profit after

tax (NOPAT)5 (Hawawini et al., 2003)6:

EPt = NOPATt − r BVt−1 = (ROCt − r)BVt−1 (2.4)

The final part of this equation relates after tax return on capital (ROC) to economic profit.

Substituting for EP in equation (2.3) yields:

LIV A = [EVT −BVT ]− [EV0 −BV0](1 + r)T +
T∑
t=1

(ROCt − r)BVt−1

(1 + r)t−T
(2.5)

The summation in equation (2.5) is thus the accounting analogue of equation (2.2). The

sum in equation (2.5) is over accounting returns above the cost of capital times accounting

value of assets, while in equation (2.2) it is over market returns above the cost of equity

times market value of equity. Finally, it is interesting to evaluate equations (2.1), (2.2),

(2.3), and (2.5) over a firm’s entire lifetime. This leads to particularly simple equations,

5NOPAT = EBIT (earnings before interest and taxes) minus income tax.
6Note that Hawawini et al. (2003) use the term capital employed (CE) instead of book value (BV);

both reflect the balance sheet valuation of the net operating assets (i.e., operating assets minus operating
liabilities, equal to balance sheet debt plus equity).
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because before the inception of the firm and after its liquidation (e.g., through a take-over

or bankruptcy) the firm’s book and market values are zero:

LIV A =
T∑
t=1

FCFt
(1 + r)t−T

=
T∑
t=1

ERtMCt−1

(1 + r)t−T
=

T∑
t=1

EPt
(1 + r)t−T

=
T∑
t=1

(ROCt − r)BVt−1

(1 + r)t−T

(2.6)

In other words, the LIVA over the entire lifetime of a firm is equal to the sum of discounted

cash flows, equal to the sum of discounted (absolute) excess returns, equal to the sum of

discounted economic profits, and equal to the sum over excess accounting returns times

book value.

This equation sheds some further light on the relations between cash, market returns and

accounting returns: when properly measured and discounted, the only difference between

these measures is that they shift value backwards or forwards over time, without affecting

the total. Moreover, this shows the origin of the leading two terms in the right hand side of

equations (2.3) and (2.5): the differences between book and market value at time t = 0 and

t = T adjust for the fact that not all value as priced in the market (which is partly based

on future expectations) might have been attributed in the accounting statements.

2.4. LIVA compared to other measures

In this section, we compare LIVA to common accounting and shareholder return measures.

The purpose of this section is to show where and how LIVA can potentially lead to new

strategic insights. The analyses in this section are based on a LIVA database that we have

created for all US listed firms over the period 1995 to 2014, using the definition in equation

(2.2) with monthly data from the CRSP database, for a total of over 15,000 company

listings. Excess returns are calculated using the same data, and are annualized over the

entire period, using a standard compounding procedure:
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Annualized Excess Return =

(
T∏
t=1

1 + TSRt
1 + rt

) 1
n

(2.7)

In this equation, TSRt is the monthly total shareholder return, rt is the monthly average

market return, and n is the number of years over which the return is calculated. Finally,

return on capital is calculated with after tax profits, using Compustat data.

2.4.1. Finding top performing firms

Case studies provide an important method of inquiry for management research (Eisenhardt,

1989; Siggelkow, 2007). One way of selecting case studies is based on long-term performance,

in order to find examples of particularly effective (or ineffective) strategic management. To

assess the impact of different performance measures on finding top performing firms, we

look for the top 10 firms in our database using several performance measures. Of course,

a similar procedure can be employed for specific selections of firms, for instance within an

industry or geographic region.

Table 3 shows the results for all companies in our database for which data were available for

at least five years of the twenty-year period 1995-2014 and had at least $10 million of balance

sheet capital (in order to exclude companies with negative or extremely low capital, leading

to unrealistically high ROA and ROC). TSR and Excess Return are annualized measures,

using equation (2.7), and ROA and ROC are weighted annual averages over the period of

data availability. Among the names on the LIVA list are many of “the usual suspects”:

firms that have been in the news because of their successes, such as Apple, Exxon and

Microsoft.

The shareholder-return-based top 10 lists in panels (b) and (c) are notably different from

the LIVA list. The companies on these lists were certainly quite successful, but were only

able to reach these very high returns because they started out so small: Optical Coating

Lab had a market capitalization of $55 million in 1995, and IDEC pharmaceuticals (the
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Table 3: Top 10 companies 1995-2014 by LIVA and other common performance measures

a. LIVA ($B) d. Return on assets (ROA)

Apple Inc 658 San Juan Basin Royalty Tr 167%
Exxon Mobil Corp 406 Bp Prudhoe Bay Royalty Trust 77%
Microsoft Corp 338 Cboe Holdings Inc 72%
Altria Group Inc 294 Texas Pacific Land Trust 68%
Genentech Inc 241 Great Northern Iron Ore Ppty 66%
International Business Machs Cor 210 Mesa Royalty Trust 64%
Wal Mart Stores Inc 194 Pzena Investment Management 62%
Johnson & Johnson 183 Terra Nitrogen Co -Lp 61%
Oracle Corp 181 Life Partners Holdings Inc 61%
Warner Lambert Co 151 Cross Timbers Royalty Trust 58%

b. Total shareholder return e. Return on capital (ROC)

Optical Coating Lab Inc 123% San Juan Basin Royalty Tr 194%
Netoptix Corp 99% Dun & Bradstreet Corp 99%
U T I Energy Corp 87% Great Northern Iron Ore Ppty 87%
Burr Brown Corp 85% Credit Suisse Usa Inc 83%
S D L Inc 84% Terra Nitrogen Co -Lp 80%
Jones Pharma Inc 78% Domino’S Pizza Inc 78%
Virtus Investment Partners Inc 76% Bp Prudhoe Bay Royalty Trust 78%
Metal Management Inc 70% Mesa Royalty Trust 75%
Medis E Ltd 67% Lorillard Inc 75%
T V Guide Inc 63% Pzena Investment Management 72%

c. Excess return

Optical Coating Lab Inc 77%
Netoptix Corp 61%
U T I Energy Corp 59%
S D L Inc 57%
Metal Management Inc 50%
Advance P C S 49%
Burr Brown Corp 48%
Virtus Investment Partners Inc 48%
Jones Pharma Inc 45%
Medivation Inc 44%

Note. Top 10 lists based on a database of all listed US firms with at least $10M balance sheet capital,

and at least five years of data available. All relative measures are annual.
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predecessor of Biogen IDEC) of just $29 million. As a comparison, Apple was already a $5

billion company in 1995, and it would have needed an impossibly high market capitalization

of $12 trillion in 2014 to reach the same growth rate as IDEC. Thus, the top positions on

the shareholder return lists not only reflect a very strong performance but also a very small

starting point.

Moreover, LIVA takes size changes better into account than shareholder returns. For in-

stance, Exxon Mobil is second on the LIVA list, while having a shareholder return of only

2% above the market average. Over the last decade of the analysis, it even had a negative

excess return, but still a positive LIVA, because it had a significantly larger capital base

when it realized positive returns than when it realized negative returns. This is the exact

reverse of the example in Table 2.

Similar to the lists using market return measures, the top performers on the accounting

return lists in panels (d) and (e) are typically relatively small companies. Particularly the

extremely high ROA and ROC of most companies do not reflect very high profits, but rather

very low balance sheet assets. For instance, the top performing company in terms of ROA

and ROC is San Juan Basin Royalty Trust, a company that distributes profits from oil &

gas royalty rights, which have not been capitalized on the balance sheet to their economic

value. Thus, the high performance in terms of ROC and ROA appears to be as much a

reflection of particular accounting conventions as of good underlying economic performance.

These examples show some of the potential advantages of using LIVA when assessing long-

term firm performance: it measures the absolute size of economic performance without

favoring initially small companies (unlike relative shareholder return measures), it values

both profits and growth (unlike accounting based return measures), and it does not hinge

on accounting definitions.
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2.4.2. Industry performance

Instead of applying LIVA to individual companies, it is also possible to assess industry per-

formance. How correlated are “attractive” industries (industries usually defined as having a

high ROC) with industries that have created a lot of value in absolute terms? Table 4 shows

the industries with the most extreme values for LIVA: those with LIVA above $100 billion

or below minus $100 billion over the period 1995 to 2014.7 The excess return has been

calculated based on a value-weighted industry index, and the ROC is a weighted average

over the entire period.

First comparing ROC and excess return for these industries, clearly the value appropriating

industries on average had higher accounting returns than the value destroying industries.

However, there are clear deviations too. For instance Biotechnology, which had one of the

highest excess returns (7% per annum), had a relatively low return on capital (8%, which is

2% below the overall average of 10% over this period). These deviations can either be due

to accounting regulations that do not properly capitalize assets on the balance sheet (such

as brand value of firms in Household Products), or due to deviations between market and

book value of the firms in an industry at the beginning or the end of the period.

The deviations between LIVA and excess return are primarily due to size. For instance,

though the Oil & Gas industry realized “just” a 1% annual excess return, its economic

impact was very large due to the sheer size of this industry. Particularly interesting in this

respect is the enormous value destruction of telecommunication services and equipment

firms: the companies in these two industries destroyed more than $2 trillion of value over

this period, not being able to obtain economic gains from the enormous investments that

were needed in the transition to mobile.

7The Global Industry Classification Standard (GICS) by Standard & Poor’s is used for aggregation,
because this system reflects current competitive arenas much better than the decades-old Standard Industry
Classification (SIC) codes.
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Table 4: Biggest LIVA creating and destroying industries 1995-2014

GICS Industry LIVA ($B) Excess return ROC

101020 Oil and Gas 715 1% 10%
352010 Biotechnology 704 7% 8%
352020 Pharmaceuticals 630 1% 17%
302030 Tobacco 421 5% 24%
452020 Technology Hardware 374 4% 13%
351010 Health Care Equipment 356 2% 14%
301010 Food Retailing 298 1% 11%
201010 Aerospace, Defense 297 2% 13%
451020 IT Services 207 2% 16%
303010 Household Products 182 0% 18%
402020 Consumer Finance 161 4% 8%
351020 Health Care Providers 154 0% 11%
402010 Diversified FS 148 1% 8%
451030 Software 135 2% 14%
302010 Beverages 131 0% 15%
201060 Machinery 128 2% 12%
255040 Specialty Retail 128 1% 13%
402030 Capital Markets 112 4% 14%

...

401020 Thrifts, Mortgages -103 -7% 7%
401010 Banks -108 -1% 8%
151030 Containers, Packaging -124 -3% 10%
252010 Household Durables -136 -2% 6%
551050 Ind. Power Producers -169 -8% 7%
251010 Auto Components -182 -4% 11%
403010 Insurance -188 -1% 8%
501020 Wireless Telco -219 -7% 6%
452030 Electronic Equipment -262 -2% 6%
251020 Automobiles -263 -2% 6%
254010 Media -274 0% 6%
202010 Commercial Services -336 -4% 10%
451010 Internet Services -466 0% 3%
151040 Metals, Mining -537 -6% 11%
501010 Diversified Telco -1163 -5% 9%
452010 Communications Equipment -1252 -4% 7%

Note. GICS = Global Industry Classification Standard, a classification by Standard &

Poor’s.
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2.4.3. Analyzing value destruction

As a final example, Table 5 shows an analysis of value destruction. Panel (a) lists the 20

companies with the most negative LIVA over the period 1995-2014. Consistent with the

industry analysis in Table 4, many of the companies that destroyed value are in the telecom

sector. Striking is the difference between the LIVA measures and excess returns. Some

companies even have positive excess returns but negative LIVA (AOL TimeWarner and

Pfizer) due to overly aggressive and costly expansion strategies. Moreover, LIVA provides a

much more meaningful measure than shareholder returns can give in case of bankruptcy: in

that case the TSR and excess return are always -100%, while LIVA provides the magnitude

of the actual value destroyed.

Panel (b) of Table 5 shows an aggregation of all companies with negative LIVA by end

of listing type. Interestingly, only 6% of value destruction was by companies that went

bankrupt. In fact, more than 40% of value was destroyed by companies that are still active,

and another 30% by companies that had been acquired. Note that this type of analysis would

be difficult to perform with other measures: as shown earlier, both accounting measures as

well as relative shareholder return measures typically do not reflect well the value destroyed

in major corporate events such as acquisitions and bankruptcy. These results also suggest

that LIVA might be a useful addition to bankruptcy and dissolution measures used regularly

in industry life-cycle and population ecology studies: If we consider value destruction a form

of “failure”, then most of the failure is actually experienced by firms that do not exit.

2.5. Drivers of M&A performance

In this section we show how LIVA can bring new strategic insights in a large-scale regression

setting. We decided to re-analyze previously identified drivers of M&A performance, because

LIVA potentially can account better for the long-term impact of the major cash transactions

involved in mergers, as exemplified in Table 2. Moreover, LIVA is very suitable to assess

long-term economic impact.
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Table 5: Analysis of companies with negative LIVA

a. Bottom 20 performers

Company LIVA ($B) Excess return

A T & T Corp -320 -13%
American International Group Inc -290 -15%
Bank Of America Corp -227 -4%
Citigroup Inc -217 -7%
Motorola Solutions Inc -206 -8%
Worldcom Inc -204 Bankrupt
Lucent Technologies Inc -175 -16%
Time Warner Inc -152 11%
Wachovia Corp -150 -11%
Nortel Networks Corp -136 Bankrupt
J D S Uniphase Corp -135 -3%
A T & T Inc -126 -3%
General Motors Corp -108 Bankrupt
Sprint Nextel Corp -106 -9%
Daimler A G -98 -4%
Pfizer Inc -98 1%
C B S Corp -93 -2%
Qwest Communications Intl Inc -93 -4%
Coca Cola Co -90 -1%
Electronic Data Sys Corp -86 -12%

b. Analysis by end of listing type

Type LIVA ($B) Of total

Bankrupt -1,075 6%
M&A -5,804 33%
Active -7,385 42%
Other -3,444 19%
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The drivers of M&A performance have been widely studied in prior literature. In a pivotal

paper, Haleblian and Finkelstein (1999) theorized and empirically confirmed that organiza-

tional learning processes would lead to a U-shaped relation between acquisition experience

and acquirer performance. Later papers in this literature, however, have led to conflicting

results regarding this finding (e.g., Laamanen and Keil, 2008; Zollo and Singh, 2004), while

a meta-analysis did not find evidence of a significant relation between acquisition frequency

and performance (King et al., 2004). Moreover, this meta-analysis “indicate[d] that [yet]

unidentified variables may explain significant variance in post-acquisition performance” (p.

187). In this section, we re-analyze the relation between acquisition frequency and per-

formance using LIVA, and assess potentially overlooked variables that could explain M&A

performance. Moreover, we assess potential reasons for the conflicting findings across earlier

studies, which usually used excess return, ROA, or related measures of performance.

2.5.1. Method

Following Laamanen and Keil (2008), we use a panel approach to analyze the performance of

M&A activity in a given period (instead of an event study to analyze specific transactions).

As antecedents of performance we use several of the most widely used variables in the M&A

literature, such as deal frequency, deal size, and industry relatedness (Capron and Pistre,

2002; Haleblian and Finkelstein, 1999; King et al., 2004; Laamanen and Keil, 2008; Zollo

and Singh, 2004).

Specifically, we use a panel by firm-year for all US listed firms that are in the CRSP

database8 in the years 1990 to 2007—the latter cutoff is to ensure that we have at least 10

years of subsequent performance data available for each observation. This leads to 122,771

observations for 15,551 firms. Each firm is identified by its unique permco identifier in

the CRSP database, which is then associated with one or more stock market listings (by

permno) and all its CUSIP identifiers over the entire period. The CUSIP identifiers are

8We include only common stock with CRSP share code 10, 11 or 12, thus excluding any American
depository receipts (ADRs), mutual funds, trusts, etc.
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then matched to the ultimate acquiring parent9 for all mergers and majority acquisitions

recorded in the Thomson SDC Platinum database that are marked as completed, for a total

of 68,626 deals.

As dependent variable (DV) we use LIVA, and compare it with Excess return, a commonly

used stock based measure of firm performance (e.g., Laamanen and Keil, 2008), similar

to cumulative abnormal returns. Both measures are based on monthly total shareholder

returns compared to the average return for all firms in the database, aggregated to 1-year,

3-year, and 10-year totals. LIVA is calculated using equation (2.2), while excess return is

calculated as the compounded excess return (i.e., the dividend-adjusted “buy and hold”

return in excess of the market average) over each period. To minimize any selection bias

due to dropped observations, LIVA and excess return are set to zero after a firm is delisted,

because, by definition, the average LIVA and the weighted average excess return across

firms are zero. Thus, both of these performance measures capture the impact over the

entire period of listing within the observation window.

We use several independent variables, all based on prior literature. Relating to the number of

deals we use Deal frequency and Deal experience. Deal frequency is defined as the logarithm

of one plus10 the number of deals in the focal year, while deal experience is the logarithm

of one plus the total number of deals recorded in the prior five years. The No deals dummy

captures if firms have no recorded deals in a certain year.

Absolute deal size and Relative deal size capture the size of all deals in a year in terms of

the equity value in the SDC database. The absolute deal size is the logarithm of one plus

the equity value deflated by the total market capitalization of all firms (at the beginning

of that year), to account for changing monetary values of firms over time. The relative

deal size is the equity value divided by the beginning of year market capitalization of the

9Matching to the acquiring entity or its immediate parent does not materially affect the main results.
10For variables that can be zero, we use the logarithm of one plus the variable to ensure that the logarithm

is always defined. We then define a dummy for the variable being zero in order to separate out this potentially
special case in the analysis.
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acquiring firm (the latter extracted from the CRSP database). This value is maximized at

one, to exclude the effect of reverse take-overs (for which the equity value of the acquisition

is larger than the acquirer market capitalization) and also reduce the effect of some extreme

outliers (acquiring firms with extremely small market capitalizations compared to the equity

values of the acquisitions)11. The Deal size > market capitalization dummy captures these

reverse take-overs separately. Finally, The No deal size dummy captures missing equity

values (which are set to zero).

Furthermore, Industry change captures the percentage of deals in a year for which the target

had a different mid-level industry classification than the acquirer. With advisor captures

the percentage of deals with an advisor. Cash payment captures the average cash payment,

weighted by deal equity value. Hostile deals captures the percentage of deals listed as hostile.

Finally, we control for the logarithm of Market capitalization. Also, we include industry-

year fixed effects (based on the CRSP 3-digit SIC codes). These control for all time-varying

and time-constant effects at the industry level, such as differences in acquisition patterns,

cost of capital, growth rates, and exposure to the economic cycle. We perform ordinary

least squares (OLS) regressions for both dependent variables for the three different time

horizons on all independent variables and controls, for a total of six regression models.

We use cluster-robust standard errors to account for any potential serial correlation and

heteroscedasticity; this is especially important for the models with three- and ten-year per-

formance data, because the firm-year panel will in these cases have overlapping performance

data for multiple within-firm observations, and thus almost certainly exhibit serial correla-

tionthe cluster-robust standard errors ensure that this serial correlation does not incorrectly

affect the reported significance levels.

11Fewer than 1% of observations have a target equity value larger than the acquirer market capitalization,
but the equity value can be almost 1000 times as large as the market capitalization for some observations.
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2.5.2. Results

Table 6 shows the results of the regressions. Focusing on the LIVA regressions in models

(1) to (3) first, the direction of the effects is the same for most variables across the three

time horizons, with the effects becoming stronger and more significant over time. For the

ten-year LIVA regression, in model (3), the main results are summarized below.

A one standard deviation increase in Deal frequency, which corresponds to 56% more deals

in the focal year, is associated with a $3B increase in LIVA (p = 0.01). The No deals

dummy is weakly associated with an increase in LIVA, of $2B (p = 0.09).

Deal experience is positive (p = 0.01) and its square negative (p = 0.03), indicating an

inverted-U relation. The maximum of the inverted-U is at an average of 3.1 recorded deals

over the past five years, which is associated with a $1B increase in LIVA compared to no

deals, while more than 9.7 recorded deals are associated with a decrease in LIVA.

Relative deal size is positive (p = 0.009) and its square negative (p = 0.02), again indicating

an inverted-U shape. The maximum of the inverted-U is at a deal value that is 59% of the

acquirer market capitalization, which is associated with a $7B increase in LIVA compared

to a relative deal size close to zero. Absolute deal size is significantly negative (p = 0.002).

A separate regression (unreported), with the continuous deal size variables replaced by a

single dummy, indicates the economic significance: deal values above $10B are associated

with a negative LIVA of $26B (p = 8 · 10−4).

Industry change is associated with a $1.5B decrease in LIVA (p = 0.01). With advisors is

associated with a $2.5B decrease in LIVA (p = 0.002). Full Cash payment is associated with

a $2.0B increase in LIVA (p = 0.04).

While the three LIVA regressions exhibit a relatively consistent pattern across the different

time horizons, the excess return regressions in models (4) to (6) are more erratic. Unlike

the LIVA regressions, there is no clear progression across the horizons, with some variables
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Table 6: Regressions of LIVA and excess return on M&A characteristics

LIVA Excess return

1 year 3 year 10 year 1 year 3 year 10 year
(1) (2) (3) (4) (5) (6)

Deal frequency† −0.00 1.27 4.46∗∗ 6.84∗∗∗ 4.71 2.76
(0.39) (0.85) (1.72) (1.37) (2.67) (3.85)

No deals‡ 0.11 0.64 1.88 −1.00 0.20 −2.17
(0.24) (0.55) (1.09) (1.63) (2.39) (3.18)

Deal experience† 0.32∗ 0.47 1.77∗ 0.23 2.84 11.87∗∗∗

(0.15) (0.30) (0.71) (0.74) (1.69) (3.17)
Deal experience† −0.17∗ −0.19 −0.78∗ −0.43 −0.56 −4.10∗∗∗

square (0.08) (0.16) (0.36) (0.25) (0.58) (1.16)
Relative deal size 5.93∗ 10.26∗ 23.43∗∗ 38.45∗∗∗ 9.31 34.00

(2.58) (4.86) (9.00) (10.44) (17.82) (26.39)
Relative deal size −6.52∗ −10.88 −20.00∗ −23.89 −5.96 −33.59

square (2.96) (5.56) (8.77) (14.12) (20.28) (31.03)
Absolute deal size† −0.30 −3.43∗ −7.41∗∗ −2.47∗ 1.99 −1.88

(0.56) (1.40) (2.42) (1.21) (1.76) (2.47)
No deal size‡ 0.75∗ 1.03 2.12 4.34∗∗ 9.18∗∗∗ 19.42∗∗∗

(0.32) (0.61) (1.17) (1.41) (2.63) (3.94)
Deal size > market 1.63 3.50 3.68 34.12∗∗∗ 11.65 12.83

capitalization‡ (0.92) (2.02) (2.49) (8.32) (9.05) (11.91)
Industry change 0.14 −0.46 −1.50∗ 0.47 −1.80∗∗ −1.30

(0.15) (0.28) (0.59) (0.33) (0.68) (1.04)
With advisor 0.13 −0.24 −2.45∗∗ −0.00 0.98 −1.05

(0.21) (0.37) (0.79) (0.46) (0.89) (1.30)
Cash payment 0.40 1.31 1.99∗ −3.78∗ 10.55∗∗ 17.39∗∗∗

(0.44) (0.79) (0.97) (1.47) (3.48) (4.12)
Hostile deals −6.08 3.69 5.83 −6.22 −8.35 −8.41

(3.33) (2.71) (7.70) (5.09) (9.58) (15.92)
Market 0.00 0.08 0.43∗∗ −2.52∗∗∗ −3.62∗∗∗ −0.40

capitalization† (0.02) (0.06) (0.15) (0.19) (0.41) (0.86)
Industry x year FE X X X X X X

Observations 122,771 122,771 122,771 122,771 122,771 122,771
R2 (full model) 0.05 0.06 0.08 0.14 0.13 0.10

Note. OLS regression of LIVA and excess return percentage on merger and acquisition characteristics by

firm-year. Clustered standard errors robust to serial correlation are in parentheses.
†Indicates logged variable; ‡Indicates dummy variable
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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highly significant in the one-year regression, and others in the three- or ten-year regressions.

Also, effect sizes fluctuate strongly across time horizons, and sometimes their signs even

change. Again, we summarize the main results.

Deal frequency is highly significant in the one-year excess return regression (positive, p =

6 · 10−7), but its significance strongly decreases for the longer time periods (p = 0.08 and

p = 0.47, respectively). On the other hand, Deal experience is positive (p = 1 · 10−4) in the

ten-year regression, and its square negative (p = 4 · 10−4), with strongly diminishing effect

size and significance in the shorter time periods.

Relative deal size and its square are more significant in the shorter time horizon, becom-

ing insignificant for the 10-year analysis (p = 0.2 and p = 0.3, respectively). No deal size

becomes more pronounced over the longer time horizon, while Deal size > market capital-

ization over shorter time horizons again.

Industry change changes sign, and with strongest result a negative for the 3-year analysis

(p = 0.008). Cash payment changes sign too, with the strongest result a positive over the

10-year time horizon (p = 2 · 10−5).

2.5.3. Discussion

One conclusion of the regressions is that excess return as a dependent variable can behave

rather erratically, often producing inconsistent results both across time horizons and vis--vis

the LIVA regressions. Earlier studies have found such conflicting results too. For instance,

Laamanen and Keil (2008) note “... that although the acquisition rate with our three-

year period of observation on average contributes negatively to performance, the longer

term 10 to 13-year performance of the most active acquirers is significantly higher than the

performance of the less frequent acquirers.” (p. 670). Moreover, though individual studies

often find significant effects of, for instance, deal experience, a meta-analysis across studies

did not find significant effects on abnormal returns across studies for most of the commonly

applied variables, including deal experience, payment method, and relatedness (King et al.,
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Table 7: Characteristics of different size groups in regressions

Percentage of total

Firm market Number of Market LIVA sum Ex. ret. sum
capitalization observations capitalization of squares of squares

<$100M 35,648 0.4 0.0 50.0
$100M-$1B 52,235 4.6 1.1 37.9
$1B-$10B 27,430 20.1 8.0 10.9
$10B-$100B 6,764 42.8 34.0 1.2
> $100B 694 32.2 56.9 0.0

Note. Sum of squares are shown for 10-year return measures, and provide an indication

of the relative weight in a regression.

2004).

What explains the unstable results of excess returns across regressions? A potential answer

can be found by assessing the weight in the regressions of different firm size groups. Because

OLS minimizes squared residuals (i.e.,
∑

(yi − ŷi)2), the sum of squares
∑

(yi − ȳi)2 of a

group of observations provides an indication of its relative weight in a regression for a

specific dependent variable y. Table 7 provides an overview of the relative percentage of the

sum of squares across size groups for ten-year LIVA and ten-year excess returns, compared

to the percentage market capitalization (which is a proxy for economic significance). The

right column indicates that firms smaller than $100M make up 50% of the sum of squares

of ten-year excess returns, and firms smaller than $1B almost 90%, even though this latter

group covers just 5% of the market capitalization of all firms. Thus, regression results using

excess returns as dependent variable are in a large part driven by effects in small firms.

Because smaller firms have larger variance in relative performance, such as excess return,

this provides a plausible cause for the unstable regression results: relatively few small firms

with extreme performance can have a large influence on the regression coefficients.

The picture for LIVA is markedly different. Because LIVA is an absolute measure of per-

formance, its variance is largest for large firms. According to Table 7, observations with a

market capitalization larger than $10B contribute 90% to the sum of squares in a regres-

sion, while their market capitalization constitutes about 75% of the total (in contrast, the

34



excess returns sum of squares for this group is just over 1%, so the results of these econom-

ically most significant firms hardly contribute to regression results using excess returns as

a dependent variable).12

Another insight from this analysis is the importance of using long-term return measures.

For one-year LIVA, most coefficients are relatively small and statistically only marginally

significant, becoming larger and more significant for longer time horizons. This suggests

that only over longer time periods the market correctly prices the full impact of M&A,

and provides caution for the practice of using announcement returns, which are typically

analyzed over time horizons of at most weeks or months, while our analyses suggest that

many effects only become apparent after years or even a full decade.

Regarding the specific results of the M&A regression using ten-year LIVA, the deal fre-

quency and industry change regression coefficients are mostly consistent with a capability-

based perspective Zollo and Singh (2004). Firms performing more deals in the present year

(Deal frequency), are associated with higher LIVApresumably because they gain more expe-

rience and thus become more skilled in doing acquisitions. Also, the negative performance

associated with Industry change is consistent with a capability perspective: less similarity

between target and acquirer would offer less potential for capability transfer and synergies.

Much more surprising vis--vis prior literature is the inverted-U relation between deal ex-

perience and performance, while, for instance, Haleblian and Finkelstein (1999) found the

opposite U relationship. Though both the statistical and economic significance of these

effects are much lower than the deal size effects discussed below, these findings clearly merit

further research, given their theoretical and practical importance.

Potentially even more surprising is the large statistical and economic significant effect of deal

size, with both small and large deals associated with lower LIVA. Very large deals (above

12Note that weighted least squares (WLS) could be used to adjust the weighting of different size groups
when using, for instance, excess return as DV. However, this would not account for the long-term effects of
significant changes in size (as exemplified in Table 2), and neither provide an estimate of the absolute deal
size.

35



$10B) are associated with particularly strong negative performance. A potential mechanism

for the lower value of smaller deals could be that they take too much effort relative to

their potential contribution to the firm. A potential mechanism for the lower value of

(very) large deals could be that they are too difficult to execute successfully, particularly

regarding the post-merger integration. Also, these large deals might be at least in part

driven by managerial hubris and investment bankers’ incentives for deal fees, which would be

consistent with the negative LIVA associated with the use of advisors. Given the economic

importance of large M&A deals, this appears to us a fruitful direction for further research.

A potential concern with the results from these analyses could be that there are many

other effects that influence performance that are not included in the analysis, especially

over longer time horizons. However, as long as these effects are not correlated with the

covariates of interest, they only add noise to results, which would weaken rather than

strengthen the results over longer time horizons. Still, as with any regression analysis, a

key concern could be that such correlations might exist13—for instance, firms performing

very large deals might underperform because they had inferior competitive positions to

begin with rather than due to the execution of the deals. For that story to have an impact

on the LIVA regressions though, the information about the ex ante inferior position should

not have been known to the market at that time, and only have become known during the

execution of the deal.

Summarizing, using LIVA as a dependent variable in a regression can offer three important

benefits vis--vis excess returns or other relative performance measures such as ROA. First,

results using LIVA are for the largest part driven by the economically most significant firms.

Second, because results for the larger firms are less volatile, regression results are typically

more stable across different specifications. Third, using LIVA produces easy-to-interpret

13Note that even event studies using short-term return measures are not immune to such omitted variable
bias. The reason is that under the efficient market assumption on which event studies are based, events with
certain characteristics could act as signals for other effects. Thus, a particular direction in which the share
price moves upon an event (e.g., a merger) could be not due to the effects of that event, but rather due to
effects that are signaled by the event but not directly related to the event itself.
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effect sizes to assess economic significance, such as the result that a deal size above $10B

is associated with a negative LIVA of $26B. This is a novel finding thanks to the use of

LIVA, as most deal size coefficients are insignificant when using excess return as a dependent

variable.

2.6. Case study: Circuit City vs. Best Buy

In this section, we want to illustrate how LIVA can be insightful for strategic analysis of a

case study. We have selected Circuit City as a focal company, because it went bankrupt and

thus shows how LIVA allows to provide a measure of performance over the entire lifetime

of a company—unlike for instance excess return, which per the earlier discussion would just

have been -100%. Moreover, Circuit City had a clear competitor, Best Buy, allowing for an

interesting comparison.

2.6.1. LIVA decomposition

One attractive feature of LIVA is that it is an additive measure: different time periods and

different parts of operations can be selected that jointly add up to LIVA. Decomposing LIVA

over time is straight-forward—the summation can just be split into multiple time periods.

For instance if one has LIVA computed over 1980 to 2010, then the sum can be split into

two periods, from 1980 to 1995 (period I) and 1995 to 2010 (period II), respectively. Using

equation (2.2):

LIV A =
2010∑
t=1981

ERtMCt−1

(1 + r)t−2010

=
1995∑
t=1981

ERtMCt−1

(1 + r)t−2010
+

2010∑
t=1996

ERtMCt−1

(1 + r)t−2010

= LIV AI + LIV AII

Moreover, each of these can be decomposed into various elements using equation (2.1). For

instance if one has a breakdown of free cash flow (FCF) into operating cash flow (OpCF)
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minus investment cash flow (InvCF), and the Enterprise Value (EV) of a company (the

market value of equity plus book value of debt) at the beginning and the end of a period,

the LIVA for this time period can be decomposed as follows:

LIV AII =
2010∑
t=1996

ERtMCt−1

(1 + r)t−2010

= EV2010 − (1 + r)15EV1995 +
2010∑
t=1996

OpCFt − InvCFt
(1 + r)t−2010

=
[
EV2010 − (1 + r)15EV1995

]
+

2010∑
t=1996

OpCFt
(1 + r)t−2010

+
2010∑
t=1996

−InvCFt
(1 + r)t−2010

The cash flow terms reflect direct NPV calculations from cash flows, while the term involving

the two values for EV accounts for the market value of the assets at the beginning and the

end of the period (similar to equation (2.1)). The EV term can be interpreted as the value

created (or destroyed) for investors due to the growth (or decline) of firm value compared

to the market return.

The above decomposition can be easily generalized to more time periods and more cash flow

items. In the case study, we use six cash flow items for the LIVA decomposition (the italics

in brackets refer to the Compustat item codes in the Wharton Research Data Services,

WRDS, database):

1. Net operating profit after tax (NOPAT) [sale− cogs− xsga− txt]

2. Capital expenditure (CapEx) [sppe− capx]

3. Change in working capital [wcapt − wcapt− 1]

4. Acquisitions [aqc]

5. Other items on 10-K [all cash flows recorded on the 10-K cash flow statement to share-
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holders (prstkc+dv− sstk) and debtholders (xint−nopi− change in net debt (dltt+

dlc− che)), net of items 1 through 4 above]

6. Non-reported items [redistributions to shareholders based on CRSP stock market data

that are not reported on the 10-K as recorded in Compustat]

2.6.2. Analysis

Using the definition in equation (2.2), the total LIVA of Circuit City amounts to negative

$3.4 billion over the period from its listing on the American Stock Exchange in 1968 as

Wards, until its bankruptcy and delisting by the end of 2008. The LIVA of Best Buy

amounts to positive 14.7 billion dollars over the period from its initial public offering on

the NASDAQ in 1985, until the end of our data in 2014.14 Figure 3 displays the cumulative

LIVA for both companies over time. For each point in time, the figure displays the total

LIVA up to that time, discounted to 2015 values. Thus, the end points in the chart represent

the total LIVA of -$3.4B and $14.7B, respectively.

Given that Circuit City went bankrupt, it might not be too surprising that its investors

fared worse than the general market, leading to a negative LIVA. But, as mentioned earlier,

bankruptcies can signify widely differing ranges of performance, depending on how much

cash the company used from and redistributed to investors along the way. As a matter

of fact, of the negative $3.4 billion, already $2.8 billion occurred before 1980, during the

company’s history as Wards. During this era, the company consisted mostly of smaller

television and audio stores, operated under various store formats and brands (Wells and

Danskin, 2012b). The decomposition in Table 8 shows that during this time from 1969

to 1980 the company did return significant cash to shareholders, but failed to grow its

enterprise value at the rate of the market, leading to a negative LIVA.

14Both the LIVA of Circuit City and Best Buy are discounted to the year 2015, in order to make them
directly comparable. Moreover, to calculate excess return we use a beta of 1.48, which is the average beta
of Circuit City and Best Buy. The betas for the individual companies based on all monthly returns are
respectively 1.54 and 1.42. These values are not statistically different from each other, and therefore we
decide to average them given the similar operating and risk profiles of both companies.

39



Table 8: LIVA decomposition for Circuit City and Best Buy

a. Circuit City

1969– 1980– 1995– 2010–
1980 1995 2010 2015 Total

1. Net operating profit after tax 6.3 26.0 15.0 47.3
2. Capital Expenditure -2.6 -19.5 -10.1 -32.3
3. Change in Working capital -2.2 -12.8 -5.7 -20.7
4. Acquisitions 0.0 -1.0 -0.7 -1.7
5. Other items in 10-K 2.8 6.0 1.1 9.9
6. Non-reported items 0.0 -1.6 4.5 2.9

Cash items 4.2 -2.9 4.1 5.5
Change in relative enterprise value∗ -7.1 20.8 -22.6 -8.9
LIVA -2.8 17.9 -18.5 -3.4

b. Best Buy

1. Net operating profit after tax 3.8 43.6 22.1 69.5
2. Capital Expenditure -3.7 -26.1 -2.9 -32.7
3. Change in Working capital -5.9 -0.7 -7.1 -13.7
4. Acquisitions 0.0 -14.6 -0.4 -15.0
5. Other items in 10-K 0.5 4.9 3.0 8.5
6. Non-reported items -0.5 -4.5 -0.8 -5.8

Cash items -5.7 2.6 13.9 10.7
Change in relative enterprise value∗ 9.7 29.2 -34.9 4.0
LIVA 4.0 31.7 -21.0 14.7

Note. Total LIVA is calculated using the definition in equation (2.2), and then decomposed over

time and into various cash items using the derivations provided in the text. All figures in 2015

present value billion US dollars.
∗Change in relative enterprise value for each period reflects the change in enterprise value (market

value of equity plus book value of debt) compared to the market return. See equation (2.1) as

well as the details in the LIVA decomposition section.
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Figure 3: Cumulative LIVA over time for Circuit City and Best Buy
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In the following period, from 1980 to 1995, Circuit City pioneered and rolled out the very

successful electronics super-store format. This model started with the 40,000 square foot

Wards Loading Dock store opened in Richmond in 1974. In 1981 it started to expand

this successful store formula, rebranding the stores to Circuit City soon after. In 1984 the

company itself was renamed, and listed on the New York stock exchange. The model with

a wide selection of inventory kept in a store warehouse, a high-service commissioned sales

force, and in-house offering of credit and repairs proved very successful, with Circuit City

growing to 419 superstores in the mid-1990s. (Wells and Danskin, 2012b)

The LIVA decomposition in Table 8 corroborates this picture. The LIVA contribution of

operating profits over this period was $26 billion, clearly the highest of the three periods in

Circuit City’s history. Still, the company operated cash negative over the period, mainly

due to the high capital expenditures and investments in working capital required for the

company’s aggressive expansion strategy, totaling $32.3 billion in present value.

For much of this period Best Buy created relatively little value for its investors, as illustrated
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by the mere $3.8 billion LIVA contribution of its operating profits. That started to change

in the early 1990s, when Best Buy modified its store format into a deep-discount retail

model, with low service by hourly paid sales staff, and inventory stacked in the store display

area instead of a separate warehouse (Wells and Danskin, 2012a). Within a few years this

strategic change transformed Best Buy from a sub-scale follower into a market leader,

overtaking Circuit City in revenue by 1995. Moreover, it was able to do so at a cumulative

investment (capital expenditure and working capital) of $9.6 billion in present value, less

than a third of Circuit City’s over the same period.

Over the following decade, Circuit City tried to catch up again through a series of expensive

restructurings and store refurbishments. By the mid-2000s, Circuit City had laid off its

commissioned sales force, and changed its store layout to a bright warehouse style, essentially

becoming a copy-cat of the now entrenched discounter Best Buy. But it was too late, and

Circuit City’s competitive position continued to deteriorate. In the face of yet another failed

turn-around attempt, the dawning financial crisis, and a drop of almost 50% in holiday sales,

the company was forced into liquidation in January 2009. (Wells and Danskin, 2012a).

Table 8 illustrates the dramatic reversal of fortune in the period 1995-2010. While Circuit

City’s present value of operating profits dropped to $15 billion, Best Buy’s increased to

$43.6 billion, allowing the latter company to make higher investments in organic growth

and acquisitions to further improve its competitive position. In the subsequent period 2010-

2015, Best Buy was able to capitalize on those investments, generating cash worth close to

$14 billion. At the end of that period Best Buy’s cumulative LIVA stood at $14.7 billion,

indicating a significant value creation for its investors.

Interestingly, Circuit City’s total LIVA netted to negative $0.6 billion over the superstore

era, from 1980 until its liquidation—quite a small amount compared to the sizes of the cash

flows and valuations involved. The LIVA decomposition indicates that this is largely thanks

to significant cash redistributions in the period 1995 to 2010 (which were, in fact, larger

than Best Buy’s). A significant redistribution was the Car-Max spin-off in 2002, which
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instantly contributed about $5 billion to Circuit City’s LIVA, in a way saving the day for

its investors. Note that this transaction happened in terms of a stock dividend and was

not included in Circuit City’s operating results, and thus would not have shown up in an

analysis of classic performance measures such as return on assets or capital. Because in our

LIVA calculation we track actual returns to investors, it is included in our decomposition

in Table 8 on line 6 (“non-reported items”).15

Finally, the LIVA decomposition points to the main culprit of Circuit City’s demise: the

very expensive but largely ineffective expansion and retaliation strategy in the late 1980s

and early 1990s. This expansion cost the company well over $30 billion worth of LIVA, thus

proving a very costly strategic mistake for its investors.

2.7. Discussion: LIVA vs. other measures

In this section, we discuss the broader advantages and disadvantages of LIVA vis--vis other

potential measures of long-term firm performance. Using the two-by-two framework from

the literature review in Figure 2, we provide a comparison across each of the four quadrants.

LIVA is an absolute measure of firm performance based on stock market data, and thus fits

the top right quadrant—an empty quadrant in the 2016 SMJ volume. TSR (total share-

holder return) and CAR (cumulative abnormal return) as relative stock market measures

can both be extended to long-term measures by annualizing them using a compounded an-

nual growth rate—note that in this paper we use the term excess return for the long-term

equivalent of CAR. Equation (2.3) suggests that the (sum of) discounted economic profit

(EP) would be the most appropriate absolute accounting measure of long-term firm perfor-

mance. Finally, (average) ROC would be a logical relative accounting measure of long-term

firm performance.

Table 9 provides a comparison for each of these four performance measures on various

15Best Buy too had shareholder transactions of more than $5 billion not reported on the cash flow state-
ments. According to the notes in the 10-K reports, these appear to be mainly share issues for management
stock options and the repayment of convertible preferred securities.
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Table 9: Comparison of LIVA with other common performance measures

TSR or Discounted
LIVA excess economic Average

return profit ROC

Increases with NPV-positive investments X (X) (X)
Accounts well for mergers, bankruptcy, etc. X (X)
Measures magnitude of economic impact X X
Can be decomposed into different sources X X
Is independent of stock market expectations X X
Measures returns relative to size X X

Note. Comparison of LIVA to other measures that can be used to measure long-term firm performance

(over a decade or more) on various properties that might be desirable. TSR = total shareholder return

(equivalent to buy and hold return: dividend yield plus share price appreciation with dividends reinvested),

ROC = return on capital. Black tick marks indicate that a measure has a property, grey tick marks in

brackets indicate that it has the property with some qualifications. Details are provided in the discussion

section of the text.

potentially desirable properties (depending on the specific application). Four of them are

potential advantages of LIVA and two are disadvantages vis-à-vis other metrics. We discuss

each of them below.

2.7.1. Advantages of LIVA

LIVA increases with NPV-positive investments

We have derived LIVA as an empirical measure of long-term firm performance that measures

ex post NPV. In other words, LIVA increases for NPV-positive investments or strategic

actions, and decreases for NPV-negative investments or strategic actions. Because LIVA

is closely related to excess return per equation (2.2), absent major cash redistributions,

spin-offs, M&A, and bankruptcy events, the sign of the excess return also reflects whether

the firm has made NPV positive or negative decisions over a period. However, in the case

of major cash transactions, excess return can be positive for a company that has actually

destroyed value and vice versa, as we have shown with the example in Table 2, as well as

with the AOL-Time Warner merger.

Based on equation (2.3), the sum of discounted economic profit can be a good approximation
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of LIVA (and thus of whether a firm has made NPV-positive investments), as long as the

book value properly captures the market value of the firms investments at the beginning

and the end of the period under consideration. This latter condition could be troublesome

in industries in which intangibles play an important role, because investments in marketing

and R&D can be very valuable but may not be captured on the balance sheet, and thus could

artificially affect economic profit even over long time periods. Potentially this issue could

be alleviated by using capitalization schemes for such intangible investments as suggested

by Peters and Taylor (2017).

ROC and other relative accounting measures in general do not have the property that they

increase if and only if firms make value-increasing investments: Firms can make positive-

NPV investments that decrease ROC (Levinthal and Wu, 2010) and ROC can be below the

cost of capital even if a firm creates economic value (Fisher and McGowan, 1983).

LIVA accounts well for mergers, bankruptcy, and other major corporate events

Related to the above discussion, LIVA can account well for the value created or destroyed in

the presence of major corporate events such as major cash redistributions, spin-offs, M&A or

bankruptcy events. This is not the case for TSR, excess return, and ROC. Economic profit

could in principle be adjusted for the cash flows around major events, however this might

require a case-by-case analysis of annual reports and merger announcements to correctly

track the cash distributions. LIVA calculations are usually much simpler, because the

widely used CRSP database has good information about the cash flows around these major

corporate events.

LIVA measures the magnitude of economic impact

Because LIVA is an absolute measure (as is discounted economic profit), it captures the

magnitude of a firms economic impact. As the M&A regressions show, using the absolute

magnitude of investor value appropriation can be quite different from the relative (excess)
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return generated for an investor, because very high (and very low) relative returns are typ-

ically only generated by small companies. When not properly accounted for in regressions,

these companies can strongly influence the analysis, while having minimal economic impact.

LIVA can be decomposed into different sources

The case study of Circuit City and Best Buy shows how decomposition of LIVA into its

constituent sources over time can yield valuable strategic insights. This could be similarly

done using a sum of discounted economic profits as a measure of long-term firm performance.

TSR, excess return and ROC cannot be decomposed into their constituent elements, because

as relative measures they are not sums of different sources over time.

2.7.2. Disadvantages of LIVA

LIVA depends on stock market expectations

Equation (2.1) indicates that any measure of long-term value appropriation requires an

assessment of V0 and VT , the firm value at the start and end point of the period under

consideration. Because LIVA is defined based on the use of market valuations of V0 and VT ,

it requires careful attention to potential market distortions of these valuations. The value

decomposition of Circuit City in Table 8 shows that this can have major consequences if

investor expectations driving these valuations turn out to be incorrect: between 1980-1995

the enterprise value of Circuit City rose by more than $20 billion over and beyond the return

in the market (in present value), reflecting strong investor expectations about Circuit Citys

future; these turned out to be incorrect, and the companys bankruptcy in 2010 more than

wiped out the growth in enterprise value from the previous period. On the one hand, this

example shows that over the full investment cycle (in this case the 30 years between 1980

and 2010) LIVA provides an appropriate picture of the companys ability to generate value

for its investors, because any deviations in between cancel out. On the other hand, it shows

too that over shorter time periods the LIVA picture can be deceptive if investor expectations
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strongly deviate from subsequent outcomes.

The appropriate time period over which to measure LIVA will depend on the specific context,

and particularly on the time scales of the competitive dynamics. Because LIVA measures

the extent to which investments have been successful in generating profits over time, a

natural time period should span the time that strategic investments take to be reflected in

competitive outcomes. For instance, in an industry life-cycle study, a natural time period

would be a technology life-cycle, from initial investments to demise. When using stock

market data to compute LIVA, care should be taken to avoid moments of great market

turbulence as start or end points, such as bubbles and crashes. LIVA measures of technology

firms ending in 2000, for instance, probably tell more about inflated market expectations

than about strategic performance of the investments.

Because TSR and excess return are also based on stock market data, they suffer from

the same issues if investor expectations strongly deviate from later outcomes. Accounting

measures such as ROC and accounting-based operationalizations of economic profit are

independent of stock market valuations, and thus do not face this issue (though they hinge

on accounting rules for valuation instead).

LIVA does not measure returns relative to size

A final disadvantage of LIVA (and discounted economic profit) might be that it is an

absolute measure, in dollar amounts, rather than a relative measure or ratio measuring a

percentage return (such as TSR, excess return and ROC). However, this might mainly be

a matter of custom. In fact, both our literature review and our M&A analysis suggest that

relative measures can have serious drawbacks while potential issues with the use of absolute

measures can be addressed in different ways than taking a ratio.
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CHAPTER 3 : The dynamics of resource competition: Implications for firm and

industry components of returns

3.1. Introduction

What drives heterogeneity of firm performance has been a core theoretical and empirical

question in the strategy literature. For instance, the variance component studies have con-

sistently shown that firm-specific (i.e., business or corporate) effects explain a large part of

performance variations across firms, significantly larger than industry effects (e.g., Rumelt,

1991; McGahan and Porter, 1997)—Figure 4 provides an overview based on Vanneste (2017).

This empirical regularity has usually been interpreted as support for the resource-based view

(RBV): in order to explain why some firms are persistently more profitable than their direct

competitors, the better performing firms must have differential access to heterogeneously

distributed resources that are not readily available on strategic factor markets (e.g., Rumelt,

1984; Wernerfelt, 1984; Barney, 1986, 1991; Peteraf, 1993).

However, though the RBV does explain why large performance differences among competi-

tors can persist over long time periods, current theory does not explain whether or why these

differences should be large. Moreover, we do not know theoretically or empirically whether

the firm-specific component of performance differences is always (much) larger than the in-

dustry component, or that under certain circumstances it could be smaller. Finally, we do

not know what effect size the RBV predicts; the variance decomposition studies in Figure

4 suggest that firm-specific components of performance variance are five to ten times as

big as industry components, but current theory does not predict or explain this ratio, nor

whether and how it should differ across industries. Thus, there is a gap in the literature to

provide a quantitative bridge between the competitive dynamics of resource markets, and

the empirical observations of firm and industry components of returns.

In this paper, I address this gap by introducing a formal model of resource competition and

testing some of the model’s predictions with empirically observed heterogeneity data. In
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Figure 4: Overview of variance component studies
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Note. Percentage of variance in accounting returns explained by industry, corporate and business compo-

nents; excludes year and other components. The chart shows the data from all studies in Vanneste (2017,

Table 4, pp. 130-132) that use VCA or HLM methods.
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the model, based on the dynamic game framework (Ericson and Pakes, 1995), two ex ante

symmetric firms make investment decisions during multiple periods to acquire resources. I

find that large heterogeneity among direct competitors emerges under very general condi-

tions. Specifically, four key conditions that jointly lead to large firm-specific heterogeneity

are:

1. Endogenous investment: Firms choose the level of their sunk cost investments to

optimize future expected value.

2. Scarce resources: There is a (long-term) supply curve for resources, such that

resource cost increases when more resources have been acquired in the past.

3. Time-compression diseconomies: Acquiring the same amount of resources is more

expensive over shorter time periods (Dierickx and Cool, 1989).

4. Uncertainty: For a given investment there is a probability distribution for gaining

a better resource position.

The model indicates that under these four conditions, resource asymmetries are amplified:

small differences in resource positions lead to large, persistent differences in performance—

thus, these conditions are sufficient for the emergence of high firm-specific heterogeneity.

Moreover, removing any of the four conditions removes this amplification effect—thus, they

are not only sufficient, but also “minimal”.1 Because these four conditions are plausibly

satisfied in any competitive resource market, the model provides a general mechanism for

the emergence of a high firm-specific component of resource variations. Additionally, the

model predicts that the level of firm-specific heterogeneity will differ across industries, based

on the industry characteristics of the resource dynamics, such as depreciation rates, level

of scale economies, and growth stage.

1They are not “necessary” in a strict sense of the word, as there are other conditions that can lead to high
firm-specific heterogeneity; e.g., the mere assumption of large differences in resource endowments is clearly
sufficient, too, to lead to large firm-specific differences in performance. The claim in this paper, however, is
that removing any of these four conditions (without replacement by a different condition) will remove the
amplification effect—hence the designation of “minimal”.
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I test the model’s predictions using a Bayesian analysis of stock price variations across dif-

ferent industries. I use a Bayesian method because it allows obtaining different estimates

for different industries of the firm-specific and industry components of returns (Alcácer

et al., 2013; Gelman et al., 2013, ch. 5), in contrast to classical variance decomposition

techniques, which only provide estimates averaged over an entire sample. Consistent with

the model’s predictions, there are significant differences across industries in the heterogene-

ity of company returns and these differences are largely stable over time. Moreover, I find

the highest firm-specific heterogeneity in industries that are typically associated with strong

scale economies and resource depreciation rates, such as high-tech industries, while I find

lower heterogeneity in industries with weaker scale economies and lower depreciation rates,

such as utilities and financial services. A regression analysis confirms statistically significant

effects that are consistent with the predictions of the model.

This study makes several contributions to the literature. First, this paper is one of the few

papers to explicitly model the dynamics of resource markets and competition, instead of

focusing on product markets and competition. Particularly, to my knowledge it is the first

paper that incorporates all the above four elements of resource competition in a single model,

as well as the first to explicitly link the dynamics of resource competition to observable

variations in performance heterogeneity. Finally, this study empirically documents the

variations of firm-specific vs. industry-wide heterogeneity at a high level of granularity

across industries, and explain the observed empirical patterns using a dynamic model of

resource competition.

The results of this paper solidify both the theoretical foundations of the RBV and its

empirical support. This highlights the importance of resource-based analysis for managers,

as relatively small resource differences vis-à-vis competitors could be amplified over time.

At the same time, the paper also highlights the importance of industry analysis, because

industry characteristics, such as sunk cost levels, depreciation rates, scale economies, and

growth stage, determine how resource differences evolve over time and to what extent they
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are amplified into performance differences. Thus, rather than viewing resource and industry

analysis as opposing forces, this paper suggests that both are jointly needed to understand

the evolution of firm performance.

3.2. Theory

3.2.1. Literature review

In this section I will develop a formal model of resource competition to analyze the devel-

opment of performance variations over time, particularly to the extent they are firm- vs.

industry-specific. I use the resource based view (RBV) as the basis for my model. Wern-

erfelt (1984) introduced the RBV to complement the product market perspective, arguing

that “resources and products are two sides of the same coin” (p. 171). The RBV has been an

important framework in the management literature to explain why some firms persistently

outperform others, even if they have similar product market positions: the better perform-

ing firms must have differential access to heterogeneously distributed resources that are not

readily available on strategic factor markets (e.g., Rumelt, 1984; Wernerfelt, 1984; Barney,

1986, 1991; Peteraf, 1993). Though there exist various definitions of “resources”, in this

paper I will use a broad definition that incorporates, for instance, managerial capabilities,

brands, technologies, trade secrets, or anything else “that the organization can draw upon

to accomplish its aims” (Helfat et al., 2007, p. 4).

More specifically, I will focus on immobile resources, which firms cannot readily buy on

strategic factor markets, but rather need to accumulate through strategic investments over

time (Dierickx and Cool, 1989). In my model I assume that firms endogenously make

these investment decisions, optimizing expected value. Second, I assume that these re-

sources are scarce, because ultimately any resource must have a finite supply, which is a

key element of understanding firm-specific profits (Gans and Ryall, 2017, p.22). Third, I

assume time-compression diseconomies, which means that there are diminishing returns to

resource investments in a given time period—this is equivalent to assuming strictly convex
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adjustment costs of investments (Dierickx and Cool, 1989). Fourth and finally, I assume

uncertainty, meaning that strategic investments increase the probability of gaining resources.

None of these four assumptions is new in itself; Table 10 provides a selection of resource

investment models in the literature that incorporate some of these assumptions. For in-

stance, Sutton (1991) uses an endogenous investment game to derive observable regularities

about industry concentration. Sutton’s model does not incorporate resource scarcity and

uncertainty, and because it is a two-stage game it cannot incorporate time-compression dis-

economies. Several other studies in the strategy literature do study models over multiple

periods, incorporating time-compression diseconomies (e.g., Nelson and Winter, 1982; Er-

icson and Pakes, 1995; Knott et al., 2003; Denrell, 2004; Pacheco-de Almeida and Zemsky,

2007; Knudsen et al., 2014), but these models do not explicitly model resource scarcity

either. Two papers that do explicitly model scarce resources through supply and demand

curves either do not model longer horizons with time-compression diseconomies (Makadok

and Barney, 2001) or do not incorporate uncertainty (Jacobides et al., 2012). To my knowl-

edge, the model in this paper is the first to combine all these elements into a single model,

while it turns out that it is the combination of the four above conditions that leads to the

amplification of resource asymmetries in performance, and thus to an explanation of the

empirical regularity of high firm-specific component in performance variations.

The model is based on a dynamic game (Ericson and Pakes, 1995), which is explicitly de-

signed to study the long-term dynamics of endogenous investments. Though earlier dynamic

game models primarily have been used to study product market dynamics, they are ideally

suited to study the dynamics of resource competition, because dynamic games allow solving

for the optimal investment policy based on the assumption of endogenous investments in

an indefinite time-horizon dynamic model. Specifically, I will use the parsimonious model

of Besanko and Doraszelski (2004) as the basis for my model.

I add three key elements to the dynamic game models in the current literature. First,

this model explicitly incorporates competition for scarce resources, which manifests itself in
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the state transition functions of the dynamic game. Second, I add an independent industry

state, in order to be able to analyze the effects of firm-specific vis-à-vis industry-wide sources

of firm heterogeneity. Third, I add an explicit link between the equilibrium solutions and

observable patterns of performance heterogeneity.

3.2.2. Model

In the model, two firms compete for a set of scarce resources. I assume that the two

firms compete on a single resource market, and that both firms are characterized by their

respective resource positions qi and qj . Resource scarcity demands that the firms jointly

cannot have their resource positions exceed some finite quantity Q (qi + qj ≤ Q).

The gross profit (before investment) for each firm in the model is a quadratic function of

the resource position, which can be viewed as the first two terms of a Taylor expansion of

a more general profit function2—alternatively it can be derived directly from an economic

product market model, see Appendix A.2:3

π(qi, ak) = akqi + b q2
i (3.1)

This equation posits that firm profit linearly increases with its resource position plus a

quadratic term that allows for scale economies (which initially will be excluded, setting

b = 0). Moreover, firm profits depend on exogenous factors that affect industry profitability,

such as economic growth rates and commodity prices, which are captured in an industry

profitability state ak. This industry state is the same for both firms, and can change over

time.

Thus, in the model there are three state variables: both firms’ resource positions qi, qj , and

the industry profitability ak. These state variables can change over time, based on firms’

investment decisions and the resulting resource gains and losses, which are probabilistic

2Any constant can be omitted without loss of generality, as it would not affect any of the dynamics.
3Here and in the following I specify the functions for firm 1, with index label i. As is standard in these

models, the functions for firm 2 are symmetric, i.e. π2(q, ak) = π1(q, ak) := π(q, ak).
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Figure 5: Time evolution of state variables and investment decisions in the model
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in nature. Any other parameters, such as the scale economies parameter b in the profit

function, are assumed to be industry characteristics that stay fixed over time, and which

ultimately determine the stochastic dynamics of the state variables qi, qj , and ak.

In addition to specifying the state variables and the profit function, the input for a dynamic

game model requires the probability function for the state transition as a function of a

sunk cost investment x. To specify the state transition, it is common to assume that both

the state space and the time are discrete. During each time interval ∆t, the transition

functions specify the probabilities θ and Φ of moving up or down a unit of resources qi, qj

and industry profits ak, given the current state s = (qi, qj , ak) and the investment x. Figure

5 conceptually shows the evolution of the state s for a single time period.

The change probabilities θ of the focal firm’s resource state qi depend on the overall state

s = (qi, qj , ak) as well as the firm’s investment x. These state change probabilities θ depend

on the investment efficiency fs(x), which specifies the expected value of the rate of gaining

resources given state s and investments x. Time-compression diseconomies demand this
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Figure 6: Investment efficiency function
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Note. Graphical depictions of the investment efficiency function fs(x) as defined in equation (3.2), for

varying parameter values of resource cost cs (panel a) and maximum growth rate gs (panel b).

function be concave. For reasons of analytical tractability it is commonly chosen as some

scaling of the function x
1+x (e.g., Besanko and Doraszelski, 2004), which is strictly concave

for x ≥ 0. A convenient parametrization is:

fs(x) =
gsx

csgs + x
(3.2)

cs = 1
f ′s(0) parametrizes the resource cost for small investments x, while gs = limx→∞ fs(x)

parametrizes the maximum growth rate, both depending on the state s. Figure 6 shows

graphical depictions of function (3.2) for varying values of the parameters cs and gs.

The resource cost cs codifies resource scarcity. A parsimonious specification is:

cs = c0
Q

Q− qi − qj
(3.3)
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When firms have small resource positions (qi, qj ≈ 0), resource cost for small investments x

is close to some minimum resource cost c0. When the joint resource positions approach the

total supply (qi + qj → Q), resource cost becomes arbitrarily large.

The maximum growth rate gs codifies the time-compression diseconomies. The growth

potential of a firm should be a rate relative to the size of the firm: bigger firms, in general,

will be able to grow faster in absolute terms (e.g., Knudsen et al., 2014):

gs = g0 + γqi (3.4)

Note that the constant g0 > 0 codifying the growth potential of small firms is necessary,

otherwise firms without resources (qi = 0) would never be able to grow. The parame-

ter γ specifies the growth potential relative to size, which can be expressed as an annual

percentage rate.

In addition to gaining resources through investment, firms can lose resources through de-

preciation. This is assumed to be a constant rate relative to size, i.e. the probability of

depreciation is proportional to δqi for some constant depreciation rate δ.

Thus, the probability of gaining a resource θ+1 in a given time period ∆t is the probability

of gaining a resource through investment (fs(x)∆t) times the probability of not losing a

resource through depreciation (1−δqi∆t), and mutatis mutandis for the probability of losing

a resource θ−1. Finally, the change rate in the industry profitability state ak is assumed to

be a constant φ, and thus the probability Φ±1 in a given time period ∆t equal to φ∆t—

except that of course the probability of moving down Φ−1 in the lowest profitability state

ak = a1 is zero, as is that of moving up Φ+1 in the highest profitability state ak = aK . Note

that by design θ−1 = 0 for qi = 0 and θ+1 = 0 for qi+qj = Q, because limqi+qj→Q fs(x) = 0,

as cs →∞. Also note that ∆t should be chosen sufficiently small such that all probabilities

are between zero and one; this can always be done since the resource gain fs(x) is bounded

by gs,max = g0 + γQ and the depreciation by δQ.
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Using the above specifications for the state change probabilities and the profit function

(equation (3.1)), the Markov perfect equilibrium (MPE) is defined as a value function V (s)

and an optimal investment policy xo(s) that maximizes this value function, per the Bellman

equation:

V (s) = max
x≥0

π(s)∆t− x∆t+ β
∑

`=+1,0,−1

W`(s)θ`(x; s)

 (3.5)

In this equation, the period discount rate β = e−r∆t follows from the cost of capital r. The

function W`(s) is the expected value of changing the resource state of the focal firm to qi+`,

conditional on the policy function x2(s) of firm 2. Thus, the Bellman equation codifies

that firms choose the investment level that optimizes net present value, which is the sum

of profit net of investment and the discounted value of the future state.

The MPE for V (s) and xo(s) can then be calculated using an iterative procedure. I use

initial condition V (s) = π(s), and verify that the resulting equilibrium is not affected by

varying the initial conditions.4 Details for the derivation of the equilibrium conditions are

in appendix A.3.

3.3. Model output

3.3.1. Base case

To calculate an equilibrium, I use a set of base case parameters (Table 11) that are in line

with typically observed values. For instance, the base case depreciation rate δ = 10% is close

to the median observed accounting depreciation rate (8%, see Table 15); and the maximum

growth rate for large firms γ = 20% is in the higher range of observed industry growth rates.

Also the resulting firm and industry volatilities in Figure 7 are close to the empirically

observed medians in Table 15, suggesting a reasonable correspondence between the model

and the observed data. This set of parameters excludes any scale economies (b = 0).

See appendix A.3 for computational details of the results, including the computational

4Though only existence is guaranteed, also Besanko and Doraszelski (2004, p. 30) find evidence that the
resulting equilibria are unique.

59



Table 11: Base case parameter values

Parameter Value Description

δ 10% Depreciation rate
γ 20% Maximum average growth rate for large firms
r 10% Cost of capital
φ 10% Probability of industry profitability state change
a5/a1 4 Factor between highest industry profitability (a5) and lowest (a1)
c0/a3 1 Minimum cost of resources over median profitability (a3)
b 0 Scale economies factor

Note. All parameter values are annual.

parameters used.

Figure 7 shows the Markov perfect equilibrium for these parameters. The top left panel

depicts the value function V (qi, qj), as defined in equation (3.5). The value of firm 1 is

shown as a function of its own resource position as well as its competitor’s (firm 2), and

it is averaged over the industry states ak. The bottom right corner of the chart in this

panel represents the position qi = qj = 0. Note that the value function is only defined for

attainable resource positions (i.e., qi + qj ≤ Q), i.e. only for the bottom right half of the

chart. States in which the focal firm has more resources have a higher value, and states

in which its competitor has more resources have a lower value. The latter effect is solely

due to resource competition, because firm 1’s profit does not directly depend on firm 2’s

resource position, per equation (3.1). The reason for the effect on firm 1’s value is that if

firm 2 holds a better resource position, this precludes firm 1 from having these resources,

thus making future resources more expensive and firm 1’s growth position less favorable.

The top right panel of Figure 7 shows the optimal investment policy xo(s) in equilibrium

from equation (A.2). Investments are the highest when there is significant opportunity for

growth, and are lower when resources become depleted (when qi + qj approaches Q and the

resource cost becomes very high), or when the firm is still small (qi � Q) and not able to

grow so fast due to time-compression diseconomies.

The bottom left panel shows the equilibrium probability distribution of the resource states
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Figure 7: Base case equilibrium output
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Note. Value, investment and probability distribution at t = 25 as a function of the resource state variables

qi (firm 1) and qj (firm 2), averaged over the industry state variables ak, using parameter values in Table

11. The bottom right chart shows the firm and industry components of volatility over time. See the text for

details.
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after 25 years starting from an initial state qi = 1, qj = 1, ak = $1. After this time period

the distribution is close to a steady state, meaning that the probability distribution does

not change anymore (the resource position of individual firms still do change of course, it is

only the stochastic distribution that remains constant). The state distribution is symmetric

for firm 1 and firm 2, because the model is fully symmetric in both firms—any differences

between the firms originate from random shocks. The modal states are (3, 3), (4, 3), and

(3, 4), meaning that in most cases about 60% to 70% of the Q = 10 total available resources

are depleted; after that they become too expensive to invest in.

The bottom right panel shows the evolution of firm and industry components of volatility

(which is the square root of the variance), respectively. These volatilities are based on

the state evolution as described above, and calculated from the expected variance and

correlations of the next period total return above the cost of capital. Analogous to the

calculation of total shareholder returns in stock markets, this excess return is calculated as

any cash returns (the profits π minus investments x) plus appreciation in value V , discounted

by the cost of capital r. The industry component reflects the volatility of returns that are

common to both firms, while the firm component reflects the volatility of returns that are

independent of the industry component. Details are in appendix A.4. Under the given

parameters, across all time periods the firm-specific volatility is higher than the industry

volatility, with the highest values in the earlier growth stages.

The example in Figure 8 helps to explain some of the mechanisms leading to the high firm-

specific volatility. This figure shows the evolution of expected net profit E(π − x) in the

case that both firms start in the same resource position qi = qj = 2 (solid line) as well as

the case that firm 1 has gained an advantage (qi = 3) over firm 2 (qj = 2) at time t = 0

(dashed lines). This indicates three reasons why a firm becomes much more valuable on

gaining a more favorable resource position:

1. Firm 1 becomes much more profitable immediately at t = 0. Though it only gains

50% in its resource position (from qi = 2 to qi = 3), its net profit π − x soars by a
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Figure 8: Amplification of resource asymmetries in profit evolution
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Note. Evolution of expected net profit E(π−x) using the base case parameter values in Table 11. Solid line

shows evolution for both firms with the same resource position (qi = qj = 2) at t = 0. Dashed lines show

the profit evolution when firm 1 has gained an advantage (qi = 3) over firm 2 (qj = 2) at t = 0.
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factor of four (from $0.3 to $1.2), because it needs to invest a lower percentage of its

gross profit π to defend its resource position.

2. Firm 1 gains a better growth position. In the original situation it takes almost 15

years to reach an expected profit level of $2.5, while in the advantaged position it

takes firm 1 only 5 years, three times as short.

3. Firm 2 is precluded from this position, and has worse growth prospects. Interest-

ingly, at first firm 2 earns slightly higher net profits as well when firm 1 gains an

advantageous resource position; the reason is that it lowers its investment x due to its

worsened growth prospects. Over the next 20 years these worsened growth prospects

are reflected in the lower expected net profit of firm 2 vis-à-vis the original situation.

Thus, resource competition amplifies any changes in resource position into large and per-

sistent changes in performance, leading to high heterogeneity in performance among direct

competitors, reflected in the high firm-specific component of returns.

To verify that the high firm-specific component of returns is indeed due to the resource

competition, and not due to specific choices of parameters or functional forms, I also run

the model with equation (3.3) replaced by:

cs = c0
Q

Q− qi

This shuts down the resource competition, because now each player has its own resource

supply function, instead of both firms competing for a common set of resources. The

resulting equilibrium without competition in Figure 9 looks dramatically different from the

base case in Figure 7. In contrast to the base case, the value V is now fully determined by

the focal firm’s resource position, and not by firm 2’s, because the firms do not compete on

resource markets anymore. Moreover, the industry volatility in this case is now significantly

higher than the firm-specific volatility. Hence, the high firm-specific volatility in the base

case is attributable to the resource competition.
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Figure 9: Equilibrium without resource competition (d = 0)
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3.3.2. Variations from base case

Though resource competition in general will amplify any firm-specific, idiosyncratic shocks,

the extent to which is affected by the dynamic characteristics of the resource. Figure 10

shows the evolution of firm and industry volatility over time for various changes of a single

parameter compared to the base case in Figure 7. Shown in the top left panel, changing the

range of industry states ak markedly increases the industry volatility and to a lesser extent

the firm-specific volatility, too. Thus, unsurprisingly, industries in which key resources have

strong exposure to macro-economic shocks (such as natural resources and utilities) should

be expected to have a larger share of performance variance explained by industry factors

compared to firm-specific factors.

The three other panels each change one aspect of the competitive dynamics of the resource

market. In general, scale economies and higher resource (sunk) cost lead to more intense

resource competition and thus to higher firm-specific volatility (top right and bottom left

panel). The effect of depreciation does change over time (bottom right panel). In mature

stages a lower depreciation rate diminishes resource competition and firm-specific variance,

because resource positions are more entrenched. In the nascent stages of the industry
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Figure 10: Firm and industry components for various parameter changes
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Note. Each figure changes one parameter compared to the base case from Table 11 and Figure 7. Solid lines

represent the firm component and dashed lines the industry component of volatility.
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though, high-depreciation resources lead to intense competition, exactly because they lead

to later-entrenched and thus highly valuable positions.

Interestingly, for parameter changes within plausible ranges based on empirically observed

data, the firm-specific component of volatility remains always higher than the industry

component, even with, for instance, an extremely low depreciation rate of δ = 0.02 per year

(meaning a resource lifetime of more then 1/0.02 = 50 years—not shown in the graphs). The

reason is that even with these entrenched resource positions, whenever a set of resources is

depreciated and becomes available, there will be intense competition for it, and the player

that obtains the resource will get a strong increase in returns (and its competitor a decrease).

Finally, Figure 11 shows what happens in the presence of intense resource competition

(strong scale economies and high resource cost). In this case, the steady state distribution

(right panel) becomes “split”: the most likely state is that either one of the firms ends

up with all the resources, deriving such strong benefits from its position that it will be

unattractive for the other player to invest at all (left panel). In practice that would mean

that in the presence of such strong resource competition, a monopoly would emerge. This

has for instance been the case with Microsoft Windows. The critical resource here (installed

base) has high sunk costs c and very strong network externalities, leading to strong scale

economies b. For instance, in the race between Microsoft Windows and IBM OS/2 in the

1990s, indeed the latter at some point stopped investing, yielding a monopoly to Microsoft.

3.3.3. Propositions

The results from the model can be summarized in the following four propositions.

Proposition 1. Resource competition will amplify idiosyncratic shocks, leading to high

firm-specific volatility compared to industry-wide volatility, across a wide range of industry

conditions.

The above proposition is in line with the typical findings of the variance component stud-

ies. However, these studies assume a single number for the firm-specific component across
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Figure 11: Equilibrium with scale economies and high resource cost
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industries, which contrasts with the findings of the present model:

Proposition 2. Though firm-specific variance will (almost) always be the largest component

of performance variation, the specific percentage varies across industries.

Moreover, the model makes predictions about the types of industries in which to expect

high firm and industry volatility:

Proposition 3. Several time-constant dynamic characteristics of resource competition drive

persistent differences in firm-specific and industry-wide volatility, for instance:

a. Industries that exhibit strong scale economies, high sunk costs and high depreciation will

have a high firm-specific volatility (e.g., high-tech).

b. Industries with a strong exposure to macro-economic variables such as commodity prices

will have a high industry volatility (e.g., natural resources and utilities).

Proposition 4. Additionally, some time-varying dynamic characteristics of resource com-

petition drive changing differences in firm-specific and industry-wide volatility, for instance:

a. Rapidly growing industries will have a high firm-specific volatility (e.g., technology in-

dustries in the 1990s)
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b. Industries that face macro-economic uncertainty or turmoil will have a high industry

volatility (e.g., financial services in the late 2000s and early 2010s).

3.4. Empirical evidence

The model in the previous section suggests that one should expect to find differences in

firm-specific heterogeneity across industries. By contrast, most variance decomposition

studies have implicitly assumed that the level of firm-specific vs. industry-level variance

is constant. To test whether the model predictions hold, I perform a Bayesian analysis

based on the classical variance decomposition studies, which allows for varying levels of

firm-specific vs. industry-level variance.

3.4.1. Method and data

Most performance decomposition studies use RoA or some other accounting metric to mea-

sure performance. However, as usually acknowledged, accounting metrics are prone to

specific conventions and only imperfectly measure actual economic returns (Fisher and Mc-

Gowan, 1983; Lippman and Rumelt, 2003). These differences are likely to be systematic:

because human capital is often not capitalized on the balance sheet, research and/or service

intensive industries are likely to have systematically higher accounting returns than man-

ufacturing industries. For instance, the high average RoA in the pharmaceuticals industry

could be either due to truly higher economic returns, or due to the fact that a large part

of research and marketing capital is not reflected on the balance sheet (or both). This sys-

tematic bias of accounting returns could lead to a spurious industry effect in the variance

component studies.

Moreover, the complicated correlation structure of RoA panel data makes it hard to draw

consistent inferences. For instance, RoA tends to exhibit a strong autoregressive component

that is not explicitly accounted for in variance decomposition studies. Also the various

nested effects (e.g., business unit and industry) have strong cross-correlations that make

outcomes quite sensitive to the exact procedure and order used (McGahan and Porter,
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2002). Indeed, many of the conflicting conclusions among various authors appear to stem

from differences in procedures and interpretations of the decomposition results.

Finally, the commonly applied techniques in variance component studies, such as ANOVA,

VCA and HLM (Vanneste, 2017), do provide single estimates across the entire sample, while

based on the model in this paper it is plausible that in some industries the firm-specific

effects are larger than in other industries. Indeed, McGahan and Porter (1997) find different

effects across broad economic sectors, and Waring (1996) finds differences in profitability

persistence rates across industries. However, with classical techniques these can only be

explored by running separate analyses with different samples, which can greatly reduce

statistical power.

In this study I use a Bayesian analysis of stock market data to address some of the con-

cerns raised above. A major advantage of stock market data is that they are not prone

to differences in accounting conventions. Of course they can be distorted by market senti-

ments and bubbles, but these aberrations tend to cancel out over longer time frames, while

differences in RoA (or return on capital, RoC) due to accounting conventions can persist

in the long run (Fisher and McGowan, 1983). Another major advantage of stock market

data is that they tend to have very low serial correlation, especially when using monthly

or annual (as opposed to daily or weekly) data (Tsay, 2005). This allows making a much

cleaner decomposition into industry vs. firm effects, without the need to worry about the

specific procedure used, or dealing with various cross-correlations.

Moreover, the use of Bayesian analysis overcomes some of the drawbacks of classical variance

decomposition techniques. Though the essence of the analysis remains the same (a model in

which variances in returns are decomposed into various components), Bayesian techniques

naturally allow for variation in parameters within the same analysis; in casu the size of firm

and industry effects can be allowed to vary across industries, by setting up a hierarchical

model (Alcácer et al., 2013; Gelman et al., 2013, ch. 5). Moreover, because in Bayesian

analysis all parameters are treated as probability distributions themselves, including the
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variance parameters of the various effects, their statistical significance can be assessed.

Specifically, I use share total shareholder return data from the CRSP database, through

WRDS (Wharton research data services), for all firms with all monthly data available from

1985 to 2015, split into three different decades to assess changes over time. I use 6-digit

GICS (Global Industry Classification Standard) codes from the WRDS Compustat linked

database to define industries—these codes are more balanced, consistent and up to date

than the often-used SIC (Standard Industry Classification) codes.5 To focus the analysis

on the economically most relevant companies, I exclude companies that have a market cap-

italization below 1 billion dollars (deflated to account for the overall growth in market cap

over the past 30 years), as well as industries with fewer than three companies in them.

Finally, I exclude non-primary listings such as ADRs (American Depository Receipts). To-

gether, these exclusions amount to less than 20% of the total market capitalization of all

US listed stocks. This leads to a database of 656,294 firm-month observations for 4,756

individual firm listings across 67 industries.

As is common in the finance literature, I use a four-factor model to account for aggregate

risk (Fama and French, 1993; Carhart, 1997). The residuals from the stock prices regressed

on the four factors yield the risk-adjusted excess total shareholder returns rijt, for each firm

i in industry j and month t.

As is standard in variance component analyses, I am interested to decompose rijt in different

factors; in this case into a firm-specific and an industry-wide component:

rijt = rind
jt + rfirm

ijt

Each of these components comes from a random distribution with mean zero (because I

use risk-adjusted returns, which provide a measure of excess returns above or below the

5See https://www.msci.com/gics for more background behind the GICS codes, as well as full descriptions
available for download.
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average) and an unknown variance:

rind
jt ∼ N (0, σfirm

j ) (3.6)

rfirm
ijt ∼ tν(0, σind

j ) (3.7)

To identify the model, these components are all assumed to be independent. Note that I use

a Student’s t distribution for the firm specific effects, because it is known that shareholder

returns can have long tails and outliers that could strongly affect the analysis outcomes

when using normal distributions (Tsay, 2005). In a Bayesian analysis, using a t distribution

instead of a normal one makes the analysis more robust to such outliers—this is another

advantage of Bayesian methods vis-à-vis classical inference (Gelman et al., 2013).

Note that in a classical analysis this decomposition would assume that both the firm and

the industry components have a fixed variance (or equivalently a fixed standard deviation)

across observations, which then can be estimated—i.e., σfirm
j and σind

j would not be able to

depend on industry j. Because in a Bayesian analysis, parameters are treated as random

variables themselves, it poses no problem to vary the parameters. The variance parameters

are assumed to be draws from a random distribution again, which is commonly assumed to

be an Inverse χ2 distribution, as it is a so-called conjugate prior for a variance in a normal

distribution (Gelman et al., 2013, p. 43):

(σind
j )2 ∼ Inv-χ2(νind, σind

0 ) (3.8)

(σfirm
j )2 ∼ Inv-χ2(νfirm, σfirm

0 ) (3.9)

All inference is performed using the Stan implementation in R (Carpenter et al., 2016;

Gelman et al., 2013, Ap. C). Results are based on posterior inference of 4 Hamilton Monte

Carlo (HMC) chains of 1,000 simulations each. The first 500 simulated draws have been

discarded as warm-up6, and are thinned by a factor of 2, for a total of 1,000 draws from

6Because Bayesian simulation starts from some random initial values, the first simulation draws will
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the posterior. Due to correlations between the different draws, the effective sample size

is sometimes lower than the actual number of draws. For each parameter of interest, neff

indicates the effective number of posterior draws, which should be at least 10 times the

number of chains—40 in this case (Gelman et al., 2013, p. 287). Moreover, the R̂ statistic

needs to be below 1.1 for all variables, to ensure that a sufficient number of draws have been

discarded as warm-up, and that the sampling is indeed performed from the actual posterior

(Gelman et al., 2013, p. 287).

3.4.2. Results

As an illustration of the data, Figure 12 shows the cumulative excess return evolution

in four industries over a 5-year period.7 Each gray line represents a single firm and the

thick black line represents the industry average (i.e., the average of all gray lines). Large

variations in the black line indicate a high industry volatility σind
j (expression (3.6)), while

large variations of the gray lines vis-à-vis the industry average indicate a high firm-specific

volatility σfirm
j (expression (3.7)).

These data already suggest that there are marked differences in the heterogeneity patterns

across industries, consistent with Proposition 2. For instance, the two industries on the left

exhibit lower variations in the black line (i.e., lower σind
j ), than those on the right. Also,

the bottom two industries exhibit much lower variations of the gray lines around the black

line (i.e., lower σfirm
j ) than those on the top row.

The Bayesian analysis of all industry data over the full 30-year period corroborate these

initial results. Table 12 shows the posterior inference of the parameters in the hierarchi-

cal priors in expressions (3.8) and (3.9). The posterior mean and standard deviation (in

brackets) correspond to the classical maximum likelihood estimates and standard errors;

the posterior interval corresponds to the classical confidence interval. As mentioned earlier,

reflect the initial starting point, rather than the actual posterior distribution. Therefore, the first draws
(called the “warm-up” or “burn-in”) need to be discarded, until they can be expected to reflect the actual
posterior (Gelman et al., 2013, p. 282).

7The cumulative excess return over a period from t = 0 to t = T is defined by 100 ·
∏T
t=0(1 + rijt).
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Figure 12: Excess return patterns in four industries
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Note. Each figure shows the evolution of cumulative excess returns (logarithmic scale) for a given industry

over a five year period. Each grey line represents a single firm, and the thick black line represents the

industry average of all firms in that industry (i.e., the average of the gray lines).
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Table 12: Bayesian posterior inference for main parameters

Parameter Posterior mean Posterior neff R̂
(standard deviation) 95% interval

Decade 1985-1995:
ν 3.50 (0.03) [3.45, 3.56] 836 1.00
νfirm 6.59 (1.07) [4.67, 8.74] 926 1.00
σfirm

0 19.89 (0.69) [18.51, 21.20] 1000 1.00
νind 4.02 (0.75) [2.72, 5.62] 296 1.02
σind

0 6.44 (0.35) [5.72, 7.12] 256 1.01

Decade 1995-2005:
ν 3.13 (0.02) [3.08, 3.18] 896 1.00
νfirm 5.19 (0.84) [3.61, 6.88] 624 1.00
σfirm

0 22.13 (0.85) [20.43, 23.71] 740 1.00
νind 5.28 (0.97) [3.59, 7.39] 538 1.01
σind

0 10.07 (0.43) [9.25, 10.96] 458 1.00

Decade 2005-2015:
ν 2.82 (0.02) [2.78, 2.86] 949 1.00
νfirm 5.00 (0.80) [3.47, 6.71] 806 1.00
σfirm

0 16.27 (0.65) [15.03, 17.60] 895 1.00
νind 4.06 (0.72) [2.75, 5.58] 790 1.00
σind

0 7.90 (0.37) [7.18, 8.66] 773 1.00

Note. Bayesian posterior inference for the hierarchical prior parameters in

expressions (3.8) and (3.9). Posterior mean and standard deviation correspond

with the classical maximum likelihood estimate (MLE) and standard error;

the posterior interval corresponds with the classical confidence interval. neff

and R̂ are measures of convergence, and should be above 40 and below 1.1,

respectively (Gelman et al., 2013, p. 287). See text for details.

neff and R̂ are measures of convergence, and are well within their desirable ranges of above

40 and below 1.1, respectively (Gelman et al., 2013, p. 287).

Across the different decades of analysis, the typical firm-specific volatility σfirm
0 is two to

three times as large as the industry volatility σind
0 . This corresponds well with earlier

results using RoA data in Figure 4. Because the latter contains variances, the ratio of

volatilities from Table 12 needs to be squared in order to facilitate a direct comparison;

thus, the firm-specific variance from the present analysis is a factor 22 = 4 to 32 = 9

higher than the industry variance. In his meta-analysis, Vanneste (2017, Table 6) finds an

industry component of variance between 0.06 and 0.10 and a firm component (business plus
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corporate) between 0.41 and 0.58. The resulting ratio of firm to industry variance between

0.41/0.10 ≈ 4 and 0.58/0.06 ≈ 10 corresponds very well with the ratios found in the present

analysis.

Moreover, the relatively small values and standard errors of νind and νfirm indicate sig-

nificant differences across industries. Table 13 makes this even more clear. This table

shows the Bayesian estimates for σfirm
j and σind

j for each industry j, averaged over all three

decades. Clearly, the differences between industries are highly significant, both statistically

and economically—the difference between the industry with the lowest firm-specific volatil-

ity (multi-utilities) and the highest (internet software & services) is more than a factor of

four.

Finally, Table 14 shows the industry pattern over time by decade. The industries are

averaged into eleven 2-digit GICS sectors to facilitate the comparison. Both the firm-

specific (σfirm
j ) and industry component of volatility (σind

j ) are shown. Consistent with

Proposition 3 there is significant persistence in these measures over time, with the energy

and utilities sectors always having a much lower firm-specific component than the other

sectors. Moreover, as expected from the model, industries with strong scale economies

and high depreciation rates (such as information technology) exhibit relatively high firm

volatility, while industries with strong exposure to macro-economic variables (in particular

energy) exhibit high industry volatility. Consistent with Proposition 4, the firm volatility

in information technology is particularly high in the boom period 95-05. A finer grained

analysis (unreported) shows that, similarly, the banking industry shows a clear rise in

industry volatility around the financial crises between 2008-2010, while after that returning

to stability.

3.4.3. Regression

The previous results provide suggestive empirical evidence that is consistent with the model.

To ensure that these effects are statistically robust, I additionally perform formal hypothesis
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Table 13: Firm-specific and industry-wide volatility by industry

Industry σfirm
j σind

j

Multi-Utilities 9.86 (0.20) 10.13 (0.70)
Electric Utilities 10.10 (0.13) 10.04 (0.68)
Gas Utilities 11.47 (0.23) 8.58 (0.64)
Water Utilities 14.18 (0.81) 8.51 (1.25)
Household Products 14.40 (0.47) 6.89 (0.83)
Industrial Conglomerates 14.46 (0.55) 6.12 (0.83)
Banks 15.46 (0.13) 9.32 (0.61)
Beverages 16.21 (0.44) 7.23 (0.74)
Insurance 16.21 (0.16) 7.35 (0.52)
Tobacco 16.65 (0.67) 12.56 (1.24)
Containers & Packaging 17.75 (0.39) 8.18 (0.74)
Thrifts & Mortgage Finance 18.16 (0.42) 9.17 (0.86)
Food Products 18.28 (0.28) 6.89 (0.57)
Aerospace & Defense 18.28 (0.33) 7.93 (0.69)
Capital Markets 18.75 (0.31) 7.05 (0.64)
Machinery 18.78 (0.23) 8.18 (0.61)
Equity Real Estate Investment Trusts (REITs) 18.78 (0.60) 5.90 (0.88)
Construction Materials 18.82 (0.69) 11.24 (1.26)
Distributors 19.18 (0.92) 6.35 (1.16)
Chemicals 19.48 (0.25) 7.50 (0.57)
Transportation Infrastructure 19.71 (1.40) 7.80 (2.05)
Trading Companies & Distributors 19.82 (0.65) 7.37 (1.04)
Road & Rail 19.98 (0.41) 10.19 (0.85)
Food & Staples Retailing 20.24 (0.37) 6.42 (0.64)
Paper & Forest Products 20.69 (0.71) 10.82 (1.31)
Marine 21.00 (0.97) 9.09 (1.69)
Independent Power and Renewable Electricity Producers 21.00 (0.78) 13.60 (1.45)
Building Products 21.34 (0.60) 8.20 (0.99)
Electrical Equipment 21.43 (0.49) 6.81 (0.77)
Professional Services 21.43 (0.66) 8.67 (1.13)
Diversified Financial Services 21.49 (0.56) 6.24 (0.80)
Multiline Retail 21.52 (0.51) 11.78 (1.00)
Media 21.76 (0.25) 6.49 (0.52)
Personal Products 21.84 (0.66) 7.72 (1.03)
Automobiles 21.88 (0.87) 9.93 (1.53)
Commercial Services & Supplies 21.91 (0.29) 5.06 (0.49)
Auto Components 21.97 (0.46) 10.93 (0.98)
Oil, Gas & Consumable Fuels 22.23 (0.23) 16.83 (1.15)
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Table 13 continued

Industry σfirm
j σind

j

Life Sciences Tools & Services 22.32 (0.56) 7.35 (0.91)
Real Estate Management & Development 22.40 (0.91) 6.78 (1.41)
Air Freight & Logistics 22.58 (0.90) 10.62 (1.61)
Health Care Equipment & Supplies 23.11 (0.32) 6.71 (0.59)
Leisure Products 23.16 (0.80) 7.63 (1.28)
Household Durables 23.16 (0.37) 11.04 (0.88)
Diversified Telecommunication Services 23.60 (0.49) 9.53 (0.88)
Energy Equipment & Services 23.70 (0.38) 25.79 (1.72)
Consumer Finance 23.71 (0.72) 9.34 (1.17)
Hotels, Restaurants & Leisure 23.90 (0.31) 8.91 (0.72)
IT Services 24.11 (0.38) 6.44 (0.66)
Diversified Consumer Services 24.21 (0.62) 8.63 (0.99)
Textiles, Apparel & Luxury Goods 24.59 (0.45) 10.24 (0.89)
Construction & Engineering 25.10 (0.71) 10.57 (1.25)
Electronic Equipment, Instruments & Components 25.12 (0.37) 8.38 (0.75)
Airlines 25.30 (0.69) 20.15 (1.56)
Health Care Providers & Services 25.39 (0.32) 10.81 (0.84)
Pharmaceuticals 25.85 (0.43) 8.97 (0.83)
Metals & Mining 26.59 (0.35) 18.59 (1.30)
Specialty Retail 27.41 (0.32) 11.70 (0.87)
Wireless Telecommunication Services 28.47 (0.70) 13.79 (1.43)
Semiconductors & Semiconductor Equipment 29.90 (0.41) 19.53 (1.40)
Technology Hardware, Storage & Peripherals 32.57 (0.55) 11.95 (1.11)
Health Care Technology 32.73 (1.33) 11.82 (2.31)
Software 33.32 (0.38) 9.93 (0.84)
Communications Equipment 35.07 (0.53) 10.33 (0.99)
Biotechnology 35.36 (0.58) 17.27 (1.35)
Internet & Direct Marketing Retail 37.57 (1.37) 9.61 (2.20)
Internet Software & Services 43.17 (1.45) 11.98 (2.16)

Note. Annualized percentage of firm-specific and industry-wide volatility by six-digit GICS in-

dustry, sorted by increasing firm-specific volatility. Shows averages over three decades for the

Bayesian posterior mean, with standard deviation in brackets; these correspond with the classical

maximum likelihood estimate (MLE) and standard error.
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tests using a regression analysis. As dependent variables I use logarithms of the posterior

median estimates from the Bayesian analysis of the firm component and industry component

of volatility (annualized percentages), by industry-decade at the 6-digit GICS level. As is

common in this type of analysis, I exclude financial services (GICS 40xxxx), because these

industries often use different accounting standards.

All independent variables are calculated using the Compustat database. I use R&D intensity

and advertising intensity as proxies for sunk resource costs, both defined as the relevant item

from the income statement as a percentage of revenues. I use capital intensity, defined as

capital expenditure over sales, as a proxy for asset exposure to macro-economic shocks.

Depreciation rate is defined as the income statement depreciation and amortization as a

percentage of net property, plant and equipment plus intangibles on the balance sheet.

Demand shocks are defined as the logged standard deviation of EBITDA (earnings before

interest, taxes, depreciation and amortization) margins. Industry growth is defined as the

compounded annual growth rate of the total revenues of all companies combined in the

industry. I do not use a proxy for scale economies, because prior literature has found it to

be highly endogenous, and thus hard to estimate (e.g., Basu and Fernald, 1997).

Table 15 shows distributional summary statistics (median and end points of the 95% inter-

val) as well as correlations for all variables. Table 16 shows the regression analyses for the

hypothesis tests.8 All models use ordinary least squares (OLS) with decade fixed-effects (to

remove the effect of any changes in volatility common to all industries) and cluster-robust

standard errors at the industry level (to account for any serial correlation).

Models (1) and (4) are pure fixed effect models to assess the extent to which firm and

industry components of volatility reflect time-constant characteristics of the industry. Both

R-squares are high and very significant (p < 0.001 for the F-statistics); the firm component

is for 92% explained by time-constant or economy-wide effects, and the industry component

for 78%. This provides strong support for the first part of Proposition 3: especially firm-

8Table made with the help of the texreg package (Leifeld, 2013).
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Table 16: Regression results

Dependent variable: Firm component† Industry component†

(1) (2) (3) (4) (5) (6)
FE Full Winsor FE Full Winsor

R&D Intensity 0.91∗∗∗ 1.05 0.35 −1.00
(0.24) (0.77) (0.69) (1.28)

Advertising intensity 2.83∗ 2.97∗ −0.05 0.22
(1.29) (1.38) (1.39) (1.54)

Depreciation rate 3.34∗∗∗ 3.32∗∗∗ 1.33 1.82
(0.60) (0.76) (0.69) (0.96)

Industry growth† 1.11∗∗∗ 1.49∗∗ 0.10 0.69
(0.33) (0.45) (0.49) (0.64)

Capital intensity −0.72 −1.10 1.78∗∗∗ 1.81∗∗

(0.69) (0.68) (0.53) (0.62)
Demand shocks† 0.05 0.06 0.16∗∗ 0.18∗∗

(0.03) (0.03) (0.05) (0.06)
Industry fixed-effects x x
Decade fixed-effects x x x x x x

Num. obs. 182 182 182 182 182 182
R2 (full model) 0.92 0.54 0.54 0.78 0.39 0.40

Note. OLS regression of firm component and industry component of volatility by GICS

industry-decade. Models (1) and (4) are pure fixed effects models; models (2) and (5)

include all untransformed variables; and models (3) and (6) use winsorized regressors to

reduce the effect of any outliers. Clustered standard errors robust to serial correlation

and heteroscedasticity in parentheses. R2 for full model including fixed effects.
†Logged variable.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001
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specific volatility is for a large part determined by time-constant industry characteristics.

Models (2) and (5) regress respectively the firm and industry component of volatility onto

the covariates. The results are remarkably consistent with propositions 3 and 4. Indus-

tries with high firm components of volatility are associated with high sunk costs (R&D

and advertising intensity), high depreciation rates, and high growth. Industries with high

industry components of volatility are associated with a high capital intensity and exposure

to demand shocks. Moreover, most of these associations are highly significant (at the 0.01

or 0.001 level), even though the sample size is relatively small (fewer than 200 data points,

with standard errors clustered into fewer than 70 industries).

Models (3) and (6) use winsorized regressors to reduce the effect of any outliers. The results

are very similar to the unwinsorized models, except for the strong reduction in statistical

significance of R&D Intensity on the firm component of volatility. The significance of this

effect in model (2) is largely driven by Biotechnology (GICS 352010), which indeed has high

firm-specific volatility and very high R&D intensity for each of the three decades.

3.5. Discussion

The model in this paper suggests that the dynamics of resource competition provide a very

general mechanism for the emergence of high a firm-specific heterogeneity. Of course, many

such mechanisms have been suggested in the past, such as mobility barriers between industry

groups (Caves and Porter, 1977), evolutionary path dependence (Nelson and Winter, 1982),

resource endowments (Barney, 1991), dynamic capabilities (Teece et al., 1997), and unique

asymmetries (Miller, 2003). However, none of these mechanisms provides a reason why

firm-specific heterogeneity should be high under all circumstances. This study does provide

an answer to that question: high firm-specific heterogeneity should be expected to emerge

under very general conditions, because resource competition amplifies small differences in

resource positions into large differences in performance.

The assumptions of the model that prove minimally sufficient for the emergence of high
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firm-specific heterogeneity are endogenous investment, scarce resources, time-compression

diseconomies, and uncertainty. They are “minimal” in the sense that each is needed in

conjunction with the others to lead to the amplification resulting in high firm-specific het-

erogeneity; removing any of the four conditions (without replacing it by a different one) will

remove the amplification effect.

First, endogenous investment is a critical part of a model for resource markets, because

firms principally make sunk cost investments in resources because of their long term effects,

and not myopically to improve current profits. For instance, in order to build a resource

position in a market, firms almost always have to suffer initial losses before becoming

profitable, which can’t be squared with pure myopia. The endogenous investment model in

this paper does assume forward looking managers and is consistent with this phenomenon:

in the initial resource state qi = qj = 1 firms make investments of x = $1.5 on profits of

just π = $1 (using the base case parameters in Table 11).

Second, scarce resources are modeled through increasing cost in equation (3.3) when the

resources used by both firms (qi + qj) approaches some finite stock Q. As Figure 9 shows,

removing the competition for scarce resources makes the value function trivial, and the

firm-specific heterogeneity low.

Third, time-compression diseconomies are needed on a much more fundamental level. If

there were no time-compression diseconomies, each firm could obtain any resource posi-

tion overnight, thus competing any profits immediately away. The time-compression disec-

onomies in the present model are implemented through the concavity of the expected value

of the resource efficiency function in equation (3.2). This means that if a firm invests twice

the amount of money x in a given time period, it increases the probability (and thus ex-

pected value) of resource gain θ+1 by less than a factor of two. In other words, spreading an

amount of money x over two periods increases the expected resource gain vis-à-vis investing

the same amount in a single period.
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Fourth and finally, uncertainty is required to provide the seeds of heterogeneity. In absence of

all uncertainty, the symmetry of the model in firm 1 and firm 2 would lead to two firms that

are exactly the same, without any heterogeneity. Of course, in actuality there will always be

differences across firms, if only because no two people are exactly the same. The example

in Figure 8 shows that any such small differences will be amplified in performance due to

resource competition when the uncertainty is combined with the other three conditions.

As an interesting aside, the first three conditions can be seen as principles covering the func-

tioning of resource markets, particularly demand, long-term supply and short-term supply,

respectively. The long-term supply curve driven by the scarcity of resources incorporates

increasing costs as resources become more depleted—quite analogous to ‘ordinary’ product

markets. However, due to time-compression diseconomies, there will be a short-term supply

curve that is much steeper, limiting the amount of resources that a firm can obtain in a

short period of time depending on its size—in general, larger firms will be able to grow

faster in absolute terms (Knudsen et al., 2014). In resource markets, there is no direct

analogue of the demand curve though. While in product markets the demand curve is inde-

pendent of the supply curve—product demand depends solely on utility functions, and not

on production functions—in resource markets firms take future supply and potential growth

rates into account in making investment decisions. This provides a fundamental reason why

resource markets cannot be analyzed through ordinary supply and demand functions, but

require some version of the machinery of dynamic games used in this paper.

Apart from the above four key assumptions underlying the model, there are of course several

other specific assumptions needed to develop the model. For instance, the model in this

paper assumes two firms without entry or exit, in order to keep the model parsimonious

while capturing the essence of competition—one could think of the two firms as the focal

firm and its strongest competitor. This is a common assumption in the literature for models

investigating specific competitive mechanisms (e.g., Makadok and Barney, 2001; Besanko

and Doraszelski, 2004; Adner and Zemsky, 2006). For similar reasons, the model focuses on a
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single resource with a fixed amount of inimitable resources (following, for instance, Makadok

and Barney, 2001; Jacobides et al., 2012), and assumes a “winner takes all” competition in

each segment (see appendix A.2), similar to the strong product market competition assumed

in for instance value based strategy (Brandenburger and Stuart, 1996).

Also, the dynamic game model used in this paper comes with rather strong assumptions

about the rationality of managers and the information that is available to them: managers

in actual companies are not known to optimize a Bellman equation (3.5), nor would they

have the exact information to do so. However, because the key industry characteristics of re-

source competition turn out to be relatively stable over time, managers and investors can be

expected to develop investment heuristics that are consistent with rational optimization—if

only due to evolutionary processes: firms and investors that deviate from the equilibrium

strategy will in the long term be less successful. Indeed, the equilibrium investment strate-

gies appear to be consistent with actually observed investment behavior; for instance, in

markets with strong scale economies and large sunk cost (such as technology industries),

firms tend to make major investments early onward to rapidly gain favorable competitive

positions at the expense of competitors, consistent with the model predictions in Figure 11.

As a direction for further research it would fruitful to study models of resource competition

under less strict assumptions. For instance, evolutionary or learning models could be use

to alleviate the strong rationality assumptions. This would also reduce the computational

burden when allowing more firms and more resource markets, as the Markov perfect equilib-

rium calculation would rapidly become unfeasible due to the exponential growth of the state

space with the addition of state variables. Therefore, evolutionary models with alleviated

rationality assumptions could be ideally suitable to study resource competition, guided by

the key four conditions outlined in this paper.
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CHAPTER 4 : Performance persistence in the presence of higher order resources

4.1. Introduction

The persistence of profitability differences even among direct competitors is a well-documen-

ted empirical regularity in the strategy literature (e.g., Mueller, 1977; Jacobsen, 1988; Mc-

Gahan and Porter, 1999). The resource based view (RBV) provides an explanation for

why these profitability differences are not rapidly competed away, invoking firms’ access to

heterogeneous and immobile resources with limits to competition. (e.g., Wernerfelt, 1984;

Barney, 1991; Peteraf, 1993). The RBV can be augmented with the notion of higher order

resources, providing an explanation for how certain firms are able to systematically develop

and maintain favorable resource positions in their product markets, without having to pay

their full economic price on strategic factor markets. Unlike “ordinary” or “operating”

resources, higher order resources do not allow a firm to make higher profits directly, but

instead allow it to systematically obtain other superior resources that over time allow it

to increase profits. This concept of higher order resources (or higher order capabilities)

provides a way to characterize dynamic capabilities within the RBV (Winter, 2003; Helfat

et al., 2007).

However, despite the extensive literature on the RBV and dynamic capabilities, little is

known about how higher order resources theoretically and empirically affect profit persis-

tence patterns, which is a particularly puzzling gap given that the relation between resources

and profitability has been a central theme in the strategy literature. In this paper, I address

this gap with a formal stochastic model of the dynamics between higher order resources,

operating resources and profits. I find that operating resources, which affect profits directly,

lead to persistence in the level of profit differences; the addition of higher order resources,

which affect other resources but not directly profits, leads to persistence in the growth of

profit differences.

The model also provides an empirical test of the presence of higher order resources in a
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30-year panel of profit data. The model shows that the presence of higher order resources

versus merely operating resources, translates into different classes of autoregressive moving

average (ARMA) models. I test for these different models using both classical statistical

time series and Bayesian hierarchical methods, which allow for estimation of differences

across industries (Alcácer et al., 2013; Mackey et al., 2017; Gelman et al., 2013). I do find

significant evidence for the persistence in both level and growth of profits, indicating the

presence of higher order resources shaping profit persistence patterns.

This paper makes several contributions to the literature. First, the formal framework of-

fers precise relations between resources and performance, without equating the two, thus

addressing the often-cited tautology critique on the RBV (Priem and Butler, 2001). Re-

sources must persistently affect expected profit over time—providing two critical distinctions

between resources and performance as such. Moreover, resources can be distinguished into

those affecting expected profit directly (operating resources) and those affecting expected

profit through other resources over time (higher order resources). The mathematical defini-

tions and derivations in this paper allow deriving how the dynamics of operating resources

and higher order resources individually as well as in conjunction affect profit persistence

patterns in terms of stochastic time series models, as summarized in Table 18.

Second, this study offers a large scale empirical test of whether and to what extent higher

order resources affect profit persistence patterns. This addresses an often heard call “... to

make greater use of empirical methodologies beyond qualitative case analyses and analysis

of survey data, such as ... econometric analysis of ‘big’ archival data, to further broaden

the toolkit used in dynamic capabilities research.” (Schilke et al., 2018, p. 392). I find

that higher order resources significantly affect profit persistence patterns over time, for a

wide range of industries. A notable exception is that the effect of higher order resources on

profit persistence patterns is much smaller, or even absent in some industries in the decade

1995-2004, providing an explanation for the findings of “hypercompetition” literature in the

2000s (e.g., D’Aveni et al., 2010), as well as recent findings of a reversion of this trend (e.g.,
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Bennett and Gartenberg, 2016).

Third and finally, this paper offers new findings and methods for the persistence of prof-

itability literature (e.g., Mueller, 1977, 1986; Jacobsen, 1988; Geroski and Jacquemin, 1988;

Waring, 1996; Goddard and Wilson, 1999; McGahan and Porter, 1999; Bou and Satorra,

2007; Bottazzi et al., 2008; Madsen and Walker, 2017). For instance, the formal model of re-

source dynamics suggests that an autoregressive moving average (ARMA) model should be

used to estimate the time series behavior of profit persistence, instead of the earlier used pure

autoregressive (AR) models, which likely have lead to an attenuation bias in prior studies.

Indeed, I find significantly higher values for the first order persistence of profit, around 0.95.

In some industries and time periods the first order persistence is even above one, consistent

with recent findings of unit-root behavior in profit data (Canarella et al., 2013). Unlike tra-

ditionally used maximum likelihood estimators (MLE), the Bayesian inference used in this

paper allows estimation of such non-stationary behavior without problems, providing direct

estimates of the first-order persistence over time. I find that first order profit persistence

above one (i.e., diverging profit differences) never last for more than a single decade, thus

suggesting the existence of ’non-stationary episodes’, rather than long-term non-stationary

profit behavior.

4.2. Theory

The primary subject of this paper is how the dynamics of operating and higher order

resources affect the persistence of profitability differences among firms. In this section, I will

precisely define the notions of operating resources and higher-order resources, relate them

to previous literature, and mathematically derive how they affect empirically observable

persistence of profits over time.

4.2.1. Operating resources

Winter (2003) defines ordinary or “zero-level” capabilities as those “that permit a firm to

‘make a living’ in the short term” (p. 991). The idea to specifically distinguish capabilities
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that contribute to short-term profits can be logically extended to other types of resources,

defined as “something that the organization can draw upon to accomplish its aims” (Helfat

et al., 2007, p. 4). Examples of such resources that can directly affect profits could be brands,

patents, captive customers, or specialized plants. I will call them operating resources—the

word “operating” is to be interpreted broadly, as a generalization of “operating routines”

(King and Tucci, 2002; Zollo and Winter, 2002), thus not merely pertaining to production

operations, but also to any other element of operating in a certain product market. Presum-

ably, such operating resources are the ones that the original RBV authors mainly referred

to in order to explain why certain firms are able to make above-normal profits for prolonged

periods of time (Wernerfelt, 1984; Rumelt, 1984; Barney, 1986; Dierickx and Cool, 1989).

Specifically, I define:

Definition 1. Operating resources are resources that directly and persistently affect a

firm’s expected profit.

Two words are critical in this definition: “persistently” and “expected”. The latter means

that the effect of a firm’s operating resources xt in period t on its profit yt can be described

by xt = E yt. Conversely, this means that firm profit can be written in terms of the effect of

its operating resources xt plus a random noise term ut that is uncorrelated with the firm’s

resource base:1

yt = xt + ut (4.1)

The meaning of “persistent” is that operating resources in subsequent periods must be

correlated: cor(xt−1, xt) > 0. To first order approximation2 this is equivalent to xt =

1More formally: cor(ut, xt) = cor(ut, us 6=t) = Eut = 0.
2The persistence of profit literature usually assumes an autoregressive model for profits. All these models

are linear time series models: excess profits yt in a given year are described in terms of a linear combination
of its lags (yt−1, yt−2, . . .) as well as an error term εt and potentially its lags (εt−1, εt−2, . . .). In order to
keep the model mathematically tractable as well as to make it comparable with the earlier literature, I want
to stay within this framework of linear time series models, and thus require linear relations between profit
and resources.
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µ + λxt−1 + vt, for some parameters µ, λ > 0 and some random noise term vt.
3 This

equation can be simplified by redefining xt as the difference compared to the competitive

average:4

xt = λxt−1 + vt (4.2)

Because in this paper I am primarily interested in the dynamics vis-à-vis the competitive

average, rather than the (constant) level of the average itself, from now on I will work with

demeaned values: the resource base xt is to be understood as the resource advantage (or

disadvantage) vis-à-vis competitors, and the profit yt is to be understood as the profit in

excess to the competitive average.

Equation (4.2) shows the importance of the persistence requirement in the definition. If

resources were not persistent, this would mean xt = vt, and thus yt = vt + ut: the profit yt

would be the sum of two uncorrelated noise terms, which is equivalent to a random noise

process yt = ut. Intuitively this makes sense: a short spike in profit due to some very short-

lived “resource” is indistinguishable from a spike in profit due to some other random event.

Therefore, operating resources are defined as resources that persistently affect (expected)

profit, i.e. for a prolonged period of time, captured by the requirement λ > 0. The value of

λ captures to what extent operating resources are persistent.

As will be shown later, equations 4.1 and 4.2 are equivalent to a so called first-order au-

toregressive and first-order moving average (ARMA(1,1)) model for profits yt. Previous

literature has usually just considered a first-order autoregressive (AR(1)) model. However,

it turns out that the moving average (MA) term is not inconsequential, and has likely led

to a downward bias in the estimation of profit persistence in earlier studies.

3Similarly: cor(vt, xt) = cor(vt, ut) = cor(vt, vs 6=t) = E vt = 0.
4Formally, this amounts to shifting xt and yt by a constant, redefining xt 7→ xt+ µ

1−λ and yt 7→ yt+ µ
1−λ .

In the case λ = 1 one can add or subtract an arbitrary constant without affecting the dynamics.
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4.2.2. Higher order resources

Analogous to extending the concept of “zero-level” capabilities to other resources that

directly affect profit, dynamic or “higher-order” capabilities (Winter, 2003) can be extended

to other resources that govern the “rate of change” of operating resources (Collis, 1994;

Winter, 2003):

Definition 2. Higher order resources are resources that do not directly affect current

expected profit, but that do persistently affect the expected rate of change of other resources.

Similarly to the definition of operating resources, the notions of persistence and expected

values are critical. As Winter (2003, p. 992) notes, the requirement of such patterns beyond

random noise is critical to determine whether higher order resources exist in some non-

trivial sense. If higher order resources were just defined as the rate of change of operating

resources, they would trivially exist, because evidently firms’ resource positions change all

the time. The interesting question is if such change is patterned, and hence the rate of

change of operating resources persists over time. The primary purpose of this paper thus is

deriving the effect of such persistent higher order resources on the time series behavior of

profit, as well as whether and how broadly this effect can be empirically observed.

To mathematically formalize the effect of higher order resources on profit persistence, I will

only consider second order resources, i.e., resources that directly affect operating resources.5

Conceptually the arguments can be easily extended to third order resources (resources that

affect the rate of change of second order resources), and so forth.

By definition, and in exact analogy to operating resources, higher order resources zt can

be described by their effect on the rate of change of the operating resources, beyond the

baseline from equation (4.2):

xt = λ(1)xt−1 + zt + vt (4.3)

5The terminology for numbering of the higher orders in the literature is inconsistent; for instance, what
I call “second order resources” corresponds to “first order dynamic capabilities” in Winter (2003) and to
“second order competences” in Danneels (2016).

92



The evolution of zt itself is described by:

zt = λ(2)zt−1 + wt (4.4)

Note that λ(1) and λ(2) respectively capture the persistence of operating and higher order

resources. In the next subsection I will show with a couple of numerical examples how these

parameters affect profit persistence, and afterward more formally derive the implied time

series patterns.

4.2.3. Numerical examples

To provide some intuition for the meaning of the model in equations (4.1), (4.3), and (4.4),

Table 17 shows several numerical examples for various values of λ(1) and λ(2). For all

examples, the initial stock of both operating and higher order resources x0 = z0 = 100, and

I suppress the random shocks ut = vt = wt = 0 in order to focus exclusively on the effect of

resource persistence on profits—in the more formal treatment in the next subsection I will

include the random shocks to precisely derive their impact on the time-series behavior of

profit.

Panel a shows the evolution of profit y, operating resources x and higher order resources z

in the case that operating resources fully persist (λ(1) = 1), while higher resources decay

immediately (λ(2) = 0); thus, only operating resources affect the evolution of profit in this

example. In this simple case, operating resources and thus profit levels persist over time.

Next, panel b shows what happens if the roles of operating and higher order resources

are interchanged: higher order resources fully persist (λ(2) = 1), while operating resources

decay immediately (λ(1) = 0). Interestingly, this leads to the exact same pattern with

constant profit. Though maybe surprising at first, this can be understood intuitively: the

profit pattern that derives directly from a stable operating resource is equivalent to the

profit pattern that derives via a short-lived operating resource from a stable higher order
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Table 17: Numerical examples.

a. Operating resources (λ(1) = 1, λ(2) = 0)

t 0 1 2 3 4 5

y 100 100 100 100 100 100
x 100 100 100 100 100 100
z 0 0 0 0 0 0

b. Higher order resources (λ(1) = 0, λ(2) = 1)

t 0 1 2 3 4 5

y 100 100 100 100 100 100
x 100 100 100 100 100 100
z 100 100 100 100 100 100

c. Both resources (λ(1) = λ(2) = 1)

t 0 1 2 3 4 5

y 100 200 300 400 500 600
x 100 200 300 400 500 600
z 100 100 100 100 100 100

d. Eroding resources (λ(1) = 0.5, λ(2) = 0.9)

t 0 1 2 3 4 5

y 100 140 151 148 140 129
x 100 140 151 148 140 129
z 100 90 81 73 66 59

e. Eroding resources (λ(1) = 0.9, λ(2) = 0.5)

t 0 1 2 3 4 5

y 100 140 151 148 140 129
x 100 140 151 148 140 129
z 100 50 25 13 6 3

Note. Numerical examples for the model in equations (4.1),

(4.3), and (4.4), showing the evolution of profit yt, operating

resources xt, and higher order resources zt over time for dif-

ferent values of λ(1) and λ(2). For all examples x0 = z0 = 100

and ut = vt = wt = 0.
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resource.

Panel c shows the pattern in case both operating and higher order resources fully persist

(λ(1) = λ(2) = 1). This leads to a markedly different pattern of profit evolution: now not

merely the profit level persists, but profit growth persists. Thus, the interaction of operating

and higher order resources leads to a unique pattern that is distinct from what would be

possible if only operating or higher order resources were present.

Panel d shows the evolution when resource advantages erode over time. Specifically, λ(1) =

0.5, meaning that operating resources on average decline with 50% per year, and λ(2) = 0.9,

meaning that higher order resources on average decline with 10% per year. This leads to a

decline in zt from a value of 100 in year 0 to 59 in year 5. The evolution of the operating

resource advantage xt (which still equals excess profits yt in the absence of random shocks)

is shaped by two opposing forces, the positive higher-order resource advantage zt drives a

growth in operating resources, while the direct effect due to λ(1) < 1 drives a decline. In

the first two years, the first force is stronger, while later the second become stronger, as the

advantage in higher order resources diminishes.

Panel e shows an example similar to panel d, but with the values of λ(1) and λ(2) inter-

changed. Interestingly, this does not affect the evolution of the operating resource advantage

xt and excess profit yt (though the evolution of higher order resources zt is different). This

is another instance of the equivalence observed between panel a and b. In general, for

the time series behavior of profits it does not matter whether a firm possesses a rapidly

deteriorating operating resource advantage and a slowly deteriorating higher order resource

advantage, as compared to the other way around.

These examples suggest first that profit behavior in the presence of both operating and

higher order resources is markedly difference than in the presence of either one alone, and

second that the roles and persistence rate of operating and higher order resources can

be interchanged without affecting profit persistence patterns. Below I will derive these
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statements more formally.

4.2.4. Transformation into ARMA time series

The persistence of profitability literature often uses autoregressive (AR) models to describe

the time series behavior of profits (e.g., Mueller, 1977, 1986; Jacobsen, 1988; Geroski and

Jacquemin, 1988; Waring, 1996; Goddard and Wilson, 1999; McGahan and Porter, 1999;

Bou and Satorra, 2007; Bottazzi et al., 2008; Madsen and Walker, 2017). These time series

models are part of a larger class of autoregressive moving average (ARMA) models. ARMA

models have been extensively studied and used in various scientific disciplines, because of

their parsimony, wide ranging applications and well-known properties (e.g., Cowpertwait

and Metcalfe, 2009; Hamilton, 1994).

Autoregressive (AR) processes describe yt in terms of the sum of lagged variables up to a

certain lag p, plus a random shock: yt = φ1yt−1 + . . . + φpyt−p + εt. Because the random

variable yt at a certain time t feeds into the equation for the next year, autoregressive

processes have a “long-term memory”: even for an autoregressive process with just one

time lag (AR(1)), a random shock εt in a certain year can affect many future years, through

the various time lags. These properties, along with the fact that AR(1) models can easily

be estimated with OLS (by regressing a variable on its first lag) make them popular for time

series analyses, for instance in the earlier mentioned persistence of profitability literature.

Moving average (MA) processes6 describe yt in terms of the sum of lagged error terms up

to a certain lag q: yt = θ1εt−1 + . . . + θqεt−q + εt. In contrast to autoregressive models,

moving average models have a “short-term memory”: any random shock can only affect

the outcome variable up to the maximum lag of q time periods later, after which it literally

drops out of the equation. Thus moving average processes provide a natural model for noise

with a short lived impact.

Because the linear model in equations (4.1), (4.3), and (4.4) consists of a combination of

6General autoregressive and moving average processes can also include a constant term (e.g., yt = c +
φyt−1 +εt for an AR(1) process). Because in this paper I work with demeaned variables, I omit the constant.
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autoregressive processes (the decay of resource (dis-)advantages xt and zt) and short lived

noise terms (e.g., the annual variation ut), it might be expected that the implied time series

behavior of yt consists of a combination of autoregressive and moving average terms. This

is indeed the case:

Proposition 5. Assume the stochastic model as defined in equations (4.1), (4.3), and

(4.4). Then the time series yt is second-order equivalent to an ARMA(2,2) process with

zero mean. In other words, there exist identically and independently distributed error terms

εt and parameters θk, φk such that the time series yt defined by

yt = φ1yt−1 + φ2yt−2 + εt + θ1εt−1 + θ2εt−2 (4.5)

has the same expected values and variance-covariance structure as the time series yt defined

by equations (4.1) to (4.4). Moreover, the values of λ(1) and λ(2) determine the autoregres-

sive parameters φ1 and φ2 as follows:

φ1 = λ(1) + λ(2) (4.6)

φ2 = −λ(1)λ(2) (4.7)

Proof. See appendix A.5. 7 �

Thus, equations (4.1), (4.3), and (4.4) describe an ARMA(2,2) model for yt. Moreover,

from lemma 1 in appendix A.5 it follows that a model with only operating resources and

no higher order resources (i.e, λ(2) = 0) is equivalent to an ARMA(1,1) model. A great

advantage of the ARMA formulation over the original one is that the ARMA estimation

properties are well-known: the model is identified as long as there are no jointly redundant

AR and MA components present in the model (e.g., Hamilton, 1994).

Intuitively the relation between the earlier model and the ARMA formulation can be under-

stood as follows. In a model with no higher order resource advantages (zt = wt = λ(2) = 0)

7The appendices are provided in a separate document.
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and no annual noise term (ut = 0), the excess profit yt follows an AR(1) model, because

in that case yt = xt and thus yt = λ(1)yt−1 + vt. The addition of the annual noise term

ut essentially means that the excess profits yt become a noisy measure of the operating

resource advantage xt, which leads to the addition of a moving average term to the time

series model: ARMA(1,1). The addition of higher order resource advantages leads to both

an additional autoregressive term and an additional error term, which translates into a

second moving average term, thus defining an ARMA(2,2) model.

Note that λ(1) and λ(2) are fully interchangeable, in the sense that exchanging them leads to

the exact same autoregressive parameters, consistent with the examples provided in Table

17 panels d and e. Therefore, in the empirical inference one needs to decide which value

to assign to which λ-parameter in order to uniquely determine them. For the remainder

of the paper, I will assign the lower value to λ(2), as this provides a lower bound of the

persistence rate of higher order resource advantages, and thus a more conservative estimate

of this value.

Table 18 summarizes the results from this section. If no operating and higher order resources

are present (λ(1) = λ(2) = 0), then profit evolution is equivalent to yt = ut, a random walk,

without any autoregressive components. If only operating resources are present (λ(1) >

0, λ(2) = 0), then profit levels persist over time, leading to a first order autoregressive

component. Because of the interchangeability of λ(1) and λ(2) the case with only higher

order resources present (λ(2) > 0, λ(1) = 0) is exactly equivalent to the case with only

operating resources. Finally, when both operating and higher order resources are present

this leads to the addition of higher order autoregressive and moving average terms, described

by a model with two autoregressive components; intuitively this can be understood as the

persistence of not only profit levels but also profit growth over time, per the example in

Table 17 panel c.

These results provide an empirical test for the presence of higher order resources in shaping

profit persistence. In a world with only operating resources one would expect excess profits
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Table 18: Summary of the effects of operating and higher order resources
on profit persistence.

Presence of resources: Persistence of profit: Time-series
Operating Higher order Level Growth # AR components

- - - - 0
X - X - 1
- X X - 1
X X X X 2

to follow an ARMA(1,1) process, while in a world in which also higher order resources play

a significant role, one would expect higher order autoregressive components to be present

in profit time series. Note that, while the AR terms determined by the λ(k) parametrize the

long term profit persistence patterns, the MA parameters θk only parametrize short-term

noise. Therefore the MA parameters are typically treated as “nuisance parameters” in this

type of model (Harris, 1999, p. 158), analogous to for instance the standard deviation of

the error term in OLS: such parameters are needed in the model for correct inference, but

their values are not of direct interest by themselves.

Figure 13 shows two simulations, first of an ARMA(1,1) time series, and second of the same

model with the addition of an AR(2) term. Similar to the highly stylized examples in Table

17, the addition of the AR(2) term leads to markedly different behavior. With the addition

of the AR(2) term, profit changes become persistent over time, leading to larger and longer

deviations from the competitive average. The remainder of this paper will be devoted to

measuring the presence of absence of the AR(2) term in observed profit data, and thus of

the importance of higher order resources in shaping profit persistence patterns.

4.3. Methods

4.3.1. Data and measures

To determine whether higher order ARMA components are present in actual profit time

series, I use the Compustat North-America database—the de facto standard for this type
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Figure 13: ARMA time series simulations
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Note. Simulations of ARMA time series models with λ(1) = 0.9, θ1 = −0.7, and a standard normal

distribution for the error term εt; in the ARMA(2,1) model a second order component with λ(2) = 0.7 has

been added.
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of analysis—over the 30-year period from 1985 to 2014 (inclusive). Consistent with many

other studies using performance data (e.g., Rumelt, 1991; McGahan and Porter, 1997; Ruefli

and Wiggins, 2003), for each firm i in industry j and year t, I measure assets Kijt through

total balance sheet assets (Compustat field code at in Wharton Research Data Services

(WRDS)), and profits πijt through operating income (Compustat field code oiadp; also

known as earnings before interest and taxes (EBIT)). I operationalize industry definitions

through 6-digit GICS codes (as a robustness check, I also use SIC, see appendix A.7; I use

GICS codes for my main specification, because they provide more contemporary industry

definitions than the decades-old SIC codes, and lead to more balanced distributions of firms

across industries). All monetary figures are deflated to 2010 real US dollars using annual

consumer price index figures. The excess profits yijt = πijt− rjtKijt are calculated for each

company-year using the industry average returns for each industry-year rjt.

Note that the measure of excess profits differs by a size factor from the commonly used

return on assets (RoA) vis-à-vis competitors. Specifically, denoting a firm’s RoA with

r̃ijt = πijt/Kijt, my measure of excess profits is equal to yijt = (r̃ijt − rjt)Kijt: the firm’s

RoA above or below the industry average, times the firm’s assets. This measure is closely

related to the notion of economic profit, replacing the cost of capital (which is on average

equal to the average returns of all firms), by an industry-year average return. The reason to

use this measure is that firms ought to optimize a dollar amount of excess profits, instead of

a ratio such as RoA (Levinthal and Wu, 2010). For related reasons, Hawawini et al. (2003)

use economic profit instead of RoA to analyze profit patterns.

In the sample, I exclude all financial services companies, because of their different accounting

standards, as well as all observations with assets below 100 million real 2010 US dollars,

to limit the sample size (and thus computing time) to the economically most relevant

companies. Also, I exclude any observations after there had been a missing observation

for a specific company, so I obtain an unbalanced panel with contiguous financial data per

company. Finally, I exclude companies with fewer than ten observations and all industries
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that have fewer than five companies in some years. This leads to a sample of 79,203

observations by company-year for 4,321 companies in 57 industries. In appendix A.7, I

check for the robustness of the results to the specific cut-off points used.

4.3.2. Box-Jenkins method

Using the Compustat data, I want to estimate the parameters of the model defined in

equations (4.1) to (4.4), or equivalently the parameters of the ARMA transformed model

in equation (4.5). However, an ARMA model in general can’t be estimated using regression

techniques such as OLS (Harris, 1999, p. 149). Instead, the Box-Jenkins method is the

canonical approach for time series analysis (Box and Jenkins, 1970; Hamilton, 1994). This

method relies on an analysis of (partial) autocorrelation functions and maximum likelihood

estimation (MLE) of the ARMA parameters θk and φk in equation (4.5).

The autocorrelation function ρs = Cov(yt, yt−s)/(σ(yt)σ(yt−s)) is simply the correlation

between time lags s of the time series yt. The autocorrelation function can be estimated

by just taking the sample autocorrelations. The partial autocorrelation function αs is the

correlation between the yt and yt−s after projecting out linear combinations time series yτ

in between times t and t − s. The partial autocorrelation function can be estimated by

taking a regression of yt on the time series yt−1, . . . , yt−s; the partial slope of yt−s provides

an estimate of the partial autocorrelation αs (Hamilton, 1994, p. 111). These functions have

standard implementations in the major statistical packages. I will use the implementation

in R, using the functions acf and pacf, respectively (R Core Team, 2016).

The (partial) autocorrelation functions can be used as a first model-free assessment of the

time-series structure. For instance for a pure MA(q) process, the autocorrelation function

ρs is zero for s > q, while for a pure AR(p) process, the partial autocorrelation αs is zero

for s > q. If both ρs and αs have several significant terms, this usually indicates a mixed

ARMA(p, q) process.

The initial assessment using (partial) autocorrelation functions can then be used to estimate
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specific ARMA models using maximum likelihood estimation (MLE), providing confidence

intervals for the ARMA parameters θk and φk. In R this estimation procedure is imple-

mented in the arima function. The significance of the terms and the quality of model fit

(assessed through e.g. the Akaike Information Criterion, AIC) also provide an opportunity

for selecting the best ARMA model. Moreover, the error terms εt that remain after fit-

ting the ARMA model can again be tested for (partial) autocorrelations—if these are still

significant, this indicates the need for a higher order ARMA model.

One problem with the Box-Jenkins approach in this setting is that it is designed for a single

time series yt, while in this analysis there is a separate time series yijt for each firm i. In

order to still employ the Box-Jenkins approach, I analyze all time series together as if they

were generated from a single ARMA model. I implement this by dividing each individual

time series t 7→ yijt by its sample standard deviation, so each time series is at the same

scale, and then inserting a sufficient number of “missing” observations between the different

time series of each individual firm. For instance, when making assessments of up to lag five

in either the (partial) autocorrelation functions or the MLE, at least five “missing data”

points are needed in order to make sure that estimates are not contaminated between time

series from different companies. However, this approach still makes the assumption that

all ARMA parameters are the same across industries, which is not plausible given earlier

studies (e.g., Waring, 1996).

4.3.3. Bayesian inference

Hierarchical modeling using Bayesian estimation provides a way to overcome the potentially

troublesome assumption that all parameters are equal across industries, while still obtain-

ing full statistical power from all data (Alcácer et al., 2013; Gelman et al., 2013, ch. 5).

In the Bayesian framework, parameters are modeled as a vector of random variables ϑ.

The statistical model consists of two parts: the prior distribution p(ϑ) and the likelihood

p(y|ϑ) of the observations y given certain parameters ϑ. Bayesian inference then proceeds

by assessing the posterior p(ϑ|y) ∝ p(y|ϑ)p(ϑ), which describes the probability distribution
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of the parameters given the actually observed data. This contrasts with the classical maxi-

mum likelihood estimator (MLE), which merely describes the mode (i.e., maximum) of the

likelihood function ϑ 7→ p(y|ϑ), while the standard errors provide an approximation of the

width of the peak of the likelihood function. Thus, when taking a flat prior (p(ϑ) = 1) in

Bayesian inference, the posterior mode and second derivative are equal to the MLE. Thus,

MLE (and thus regression) can be seen as a specific case of Bayesian inference.

Because parameters in Bayesian inference are modeled stochastically, parameter values for

different industries can be assumed to be draws from some common probability distribu-

tion—the hierarchical prior. Usually, such hierarchical models provide more reasonable

parameter estimates than non-hierarchical models (Gelman et al., 2013, p. 101). For in-

stance, the persistence parameters λ
(k)
j for each industry j can be drawn from a normal

distribution:

λ
(k)
j ∼ N (µλ,k, σλ,k) (4.8)

The AR parameters φk for each draw can be calculated from the persistence parameters

λ(k) using equations (4.6) and (4.7).

The standard deviations σλ,k in expression (4.8) provide estimates of the spread in param-

eters across industries, thus giving an estimate of the extent to which resource dynamics

differ across industries. Such measures of variance can be interesting measures for strategic

research that are hard to obtain using classical techniques such as OLS and MLE (Alcácer

et al., 2013).

The advantage of Bayesian analysis to do hierarchical modeling comes at the disadvantage

of a much bigger computational burden to calculate the posterior distribution than to

calculate the classical OLS, ML or GMM estimates (which essentially are approximations

of a full Bayesian posterior). Because the posterior is analytically intractable except for the

simplest models, it usually needs to be simulated: hundreds or thousands of randomized

instances of the model are calculated, which represent draws from the posterior distribution.
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Inference then proceeds with calculation of statistics from these draws, such as the mean, the

median, the standard deviation and the 95% intervals—this is the posterior inference. The

posterior mean or median correspond with the classical point estimates, such as the MLE.

The posterior standard deviation and 95% interval correspond with the classical standard

error and 95% confidence interval, respectively. The central limit theorem guarantees that

for large N all distributions are normal, with the same parameters using either Bayesian or

classical inference (Gelman et al., 2013, ch. 4).

With the advent of modern IT, the computational costs of such simulations have greatly

diminished. For instance, estimating the hierarchical model used in this paper on close to

100,000 observations takes up to a few days, using a parallelized algorithm on designated

hardware. Thus, in this case, the computational burden is manageable while the benefit of

being able to model parameters by industry are significant.

Appendix A.6 describes the full specification of the Bayesian model used in this paper.

It combines the ARMA transformation of the original model as outlined in proposition 5

with the hierarchical model as outlined in this section. The prior p(ϑ) is designed to be

minimally informative: all posterior information comes from the data. Note that because

of the large data set used to estimate the model, the specific choice of prior should have

minimal influence on the posterior distribution in any case.

4.4. Results

4.4.1. Descriptive statistics, autocorrelations, and ML estimates

Because in this paper I perform a time series analysis, there is only one variable of interest:

the excess profits yijt for each company i in industry j and year t, measured in million

2010 US dollars. By definition, the average of yijt is zero (in fact, the average for each

industry-year equals zero, because each company’s profits are measured compared to the

industry average in each year). Table 19 shows the percentile distribution. Note that

though the mean of y is exactly zero by definition, the median has a small negative value
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Table 19: Percentile distribution of excess profits y.

0% 2.5% 25% 50% 75% 97.5% 100%

−25,153.6 −1,003.3 −46.4 −1.0 43.5 973.7 32,298.0

Note. Data for 79,203 company-years for 4,321 companies in 57 industries.

Figures in million constant 2010 US dollars.

indicating a slight skew. Moreover, due to the highly skewed size distribution of companies,

most companies make a small profit or loss (half of the companies between −46 and +43

million), while a few companies make a large profit or loss (about five percent of companies

more extreme than plus or minus one billion).

In order to bring the distribution across different companies at the same scale when they are

analyzed as a single joint time series, each time series is divided by its standard deviation

(yijt/ s.d.(yij.) 7→ yijt). Moreover, this also greatly reduces the influence of any outliers: if

a particular time series contains an extreme value, the standard deviation for this company

will be large, and the absolute scale of this time series thus strongly diminished. Note that

this transformation does not change the time series pattern (i.e. the λ and θ parameters),

because it merely rescales each time series by a constant. All analyses are performed on

this rescaled variable y.

Table 20 lists the autocorrelation and partial autocorrelation function of yijt for various

time lags. Given that N = 79, 203, values more extreme than ±2/
√

79, 203 ≈ ±0.007

are significantly different from zero at the 95% level (Hamilton, 1994, p. 111). Clearly,

all autocorrelations and partial autocorrelations up to lag 5 are significant, suggesting the

presence of both autoregressive and moving average components in the data.

The ML estimates in table 21 corroborate this picture. A comparison of both the Akaike

information criterion (AIC) and the parameter estimates indicate that at least two AR

components and one MA component are highly significant. The AIC is lowest for the

ARMA(2,2) model—indicating the best model fit for that specification. Moreover, the

λ(2), θ1 and θ2 estimates are significantly different from zero in each of the models, further
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Table 20: (Partial) autocorre-
lation functions.

Lag (years) ACF PACF

1 0.798 0.798
2 0.677 0.112
3 0.601 0.087
4 0.547 0.066
5 0.510 0.064

Note. Autocorrelation function

(ACF) and partial autocorrelation

function (PACF) of excess profits y.

suggesting that the ARMA(2,2) model provides the best ML fit for this time series.

The λ(1) estimate for the AR(1) model is in line with the values commonly reported in the

literature, which are usually in the range 0.6—0.9 for models without firm fixed effects (e.g.,

Bottazzi et al., 2008; Waring, 1996, figure 3). This value is significantly lower though than

the λ(1) value for the other models, particularly ARMA(2,1) and ARMA(2,2). This suggests

that the reported values in the literature are too low due to misspecification of the model—

i.e. leaving out the moving average and second order autoregressive components. Indeed,

leaving out a moving average term should lead to attenuation of the parameter estimates.

Essentially, when using profitability in a regression to determine the AR(1) coefficient, this

introduces a measurement error due to annual variations that are independent of the “true”

underlying resource position. The resulting measurement error in the independent variable

is a source of endogeneity and creates an attenuation bias in the parameter estimates (e.g,

Wooldridge, 2010). Hence it should be expected that the reported values in the literature

are lower than the actual persistence, consistent with the findings in table 21.

I have also analyzed the autocorrelations in the resulting error terms εt from the various

ML inferences. The error terms from the ARMA(1,1) model still have significant (partial)

autocorrelations for first and second order lags of 0.025 and -0.056 respectively, well outside

the 95% confidence interval of±0.007 expected from a null model, providing further evidence

for higher order components present in the data. The (partial) autocorrelations of the
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Table 21: Model comparison for MLE.

AR(1) ARMA(1,1) ARMA(2,1) ARMA(2,2)

λ(1) 0.809 0.867 0.928 0.925
(0.002) (0.002) (0.002) (0.002)

λ(2) 0.477 0.402
(0.011) (0.024)

θ1 −0.172 −0.708 −0.626
(0.005) (0.011) (0.026)

θ2 −0.031
(0.008)

AIC 206,707.8 205,637.7 204,878.2 204,866.0

Note. Maximum likelihood estimates for various autoregressive moving

average (ARMA) models of company excess profits. Standard errors in

brackets. The Akaike information criterion (AIC) provides an estimate of

model fit: lower values indicate a better fit to the data, accounting for the

number of parameters in the model.

ARMA(2,2) model are much smaller, suggesting that those models account for most or all

of the correlation structure in the data.

Finally, the normal probability plots for the error terms exhibit roughly a straight line,

suggesting that the MLE does not suffer from outliers or other issues due to deviations

from the normal distribution.

4.4.2. Bayesian inference

To better account for variations across industries, I have also performed a hierarchical

Bayesian estimation as described in the methods section. All results are based on posterior

inference of 4 Hamilton Monte Carlo (HMC) chains of 5,000 simulations each. The first 2,500

simulated draws have been discarded as warm-up8, and the remainder is thinned by a factor

20 (to conserve memory and disk space), for a total of 500 posterior draws for each model.

Due to correlations between the different draws, the effective sample size is sometimes lower.

8Because Bayesian simulation starts from some random initial values, the first simulation draws will
reflect the initial starting point, rather than the actual posterior distribution. Therefore, the first draws
(called the “warm-up” or “burn-in”) need to be discarded, until they can be expected to reflect the actual
posterior (Gelman et al., 2013, p. 282).
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For each parameter of interest, n̂eff indicates the effective number of posterior draws, which

should be at least 10 times the number of chains—40 in this case (Gelman et al., 2013,

p. 287). Moreover, the R̂ statistic needs to be below 1.1 for all variables, to ensure that

a sufficient number of draws have been discarded as warm-up, and that the sampling is

indeed performed from the actual posterior (Gelman et al., 2013, p. 287). For each model

and variable of interest I check that these values are in their desired ranges, and they are

reported in table 23 for the main specification. All inference is performed using the Stan

implementation in R (Carpenter et al., 2016; Gelman et al., 2013, Ap. C).

Table 22 shows the Bayesian hierarchical equivalent of table 21 to compare the different

model specifications. The parameters shown are the means of the hierarchical priors—e.g.,

the values of the µλ’s in equation (4.8). The values in the table are the posterior means,

which asymptotically correspond with the ML or OLS point estimates in classical inference.

The figures in brackets are the posterior standard deviations, which asymptotically corre-

spond with the standard errors in classical inference. Finally, the AIC is replaced with the

WAIC (Watanabe-Akaike or widely applicable information criterion), because this accounts

better for the effective number of parameters used in hierarchical models, and is in general

preferred in Bayesian analyses (Gelman et al., 2014, 2013, p. 173).

As was the case for the ML estimates, also in the Bayesian hierarchical model, the moving

average and second order autoregressive components are highly significant, and the WAIC

markedly decreases when these components are added. Both suggest that the ARMA(2,2)

specification best fits the data.

Table 23 shows more details for the ARMA(2,2) specifications for the main variables of

interest: the mean of the resource advantage persistence rates λ(k), as well as the standard

deviation across industries. Note that the posterior standard deviation in brackets is quite

different from the standard deviation of the λ(k) parameters in the bottom two rows: the

standard deviations in brackets refer to the the variation in posterior samples and are

analogous to the classical standard errors, while the bottom rows with hierarchical standard
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Table 22: Model comparison for Bayesian inference.

AR(1) ARMA(1,1) ARMA(2,1) ARMA(2,2)

Mean λ(1) 0.866 0.886 0.949 0.954
(0.012) (0.010) (0.008) (0.009)

Mean λ(2) 0.560 0.528
(0.031) (0.031)

Mean θ1 −0.052 −0.696 −0.648
(0.018) (0.036) (0.033)

Mean θ2 −0.053
(0.011)

WAIC 182,279.8 181,772.2 181,490.2 181,296.5

Note. Bayesian posterior means for various hierarchical autoregressive moving

average (ARMA) models of company excess profits. Posterior standard devia-

tions in brackets (asymptotically, these correspond to standard errors in classi-

cal inference). The Watanabe-Akaike or widely applicable information criterion

(WAIC) provides a Bayesian estimate of model fit: lower values indicate a better

fit to the data, accounting for the effective number of parameters in the model.

deviations have no direct classical analogue, and refer to the variation of parameters across

industries, thus providing an estimate to what extent industries are similar or different in

terms of persistence patterns.

All variables are significantly larger than zero9, and the posterior estimate for the mean of

λ(1) is significantly higher than the 0.7 to 0.9 range common in the literature. The variation

across industries can be seen from the relatively large standard deviation priors, especially

for λ(2). Assessing the full distribution of all posterior draws of λ
(k)
j across industries

indicates a positive λ
(2)
j for the far majority (99.3%) of posterior draws across industries—

and thus the importance of the AR(2) component of the model, signifying that higher order

resources significantly affect profit persistence patterns in (almost) all industries.

Appendix A.7 includes several robustness checks to the analyses in this section.

9Strictly speaking, significance testing is not possible in Bayesian analysis, and instead one should speak
of ‘posterior probability’. Specifically, I use the term ‘significant variable’, to signify a variable that has
a high posterior probability to be strictly greater (or strictly smaller) than zero. Asymptotically, this is
consistent with the use of the term ‘statistical significance’ in classical inference.
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Table 23: Posterior inference for ARMA(2,2) model.

Mean (s.d.) 2.5% 97.5% neff R̂

Mean λ(1) 0.954 0.009 0.937 0.972 427 1.00

Mean λ(2) 0.528 0.031 0.466 0.587 431 1.00

S.d. λ(1) 0.048 0.007 0.036 0.064 500 1.00

S.d. λ(2) 0.122 0.016 0.091 0.152 500 1.00

Note. Posterior mean, standard deviation, and 95% interval bounds

for the eigenvalues of the autoregressive components in the hierarchi-

cal ARMA(2,2) model of excess profits. The effective sample size neff

and the scale reduction factor R̂ are used to assess convergence of the

posterior draws; Gelman et al. (2013) recommend these to be above

40 and below 1.1, respectively.

4.4.3. Industry analysis

An attractive feature of hierarchical Bayesian modeling is that it allows inference at the

industry-level.10 Figure 14 shows the mean and 95% interval of the λ-parameters, averaged

by industry sector.11 Consistent with the results of the previous section, all 95% intervals

are well above 0, signifying the importance of both autoregressive components. Moreover,

the results indicate some clear differences across industries. Materials, Energy, and Utilities

have relatively low values for both λ-parameters, suggesting lower persistence of profit

differences in these industries—especially the low λ(1) value for utilities stands out. In

these industries industry-level factors, such as energy prices, play an important role in

profitability patterns, presumably diminishing the importance of both operating and higher-

order resources, and thus profit persistence. On the other hand, Health Care, Industrials

and Consumer Staples have relatively high values for both λ-parameters, with the value of

λ(1) close to 1, suggesting a strong persistence of any profitability differences. Indeed, these

industries are often associated with strong firm-specific resources (e.g., brands for consumer

goods companies), which according to the RBV should lead to higher persistence of profits,

consistent with the findings in, for instance Villalonga (2004).

10Thanks to the editor Brian Wu and two anonymous reviewers for suggesting this addition to the paper.
11The figure shows the average by 2-digit GISC secotr of the original 6-digit GICS industry estimates,

weighted by the inverse of the posterior variance for each estimate (which is the optimal weighting).
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Figure 14: Inference of λ-parameters by industry
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Note. Weighted average of posterior industry means (dots) and 95% intervals (error bars) of λ(1) and λ(2)

by 2-digit GICS industry sector, sorted by increasing λ(1).
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Additionally, it is interesting to analyze how industry-level patterns evolve over time. There-

fore, I have performed a Bayesian inference of the ARMA(2,2) model for each of the three

decades between 1985 and 2014. Figure 15 shows the posterior mean and 95%-intervals

for λ(1) and λ(2), both for the average across industries (panel a), as well as for selected

individual industries with particularly low or high values in some of the decades for either

of the λ-parameters (panels b-f).

A clear time pattern stands out from this figure: λ(2) is lower in the decade 1995-2004 than

in the decades before and after. This is consistent with both the findings of “hypercompe-

tition” literature in the 2000s (e.g., D’Aveni et al., 2010), as well as recent with findings

of a reversion of this trend (Bennett and Gartenberg, 2016). Interestingly, the decline in

persistence of profits in the decade 1995-2004 is almost exclusively in λ(2) (the persistence

of profit growth), rather than in λ(1) (the persistence of profit levels). For some industries,

λ(2) in the decade 1995-2004 is actually not significantly different from zero.

Another interesting finding is that some industries had periods with a λ(1) > 1, such as

Tobacco in 1985-1994 (p = 0.02).12 This means that during this decade any differences in

profits were, on average, amplified over time. Note that this would have been troublesome

in case I had used a traditional maximum likelihood estimator (MLE), because the model

would have been non-stationary (e.g., Hamilton, 1994). The issue is that the time series

models used in the MLE are based on the assumption that the time series can be extended ad

infinitum. Indeed, this would be troublesome, as any differences in profits would eventually

grow arbitrarily large, which is impossible. Conceptually there is no problem with a λ > 1

though for a finite period of time; indeed it appears quite plausible that such “non-stationary

episodes” could exist. In a Bayesian model it is rather easy to alleviate the assumptions

that cause the trouble in the MLE, and thus provide correct inference for data with such

non-stationary episodes.13

12Thanks to an anonymous reviewer for investigating potentially non-stationary behavior.
13Using simulated data, I confirm that the Bayesian model that I use correctly provide correct inference

for non-stationary ARMA models, while the classical MLE fails. Details are available from the author upon
request.
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Figure 15: Inference of λ-parameters by decade
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Note. Posterior mean (dots) and 95% interval (error bars) of λ(1) and λ(2) over time. Panel a shows

average across industries, and panels b-f show inference for selected 6-digit GICS industries.
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4.5. Discussion

The evidence from the autocorrelation analysis, the ML estimates, the Bayesian analysis

and the robustness tests all provide support for (1) the existence of at least one moving

average term and a resulting higher AR(1) component than found in preceding studies of

profit persistence, sometimes even above unity, leading to ’non-stationary episodes’, (2) the

existence of a higher autoregressive component in profitability persistence patterns, and

(3) a significant variation across industries in the persistence of operating and higher order

resources. Based on the model in this paper, all these findings have a direct interpreta-

tion in the RBV framework. First, the higher AR(1) parameter suggests that profits are

more persistent than found hitherto, further strengthening the importance of the RBV for

strategy. Second, the existence of a higher order autoregressive component suggests the

importance of higher order resources in shaping profitability patterns. Third, the industry

variation suggests that differences across industries not only manifest themselves in levels

of profits, but also in the temporal dynamics of profits, and that resource-based theories

can inform the differences in these dynamics.

In addition to these empirical findings, the paper shows how Bayesian hierarchical analysis—

a method that is increasingly common in other disciplines, but still little used in strategy—

can provide new insights to core strategic questions. The hierarchical model allows obtaining

full statistical power across industries, while not having to make the assumption that com-

petitive dynamics are the same across industries. Moreover, the Bayesian framework allows

making inferences at different levels of the hierarchy: both at the aggregate level and at

the level of the industry or even of the individual company. The Bayesian inference also

provides more flexibility in, for instance, the estimation of non-stationary models, with

autoregressive components above unity.

Moreover, the theoretical model provides a different perspective on the relation between

managerial agency and random variation. Commonly, these two are viewed as mutually

exclusive: the random variation is the null hypothesis, and managerial agency is the al-
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ternative explanation if the null hypothesis is rejected (e.g., Denrell et al., 2014). Instead,

in this paper, managerial agency can be endogenized in the stochastic model, through the

variation in higher order resources zt. In this view, the quality of managers is itself a distri-

bution that yields shocks to the stock of a firm’s higher order resources (wt in the model). In

other words, from the standpoint of the researcher, a particularly skilled managerial team

can be seen as a favorable draw from a distribution, providing the firm higher order re-

sources that allow it to obtain favorable operating resources generating profits at a fraction

of their economic costs. This view is perfectly consistent with the view from the standpoint

of the manager that she or he can influence the company (and the broader world) beyond

mere random variation.

The findings of this paper are also directly relevant for managers. For instance, the sig-

nificance of resource dynamics in shaping long-term profits, stipulates the importance for

managers to analyze their firms’ resource positions vis-à-vis competitors, and improving

them as possible. Moreover, the analysis suggests that these resource positions are hard to

infer from the short-term profit data that managers and investors often rely on. Also for

managers, the Bayesian approach to make inferences about probabilistic inferences about

individual company positions could be a useful tool to better separate short-term noise from

longer-term underlying resource positions.

Naturally, the study has several limitations, which could be addressed in future research.

First, this study is based on a single data source of accounting data for US firms; this could

be extended to other geographies as well as other types of data—in fact a Bayesian modeling

structure would be uniquely suitable to incorporate data from multiple data sources (e.g.,

accounting and stock market data) in a single model. Another improvement would be to

consider a broader class of models, for instance including interactions between operating

and higher order resources, the addition of non-linear terms, and models that would allow

for changing error term distributions over time—e.g., when a firm gets bigger it is very

plausible that its profitability shocks in absolute terms also get larger, and it would be
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helpful to incorporate that in the model. Finally, it would be interesting to further explore

the differences in resource dynamics resulting from business unit vs. corporate vs. industry

effects, and investigate their origins—for instance to explain the drivers of the industry

variation.

117



CONCLUSIONS

In this dissertation I examine, using formal modeling, how resource dynamics in compet-

itive markets shape long term profit patterns. Chapter 1 provides an introduction and

summarizes a key empirical regularity of long-term profit: it closely follows a distribution

generated by a geometric random walk, which also shapes the size distribution across firms.

This provides a motivation for studying long-term profit patterns using dynamic stochastic

processes.

Chapter 2 introduces a new measure of long-term firm performance: LIVA (long-term

investor value appropriation). This measure helps to address a disconnect between the

common theoretical assumption that managers optimize firm value, and the widespread

empirical practice of measuring performance using short-term ratios such as ROA (return

on assets). LIVA has four primary advantages over commonly used performance measures

such as TSR (total shareholder return) and ROA. First, LIVA increases if and only if firms

make NPV-positive investments, unlike for instance ROA and ROC (return on capital).

Second, LIVA accounts well for mergers, bankruptcies, and other major corporate events,

while even a measure such as total shareholder return above the cost of equity can be

misleading because it does not account well for the change in size of the firm. Third,

LIVA measures the size of economic impact, because it is an absolute measure (in monetary

amounts). Fourth and finally, LIVA can be decomposed into different sources, as illustrated

by the Best Buy versus Circuit City case study.

In chapter 3, I study how ex ante similar firms develop heterogeneous resource positions

that lead to persistent performance differences, even among direct competitors. The model

in this chapter shows that resource competition drives amplification of small differences

in resource positions into large performance differences. This finding provides a general

theoretical mechanism for the empirical regularity that most performance variations are

within industries, which is consistent with the fact that top LIVA performers in Table 3
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are distributed across a variety of industries.14 Moreover, the model predicts that sev-

eral industry-level resource characteristics, such as depreciation rate, scale economies, and

growth stage affect the extent to which variations in returns are driven by firm versus indus-

try effects. Empirical results from a Bayesian hierarchical analysis of stock market returns

indeed indicate clear differences in the firm-specific component of performance across in-

dustries, which are persistent over time and broadly consistent with the predictions of the

model.

In chapter 4, I introduce a formal model of how higher order resources affect profit per-

sistence. Higher order resources are resources that do not affect profits directly, but can

affect other resources that in turn affect profits over time. The model shows that higher

order resources lead to persistence not only in the level of profits, but also in their growth.

The derived stochastic time series structure of profits provides an empirical test for the

presence of higher order resources. Empirical estimation of the model using both classical

and Bayesian hierarchical methods on a 30-year panel of more than 2,400 US firms provides

support for the importance of higher order resources in shaping profit persistence.

A broader question that this dissertation addresses is what we gain from the formalization

of resource dynamics. One thing it does not address, is the tautology of the theory. In

fact, any good formal theory has to be a tautology (otherwise it would contain a contra-

diction). This is, for instance, also true for very successful theories in other fields such

as quantum mechanics in physics and utility theory in economics. Note that both these

theories—despite their widespread use in their respective disciplines—have very little em-

pirical content by themselves, because these theories are very general and the underlying

fundamental constructs (wave functions and utility functions, respectively) are not observ-

able. Only specific theories within these frameworks relate to observable constructs and can

be empirically tested, such as quantum electrodynamics or Cournot competition. This is

14Note that though tech firms are overrepresented in the list of top performers, they are also overrep-
resented in the list of bottom performers, illustrating Proposition 3 on page 68 that technology industries
should be expected to exhibit high firm-specific variance due to their high scale economies and large sunk
cost investments.
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the power of these formal frameworks: they allow developing theories to study more specific

phenomena, and specify the rules these more specific theories need to obey.

This is also the case for the formal framework presented in this dissertation: the equations

(1.2), (1.3), and (1.4) have little empirical content in themselves, but the specific models

developed in chapters 3 and 4 make clear empirical predictions, which are tested using

observed performance data. Moreover, the formal theories in these two chapters make

predictions that would have been hard if not impossible to derive with verbal theories. For

instance, the effect size predictions in chapter 3 of firm versus industry level heterogeneity

based on simulations using the characteristics of resource markets are virtually impossible to

derive without mathematical modeling. Similarly, the proposition in chapter 4 that higher

order resources lead to a second order autoregressive term in profitability data hinges on a

formal proof.

Thus, the formal framework allows specifying RBV-based theories with very precise defini-

tions, and clear empirical implications. The framework is quite general, and mainly specifies

that RBV-based theories need to be stochastic, and that its dynamics follow the fundamen-

tal laws of causality (this is essentially the content of equation (1.3)). At the same time,

the framework offers a specific stepwise program of how specific RBV-based formal theories

can be developed:

1. Specify the state space, i.e. define the elements of XXXt in terms of firms’ potential

resource bundles, as well as potential exogenous factors of relevance (such as the

industry profitability ak in chapter 3).

2. Define the relation to observables, such as the relations between resources on the

one hand, and profit and value on the other in equations (3.1) and (3.5).

3. Specify how the state influences managerial action, which in turn determines

the stochastic evolution of the state space. For instance, in chapter 3 managerial

action is defined by the investment level that optimizes firm value, while in chapter 4
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the level of higher order resources can be seen as the quality of managerial capabilities,

which in turn affects the change rate of operating resources.

4. Derive the stochastic dynamics of the observables, such as the firm and indus-

try level profits in chapter 3 and the time series structure of profits in 4.

5. Make inferences about the underlying resource dynamics based on empirical

data of the observables, such as the volatility data implying the importance of resource

competition in chapter 3 and the profit time series patterns implying the importance

of higher order resources in chapter 4.

Based on the above program, the models in this dissertation help shed light on the multi-

trillion dollar question why just a few firms are able to appropriate a large share of value,

as exemplified in Figure 1 and Table 9 Panel a. The following picture emerges. Any

small differences across firms in the resources they have access to, such as the quality

of a new technology or plant design, are amplified over time, because the firm with the

better resources has more incentives to invest in more rapid growth, leading to persistent

differences in performance and large differences in value. The presence of higher order

resource further increases these persistent differences. The resulting evolutionary process,

in which more profitable firms invest more and grow faster, leads to the log-normal size

distribution specified by Gibrat’s law, and ultimately to the observed heavily skewed LIVA

distribution as documented in Figure 1.

Of course, the models in this paper only provide a few small extra pieces to the puzzle of

performance heterogeneity. There are several potential extensions for future research, for

instance:

• The relationship between growth, profitability, and size could be further investigated

both theoretically and empirically, to better understand how exactly it shapes the

skewed distribution of long-term returns (i.e., LIVA) as documented in Figure 1.
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• The dynamic models in this dissertation can serve as a basis for developing stochas-

tic performance measures that, for instance, indicate the 95% interval of the “true”

underlying performance.

• The industry dynamics in the model in chapter 3 could be extended with more firms,

entry & exit, competition in multiple resource markets, and mergers & acquisitions.

• The ideas in chapters 3 and 4 could be integrated to study how investment competition

shapes the emergence of higher order resources.

• The model in chapter 3 currently relies on very strong rationality assumptions; it

would be interesting to alleviate these and have the investment policy instead be

determined through learning processes.

Hopefully, the models in this dissertation serve as a helpful starting point for future work

to investigate the origins of performance variations across firms, and exemplify the value of

mathematical modeling in strategy.
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APPENDIX

A.1. Algebraic derivations LIVA

In this appendix, we include the derivations of equations (2.2) and (2.3) from equation (2.1).

A.1.1. Equivalence of NPV and excess return definitions

Here we show the equivalence between the LIVA definition in equations (2.1) and (2.2) when

using enterprise value for the firm value Vt, using the following identities:

FCFt = divt + nsbbt + iNDt−1 −∆NDt

Vt = MCt +NDt

∆MCt = ∆sptMCt−1 − nsbbt

TSRt = ∆spt +
divt

MCt−1

r Vt = rlMCt + i NDt

The first equation states that all cash flows from operations must be paid out to investors

in some way, through dividends (div), share buy-backs net of share repurchases (nsbb),

interest (the rate i times net debt ND), or change in net debt (i.e. re-paying debt or

putting cash in the bank net of issuing debt). The second equation defines enterprise value:

the market capitalization MC plus the net debt ND. The third describes that changes in

market capitalization are either due to changes in share price (relative change ∆sp) or

changes in shares outstanding. The fourth is the defining equation of total shareholder

return TSR: changes in share price plus dividend yield. The final equation is the defining

equation of cost of capital: it is the weighted average of the cost of capital for shareholders

(rl) and debt holders (i). Because of this identity, the unleveraged cost of capital r is also

sometimes called the weighted average cost of capital (WACC). Using these identities, we
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have:

LIV A = VT − V0(1 + r)T +
T∑
t=1

FCFt
(1 + r)t−T

=
T∑
t=1

Vt − (1 + r)Vt−1

(1 + r)t−T
+

T∑
t=1

FCFt
(1 + r)t−T

=
T∑
t=1

FCFt + ∆Vt − r∆Vt−1

(1 + r)t−T

=
T∑
t=1

ERtMCt−1

(1 + r)t−T

In the above, the second equation follows from the general identity for a geometric series,

and the final equation follows from substitution of the earlier identities:

FCFt + ∆Vt − r Vt−1 = (divt + nsbbt + i NDt−1 −∆NDt)

+ (∆sptMCt−1 − nsbbt + ∆NDt)− (rlMCt + i NDt)

= divt + ∆sptMCt−1 − rlMCt−1

=

(
divt

MCt−1
+ ∆spt − rl

)
MCt−1

= (TSRt − rl)MCt−1

= ERtMCt−1

A.1.2. Relation with economic profit (EP)

For the derivation of equation (2.3), we use the following accounting identities:

FCFt = Revt −OpExt − CapExt

∆BVt = CapExt −Dt

NOPATt = Revt −OpExt −Dt
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The first identity states that the free cash flow to investors is the same as the free cash

flow from operations: revenues, minus operating expenditure (including taxes) and capital

expenditure. The second states that the change in book value is equal to the capital

expenditure minus depreciation (including amortization). The final identity states that the

net operating profit after tax is revenue minus operating expenditure (including taxes) and

depreciation (including amortization). Then using enterprise value from the definition in

equation (2.1), we have:

LIV A = EVT − EV0(1 + r)T +

T∑
t=1

FCFt
(1 + r)t−T

= [EVT −BVT ]− [EV0 −BV0](1 + r)T +

T∑
t=1

FCFt + ∆BVt − r BVt−1

(1 + r)t−T

= [EVT −BVT ]− [EV0 −BV0](1 + r)T +

T∑
t=1

EPt
(1 + r)t−T

The second equation follows again from the geometric series, and the final from substitutions

of the above accounting identities and the definition of economic profit in equation (2.3).

A.2. Economic product market model

In this appendix I derive the profit function in equation (3.1) directly from a set of consumer

preferences and production functions.

Assume a market with n consumers divided over N segments of equal size. Each segment

consists of ∆q = Q
N homogeneous consumers that have a willingness to pay of wpk for a

single unit of product from either firm (and 0 for any further units), which depends on the

industry state k (changes in the industry state can thus be interpreted as demand shocks).

In order to be able to produce for a certain segment, a firm needs to have acquired the ∆q

resources that are specific for that segment (e.g., established customer relations). For the

segments for which the firm has acquired the required resources it can produce A(L+βL2)
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units of product for a labor1 input of L; the parameter β indicates any potential increased

returns to scale (due to asset mass efficiencies) and is assumed to be small (0 ≤ β � 1
L).

Thus the overall production function for a firm which has acquired qi resources is:

q(p) = max
(
qi, A(L+ βL2)

)
(A.1)

Now, given two firms engaging in Bertrand competition in each segment, a firm will only

invest in obtaining the resources required for a segment in which the competitor does not

yet have the resources, because in Bertrand competition any marginal profits would be

competed away, while there are strictly positive investments needed to acquire the required

resources, per equation (3.2).

Finally, assume a cost of labor cL such that the firm is always able to make a profit (wpk >
cL
A

for all k). Then in order to maximize its profit, each firm will set a price pk = wpk

and produce ∆q units in each segment for which it has the required resources. Thus, in

total it will produce qi goods. The labor input required for this production are such that

qi = A(L+ βL2). Using the quadratic formula to solve this equation leads to total cost of:

c(qi) = cLL = cL
−1 +

√
1 + 4βqi

A

2β
≈ qi
A
− βq2

i

A2

The approximation uses the fact that β is small, applied to a second order Taylor expansion

of the square root (
√

1 + x ≈ 1 + 1
2x−

1
8x

2). Then the profit function becomes:

π(qi, wpk) = wpkqi − cL
(
qi
A
− βq2

i

A2

)

This can be rewritten to obtain equation (3.1) by substituting ak := wpk − cL
A (which is

positive by assumption) and b := βcL
A2 .

1Of course, labor can be substituted for any other type of input in this model.
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A.3. Markov perfect equilibrium derivation

In this appendix I will derive the equilibrium conditions for the model derived in section

3.2.2. The derivation closely follows Besanko and Doraszelski (2004, pp. 29-30). See Do-

raszelski and Pakes (2007) for a more extensive and general treatment for computing equi-

libria of dynamic games. Technicalities about boundary solutions, second order conditions,

and existence proofs are treated in these references and are omitted here.

Specifically, assume that the profit function is given by equation (3.1), and the state

transition probabilities for qi as a function of the investment x for firm 1 and the state

s = (qi, qj , ak):

θ+1(x; s) = fs(x)∆t · (1− δqi∆t)

θ0(x; s) = fs(x)∆t · δqi∆t+ (1− fs(x)∆t) · (1− δqi∆t)

θ−1(x; s) = (1− fs(x)∆t) · δqi∆t

The functional form of fs(x) is specified in equations (3.2), (3.3), and (3.4).

The function W`(s = qi, qj , ak) in the Bellman equation (3.5) is the expected value of the

resource state s = (qi+`, qj , ak), conditional on a given policy function x2(s) for firm 2:

W`(s = qi, qj , ak) =
∑

m,r=+1,0,−1

V (qi+`, qj+m, ak+r) θm(x2(s); s) Φr(s)

The first order condition for equation (3.5) is that the partial derivative of the value function

with respect to x equals 0:

∂V (x; s)

∂x
= −∆t+ β

∑
`=+1,0,−1

W`(s)
∂θ`(x; s)

∂x

= −∆t+ β f ′s(x)∆t [(1− δqi∆t)(W+1(s)−W0(s)) + δqi∆t(W0(s)−W−1(s))]
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Then using the derivative of equation (3.2), f ′s(x) = csg2
s

(csgs+x)2 , this leads to solving the

following equation (abbreviating the constant term in square brackets above with [. . .]):

(csgs + x)2 = βcsg
2
s [. . .]

This is a quadratic equation in x, with solution:

xo(s) = −csgs +
√
βcsg2

s [(1− δqi∆t)(W+1(s)−W0(s)) + δqi∆t(W0(s)−W−1(s))] (A.2)

All models are calculated on a discrete state space (qi, qj = 0, 1, . . . , Q and ak = a1, . . . , aK),

with grid spacing parameters Q = 10, K = 5, ∆t = 0.2. Moreover g0 = a3 = 1, and the

values a1, . . . , aK are determined as a geometric series based on the ratio aK/a1 for the given

simulation. E.g., for a5/a1 = 4, the values are ak = (0.5, 0.7, 1, 1.4, 2.0). I check robustness

against varying any of these parameters, which for none of them materially affects the

results.

The equilibrium is then calculated using an iterative procedure, in each step providing better

estimates for x(s) and V (s), both of which can be represented as vectors, because they are

functions on the discrete state space. First, the updated estimate x̃(s) is calculated using

equation (A.2), assuming the initial estimates V (s) and x(s), which is used to calculate

W`(s), assuming the policy function for player 2 is x2(qi, qj , ak) = x(qj , qi, ak). Then,

assuming the new estimate for the policy function x̃(s), the updated value function Ṽ (s)

is calculated using the expression in square brackets in the Bellman equation (3.5). This

procedure is repeated until the changes in updating V (s) and x(s) fall below a specified

value, indicating conversion to an equilibrium. Computations have been performed in R.
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A.4. Firm and industry volatilities in model

Let the excess returns of firm n = 1, 2 be:

Yn = Xind +Xn (A.3)

With Xind, X1 and X2 independently and normally distributed, with mean 0 and standard

deviations σind and σfirm respectively. Then the covariance between the firms’ returns is:

Cov(Y1, Y2) = Cov(Xind +X1, Xind +X2)

= Cov(Xind, Xind)

= (σind)2

So the total volatility and the correlation between the firms’ returns are:

σ2 = Var(Y1) = (σind)2 + (σfirm)2

ρ = Cov(Y1, Y2)/Var(Y1) =
(σind)2

(σind)2 + (σfirm)2

Vice versa:

σind = σ
√
ρ

σfirm = σ
√

1− ρ

Note that in the case of ρ < 0 the model specified in equation (A.3) is not meaningful: if

there is a common industry effect, the correlations between the returns must be positive.

A.5. Proof of ARMA transformation

I first derive two lemmas. Using those, I then prove proposition 5.
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Lemma 1. Let xt, yt, ut and vt be stochastic time series, such that:

yt = xt + ut (A.4)

xt = λxt−1 + vt, (A.5)

with ut and vt each i.i.d. error terms that are also independent of each other. Moreover,

assume initial conditions such that yt is stationary. Then yt is second-order equivalent to

an ARMA(1,1) process, with AR(1) coefficient λ.

Proof. The autocovariance structure of yt is:

γt : = Cov(yt+s, ys)

= Cov(yt, y0)

= Cov(xt + ut, x0 + u0)

= Cov(xt, x0)

= Cov(λxt−1 + vt, x0)

= λCov(xt−1, x0)

= λγt−1

The first step follows from the stationarity of yt, the second substitutes equation (A.4), the

third follows from the independence assumptions, the fourth substitutes equation (A.5),

the fifth follows again from the independence assumptions, and the final substitutes the

definition of γt. Moreover, γ0 = Cov(x0, x0) = σ2
x, with σ2

x denoting the variance of xt.

Combining these two results yields for t ∈ {0, 1, 2, . . . }:

γt = λtσ2
x

This autocovariance structure is the same as that of an ARMA(1,1) time series with AR(1)

parameter λ (Cowpertwait and Metcalfe, 2009, p. 129). The MA(1) parameter and variance

130



of the error term of the ARMA(1,1) model can be chosen such that they match the variances

of ut and vt (Harris, 1999, p. 158).�

Lemma 2. Let qt be an ARMA(1,1) time series with AR(1) parameter λ(1), i.e.

qt = λ(1)qt−1 + εt − κ1εt−1, (A.6)

for some i.i.d. error term εt and some MA(1) parameter κ1. Moreover, let yt have the same

ARMA(1,1) structure, with AR(1) parameter λ(2), but with the error term itself now being

an ARMA(1,1) time series:

yt = λ(2)yt−1 + qt − κ2qt−1 (A.7)

Then yt is an ARMA(2,2) process, with the reciprocal eigenvalues of the AR(2) character-

istic polynomial equal to λ(1) and λ(2).

Proof. Let L be the lag operator, which shifts a time series back by one unit (e.g., Lyt =

yt−1). After rearranging terms, equation (A.7) then becomes:

(1− λ(2)L)yt = (1− κ2L)qt.

Similarly, equation (A.6) can be rewritten as:

qt =
1− κ1L

1− λ(1)L
εt.

Substituting this expression for qt into the one before yields, after rearranging terms:

(1− λ(1)L)(1− λ(2)L)yt = (1− κ1L)(1− κ2L)εt.

This manifestly defines yt as an ARMA(2,2) time series (Hamilton, 1994, p. 59), with AR(2)

eigenvalues (λ(1))−1 and (λ(2))−1.�
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Proof of proposition 5. Define the following time series:

qt := zt + vt.

This equation and (4.4) together are in the form specified in lemma 1, and thus qt is

equivalent to an ARMA(1,1) time series with AR(1) parameter λ(2).

Moreover, equations (4.1) and (4.3) yield:

yt = xt + ut

xt = λ(1)xt−1 + qt.

These equations again are in the form specified in lemma 1, but with qt itself now an

ARMA(1,1) time series. Thus, by lemma 2, yt is second-order equivalent to an ARMA(2,2)

process with reciprocal eigenvalues λ(1) and λ(2). Specifically, the characteristic polynomial

of the autoregressive part can be written as:

∀s : 1− φ1s− φ2s
2 = (1− λ(1)s)(1− λ(2)s). (A.8)

Equations (4.6) and (4.7) follow immediately from the requirement that the characteristic

polynomial holds for all s. �
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A.6. Bayesian ARMA model specification

Likelihood (ARMA(2,2), cf. Stan Development Team (2016, sec. 7.4)):

φ1,j := λ
(1)
j + λ

(2)
j

φ2,j := −λ(1)
j λ

(2)
j

εij,t=1 := yij,t=1

εij,t=2 := yij,t=2 − φ1,jyij,t=1 − θ1,jεij,t=1

εij,t≥3 := yijt − φ1,jyij,t−1 − φ2,jyij,t−2 − θ1,jεij,t−1 − θ2,jεij,t−2

εij,t≥3 ∼ N (0, σi)

Hierarchical priors:

λ
(k)
j ∼ N (µλ,k, σλ,k)

θk,j ∼ N (µθ,k, σθ,k)

Hyperprior (uninformative):

p
(
µλ, µθ, σλ, σθ, σ

2
i

)
∝
∏
i

1

σ2
i

Using Bayes’ formula, the posterior distribution p(ϑ|yijt) is the product of the likelihood and

the prior distributions, where ϑ denotes the vector of all stochastic parameters. Inference

in this paper is based on random draws from this posterior distribution.

A.7. Further robustness tests ARMA estimation

In this section I present two further robustness tests: alternative model specifications and

testing the models on synthetic data. Table 24 shows five alternative specifications, each

changing one aspect of the main specification in table 23: using the 4-digit SIC industry
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Table 24: Alternative specifications for ARMA(2,2) model.

Main SIC EBITDA $150M+ ≥ 8 yrs Vs. total RoA

Mean λ(1) 0.954 0.923 0.962 0.952 0.952 0.980 0.943
(0.009) (0.009) (0.007) (0.008) (0.008) (0.008) (0.009)

Mean λ(2) 0.528 0.365 0.545 0.525 0.525 0.611 0.568
(0.031) (0.046) (0.030) (0.034) (0.032) (0.027) (0.031)

S.d. λ(1) 0.048 0.049 0.042 0.047 0.049 0.045 0.034
(0.007) (0.007) (0.006) (0.007) (0.007) (0.007) (0.005)

S.d. λ(2) 0.122 0.143 0.100 0.121 0.120 0.106 0.090
(0.016) (0.017) (0.013) (0.016) (0.017) (0.015) (0.012)

Note. Posterior mean with standard deviation in brackets for alternative specifications, each changing

one aspect of the model presented in table 23. See the text for details.

classification system instead of GICS; using EBITDA instead of EBIT to operationalize

profits; looking only at firms of at least 150M assets instead of 100M; including firms

with at least 8 consecutive years of data instead of 10; calculating excess profit vs. the

total average instead of an industry average; and using return on assets (RoA) compared

to the industry average as profit measure instead of excess profit y. The results across

these different specifications are broadly in line with the main specification in table 23; in

particular the mean of λ(2) remains (highly) significant across specifications.

Table 25 shows the results of running the model on two synthetic data sets: one data set

that is simulated from ARMA(2,2) parameters that are close to the inferred parameters

from the main specification in table 23, and one that is simulated from an ARMA(1,1)

parameter set, in which I have set the hierarchical means and standard deviations for the

eigenvalues of the AR(2) and MA(2) components to zero. The values in the table represent

the 95% posterior intervals to facilitate an assessment of whether the actual values used in

the simulation are indeed within that interval.

For the ARMA(2,2) generated data, the ARMA(2,2) model indeed finds values for the λ-

parameters that are well within the 95% interval. In this case the mis-specified ARMA(1,1)

model exhibits the same attenuation bias as was present in both the MLE and the Bayesian
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inference on the Compustat dataset.

For the ARMA(1,1) generated data, the correct ARMA(1,1) model again infers 95% inter-

vals that include the actual simulation values. The ARMA(2,2) model does too, but with

very wide intervals for the second order components, because ARMA models which have

redundant components in both the AR and MA parts are ill-identified.

The WAIC also predicts the right model for the ARMA(2,2) data, it is significantly lower

for the ARMA(2,2) model. It is also lowest when using the AMRA(1,1) data, but then

the difference between the WAIC estimates for both models is insignificant—16.8 with a

standard error of 19.8. These results should put further confidence in the finding that the

observed persistence data truly include higher order autoregressive components, and that

the findings are not artifacts from the inference techniques.
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