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Abstract Abstract 
In 2011, the National Institute on Aging and Alzheimer's Association created separate diagnostic 
recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer's 
disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and 
Alzheimer's Association to update and unify the 2011 guidelines. This unifying update is labeled a 
“research framework” because its intended use is for observational and interventional research, not 
routine clinical care. In the National Institute on Aging and Alzheimer's Association Research Framework, 
Alzheimer's disease (AD) is defined by its underlying pathologic processes that can be documented by 
postmortem examination or in vivo by biomarkers. The diagnosis is not based on the clinical 
consequences of the disease (i.e., symptoms/signs) in this research framework, which shifts the 
definition of AD in living people from a syndromal to a biological construct. The research framework 
focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are grouped into those of β 
amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This ATN classification system 
groups different biomarkers (imaging and biofluids) by the pathologic process each measures. The AT(N) 
system is flexible in that new biomarkers can be added to the three existing AT(N) groups, and new 
biomarker groups beyond AT(N) can be added when they become available. We focus on AD as a 
continuum, and cognitive staging may be accomplished using continuous measures. However, we also 
outline two different categorical cognitive schemes for staging the severity of cognitive impairment: a 
scheme using three traditional syndromal categories and a six-stage numeric scheme. It is important to 
stress that this framework seeks to create a common language with which investigators can generate 
and test hypotheses about the interactions among different pathologic processes (denoted by 
biomarkers) and cognitive symptoms. We appreciate the concern that this biomarker-based research 
framework has the potential to be misused. Therefore, we emphasize, first, it is premature and 
inappropriate to use this research framework in general medical practice. Second, this research 
framework should not be used to restrict alternative approaches to hypothesis testing that do not use 
biomarkers. There will be situations where biomarkers are not available or requiring them would be 
counterproductive to the specific research goals (discussed in more detail later in the document). Thus, 
biomarker-based research should not be considered a template for all research into age-related cognitive 
impairment and dementia; rather, it should be applied when it is fit for the purpose of the specific research 
goals of a study. Importantly, this framework should be examined in diverse populations. Although it is 
possible that β-amyloid plaques and neurofibrillary tau deposits are not causal in AD pathogenesis, it is 
these abnormal protein deposits that define AD as a unique neurodegenerative diseaseamong different 
disorders that can lead to dementia. We envision that defining AD as a biological construct will enable a 
more accurate characterization and understanding of the sequence of events that lead to cognitive 
impairment that is associated with AD, as well as the multifactorial etiology of dementia. This approach 
also will enable a more precise approach to interventional trials where specific pathways can be targeted 
in the disease process and in the appropriate people. 
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Abstract In 2011, the National Institute on Aging and Alzheimer’s Association created separate diagnostic
recommendations for the preclinical, mild cognitive impairment, and dementia stages of Alzheimer’s
disease. Scientific progress in the interim led to an initiative by the National Institute on Aging and
Alzheimer’s Association to update and unify the 2011 guidelines. This unifying update is labeled a
“research framework” because its intended use is for observational and interventional research, not
routine clinical care. In the National Institute on Aging and Alzheimer’s Association Research
Framework, Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can
be documented by postmortem examination or in vivo by biomarkers. The diagnosis is not based
on the clinical consequences of the disease (i.e., symptoms/signs) in this research framework, which
shifts the definition of AD in living people from a syndromal to a biological construct. The research
framework focuses on the diagnosis of AD with biomarkers in living persons. Biomarkers are
grouped into those of b amyloid deposition, pathologic tau, and neurodegeneration [AT(N)]. This
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ATN classification system groups different biomarkers (imaging and biofluids) by the pathologic pro-
cess each measures. The AT(N) system is flexible in that new biomarkers can be added to the three
existing AT(N) groups, and new biomarker groups beyond AT(N) can be added when they become
available. We focus on AD as a continuum, and cognitive staging may be accomplished using contin-
uous measures. However, we also outline two different categorical cognitive schemes for staging the
severity of cognitive impairment: a scheme using three traditional syndromal categories and a six-
stage numeric scheme. It is important to stress that this framework seeks to create a common language
with which investigators can generate and test hypotheses about the interactions among different
pathologic processes (denoted by biomarkers) and cognitive symptoms. We appreciate the concern
that this biomarker-based research framework has the potential to be misused. Therefore, we empha-
size, first, it is premature and inappropriate to use this research framework in general medical prac-
tice. Second, this research framework should not be used to restrict alternative approaches to
hypothesis testing that do not use biomarkers. Therewill be situations where biomarkers are not avail-
able or requiring them would be counterproductive to the specific research goals (discussed in more
detail later in the document). Thus, biomarker-based research should not be considered a template for
all research into age-related cognitive impairment and dementia; rather, it should be applied when it is
fit for the purpose of the specific research goals of a study. Importantly, this framework should be
examined in diverse populations. Although it is possible that b-amyloid plaques and neurofibrillary
tau deposits are not causal in AD pathogenesis, it is these abnormal protein deposits that define AD
as a unique neurodegenerative disease among different disorders that can lead to dementia. We
envision that defining AD as a biological construct will enable a more accurate characterization
and understanding of the sequence of events that lead to cognitive impairment that is associated
with AD, as well as the multifactorial etiology of dementia. This approach also will enable a more
precise approach to interventional trials where specific pathways can be targeted in the disease pro-
cess and in the appropriate people.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Preamble

Alzheimer’s disease (AD) was initially defined as a
clinical-pathologic entity, which was diagnosed definitely
at autopsy and in life as possible or probable AD [1]. Over
time, however, the distinction between neuropathologic
change (which implies change from normal) and clinical
symptoms became blurred. Consequently, the term AD is
often used to describe two very different entities: prototypi-
cal clinical syndromes without neuropathologic verification
and AD neuropathologic changes. However, a syndrome is
not an etiology but rather a clinical consequence of one or
more diseases. A biological rather than a syndromal defini-
tion of AD is a logical step toward greater understanding of
the mechanisms underlying its clinical expression. Disease-
modifying interventions must engage biologically defined
targets, and the dementia syndrome does not denote a specific
biological target(s). Furthermore, in order to discover inter-
ventions that prevent or delay the initial onset of symptoms
a biologically based definition of the disease that includes
the preclinical phase is needed. Thus, a framework suitable
for interventional trials should be founded on a biologically
based definition of AD; and, it is only rational that the frame-
work is harmonized across interventional and observational
research.

Neuropathologic examination is the standard for defining
AD—plaques and tangles define AD as a unique disease
among several that can lead to dementia. Validated, widely
used biomarkers exist that are proxies for AD neuropatho-
logic changes. We propose a research framework grounded
on a biomarker-based definition of AD in living people. In
many situations, however, biomarker characterization of
research participants is not possible. Research without bio-
markers has and will continue to constitute a vital part of
the effort to evaluate the dementia and mild cognitive
impairment (MCI) syndromes. Also, this framework does
not limit but rather enhances research into broadly defined
dementia by providing a biologically based definition of
one cause of dementia, AD.

The AD field is fortunate that biomarkers of important
categories of neuropathologic change, that is, b-amyloid
(Ab) deposition, pathologic tau, and neurodegeneration,
have been and are being developed. This framework is
focused on characterizing research participants with these
biomarkers. AD biomarker characterization will identify
some research participants who have no AD biomarker ab-
normalities and some who likely have diseases other than
AD. This research framework does not ignore these individ-
uals but rather provides a system for characterizing them
alongside individuals who are in the Alzheimer’s continuum.
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2. Background: Rationale for updating 2011 NIA-AA
guidelines for AD

In 2011, the National Institute on Aging and Alzheimer’s
Association (NIA-AA) created separate sets of diagnostic
guidelines for the symptomatic or “clinical” stages of AD,
that is, MCI and dementia [2,3]. Recommendations were
also created for a stage of AD in individuals without overt
symptoms, called “preclinical AD” [4]. The criteria for the
symptomatic stages were intended, in part, to aid routine
clinical diagnostic decision-making and to provide re-
searchers a common framework to define these clinical
stages [2,3,5]. The recommendations for preclinical AD
were not designed for routine clinical care but rather to
provide researchers a common language to identify and
stage research participants who were not cognitively
impaired but had abnormal AD biomarkers [4,5]. The
framework described in this document also has this latter
intention—to provide researchers a common language with
which to communicate observations.

Since the publication of the 2011 guidelines, data have
continued to accumulate indicating that the cognitive
decline in AD occurs continuously over a long period [6–
8], and that progression of biomarker measures is also a
continuous process that begins before symptoms [9–14].
Thus, the disease is now regarded as a continuum rather
than three distinct clinically defined entities [15]. This
concept was recognized but was not formalized in the
2011 NIA-AA guidelines [4,5].

A common theme in the 2011 recommendations was the
use of imaging and cerebrospinal fluid (CSF) biomarkers. In
symptomatic individuals, biomarkers were used to refine
confidence that AD pathologic changes contributed to a per-
son’s cognitive impairments [2,3,5]. In the case of
preclinical AD, biomarkers were used to define the
construct [4]. In the 2011 recommendations, amyloid bio-
markers were placed at the apex of the biomarker hierarchy
preclinically [4], whereas in contrast, all AD biomarkers,
including those reflecting neurodegeneration, were placed
on equal footing in the MCI and dementia guidelines [2,3].
Although this discrepancy was noted at the time [5], there
is now a growing consensus that application of biomarkers
should be harmonized conceptually across the disease con-
tinuum and that biomarkers of neurodegeneration are not
equivalent to those reflecting amyloid and pathologic tau
accumulation [16].

A major motivation for updating the 2011 guidelines has
been the evolution in thinking about biomarkers. Studies
published since 2011 have reinforced the idea that certain
imaging and CSF biomarkers are valid proxies for neuro-
pathologic changes of AD. Imaging-to-autopsy comparison
studies have established that amyloid positron emission
tomography (PET) is a valid in vivo surrogate for Ab de-
posits (in brain parenchyma/vessel walls) [17–24]. It is
also now widely accepted that CSF Ab42 (or the Ab42/
Ab40 ratio) is a valid indicator of the abnormal pathologic

state associated with cerebral Ab [25]. An additional devel-
opment has been the introduction of PET ligands for path-
ologic tau [26–28]. By contrast, additional research has
highlighted the fact that measures of neurodegeneration
or neuronal injury that are commonly used in AD
research—magnetic resonance imaging (MRI), fluoro-
deoxyglucose (FDG) PET, and CSF total tau (T-tau)—are
not specific for AD but rather are nonspecific indicators
of damage that may derive from a variety of etiologies,
for example, cerebrovascular injury [29].

Based on this background, NIA-AA leadership commis-
sioned a work group whose charge was to examine the
2011 guidelines in the context of current scientific knowl-
edge and if appropriate update them. Members of the work
group were selected by NIA-AA leadership with the goals
of providing a range of scientific expertise, broad represen-
tation of different stakeholders and professional organiza-
tions involved with AD research, and gender and
geographic diversity (including both within the United
States and international scientists).

3. Guiding principles for updating NIA-AA guidelines
for AD

The charge to the 2018 NIA-AAwork group was to unify
and update the 2011 recommendations in a manner that is
consistent with current understanding of the AD continuum.
The work group approached this mandate with several guid-
ing principles.

First, the overall objective was to create a scheme for
defining and staging the disease across its entire spectrum.
Experience with the 2011 NIA-AA recommendations has
shown that a common framework for defining and staging
the disease facilitates standardized reporting of research
findings across the field [30–45].

Second, we determined that these recommendations
should be cast as a “research framework,” not as diagnostic
criteria or guidelines. Unlike the 2011 NIA-AA criteria for
MCI or AD dementia based on clinical criteria (i.e., without
biomarkers) [2,3], the 2018 research framework is not
intended for general clinical practice. It is called a
“research framework” because it needs to be thoroughly
examined and modified if needed before being adopted
into general clinical practice. There are two categories of
studies that will achieve this ultimate goal: longitudinal
cohort studies and randomized placebo controlled trials.
Cohort studies, particularly community- and population-
based cohorts, will examine the extent to which temporal re-
lationships and patterns of signs, symptoms, and biomarkers
expected by this framework align with what is observed.
These results will support convergent and divergent validity.
Trials showing that an interventionmodifies both biomarkers
and signs and symptoms will establish criterion validity (i.e.,
a disease-modifying effect). Other areas of medicine have
used this approach to define pathologic processes using bio-
markers, for example, bone mineral density, hypertension,

C.R. Jack Jr. et al. / Alzheimer’s & Dementia 14 (2018) 535-562 537



hyperlipidemia, and diabetes are defined by biomarkers. In-
terventions modulating these biomarkers have been shown to
reduce the likelihood of developing fractures andmyocardial
and cerebral infarctions [46,47].

Third, the committee recognized the research framework
must function in two major contexts—observational cohort
studies and interventional trials.

The committee took a stepwise approach to creating the
2018 research framework by posing a series of questions
where each incremental step built on earlier conclusions.

4. The term “Alzheimer’s disease” refers to an aggregate
of neuropathologic changes and thus is defined in vivo by
biomarkers and by postmortem examination, not by
clinical symptoms

We approached the definition of AD with the distinction
between a syndrome and a disease in mind. Some will argue
that a specific syndrome, that is, a multidomain amnestic de-
mentia (after other potential etiologies have been excluded),
should define AD in living people. Our position, however, is
that dementia is not a “disease” but rather is a syndrome
composed of signs and symptoms that can be caused by mul-
tiple diseases, one of which is AD. As we elaborate in the
following paragraph, there are two major problems with us-
ing a syndrome to define AD; it is neither sensitive nor spe-
cific for the neuropathologic changes that define the disease,
and it cannot identify individuals who have biological evi-
dence of the disease but do not (yet) manifest signs or symp-
toms [48,49].

It is now well established that the prototypical multido-
main amnestic dementia phenotype historically used to
define probable AD [1] does not “rule in” AD pathologic
change (which implies change from normal) at autopsy
[50–52] and the absence of the syndrome does not “rule
out” AD pathologic change. From 10% to 30% of
individuals clinically diagnosed as AD dementia by
experts do not display AD neuropathologic changes at
autopsy [50], and a similar proportion has normal amyloid
PET or CSF Ab42 studies [53–62]. Thus, the multidomain
amnestic dementia phenotype is not specific; it can be the
product of other diseases as well as AD [51]. Nonamnestic
clinical presentations, that is, language, visuospatial, and ex-
ecutive disorders, may also be due to AD [63–66]. In
addition, AD neuropathologic changes are often present
without signs or symptoms, especially in older persons.
Thirty to forty percent of cognitively unimpaired (CU)
elderly persons have AD neuropathologic changes at
autopsy [67–69], and a similar proportion has abnormal
amyloid biomarkers [33,53–55,60,70–73]. The fact that an
amnestic multidomain dementia is neither sensitive nor
specific for AD neuropathologic change suggests that
cognitive symptoms are not an ideal way to define AD.

The traditional approach to incorporating biomarkers
into models of AD began with patients’ clinical symptoms,
which appear relatively late in the disease, and worked

backward to relate symptoms to biomarker findings. The
committee recommends a different approach where the
neuropathologic changes detected by biomarkers define
the disease. Defining AD by biomarkers indicative of
neuropathologic change independent from clinical symp-
toms represents a profound shift in thinking. For many
years, AD was conceived as a clinical-pathological
construct [1]; it was assumed that if an individual had
typical amnestic multidomain symptoms, they would
have AD neuropathologic changes at autopsy and if symp-
toms were absent, they would not have AD at autopsy.
Symptoms/signs defined the presence of the disease in
living persons, and therefore, the concepts of symptoms
and disease became interchangeable. AD later became a
clinical-biomarker construct with the International Work
Group (IWG) [64,74,75] and 2011 NIA-AA guidelines
where biomarkers were used to support a diagnosis of
AD in symptomatic individuals, but the definition of AD
was not divorced from clinical symptoms (with the excep-
tions of the 2011 NIA-AA recommendations on preclinical
AD and IWG criteria in autosomal dominant mutation car-
riers, and NIA-AA neuropathologic guidelines).

5. AD biomarkers

Various imaging and CSF biomarkers are widely used in
AD and brain aging research, and an organized approach is
needed for a generalizable research framework. The com-
mittee addressed this by following the recommendations
from a recent position paper that outlined an unbiased
descriptive classification scheme for biomarkers used in
AD and brain aging research [16]. The scheme [which is
labeled AT(N)] recognizes three general groups of bio-
markers based on the nature of the pathologic process that
each measures (Table 1) [16]. See section 9.4 for explanation
of (N) notation. Biomarkers of Ab plaques (labeled “A”) are
cortical amyloid PET ligand binding [76,77] or low CSF
Ab42 [78–80]. Biomarkers of fibrillar tau (labeled “T”) are
elevated CSF phosphorylated tau (P-tau) and cortical tau
PET ligand binding [79,81–83]. Biomarkers of
neurodegeneration or neuronal injury [labeled “(N)”] are

Table 1

AT(N) biomarker grouping

A: Aggregated Ab or associated pathologic state

CSF Ab42, or Ab42/Ab40 ratio
Amyloid PET

T: Aggregated tau (neurofibrillary tangles) or associated pathologic state

CSF phosphorylated tau

Tau PET

(N): Neurodegeneration or neuronal injury

Anatomic MRI

FDG PET

CSF total tau

Abbreviations: Ab, b amyloid; CSF, cerebrospinal fluid.

NOTE. See section 9.4 for explanation of (N) notation.

C.R. Jack Jr. et al. / Alzheimer’s & Dementia 14 (2018) 535-562538



CSF T-tau [84], FDG PET hypometabolism, and atrophy on
MRI [85–91].

A limitation of the 2011 NIA-AA recommendations was
that biomarkers were grouped into just two categories—
amyloid and tau-related neurodegeneration. Tauopathy and
neurodegeneration were placed into the same biomarker
category. In persons with only AD, it is reasonable to assume
that neurodegeneration is closely associated with pathologic
tau. However, it is increasingly recognized that neurodegen-
eration/injury, even in classic AD brain regions, also occurs
in non-AD conditions. This is particularly so in elderly indi-
viduals where comorbidities are common [92]. AT(N) clas-
sification provides a solution to this problem, which is to
separate biomarkers that are specific for pathologic tau
from those that are nonspecific measures of neurodegenera-
tion/neuronal injury.

The AT(N) system was designed with both a CSF and an
imaging biomarker in each of the three biomarker groups
(Table 1) [16]. Thus, complete AT(N) biomarker character-
ization of research participants is possible using either imag-
ing or CSF biomarkers alone. However, some research
groups may prefer a mixture of imaging and CSF biomarkers
for AT(N) characterization. For example, when lumbar
puncture and MRI are accessible but PET is not, investiga-
tors may choose to use CSF Ab42 and P-tau as the A and T
biomarkers and MRI as the (N) biomarker.

6. Definition of AD

Once the committee agreed that AD should be defined as
a biologic construct that is identified by biomarkers in living
people, the next logical question was “what biomarker
signature or profile(s) defines AD?” The committee agreed
that only biomarkers that are specific for hallmark AD pro-
teinopathies (i.e., Ab and pathologic tau) should be consid-
ered as potential biomarker definitions of the disease.
Different possible biomarker profiles were considered.

Numerous studies have shown that CU individuals with
abnormal amyloid biomarkers have more rapid progression
of atrophy, hypometabolism, and clinical/cognitive decline
than individuals without biomarker evidence of Ab deposi-
tion [13,33,80,93–99] The proportion of amyloid PET–
positive clinically normal individuals by age nearly perfectly
parallels the (increasing) age-specific prevalence of individ-
uals clinically diagnosed as AD dementia 15–20 years later
[53]. The first biomarkers to become abnormal in carriers of
deterministic AD mutations are those of Ab [9–11,14].
These human data and animal model data [100] suggest a
causal upstream role for Ab in the pathogenesis of AD;
and although b-amyloidosis alone is insufficient to cause
cognitive deterioration directly, it may be sufficient to cause
downstream pathologic changes (i.e., tauopathy and neuro-
degeneration) that ultimately lead to cognitive deterioration.
These findings are supported by clinicopathologic studies as
well [101,102]. Consequently, a widely held view is that
amyloid biomarkers represent the earliest evidence of AD

neuropathologic change currently detectable in living
persons [9,11,72,103,104]. This suggests that abnormal b-
amyloidosis biomarkers alone could serve as the defining
signature of AD. However, both Ab and paired helical
filament (PHF) tau deposits are required to fulfill
neuropathologic criteria for AD [105,106], which suggests
that evidence of abnormalities in both Ab and pathologic
tau biomarkers should be present to apply the label
“Alzheimer’s disease” in a living person (Fig. 1). With these
considerations in mind, the committee agreed on the
following definitions.

An individual with biomarker evidence of Ab deposition
alone (abnormal amyloid PET scan or low CSF Ab42 or
Ab42/Ab40 ratio) with a normal pathologic tau biomarker
would be assigned the label “Alzheimer’s pathologic
change” (Table 2, Fig. 2, Text Box 1). The term “Alzheimer’s
disease” would be applied if biomarker evidence of both Ab
and pathologic tau was present (Table 2, Fig. 1, Text Box 1).
Alzheimer’s pathologic change and AD are not regarded as
separate entities but earlier and later phases of the “Alz-
heimer’s continuum” (an umbrella term that includes
both). These definitions are applied independently from clin-
ical symptoms. They also meet our specifications to function
equally well across the disease spectrum: from early-
through late-life onset, from presymptomatic through

Fig. 1. Alzheimer’s disease with dementia. A 75-year-old woman with am-

nestic multidomain dementia. Participant in the Mayo Alzheimer’s Disease

Research Center. Abnormal amyloid PETwith Pittsburgh compound B (top

left), tau PET with flortaucipir (top right and bottom left), and atrophy on

MRI (bottom right). Biomarker profile A1T1(N)1.

C.R. Jack Jr. et al. / Alzheimer’s & Dementia 14 (2018) 535-562 539



symptomatic phases, and for typical and atypical clinical
presentations.

7. Staging

We next developed a system for staging severity. Our
guiding principles were the following. Two types of informa-
tion about the research participant are staged independently
from each other: (1) grading disease severity using bio-
markers and (2) grading the severity of cognitive impairment.
Measures used to define AD must be specific for the disease,
whereas measures used to stage severity need not be. Thus,
different measures have different roles (Text Box 2). Ab bio-
markers determine whether or not an individual is in the Alz-
heimer’s continuum. Pathologic tau biomarkers determine if
someone who is in the Alzheimer’s continuum has AD
because both Ab and tau are required for a neuropathologic
diagnosis of the disease. Neurodegenerative/neuronal injury
biomarkers and cognitive symptoms, neither of which is spe-

cific for AD, are used only to stage severity not to define the
presence of the Alzheimer’s continuum.

8. Biomarker profiles and categories

In many research studies, it will be most appropriate to
treat biomarkers of amyloid, pathologic tau, and neurodegen-
eration/neuronal injury as continuousmeasures without using
normal/abnormal cut points. However, biomarkers used in
medicine often use a cut point denoting normal versus
abnormal values to support management decisions for an in-
dividual patient. The need for discrete categorization of
biomarker continua is also obvious for AD clinical trials,
where explicit cut points serve as inclusion/exclusion criteria.

The addition of a normal/abnormal cut point for each
AT(N) biomarker group results in eight different AT(N)
“biomarker profiles” (Table 2, Text Box 1):
A1T2(N)2, A1T1(N)1, etc. Based on the definitions
of Alzheimer’s pathologic change and AD outlined
earlier, the ATN biomarker system assigns every individ-
ual to one of three “biomarker categories” (Table 2, Text
Box 1): (1) individuals with normal AD biomarkers; (2)
those in the Alzheimer’s continuum (subdivided into Alz-
heimer’s pathologic change and AD); and (3) those with a
normal amyloid biomarker but with abnormal T or (N), or

Table 2

Biomarker profiles and categories

AT(N) profiles Biomarker category

A-T-(N)- Normal AD biomarkers

A+T-(N)- Alzheimer’s 
pathologic change

Alzheimer’s 
continuum

A+T+(N)- Alzheimer’s disease

A+T+(N)+ Alzheimer’s disease

A+T-(N)+ Alzheimer’s and 
concomitant suspected 
non Alzheimer’s 
pathologic change

A-T+(N)- Non-AD pathologic change

A-T-(N)+ Non-AD pathologic change

A-T+(N)+ Non-AD pathologic change

Abbreviation: AD, Alzheimer’s disease.

NOTE. See text for explanation of (N) notation.

NOTE. Binarizing the three AT(N) biomarker types leads to eight

different biomarker “profiles”. Every individual can be placed into one of

the three general biomarker “categories” based on biomarker profiles: those

with normal AD biomarkers (no color), those with non-AD pathologic

change (dark grey), and those who are in the Alzheimer’s continuum (light

grey). The term “Alzheimer’s continuum” is an umbrella term that denotes

either Alzheimer’s pathologic change or AD.

NOTE. If an individual has an abnormal amyloid biomarker study, but a

biomarker for tau is not available, then the individual is placed into the “Alz-

heimer’s continuum”. A missing biomarker group can be labeled with an

asterisk (*). For example, A1(N)1 without a T biomarker would be

A1T*(N)1.

Fig. 2. Preclinical Alzheimer’s pathologic change. A cognitively unim-

paired 67-year-old man. Participant in the Mayo Clinic Study of Aging.

Abnormal amyloid PET (Pittsburgh compound B, top row), no uptake on

tau PET (with flortaucipir, middle row), no atrophy on MRI (bottom row).

Biomarker profile A1T2(N)2.
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both. This latter biomarker profile implies evidence of
one or more neuropathologic processes other than AD
[35,40,107] and has been labeled “suspected non-
Alzheimer’s pathophysiology” (or SNAP) [38].

It is worthwhile emphasizing that, like the 2012 NIA-AA
classification system for AD neuropathic change [105,106],
AT(N) scoring of biomarkers is independent from clinical
symptoms.

Although the term “stage” is more familiar, we use the
term “biomarker profile” (Table 2) because the term “stage”
implies a sequence, that is, stage 1 always precedes stage 2,
etc. The AT(N) biomarker system does not imply a specific

order of events nor does it imply causality. It is a system for
grouping biomarkers and classifying research participants
on the basis of biomarker profiles. A2T2(N)2 represents
a state without evidence of pathologic change that is detect-
able by AT(N) biomarkers, whereas A1T1(N)1 represents
an advanced pathologic state. Staging can be accomplished
by combining information from each of the three biomarker
groups; the more biomarker groups that are abnormal, the
more advanced the pathologic stage. The rate of cognitive
decline is significantly greater for cognitively impaired
and CU individuals who have abnormalities in both an am-
yloid biomarker and a second biomarker type (which could

Text Box 1
Glossary

� Alzheimer disease (AD)—refers to Ab plaques and pathologic tau deposits, defined in vivo by abnormal biomarkers of
Ab and pathologic tau (both are required)

� Alzheimer’s pathologic change—early stage of Alzheimer’s continuum, defined in vivo by an abnormal Ab
biomarker with normal pathologic tau biomarker

� Alzheimer’s continuum—refers to individuals with biomarker designation of either AD or Alzheimer’s pathologic
change

� Alzheimer’s clinical syndrome—recommended terminology for clinically ascertained multi- (or single-) domain am-
nestic syndrome or a classic syndromal variant (i.e., what has historically been labeled “possible or probable AD”). It
applies to both mildly impaired and demented individuals. The term “Alzheimer’s disease” is reserved for situations
where neuropathologic or biomarker evidence of the disease (i.e., Ab plaques and pathologic tau deposits) is present

� Biomarker group—refers to three different pathologic processes of AD that a biomarker can measure: Ab (A), path-
ologic tau (T), and neurodegeneration/neuronal injury (N)

� Biomarker profile—binarizing each of the three biomarker groups into normal/abnormal (1/2) results in eight
possible biomarker profiles: A1T2(N)2, A1T1(N)2, etc.

� Biomarker category—biomarker profiles are grouped into three possible biomarker categories: normal AD bio-
markers, A2T2(N)2; Alzheimer’s continuum, any A1 combination; and non-Alzheimer’s pathologic change
(i.e., suspected non-Alzheimer’s pathophysiology or SNAP), A2T1(N)2, A2T2(N)1, or A2T1(N)1

� Cognitively unimpaired—cognitive performance in the nonimpaired range for that individual, defined as not mild
cognitive impairment or demented

� Neurobehavioral symptoms—symptoms attributable to mood or behavioral disorders, for example, anxiety, depres-
sion, and apathy

� Transitional cognitive decline—cognitive performance in the nonimpaired range but with a subjective complaint of
cognitive decline, or a subtle decline measured on longitudinal cognitive testing, or neurobehavioral symptoms, or
combinations of these.

Text Box 2
AT(N)(C) measures have different roles for definition and staging

Definition
A: Ab biomarkers determine whether or not an individual is in the Alzheimer’s continuum.
T: Pathologic tau biomarkers determine if someone who is in the Alzheimer’s continuum has Alzheimer’s disease.

Staging severity
(N): Neurodegenerative/neuronal injury biomarkers
(C): Cognitive symptoms

A and T indicate specific neuropathologic changes that define Alzheimer’s disease, whereas (N) and (C) are not specific to
Alzheimer’s disease and are therefore placed in parentheses.
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be CSF T-tau or P-tau, atrophy, or hypometabolism) in com-
parison to individuals who have neither or only one of these
biomarker abnormalities [30–35,39,40,42–45]. These data
firmly establish that more advanced disease defined by
biomarkers predicts greater likelihood of and more rapid
cognitive decline. Thus, a solid evidence base exists
proving that combinations of biomarker abnormalities are
useful for staging the Alzheimer’s continuum.

8.1. Alternatives to binary biomarker groups

Given that Alzheimer’s pathologic change and AD are
defined by biomarkers, a single cut point is needed in
many situations. However, as pointed out in the AT(N) posi-
tion paper [16], other options are possible. In many research
situations, biomarkers are best treated as continuous vari-
ables. For example, the risk of short-term cognitive decline
increases continuously with worsening (N) biomarkers,
and this may be true of T biomarkers as well [108,109].

A three-range approach might also be useful where the
three ranges are defined by two cut points, one lenient and
the other more conservative [16,110,111]. If these three
ranges were labeled—clearly normal (0), intermediate
range (1), and clearly abnormal (2)—then a two–cut point
biomarker profile might look like A2T1(N)0, etc. Desig-
nating an intermediate range using two cut points has
evolved in other diseases for clinical care, for example, pre-
hypertension (a stage now called “elevated”) and prediabetes
have proved to be useful constructs in medicine. Numeric
severity grading within different pathologic categories is
also analogous to the tumor, nodes, metastasis (TNM) sys-
tem used for staging all non–central nervous system solid tu-
mors [112,113]. Characteristics of the primary tumor (T) are
graded from 0–4; nodal (N) involvement from 0–3; and
distant metastases (M) are graded 0–1.

8.2. Personalized medicine

The AT(N) system moves AD research in the direction of
personalized medicine by coding pathologic change in three
categories for each research participant and allows for future
flexibility by adding other biomarkers as they are discovered
and validated. This level of granularity in biomarker classifi-
cation, combined with genetic and clinical information, will
presumably be useful in tailoring treatment to the individual
when appropriate specific treatments become available.

9. Characteristics and limitations of biomarkers

9.1. CSF versus imaging biomarkers

While we place imaging and CSF biomarkers into com-
mon groups, a fundamental difference between the two
should be recognized. CSF biomarkers are measures of the
concentrations of proteins in CSF from the lumbar sac that
reflect the rates of both production (protein expression or
release/secretion from neurons or other brain cells) and

clearance (degradation or removal) at a given point in time
[114,115]. Imaging measures, on the other hand, represent
the magnitude of the neuropathologic load or damage
accumulated over time. Low CSF Ab42 is therefore best
considered a biomarker of a pathologic state that is
associated with amyloid plaque formation and not a
measure of amyloid plaque load as amyloid PET is.
Similarly, CSF P-tau is best considered a biomarker of a
pathologic state that is associated with PHF tau
formation and not a measure of pathologic tau deposits as
tau PET is.

Discordances between imaging and CSF biomarkers may
occur [36,41,116–119]. In some situations, discordance in
normal/abnormal labels between an imaging and CSF
biomarker within a study is simply a product of how cut
points were established that can be rectified by adjusting
them. The continuous relationship between CSF Ab42 and
amyloid PET, however, is “L-shaped” rather than linear
[116,117,120]. This may be due to a temporal offset
between these two measures [121–123]. In the limited data
currently available, tau PET ligand binding is linearly
correlated with elevated CSF P-tau [82,83,115]; however,
the correlation is imperfect. This may be in part because
P-tau seems to plateau later in the disease [14] while the
tau PET signal continues to increase [124]. Given these ob-
servations, one might ask “how could a CSF and an imaging
measure be used as biomarkers of a common pathologic pro-
cess?” The answer lies in the chronic nature of AD, which
spans years to decades. Thus, an ongoing active pathologic
state, denoted by CSF, and the accumulation of neuropatho-
logic load, denoted by imaging, will be concordant over the
long term.

9.2. Tau PET

Tau PET is a newmodality, and the ligands that have been
evaluated to date are considered first-generation compounds.
These compounds suffer from limitations, the most common
being off-target binding [125]. However, at least one first-
generation ligand has emerged as a reliable biomarker of
3R/4R PHF tau deposits [28]. Autoradiographic studies
have shown that the most widely studied ligand, flortaucipir,
does not bind to amyloid plaques, TAR DNA Binding
Protein 43 (TDP43), argyrophilic grains, or a-synuclein.
Flortaucipir binds weakly or not at all to sole 4R or sole
3R tau deposits in primary tauopathies [126–128]. In vivo
imaging to autopsy comparisons also indicates specific
binding of flortaucipir to PHF tangles [23] and correlation
with the Braak neurofibrillary tangles stage [129]. Elevated
tau PET binding in both medial temporal lobe structures and
the neocortex is strongly associated with positive amyloid
PET scans and with clinical impairment across the normal
aging to dementia clinical spectrum [82,130–141]. New
tau PET ligands are in the early stages of development and
evaluation [142], and there is optimism that some of the
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limitations of the first-generation compounds will be ad-
dressed in the next generation of tau PET ligands.

9.3. CSF T-tau and P-tau

The most thoroughly examined P-tau epitope as a CSF
biomarker for AD is threonine 181 (P-tau181) [143], but as-
says for the concentration of P-tau231 and P-tau199 correlate
tightly with P-tau181 and show very similar diagnostic accu-
racy [144]. CSF levels of T-tau and P-tau are tightly corre-
lated within cohorts of AD patients and controls [145], and
the correlation between CSF T-tau and P-tau is typically
much higher than between CSF T-tau and MRI measures of
atrophy or FDG PET [36,115]. Therefore, it is reasonable
to ask why not place both CSF T-tau and P-tau in the
pathologic tau biomarker group. The answer lies in the
divergent behavior of these two measures in other diseases.
There is a marked temporary increase in T-tau, with no
change in P-tau, in traumatic brain injury and stroke that
correlates with the severity of neuronal damage [146,147].
It is difficult to rationalize how changes in T-tau in such
patients could be attributed to brain PHF tau deposition.
Furthermore, in Creutzfeldt-Jakob disease, a disorder charac-
terized by very rapid neurodegeneration but not PHF tau
accumulation, there is a very marked increase in CSF T-tau
(10–20 times more than in AD), whereas P-tau shows no or
minor change [148,149]. The only disorder that consistently
shows an increase in CSF P-tau is AD [143], whereas this
biomarker is normal in other neurodegenerative disorders.
The level of CSF P-tau also does correlate with severity of
PHF tau accumulation after death [81,150]. Taken together,
these data indicate that CSF T-tau reflects the intensity of
neuronal damage at a specific point [114], whereas elevated
CSF P-tau reflects an abnormal pathologic state associated
with PHF tau formation.

9.4. Biomarkers of neurodegeneration or
neuronal injury

Biomarkers in the (N) group (Table 1) are indicators of
neurodegeneration or neuronal injury resulting from many
causes; they are not specific for neurodegeneration due to
AD. In any individual, the proportion of observed neurode-
generation/injury that can be attributed to AD versus other
possible comorbid conditions (most of which have no extant
biomarker) is unknown. These are recognized limitations of
the (N) category of biomarkers. In addition, unlike A and T,
(N) biomarkers do not map onto neuropathologic findings
used to diagnose AD. For these reasons, we have placed
(N) in parenthesis, indicating the fundamental differences
between (N) and AT.

For purposes of simplification, it might be tempting to
eliminate the (N) biomarker group from the research frame-
work. However, the combination of an abnormal MRI, CSF
T-tau, or FDG PET study with an abnormal amyloid

biomarker provides much more powerful prediction of
future cognitive decline [30–35,39,40,42–45] than an
abnormal amyloid study alone. This is logical given that
neurodegeneration, particularly synapse loss, is the aspect
of AD neuropathologic change that correlates most closely
with symptoms [151]. Thus, the (N) biomarker group pro-
vides important pathologic staging information; and for
this reason, it seems inadvisable to eliminate this group of
biomarkers from the AD research framework. Also, without
the (N) group, the difference between A1T2(N)2 (see Fig.
2) and A1T2(N)1 (see Fig. 3) would not be formally
captured, that is, both would be placed into the same

Fig. 3. Alzheimer’s and concomitant suspected non-Alzheimer’s patho-

logic change with dementia. A 91-year-old male with severe amnestic de-

mentia. Participant in the Mayo Alzheimer’s Disease Research Center.

Abnormal amyloid PET with Pittsburgh compound B (top row), normal

tau PET (flortaucipir, middle row), and severe medial temporal atrophy

onMRI (bottom row). The biomarker profile (A1T2(N)1) suggests the pa-

tient has Alzheimer’s pathologic change (A1T2) plus an additional degen-

erative condition [(N)1], likely hippocampal sclerosis.
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A1T2 biomarker group. Comparison of the images in Fig. 2
and Fig. 3 shows that these two individuals obviously belong
in different biomarker groups. We believe that A1T2(N)1
represents evidence of comorbidity, that is, A1T2 repre-
sents Alzheimer’s pathologic change while in the A1T2
context, (N)1 represents evidence of non-AD neurodegen-
eration/neuronal injury [152] and thus A1T2(N)2 and
A1T2(N)1 indicate meaningfully different pathologic
states [153].

It is important to note some differences among bio-
markers in the (N) group [114]. Atrophy on MRI likely re-
flects cumulative loss and shrinkage of the neuropil [154–
156]. CSF T-tau likely indicates the intensity of neuronal
injury at a given point in time [108,114,157,158]. FDG
PET likely indicates both cumulative loss of the neuropil
and functional impairment of neurons. These differences
may result in discordances [36,43,115,119,159].

9.5. Limitations

None of the biomarkers are as sensitive as direct exami-
nation of tissue at autopsy. Absolute sensitivity of amyloid
PET relative to an autopsy gold standard has been assessed
[160]. Typical cut points used for 18F amyloid PET ligands
roughly label individuals with none to sparse neuritic pla-
ques normal and individuals with moderate to high neuritic
plaque load abnormal [18,22]. A typical cut point used for
11C Pittsburgh compound B approximately labels
individuals with Thal phase 0–1 normal and individuals
with Thal phase 2–5 abnormal [21]. Thus, a negative amy-
loid PET scan should not be equated with the complete
absence of Ab in the brain or even with absent or sparse
neuritic plaques. Clinicopathologic studies suggest that
low levels of pathologic changes are associated with subtle
cognitive deficits among CU persons [8,161]. The amount

of pathologic tau that can be present in the brain below the
in vivo tau PET detectable threshold is unknown at this
time. This limitation is important to bear in mind when
considering the distinction between Alzheimer’s
pathologic change and AD, which hinges on in vivo
detection of pathologic tau deposits; however, neither CSF
P-tau nor tau PET is expected to identify minimal
neurofibrillary changes that are detectable by
neuropathologic examination. Similarly, the number of
neurons or neuronal processes that must be lost to detect
atrophy on MRI or hypometabolism on FDG PET is not
known. For every biomarker, there must be an in vivo limit
of detection, which is true for any biomarker not just those
discussed here.

9.6. Flexibility to incorporate new biomarkers

The current form of the NIA-AA research framework is
designed around biomarker technology that is presently
available. TDP43 and a-synuclein proteinopathies, micro in-
farcts, hippocampal sclerosis, and argyrophilic grains can
occur alone, or more frequently, along with AD pathologic
changes [162,163]; however, validated biomarkers are not
presently available for them. The AT(N) biomarker
scheme is expandable to incorporate new biomarkers
(Text Box 3). For example, a vascular biomarker group could
be added, that is, ATV(N), when a clear definition of what
constitutes V1 is developed. And, when biomarkers for
TDP43 and a-synuclein are developed, AT(N) can be
expanded to incorporate these as well. An important patho-
logic process in AD is activation of the innate immune sys-
tem, with both astrocytosis and microgliosis [164].
Biomarkers of these changes are not yet widely accepted
though some are emerging [165–169] and when developed
could likewise be added to the biomarker scheme. CSF

Text Box 3
Flexibility of the AT(N) system

The AT(N) system is designed to incorporate new biomarkers within existing AT(N) groups. For example, neurofilament
light chain (cerebrospinal fluid or plasma) or neurogranin will likely be added to the (N) group.

The AT(N) system is also designed to incorporate new biomarkers in categories beyond AT(N). The notation ATX(N)
might be useful when conceptualizing the incorporation of new biomarker groups, where X represents an array of bio-
markers that may become available in the future. For example, when a measure that incorporates and appropriately weights
the many sources of information about cerebrovascular disease has been developed and standardized, AT(N) will be
expanded to ATV(N). When biomarkers for both V and synuclein have been developed, AT(N) will be expanded to
ATVS(N), and so on for biomarkers of inflammation (I), TDP43, etc.

Cut points: Cut points should be selected to fit the specific research question(s) of interest. The framework is outlined
using a single cut point approach, which labels each biomarker group normal (2) or abnormal (1). This approach is concep-
tually straightforward and will always be needed in some use cases, for example, as an inclusion criterion in clinical trials.
However, a two–cut point approach (lenient and conservative) might have great appeal. If the research question centered on
the earliest detectable evidence of Alzheimer’s pathologic change, then a lenient cut point would be appropriate. If the
research questions required high diagnostic certainty, then more conservative cut points would be appropriate.
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neurogranin is presumed to measure synaptic degeneration
and loss [170,171], and neurofilament light chain [172] is
presumed to measure axonal injury. When they have been
more thoroughly studied, these measures should serve as
biomarkers of damage to the neuropil in the (N) group of
biomarkers. In fact, these may ultimately be preferable to
T-tau as a CSF-based (N) biomarker. Because CSF P-tau
and T-tau are highly correlated in AD and are equally corre-
lated with tau PET [124], they do not seem to provide inde-
pendent information in AD.

Conceptually, it might be useful to think of ATX(N),
where X is an array of biomarkers of specific pathologic pro-
cesses, which hopefully will become available in the future
(TDP43, synuclein, etc.), and (N) represents cumulative
brain injury from all etiologies. Even if biomarkers of all
known brain pathologic processes became available, a sensi-
tive but nonspecific (N) biomarker would still be useful
because it seems certain that some proportion of cumulative
brain injury would remain unexplained by all available dis-
ease biomarkers.

9.7. Biomarkers other than AT(N)

While we focus on biomarkers of AD, we emphasize that
other currently available biomarkers have a valuable role to
play. Several different MRI measures provide information
about cerebrovascular disease. Although a biomarker for
a-synuclein does not yet exist, decreased striatal dopamine
transporter uptake of 123I-2b-carbomethoxy-3b-(4-
iodophenyl)-N-(3-fluoropropyl) nortropane single-photon
emission computed tomography (dopamine transporter,
DaTscan) is thought to reflect nigrostriatal degeneration in
Lewy body disease [173]. Likewise, the FDG PET cingulate
island sign is often present in Lewy body disease [174].
These tests may provide useful information about non-AD
pathologic processes and may be used alone or concordantly
with AT(N) biomarkers to provide a more complete picture
of the heterogeneous etiologic nature of dementia. For
example, in an individual with an A1T2(N)1 biomarker
profile and cerebral infarction(s), atrophy is attributable at
least in part to vascular brain injury.

The fact that most dementia is multifactorial presents a
challenge both for diagnosis and treatment. In individuals
with multiple brain neuropathologic processes, each makes
some contribution to the individual’s cognitive impairment.
In an individual with multiple neuropathologic processes,
treating one of them (i.e., AD) should have a beneficial ef-
fect. Therefore, using biomarkers to aid in discovery of treat-
ments for AD should not be delayed until biomarkers of all
possible etiologies for dementia have been developed.

Finally, while many neuropathologic processes are
known to contribute to cognitive impairment, it seems likely
that new pathologic entities will be discovered in the future.
And, biomarkers of these new diseases, when developed,
will enhance the ability of investigators to more fully char-
acterize the dementia spectrum.

10. Cognitive staging

Like biomarkers, cognitive performance exists on a con-
tinuum. An obvious approach to cognitive staging therefore
is to use continuous cognitive instruments, which may be the
preferred outcome measure in many modern clinical trials
[175]. While recognizing that cognition does exist on a con-
tinuum, the committee felt it was also appropriate to outline
categorical cognitive staging schemes. In the 2011 NIA-AA
guidelines, cognitive staging was implicit rather than
explicit. Three different documents were published
describing preclinical AD, MCI, and dementia; however,
these categories have at times been interpreted to indicate
three distinct entities. In the research framework, we avoid
the notion of separate entities and instead refer to the “cogni-
tive continuum”.

One of the specifications of the NIA-AA research frame-
work was that it be applicable in two distinct research con-
texts—interventional trials and observational research. In
many if not most modern AD interventional trials, individ-
uals are selected for inclusion with the aid of biomarkers.
The studies are concerned only with a defined portion of
the population—those in the Alzheimer’s continuum. For
observational research, on the other hand, the research ques-
tions often require that all members of a recruited sample are
included (those with non-AD pathologic changes, normal
AD biomarkers, and those in the Alzheimer’s continuum).
In these studies, research questions often hinge on the pres-
ence of heterogeneity within the cohort, which is substan-
tially screened out of AD trial cohorts. We therefore
outline two types of categorical clinical staging schemes.
The first is syndromal categorical cognitive staging that
uses traditional syndromal categories and is applicable to
all members of a recruited cohort (i.e., includes all
biomarker profiles). The second is a numeric clinical stag-
ing scheme that is applicable only to those in the Alz-
heimer’s continuum, which the committee felt might be
particularly useful in clinical trials.

The committee also recognized that cognitive staging has
to function both when prior longitudinal clinical or cognitive
testing evaluations are available for participants and when
prior information is unavailable and the participant is being
evaluated for the first time.

10.1. Syndromal categorical cognitive staging

The syndromal cognitive staging scheme divides the
cognitive continuum into three traditional categories—CU,
MCI, and dementia, with dementia further subdivided into
mild, moderate, and severe stages (Table 3). This three-
category division serves as the basis for cognitive categori-
zation in many large ongoing studies [53,176–178].
Numerous researchers feel that it has been and continues
to be effective for clinical research and that abandoning it
would unnecessarily disrupt ongoing studies. Dividing the
cognitive continuum into these three syndromal categories
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also has been adopted by many medical practitioners [179].
It has also been codified for clinical practice in the Diag-
nostic and Statistical Manual of Mental Disorders, Fifth Edi-
tion, criteria [180] by the terms “mild neurocognitive
disorder” (essentially MCI) and “major neurocognitive dis-
order” (essentially dementia).

Although the definitions of CU, MCI, and dementia
(Table 3) are largely the same as in the 2011 NIA-AA guide-
lines, there are differences (Text Box 4). For example, the
2011 guidelines included only those CU individuals who
had an abnormal amyloid biomarker study (i.e., preclinical
AD). In contrast, in the NIA-AA research framework, the
definition of CU is independent from biomarker findings.
In the 2011 guideline for MCI, the diagnosis was based on
clinical judgment when all available information about the
patient was considered. In the NIA-AA research framework,
the diagnosis can be based on clinical judgment or on cogni-
tive test performance alone. In the 2011 guidelines, an am-
nestic multidomain dementia was labeled “probable or
possible AD by clinical criteria” without requiring
biomarker documentation of AD. In the NIA-AA research
framework, the labels CU, MCI, and dementia denote only
severity of cognitive impairment and are not used to infer
its etiology.

10.2. Nomenclature

Every research participant has both a biomarker profile
and a cognitive stage. Many researchers prefer to retain
traditional descriptive terms from 2011 that combined these
two sources of information. In Table 4, we illustrate descrip-
tive terminology combining a biomarker profile and a cogni-
tive stage, which retains nomenclature from 2011 but does
depart from 2011 naming in some ways (Text Box 4). For
example, in the research framework, the label “Alzheimer’s
disease with MCI” is used rather than “MCI due to Alz-
heimer’s disease (2011)”. By this, we indicate that although
the person has an AD biomarker profile, we cannot know if
the cognitive deficit is attributable to AD alone or to other
potential comorbidities in addition. In Table 4, we further
recognize contributions of comorbidities for individuals
with an A1T2N1 biomarker profile with the descriptive
phrase “Alzheimer’s and concomitant suspected non-Alz-
heimer’s pathologic change”. By this, we imply that in an
A1T2(N)1 MCI individual, both Alzheimer’s and non-
Alzheimer’s pathologic change may be contributing to the
individual’s impairment (Fig. 3). In addition to carrying for-
ward the NIA-AA 2011 terminology, we also incorporate the
term “prodromal AD” from the IWG, which many investiga-
tors find useful (Table 4). Fig. 4 is a Venn diagram illus-
trating a simplified schema of Table 4.

Table 4 illustrates the principle that biomarker profile and
cognitive staging represent independent sources of informa-
tion. For a given cognitive stage (i.e., a given column in
Table 4), different biomarker profiles will be present in the
population. Likewise, different cognitive stages may be pre-
sent in the population among people with the same
biomarker profile (i.e., along a given row in Table 4).
Many effects can blur the relationship between neuropatho-
logic severity and cognitive symptoms at the individual
level. These include protective factors, such as cognitive

Table 3

Syndromal staging of cognitive continuum: Applicable to all members

of a research cohort independent from biomarker profiles

Cognitively unimpaired

Cognitive performance within expected range for that individual based

on all available information. This may be based on clinical judgment

and/or on cognitive test performance (which may or may not be based

on comparison to normative data, with or without adjustments for age,

education, occupation, sex, etc.).

Cognitive performance may be in the impaired/abnormal range based on

population norms, but performance is within the range expected for

that individual.

A subset of cognitively unimpaired individuals may report subjective

cognitive decline and/or demonstrate subtle decline on serial cognitive

testing.

Mild cognitive impairment

Cognitive performance below expected range for that individual based on

all available information. This may be based on clinical judgment and/

or on cognitive test performance (which may or may not be based on

comparison to normative data with or without adjustments for age,

education, occupation, sex, etc.).

Cognitive performance is usually in the impaired/abnormal range based

on population norms, but this is not required as long as the

performance is below the range expected for that individual.

In addition to evidence of cognitive impairment, evidence of decline in

cognitive performance from baseline must also be present. This may

be reported by the individual or by an observer (e.g., study partner) or

observed by change on longitudinal cognitive testing/behavioral

assessments or by a combination of these.

May be characterized by cognitive presentations that are not primarily

amnestic*.

Although cognitive impairment is the core clinical criteria,

neurobehavioral disturbance may be a prominent feature of the clinical

presentationy.
Performs daily life activities independently, but cognitive difficulty may

result in detectable but mild functional impact on the more complex

activities of daily life, either self-reported or corroborated by a study

partner.

Dementia

Substantial progressive cognitive impairment that affects several

domains and/or neurobehavioral symptoms. May be reported by the

individual or by an observer (e.g., study partner) or observed by

change on longitudinal cognitive testing.

Cognitive impairment and/or neurobehavioral symptoms result in clearly

evident functional impact on daily life. No longer fully independent/

requires assistancewith daily life activities. This is the primary feature

differentiating dementia from MCI.

May be subdivided into mild, moderate, and severe

Abbreviation: MCI, mild cognitive impairment.

*For MCI and dementia: Cognitive impairment may be characterized by

presentations that are not primarily amnestic.
yFor MCI and dementia: Although cognition is the core feature, neurobe-

havioral changes—for example, changes in mood, anxiety, or motivation—

commonly coexist and may be a prominent part of the presentation.
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reserve [181–183], and risk factors, such as comorbid
pathologic processes [184–186].

Table 5 illustrates the principle that a greater number of
abnormal AT(N) groups (i.e., more severe pathologic stage)
indicate a greater risk of short-term cognitive decline, and
the cognitive stage provides additional independent informa-
tion about the risk of future cognitive decline.

10.3. Alternative naming, avoiding the term “Alzheimer’s
disease”

While many investigators prefer the descriptive terms in
the cells of Table 4, others indicated a preference to avoid
terms that have any reference to AD because of historic con-
troversies associated with these terms. The NIA-AA
research framework provides an alternative to descriptive

names in the cells of Table 4, which is to simply combine
AT(N) biomarker profile and cognitive stage without using
descriptive phrases (Text Box 5). That is, combine the row
and column names from Table 4 without the descriptive
phrases in the cells of the table; for example, “A1T1(N)1
dementia” instead of “Alzheimer’s disease with dementia”.
Some groups may prefer this “row and column” naming
approach. Similarly, some investigators may prefer to not
use the biomarker category terminology in Table 2 but
instead simply report biomarker profile; for example,
A1T1(N)1 instead of AD.

10.4. Numeric clinical staging

The committee also created a “numeric clinical staging
scheme” (Table 6) that avoids traditional syndromal labels

Text Box 4
Changes from National Institute on Aging and Alzheimer’s Association (NIA AA) 2011

The NIA-AA research framework builds on but implements a number of changes from the 2011 NIA-AA guidelines. In
this research framework, the term “Alzheimer disease (AD)” refers to pathologic processes and therefore in living persons is
defined by biomarkers. In the 2011 NIA-AA guidelines, an individual with a classic dementia syndrome and in whom
biomarkers were not available (or were conflicting) was labeled possible or probable AD. In contrast, in this research
framework, such an individual is labeled Alzheimer’s clinical syndrome, which describes a syndrome not a probabilistic
pathologic diagnosis. In this research framework, AD is defined as a continuous process in both cognitive and biomarker
domains rather than as three separate clinical entities in the 2011 guidelines. Use of biomarkers is harmonized across the
disease continuum in this research framework, which was not the case in 2011. Biomarkers are grouped into those of Ab,
pathologic tau, and neurodegeneration or neuronal injury, unlike 2011 where tau and neurodegeneration/neuronal injury
biomarkers were placed into the same category. Unlike 2011, biomarker staging includes all members of the population, that
is, individuals in the Alzheimer’s continuum, with non-AD pathologic changes, and with normal biomarker profiles. The
research framework outlines two different systems for staging the severity of cognitive symptoms. A syndromal categorical
scheme largely preserves the three clinical categories from 2011: cognitively unimpaired, mild cognitive impairment, and
dementia. This is applicable to all members of the population regardless of biomarker profile. A numeric clinical staging
scheme is defined only for individuals in the Alzheimer’s continuum.

Table 4

Descriptive nomenclature: Syndromal cognitive staging combined with biomarkers

Cognitive stage
Cognitively Unimpaired Mild Cognitive Impairment Dementia

B
io

m
ar

ke
r 

Pr
of

ile

A- T-(N)- normal AD biomarkers, 
cognitively unimpaired

normal AD biomarkers with
MCI

normal AD biomarkers with 
dementia

A+ T-(N)- Preclinical Alzheimer’s 
pathologic change

Alzheimer’s pathologic change
with MCI 

Alzheimer’s pathologic change
with dementia

A+ T+ (N)- Preclinical Alzheimer’s 
disease  

Alzheimer’s disease with
MCI(Prodromal AD)

Alzheimer’s disease with
dementiaA+ T+(N)+

A+ T- (N)+ Alzheimer’s and 
concomitant suspected non 
Alzheimer’s pathologic 
change, cognitively 
unimpaired

Alzheimer’s and concomitant 
suspected non Alzheimer’s 
pathologic change with MCI

Alzheimer’s and concomitant 
suspected non Alzheimer’s 
pathologic change with dementia

A- T+(N)- non-Alzheimer’s 
pathologic change,  
cognitively unimpaired

non-Alzheimer’s pathologic 
change with MCI

non-Alzheimer’s pathologic change
with dementiaA- T-(N)+

A-T+(N)+

Abbreviations: AD, Alzheimer disease; MCI, mild cognitive impairment.

NOTE. Formating denotes three general biomarker “categories” based on biomarker profiles: those with normal AD biomarkers (no color), those with non-

AD pathologic change (dark grey), and those who are in the Alzheimer’s continuum (light grey).
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and is applicable for only those in the Alzheimer’s contin-
uum. This staging scheme reflects the sequential evolution
of AD from an initial stage characterized by the appearance
of abnormal AD biomarkers in asymptomatic individuals.
As biomarker abnormalities progress, the earliest subtle
symptoms become detectable. Further progression of
biomarker abnormalities is accompanied by progressive
worsening of cognitive symptoms, culminating in dementia.
A useful application envisioned for this numeric cognitive
staging scheme is interventional trials. Indeed, the NIA-
AA numeric staging scheme is intentionally very similar
to the categorical system for staging AD outlined in recent
FDA guidance for industry pertaining to developing drugs
for treatment of early AD [187]. As the FDA guidance notes,
the categorical staging definitions are intimately related to
appropriate outcome measure selection in interventional tri-
als, and it was our belief that harmonizing this aspect of the
framework with FDA guidance would enhance cross fertil-
ization between observational and interventional studies,
which in turn would facilitate conduct of interventional clin-
ical trials early in the disease process.

It is apparent that numeric stages 1–6 (Table 6) bear a
close resemblance to the Global Deterioration Scale [188],
with the important distinction that the Global Deterioration
Scale was created before the development of disease-
specific AD biomarkers. Stage 1 (Table 6) is defined by
biomarker evidence of the Alzheimer’s continuum in asymp-
tomatic individuals. Stage 2 describes the earliest detectable
clinical consequence of the Alzheimer’s continuum and is
similar to “stage 3 preclinical AD” in the 2011 NIA-AA
guidelines [4]. Stage 3 describes cognitive impairment that
is not severe enough to result in significant functional loss.
Stages 4–6 describe progressively worse functional loss.
The nature of decline or impairment in stages 2–6 may

involve any cognitive domain(s)—not only memory.We sus-
pect that finding individuals in stages 3–6 with (N)2 profiles
will be uncommon, as clinical symptoms are typically asso-
ciated with evidence of neurodegeneration. However, these
biomarker profiles are included in all 6 numeric stages for
sake of completeness.

The syndromal categories in Table 3 and numeric stages
in Table 6 obviously point to similar constructs. A CU indi-
vidual who also has no subjective or objective evidence of
subtle decline (Table 3) and stage 1 (Table 6) both describe
an asymptomatic state. A CU individual who has subjective
or objective evidence of subtle decline (Table 3) is similar to
stage 2 (Table 6). MCI (Table 3) and stage 3 (Table 6) both
describe cognitive impairment short of dementia. Mild,
moderate, and severe dementia (Table 3) is identical to
stages 4–6 (Table 6).

However, because the two staging systems address
different needs, there are important differences between
them. First, numeric staging is only applicable to those in
the Alzheimer’s continuum, whereas syndromal categorical
staging includes all biomarker profiles. Second, stage 2 is
called out as a distinct transitional stage between asymptom-
atic (stage 1) and mildly impaired (stage 3) in the numeric
scheme (Table 6), but there is no separate category between
clinically unimpaired and MCI in the syndromal categorical
scheme. Our reasoning was that if an individual is in the Alz-
heimer’s continuum, then it is reasonable to label subjective
complaints or evidence of subtle cognitive decline as a tran-
sitional stage attributable to the pathologic process. Howev-
er, in the syndromal categorical scheme (Table 3) where
abnormal biomarkers are not required, it is not reasonable
to assume that subjective complaints (which are very com-
mon in aging) represent a symptom of any specific dis-
ease(s). Third, neurobehavioral symptoms are treated

Fig. 4. Descriptive nomenclature Venn diagram. As an adjunct to Table 4, we illustrate how AT(N) biomarker grouping and cognitive status interact for clas-

sification of research participants in this Venn diagram. For simplicity, MCI and dementia are combined into a single (cognitively impaired) category and the

A2T2(N)2 groups are not shown. Also “Alzheimer’s and concomitant non-Alzheimer’s pathologic change” [A1T2(N)1] in cognitively impaired is not

shown in this figure. Abbreviation: MCI, mild cognitive impairment.
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differently between the two staging systems. While cogni-
tive symptoms represent the core clinical feature of AD, in
some individuals, the initial presentation may be neurobeha-
vioral (e.g., depression, anxiety, and apathy) rather than
cognitive [189]. Therefore, in the numeric scheme, an indi-
vidual may be placed into stage 2 on the basis of neurobeha-
vioral symptoms alone, that is, without evident cognitive
decline. To reflect this, we use the term “clinical staging”
rather than cognitive staging to recognize that early clinical
manifestations of AD may be either cognitive or neurobeha-
vioral. Individuals must have cognitive impairment to be
placed into numeric stages 3–6 [190]. Our position is that
without biomarker abnormalities indicating the presence of
a neurodegenerative disease, it is not reasonable to classify
patients with isolated neurobehavioral symptoms as having

MCI or dementia. Consequently, cognitive symptoms are
required for inclusion in these categories in the syndromal
staging scheme, which is not limited to individuals in the
Alzheimer’s continuum.

Because only four biomarker profiles are included in
numeric staging, the committee saw an opportunity to
streamline nomenclature. In this shorthand naming scheme,
the four Alzheimer’s continuum biomarker profiles are
labeled a–d: (a) A1T2(N)2; (b) A1T1(N)2; (c)
A1T1(N)1; and (d) A1T2(N)1. Thus, individuals can
be fully described by a single number/letter combination de-
noting numeric clinical stage and biomarker profile—stage
1a, stage 2c, etc. Some investigators may wish to treat partic-
ipants with an A1T2(N)1 profile (i.e., d above) differently
from the other three Alzheimer’s continuum profiles because

Table 5

Risk of short-term cognitive decline based on the biomarker profile and cognitive stage

Text Box 5
Alternative naming, avoiding the term Alzheimer’s disease

Some investigators may prefer to not use the biomarker category terminology in Table 2 but instead simply report
biomarker profile (i.e., A1T1(N)1 instead of Alzheimer’s disease). Similarly, some investigators may prefer to avoid using
descriptive names in the cells of Table 4, including the term Alzheimer’s disease. An alternative is to combine the row and
column names from Table 4 without the descriptive phrases in the cells of the table; for example, “A1T1(N)1 with de-
mentia” instead of “Alzheimer’s disease with dementia”.
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A1T2(N)1 indicates Alzheimer’s and concomitant sus-
pected non-Alzheimer’s pathologic change (Table 4, Fig. 3).

11. Implementation

The committee avoided making specific recommenda-
tions for many implementation details. Our objective was
to outline a general research framework that could be adapt-
ed by individual research groups to their own research goals
and environment. For example, different research groups
will use cognitive testing batteries and cut points that best
fit their own research samples.

PET or MRI images may be evaluated by visual inter-
pretation or by quantitative methods. Methods of image
quantification vary among research groups and are

constantly being refined [191,192]. Cut points must be
determined, and age norming biomarker cut points is
controversial. Arguments have been made that
neurodegenerative biomarkers should be age normed
because loss of neuropil is closely tied with aging. By
contrast, a strong argument can be made that any
amyloid or pathologic tau detected by a biomarker is
abnormal regardless of age, and thus age-norming
biomarker cut points is inappropriate. The distinction be-
tween normal aging and age-related disease has been
debated for decades [193–195], and we do not presume
to settle this here. Cut points should be selected to fit the
specific question(s) of interest. It is quite conceivable that
the field will ultimately settle on the concept of multiple
cut points. For example, lenient cut points would be

Table 6

Numeric clinical staging—Applicable only to individuals in the Alzheimer’s continuum

Stage 1

Performance within expected range on objective cognitive tests. Cognitive test performance may be compared to normative data of the investigators choice,

with or without adjustment (the choice of the investigators) for age, sex, education, etc.*

Does not report recent decline in cognition or new onset of neurobehavioral symptoms of concern.

No evidence of recent cognitive decline or new neurobehavioral symptoms by report of an observer (e.g., study partner) or by longitudinal cognitive testing if

available.

Stage 2

Normal performance within expected range on objective cognitive tests.

Transitional cognitive decline: Decline in previous level of cognitive function, which may involve any cognitive domain(s) (i.e., not exclusively memory).

May be documented through subjective report of cognitive decline that is of concern to the participant.

Represents a change from individual baseline within past 1–3 years, and persistent for at least 6 months.

May be corroborated by informant but not required.

Or may be documented by evidence of subtle decline on longitudinal cognitive testing but not required.

Or may be documented by both subjective report of decline and objective evidence on longitudinal testing.

Although cognition is the core feature, mild neurobehavioral changes—for example, changes in mood, anxiety, or motivation—may coexist. In some

individuals, the primary compliant may be neurobehavioral rather than cognitive. Neurobehavioral symptoms should have a clearly defined recent onset,

which persists and cannot be explained by life events.y

No functional impact on daily life activities

Stage 3

Performance in the impaired/abnormal range on objective cognitive tests.

Evidence of decline from baseline, documented by the individual’s report or by observer (e.g., study partner) report or by change on longitudinal cognitive

testing or neurobehavioral behavioral assessments.

May be characterized by cognitive presentations that are not primarily amnestic.z

Performs daily life activities independently, but cognitive difficulty may result in detectable but mild functional impact on the more complex activities of

daily life, that is, may take more time or be less efficient but still can complete, either self-reported or corroborated by a study partner.

Stage 4

Mild dementia

Substantial progressive cognitive impairment affecting several domains, and/or neurobehavioral disturbance. Documented by the individual’s report or by

observer (e.g., study partner) report or by change on longitudinal cognitive testing.

Clearly evident functional impact on daily life, affecting mainly instrumental activities. No longer fully independent/requires occasional assistance with

daily life activities.

Stage 5

Moderate dementia

Progressive cognitive impairment or neurobehavioral changes. Extensive functional impact on daily life with impairment in basic activities. No longer

independent and requires frequent assistance with daily life activities.

Stage 6

Severe dementia

Progressive cognitive impairment or neurobehavioral changes. Clinical interview may not be possible.

Complete dependency due to severe functional impact on daily life with impairment in basic activities, including basic self-care.

*For stages 1–6: Cognitive test performance may be compared to normative data of the investigators choice, with or without adjustment (choice of the in-

vestigators) for age, sex, education, etc.
yFor stages 2–6: Although cognition is the core feature, neurobehavioral changes—for example, changes in mood, anxiety, or motivation—may coexist.
zFor stages 3–6: Cognitive impairment may be characterized by presentations that are not primarily amnestic.
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useful if the research question centered on the earliest
evidence of Alzheimer’s pathologic change. In contrast,
more conservative cut points might be appropriate if the
research questions required high diagnostic certainty.

For amyloid imaging, where over a decade of data are
available, different ligands, methods of image acquisition,
and image processing can result in different thresholds
when compared to neuropathologic standards [21,22,196].
These issues are currently less understood for pathologic
tau imaging, but the questions are equally tractable. The
committee avoided taking a proscriptive approach to these
methodologic issues under the assumption that this was
best left to expert work groups and individual research
centers.

Initiatives to standardize imaging and CSF biomarker
measures exist, for example, the Centiloid Project [197],
EADC-ADNI Harmonized Protocol for hippocampal seg-
mentation [198], Alzheimer’s Association Global Bio-
markers Standardization Consortium [199], and
International Federation of Clinical Chemistry Working
Group for CSF proteins [200]. These efforts are the subject
of ongoing research, but universal standards have not yet
been established [201].

12. Genetics

Genetics is not formally included in the research frame-
work because our concept of disease rests on neuropatho-
logic change (that can be detected by biomarkers). In
contrast, gene variants do not measure pathologic change
but rather indicate an individual’s risk for developing patho-
logic change. For example, inheritance of an APOE ε4 allele
neither defines the presence of Alzheimer’s pathologic
change or AD nor indicates any particular stage of the dis-
ease.

The penetrance of the classic autosomal dominant muta-
tions in APP, PSEN1, or PSEN2 is essentially 100%, and for
this reason, it could be argued that these mutations confer a
pathologic state that exists from conception. Moreover, one
can be almost certain that a symptomatic autosomal domi-
nant mutation carrier has AD neuropathologic change
without the use of biomarkers. However, also in this specific
instance, our definitions of AD pathologic change and AD
are based on biomarker evidence of disease.

13. Comparison to IWG

In addition to the NIA AA, the other group that has estab-
lished diagnostic guidelines for AD that incorporate bio-
markers is the IWG [64,74,75]. In the most recent formal
IWG document, published in 2014 [75], the diagnosis of
AD required the presence of cognitive symptoms plus an
AD biomarker signature. This could be either an abnormal
amyloid PET study or both abnormal CSF Ab and tau. The
NIA-AA research framework aligns with these criteria in
recognizing that neither hypometabolism nor atrophy are

specific for AD and thus cannot be used to support a diag-
nosis of AD. One difference though is that we regard CSF
T-tau as a nonspecific marker of neuronal injury, while the
IWG 2014 treats the combination of elevated T-tau and
low Ab42 as a biomarker signature that is specific for AD.
In addition, tau PET was not available in 2014 and thus
was not included in the 2014 IWG criteria. In addition to
an AD biomarker signature, cognitive symptoms (specif-
ically either a typical or a known atypical AD phenotype)
were also required to diagnose AD in IWG 2014. Individuals
with symptoms that fell short of dementia were labeled pro-
dromal AD. CU individuals with an abnormal amyloid PET
study or a CSF study demonstrating both abnormal Ab and
tau were labeled “asymptomatic at risk for AD”. The most
significant difference between the 2014 IWG criteria and
the NIA-AA research framework is that, with the exception
of genetically determined AD, the 2014 IWG diagnosis of
AD in living persons required both biomarker and clinical
findings and therefore was not purely a biological construct.

In an article on preclinical AD (published in 2016 [15]
that may be considered part of the IWG series), the diagnosis
of AD was extended to include asymptomatic individuals
with biomarker evidence of both Ab and tau. In contrast to
IWG 2014, symptoms were no longer required to reach a
diagnosis of AD. Some differences with the NIA-AA
research framework remain, however. Preclinical AD in
IWG 2016 [15] defines a CU individual with an abnormal
Ab biomarker and normal tau (A1T2) as “at risk for AD,
asymptomatic A1” and one with A2T1 as “at risk for
AD, asymptomatic T1”. We label the former Alzheimer’s
pathologic change and the latter suspected non-Alzheimer’s
pathologic change (in keeping with the NIA-AA pathologic
definition of primary age-related tauopathy as not AD
[105,106]). Importantly, the NIA-AA research framework
uses “at risk” in a much different connotation, referring to
asymptomatic individuals with biomarker evidence of AD
as having AD but being “at risk” of subsequent cognitive
decline (as opposed to “at risk” for AD). While differences
remain, IWG 2016 and the NIA research framework are
aligned on the key issue that the combination of an abnormal
Ab and tau biomarker constitutes AD regardless of cognitive
symptoms, and thus AD is a biologically defined entity
throughout its continuum. This is an important step toward
harmonization.

14. Clinical research without biomarkers or with
incomplete biomarker information

While the main thesis of this research framework focuses
on a biological definition of AD, we stress that for some
types of studies, incorporation of biomarkers is not neces-
sary. PET and CSF biomarkers can be difficult to acquire
in some types of studies and in some geographic locations
PET may not be possible. This is particularly true for large
population- and community-based cohort studies. Such
studies typically seek to identify risk factors for cognitive
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or other clinically determined outcomes. For these studies,
high participant engagement is essential for internal validity
and many rely on home visits to achieve both high participa-
tion and high follow-up rates. Such studies would have more
limited participation and greater expense if PETor CSF bio-
markers were required. Thus, research without biomarkers
remains a significant enterprise and will continue to find
risk factors for clinically defined syndromes or for resil-
ience indices. The extent to which these risk factors are asso-
ciated with AD will require complementary studies with
imaging or biofluid biomarkers, or brain autopsy. While im-
aging/CSF biomarker data on subsets of individuals from
well-designed community-based cohorts would provide
additional research value, incorporating biomarkers on a
large scale in many settings will require low-cost and mini-
mally invasive biomarkers (e.g., blood or saliva) that are now
emerging [202–205].

Another issue is that the vast majority of data from PET
and CSF are from selected participants recruited through ter-
tiary care dementia centers [176]. It is widely recognized
that clinic-based participants differ from community-based
studies, for example, the amount, type, and distribution of
neuropathologic changes differ by the source of a participant
[206,207]. There are limited data on CSF and PET AD
biomarkers from population-based studies. Therefore, incor-
porating biomarkers into these studies is highly warranted to
increase our understanding of the biology of AD, but only
when such inclusion does not compromise the overarching
scientific goals of the parent project. Importantly, there are
less data from diverse populations. As with population-
based studies, we encourage the inclusion of AD biomarkers
in studies of diverse populations that use this research frame-
work [208], but it is clearly premature to recommend that all
such studies incorporate biomarkers.

The issues of clinical research without biomarkers and
defining AD as amnestic dementia are often conflated, but

it is important to recognize the distinction. Clinical research
without biomarkers provides valuable information about the
societal burden of cognitive disability and risk factors for
cognitive impairment. However, amnestic multidomain de-
mentia and other classic syndromal variants are not synony-
mous with the presence of Ab deposition and neurofibrillary
degeneration. In addition, the absence of amnestic dementia
is clearly not synonymous with the absence of these hall-
mark lesions of AD. AD neuropathologic change is docu-
mented in approximately 80% of cases with a traditional
clinical diagnosis of “AD dementia” (see Fig. 5 for an
example of clinical misdiagnosis of “AD dementia”) [50–
52,162,185,209–211]. However, preclinical AD cannot be
ascertained without biomarkers. Up to 60% of CU
individuals over age 80 years have AD neuropathologic
changes at autopsy or by biomarkers [60,152,212–214].
Thus, using a clinical diagnosis of “AD” to ascertain
absence of disease is associated with an error rate
exceeding 50% in the elderly.

Valuable clinical research will continue in contexts that
do not use biomarkers where the outcome that is ascer-
tained is a multi-(or single-) domain amnestic syndrome
or a classic syndromal variant. Historically though such in-
dividuals have been labeled “probable or possible AD”
[1,2] and in practice this is more often than not
shortened to simply “AD” and this is problematic.
Labeling individuals “AD” who do not have biomarker
evidence of AD undermines the major theme of this
framework. But, we also recognize the deeply engrained
historic use of the term “Alzheimer” to denote particular
syndromes. Thus, we strongly recommend that a
clinically ascertained syndrome consistent with what has
historically been labeled “probable or possible AD” be
referred to as Alzheimer’s clinical syndrome, but not as
AD or some modified form of AD (e.g., “possible or
probable AD”). This terminology applies to both mildly

Fig. 5. Non-Alzheimer’s pathologic change with dementia. An 86-year-old female with progressive amnestic dementia. The patient had been diagnosed clini-

cally (i.e., without biomarkers) as “Alzheimer’s disease dementia” by several physicians before enrolling in the Mayo Alzheimer’s Disease Research Center.

Imaging performed for research purposes revealed a normal amyloid PET (Pittsburgh compound B, left), normal tau PETwith flortaucipir (middle), and severe

medial temporal atrophy on MRI (right). The biomarker profile [A2T2(N)1] suggests the patient has non-Alzheimer’s pathologic change. Based on her

biomarker profile, hippocampal sclerosis was suspected antemortem, and hippocampal sclerosis with TDP43 (and without Alzheimer’s disease) was later

confirmed at autopsy.
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impaired and demented individuals and is consistent with
our position that a syndrome is not a disease, while at
the same time recognizing the deeply engrained use of
the term Alzheimer. This terminology is also consistent
with the frontotemporal lobar degeneration field where
corticobasal syndrome refers to the syndrome and
corticobasal degeneration refers to a specific disease.

Studies without biomarkers that infer biological associa-
tions with “AD” can cause confusion. For example, in
studies without biomarkers, diabetes has been claimed to
be a risk factor for probable AD, when AD was defined as
an amnestic dementia [215]. In contrast, in clinical-
autopsy studies, diabetes was associated with cognitive
impairment (and the clinical diagnosis of probable AD);
however, the pathologic basis for this association was
vascular brain injury and not Ab plaques and neurofibrillary
degeneration [50,216]. Population-based studies using bio-
markers also show that mid-life risk factors (obesity, smok-
ing, diabetes, hypertension, and cardiac disease) commonly
found to be associated with cognitive decline and clinically
ascertained impairment that is labeled “AD” dementia are
associated with neurodegeneration but not amyloid pathol-
ogy [183]. Certain genome-wide association studies provide
another example of this phenomenon. When loci that were
associated with clinically defined AD are examined against
autopsy-defined AD, many of these loci have no association
with neuritic plaques and neurofibrillary degeneration but
rather with other pathologic findings such as cerebrovascular
disease [217]. Apparently, conflicting conclusions like these
in the literature create confusion in the medical field and in
the general public, which highlights the need to investigate
the relationship of risk factors to AD biomarkers or neuro-
pathologic change to understand the biologic basis of such
associations. Thus, non–biomarker studies can establish
robust and valid associations between risk factors and Alz-
heimer’s clinical syndrome, but the biologically based
studies are needed to determine if these associations are
with AD.

An issue related to research without biomarkers is that
many studies will ascertain some but not all biomarker
groups in study participants. Because tau PET is relatively
new, incomplete biomarker information will occur in studies
that use imaging for amyloid and neurodegenerative
biomarker characterization but lack tau PET. A missing
biomarker group is denoted *; missing T would therefore
be T* (Table 2). Participants in these studies may be catego-
rized on the basis of information that is available, that is,
A1T* places the participant in the “Alzheimer’s contin-
uum,” and A2T*(N)1 is suspected non-AD pathologic
change (Table 2). Another common situation will be studies
with MRI but without either PET or CSF molecular bio-
markers for amyloid and tau. In this situation, while MRI
cannot be used as a biomarker of the Alzheimer’s contin-
uum, it is useful as a measure of cerebrovascular disease
and of nonspecific neurodegeneration, which in turn is a pre-
dictor of future clinical decline.

15. Hypothesis testing using the research framework

This framework is a flexible platform to generate and test
hypotheses concerning the interactions among different
pathologic processes (denoted by biomarkers) and cognitive
symptoms. Abundant human and animal data implicate A
and T in the primary pathogenesis of AD [9,100],
including the observation that the age-related exponential in-
crease in prevalence of A (by biomarkers and neuropa-
thology) anticipates the age-related exponential increase in
prevalence of clinically defined possible/probable “AD” by
around 15 years [53,212]. However, we point out the
potential distinction between possible cause(s) of AD and
a biologically based definition of AD. This framework
does not depend on A and T being causal in AD
pathogenesis. The AT(N) biomarker system is an unbiased
system for grouping biomarkers and classifying research
participants on the basis of biomarker profiles. Thus, this
framework can serve as a hypothesis testing platform for
disease models where A and T are present as
epiphenomena and models where they are causal. We
emphasize though that A and T proteinopathies define
AD as a unique disease among the many that can lead to
dementia. As a consequence, disease models where A
and T are not in the primary causal pathway must
provide a mechanistic explanation for the development
of both of these diagnostic proteinopathies, as well as
neurodegeneration and clinical symptoms.

Many in the field are convinced that amyloidosis induces
or facilitates the spread of pathologic tau (perhaps by pro-
moting pathologic tau strains [218,219]), pathologic tau is
immediately proximate to neurodegeneration, and
neurodegeneration is the proximate cause of cognitive
decline (C). If this “modified amyloid cascade hypothesis”
were correct, then the logical biomarker sequence of AD
pathogenesis would be that denoted in Fig. 6A
[153,220,221]. Indeed, Fig. 6A maps onto the definitions
outlined in Table 2. However, other biomarker sequences
are possible and can be investigated through this framework.
T could induce A (Fig. 6B), although if this were true, indi-
viduals with primary tauopathies (particularly MAPT muta-
tions that produce 3R/4R fibrillar pathological tau that is
morphologically identical to tau deposits in AD) would be
expected to develop Ab plaques, which is not the case.
Both A and T could arise spontaneously and independently
with the combination of both required to induce (N) (Fig.
6C). A and T could arise simultaneously due to a common
upstream pathologic process (W) (Fig. 6D). For example,
it is possible that cell senescence [222] or age-related break-
down of systems involved in immune surveillance or clear-
ance of proteinaceous debris could be the upstream
etiology for both A and T accumulation. A and T could be
promoted by different and independent upstream pathologic
processes (X and Y) [223] (Fig. 6E). For example, an age-
related decrease in the rate of Ab turnover could represent
mechanism X in Fig. 6E [224]. “X” could also be a
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complement component receptor-1 variant that may influ-
ence Ab clearance [164]. A yet unknown or unproven up-
stream pathologic process (Z) could induce A, T, and (N),
with A and T being epiphenomena that are not in the causal
pathway of (N) and (C). “Z” could represent many different
possible mechanisms, for example, immune function, over
or under activation of inflammatory pathways [165], and
network failure [225,226] (Fig. 6F). It is also possible that
mechanisms exist that lead to A and T but never lead to
(N) and (C). Ultimately, proof of causality requires that
mechanistically targeted interventions alter the natural his-
tory of the disease. If interventions that prevent A and T
do not prevent (N) and (C), then this would be evidence
that neither A nor T is central to the pathogenesis of AD.
The research framework provides a platform to test these hy-
potheses.

Another possible scenario is that the same pathologic pro-
cess has different effects in different people. It might be that
the pathway outlined in Fig. 6A is operative in some individ-
uals, but other individuals have a factor Q (which could be
genetic or environmental) that blocks the effect of A on T.
In these individuals, A could accumulate harmlessly without

leading to downstream events. If Q were discovered, then its
effect on T, (N), and (C) given A could be tested empirically
with the framework. However, this issue needs to be ap-
proached thoughtfully. The fact that individuals die with A
without developing T, (N), or (C) in their lifetimes does
not prove the existence of factor Q. Because of increasing
death rates with age and the long preclinical period of AD
[227], it cannot be known if that person would have devel-
oped T, (N), or (C) had they lived longer.

For conceptual completeness, we have outlined what un-
doubtedly seems like a complex system, but it is important to
note that the design of this framework poses many questions
that are readily testable using subsets of the population.
Many research questions may use only a few of the cells
in Table 4, and thus large research cohorts are not necessary
to evaluate many aspects of this framework. For example,
are rates of cognitive decline different for different manifes-
tations of transitional cognitive decline (subjective report,
subtle decline on testing, or neurobehavioral symptoms)?
How do cognitive outcomes differ among various biomarker
profiles? What is the influence of age on these relationships?
Is the prevalence of cerebrovascular disease different among

Fig. 6. Hypothesis testing using the research framework. In this figure, we outline various possible mechanistic pathways that involve A, T, (N), and (C). We

believe current evidence most strongly supports the “modified amyloid cascade hypothesis” pathway denoted in (A), and this is reflected in the terminology in

Table 2. However, we illustrate several alternatives that could be tested using the research framework. These are discussed in the text. This is not intended to

represent an exhaustive list of all possible pathways but rather an illustration of some possible mechanistic pathways where A and Tare and are not causal in AD

pathogenesis. In each of these models, the final common pathway is (N)/ (C), which is based on the assumption that in neurodegenerative diseases, neuronal/

synaptic damage is the histopathologic feature that is most proximate to cognitive impairment. Abbreviation: AD, Alzheimer disease.
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the three suspected non-AD pathologic change biomarker
profiles [A2T1(N)2, A2T2(N)1, and A2T1(N)1]?

16. Future directions

The NIA-AA research framework defines AD biologi-
cally, by neuropathologic change or biomarkers, and treats
cognitive impairment as a symptom/sign of the disease
rather than the definition of the disease. This approach
should enhance efforts to understand both the biology of
AD and the multifactorial etiology of dementia, which has
been obscured to some extent in the past by equating amnes-
tic multidomain dementia with the presence of AD neuro-
pathologic changes, and by equating the absence of the
prototypical dementia syndrome with the absence of AD
neuropathologic changes. The notion of providing a com-
mon language with which researchers can communicate is
important. If one research group defines AD as Ab plaques
and pathologic tau (either by biomarkers or neuropathology)
and a different group defines AD as the presence of amnestic
dementia (see Fig. 5), then the findings from the two groups
point to different entities, and the conclusions are not
directly comparable.

We recognize that current biomarkers used in AD
research are either expensive or invasive. The current gener-
ation of biomarkers is invaluable for research; however,
widespread, use will be facilitated by the development of
less-expensive and less-invasive biomarkers. For example,
new ultrasensitive immunoassay techniques may enable
measurement of minute amounts of brain-specific proteins
in blood samples [228]. Candidate blood biomarkers such
as neurofilament light protein [204] and plasma tau [205]
show promise as non–disease-specific tools to identify neu-
rodegeneration. Plasma Ab measures now show promise
[202,203]. In the future, less-invasive/less-expensive
blood-based biomarker tests along with genetics, clinical,
and demographic information will likely play an important
screening role in selecting individuals for more-expensive/
more-invasive biomarker testing. This has been the history
in other biologically defined diseases such as cardiovascular
disease (see, e.g., the 2013 ACC/AHA Guideline on the
Treatment of Blood Cholesterol to Reduce Atherosclerotic
Cardiovascular Risk in Adults) [229].

This unifying research framework is a natural descen-
dant of the 2011 NIA-AA preclinical AD recommendations
that were based on the concept that AD, identified by bio-
markers, can exist in the absence of symptoms [4]. The
present research framework extends this concept
throughout the entire Alzheimer’s continuum (Text box
4); however, it will also need to be updated at some point
in the future when a modified or different conceptual
approach to AD is needed to accommodate scientific ad-
vances.

Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.jalz.2018.02.018.
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