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Abstract Spatio-temporal changes reflect the complexity and evolution of demo-

graphic and socio-economic processes. Changes in the spatial distribution of popu-

lation and consumer demand at urban and rural areas are expected to trigger changes 

in future housing and infrastructure needs. This paper presents a scalable analytical 

framework for understanding spatio-temporal population change, using a sequence 

analysis approach. This paper uses gridded cell Census data for Great Britain from 

1971 to 2011 with 10-year intervals, creating neighborhood typologies for each 

Census year. These typologies are then used to analyze transitions of grid cells be-

tween different types of neighborhoods and define representative trajectories of 

neighborhood change. The results reveal seven prevalent trajectories of neighbor-

hood change across Great Britain, identifying neighborhoods which have experi-

enced stable, upward and downward pathways through the national socioeconomic 

hierarchy over the last four decades. 
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1 Introduction 

Changes over space and time reflect the complexity and evolution of demo-

graphic and socio-economic processes (Miller, 2015). Yet measuring the magni-

tude, location and temporal frequency of these changes is challenging. Using tradi-

tional forms of data (i.e. census and survey data), demographic and socio-economic 

changes have often been captured at a very coarse temporal levels i.e. every month, 

year or decade. Also, these data are also normally available at some spatially aggre-

gated level. Administrative boundaries have traditionally been the default spatial 

framework for census and survey data collection and analysis (Goodchild, 2013), 

and these areas are usually affected by boundary changes over time, particularly 

splitting an area in two (Casado-Díaz et al., 2017; Rowe et al., 2017). So, a ‘freeze 

history’ approach has been generally employed to develop a consistent geography 

by freezing the zonal system at a certain point in time and systematically tracking 

subsequent alterations in geographical boundaries to amalgamate subsequently cre-

ated areas (Rowe, 2017).  

Different levels of spatial aggregation can however produce different represen-

tations of a socio-economic process as a result of the Modifiable Areal Unit Problem 

(MAUP). MAUP refers to the statistical sensitivity and variability of results relating 

to the spatial framework of analysis (Openshaw, 1983; Fotheringham and Wong, 

1991). The most appropriate spatial framework of analysis may thus differ accord-

ing to the process in study (Prouse et al., 2014). MAUP can create ‘unreal’ spatial 

patterns which are caused by loss of information (Hayward and Parent, 2009). 

Choosing areal units based on geographical coordinates, rather than aggregation of 

administrative boundaries, could help to tackle this issue by offering the possibility 

to analyze temporal data regardless of changes in geographic boundaries. 

An increasing number of methods for spatio-temporal data analysis have been 

developed to study complex demographic and socio-economic processes, namely 

space-time point pattern, probabilistic time geography and latent trajectory models 

(An et al., 2015). Clustering techniques are often employed on space-time data, 

identifying patterns (Warren Liao, 2005; Aghabozorgi et al., 2015; Arribas-Bel and 

Tranos, 2018). There is also a wide variety of spatio-temporal statistical techniques 

in current literature where traditional deterministic trend models, stochastic trend 

models and stochastic residual models have been generalized to capture spatiotem-

poral processes using individual level data (Kyriakidis and Journel, 1999), as well 

as spatial and temporal correlation using Spatio Temporal Autoregressive Regres-

sion (STAR) and Bayesian hierarchical models on areal data (Huang, 2017). Yet, 

these models are often restricted on specific situations namely particular data format 

or geometry types and are not flexible or adaptable to contribute in scalable space-

time analysis frameworks. Spatio-temporal processes involve measurement of four 

dimensions namely occurrence, timing, order and duration of events or transitions 

and while the aforementioned methods can provide useful information about move-

ments and points of interest, they only capture some dimensions of spatio-temporal 

processes. The integration of multiple approaches can provide context ‘aware’ data 
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and expose patterns based on analysis of the sequencing of events, rather than com-

parison of discrete points in time, capturing the full range of dimensions of spatio-

temporal processes. 

Sequence analysis provides a useful framework to integrate various analytical 

approaches and capture the four key dimensions of spatio-temporal processes i.e. 

occurrence, timing, order and duration of events or transitions. Sequence analysis 

was originally developed for analyzing DNA sequences (Sanger and Nicklen, 1977; 

Bailey, 2017), and theoretically introduced in the Social Sciences in the 1980s 

(Abbott, 1983). Sequence analysis has recently been widely applied to analyze lon-

gitudinal individual family, migration and career trajectories (e.g. Rowe, Corcoran, 

et al., 2017; Backman et al., 2018).  

Sequence analysis can also be applied to better understand the evolution of 

places. Conceptually, neighborhoods for example are assumed to progress through 

a number of pre-determined stages, transitioning through phases of development, 

growth, stability and decline (Hoover and Vernon, 1959). However, prior empirical 

work has employed a static cross-sectional framework to explore these transitions 

between two points in time (e.g. Teernstra and Van Gent, 2012) and assumed all 

neighborhoods undergo the same rigid pathway of change. These shortcomings 

partly reflect the lack of consistent spatial data over a longer window of time, but 

also the absence of an analytical approach to study these transitions in a temporally 

dynamic framework. 

Only recently, empirical analyses have recognized the diversification in neigh-

borhood transitions and enabled exploration and quantification of neighborhood 

change over a long period of time by using sequence analysis. Delmelle (2016) con-

ducted a first study using sequence analysis for Chicago and Los Angeles, expand-

ing her focus on a subsequent investigation to US 50 metropolitan areas over a 50 

year period (Delmelle, 2017). These studies contributed in providing a general ap-

proach for analyzing differentiating pathways of neighborhoods namely upgrading, 

downgrading or stable trajectories in the socio-economic hierarchy as well as gen-

trification processes. Yet they focused only on urban and metropolitan areas, miss-

ing the interaction between urban and rural continuum.  

While these studies have advanced our understanding of neighborhood change 

in particular urban settings, significant gaps remain to be addressed. First, gridded 

data generation is needed to address the lack of consistent geographical boundaries 

over time (Janssen and Ham, 2019). Second, the use of gridded data offers the po-

tential to perform analyses at various geographical levels through aggregation of 

grids at particular administrative or functional areas. This opportunity provides a 

flexible dataset and a scalable approach for the use of purpose-built areas. Third, 

weighted clustering of the sequences provides a scalable approach on analyzing big 

datasets by separating the unique sequences matrix and their frequency in different 

vectors. This addresses the lack of information by using clustering approaches based 

on ‘prototype’ sequences where their frequency is not captured (i.e. how many 

neighborhoods followed the same sequence). Fourth, the aforementioned gaps are 

partly the result of the absence of a workflow that addresses the lack of temporally 

consistent geographical units and offers a way to effectively capture the key 
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elements of changes in space and time (occurrence, timing, order and duration). 

This limitation is addressed in this study by the integration of different approaches 

(i.e. population grid surface estimation, clustering analysis and optimal matching). 

This paper aims to develop a scalable analytical framework for spatio-temporal 

data analysis addressing all four identified gaps. By doing so, it contributes to the 

current literature on spatio-temporal data analysis in three key ways: 

1. By providing geographical consistent gridded data over a 40-year pe-

riod for Great Britain; 

2. By developing a scalable analytical framework in two ways: (i) offering 

a flexible dataset which can be aggregated at various geographical lev-

els; and (ii) employing a weighted clustering approach to measure dis-

similarity between individual sequences;   

3. By formulating a workflow to effectively capture the key elements of 

changes in demographic and socio-economic process across space and 

over time through the integration of multiple approaches. 

The remainder of this article is organized as follows. Section two describes the 

dataset and methods used in this research project, followed by results and discussion 

that are presented in section three. Finally, section four provides some concluding 

remarks and suggestions for further research. 

 

2 Data and methods 

2.1 Data 

The original data used in this study is drawn from five decennial Censuses for 

Great Britain (i.e. England, Scotland and Wales) covering the period from 1971 to 

2011 with 10-year intervals. The five Censuses were conducted in 1971, 1981, 

1991, 2001, 2011. The data was downloaded from the Office of National Statistics 

(ONS) portal (http://casweb.ukdataservice.ac.uk & http://in-

fuse.ukdataservice.ac.uk). 

Census administrative boundaries are not consistent over time. To this end, this 

paper uses an approach of recalculating Census counts from administrative bound-

aries to gridded data using Popchange project algorithm. Popchange, is a tool that 

provides population surfaces across Great Britain but also provides the algorithm 

which calculates correspondence between low-level Census administrative geogra-

phies and 1km2 grids (Lloyd et al., 2017). For this project, raw Census data cover-

ing a range of demographic, socio-economic and housing variables were down-

loaded in low-level Census administrative geographies (i.e. enumeration districts 

http://casweb.ukdataservice.ac.uk/
http://infuse.ukdataservice.ac.uk/
http://infuse.ukdataservice.ac.uk/
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for 1971, 1981 and 1991 and output areas for 2001 and 2011) and Popchnage algo-

rithm used to convert Census counts to 1km2 grid counts. 

These grid counts data correspond to estimates of census variables. As they are 

generated from a coarser level of geography, there is certain degree of uncertainty 

around these estimates. However, they offer two key advantages. Firstly, they pro-

vide a consistent level of geography to make comparisons of spatial units over a 

period of time. Secondly, they provide an effective tool to address the MAUP in a 

spatio-temporal context by providing a spatial framework based on geographical 

coordinates (i.e. 1km2 grids), rather than some arbitrary level of geographical ag-

gregation. Grids can be aggregated to create purpose-built geographical systems de-

pending on the process under analysis. 

A drawback of grids is that administrative areas in rural and remote areas are 

often larger than a grid. Thus, population counts that are split between two or more 

grids in an administrative area, resulting a small number of population counts per 

grid. In this study percentages of the variables were calculated by grid and given 

the small number of counts per grid, the accuracy of the variables’ estimation is 

low. To overcome this issue, only grids which encompass multiple small areas were 

considered. To this end, the 1km2 grid layer overlaid over the 2011 census Output 

Area boundaries for Great Britain. The final output is 16,035 grid cells covering the 

whole Great Britain. The grid cells containing zero values can be removed to aid 

visualization and mapping of the data.  

This study measures neighborhood change across three dimensions: demo-

graphic, socio-economic and housing. Table 1 lists the set of census variables used 

to capture these dimensions, all of which are measured as percentages for each grid 

cell i.e. the grid-specific population aged 0-14 over the grid-specific total population 

across all age groups. 

 

Table 1 Variables used in the analysis 

Broad category 

Specific cate-

gory Variable 1971 1981 1991 2001 2011 

D
em

o
g
ra

p
h

ic
 

Age structure 

of population 

Children: 0 to 

14 years old 
✓ ✓ ✓ ✓ ✓ 

Young persons: 

15 to 29 years 

old 
✓ ✓ ✓ ✓ ✓ 

Middle aged 

adults: 30 to 44 

years old 
✓ ✓ ✓ ✓ ✓ 

Older adults: 

45 to 64 years 

old 
✓ ✓ ✓ ✓ ✓ 

Retired: 65+ 

years old 
✓ ✓ ✓ ✓ ✓ 

Place of Birth 

Born in United 

Kingdom (UK) 

and Republic 

✓ ✓ ✓ ✓ ✓ 
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of Ireland 

(ROI) 

Born in Europe ✓ ✓ ✓ ✓ ✓ 

Born in Rest of 

the World 
✓ ✓ ✓ ✓ ✓ 

Students 
Proportion of 

students 
 ✓ ✓ ✓ ✓ 

S
o
ci

o
-e

co
n
o

m
ic

 

Socio-eco-

nomic Group 

Managerial oc-

cupations 
✓ ✓ ✓ ✓ ✓ 

Non-Manual 

Workers 
✓ ✓ ✓ ✓ ✓ 

Manual and 

other Workers 
✓ ✓ ✓ ✓ ✓ 

Mode of 

Travel to 

Work 

Private mode ✓ ✓ ✓ ✓ ✓ 

Public 

Transport 
✓ ✓ ✓ ✓ ✓ 

Active mode ✓ ✓ ✓ ✓ ✓ 

Other mode 

(i.e. other and 

work from 

home) 

✓ ✓ ✓ ✓ ✓ 

Unemploy-

ment 

Unemployment 

rate 
✓ ✓ ✓ ✓ ✓ 

H
o

u
si

n
g
 

Home Owner-

ship 

Own occupied 

housing 
✓ ✓ ✓ ✓ ✓ 

Private rented 

housing 
✓ ✓ ✓ ✓ ✓ 

Council rented 

(social) hous-

ing 

✓ ✓ ✓ ✓ ✓ 

Housing va-

cancy 
Vacancy rate ✓ ✓ ✓ ✓ ✓ 

 

There is variation in the number of categories across census years. For example, 

a greater number of categories is available for socio-economic status in the 2001 

and 2011 Census compared to earlier years. So, data have been aggregated to 

broader categories which are consistent through time. Also, note that information 

on students was not available in 1971; nonetheless, it is considered as an important 

variable and is therefore included for the analysis. 

2.2 Methods 

The methodological framework developed in this study involves four main 

stages which can be divided into six steps, as presented in Figure 1.  In general, the 
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first stage involves the production of gridded population data. These data is used in 

a second stage to create a geodemographic classification of neighborhoods based 

on the variables listed in Table 1, using k-means clustering. This classification pro-

vides representative types of neighborhoods. In a third stage, the classification is 

used to analyze the year-to-year transition of individual grids between neighbor-

hood types and measure their similarity via optimal matching. In a final stage, this 

measure of similarity is employed to define a typology of representative neighbor-

hood trajectories based on a k-medoids clustering. Details on each of these stages 

are provided next.  

 

Figure 1 Methodological framework workflow 

 

Stage 1. The official administrative boundaries used to collect the census data 

are not consistent over time. Boundary changes hamper temporal comparability of 

this data. Harmonization of these boundaries is needed to effectively track changes 

over time. To this end, Popchange algorithm was used to generate gridded data 

using raw data drawn from five decennial Censuses for Great Britain as described 

in section 2.1.  

Stage 2. Gridded population data is then used to create a geodemographic clas-

sification using a k-means algorithm. The input data is a pooled dataset of grids 

covering the whole Great Britain for all five census periods i.e. 80,175 grids 

(=16,035 grids * 5 years). A cluster analysis is performed on a pooled dataset in-

cluding all five census periods to ensure consistency and comparability of cluster 

membership in the resulting partitioning solution. These are important elements for 

the longitudinal analysis of spatial data. For the k-means clustering algorithm, the 

number of k partitions, which define the number of cluster groups, need to be set 

prior to performing the analysis (Gentle et al., 1991). This has been set to eight 

performing 1,000 iterations. The approach used to specify the optimal number of 

clusters is a two-step sequential process. First, the sum of distances of each obser-

vation to their closest cluster center was calculated for a range of cluster options, 

from 3 to 15, creating an elbow curve. In an elbow curve, the sum of distances tends 

to decrease towards 0 as the k increases (the score is 0 when k is equal to the number 
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of data points in the dataset, because then each data point belongs to its own cluster, 

with no error between the cluster and the center of the cluster). The goal is to deter-

mine the smallest number of k partitions that minimizes the sum of distances, and 

the elbow represents the point at which diminishing returns by increasing k are 

achieved. Second, the k number at which these diminishing returns are achieved is 

used as the seed number of partitions. Various clustering partitions around this point 

were analyzed and mapped to determine the optimal number of clusters for this 

study i.e. eight. The output from the cluster analysis is temporally consistent geo-

demographic classification in which each year-specific grid cell is assigned to a 

neighborhood type. 

Stage 3. This geodemographic classification is then used as input for sequence 

analysis. A key aim of this analysis is to define trajectories that characterize the 

ways in which the internal demographic and socio-economic structure of neighbor-

hoods have changed over time. To this end, sequence analysis was used. Sequence 

analysis is built to analyze longitudinal categorical data and enables identification 

of representative patterns over a period of time. In the current study, the key aim is 

to identify a small number of representative trajectories of neighborhood change, 

and the application of sequence analysis involves three key steps. For the imple-

mentation of these steps, the TraMineR package in the R programming language 

was used (Gabadinho et al., 2009). 

Step 1. The starting point is the creation of a sequence state object. A sequence 

state object refers to a dataset arranged in a wide format with rows identifying each 

spatial unit, columns identifying each time point, and individual cells indicating a 

specific state. To create a sequence state object, the geodemographic classification 

was used. Rows identify each geographical grid. Columns identify each of the five 

census years and each individual cell contains their corresponding year-specific 

neighborhood type. So, horizontally, each row provides a sequence of transition 

between different neighborhood type over the five census years. 

Step 2. Sequences comparison requires a measure of the minimal cost of trans-

forming one sequence to another. The operations can be used are insertion/deletion 

(i.e. indel) cost where a single value is specified to reflect how many insertions/de-

letions need to be made so that the two sequences match. But there is also the option 

of substitution cost matrix which a square matrix of s x s dimensions, where s is the 

number of neighborhood types. So each (i,j) matrix element is the cost of substitut-

ing neighborhood type i with neighborhood type j. These elements called transition 

rates and are calculated based on the probability of transitioning from one neigh-

borhood type to another. Then the optimal matching can be performed (i.e. measur-

ing the similarity of those sequences) which is the sum of those rates for a given 

sequence.  

Step 3. A key innovation of this study is the scalability of the developed frame-

work to build and analyze sequences of neighborhood change. The calculation of 

dissimilarity between individual sequences is computationally intensive as it in-

volves the use of substitution operations for each pair sequence in the dataset which 

increase proportionally with the number of spatial units and time points in the anal-

ysis. 
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The analysis of this paper involves the calculation of a dissimilarity matrix for 

16,035 grids over 5 years; that is, a resulting matrix of 257,121,225 entries. In order 

to provide a scalable analytical framework, the unique sequences were identified 

and their frequencies were calculated and stored in different vectors. Then the 

unique (1,112) individual sequences used to compute the dissimilarity matrix of 

1,236,544 entries. The idea behind this is that the dissimilarity matrix between all 

pairs of sequences has identical pairs (i.e. many grids that display the same transi-

tion, for example, from affluent to thriving neighborhoods). So, if only one pair is 

considered for the calculation and then it is expanded by the number of similar pairs 

in the dataset makes the computation less intensive. The use of the proposed ap-

proach can be applied to very large datasets for which the resulting dissimilarity 

matrix can go beyond the storage memory limits of R. 

Timing of transitions between neighborhood types was considered a critical ele-

ment for the definition of sequences as it helps discriminating between transitions 

resulting from structural economic changes and localized socio-economic shifts. To 

this end, substitution costs have been used capturing the temporal variation of tran-

sitions rather than indel costs which is static cost measure. The substitution cost 

between neighborhood types i and j for i  j is computed by: 

 4 − 𝑝(𝑖 | 𝑗) −  𝑝(𝑗 | 𝑖) (1) 

 

Where p(i | j) is the transition rate between states i and j between neighborhood 

types i and j. This probability is assumed to be dynamic reflecting the year to year 

transition between neighborhood types. So, a dynamic method of optimal matching 

was used which updates the substitution costs year to year to calculate distances 

between individual sequences. This method is referred as to Dynamic Hamming 

method in the literature (Lesnard, 2009).  

Stage 4. The last stage involves producing a typology of neighborhood trajecto-

ries using the resulting sequence dissimilarity matrix from Stage 3. Partitioning 

Around Medoids (PAM) clustering method was selected for classifying sequences. 

It was preferred over hierarchical clustering methods because, although the PAM 

algorithm is similar to k-means, it is considered more robust than k-means as it can 

accept a dissimilarity matrix as an index and its goal is to minimize the sum of 

dissimilarities compared to k-means that it tries to minimize the sum of squared 

Euclidean distances (Gentle et al., 1991). The PAM is based on finding k repre-

sentative objects or medoids among the observations and then k clusters (that should 

be defined as in k-means) are created to assign each observation to its nearest me-

doid. 

As described in Stage 3 two vectors were created. One stores the dissimilarity 

matrix of the unique sequences and the other stores its sequence’s frequency. The 

last issue that had to be tackled was the use of both vectors in a clustering algorithm, 

avoiding the creation of ‘prototype’ clusters but considering the whole dataset. In 

some hierarchical clustering methods (i.e. single linkage and complete linkage), the 
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frequency of unique sequences does not affect the resulting partition of the data. 

But in the PAM algorithm, the number of observations in the matrix plays a role in 

the final result as it attempts to minimize the distance between each data point. 

Large datasets (e.g. of 47,000) result in a dissimilarity matrix of large dimensions 

(e.g. more than 2 billion), which cannot be handled in R where the storage memory 

limit is 2.1 billion.  

An approach to overcome this problem is data weighting. We applied a weighted 

version of the PAM clustering algorithm. The functionality of weighted PAM clus-

tering method is the same as using the usual PAM clustering but reduces the amount 

of memory needed to perform calculations over large datasets. To implement this 

method, a vector of the number of each unique sequence in the dataset was created 

and then used to weight dissimilarity matrix of these sequences when applying the 

PAM clustering method. In this way, the complete dataset (i.e. 16,035 sequences) 

was used in a scalable, faster and less computationally intense process. To imple-

ment this approach, we used the R ‘WeightedCluster’ package developed by 

(Studer, 2013). The standard objective function for PAM is: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑑(𝑖, 𝑗)𝑧𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2) 

 

 

Where d is the dissimilarity between each pair of sequences and z is a variable 

ensuring that only the dissimilarity between entities from the same cluster is com-

puted. 

For the Weighted version of PAM, the following function is minimized: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑤𝑖𝑗𝑑(𝑖, 𝑗)𝑧𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (3) 

 

The term w is the weight parameter, which in this study is the frequency of each 

unique sequence. Consequently, in the weighted PAM method the dimensionality 

of the full dissimilarity matrix is reduced by creating a vector that contains the fre-

quency of each unique sequence. 

At this point it is worth briefly mentioning two alternative approaches considered 

for Stage 2 and their limitations. The first approach was cluster creation for each 

year individually and matching these for the 50-year period. This approach would 

not explicitly consider the temporality of neighborhood differences that may occur 

overtime (i.e. a cluster type may include observations for specific years which show 

the changes of neighborhood processes between Census years). The other drawback 

of this approach is that requires manual matching of the clusters for each period to 

make them comparable overtime. The second option considered was the high 
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dimensional space of the dataset to be reduced into two or three dimensions using 

Principal Component Analysis (PCA) (Mardia et al., 1979) or t-Distributed Sto-

chastic Neighbor Embedding (t-SNE) (Van Der Maaten and Hinton, 2008) and then 

perform clustering analysis. While the results of these two alternative methods did 

not drastically diverge from the proposed method, both options were rejected 

mainly due to the fact that the dimensionality reduction is ‘smoothing’ the data 

whilst preserving trends but also missing some information. To be more precise 

PCA finds a linear transformation of the data to minimize the sum of squared errors 

between the pairwise distances of high dimensional space to their low dimensional, 

while t-SNE is the most favorable technique for data visualization but it is unclear 

how it performs when used for other tasks (i.e. such as clustering) (Van Der Maaten 

and Hinton, 2008). For the purposes of this study data differentiation consider very 

important and was decided to keep the full dimensions of the dataset. 

3 Results and discussion 

This section illustrates the results of Stages 2, 3 and 4 described in section 2 in 

sequential order, starting by the geodemographic classification before discussing 

the sequence analysis and clustering of sequences to create representative neighbor-

hood trajectories. 

3.1 Temporal clustering 

As described in Section 3, k-means clustering was performed to create a geo-

demographic classification of neighborhoods, considering a 40-year period from 

1971 to 2011 for Great Britain. Twenty-one variables were included in the analysis, 

covering demographic, socio-economic and housing characteristics. Eight clusters 

were returned as the optimal solution.  

 

Table 2 & Figure 2 report the mean variable values for each cluster. The name 

and key features of the eight neighborhood types are described below and displayed 

in Figure 3: 

• Affluent: These are the most affluent areas with most of the population belonging 

to the managerial socio-economic group with high proportion of population from 

abroad (10%). These areas are usually suburban and their populations mainly 

travel to work via private cars (53%). Public transport mode to work is used by 

25% reflecting good public transport connections to workplace areas. These ar-

eas also have a high proportion of students (4.5%) and owner-occupied houses 

(76%). 

• Mixed workers suburban: This group of neighborhoods is characterized by a 

mixture of people in manual (46%) and non-manual (43%) socio-economic 
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groups with only a few students (3%). Their residents are largely UK and Re-

public of Ireland born (96%). There is high proportion of people travel to work 

with private mode of transport (70%) and finally high proportion of owner-oc-

cupied housing (70%).  

• Families in council rent: These neighborhoods are predominantly occupied by 

UK and Republic of Ireland born people (96%). There is high unemployment 

rate (11%), with high proportion of people staying in council rented housing 

(77%). Finally, well connected or close to workplace areas as people use public 

(36%) and active mode of travel to work (22%). 

• Blue collar families: These areas characterized by high proportion of manual 

workers (66%) owing a house (41%) that are predominantly UK and Republic 

of Ireland born (94%). Close to workplace areas with high proportion of people 

using active mode to travel to work (38%). This cluster appears in the earlier 

census years. 

• Thriving suburban: These neighborhoods are quite similar to the Affluent areas 

with the difference of less people belonging to managerial socio-economic 

Group (18%) and higher ratio of owner-occupied houses (87%). Mainly using 

private mode to travel to work (74%) and low vacancy rate (4%) which shows 

that the demand for housing is high. 

• Older striving: These neighborhoods are occupied by older people. Mainly man-

ual workers (52%) but with few non-manual (38%) occupations too. There is 

high vacancy rate (7%) which represents low demand and thus people can afford 

to buy properties in these areas. The name of the cluster is Older striving but 

there are people from higher socio-economic Groups (i.e. non-manual and man-

agerial occupations) living in these areas due to the affordability of housing. 

• Struggling: Young and middle-aged families UK and Republic of Ireland born 

(96%) with high unemployment rate (10%) and an even split of people living in 

council rented (47%) or owner-occupied housing (46%). These neighbourhoods 

consist of -mainly- manual workers (56%) with few people in non-manual (37%) 

occupations.  

• Multicultural urban: The two main characteristics of these neighborhoods are the 

high proportion of young people (29%) and high ratio of people born abroad 

(30%), which makes them highly ethnically diverse. There is a mixture of socio-

economic Groups and high ratio of people relying on public (40%) or private 

(34%) transport to travel to work. It is also worth mentioning the high vacancy 

rate (7%) of these locations which are predominantly in city centers of urban 

areas, not the most ‘desired’ locations for housing in Great Britain. 

 

 

Table 2 Mean values of each variable by cluster 

 Affluent 

Mixed 

workers 

suburban 

Families 

in council 

rent 

Blue col-

lar fami-

lies 

Thriving 

suburban 

Older 

striving Struggling 

Multicul-

tural ur-

ban 

Children % 18.5% 19.4% 24.8% 23.0% 18.6% 20.1% 21.5% 17.7% 
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Middle 

aged % 21.1% 21.3% 18.1% 16.8% 21.9% 18.8% 20.0% 22.1% 

Retired % 16.3% 16.4% 11.7% 14.7% 16.7% 17.1% 14.8% 11.6% 

Young Per-

sons % 20.2% 19.2% 22.8% 21.5% 17.1% 21.0% 21.3% 29.2% 

Older adults 

% 23.9% 23.8% 22.6% 24.0% 25.7% 23.0% 22.5% 19.3% 

UK/ROI 

born % 89.8% 96.0% 96.3% 94.3% 95.8% 94.6% 96.1% 70.5% 

European 

born % 3.7% 1.4% 0.8% 1.2% 1.5% 1.4% 1.1% 8.5% 

Rest of 

World % 6.6% 2.5% 2.9% 4.5% 2.8% 4.0% 2.8% 20.9% 

Unem-

ployed % 4.7% 6.3% 11.2% 5.7% 3.9% 6.3% 9.7% 8.7% 

Students % 4.5% 3.3% 1.8% 0.7% 3.7% 2.3% 3.0% 8.8% 

Owner oc-

cupied 

housing % 75.9% 69.5% 17.4% 41.2% 86.7% 66.5% 46.3% 43.4% 

Private 

rented hous-

ing % 12.9% 7.9% 5.6% 28.2% 6.6% 16.6% 6.6% 31.5% 

Council 

rented hous-

ing % 11.2% 22.6% 77.1% 30.5% 6.7% 16.9% 47.1% 25.0% 

Managerial 

SEG % 20.1% 11.2% 5.4% 6.7% 18.3% 10.2% 8.0% 18.7% 

Non-Man-

ual SEG % 52.7% 42.9% 31.4% 27.7% 51.6% 38.2% 36.7% 46.9% 

Manual & 

Others SEG 

% 27.2% 45.9% 63.2% 65.6% 30.1% 51.6% 55.4% 34.4% 

Private 

TTWM % 53.0% 69.8% 36.9% 30.4% 74.3% 48.2% 57.9% 33.6% 

Public 

transport 

TTWM % 26.3% 10.4% 35.7% 22.7% 9.1% 15.3% 18.3% 39.7% 

Active 

TTWM % 13.4% 13.4% 22.3% 38.4% 9.4% 28.3% 18.1% 19.5% 

Other 

TTWM % 7.3% 6.3% 5.1% 8.6% 7.2% 8.1% 5.7% 7.2% 

Vacancy 

rate % 4.9% 4.1% 4.8% 6.2% 3.9% 6.9% 4.4% 7.0% 
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Figure 2 Representative variables across neighborhood type 

This classification can be used to analyze spatio-temporal changes of neighbor-

hood types. For example, a marked decrease in the number of blue collar families 

and families in council rent can be observed across Great Britain over the 40 -year 

period. Liverpool emerges a prominent example changing from predominantly pink 

and purple in 1971 to red and yellow in 2011 in Figure 3. The number of multicul-

tural urban neighborhoods have significantly increased from 1971, especially be-

tween 2001 and 2011. These changes at the neighborhood level reflect structural 
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shifts in the population and economy. Key structural changes emerging from the 

observed patterns are: 

• The shrinkage of manual jobs in Great Britain after 1970s; 

• The ethnic diversification of urban centers in the 2001 and 2011.  
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Figure 3 Temporal neighborhood clusters in Great Britain 



17 

 

3.2 Sequence analysis 

Using sequence analysis, a more comprehensive understanding of spatiotem-

poral process can be achieved by examining the occurrence, timing, duration and 

order of transitions between neighborhood types. Figure 4 displays the year-to-year 

substitution cost matrix to define the sequence of a neighborhood. It shows that 

lower substitution costs for earlier years, reflecting the higher degree of neighbor-

hood transformation from 2001 onwards (full description of the substitution costs 

provided in the Appendix). Neighborhoods during the 1970s were more likely to 

transition between mixed workers suburban to thriving suburban.  

In addition to this, the results show that some neighborhood transitions between 

particular types are more common than others. Thus, the probability of transitioning 

between affluent and thriving suburban or blue collar families and struggling is 

higher compared to the probability of transitioning between affluent and blue collar 

families through all the decades. Yet from 2001 onwards these probabilities have 

been decreased as mentioned above. 
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Figure 4 Substitution costs from 1971 to 2011 

3.3 Sequences clustering 

The substitution costs matrices were then used, to calculate a dissimilarity matrix 

between individual sequences and derive a typology of neighborhood sequences 

using the dynamic Hamming method and weighted PAM clustering. Figure 5 dis-

plays the resulting typology of seven neighborhoods representing pathways of sta-

bility, improvement and decline across the national socio-economic hierarchy. 

Three panels of graphs are shown in Figure 5. The top panel shows individual se-

quences. Each line in this graph represents a neighborhood. Each color denotes a 
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particular type of neighborhood and the x-axis represents each census year. So, hor-

izontally each line shows the transition of a neighborhood between neighborhood 

type over time. The middle panel displays the year-specific distribution of each 

neighborhood type. The bottom panel shows the mean time remaining in each 

neighborhood type. 
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Figure 5 Neighborhood trajectories clusters 
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The name and key features of the seven main neighborhood transition patterns 

are described below and displayed in Figure 6: 

• Stable affluent neighborhoods: Areas remaining persistently affluent over 1971 

and 2011. 

• Ageing manual labor neighborhoods: Areas transitioning from being domi-

nated by blue collar families to an older striving neighborhood type. 

• Increasingly socio-economically diverse neighborhoods: Areas transitioning 

from a struggling or blue collar families type to a mixed workers suburban type. 

• Increasingly struggling home-owners neighborhoods: Areas transitioning from 

a families in council rent type to a struggling type. 

• Stable multicultural urban neighborhoods: Areas remaining multicultural in ur-

ban locations. 

• Rejuvenating neighborhoods: Areas transitioning from an older striving type to 

a mixed workers suburban type. 

• Up-warding thriving neighborhoods: Areas transitioning from an older striving 

type to, or remaining in, a thriving suburban type. 

The spatial distribution of these neighborhood trajectories varies between and 

within areas. There are areas such as Edinburgh and London suburbs that are dom-

inated by stable affluent neighborhoods, while others such as Liverpool and New-

castle have more increasingly struggling home-owners neighborhoods. Regarding 

the distribution of neighborhood trajectories within areas there are few interesting 

patterns. One example is the rejuvenating neighborhoods that are characterized by 

younger people with various socioeconomic backgrounds ‘replacing’ the older pop-

ulation in suburban areas. Another example is the upward trajectories from strug-

gling neighborhoods to more socio-economic diverse and the massive increase of 

thriving neighborhoods in suburban areas too. Lastly. stable multicultural urban ar-

eas appear in all big urban conurbations city or close to city centers. 

Finally, ageing of British population is clearly reflected in the results. Suburban 

and rural areas are largely occupied by retired and older people. Interestingly, this 

pattern has changed slightly in the last decade, reflecting more inclusive communi-

ties both socio-economically and ethnically. 
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Figure 6 Neighborhood trajectories map 
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4 Conclusion 

This study proposed a novel scalable analytical framework for spatiotemporal 

data analysis. It does so by (1) producing a temporally consistent spatial framework 

and geodemographic classification based on 1km2 grids; (2) offering the potential 

to perform analysis at particular administrative, functional or purpose-built areas; 

(3) implementing a weighted approach to measure dissimilarity between individual 

neighborhood trajectories; and, (4) integrating multiple approaches (population grid 

surface estimation, clustering analysis and optimal matching) to analyze long-term 

change. 

The proposed spatiotemporal analytical approach offers a framework within 

which the evolution of complex demographic and socio-economic processes can be 

effectively captured and enables understanding of the ways in which past conditions 

influence present and future transitional changes. Unlike commonly used longitu-

dinal approaches such as event history analysis, which focuses on a single transition, 

the proposed sequence analysis provides a more comprehensive representation of 

present and future changes by examining the chronological sequence of events. 

Such approach enables to unravel key dimensions of changing socio-economic pro-

cesses in terms of their incidence, prevalence, duration, timing and sequencing – 

which can serve as useful guidance for policy development. 

The proposed approach offers the potential to expand understanding on key de-

mographic and socio-economic processes. A key area for future research is the anal-

ysis of trajectories of socio-inequality examining at various levels of spatial aggre-

gation and determining the extent of intra-regional and inter-regional inequalities. 

Such analysis can guide policy intervention by identifying spatial concentration of 

poverty and areas undergoing continuous economic decline. Another area of future 

investigation is the analysis of population change by identifying areas experiencing 

rapid and continuous population loss or population ageing in the light of sustained 

low patterns of fertility and signs of declining life expectancy (Green et al., 2017).  
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Appendix 

Substitution cost matrices 

1971 substitution costs 

 Affluent Blue col-

lar fami-

lies 

Families in 

council 

rent 

Mixed 

workers 

suburban 

Multicul-

tural urban 

Older 

striving 

Struggling Thriving 

suburban 

Affluent 0.00 3.96 3.97 3.81 3.65 3.70 3.87 3.24 

Blue collar 

families 3.96 0.00 3.78 3.83 3.92 3.39 3.38 3.97 

Families in 

council rent 3.97 3.78 0.00 3.92 3.93 3.97 3.33 3.95 

Mixed 

workers 

suburban 3.81 3.83 3.92 0.00 4.00 3.36 3.34 2.87 

Multicul-

tural urban 3.65 3.92 3.93 4.00 0.00 3.93 3.94 3.99 

Older striv-

ing 3.70 3.39 3.97 3.36 3.93 0.00 3.75 3.60 

Struggling 3.87 3.38 3.33 3.34 3.94 3.75 0.00 3.78 

Thriving 

suburban 3.24 3.97 3.95 2.87 3.99 3.60 3.78 0.00 

 

 

 

1981 substitution costs 

 Affluent Blue col-

lar fami-

lies 

Families 

in council 

rent 

Mixed 

workers 

suburban 

Multicul-

tural ur-

ban 

Older 

striving 

Struggling Thriving 

suburban 

Affluent 0.00 3.97 3.98 3.82 3.58 3.75 3.91 3.23 

Blue collar 

families 3.97 0.00 3.87 3.81 3.93 3.37 3.36 3.96 

Families in 

council 

rent 3.98 3.87 0.00 3.91 3.94 3.98 3.06 3.97 

Mixed 

workers 

suburban 3.82 3.81 3.91 0.00 3.98 3.29 3.15 2.99 

Multicul-

tural urban 3.58 3.93 3.94 3.98 0.00 3.89 3.95 3.99 

Older striv-

ing 3.75 3.37 3.98 3.29 3.89 0.00 3.80 3.67 

Struggling 3.91 3.36 3.06 3.15 3.95 3.80 0.00 3.85 

Thriving 

suburban 3.23 3.96 3.97 2.99 3.99 3.67 3.85 0.00 
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1991 substitution costs 

 Affluent Blue col-

lar fami-

lies 

Families 

in council 

rent 

Mixed 

workers 

suburban 

Multicul-

tural ur-

ban 

Older 

striving 

Struggling Thriving 

suburban 

Affluent 0.00 3.97 4.00 3.84 3.66 3.84 3.96 3.45 

Blue collar 

families 3.97 0.00 3.95 3.75 3.87 3.45 3.33 3.94 

Families in 

council 

rent 4.00 3.95 0.00 3.93 3.90 4.00 2.79 3.99 

Mixed 

workers 

suburban 3.84 3.75 3.93 0.00 3.98 3.26 3.11 3.28 

Multicul-

tural urban 3.66 3.87 3.90 3.98 0.00 3.90 3.95 3.98 

Older striv-

ing 3.84 3.45 4.00 3.26 3.90 0.00 3.88 3.81 

Struggling 3.96 3.33 2.79 3.11 3.95 3.88 0.00 3.95 

Thriving 

suburban 3.45 3.94 3.99 3.28 3.98 3.81 3.95 0.00 

 
 

2001 substitution costs 

 Affluent Blue col-

lar fami-

lies 

Families 

in council 

rent 

Mixed 

workers 

suburban 

Multicul-

tural ur-

ban 

Older 

striving 

Struggling Thriving 

suburban 

Affluent 0.00 3.99 4.00 3.89 3.64 3.90 3.98 3.74 

Blue collar 

families 3.99 0.00 3.96 3.83 3.40 3.75 3.63 3.96 

Families in 

council 

rent 4.00 3.96 0.00 3.97 3.64 4.00 3.08 4.00 

Mixed 

workers 

suburban 3.89 3.83 3.97 0.00 3.99 3.49 3.37 3.59 

Multicul-

tural urban 3.64 3.40 3.64 3.99 0.00 3.80 3.92 3.99 

Older striv-

ing 3.90 3.75 4.00 3.49 3.80 0.00 3.92 3.93 

Struggling 3.98 3.63 3.08 3.37 3.92 3.92 0.00 3.99 

Thriving 

suburban 3.74 3.96 4.00 3.59 3.99 3.93 3.99 0.00 

 



28 

 

2011 substitution costs 

 Affluent Blue col-

lar fami-

lies 

Families 

in council 

rent 

Mixed 

workers 

suburban 

Multicul-

tural ur-

ban 

Older 

striving 

Struggling Thriving 

suburban 

Affluent 0.00 4.00 4.00 3.93 3.46 3.93 4.00 3.81 

Blue collar 

families 4.00 0.00 3.98 3.95 3.00 3.96 3.94 4.00 

Families in 

council 

rent 4.00 3.98 0.00 3.99 3.44 4.00 3.36 4.00 

Mixed 

workers 

suburban 3.93 3.95 3.99 0.00 3.98 3.68 3.49 3.73 

Multicul-

tural urban 3.46 3.00 3.44 3.98 0.00 3.65 3.89 4.00 

Older striv-

ing 3.93 3.96 4.00 3.68 3.65 0.00 3.93 3.99 

Struggling 4.00 3.94 3.36 3.49 3.89 3.93 0.00 4.00 

Thriving 

suburban 3.81 4.00 4.00 3.73 4.00 3.99 4.00 0.00 

 

 


