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Abstract— For functional testing based on the input domain 

of a functionality, parameters and their values are identified and 

a test suite is generated using a criterion exercising combinations 

of those parameters and values. Since software systems are large, 

resulting in large numbers of parameters and values, a technique 

based on combinatorics called Combinatorial Testing (CT) is 

used to automate the process of creating those combinations. CT 

is typically performed with the help of combinatorial objects 

called Covering Arrays. The goal of the present work is to 

determine available algorithms/tools for generating a 

combinatorial test suite. We tried to be as complete as possible by 

using a precise protocol for selecting papers describing those 

algorithms/tools. The 75 algorithms/tools we identified are then 

categorized on the basis of different comparison criteria, 

including: the test suite generation technique, the support for 

selection (combination) criteria, mixed covering array, the 

strength of coverage, and the support for constraints between 

parameters. Results can be of interest to researchers or software 

companies who are looking for a CT algorithm/tool suitable for 

their needs.  

Keywords— Combinatorial testing, Covering arrays, strength of 

testing, algorithms, Category-partition 

I. INTRODUCTION 

Software testing is the process of ensuring a software 
under test (SUT) performs as intended. Software testing 
techniques can be broadly categorized as black box, when test 
case construction focuses on functionality, or white box, when 
test case construction uses the internal logic and structure of 
the code. In this paper we focus on black-box testing, and 
more specifically on testing from a plain language 
specifications, which requires the identification characteristics 
of input and output parameters[1] . Various input parameter 
modeling and selection techniques have been suggested in 
literature (e.g.,[2-6]), and we primarily consider the Category 
Partition method [6]. 

Category partitioning begins by identifying the parameters 
and environment variables of functional subsystems. 
Parameters are the inputs to the functional subsystems either 
by the user or some other functional unit. Environment 
variables are factors that may impact behaviour. These 
parameters and environment variables are then envisioned into 
categories, which are characteristics of the parameter (or 
environment variable) that are deemed important from a 
testing point of view. Each characteristic leads to the 
definition of so-called choices, which are equivalent classes, 

possibly using boundary value analysis, splitting the domain 
of values (implicitly) defined by the characteristic. Constraints 
can then be used to specify for instance that some choices 
from two different categories should always be used together, 
can never be used together, or can be used together under 
certain condition. The choices (at most one choice per 
category) are then combined to form test frames according to a 
selection criterion, while satisfying constraints. The test 
frames are then provided actual values to produce test cases: 
one test frame typically becomes one test case, although it is 
possible (though costly) to identify several sets of test inputs 
and therefore several test cases for a single test frame. 

Four main selection criteria to combine choices have been 
defined [1]. With the Each Choice criterion, each choice in 
each category must appear in at least one test frame. With the 
Pair-wise criterion, an adequate test suite exercises each 
possible (according to constraints) pair of choices from 
different categories at least once. With the Base Choice 
criterion, a base choice is selected for each category. This is 
the most “important” choice for the category that is to be 
tested more often than other choices. A first test frame is 
created by using all the base choices, i.e., the base choice for 
each category. Other test frames are created by holding all but 
one base choice constant and using each non-base choice once 
for the one non-constant choice, while satisfying constraints. 
The All combinations (or N-wise) criterion ensures that all the 
possible (according to constraints) combinations of choices 
are exercised by the set of test frames.  

In order to use these selection criteria when one has a large 
number of parameters and choices, a technique is required 
which can effectively and efficiently make combinations. A 
widely used technique for this task is Combinational Testing 
(CT), rooted in the mathematical concept of combinatorics 
and which leads to the construction of .combinatorial objects 
called Orthogonal Arrays (OA) or Covering Arrays (CA). CT 
can be broadly applied at two levels [7]: At the configuration 
level, system configurations are considered as parameters for 
testing e.g. operating systems, browsers, network protocols; 
At the input parameter level, the actual inputs to the system or 
subsystem are considered either in terms of actual values or in 
terms of partition of the input space as defined by equivalence 
partitioning.  

The reader will notice we need two different 
terminologies. With Category partition, parameters are 
characterized by categories, which are split into choices, and 
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choices need to be combined (one choice per category) to 
form test frames / test cases. In the CT domain, parameters 
have values and one combines those values (one value per 
parameter) to form test cases. We can establish a mapping 
between the two terminologies: categories and choices 
(Category partition) map to parameters and values (CT). 
Unless otherwise specified, we will use the category/choice 
terms when the discussion is on category partition, and we 
will use the parameter/value terms when the discussion is on 
CT. We may need to mix terms, though without loss of clarity 
when one remembers the mapping. 

A CA or an OA is a matrix in which columns represent the 
parameters and rows corresponds to the test frames. There are 
few differences in the features of OA and CA but for 
application in category partition, a CA is typically preferred 
for a number of reasons, including: an OA assumes that all the 
categories have the same number of choices, which is rarely 
the case in practice [8].  

Specifically, in the context of category partition, a test 
engineer would be looking for a CA generation solution that 
could support one or more of the following: different 
categories typically have different number of choices; choices 
are typically associated with constraints to enforce or prevent 
some combinations, or to ensure that a choice only appears 
once in the set of test frames; different selection criteria (see 
previous discussion) can be considered to generate 
combinations of choices. Contrary to other studies that 
compare the effectiveness of CA generation technologies at 
producing the least number of test cases, we are interested in 
functionalities of such technologies. We believe this 
comparison will help researchers and practitioners to analyse 
the tools and algorithms befitting to their needs.   

As further discussed below in section II, our search for 
such information was not successful. We therefore decided to 
systematically identify and review existing CA generation 
technologies and compare them according to the above-
mentioned objectives (among other things).  

The rest of the paper is structured as follows. Section II 
discusses related work. Section III discusses the protocol we 
followed to identify algorithms/tools generating covering 
arrays, while section IV discusses the comparison criteria we 
are interested in. Sections V and VI present results. Section 
VII discusses threats to the validity of our study. We conclude 
in section VIII. 

II. RELATED WORK 

Various types of CAs have been defined [9]. A (standard) 
Covering Array is typically defined as an array of N rows and 
p columns, N being the number of test cases and p the number 
of parameters, each one having v possible values, such that for 
every selection of t columns (t being called the strength of the 
array) all possible t-tuples of v values appear within the rows 
of the array [10]. A Mixed Covering Array (MCA) allows 
parameters to have various numbers of values [10]. A Variable 
Strength Covering Array (VSCA) ensures several strength 
values are achieved for different set of parameters [10]. A 
Constraint Covering Array (CCA) accounts for forbidden 
combinations of values, a.k.a., forbidden tuples [11]. A 

sequence covering array [12] accounts for sequence in which 
parameter values must be provided to the system under test, 
which is especially relevant when testing GUI-based software. 
For obvious reasons, these are the covering arrays we are 
mostly interested in, for use with category partition. 

Other covering arrays include Error Locating Arrays [13], 
Test Case Aware Covering arrays [14], Cost aware covering 
arrays [9, 15], Incremental Covering arrays [16] and l-Biased 
Covering array [17]. 

We found papers [18, 19] which surveyed methods for 
generating covering arrays. These papers surveyed covering 
arrays generation techniques on the basis of size and time of 
generation of covering arrays. They however did not discuss 
extensively the tools or algorithms which supported a specific 
technique, the coverage strength or selection criteria. Other 
survey (e.g., [8, 20-23]) focussed on the techniques but did not 
discuss all the tools and algorithms supporting those 
techniques in detail. For instance they do not discuss support 
for constraints or higher coverage strength which is essential 
in our category partition context. The nearest work to our 
survey is by Rahman et al. [22], who discussed various 
techniques, their strengths and weaknesses along with the 
coverage strengths they support. They also mentioned if a 
specific technique supports constraints. They did not 
extensively mention the tools or algorithms supporting a 
specific technique, the constraint handling and representation 
technique adopted by a tool/algorithm, the selection criteria 
supported by a tool. In other words we intend to provide a 
more complete picture than what can be found in the literature 
to date. There is only one research work [11], to the best of 
our knowledge, which discusses the constraint handling 
support in tools/algorithms for nine tools whereas we discuss 
32 such tools.  

To summarize, none of the research work, to the best of 
our knowledge, surveys the tools and algorithms as 
extensively as what we report in this paper or compare them 
on the basis of comparison criteria which we outlined earlier.  

III. SELECTION PROTOCOL 

We did not strictly follow established guidelines [24] to 
conduct a systematic mapping study [25], mostly deviating 
from those guidelines in the way we identified relevant 
publications since we did not rely on online databases such as 
IEEE eXplore. We nevertheless followed the SMS principles 
by considering research questions (section III.A), establishing 
a precise procedure to identify relevant publications (section 
III.B), clearly stating publication inclusion and exclusion 
criteria (sections III.C and III.D), and by defining a 
publication comparison framework (section IV). This way, we 
intend to be as systematic and reproducible as possible and we 
therefore dedicate a fair amount of space in this paper to those 
details. 

A. Research questions 

Recall that we are interested in using a CA generation 
technology to produce test frames in the context of category 
partition testing technique. We therefore identified the 
following research questions: 



 

 

 

 

RQ1: What are the available tools/algorithms for 
generating combinatorial tests? 

RQ2: Which techniques, e.g., based on mathematical 
construct or based on a meta-heuristic search, are used for 
generating covering arrays for combinatorial testing? 

RQ3: Which selection criteria (to generate test frames, i.e., 
combinations of choices) does each tool/algorithm support? 

RQ4: What is the maximum coverage strength supported 
by each tool/algorithm? 

RQ5: Which tools support constraints and how do they 
represent and handle them? 

RQ6: Which tools support mixed covering arrays? 

B. Selection procedure  

The selection procedure we followed started from survey 
papers [8, 18-23], which gave a fairly good idea regarding the 
techniques used for generating combinational tests (Covering 
Arrays). But since our objective was to search for available 
tools/algorithms which support each specific technique, we 
first looked at the tools/algorithms mentioned in those 
surveys. We searched and studied literature on these 
tools/algorithms one by one. We extensively reviewed the 
related work and result sections of these papers, searching for 
new tools/algorithms being compared to the first list of 
tools/algorithms. We repeated this process multiple times, 
recursively, until no new tool/algorithm was identified.  

Further, to ensure that our list was as complete as possible, 
we also searched for tools/algorithms in the papers where the 
survey papers were cited. We further reviewed the thesis of 
various researchers [17, 26-28], technical reports [29], books 
[7], websites (e.g., www.pairwise.org) and feature documents 
of various tools (e.g., ACTS, PICT).  

C. Excluded papers 

During the selection procedure we identified many studies 
which proposed an improvement over another existing 
algorithms, such as lowering the bound of CAs, but these 
papers did not have an implementation or much experimental 
results of comparison with other algorithms, and were not 
changing the essence of the algorithm to such an extent that 
our classification of the new algorithm would differ from that 
of the original. Hence these studies were excluded. 
Tools/algorithms based on Orthogonal Arrays (e.g., OATS, 
rdExpert, reducearray2, reducearray3) were excluded because 
of their limitations mentioned in the Introduction. Papers on 
other input parameter modeling technique e.g. classification 
trees (CTE_XL), Combinatorial testing for Software Product 
lines, Grammar based combinatorial testing, testing of 
compilers were also excluded. Algorithms/tools supporting 
prioritization of the values or parameters were also excluded. 
We have focused on literature only in English. 

D. Included papers 

We have included tools and algorithms which generate 
combinatorial test suite. We included tools/algorithms which 
support input/output relationships, distance based techniques 
for the selection of parameters and values. We have made an 

exception here regarding the selection of an algorithm named 
Distance Based Technique [30]. This work does not perform 
comparison with other tools but we have included it in our 
survey because it supports three selection criteria, coverage 
strength of 5 and is the only distance based technique which 
supports constraints. The basis of this inclusion is the variety 
in results.  

The AETG’s Web service [31] is based on the algorithm 
proposed by Cohen et al. [32] which was further improved by 
Cohen in [26]. For our review we will be considering the 
commercial tool AETG Web Service which is available 
online. ACTS [33] implements several combinatorial test 
generations algorithms like IPOG and IPOD [34],  IPOF [35], 
IPOF2 [35], and IPOG-C [36] which uses constraints, all 
being rooted in the In parameter Order (IPO) algorithm [37]. 
We decided to consider ACTS itself rather than all these 
improvements separately. 

IV. COMPARISON FRAMEWORK 

The comparison framework consists of various comparison 
criteria, derived from our research questions, we will use for 
comparing the tools and algorithms we selected (section III).  

A. Techniques for the generation of covering array  

Various techniques for generating covering arrays for CT 
have been proposed in literature. The construction of CAs are 
usually performed in two steps [7]. In the first step a set 
containing all the possible t-wise combinations is generated. 
In the second step the test suite is generated to cover all the 
combinations obtained in the first step. Both steps collectively 
are called the technique for test suite generation. Researchers 
have suggested various paradigms for the characterization of 
the test suite generation techniques. Grindal et al. [8] 
characterize techniques on the basis of the determinism of the 
generated output. They broadly categorized techniques as 
deterministic and non-deterministic and further into heuristic, 
artificial life based, iterative (test suite generated in iterative 
steps) and instant (test suite generated in one step) depending 
on the type of algorithm being used and how the test suite is 
generated. In this classification the categories however are not 
disjoint. For instance they have classified covering arrays as 
deterministic although an algorithm generating a CA does not 
necessarily produce deterministic results when they are 
generated using Simulated Annealing [38].  

Nie and Leung [20] performed an extensive survey and 
provided another classification scheme which classified the 
covering array generation techniques into greedy algorithms, 
heuristic search, mathematical methods and random method. It 
is interesting to note that, as reported by Nie and Leung, a 
technique may fall into more than one category:  e.g., the 
hybrid techniques of Bryce and Charles [39] combines a 
heuristic search and a greedy algorithm to benefit from both 
techniques. We extended this taxonomy in this paper. 

B. Test generation strategy  

The algorithms for combinatorial test suite generation can 
be broadly categorized into Test based generation and 
Parameter based generation. An algorithm uses either a test 
case or a parameter as the building block for the generation of 
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the test suite. In test-based generation, one test is build at a 
time such that the test covers as many t-way combinations as 
possible and hence spans over all the parameters. Automatic 
Test Case Generator (AETG) [32] falls in this strategy. 
Parameter based generation, begins with t parameters, makes a 
test suite for t-wise interaction and then adds more parameters 
to it. While adding new parameters new test (rows) are also 
added, often greedily, so that each addition leads to maximum 
t-way interactions in the extended set of parameters. This is 
the strategy of In Parameter Order [40]. The Algebraic 
Techniques which follow a recursive approach also use a 
parameter based strategy. The building block in a recursive 
algebraic technique is a smaller covering array, which is a 
group of parameters, and the larger arrays are obtained from 
smaller arrays [41]. 

C. Selection Criteria 

In a typical situation, exercising all the possible 
combinations of parameter values, i.e., t-way coverage for a 
problem with t parameters, is simply not practical or feasible 
because of the large set of parameters and values. Hence, it is 
important to select the parameters and values strategically so 
that their combinations can lead to a manageable set of test 
cases. In software testing, this is typically achieved thanks to 
test selection criteria, four of which have already been 
mentioned in the context of category partition: Each Choice, 
Pair-Wise, Base Choice and All Combinations.  

Some authors have suggested other criteria [1, 8] in the CT 
domain:  

 Uniform Strength Interaction or t-wise: This criterion 
requires that any combination of values belonging to t 
parameters should be combined at least once in the test 
suite. Here all the parameters are supposed to be 
uniformly integrated with a constant value t [42]. The 
Pair wise criterion previously mentioned corresponds to 
a uniform strength of 2. 

 Variable strength Interaction or mixed strength 
interaction: This is an extension to the t-wise criterion 
that requires t-wise interaction among a subset of 
parameters and q-wise interaction among the remaining 
parameters [43]. 

 Input output based interaction: Instead of exercising 
interactions of the complete set of parameters, this 
criterion is to split the set of parameters into (possibly 
overlapping) subsets that each contain the parameters 
that impact the value of one output parameter [44]; a 
selection criterion like the ones previously discussed (the 
authors use the all combinations criterion but another 
criterion could be used) can then be used on each subset 
of parameters and results need to be combined to obtain 
complete test cases. 

 Distance based criterion: the goal of the criterion is to 
select combinations of parameter values, i.e., test cases, 
that are as diverse as possible, diversity being measured 
as the distance between those test cases, for instance 
using the Hamming distance [3]. 

 Random input criterion: This criterion selects a randomly 
chosen number of test cases and each test case is a 
randomly selection of parameter values. 

 Although reporting on experimental work involving those 
criteria is not the purpose of this paper, we nevertheless would 
like to mention a few results. Grindal et al [45] observed that 
the Each Choice criterion supplied unpredictable results so 
much so that they were not very useful to the testers. Because 
of their nature, base choice and input output based interaction 
were able to detect different types of faults as compared to 
other criteria. Base Choice was observed to give better fault 
detection results when there were a limited number of choices 
per category that could be considered base choices; when this 
was not the case Pair-Wise gave better results. Othman et al. 
[46] showed that Input output based parameter interaction 
gave better results in terms of cost (i.e., number of test cases) 
and ability to find faults than uniform and variable strength 
interaction. Others have found that the presence of constraints 
between choices heavily impacts the use of those criteria, 
including Base choice which, in some cases, does not exercise 
every single choice [47]. All these authors unanimously argue 
that it is difficult to generalize those results as they largely 
depend on the system under test.  

D. Coverage Strength Support 

Strength support is an important characteristic for the 
comparison of tools or algorithms producing CAs. The 
intuition, confirmed experimentally, is that the faults are 
detected when parameters interact. Studies [7] have shown 
that 100% fault detection can be achieved by a maximum of 4-
wise to 6-wise interaction. Other studies found that pair-wise 
performs better than higher strength values are is therefore 
more cost-effective. Identifying the strength of a 
tool/algorithm is therefore important. 

E. Constraint Support 

Constraints are limiting the construction of a CA by 
forbidding some combinations. One can distinguish between 
environment constraints and system constraints [7]. 
Environment constraints are related to the configurations of 
the system, e.g., Linux OS can never be combined with 
Internet Explorer. System constraints on the other hand are 
constraints on the system, e.g., one user cannot select a value 
less than 10. System constraints can also be used to test the 
robustness of the system, e.g., behaviour of the system if the 
user selects invalid options.  

Constraints can be represented either as forbidden tuples, 
allowed tuples or formally specified with the help of 
prepositional formulas or logical expressions using Boolean, 
relational or arithmetic operators [36] [48]. A forbidden tuple 
is a combination of parameter-values which can not appear in 
the final test suite. A single constraint can give rise to any 
number of forbidden tuples [11]. In a typical situation, 
constraints are formally specified, not necessarily explicitly, 
by the test engineer. Tools/algorithms which accept formally 
specified constraints are therefore more usable than those that 
do not since in the latter case, the test engineer needs to 
remodel the constraint input to transform the formal 
specification into a list of forbidden or allowed tuples [11].  

We recognized four mechanisms for handling constraints 
by the tools/algorithms. The first mechanism is handling 
constraint before executing a specific test generation 



 

 

 

 

algorithm. This mechanism can be adopted when only allowed 
tuples are given as input and can prevent changing the test 
generation algorithm. The second mechanism is to replace the 
invalid test cases with valid ones once the test suite has been 
generated using a specific technique [49]. The third 
mechanism is to integrate constraint handling into the CA 
generation algorithm with an ad-hoc procedure. The last 
mechanism is to integrate the selection of valid tuples, 
according to constraints, to the algorithm generating 
combinatorial the test suite by integrating a SAT solver.  

F. Support for Mixed Covering Arrays 

A typical software system will have a large number of 
parameters and each parameter will not necessarily have the 
same number of values. So a tool/algorithm should be able to 
support mixed covering arrays to cater the need of such a 
software system.  

V. RESULTS 

In this section we will answer the research questions 
individually (sections V.A to V.F). Some of those results are 
combined in section VI. The complete list of 75 
algorithms/tools we selected by following our selection 
protocol, along with their raw classification using our 
comparison framework can be found in Appendix Section IX.  

A. RQ1: What are the available tools/algorithms for 
generating combinatorial tests? 

The objective of this research question is to know the 
available tools in the realm of combinatorial testing using our 
search protocol and categorizing them and show their year of 
introduction in Fig. 1 over four years intervals from 1991 (the 
earliest year we found) to 2014. The total number of 
tools/algorithms obtained using our search protocol is 75 
(TABLE III. and TABLE IV. ). Among the first tools for 
generating tests were T-Gen [50], introduced in 1991, and 
based on the category partition method [6]. In the next four 
years no tool was proposed and then from 1999 onwards there 
has been a constant rise in the number of tools/algorithms for 
generating covering arrays for combinatorial suiting. This 
clearly marks the importance of functional testing and a need 
to have an optimal test suite. 69% of the tools/algorithms have 
been proposed in the last eight years.  

 

Fig. 1. Number of tools/algorithms identified over years, presented over four 

year intervals 

While searching for specific tools/algorithms we observed 
that authors suggested improvements to their own technology 
over the years while proving experimentally that their new 
algorithm was doing better than before. In our study an 
algorithm with multiple references corresponds to the 
improvements the algorithm went through, along the way, and 
we considered the results of the latest upgrade.  

B. RQ2: Which techniques are used for generating 

covering arrays for combinatorial testing? 

1) Greedy vs. Meta-heuristic vs … 
We identified five different types of techniques used for 

the generation of combinatorial test suites: Greedy 
Techniques, Meta-Heuristic Techniques, Adaptive random / 
Adhoc techniques, Hybrid Techniques and Algebraic 
techniques. We are going to classify all the algorithms and 
tools, obtained from our search, into these five categories.  

A Greedy Technique generates tests by uncovering a 
locally optimal solution and ensures that each new test uses 
the maximum possible uncovered combinations. They are 
usually faster than the Meta Heuristic techniques but do not 
always produce the smallest test suites. These algorithms 
return a local optimum rather than a global optimum. 
Tools/algorithms based on backtracking algorithms, branch 
and bound techniques, exhaustive search, AETG type 
algorithm [32], IPO based algorithms [40] etc all fall in this 
category. A Greedy algorithm is typically used when a 
problem does not have a known best polynomial time 
algorithm [18]. 

The generation of a combinatorial test suite is an 
optimization problem and Meta-heuristic techniques are also 
used to solve it. These techniques can be evolutionary 
algorithms e.g. Genetic Algorithms or naturally inspired 
algorithms e.g. Particle Swarm Optimization or any other 
standard known optimization algorithms. Such an algorithm 
searches the neighbourhood of a solution and finds the best fit. 
The algorithm starts from a pre existing test called a seed and, 
after performing a series of transformations, achieves a test 
suite that has a minimum number of tests and maximum 
uncovered tuples. A heuristic search such as Simulated 
Annealing produces smaller sets than a greedy algorithm but 
takes more time to execute [51]. The various Meta-heuristic 
techniques we identified and are used for generating covering 
arrays are Hill Climbing, Simulated Annealing, Tabu Search, 
Genetic Algorithm, Ant Colony Optimization, Partial Swarm 
Algorithm, Harmony Search, Extremal optimization and Great 
Flood.  

The category of Adaptive random or ad-hoc techniques 
contains two types of techniques. Adaptive random uses an 
algorithm that relies on a measure of distance between the 
parameter values, e.g., using the Hamming distance, to 
generate the test suite that are maximally apart from one 
another (e.g., [52] [30]). The set of ad-hoc techniques contains 
those which are not using any of the other techniques. An ad-
hoc approach typically selects the test cases randomly or on 
the basis of some input distribution (e.g., [53] [54]). 

Hybrid approaches were also proposed by researchers to 
achieve better and optimal results. The objective behind 



 

 

 

 

combining techniques is to reduce the size and generation time 
of the CA and increase the coverage and hence the fault 
detection. For instance, Bryce et al. [39] combine a greedy 
algorithm with a heuristic search, Cohen et al. [55] combined 
a mathematical approach with Simulated Annealing.  

Algebraic Techniques create covering arrays by either 
directly computing a mathematical function or by using 
defined rules. Some algebraic constructions also use recursion 
to obtaining larger covering arrays from smaller building 
blocks [41]. The applicability of algebraic approach is limited 
because they impose restrictions on the system configurations 
which they can accept. This approach is usually an extension 
to the algorithms of orthogonal array [7]. 

Fig. 2 shows that, out of these 75 algorithms we found, 40 
(53%) used a greedy approach for the generation of the 
combinatorial test suite, 13 (17%) tools/algorithms used Meta 
heuristic techniques, 5 (6%) tools/algorithms belonged to the 
category of Adaptive random and adhoc. We found 6 (8%) 
tools/algorithms which used a hybrid approach, either 
combining a greedy technique and a metaheuristic technique, 
or a greedy technique and an algebraic technique. There were 
4 (5%) tools/algorithms which supported algebraic techniques. 
We attribute this small number to the fact that algebraic 
techniques are not as versatile as other techniques (e.g., to 
support many different strength values, to support constraints). 
Most of the research in algebraic methods is focusing on 
generating smaller covering arrays, which can then be used as 
a seed for other techniques. In our search we also found 7 
(9%) tools which were not accompanied by a detailed 
technical documentation which could help us classify them 
according to this criterion.  

 

Fig. 2. Categorization of the tools/algorithms on the basis of techniques and 
generation strategy. 

The advantage of greedy and meta-heuristic technique is 
they can be applied to any size of system configurations, i.e. 
there is no restriction on the number of parameters or the 
number of values each parameter can take. The downside is 
that they take more time to create a CA [7]. On the other hand, 
Algebraic Techniques are extremely fast and lightweight but 
only on a subset of system configurations. They cannot, as 
well, deal efficiently with constraints [20]. 

2) Test based vs parameter based 
Further tools/algorithms can be classified according to 

their generation strategy (test based vs. parameter based). We 

observed that out of the 68 tools/algorithms, whose technical 
details are known to us, 75% of the tools (51 out of 68) 
followed a test based generation strategy and 25% (17 out of 
68) followed a parameter based generation strategy. Out of the 
40 tools/algorithms which generated test suites using a greedy 
approach 30 followed a test based generation and 10 followed 
a parameter based generation. Fig. 2 summarizes those results. 

3) Meta-heuristic techniques 
Fig. 3 shows the number of tools using a specific 

metaheuristic technique for the generation of covering arrays. 
The tool/algorithms which use meta-heuristic techniques 
either belong to the category of meta-heuristic or to the 
category of hybrid (Fig. 2). Three meta-heuristic techniques 
namely Particle Swarm, Genetic algorithm and Simulated 
Annealing are more widely used than others.  

 

Fig. 3. Number of tools/algorithms using different Meta-Heuristic algorithms 
for the generation of Covering Arrays 

C. RQ3: Which selection criteria does each tool/algorithm 

support? 

We identified seven different selection criteria supported 
by the 75 tools/algorithms: base choice, each choice, 
input/output, distance, uniform strength, variable strength and 
random.  

The base choice criterion requires the identification of a 
based choice for each category, that is a choice that is 
considered the most important of the choices of a category. 
Since identifying the base choice of a category can be 
implicitly done by assigning weights to the category’s choices 
and selecting the best (max or min, depending) weighted 
choice as base choice, we classified all the tools/algorithms 
which support the assignment of weights to parameter values 
in the base choice criterion category.  

We also made a difference between the each choice 
criterion and the uniform strength criterion. Uniform strength 
typically means a strength t of at least two (t>=2) where as 
each choice corresponds to uniform strength of strength one 
(t=1). A tool supporting uniform strength of at least two would 
support uniform strength of one. In our analysis we put the 
tools/algorithms which explicitly mention their support for the 
each choice criterion (uniform strength one) in a separate each 
choice criterion category. During our research we also found a 
few tools that support variable strength CAs without 
specifically mentioning support for uniform strength. 
However since the former implies the latter, we classified 
those tools as variable strength and include the variable 



 

 

 

 

strength category into the uniform strength category 
graphically (Fig. 4). 

Obtained results are shown in TABLE V. and are 
summarized graphically in Fig. 4: 72 (96%) tools support 
uniform strength, 24 (32%) tools support variable strength 
(and therefore uniform strength). Nine tools support three 
criteria: input output, variable strength and uniform strength. 
Another three tools ACTS [33], PICT [56] and IBM Focus 
[48] support uniform strength, variable strength and base 
choice criteria. Out of these tools IBM focus and PICT 
support assigning weights to values. Tcases [57] supports four 
criteria, which is the maximum we found: uniform strength, 
variable strength, random and each choice. Two tools support 
distance based: [52] and [30]; the latter also supports random 
and uniform strength whereas the former support uniform 
strength, in addition to distance based.  

 

Fig. 4. Support of the tools for the selection criteria 

D. RQ4: What is the maximum coverage strength 

supported by each tool/algorithm?  

Maximum strength has been studied collectively for 
uniform strength and variable strength tools/algorithms 
(TABLE VI. . For a tool/algorithm which only supports 
uniform strength, the highest strength is obtained for a specific 
test configuration. In case results were available for more than 
one test configuration, we chose that configuration, from 
variable strength or uniform strength, which supports the 
highest strength value and mixed covering array with 
maximum number of parameter values.  

 

Fig. 5. Maximum coverage strength supported by tool/algorithm  

The results of the research question are shown in Fig. 5. 
This is the result of 72 tools as three tools do not support 
uniform strength (Fig. 4). Out of 72 tools 26 (36%) support a 
maximum strength of two, 14 (19.5%) support the strength of 
three, 11 (15%) support the strength of six, three (4%) support 
the strength of 12 and we found one tool (Harmony Search 
Strategy [10]) which supports the coverage strength of 14.  

For the selection of research papers to answer this question 
we followed the following approach. The strength is obtained 
from two types of sources; the strength experimented in 
researcher’s own work and/or any other research work in 
which a comparison has been made with that specific tool. We 
have taken the higher strength of the two and included it in our 
analysis. There were certain tools/algorithms for which the 
results were not shown or detailed information was not 
available but the authors claimed that their algorithm 
supported a certain strength. We used values reported by 
authors but flagged the papers in TABLE VI.  Further, ATD 
[58] did not have experimental results but the authors claim to 
support t-wise coverage, for this tool we assumed the most 
common value of t=2.  

Even though AETG Web Service [31] is based on Cohen 
et al. technique [32], which supports uniform strength, random 
inputs and all combinations as the selection criteria, the AETG 
Web Service only explicitly supports the first criterion of 
those three. On the basis of our paper selection criteria 
(section III.D), we only consider the AETG Web Service and 
only consider its support for uniform strength. 

E. RQ5: Which tools support constraints and how do they 

represent and handle them?  

Out of the total tools/algorithms in our research work we 
found 32 (44%) tools/algorithms which support constraints 
(TABLE VII. ). The two important aspects of constraint 
support we are focusing on are representation and handling 
mechanism.  

Fig. 6 summarizes the results. Tools supporting constraints 
require an input under the form of forbidden tuples (12, i.e., 
37.5%), allowed tuples (2 i.e., 6%) or formal specification (13, 
i.e., 40%). For five tools, available documentation indicates 
support for constraints but fails to provide further details so 
we can classify. 

 

Fig. 6. No of tools/algorithms supporting a specific constraint representation 

Fig. 7 summarizes the mechanisms to handle constraints 
during CA construction. 59% (13+6) of the tools have a 
mechanism embedded in the CA construction algorithm to 
handle constraints: 40% use an ad-hoc algorithm, 19% use a 
SAT solver. None of the tools have been found to use the 



 

 

 

 

mechanism of replacing invalid test cases once the test suite 
has been generated. Certain tools did not have enough 
information in the technical documents, in order to help us 
make decisions.  

In our study we found three tools which supported 
robustness testing, i.e., test for the invalid values, without 
requiring that specific out-of-bound choices be specified as 
input: PICT [56], PictMaster[59] and IBM Focus [48].  

 

Fig. 7. No of tools/algorithms supporting a specific constraint handling 
mechanism 

F. RQ6: Which tools support mixed covering arrays? 

Fig. 8 shows the tools/algorithms which support mixed 
covering arrays as compared to the tools/algorithms which 
supported only traditional covering arrays, the detail can be 
seen in TABLE VIII.  We found that 76% of the tools support 
mixed covering arrays i.e. the parameters given as input can 
have varying numbers of values whereas 5% of the 
tools/algorithms assume all parameters have the same number 
of values. The figure also shows that we were not able to 
collect that information for 14 tools. 

 

Fig. 8. Support for mixed covering arrays 

VI. DISCUSSION 

In this section we combine research questions to get a 
more complete picture of algorithms/tools’ capabilities.  

A. Combining RQ1, RQ2 and RQ3 

The objective of this combination is to analyse the 
technique and the selection criteria that technique mainly 
supports: TABLE I. We observe that base choice is only 
supported by greedy algorithms. Similarly, the input output 
based criterion is only supported by greedy algorithms (11 
algorithms). 66% of the algorithms (16 out of 24) which 
support variable strength are using a greedy technique. On the 
other hand only 25% (6 of 24) of the tools which support 
variable strength used heuristic techniques. A similar trend is 

observed in case of algorithms which support the uniform 
strength criterion. Recall that 38 algorithms out of 72 (52%) 
used greedy technique, 13 algorithms out of 72 (18%) used 
heuristic techniques, 6 out of 72 (8%) used Hybrid techniques 
where as 4 (5%) and 5 (7%) algorithms respectively used 
algebraic and adaptive random techniques. It is important to 
note here that algebraic techniques contributes to the 
generation of covering arrays using only the uniform selection 
criterion and do not support any other criterion. Similarly, 
hybrid techniques only support uniform strength. The support 
for distance based and random criteria is only provided by 
adaptive random and adhoc techniques. None of the tool 
supports all combinations.  

From this analysis it can be concluded that greedy 
techniques largely support the generation of covering arrays 
using multiple selection criteria, i.e., base choice, variable 
strength, uniform strength and I/O based, where as heuristic 
techniques support only variable strength and uniform 
strength.  

TABLE I.  NUMBER OF TOOLS/ALGORITHMS ON THE BASIS OF 

TECHNIQUES AND SELECTION CRITERIA  
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Each Choice                 2 

Base Choice 1 3               

Variable 

Strength 3 13   6         2 

Uniform 

Strength 10 28 1 12 4 5 2 4 6 

I/O Based 

criteria 1 10               

Distance Based 

criteria           2       

Random 

criteria           1     1 

A. Combining RQ1, RQ2, RQ4 

The objective of this combination is to identify which 
technique supports which coverage strengths. TABLE II. 
shows the results of this combination. We observe that Greedy 
techniques support a range of strengths varying from 2 to 12. 
The higher strengths in greedy techniques are supported by 
test based generation: GTWay [60], GVS [61] and ITTDG 
[62]. The test configuration for these algorithms used 12 
parameters, with a maximum number of values of 10 for two 
parameters. It is important to mention here that two of these 
algorithms, i.e., GVS and ITTDG, support three selection 
criteria (variable strength, uniform and input output based 
criteria), which clearly shows that greedy techniques have 
outperformed other techniques on the basis of support of 
selection criteria and higher strength values. The highest 
strength in our survey was however supported by an algorithm 
named Harmony Search Strategy (HSS) [10] with a strength 
of 14. HSS uses a meta-heuristic technique and test based 
generation for generating covering arrays. The HSS algorithm 
supports variable strength and uniform strength and the 
strength of 14 is obtained with a test configuration of 14 
parameters each having three different possible values.  



 

 

 

 

We also observe from TABLE II. that Algebraic 
techniques support a maximum strength of four whereas IPOD 
[34], which is a hybrid of algebraic technique and greedy 
parameter based technique, supports a strength of 6. Similarly, 
the hybrid of meta-heuristic with greedy techniques has also 
elevated the strength support of meta-heuristic techniques to 4 
with an exception of Tabu search. Selecting one technique 
over another should also consider other factors such as the size 
of the CA generated or the time it takes to generate it. This is 
beyond the scope of the present work.   

TABLE II.  NO. OF TOOLS/ALGORITHMS ON THE BASIS OF 

TECHNIQUES AND COVERAGE STRENGTH 
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2-wise 2 10 1 4 2 3     4 

3-wise 1 7   4     1   1 

4-wise 1 2     2 1   4   

5-wise 3         1       

6-wise 2 5   2     1   1 

7-wise       1           

8-wise   1               

11-wise 1                 

12-wise   3               

14-wise       1           

B. Combining RQ1, RQ2, RQ5 

The objective of this combination is to know which 
technique supports constraints: Fig. 9. 53% of the 
algorithms/tools (17 of 32) which support constraints use a 
Greedy Technique. These algorithms/tools either implement 
the constraint handling algorithm or use a SAT solver for 
handling the constraints. This is followed by 13% of the 
algorithms which use Meta heuristic techniques (e.g., 
simulated annealing). A meagre number of tools based on 
algebraic, adaptive random and hybrid techniques support 
constraints. It can be concluded from this observation that a 
greedy technique is more flexible to the implementation of 
constraints as compared to other techniques. 

 

Fig. 9. No. of tools algorithms on the basis of techniques and constraint 
support 

VII. THREATS TO VALIDITY 

We believe that the list of tools/algorithms we have 
identified (see complete list in TABLE III. and TABLE IV. ) 
is the most extensive one to date, and definitely more 
extensive than the literature we surveyed. We cannot however 
ignore the possibility of missing a tool or algorithm. One 
threat which we foresee in our work is that if a specific 

tool/algorithm is not compared, referred to or mentioned in a 
surveyed work, thesis or website there are chances that we 
have missed it. We however believe the risk is small since we 
captured publications by the main actors in the field.  

While assigning a suitable category to a technique used by 
the algorithm for generating a combinatorial test suite, we 
encountered situations when the algorithms were not 
mentioned in detail or not mentioned at all. For the tools we 
could not find the algorithms we have categorized them as 
“information not available”, and for some research papers 
which lacked proper explanations we made the nearest 
possible guess for the type of algorithm. Data may therefore 
not be entirely accurate. We however show there are a very 
few number of those occurrence and therefore the threat to our 
general observations and conclusions is small.  

While looking for the maximum strength a tool supports 
we have considered two types of research work; work in 
which that tool/algorithm is proposed and the work in which 
that specific tool is  used for comparison. Whichever strength 
is greater has been included in our analysis. We are aware of 
the fact that even while making an extensive search we might 
have missed some research work which would have given us a 
yet higher strength for a specific algorithm/tool. That can be a 
threat to the validity of our work. In addition to that the tools 
algorithms proposed after March 2014 have not been included.  

Last, we detailed our measurement framework and we 
believe our characterizations are robust enough to be reliable, 
thus leading to trustworthy results. 

VIII. CONCLUSION 

Functional testing from a plain English specification, for 
instance following the category partition method, requires that 
one identifies parameters, categories, choices and then 
combine those choices according to some selection criteria, 
while accounting for constraints on choices, to eventually 
generate test cases. Covering arrays have been used for a long 
time to generate such combinations. Covering arrays come in 
various forms and have various capabilities and it is difficult 
to identify which covering array generation technology is the 
most suitable to the problem of generating test cases for the 
category partition method. When faced with this problem we 
searched for a solution and did not find enough data to make 
an enlightened one. We therefore decided to perform a 
systematic survey of technologies supporting covering array 
generation. We report in this paper on the procedure we 
followed in this systematic survey and on the procedure we 
followed to characterize the covering array technologies we 
have found.  

We eventually identified 75 covering array generation 
technologies. Our comparison framework allowed us to make 
a number of observations.  

We observe that different covering array construction 
technologies support different sets and numbers of selection 
criteria in different amounts: 43% of the greedy technique 
support up to three criteria; 46% of the meta-heuristic 
techniques support two criteria; 40% of the algorithms based 
on adaptive random techniques support up to three criteria. 



 

 

 

 

We believe these differences are not intrinsic to the 
construction technologies: for instance, there is no reason to 
believe that meta-heuristic techniques (or hybrid ones) could 
not support the complete list of criteria we have listed 
previously in the paper, or higher strength values (at the 
expense perhaps of longer execution times); we conjecture 
greedy algorithms have been so far popular due to their 
simplicity. Some technologies support very high strength 
values (up to 14), and 70% of the tools do not support a 
strength greater than four. The cost-benefit of such values is, 
as far as we know, yet to be confirmed experimentally. We 
found that only 44% of the 75 tools support constraints, and 
that constraints are provided mostly either as forbidden tuples 
of formal specifications. Constraints are mostly handled by 
greedy construction techniques; however, again, there is no 
reason to believe other techniques could not equally handle 
constraints.  

We observe that although metaheuristic, adaptive 
random/adhoc and algebraic techniques form a smaller part of 
the tool supporting covering array construction, they are 
equally focused on advance features for creating covering 
arrays as greedy based technologies. On the other hand 
tools/algorithms based on Greedy techniques are plenty in 
number which can be attributed to the fact that they are 
flexible to implement. They support large system 
configurations including constraints, selection criteria, mixed 
covering arrays and higher strengths, which is essentially a 
requirement for software testing.  

Going back to our problem on identifying CA construction 
technology to support the category-partition testing method, 
whereby one needs that technology to handle constraints, 
variable numbers of choices per category (i.e., values of 
parameters), and selection criteria including at least pair-wise, 
we can conclude the following: a greedy algorithm is likely 
the best choice to date as this kind of technology supports 
selection criteria, various strength and constraints; in case 
there are few or simple constraints, a user may be able to spell 
out forbidden tuples and use a greedy algorithm that accepts 
such input (e.g., [63-65]); in case of complex or numerous 
constraints, manually constructing forbidden tuples may not 
be practical so a greedy algorithm that uses an adhoc 
algorithm for constraints (e.g., [48, 56]) or that incorporates a 
SAT solver (e.g., [33, 66, 67]) may be the ideal choice.  
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IX. APPENDIX 

 

TABLE III.   LIST OF TOOLS/ALGORITHMS FOR GENERATING TEST SUITES USING COMBINATORIAL TESTING CATEGORIZED ON THE BASIS OF TECHNIQUES 

Generati

on 

Strategy 

Greedy Techniques Meta heuristic 

Techniques 

Adaptive 

Random and 

Adhoc 

Techniques 

Hybrid Techniques Algebraic 

Techniques 

Test 
Based 

Generatio

n 

AETG Web Service [26, 
31, 32] 

 

Test Case Generator [68] 

 

mAETG_SAT [11, 69] 

 

ATGT[66] 

 

PICT [56] 

 

PictMaster[70]  

 
Exhaustive search-

Intelligent Test case 

handler (WHITCH)[71] 

 

Jenny [63] 

 

Test Vector Generator 

(TVG) [72, 73]  

 

GVS [61] 

 
Union [44]  

 

Greedy [74]  

 

Density  [75] 

 

ReqOrder in [76] 

 

CATS [77] 

 

Deterministic density 

algorithm [78] 
 

Density Based Greedy [79] 

 

DA-RO[80] 

 

DA-FO [80] 

 

ITTDG [62] 

 

AURA [81] 

 

Particle Swarm 
Based Algorithm 

(OTAT)[89] 

 

Extremal 

optimization based 

algorithm [90]  

 

CASA [11, 51, 91] 

 

Genetic 

Algorithms–GAPTS 

[92] 
 

Genetic Algorithm 

Based 

 [93, 94] 

 

GA based -

PWiseGen[95] 

 

Ant Colony 

algorithms[93] 

 
 Ant Colony 

System(ACS) [96] 

 

Harmony search 

strategy [10] 

 

Particle Swarm Test 

Generator VS-

PSTG [38] 

 

HSTCG [97]  

 
Tabu Search [98] 

IRPS [99] 
 

R2Way [53] 

 

ART-CT [52] 

 

Distance Based 

Technique [30]  

 

AllPairs [54] 

Greedy Algorithm with 
Hill Climbing [39] 

 

Greedy Algorithm with 

Simulated annealing  

[39] 

 

Greedy Algorithm with 

Great Flood  [39] 

 

Greedy Algorithm with 

Tabu Search  [39] 

 

 



 

 

 

 

Sequence Covering Array 

Generator [82] 

 

QICT [83] 

 

Cascade [84] 

 

IBM Focus [48] 

 

VarDens [85] 

 
G2way [86] 

 

GTWay [60] 

 

MT2Way [87] 

 

EPS2way [88] 

Parameter 

based 

generatio

n 

PairTest [37].  

 

ParaOrder [75] 

 

ACTS [33] 
 

tTuples [64] 

 

CTWC [65] 

 

MIPOG [100] 

 

VpTag[101]  

 

TConfig (IPO based) [102] 

 

EXACT [103, 104] 
 

Branch and Bound [105] 

 

 

 

 

Particle Swarm 

Based 

Algorithm(OPAT) 

[89] 

 IPOD (IPOG and 

Algebraic 

Technique)[34] 

 

Augmented Annealing-
combines Simulated 

Annealing and Algebraic 

Technique[26, 55]  

Tconfig [41] 

 

Combinatorial Test 

Services (CTS) [106]  

 
Test Cover [107] 

 

Algebraic method 

[108] 

 

 

 

TABLE IV.  TOOLS/ALGORITHM FOUND WITH NO DETAILED TECHNICAL INFORMATION 

S.no Name of Tool Algorithm  

1 T-Gen -SYS/3 - a Software Development Tool  [50] 

2 Hexawise [109] 

3 ProTest [110] 

4 SmartTest SmartTest [111] 

5 ATD [58] 

6 BenderRBT  BenderRBT [112] 

7 Tcases  [113] 

 

 



 

 

 

 

TABLE V.  SELECTION CRITERIA SUPPORTED BY THE TOOL/ALGORITHM 

S. 

No 

Algorithm/tool Each 

Choic

e 

Base Choice Variable 

Strength 

Uniform 

strength 

Input 

output 

based 

Distanc

e based 

Rand

om 

Input 

All 

Combinati

ons 

1 AETG Web Service [26, 31, 32]    Yes      

2 PairTest [37].    Yes      

3 mAETG_SAT [11, 69]    Yes     

4 ATGT[66]    Yes      

5 ACTS [33]  Yes  Yes  Yes      

6 tTuples [64]    Yes      

7 Particle Swarm Based Algorithm(OTAT) 

[89] 

   Yes     

8 Extremal optimization based algorithm 

[90] 

   Yes      

9 CASA [11, 51, 91]   Yes Yes     

10 Particle Swarm Based Algorithm 
(OPAT) [89] 

   Yes      

11 CTWC [65]    Yes     

12 PICT [56]  Yes (weights 

) 

Yes Yes      

13 MT2Way [87]    Yes     

14 EPS2way [88]    Yes     

15 IRPS [99]    Yes     

16 G2way [86]    Yes     

17 GTWay[60]    Yes     

18 Intelligent Test case handler 

(WHITCH)[71] 

  Yes Yes     

19 Jenny [63]    yes     

20 Test Vector Generator (TVG) [72] [73]   Yes Yes Yes    

21 Tconfig [41]    Yes     

22 TConfig (IPO based) [102]    Yes     

23 GVS [61]   Yes Yes Yes    

24 Union [44]      Yes    

25 Greedy [74]   Yes Yes Yes    

26 ReqOrder in [76]     Yes    

27 Density  [75]   Yes Yes Yes    

28 ParaOrder [75]   Yes Yes Yes    

29 Genetic Algorithms  [93, 94]    Yes     

30 Ant Colony algorithms[93]    Yes     

31 Genetic Algorithm - GAPTS [92]    Yes      

32 Ant Colony System(ACS) [96]   Yes Yes     

33 Greedy Algorithm with Hill Climbing 

[39] 

   Yes     

34 Greedy Algorithm with Simulated 

annealing  [39] 

   Yes     

35 Greedy Algorithm with Great Flood  [39]    Yes     

36 Greedy Algorithm with Tabu Search  

[39] 

   Yes     

37 Combinatorial Test Services (CTS) [106]    Yes     

38 Augmented Annealing-combines  

Simulated Annealing and Algebraic 

Technique[55] 

   yes     

39 IPOD (IPOG and Algebraic 

Technique)[34]. 

   Yes     

40 CATS [77]    Yes     



 

 

 

 

41 Test Cover [107]    Yes      

42 Algebraic method [108]    yes     

43 Deterministic density algorithm [78]    Yes     

44 Density Based Greedy [79]    Yes     

45 DA-RO[80]   Yes Yes Yes    

46 DA-FO [80]   Yes Yes Yes    

47 Test Case Generator [68],     Yes     

48 R2Way [53]    Yes     

49 ART-CT [52]    Yes   Yes   

50 MIPOG [100]    Yes      

51 ITTDG [62]   Yes Yes Yes    

52 AURA [81]   Yes Yes Yes    

53 Harmony search strategy [10]   Yes Yes *     

54 Particle Swarm Test Generator VS-PSTG 

[38] 

  yes Yes*     

55 HSTCG [97]   Yes Yes*     

56 EXACT [103, 104]    Yes     

57 Branch and Bound [105]   Yes* Yes     

58 Tabu Search [98]   Yes* Yes      

59 Distance Based Technique [30]    Yes  Yes  Yes   

60 T-Gen SYS/3 - a Software Development 

Tool [50] 

Yes        

61 Sequence Covering Array Generator [82]    Yes     

62 Hexawise [109]   Yes Yes     

63 QICT [83]    Yes     

64 Cascade [84]   Yes Yes     

65 AllPairs [54]    Yes     

66 ProTest[110]    Yes     

67 VpTag[101]     Yes     

68 PictMaster[70]  

 

 Yes 

(weights) 

 Yes     

69 SmartTest [111]    Yes     

70 ATD [58]    Yes     

71 BenderRBT [112]    Yes     

72 IBM Focus [48]  Yes 

(weights) 

Yes Yes      

73 PWiseGen[95]    Yes     

74 VarDens [85]   Yes* Yes     

75 Tcases [113] Yes  Yes Yes   Yes  

           * Information Not Available 

 

TABLE VI.  MAXIMUM COVERAGE STRENGTH SUPPORT 

S.N

o 

Algorithm/tool Maximum 

Strength 

support (t) 

Number of parameters and values 

1 AETG Web Service [26, 31, 32] 2 MCA(N, t, 41,339, 235) 

2 PairTest [37] 2 MCA(N, t, 41, 339, 235 ) 

3 mAETG_SAT [11, 69] 3 CCA(N, t, 2158, 38, 44, 51, 61, F) 

4 ATGT[66] 2 MCA(N, t, 41,339, 235) 

5 ACTS [33] 6 MCA(N, t, 102, 41, 32, 27) 

6 tTuples [64] 6   MCA(N, t, 45, 213) 

7 Particle Swarm Based Algorithm(OTAT) [89] 2 MCA(N, t, 41, 339, 235) 

8 Extremal optimization based algorithm [90] 2 CCA(N, t, 2158, 38, 44, 51, 61, t) 



 

 

 

 

9 CASA [11, 51, 91] 3 CCA(N, t, 31, 24,F) 

10 Particle Swarm Based Algorithm (OPAT) [89] 2 MCA(N, t, 41, 339, 235) 

11 CTWC [65] 5* Information Not Available 

12 PICT [56] 6  VSCA(N,3,315{CA(6,39)}) 

13 MT2Way [87] 2 CA(N, t, 34) 

14 EPS2way [88] 2 CA(N, t, 34) 

15 IRPS [99] 2 MCA(N, t, 51, 38, 22) 

16 G2way [86] 2 MCA(N, t, 51, 38, 22) 

17 GTWay(OTAT iterative)  [60] <=12 MCA(N, t, 102, 41, 32, 27) 

18 Intelligent Test case handler (WHITCH)[71] 6 VSCA(N, 2, 101, 91, 81, 71, 61, 51, 41, 31 , 21, 

{MCA(6, 71, 61, 51, 41, 31, 21)}) 

19 Jenny [63] <=8) MCA(N, t, 102, 41, 32, 27) 

20 Test Vector Generator (TVG) [72] [73] 6 VSCA(N, 2, 101, 91, 81, 71, 61, 51, 41, 31 , 21, 

{MCA(6, 71, 61, 51, 41, 31, 21)}) 

21 Tconfig [41] 2 MCA(N, t, 41, 339, 235 ) 

22 TConfig (IPO based) [102] <=4 MCA(N, t, 102, 41, 32, 27) 

23 GVS [61] <=12 MCA(N, t, 102, 41, 32, 27) 

24 Greedy [74] 3 MCA(N, t, 101, 62,43,31) 

25 Density  [75] 3 MCA(N, t, 101, 62,43,31) 

26 ParaOrder [75] 3 MCA(N, t, 101, 62,43,31) 

27 Genetic Algorithms- GAPTS [92]  2 MCA(N, t, 34, 313, 2100, 1020) 

28 Ant Colony algorithms(ACA) [93] 3  MCA(N, t, 101, 62,43,31) 

29 Genetic algorithm based algorithm [93, 94] 3  MCA(N, t, 101, 62,43,31) 

30 Ant Colony System(ACS) [96] 3 VSCA(N,2,320,102, {MCA(3,320,102)}) 

31 Greedy Algorithm with Hill Climbing [39] 4 MCA(N, t, 210,33,42,51) 

32 Greedy Algorithm with Simulated annealing  [39] 4 MCA(N, t, 210,33,42,51) 

33 Greedy Algorithm with Great Flood  [39] 4 MCA(N, t, 210,33,42,51) 

34 Greedy Algorithm with Tabu Search  [39] 4 MCA(N, t, 210,33,42,51) 

35 Combinatorial Test Services (CTS) [106] 4 CA(N, t, 108 ) 

36 Augmented Annealing-combines  Simulated 

Annealing and Algebraic Technique[55] 

3 CA(N, t, 1414 ) 

37 IPOD (IPOG and Algebraic Technique)[34]. 6 CA(N, t, 415 ) 

38 CATS [77] 3 CA(N, t, 64) 

39 Test Cover [107] 4* Information Not Available 

40 Algebraic method [108] 2 MCA(N, t, 4, 339, 235 ) 

41 Deterministic density algorithm [78] 2 MCA(N, t, 41, 339, 235) 

42 Density Based Greedy [79] 6 CA(N, t, 510 ) 

43 DA-RO[80] 3 MCA(N, t, 101, 62, 43, 31) 

44 DA-FO [80] 3 MCA(N, t, 101, 62, 43, 31) 

45 Test Case Generator [68] 2 , t-wise* MCA(N, t, 51, 38, 22) 

46 R2Way [53] 2 CA(N, t, 34) 

47 ART-CT [52] 4 MCA(N, t, 25, 35 ) 

48 MIPOG [100] 11 MCA(N, t, 57, 24 ) 

49 ITTDG [62] 12 MCA(N, t, 102, 41, 32, 27) 

50 AURA [81] 3 MCA(N, t, 101,61,43,31 ) 

51 Harmony search strategy [10] 14 VSCA(N,3,315,{CA(14,314)}) 

52 Particle Swarm Test Generator VS-PSTG [38] 6  VSCA(N,2,315,{CA(6,71,61,51,41,31,21)}) 

53 HSTCG [97] 7 VSCA(N,2,43, 53, 62, {CA(7, 43, 53, 62)}) 

54 EXACT [103, 104] 5 CA(N, t, 26 ) 

55 Tabu Search [98] 6 MCA(N, t, 22,32,42,52) 

56 Branch and Bound [105] 5 CA(N, t, 26) 

57 Distance Based Technique [30] 5* Information Not available 

58 Sequence Covering Array Generator [82] 4 80 events 

59 Hexawise [109] 6 Information obtained via chat with tool support 

60 QICT [83] 2 MCA(N, t, 34, 313, 2100, 1020) 



 

 

 

 

61 Cascade [84] 2* Information not available 

62 AllPairs [54] 2, N-Wise* MCA(N, t, 51, 38, 22) 

63 ProTest [110] 2* Information Not Available 

64 VpTag[101]  2* Information Not Available 

65 PictMaster[70]  6* Information Not Available 

66 SmartTest [111] 2* Information Not Available 

67 ATD [58] 2 *N-wise* Information Not Available 

68 BenderRBT [112] 2* Information Not Available 

69 IBM Focus [48] 2 MCA(N, t, 41,339,235) 

70 PWiseGen[95] 2 MCA(N, t, 41,339,235)  

71 Tcases [113] 3* Information Not Available 

72 VarDens [85] 4 CA(N, t, 510) 

*Information Not Available 

 

 

TABLE VII.   CONSTRAINT HANDLING SUPPORT 

S.N

o 

Algorithm/tool Representation of the 

constraint (Forbidden tuples, 

allowed tuples or full constraint 

(logical expression)  

Constraint handling Mechanism  

1.Constraints handled before executing test 

generation algorithm 

2. Replacing the invalid test cases 

3. Constraints handled by implementing an 

algorithm 

4. Constraints handled using SAT Solvers  

1 AETG Web Service [26, 31, 32] Forbidden Tuples using if else 

expressions 

Constraints handled by implementing algorithm 

2 mAETG_SAT [11, 69] Forbidden tuples converted into 

Boolean Formula 

zChaff or MiniSAT SAT solver integrated into 

AETG algorithm. Solvers compute the 

constraints and AETG generates the test suites. 

3 ATGT[66] Full constraint support  using 

prepositional logic  

The combinatorial testing is represented as 

propositional logic problem including constraints 

(forbidden tuples) and SAL Constraint Solver is 
used to handle constraints and generate the test 

suite 

4 ACTS [33] (IPOG-C [36] Full constraint support using 

Boolean, relational and 

arithmetic operators based 

expressions 

CHOCO Constraint Solver is integrated with the 

algorithm and is frequently called to handle 

constraints  

5 tTuples [64] Forbidden Tuples as Logical 

constraints 

Greedy algorithm modified to handle constraints 

6 Extremal optimization based 

algorithm [90] 

Not enough information available MiniSat Solver integrated with the Extremal 

Optimization algorithm 

7 CASA [11, 51, 91] Forbidden tuples converted into 

Boolean Formula 

zChaff SAT Solver is integrated with the 

Simulated annealing algorithm 

8 CTWC [65] Forbidden tuples Constraint handled by implementing an 

algorithm 

9 PICT [56]  Full constraint support using 

Logical Expressions are used to 

define constraints  

Forbidden tuples are obtained from logical 

expressions and then algorithm is implemented 

for handling constraints 

10 Intelligent Test case handler 
(WHITCH) [71] 

Forbidden tuples [11] Information Not available 

11 Jenny [63] Forbidden tuples expressed as 

string of numbers and characters  

Constraint handled by implementing an 

algorithm 

12 Test Vector Generator (TVG) [72, 

73] 

Full Constraint support with 

Logical Expressions using 

Constraint handled by implementing an 

algorithm 



 

 

 

 

relational operators 

13 Combinatorial Test Services (CTS) 

[106] 

Forbidden Tuples Constraints handled by implementing an 

algorithm.  

14 CATS [77] Allowed Tuples  Constraints handled before executing test 

generation algorithm 

15 Test Cover [107] Allowed Tuples No description but it can be assumed that 

constraints are handled before giving to 

algorithm 

16 Test Case Generator [68] Full Constraint support as 

Logical Expressions 

Constraints handled by implementing an 

algorithm 

17 Harmony search strategy [10] Information not available * Constraints handled by implementing an 

algorithm 

18 HSTCG [97] Full constraint support. Paper 

discusses that the approach 

supports complex constraints 

with no further discussion    

Constraints handled by implementing an 

algorithm 

19 Distance Based Technique [30] Forbidden tuples Constraints handled by implementing an 

algorithm 

20 T-Gen SYS/3 - a Software 
Development Tool [50] 

Information not available * No information available * 

21 Sequence Covering Array Generator 

[82] 

Forbidden tuples (excluded 

sequences) 

No information available * 

22 Hexawise [109]  Forbidden tuples No information available * 

23 Cascade [84] Full constraint support using 

Boolean, relational and 

arithmetic operators based 

expressions 

A pseudo-Boolean optimization (PBO) solver 

called clasp is used to handle constraints and 

optimize coverage. Constraint solving and 

optimization is integrated 

24 ProTest [110] Information not available* Information not available* 

25 VpTag[101]  

 

Full constraint support. Paper 

discusses that the approach 

supports complex constraints 

with no further discussion    

Information not available* 

26 PictMaster[70]  

 

Full constraint support using 

Logical Expressions are used to 

define constraints  

Forbidden tuples are obtained from logical 

expressions and then algorithm is implemented 

for handling constraints 

27 SmartTest [111] Full constraint support using 

Logical Expressions are used to 
define constraints 

Information not available* 

28 BenderRBT [112] Full constraint support using 

Logical Expressions are used to 

define constraints 

Information not available* 

29 IBM Focus [48] Full constraint support using 

Boolean Expressions in Java 

Syntax 

Constraints handled by implementing an 

algorithm 

30 Tcases [113] Full constraint support. 

Properties are assigned to values 

and conditions are defined which 

are finally converted to Boolean 

expressions 

Information not available* 

31 AllPairs [54] Information Not Available * Information not available * 

32 Augmented Annealing [26, 55] Forbidden tuples Constraints are handled before giving input to 

algorithms (as disjoint rows in the form of seeds) 

   
 *Information Not Available 

 



 

 

 

 

TABLE VIII.   MIXED COVERING ARRAY SUPPORT 

S.N

o 

Algorithm/tool Mixed Covering Array 

Support 

1 AETG Web Service [26, 31, 32] Yes 

2 PairTest [37] Yes 

3 mAETG_SAT [11, 69] Yes 

4 ATGT[66] Yes 

5 ACTS [33] Yes 

6 tTuples [64] Yes 

7 Particle Swarm Based Algorithm(OTAT) [89] Yes 

8 Extremal optimization based algorithm [90] Yes 

9 CASA [11, 51, 91] Yes 

10 Particle Swarm Based Algorithm (OPAT) [89] Yes 

11 CTWC [65] Information Not Available * 

12 PICT [56] Yes 

13 MT2Way [87] Yes 

14 EPS2way [88] Yes 

15 IRPS [99] Yes 

16 G2way [86] Yes 

17 GTWay(OTAT iterative)  [60] Yes 

18 Intelligent Test case handler (WHITCH)[71] Yes 

19 Jenny [63] Yes 

20 Test Vector Generator (TVG) [72, 73]  Yes 

21 Tconfig [41] Yes 

22 TConfig (IPO based) [102] Yes 

23 GVS [61] Yes 

24 Union [44] Yes 

25 Greedy [74] Yes 

26 ReqOrder in [76] Yes 

27 Density  [75] Yes 

28 ParaOrder [75] Yes 

29 Genetic Algorithms- GAPTS [92]  Yes 

30 Ant Colony algorithms(ACA) [93] Yes 

31 Genetic algorithm based algorithm [93, 94] Yes 

32 Ant Colony System(ACS) [96] Yes 

33 Greedy Algorithm with Hill Climbing [39] Yes 

34 Greedy Algorithm with Simulated annealing  [39] Yes 

35 Greedy Algorithm with Great Flood  [39] Yes 

36 Greedy Algorithm with Tabu Search  [39] Yes 

37 Combinatorial Test Services (CTS) [106] Yes 

38 Augmented Annealing-combines  Simulated Annealing and 

Algebraic Technique[55] 

No 

39 IPOD (IPOG and Algebraic Technique)[34]. Yes 

40 CATS [77] No 

41 Test Cover [107] Information Not Available * 

42 Algebraic method [108] Yes 

43 Deterministic density algorithm [78] Yes 

44 Density Based Greedy [79] Yes 

45 DA-RO[80] Yes 

46 DA-FO [80] Yes 

47 Test Case Generator [68] Yes 

48 R2Way [53] Yes 

49 ART-CT [52] Yes 

50 MIPOG [100] Yes 

51 ITTDG [62] Yes 



 

 

 

 

52 AURA [81] Yes 

53 Harmony search strategy [10] Yes 

54 Particle Swarm Test Generator VS-PSTG [38] Yes 

55 HSTCG [97] Yes 

56 EXACT [103, 104] Yes 

57 Tabu Search [98] Yes 

58 Branch and Bound [105] No 

59 Distance Based Technique [30] Information Not available 

60 T-Gen SYS/3 - a Software Development Tool [50] Information Not available 

61 Sequence Covering Array Generator [82] Information Not Available 

62 Hexawise [109] Information Not Available 

63 QICT [83] Yes 

64 Cascade [84] Information not available 

65 AllPairs [54] Yes 

66 ProTest[110] Information Not Available 

67 VpTag[101]  Information Not Available 

68 PictMaster[70]  Information Not Available 

69 SmartTest [111] Information Not Available 

70 ATD [58] Information Not Available 

71 BenderRBT [112] Information Not Available 

72 IBM Focus [48] Yes 

73 PWiseGen[95] Yes 

74 Tcases [113] Information Not Available 

75 VarDens [85] No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


