Hindawi Publishing Corporation

Mobile Information Systems

Volume 2016, Article ID 6123234, 15 pages
http://dx.doi.org/10.1155/2016/6123234

Research Article

Hindawi

An Architecture of IoT Service Delegation
and Resource Allocation Based on Collaboration between

Fog and Cloud Computing

Aymen Abdullah Alsaffar,' Hung Phuoc Pham,' Choong-Seon Hong,'

Eui-Nam Huh,! and Mohammad Aazam?

' Department of Computer Engineering, Kyung Hee University, Yongin-si, Seoul, Republic of Korea
Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

Correspondence should be addressed to Eui-Nam Huh; johnhuh@khu.ac.kr

Received 29 April 2016; Revised 25 July 2016; Accepted 25 August 2016

Academic Editor: Young-June Choi

Copyright © 2016 Aymen Abdullah Alsaffar et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Despite the wide utilization of cloud computing (e.g., services, applications, and resources), some of the services, applications, and
smart devices are not able to fully benefit from this attractive cloud computing paradigm due to the following issues: (1) smart
devices might be lacking in their capacity (e.g., processing, memory, storage, battery, and resource allocation), (2) they might
be lacking in their network resources, and (3) the high network latency to centralized server in cloud might not be efficient for
delay-sensitive application, services, and resource allocations requests. Fog computing is promising paradigm that can extend
cloud resources to edge of network, solving the abovementioned issue. As a result, in this work, we propose an architecture of IoT
service delegation and resource allocation based on collaboration between fog and cloud computing. We provide new algorithm
that is decision rules of linearized decision tree based on three conditions (services size, completion time, and VMs capacity) for
managing and delegating user request in order to balance workload. Moreover, we propose algorithm to allocate resources to meet
service level agreement (SLA) and quality of services (QoS) as well as optimizing big data distribution in fog and cloud computing.
Our simulation result shows that our proposed approach can efficiently balance workload, improve resource allocation efficiently,

optimize big data distribution, and show better performance than other existing methods.

1. Introduction

Cloud computing is not only a technology that continuously
advances for offering a variety of services and resources
to many cloud consumers smart devices (e.g., IoT, smart
wearable devices, smart phone, smart tablets, and smart
home appliances) but also an enabling developer to develop
more applications, tools, and services. Cloud computing
architecture can empower ubiquitous, advantageous, and on-
demand network access to a shared pool of configurable com-
puting resources, providing many other benefits (e.g., stor-
ages, services, applications, networks, virtualized resources,
large scale computation, schedulable virtual servers, high
expansibility, computing power, low price services, virtual
network, network bandwidth, and high reliability) [1-3]. One

of the technologies that is gaining popularity is known as
Internet of things (IoT). IoT is a technology that is still
developing and enables many objects (e.g., thin-client, smart
phone, smart tablets, smart home appliances, smart wearable
devices, and sensor) to connect to Internet to perform
variety of services (e.g., memory, storage space, processing,
virtualization, resource allocation, services delegation, surf-
ing, send/receive big data, and viewing social sites). Thus,
smart devices services are present in every aspect of our
daily life (e.g., health care, medicine treatment, education,
and remotely controlled smart devices). Cloud computing
technology is being widely used to support variety of cloud
consumer devices, services, and applications.

Despite the wide utilization of cloud computing (e.g.,
services, applications, and resources), some of the services,

applications, and smart devices are not able to fully benefit
from this attractive cloud computing paradigm due to the
following issues: (1) smart devices are lacking in their capacity
(e.g., processing, memory, storage, battery, and resource
allocation), (2) they are lacking in their network resources,
and (3) the high network latency to centralized server in cloud
is not efficient for delay-sensitive application, services, and
resource allocations requests. According to [3], the number
of devices that connected to Internet will exceed 24 billion
by 2020. The rapid increase of number of Internet connected
devices combined with the long distance between user smart
devices and cloud computing, and the repeatedly requested
services, will pose heavy burden to network performance
and network bandwidth which in return will degrade cloud
computing QoS as well. Moreover, the high network latency
between user devices and cloud may not be ideal for delay-
sensitive applications, services, and resources.

To resolve the abovementioned issues, we utilize fog
computing which is a new paradigm that extends cloud
computing resources and service to the edge of network. It is
highly virtualized infrastructure that can provide networking
services, computation, storage, memory between IoT devices,
and traditional cloud computing environment [4]. Further-
more, fog computing is located in localized environment,
making it closer to user location and giving it the advantage
over cloud to provide variety of distributed applications
[4]. The impressive advantages that fog computing offers
over cloud computing will not only increase the number of
requests services (i.e., delay-sensitive services, applications,
and data) but also direct most of user requested services if
not all to fog computing only. This will lead to unbalanced
workload of services and degraded performance of fog
performance, user requests, and the abandonment of IoT
service from cloud computing.

Therefore, in this paper, we introduce new architecture
of IoT service delegation and resource allocation based on
collaboration between fog and cloud computing. We provide
new algorithm that is decision rules of linearized decision
tree based on three conditions (services size, completion
time, and VMs capacity) for managing and delegating user
request. Furthermore, we present our new strategy for data
distribution optimization such as big data. Moreover, we
present an algorithm to perform resource allocation in
order to satisfy service level agreement (SLA) and quality of
service (QoS). Our simulation shows that our approach can
improve the efficiency of resource allocation and show better
performance comparing with other approaches.

The rest of paper is organized as follows. In Section 2,
we introduce related work. In Section 3, we introduce our
system architecture and motivating scenario. In Section 4,
we present our proposed mechanism for service delegation,
resource allocation, and big data distribution processes. In
Section 5, we present our implementation and analysis result.
In Section 6, we present our conclusion and future work.

2. Related Work

There are many researches attempting to resolve the above-
mentioned issues. In [5], the author introduces efficient

Mobile Information Systems

synchronization in cloud for number of hierarchy distributed
file systems. The author deploys the conception of master-
slave architecture to propagate data to reduce traffic. In [6],
the author introduces method for resource scheduling which
can be efficient in mitigating the impacts that influence appli-
cation respond time and utilization of the system. In [7, 8], the
authors introduce the impact of data transmission delay on
the performance. In [9], the author introduces one method to
make a parallel processing for big data which can increase the
performance in federated cloud computing. However, these
researches do not mention how much resources should be
utilized.

Also, there are many completed researches that deal with
resources allocation. In [10], the authors explain through their
work that shared allocation is superior to dedicated alloca-
tion. Nevertheless, the authors do not perform experiment
with arbitrary number of SLAs. Moreover, authors do not
show how fast the server needs to be in order to guarantee
quality of service (QoS). In [11, 12], the authors provide
services to large number of SLAs as it is quite difficult to
obtain performance between shared and reserved allocation.
In [13], the author introduces a model which secure resource
allocation in cloud computing, where the author designed
fuzzy- logic based trust and reputation model.

Many researches have been done in order to provide effi-
cient method to integrate mobile devices and cloud comput-
ing environment. In [14], the author presents concept where
cloud computing is utilized in order to improve the capability
of mobile devices. In [15], the author did some modification
to Hyrax which enables mobile devices to utilize cloud com-
puting platforms. The concept of deploying mobile devices as
a provider of resources is presented even though the experi-
ment was not integrated. In [16], the authors only concentrate
on the use of partition policies to hold the effect of application
on mobile devices. However, they did not resolve any other
issues regarding mobile cloud computing or fog computing.

Fog computing technology is still in its early stage and
needs more time to develop like cloud computing. To the best
of our knowledge, there are not many researches considering
collaboration of fog and cloud computing to provide efficient
way of delegating IoT services between fog and cloud to
better balance workload/requested services/resources. Fur-
thermore, we introduce new methods to delegate services
to multiple fog and cloud computing based on linearized
decision tree which considers three conditions (service size,
completion time, and VMs capacity). Moreover, we introduce
new strategy for data distribution and introduce an algorithm
to preform resource allocation to guarantee SLA and QoS.

3. Proposed Architecture and Scenario

In this section, we will introduce our new system architecture,
explain its component and scenario, and explain the advan-
tages and disadvantages of fog and cloud collaboration.

3.1. System Architecture. Figure 1 illustrates our proposed
system architecture which consists of three layers; upper layer,
middle layer, and lower layer. Table 1 illustrates our system
components and explains their role.

Mobile Information Systems 3

TABLE 1: System component.

Component Description

ToT devices All smart devices that are capable of connecting to internet.

Responsible for receiving user request/services, providing services/search for VMs,

Cloud/fog broker and delegating service to other fog/cloud environments.

Responsible for providing requested services/resource, processing them, and

Cloud/fog computing server delivering them back to broker.

Responsible for maintaining and storing record of current service and their

Services monitor server 2 . . :
progress and providing/checking available space for new services.

3rd-party cloud server Responsible for providing services to fog broker and cloud broker.

Responsible for providing list of the current available VMs capacity and showing
VMs occupancy the used available VMs capacity.

Responsible for presenting map of services and their divided chunks in the same
Services map table and/in other fog computing environments as well as in cloud computing

environment.

Upper layer: cloud
environment

Cloud server 3 Cloud server 2 Cloud server 1

Services monitor
server

Cloud broker

3rd-party cloud server

Middle layer: fog
environment

Fog computing
server

Fog computing
server

Fog broker Fog broker
‘/
‘ Fog broker ‘
Lower layer: IoT
devices
Samsung - - ;-,_” & 4
StPART 2 -a . —_
g e
FIGURE 1: Proposed system architecture.
We provide detailed assumption for our architecture. Our between fog and cloud. Each fog computing envi-
assumption is as follows: ronment will include fog broker to manage request
services, obtain information of VMs capacity in other
(1) We assume that there are 3 fog computing envi- fog/cloud environments, and so forth. (Note: in case
ronments which have closer distance between each of larger network area, it is possible to have more than

other and user smart devices as well as long distance 3 fog computing environments.)

(2) We assume that all services will be requested from fog
computing environment. Based on three conditions
such as services size, completion time, and VMs
capacity, fog broker will decide to process the current
requested services in current fog or in other fog/cloud
computing environments.

(3) We assume that there are delay-sensitive and
nondelay-sensitive requested services, applications,
and data.

(4) We assume that all services monitoring server in
fog will sync their VM capacity status and current
services processing with services monitoring server
in cloud. When any fog needs more VM capacity,
fog broker will obtain that information from services
monitoring server in cloud which will reduce the
search time of VMs capacity in other fog or cloud
computing environments.

3.1.1. Upper Layer of System Architecture. The upper layer
represents cloud computing environment. This layer consists
of cloud broker, services monitor server, cloud servers, and
3rd-party cloud server. In case that there is no available
capacity in fog to process service and the requested services
that is needed later, then the fog can delegate these services to
cloud computing.

3.1.2. Middle Layer of System Architecture. The middle layer
represents fog computing environment and consists of three
fog computing environments. Each fog computing envi-
ronment consists of fog broker, fog computing server, and
services monitor server. Each layer can be aware of each
other through using unique communication address for each
environment configured by policies or by the cloud itself.
Note that it is possible to have more than 3 fog computing
environments when we cover larger area/state. All ubiquitous
and future services/resources can be requested from any fog
environment as well as cloud based on service size (e.g.,
large or small), requested time (e.g., now or later), and VMs
capacity (e.g., occupied or not occupied).

3.1.3. Lower Layer of System Architecture. The lower layer
represents user smart devices. User smart devices can consist
of smart phone, smart tablets, smart sensors, smart wearable
devices, thin-client, smart home appliances, and so forth.
Some of these smart devices have different specification and
capabilities (e.g., computation process, storage space, screen
resolution, and bandwidth). Fog computing can provide
efficient way for them to perform these tasks over the Internet
in less respond time and efficient performance.

3.1.4. The Role of Services Monitor Server. The services moni-
tor server consists of two important components such as VMs
occupancy table and services map table.

The VMs occupancy table is used to keep a list of VMs
capacity and occupancy (e.g., occupied and not occupied) in
each fog and cloud computing environment. The benefit of
this table is to provide fast way for broker to decide on where
to process the current service based on service size and the

Mobile Information Systems

VMs Service ID Fog/cloud Parts Progress Exp_Finish_
number Time

VM1 1035 Fog 1 2 out of 4 20%) 00:00:00
VM6 1035 Fog 2 3 out of 4 00:00:00
VM3 1040 Fog 1 5outof 6 [INS0% | 00:00:00
VM4 1135 Cloud1 1loutof3 [ESO5%I] 00:00:00

FIGURE 2: [llustrating sample of VMs occupancy table.

time needed to be completed. In case there is not enough
capacity in current VMs at current fog, then the broker can
send request to service monitor server in cloud which will
store/keep record of all VMs capacity in other fog and cloud
environments. Here, the broker can request to reserve these
VMs for their current service from other fog/cloud environ-
ments. Figure 2 illustrates a sample of VMs occupancy table.

Services map table is used to keep/store list of currently
processed services and their location. For example, some-
times, service is requested from current fog/cloud environ-
ment and to complete this service we need the collaboration
of 2 or 3 VMs; however, we only have 1 VM at current fog. Asa
result, the broker will search the cloud for not occupied VMs,
reserve them, and request processing the rest of the service
in cloud. Here, this table will list service ID, VMs number,
location, progress time, expected finishing time, and the IP
address which was used to send the services.

3.2. Scenario. As fog computing is gaining more popularity
for being near the underlying network and extending cloud
computing services/resources near to user location, envision
some situation where IoT devices user can benefit from
using fog computing environment to resolve any problem,
especially when they are in public or at home. We can use
the example of many IoT smart devices such as google glass,
smart oven, and smart refrigerator. In the first example, the
user wants to use their smart oven to cook some food. In order
to do so, the smart oven wants to search the Internet to obtain
the right temperature which is needed to cook the food.
However, the smart oven has limited capability for searching
the Internet. As a result, the smart oven can connect to local
fog computing environment which in return searches for
the right information, and finally, stores that information in
the smart oven application. Furthermore, the user can input
name of many foods and ask fog to search for the right recipe.
Here, the smart oven receives the requested information in
convenient and short time.

Another example could be google glass. Let us assume
that google glass user is taking pictures which required
obtaining information such as sightseeing and cloths. Google
glass might have limited capabilities to do searching which

Mobile Information Systems

might consume more power and need more resources, big
storage, and higher bandwidth. Here, the user can take some
pictures of video and send them to fog broker in fog comput-
ing for information searching. In case there are many services
requested/assigned to current fog, fog broker will collaborate
with other fog/cloud computing environments and delegate
the services to them. In fog/cloud environment, the service
will be divided into many chunks which will be assigned
to VMs for processing. After processing is completed, these
chunks will be sent to fog/cloud broker where they will be
combined and sent back to user devices.

Our proposed scenario illustrates the advantages of uti-
lizing collaboration of work between fog and cloud comput-
ing environment. This collaboration efficiently increases the
chances of providing efficient method for services delega-
tion, optimizing resources, and optimizing data distribution
between fog and cloud computing environment.

3.3. Fog and Cloud Collaboration. In this section, we will
introduce the advantages and disadvantages of fog and cloud
computing collaboration.

Advantages of fog and cloud computing collaboration are
as follows:

(1) Dividing the work load between fog and cloud leads
to fast completion of requested tasks when there are
many requests (e.g., video, movies, and clips) which
are requested at the same time/peak time (e.g., World
Cup show and Olympic games events).

(2) The collaboration between fog and cloud lead to
better managing of network performance by dividing
requested services to small parts and sending them
through the network to different fog or cloud for
processing. This will reduce the network overload
which in return will reduce fog and cloud perfor-
mance overload.

(3) Fast resources allocation for requested services leads
to QoE and efficiently managing resources to a variety
of fog and cloud consumers.

(4) Fog and cloud broker can communicate to manage
and organize requested services and VMs capacity.

The disadvantages of fog and cloud computing collabora-
tion are as follows:

(1) It might take more time to search for free VMs
capacity from other fog or cloud computing envi-
ronments. To solve this issue, we include in both
fog and cloud environments services monitor server
which keeps record of current free VMs and VMs
status. When fog needs more VMs, fog broker will
request VMs capacity of other fog environments from
services monitoring server in cloud which will store
VMs capacity and currently process services of all fog
environments.

(2) Dividing many services to small parts and sending
them to other fog or cloud environments might create
larger table with larger size when it comes to request
certain services that are larger in size.

TABLE 2: IoT services delegation constrain cases.

Service size Completion time VMs capacity

Case 1 Small Now Occupied/not occupied
Case 2 Small Later Occupied/not occupied
Case 3 Large Now Occupied/not occupied
Case 4 Large Later Occupied/not occupied

4. Proposed Mechanism

In this section, we will introduce our methods which we used
for ToT services delegation, optimizing resources allocation,
and optimizing data distribution. Furthermore, we will pro-
vide algorithms and mathematical equations as well.

4.1. Services Delegation Process. In this section, we will
explain our method which we used to delegate services to
other fog environments and cloud computing environments.
The delegation of any services requested from any fog/cloud
environment is decision rules of linearized decision trees
based on three conditions (service size, completion time, and
VMs capacity). The requested services size can be small or
large, the requested completion time can be now or later, and
VMs capacity can be occupied or not occupied at current
fog/cloud environment. We consider 4 cases in Table 2 and
provide 2 algorithms that explain these cases process in detail.
The cases are shown in Table 2.

Both of Algorithms 1 and 2 aim to find where to delegate
the services for processing based on service size (e.g., small
or large), services completion time (e.g., now or later), and
VMs capacity (e.g., enough or not enough) and in some cases
we include services that are in queue (e.g., services in queue,
yes or no). As for service size, we can, for example, determine
the size based on checking if the size is bigger than 500 mb
or not. Moreover, we also aim to manage these services in
fog and cloud environment. Figure 4 illustrates sequence flow
diagram of any service that is requested from fog environ-
ment where there is enough VMs capacity. Figure 5 illustrates
sequence flow diagram of services that is requested from fog
environment where there is not enough VMs capacity.

4.2. Resource Allocation and Data Distribution Process. Many
of formerly presented approaches utilize 1/m/1 model to pro-
vide solution to previously mentioned problem. Nevertheless,
in our proposal, we utilize 1/m/m/1 for solving the same
problem, where (1) refers to cloud broker, (m) refers to many
paths, (m) refers to many fog brokers in fog environments,
and (1) refers to IoT devices users. In detail, IoT devices will
send service request to fog broker in fog environment. Fog
broker will divide data into multiple blocks where they will
be assigned to certain VMs. Each block will be divided into
multiple chunks which will be sent to multiple processor for
processing. After receiving the processed data, the processor
combines them again into one big data and returns the result
to user IoT devices.

By using this method, we reduce/eliminate the burden
to the system when we process big data size. Therefore,
we guarantee the availability of server in fog or cloud

Mobile Information Systems

(occupied = not enough or not occupied = enough)

(2) THEN

(3) Divide requested services to small chunk

(4) Calculate the required no. of VMs

(5) Assign these chunks to the assigned VMs for processing

(7) THEN
(8) Divide requested services to small chunks
(9) Calculate the required no. of VMs

(11) Reserved the VMs and assign the chunks to them.
(13) THEN

(15) Divide requested services to small chunks
(16) Calculate the required no. of VMs
(17) Assign these chunks to the assigned VMs for processing

(19) delegate the requested services to be processed in cloud
(20) Divide requested services to small chunks

(21) Calculate the required no. of VMs

(22) Assign these chunks to the assigned VM:s for processing
(23) end if

(24) endif

(25) endif

(26) After completion the processing of all chunks,

Input: S, // service size (small or large), S, // service completion time (now or later), VM, // VM capacity

Output: service delegation/management location // fog or cloud
(1) If (Service Size = small) && (Service completion time = now) && (VM:s capacity = enough)

(6) else if (Service Size = small) && (Service completion time = now) && (VMs capacity = not enough)

(10) Obtain list of available VMs capacity in other fog/cloud environment from Services Monitor Server in cloud.

(12) else if (Service Size = small) && (Service completion time = later) && (VMs capacity = enough) && (Services in Queue = no)

(14) Process the requested service at current location (fog environment)

(18) else if (Service Size = small) && (Service completion time = later) && (VMs capacity = enough) && (Services in Queue = yes)

(27) return the chunks to broker for combining them and send the result to users IoT devices.

ArcoriTHM 1: Finding IoT services delegation/management in fog/cloud based on three conditions (service size, completion time, and VMs

capacity) for cases 1 and 2.

environment to process large number of requested services
at peak and nonpeak time, guarantee fast respond time, and
assure satisfying quality of services (QoS).

Next, we will explain the process of our work which
consists of two stages. In stage 1, firstly, we determine the
minimum number of VMs needed to do the job and their
speed. Secondly, we divided and assigned data based on VMs
capacity. In stage 2, firstly, we distribute data which has differ-
ent capacity to processors. Secondly, after the completion of
processing the divided chunks, they will return to cloud/fog
broker to combine them and, finally, they will be sent to IoT
devices user.

4.2.1. First Stage of Proposed Mechanism. In the first stage, we
determine the minimum number of VMs needed to do the
job and their speed. Secondly, we divided and assigned data
based on VMs capacity.

(A) Determine the Number of VMs and Speed. We use Algo-
rithm 3 to determine the minimum number of VMs which is
required to do the job depending on service level agreement
(SLA). Furthermore, we use cumulative distribution function
(CDF) F(x) time respond which is available in [17]. The
minimum number of VMs m keep increasing until F(x)
arrive at the desired targeted probability. As a result, we can

receive the required m for SLA. Next, we present description
of function F(x) and it is as follows:

F (x) = Probability (time of response < x)

1—e™ —kpe ™ x foro=m; -1)

1- ef‘ux(lfmﬁa)

1-e ™~ k‘uef“x(m’*“) [] foro +m; -1,

1-m;+o0
where o = A/p.
B o™ —u m;
k=p© m;! *(mi—o)’
. (2)
m—lo_n mpm
P(O):<7;)E+m!(m—o)> '

A is the arrival rate and p is the service rate.

Fog computing infrastructure can provide diversity of
services to satisfy a large number of SLAs through utilizing
unique scheduling methods such as FCFS which is shown in
Figure 6. Thus, we are recommending to allocate the VMs
into two groups where the first group will be utilized for
shared allocation (SA) Mg ,red Allocation a10d the second group

will be utilized for reserved allocation (RA) M, .qerved Allocation-

Mobile Information Systems

(2) THEN

(4) Divide requested services to small chunks
(5) Calculate the required no. of VMs

(8) THEN
(9) Divide requested services to small chunks
(10) Calculate the required no. of VMs

(Services in Queue = yes)
(12) THEN

(14) Divide requested services to small chunks
(15) Calculate the required no. of VMs

(17) end if

(18) endif

(19) endif

(20) After completion the processing of all chunks,

Input: S, // service size (small or large), S, // service completion time (now or later), VM, // VM capacity
(occupied = not enough or not occupied = enough)

Output: service delegation/management location // fog or cloud

(1) If (Service Size = Large) && (Service completion time = now) && (VM:s capacity = enough)

(3) Process the requested service at current location (fog environment)

(6) Assign these chunks to the assigned VM:s for processing
(7) elseif (Service Size = Large) && (Service completion time = now) && (VMs capacity = not enough)

(11) Obtain list of available VMs capacity in other fog/cloud environment from Services Monitor Server in cloud.
(10) Reserved the VMs and assign the chunks to VMs for processing
(11) else if (Service size = Large) && (Service completion time = later) && (VMs capacity = not enough) &&

(13) this services will be delegated to other fog/cloud environment

(16) Assign these chunks to assigned VMs for processing.

(21) return the chunks to broker for combining them and send the result to users IoT devices.

ArcoriTHM 2: Finding IoT services delegation/management in fog/Cloud based on three conditions (service size, completion time, and VMs

capacity) for cases 3 and 4.

Input:
n x // rate of arrival
2) u // rate of service

(3) SLA(x,z) /I x: time of response
/I z: probability target
Output: m // required minimum no. of VMs
(4) Floato = A/u

(5) Function determineMinVM (o, y, X, z) {

(6) If (0 == (int) o) m = (int) o;

(7) Else m = (int)Math.floor(o) + 1;

(8) While F(x) < z, m++;

(9) Return m; // required minimum no. of VMs }

ALGORITHM 3: Determining the number of VMs.

As for shared allocation, the arrival jobs of SLA are merged
in a single steamed and served by m VMs.

And, as for reserved allocation, we provide one VM for
each arriving job which is shown in Figure 7. Both fog and
cloud computing will utilize the model for shared allocation
and reserved allocation.

All of the SLAs in shared allocation will have the same
CDF of response time and arrival rate A = Zle A;. Thus, the
minimum number of VMSs #1gp, 4 allocation t© Meet k SLAs is
given by

Mghared Allocation — MaX (m1> s Meees mk) . (3)

TABLE 3: An example of proposed cases.

Cases /\1 Xp) A2 Xp) MReserved Mghared
Casel 3.9 3,0.7 3 10 10 1
Case 2 3.9 3,0.85 3.9 12 12 10

The number of VMs which is required to satisfy SLA; of
user i is referred to as m;. Let the smallest number of VMs
which is required to meet k SLA in reserved allocation be

Mghared Allocation* As aresult, MReserved Allocation 18 1VEI bY

Mpeserved Allocation = Z m. (4)
i

k
=1

In this case, when more than 1 user request services
with the same SLAs, the shared allocation can provide the
same or even enhanced performance than reserved allocation
(mshared Allocation < MReserved Allocation)' However, in case that
SLA, and SLA, are not the same for shared allocation, then it
will be quite difficult to determine whether shared allocation
is better than reserved allocation or the opposite. Table 3
will provide example of two cases for shared and reserved
allocation.

Note that, in some cases, we have to consider the case
where there are services in queue or not yet decided to where
to process the requested services (e.g., in fog or in cloud).

Input:

0 Ay, A, // rate of arrival

2) u // rate of service

(3) SLA,,SLA,

(4) E /I processing time expectation
Output:

(5) SA,RA //shared and reserved allocation strategy

(6) Function determineAllocStrategy (1, A,, SLA,, SLA,, E, u) {
(7) Calculate SLA difference D

(8) Get the corresponding angle « from the SLA difference table
(9) If(u=(1/E[T]+A,)) && p = (1/E[T] + X,))

(10) If (Math.asin(A,/sqrt (A; * A, + A, * 1)) < «)

Mobile Information Systems

(12) Else

(14) Else
(15) Return false {

(11) Return RA // reserved allocation

(13) Return SA // shared allocation

ALGORITHM 4: Determining the allocation strategy.

TABLE 4: Service level agreement difference (SLA).

D

(0, 20) 0
(20, 40) 20
(40, 66) 50
(66, 88) 70

By examining both cases at Table 3, we notice that, in
the first case, Mpeqerved Allocation @S shown better performance
than Mihared Allocation and’ in the second €aSe, Mgpared Allocation
has shown better performance than M. ved Allocation- Ve are
trying to determine the best suitable strategy for shared and
reserved allocation for the purpose of satisfying SLA; and
SLA,. Moreover, the VMs are able to guarantee the quality
of services (QoS). Let the average number of VMs which is
needed to meet a given SLA over considered arrival time be
E(SLA):

E(SLA) =

&=

i J (k,x, 7). 5)

Let D refer to the difference between SLA, and SLA,. As
aresult, D is given by

D = |E(SLA,) - E(SLA,)|. (6)

Algorithm 4 illustrates our allocation strategy to satisfy
service level agreements (SLA) and quality of services (QoS).

The relationship between D and angle « is explained in
Table 4. As illustrated in Table 4, every D is fixed by the
changes in arrival time of A;, A, in (0, 30) and the average
angle of SLA is different for every range.

We state angle « by the next formula:

Ay
sqrt (A; * Ay + A, % A,)°

sina =

7)

The next step is to discover the speed of VMs in order to
guarantee the quality of services (QoS) for every requested
service. We also deploy the little law which is explained in
[18]:

P
(1-p)

E[N] = where p = % (8)

In (8), we refer to the number of jobs in the system by
E[N]. Equation (9) presents the expectation of processing
time:

E[N 1 1
Nl__p _

PO == =00 " w-p) w2

To satisfy the quality of services (QoS), we set the below
formula:

+ A (10)

By using this formula, we are able to discover the VMs rate
of service. Moreover, we introduce an example below to make
it clear. For instance, let us assume that we want E[T] < 10
second, A = 1 job/second, then the VMs rate which is needed
is as follows:

> —+1=. (1)

Mobile Information Systems

(B) Determine VMs Capacity. When the system receives any
service, first, we have to find out if we need to process it at
current location or delegate it to other fog/cloud computing
environments based on the algorithm which we mentioned in
Section 4.1. Then, we can determine VMs capacity. In order to
determine the VMs capacity, we will sort, divide, and assign
data to VMs current Capacity. We also set data priority by
utilizing training data to sort out data. As a result, the data
with higher priority will be transferred first and the one with
lower priority will be transferred last.

We divide data to blocks of different sizes (e.g., bl;, bl,,
and bl,). In order to select the best VMs based on their
capacities, we utilize greedy algorithm. Finally, the VMs with
higher capacity will be assigned to the block with big size.

4.2.2. Second Stage of Proposed Mechanism

(A) Distribution of Data Block Process. We start distributing
data block which has different capacities to processors. When
we receive data, it will be divided into blocks of data. These
blocks will be divided into small size which is known as
chunks (e.g., chky, chk,, ..., chk,). Every chunk might have
different size based on the strength of bandwidth.

Let us denote the chunk in each block by chk;, the size
of chunk by w(ch;), and the bandwidth between VMs and
processor by bw;. Let w(ch;)/b; denote the time it takes to
send data (chunk) from VMs to processor. Note that when we
consider method of parallelization, the time it takes to send
chunks of data to processors should be even:

w(chk,) w(chk,)

w (chk;)

bw, bw, bw, bw;

w (chk;)

=t (12)

Set S = w (block) = Zw(chk) = tz b.

i=0 i=0
Thus,

S

—— b
Siob

w(chk;) =t = b, = .. (13)

As it is shown above, we can determine the size of every
chunk to adapt it with the bandwidth. The next process is
to sort out the processor based on processor capacities. For
example, if the chunk of data is bigger, then it will be sent to
processor with higher capacity for processing it.

(B) The Merging of Data Block Process. In this section,
we explain the process of merging data block after being
processed. After the data block is being processed, it will
be send back to fog broker in fog environment for merging
process. In service monitor server, the services map table will
keep a record of these blocks and the location where they were
processed which is illustrated in Figure 3.

9
VMs Service Fog/ Parts Progress Exp_Finish [P address
number ID cloud number _Time
VM1 1035 Fogl 2outof4 00:00:00 169.19.16.10
VM2 1035 Fog2 3outof4 00:00:00 169.18.15.11
VM3 1040 Fog3 Soutof6 WNZO% | 00:00:00 187.96.53.21

VM6 1135 Cloud 1 1outof3 EHOS%I] 00:00:00 190.35.665.35

FIGURE 3: Illustrating sample of services map table.

IoT Fog Fog
devices broker server

: (1) Send service request

(2) Send data (chunks) to

)| (i) Register/authenticate ,D)

1™ user devices Al e Vs
{ (ii) Check VMs capacity : :
| based on Algorithms 1 | :
: and 2 . (3) Send data (chunks) after :
|(iii) Divide data into chunk| : processing them :

R <
: (4) Combine data (chunks) :
© and send them to user :
;(.......................................

FIGURE 4: Sequence flow diagram of IoT service process in fog
computing environment.

Figures 4 and 5 illustrate the concept where data is divided
into chunk and then assigned to VMs in fog or cloud or both
of them. Then, after processing these chunk, they are returned
to fog broker to merge them and send them to user devices.

Fog computing will act as master which will receive all
chunks of data to decrease the complexity that is due to
the existing of firewall between processor in fog or cloud
environment.

5. Implementation and Analysis

In this section, the numerical experiments results are pre-
sented to examine the efficiency of shared allocation (SA) and
reserved allocation (RA) as well as comparing our approach’s
performance with other approaches in terms of processing
time to transfer big multimedia data from fog/cloud broker
to user smart devices. The comparison method uses one
processor [19] to receive data from fog/cloud broker where
in our case we use multiple processor.

5.1. Experiment Settings. The characteristics of our target
system are illustrated in Table 5. In our PC, we used one Intel
Core TM 17 965 and 8 GB RAM. The algorithm was simulated
on CloudSim [20]. CloudSim is a framework for modelling
and simulation of infrastructures and services in Java jdk-
7u7-1586 and Netbeans-7.2.

|(3) Request VM capac1ty|

Mobile Information Systems

Services Fog Fog

monitor
pe— broker 2 broker 3

S QS |
I
1
1
I
I
I
I
1
1
I
I
I
I
1
1
I

FIGURE 5: Sequence flow diagram of IoT service which is delegated to other fog/cloud computing environments.

10
ToT Fog Cloud
devices broker 1 broker
.(1) Send service request .(2) Send request for VM |
. _____________ | capacity
| r- ———————————————
I |
i I(4) Send VMs capacity |~
I list I
I Ié ——————————————— e ——————
1 1 |
I I 1
! I(5) Data (chunk 1) :
1 I’ ______________ A
i : 1(6) Data (chunk 2) i
L L
i |(7) Data (chunk 3) |
! ' (8) Processed data 17
' o ___(chunkD) S
| 1(9) Processed data H
! lo____(chunk2) ___ .
! (11) Combine data !(10) Processed data !
i (chunks) and send :(— - (chunk3) ___ 1
! them to user ! !
£ ! |
I | |
I | 1
I I I
TaBLE 5: Characteristic of the target system.
Parameter Value
Network LAN
Topology Connected
Operating system Win7 Professional
Number of VMs 25
Number of fog 7
Number of smart devices 10
Bandwidth [10~512] Mbps

TABLE 6: Setting for SLA.

Parameter Value
Response time [1~10]
Target time [0.1~0.99]

TABLE 7: Speeds of requests and response services.

Parameter Value
Arrival rate [0.2~3.9]
Service rate [1~4]

Every parameter in the simulation has different arrival
rates A, response times x, and target probabilities y. Some big
files for the abovementioned algorithms are to estimate the
required minimum number of VM:s for two types of resource
allocations and data distribution time. Table 6 illustrates
setting for SLA and Table 7 illustrates the speeds of requests
and response services.

The experiment result proves that shared allocation and
reserved allocation almost have the same impact when SLA is
the same for both of them with different arrival rate, response
time, and target probability. We did our experiment in the
same cases. However, different from other approaches, we
used multiple SLA instead of one single SLA.

Figure 8 illustrates different response time of shared and
reserved allocation. Our experiment result shows that when
the smallest number of VMs decreases, the respond time for
shared and reserved allocation increases. In addition, it shows
that the probability is almost the same for shared and reserved
allocation when we set different response time for shared and
reserved allocation.

Figure 9 illustrates SLA different target probability for
shared and reserved allocation. Our experiment result shows
the minimum number of VMs which is required to meet the
satisfaction of SLA. For instance, when the target probability
to satisfy SLA is 0.4, we need minimum of 5 VMs for shared
and reserved allocation. As a result, it can meet SLA different
target probability for shared and reserved allocation.

Figure 10 illustrates different arrival rate of shared and
reserved allocation. Our experiment result shows the mini-
mum number of VMs that is required to satisty SLA which
is equivalent to different arrival rate. For instance, when the
arrival rate of service is 2, we need minimum number of 3
VMs.

In the case where we consider using multiple SLAs, it is
suggested that the strategy of shared and reserved allocation
is more resource efficient compared to reserved allocation.

Figure 11 illustrates different SLAs of shared and reserved
allocation. The result shows that reserved allocation uses
more VMs than shared allocation when number of SLAs

Mobile Information Systems

3rd-party cloud server

Cloud server 3

Cloud server 2

1

Cloud environment

Cloud server 1

ToT devices

ol 3
Uy :ﬂ{m Mihared
I

=)

8
§ NP
Sl
i
WP Both

Mieserved

FIGURE 6: Illustrating our consideration of service level agreement (SLA).

decreases. As a result, reserved allocation can provide guar-
antee rate due to the offering of resources. For instance, when
the number of SLAs is 1, then we need minimum number of
less than 5 VMs to do the job. However, when the number
of SLAs is 5, then the needed minimum number of VM
for shared allocation is 10 VMs and more than 11 VMs for
reserved allocation.

A comparison of processing time when sending big size
of data to destination for our proposed system with other
approaches [19] that utilize one single processor only is illus-
trated in Figure 12. For instance, by looking at Figure 12, we
notice that our proposed approaches generate less processing

time than other approaches when we try to send big size
of data such as 400 mb. Moreover, our proposed approach
shows better performance than other approaches which only
use single processor [19]. Other approaches only use one
processor where our approach uses multiple processor.

The result, concerning the number of fog/cloud comput-
ing environments with respect to IoT devices workload, is
presented in Figure 13. We calculate the minimum number
of fog/cloud computing environments which is able to satisfy
IoT devices workload. The number of fog computing environ-
ments increases when the number of IoT devices workload
increases and the same thing applies to cloud computing

12

Cloud server 3

Cloud server 2

Fog computing server

Mobile Information Systems

Cloud

environment

Cloud server 1

Fog environment

Fog computing server

Samsung |~

SEPART

:F‘\/w
P

ToT devices

[=' Shared allocation model

=

G
L2

Reserved allocation model

F1GURE 7: lllustrating our proposed strategy for resources allocation in shared allocation and reserved allocation.

when requested services are delegated to cloud computing.
For instance, when the workload of IoT devices is 30 mb, then
the minimum number of fog computing environments to
satisfy IoT devices increase to 2 fog computing environments.

6. Conclusion

Smart IoT devices are growing rapidly and becoming smarter
to access the Internet anytime, anywhere. Nevertheless,
smart devices, services, and application are not able to
fully benefit from this attractive cloud computing paradigm
due to the following issues: (1) smart devices might be
lacking in their capacity (e.g., processing, memory, storage,

battery, and resource allocation), (2) they may be lacking in
their network resources, and (3) the high network latency
to centralized server in cloud might not be efficient for
delay-sensitive application, services, and resource allocations
requests. Moreover, sending or receiving big size of data from
centralized server in cloud over the network degraded cloud
performance and burden cloud network causing poor QoS,
long response delay, and insufficient use of network resources.
A localized environment such fog computing can be efficient
in resolving the abovementioned issue. In spite of that, the
rapid increasing number of services that will be requested
from fog computing will generate overhead of services and
less services requested from cloud which will result in poor
management for both environment and poor QoS.

Mobile Information Systems

18
16 4
14
12

10

Number of virtual machines

2 T T T T 1
0 2 4 6 8 10

Response time (s)

—<4— Shared
—%— Reserved

FIGURE 8: Showing different response time of shared and reserved
allocation.

Probability
SR
w > w [o)} ~ [} Nl o
1 1 1 1 1 1 1 1
.
[]

(=]
\S)
1

Response time (s)

m Shared
® Reserved

FIGURE 9: Showing SLA different target probability of shared and
reserved allocation.

As a result, in this paper, we proposed an architecture
of IoT service delegation and resource allocation based on
collaboration between fog and cloud computing. We provide
new algorithm that is decision rules of linearized decision tree
based on three conditions (services size, completion time,
and VMs capacity) for managing and delegating user request.
Furthermore, we proposed new strategy for optimizing big
data distribution in fog and cloud environment. Moreover,
we propose algorithm to allocate resources to meet service
level agreement (SLA) and QoS. Our simulation result shows
that our proposed approach can improve services delegation,
management, big data distribution, and resource allocation

13

Number of virtual machines

—

T T T T T T T T 1
0 2 4 6 8 10
Arrival rate

—a— Shared
—eo— Reserved

FIGURE 10: Showing the different arrival rate of shared and reserved
allocation.

—
N W o G

Number of SLAs
-
N W R U1 NN 0O O

0 5 10 15 20 25 30 35 40 45

Number of virtual machines

B Reserved
Il Shared

FIGURE 11: Showing different SLAs of shard and reserved allocation.

efficiently and show better performance than other existing
methods.
Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research is supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC
(Information Technology Research Center) support Pro-
gram (IITP-2016-(H8501-16-1015)) supervised by the IITP

14

2000

1500

1000

File size (Mb)

500

0
T T T T T T T T T T T T T T T T
©c o 0 Q0 Q0 9 Q0 < Q 909 < 9 9 o Q9
N ¥ O 0 O ¥ O 0O N T OV o O
= H =~ 4 A AN AN

Processing time

—~

s)
BN One processor
El Our approach

FIGURE 12: Showing comparison of other approaches (using
processor) with our approach (using multiprocessor).

16

7

Number of fog computing environments

320 4

one

T
0 20 40 60 80 100 120 160

ToT devices workload (Mb)

140

® [oT devices
® Fog computing

FIGURE 13: Showing the result of IoT devices workload comparing

to the number of fog/cloud computing.

(Institute for Information and Communication Technology

Promotion).

References

[1] Y. Pan and N. Hu, “Research on dependability of cloud comput-
ing systems,” in Proceedings of the 10th International Conference
on Reliability, Maintainability and Safety (ICRMS ’14), pp. 435-

439, IEEE, Guangzhou, China, August 2014.
[2] W. Liu, “Research on cloud computing security problem

and

strategy,” in Proceedings of the 2nd International Conference on
Consumer Electronics, Communications and Networks (CECNet

12), pp. 1216-1219, Yichang, China, April 2012.

(3]

(4]

(10]

(11]

(12]

(13]

(14]

Mobile Information Systems

M. Aazam and E.-N. Huh, “Framework of resource manage-
ment for intercloud computing,” Mathematical Problems in
Engineering, vol. 2014, Article ID 108286, 9 pages, 2014.

M. Aazam and E. N. Huh, “Dynamic resource provisioning
through fog micro datacenter,” in Proceedings of the 12th IEEE
International Workshop on Managing Ubiquitous Communica-
tion and Services (MUCS ’15), pp. 105-110, March 2015.

S. Uppoor, M. D. Flouris, and A. Bilas, “Cloud-based synchro-
nization of distributed file system hierarchies,” in Proceedings
of the IEEE International Conference on Cluster Computing
Workshops and Posters, Cluster, pp. 1-4, September 2010.

J. Delgado, S. M. Sadjadi, L. Fong, Y. Liu, N. Bobroft, and S.
Seelam, “Efficiency assessment of parallel workloads on virtu-
alized resources,” in Proceedings of the 4th IEEE International
Conference on Utility and Cloud Computing (UCC ’11), pp. 89—
96, IEEE, Melbourne, Australia, December 2011.

P. Fan, J. Wang, Z. Zheng, and M. R. Lyu, “Toward optimal
deployment of communication-intensive cloud applications,” in
Proceedings of the IEEE 4th International Conference on Cloud
Computing (CLOUD ’11), pp. 460-467, July 2011.

M. Kwok, Performance analysis of distributed virtual environ-
ments [Ph.D. thesis], University of Waterloo, Waterloo, Canada,
2006.

G. Y. Jung, N. Gnanasambandam, and T. Mukherjee, “Syn-
chronous parallel processing of big-data analytics services to
optimize performance in federated clouds,” in Proceedings of
the IEEE 5th International Conference on Cloud Computing
(CLOUD ’12), pp. 811-818, IEEE, Honolulu, Hawaii, USA, June
2012.

Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning
for cloud computing,” in Proceedings of the Conference of the
Center for Advanced Studies on Collaborative Research (CAS-
CON "09), pp. 101-111, November 2009.

J. Li, J. Chinneck, M. Woodside, and M. Litoiu, “Fast scalable
optimization to configure service systems having cost and qual-
ity of service constraints,” in Proceedings of the 6th International
Conference on Autonomic Computing (ICAC *09), pp. 159-168,
June 2009.

A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s
inside the cloud? An architectural map of the cloud landscape;”
in Proceedings of the ICSE Workshop on Software Engineering
Challenges of Cloud Computing (CLOUD 09), pp. 23-31, IEEE,
Vancouver, Canada, May 2009.

C. Kamalanathan, S. Valarmathy, and S. Kirubakaran, “Design-
ing a fuzzy-logic based trust and reputation model for secure
resource allocation in cloud computing,” The International Arab
Journal of Information Technology, vol. 13, no. 1, pp. 30-37, 2016.
L. Xun, “From augmented reality to augmented computing:
a look at cloud-mobile convergence,” in Proceedings of the
International Symposium on Ubiquitous Virtual Reality (ISUVR
’09), pp. 29-32, Gwangju, South Korea, July 2009.

E. E. Marinelli, Hyrax: cloud computing on mobile devices
using MapReduce [M.S. thesis], Computer Science Department,
CMU, Pittsburgh, Pa, USA, 2009.

I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso,
“Calling the cloud: enabling mobile phones as interfaces to
cloud applications,” in Middleware 2009, J. M. Bacon and B. E
Cooper, Eds., vol. 5896 of Lecture Notes in Computer Science, pp.
83-102, Springer, New York, NY, USA, 2009.

M. Andreolini, S. Casolari, and M. Colajanni, “Autonomic
request management algorithms for geographically distributed
internet-based systems,” in Proceedings of the 2nd IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems
(SASO °08), pp. 171-180, IEEE, Venice, Italy, October 2008.

Mobile Information Systems

[18] R. Sheldon, Introduction to Probability Models, Elsevier, 10th
edition, 2010.

[19] H. C. Gonzalo and D. M. Lee, “A virtual cloud computing
provider for mobile devices,” in Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Net-
works and Beyond, no. 6, pp. 1-5, San Francisco, Calif, USA, June
2010.

[20] Cloudsim, “A framework for modeling and simulation of cloud
computing infrastructures and services,” https://code.google
.com/p/cloudsim/downloads/list.

15

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

