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Abstract: Ca2+ ions play a key role in a wide variety of environmental responses and developmental
processes in plants, and several protein families with Ca2+-binding domains have evolved to meet
these needs, including calmodulin (CaM) and calmodulin-like proteins (CMLs). These proteins have
no catalytic activity, but rather act as sensor relays that regulate downstream targets. While CaM is
well-studied, CMLs remain poorly characterized at both the structural and functional levels, even if they
are the largest class of Ca2+ sensors in plants. The major structural theme in CMLs consists of EF-hands,
and variations in these domains are predicted to significantly contribute to the functional versatility of
CMLs. Herein, we focus on recent advances in understanding the features of CMLs from biochemical
and structural points of view. The analysis of the metal binding and structural properties of CMLs can
provide valuable insight into how such a vast array of CML proteins can coexist, with no apparent
functional redundancy, and how these proteins contribute to cellular signaling while maintaining
properties that are distinct from CaM and other Ca2+ sensors. An overview of the principal techniques
used to study the biochemical properties of these interesting Ca2+ sensors is also presented.

Keywords: calcium-binding protein; calmodulin; plant calmodulin-like protein; Arabidopsis; EF-hand;
conformational change; target-binding

1. Introduction

As second messengers, Ca2+ ions have a fundamental role in a wide variety of environmental
responses and developmental processes [1]. The process of signal perception and transduction through
Ca2+ involves prompt changes in the levels of its intracellular free concentration that is used to
coordinate a physiological response. In plants, continuous exposition to changing and potentially harsh
conditions induces diverse spatial and temporal patterns of Ca2+ levels [2]. Referred to as “Ca2+ signatures”,
these changes provide plants with information about external stimuli that are decoded using highly-specific
protein sensors which trigger the appropriate physiological responses. Ca2+ sensors affect the activity of
downstream effectors that synchronize changes in metabolism, gene expression, and turnover of proteins.

Most Ca2+ sensors contain a highly-conserved helix-loop-helix motif, called the EF-hand, which is
composed of 29 amino acids; the central 12 residues form a loop structure that coordinates one Ca2+ ion
(Figure 1).
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Figure 1. The canonical EF-hand. Ca2+ coordination in the Ca2+ binding loop-4 of Arabidopsis CaM7 
(PDB CODE: 5A2H) [3]. W, water molecule. The image has been prepared using PYMOL 
(Schrödinger, LLC). 

The importance of Ca2+ sensors in growth and development of plants is highlighted by the 
diversity and large number of proteins identified to date with Ca2+ binding domains. There are three 
families of Ca2+ sensor proteins in plants: (i) calmodulin (CaM) and CaM-like (CML); (ii) 
calcineurin-B-like (CBL); and (iii) Ca2+-dependent protein kinases (CDPKs, called CPKs in 
Arabidopsis) [4–6]. Of these, only the latter represent true “responders” that carry out direct signal 
transduction using their own catalytic activity. CaMs/CMLs and CBLs appear to act as sensor relays 
that regulate downstream targets and are not endowed with catalytic activity. Nonetheless, CBLs 
can specifically interact with CBL-interacting protein kinases (CIPKs), which are a specialized group 
of serine/threonine protein kinases. 

CaM is undoubtedly the best characterized Ca2+ sensor; it is highly conserved from an 
evolutionary standpoint and is present in all eukaryotic cells [7–12]. CaM is a small (149 amino acids) 
acidic protein. It has a flexible helical region in the center, which connects two globular domains. 
Each of these domains has two EF-hands that bind Ca2+ with positive cooperativity. In addition to 
multiple CaM isoforms, plant genomes encode a remarkable number of CMLs whose primary 
sequences have ≥16% overall identity with the canonical CaM sequence (e.g., CaM2 from 
Arabidopsis); functional motifs other than EF-hands are notably absent [9,13]. In Arabidopsis, seven 
genes are present that code for four CaM isoforms (CaM1/4, CaM2/3/5, CaM6 and CaM7) as well as 
50 genes that code for CML proteins [9,13]. The successful completion of several plant genome 
sequencing projects has allowed for identification of many genes that are predicted to encode CML 
isoforms in various plant species (e.g., 32 in Oryza sativa [14], 52 in tomato [15], 36 in woodland 
strawberry [16], 19 in Lotus japonicus [17], and 79 in Chinese cabbage [18]), revealing the high level of 
diversity of Ca2+ sensors in the green lineage [4]. 

The functions of Arabidopsis CMLs in development and response to both biotic and abiotic 
stimuli have been summarized in several recent reviews, and convincing evidence has been 
provided that these proteins are not likely to have redundant functions, but rather play central and 
highly specific roles in coordinating environmental responses of plants. In addition, many CMLs are 
now known to recognize a specific target [2,19–23]. 

Empirical data on the affinity of Ca2+ to CMLs and the Ca2+-induced structural rearrangements 
are just beginning to emerge. Importantly, only one 3D atomic structure of a CML is present in the 
Protein Data Bank (PDB), i.e., the Ca2+-loaded form of the N-terminal domain of CML34 from 
Arabidopsis thaliana (PDB code 1TIZ) obtained by protein nuclear magnetic resonance (NMR) 
spectroscopy [24], while X-ray crystallographic structures of the apo- and Ca2+-bound forms of CMLs 
are still missing. Nevertheless, it has been possible to obtain useful data about the dynamic 
properties of CMLs using combined biochemical approaches, which include isothermal titration 

Figure 1. The canonical EF-hand. Ca2+ coordination in the Ca2+ binding loop-4 of Arabidopsis
CaM7 (PDB CODE: 5A2H) [3]. W, water molecule. The image has been prepared using PYMOL
(Schrödinger, LLC).

The importance of Ca2+ sensors in growth and development of plants is highlighted by the diversity
and large number of proteins identified to date with Ca2+ binding domains. There are three families of
Ca2+ sensor proteins in plants: (i) calmodulin (CaM) and CaM-like (CML); (ii) calcineurin-B-like (CBL);
and (iii) Ca2+-dependent protein kinases (CDPKs, called CPKs in Arabidopsis) [4–6]. Of these, only the latter
represent true “responders” that carry out direct signal transduction using their own catalytic activity.
CaMs/CMLs and CBLs appear to act as sensor relays that regulate downstream targets and are not
endowed with catalytic activity. Nonetheless, CBLs can specifically interact with CBL-interacting protein
kinases (CIPKs), which are a specialized group of serine/threonine protein kinases.

CaM is undoubtedly the best characterized Ca2+ sensor; it is highly conserved from an evolutionary
standpoint and is present in all eukaryotic cells [7–12]. CaM is a small (149 amino acids) acidic protein.
It has a flexible helical region in the center, which connects two globular domains. Each of these domains
has two EF-hands that bind Ca2+ with positive cooperativity. In addition to multiple CaM isoforms, plant
genomes encode a remarkable number of CMLs whose primary sequences have ≥16% overall identity
with the canonical CaM sequence (e.g., CaM2 from Arabidopsis); functional motifs other than EF-hands are
notably absent [9,13]. In Arabidopsis, seven genes are present that code for four CaM isoforms (CaM1/4,
CaM2/3/5, CaM6 and CaM7) as well as 50 genes that code for CML proteins [9,13]. The successful
completion of several plant genome sequencing projects has allowed for identification of many genes
that are predicted to encode CML isoforms in various plant species (e.g., 32 in Oryza sativa [14], 52 in
tomato [15], 36 in woodland strawberry [16], 19 in Lotus japonicus [17], and 79 in Chinese cabbage [18]),
revealing the high level of diversity of Ca2+ sensors in the green lineage [4].

The functions of Arabidopsis CMLs in development and response to both biotic and abiotic stimuli
have been summarized in several recent reviews, and convincing evidence has been provided that these
proteins are not likely to have redundant functions, but rather play central and highly specific roles in
coordinating environmental responses of plants. In addition, many CMLs are now known to recognize
a specific target [2,19–23].

Empirical data on the affinity of Ca2+ to CMLs and the Ca2+-induced structural rearrangements are
just beginning to emerge. Importantly, only one 3D atomic structure of a CML is present in the Protein
Data Bank (PDB), i.e., the Ca2+-loaded form of the N-terminal domain of CML34 from Arabidopsis thaliana
(PDB code 1TIZ) obtained by protein nuclear magnetic resonance (NMR) spectroscopy [24], while X-ray
crystallographic structures of the apo- and Ca2+-bound forms of CMLs are still missing. Nevertheless,
it has been possible to obtain useful data about the dynamic properties of CMLs using combined
biochemical approaches, which include isothermal titration calorimetry (ITC), NMR, circular dichroism
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(CD), and fluorescence spectroscopy. The emerging scenario is that CMLs are a highly diverse family of
proteins that act generally, but not always, as Ca2+ sensors, and provide a wide variety of physiological
responses to Ca2+.

The present review discusses and summarizes the current knowledge on plant CMLs, from both
biochemical and structural perspectives, and provides an overview of the principal techniques used
to study these Ca2+ sensors. The majority of the examples given within come from members of
the Arabidopsis CML family since there is more biochemical, structural, and functional information
for this family than for any other plant species.

2. The EF-Hand: Variations on a Theme

2.1. Architecture of EF-Hands

As a metal ion, Ca2+ has the ability to provide interactions that are dominated by ionic forces [25].
Accordingly, the EF-hands, and in particular the loops, are abundant in negative charged glutamate
and aspartate residues. The EF-hand loop provides seven ligands that can bind Ca2+ with pentagonal
bipyramid geometry. In particular, the Ca2+ ion is coordinated in the canonical EF-hand to carboxylate
oxygens from residues 1 (+X), 3 (+Y), 5 (+Z) and 12 (-Z), carbonyl oxygen from residue 7 (-Y) and
bridged water at position 9 (-X). A glycine residue at position 6 is highly conserved, allowing the loop to
encompass the Ca2+ ion, which is a critical feature for high affinity binding [26] (Figure 1). The EF-hand
is a structural and functional unit as well as a unit of evolution. Accordingly, a recent classification of
subfamilies of EF-hand proteins has provided evidence that the majority of EF-hand proteins probably
evolved from one ancestral EF-lobe (a pair of adjacent EF-hands) [27].

Sequence alignment of plant CaM proteins has documented a conserved pattern DxDx[DN] in
the EF-hand binding loop, in which aspartate and asparagine are most commonly present, indicating
that the short branch length of these residues is optimal for Ca2+ binding at positions 1, 3, and 5.
Residue 12(-Z) is glutamate in most Ca2+-binding EF-hand motifs, thereby providing bidentate chelation.
Though non-coordinating residues, glycines at position 4 and 6 determine in large part the flexibility in
the Ca2+ site. Hydrophobic amino acids (I, V, or L) are predominantly present at position 8 (Figure 1).

Plant CMLs have a structural similarity to CaM and are also predicted to possess EF-hands,
with no additional functional domains. While CaM typically contains four conserved EF-hand motifs,
CMLs generally have one to six [4,13–17]. As an example, CaMs from Arabidopsis have 149 amino acids
and four EF-hands; CMLs range from 80 to 330 amino acids in length and 16 of 50 CMLs have a number
of EF-hands that is different from four (Figure 2). Sequence analysis of CMLs from several plant species
has highlighted that both the composition and organization of functional EF-hands in CMLs have
significant variations [4,13–17]. A variability within and between loops can be found and different
residue positions distinguish each Ca2+-binding site. Due to the lack of key coordinating residues and
deletions in the EF-binding loop motifs, several domains are likely non-functional and thus not even
recognized by bioinformatics tools searching for motifs. In many cases, residues with a negative charge
(needed to bind Ca2+) are substituted by positively charged polar residues (e.g., the presence of a lysine
residue at positions 3, 6 and 12 in the second EF-hand of CML17, CML22, CML25, and CML33) that
can perturb the network of interactions needed for efficient binding. At position 12, the substitution
of glutamate with aspartic acid residue is very frequent among CMLs (Figure 2). This is of interest as
aspartate is known to shift the binding selectivity from Ca2+ towards Mg2+ ions [26]. Furthermore,
the binding of Ca2+ can be altered by mutation of loop residues at non-critical positions (Figure 2) as
well as by the three-dimensional arrangement of the two helices, which leads to the abandonment
of the pentagonal bi-pyramidal coordination scheme and the acquisition of non-canonical binding
geometry. Accordingly, it could be hypothesized that non-identical loops may determine functional
flexibility in the binding of Ca2+ due to their different biophysical properties. There is thus a need for
in-depth investigation of the contribution of each EF-hand loop to the functions of CMLs considering
the crucial residues that distinguish the loops from one another.
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Figure 2. EF-hand motifs composition of Arabidopsis CaM and CML proteins. Conserved motifs were 
identified using the Multiple Em for Motif Elicitation (MEME) suite 
(http://meme-suite.org/tools/meme) [28] with standard searching parameters, a maximum of four 
motifs and an optimum motif width between six and 29 amino acids. Each color represents a specific 
motif for which the corresponding sequence LOGO is shown on the right side of the panel. The seven 
CaM and 50 CML proteins are clustered into nine groups according to [13]. Not all motifs found are 
actually functional and differences exist between the predicted motifs by MEME and 
PROSITE-ProRule (Table 1). 

2.2. The Affinity of EF-Hands for Ca2+ 

Only a few CMLs have been incontrovertibly demonstrated to function as Ca2+ sensors. ITC and 
NMR are ideal techniques to better understand the intricacies of Ca2+-binding proteins. In fact, while 
ITC allows for determination of the thermodynamics for multiple metal-binding sites, NMR can 
unequivocally identify the stoichiometry of binding. Indeed, the appearance of downfield-shifted 1H 
resonances at >10 ppm in 1H-15N HSQC spectra is characteristic of Ca2+-loading of 
EF-hand-containing proteins. Such signals are typical of the backbone amide groups of the 
conserved glycine at position 6 of the EF-hand binding loop (G6) that helps form the large 
hydrogen-bonding network upon Ca2+ binding [29]. Thus, G6 functions as an indicator of the 
Ca2+-bound state in an EF-hand. Using ITC and NMR data, the existence of three functional Ca2+ 
binding sites has been demonstrated for Arabidopsis CML42 [30] and CML43 [31], and four for 
CML19 [32] and CML36 [33] (Table 1). In the case of CML14, the combination of ITC and NMR 

Figure 2. EF-hand motifs composition of Arabidopsis CaM and CML proteins. Conserved motifs were
identified using the Multiple Em for Motif Elicitation (MEME) suite (http://meme-suite.org/tools/
meme) [28] with standard searching parameters, a maximum of four motifs and an optimum motif width
between six and 29 amino acids. Each color represents a specific motif for which the corresponding
sequence LOGO is shown on the right side of the panel. The seven CaM and 50 CML proteins are clustered
into nine groups according to [13]. Not all motifs found are actually functional and differences exist
between the predicted motifs by MEME and PROSITE-ProRule (Table 1).

2.2. The Affinity of EF-Hands for Ca2+

Only a few CMLs have been incontrovertibly demonstrated to function as Ca2+ sensors. ITC and
NMR are ideal techniques to better understand the intricacies of Ca2+-binding proteins. In fact,
while ITC allows for determination of the thermodynamics for multiple metal-binding sites, NMR
can unequivocally identify the stoichiometry of binding. Indeed, the appearance of downfield-shifted 1H
resonances at >10 ppm in 1H-15N HSQC spectra is characteristic of Ca2+-loading of EF-hand-containing
proteins. Such signals are typical of the backbone amide groups of the conserved glycine at position
6 of the EF-hand binding loop (G6) that helps form the large hydrogen-bonding network upon Ca2+

binding [29]. Thus, G6 functions as an indicator of the Ca2+-bound state in an EF-hand. Using ITC and
NMR data, the existence of three functional Ca2+ binding sites has been demonstrated for Arabidopsis
CML42 [30] and CML43 [31], and four for CML19 [32] and CML36 [33] (Table 1). In the case of
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CML14, the combination of ITC and NMR techniques has allowed for the demonstration that only one
EF-hand can sense Ca2+ ions, despite the presence of three EF-hand motifs [34]. Moreover, ITC analysis
demonstrated that CML15 and CML16 contain only two and three functional Ca2+-binding sites,
respectively, out of the four predicted EF-hands [35]. Therefore, caution should be used in functional
predictions based only on sequence analysis (Table 1). In the absence of experimental 3D structures,
homology models can be exploited as an alternative to support the presence of functional Ca2+-binding
sites, as has been done for CML14 [34], CML15, and CML16 [35].

ITC analysis has underscored that Arabidopsis CMLs have a wide range of affinity for Ca2+

(nM-µM range) [30,31,33,35]. Thus, the Ca2+ signaling system might be endowed with greater flexibility
as a consequence of the different Ca2+ binding affinities of the various isoforms of CML. In this regard,
a range of Ca2+ sensors for several Ca2+ signatures is likely to represent a crucial aspect for Ca2+ signal
transduction. In addition, it would further appear that most CMLs have an apparent affinity for Ca2+

which differs substantially from CaM itself, leading to the possibility that they might be activated
differently during Ca2+ spikes. The different binding affinities of Arabidopsis CML36 and CaM for Ca2+

ions would be critical in fine-tuning each isoform to specifically stimulate the activity of the common
target, the Ca2+-dependent ATPase isoform 8 (ACA8), in different conditions [33]. A tobacco CML
(rgs-CaM), which was reported to possess an associated RNA silencing suppressor activity [36],
has a Ca2+-affinity which is not in the range of canonical CaMs [37]. In particular, ITC analysis indicated
that the protein possesses two Ca2+-binding sites with moderate Ca2+ affinity and a third one with very
low Ca2+ affinity (Kd ~10 mM). This low/modest affinity has been attributed to hydrophobic amino acid
substitutions within the EF-hands, especially in EF-hands 1 and 4 [37]. However, due to the high Kd, it is
questionable whether rgs-CaM can work as a true Ca2+ sensor in vivo, even if its affinity for Ca2+ could
increase in the presence of targets. Indeed, association of CaM with its targets is known to stabilize its
Ca2+-bound conformation, increasing the affinity for Ca2+ [10,26,38].

2.3. The Role of Mg2+

It is worth noting that, in addition to Ca2+, Mg2+ is another physiologically important ion for
plants. In plant cells, the free cytosolic concentration of Ca2+ and Mg2+ in the resting state has been
reported to be about 100 nM and 0.5–2 mM, respectively [39,40]. This renders the possibility that
the competitive and/or allosteric effects of Mg2+ are relevant. Indeed, since Ca2+ and Mg2+ have
similar properties, Ca2+-binding proteins must be able to discriminate between the two cations against
a 102–104 -fold excess of Mg2+. However, it has been shown that Mg2+ binding to EF-hands is
important physiologically, and in reality more than one role has been hypothesized for the binding
of Mg2+ [26,40]. These include providing greater structural stability to a molten globule apo-protein,
as well as a potential role in modulating the affinity of EF-hands for Ca2+. Considering this possibility,
binding of Mg2+ might play a functional role by shifting an activation curve to higher concentrations
of Ca2+ while inactivating other enzymes at resting levels of Ca2+. In some Ca2+-binding proteins, it is
known that Mg2+ binding has a function that is distinct from Ca2+ [41].

Arabidopsis CMLs show heterogeneous behavior towards Mg2+ ion binding: in CML19 [32] none
of the four EF-hands can bind Mg2+, while in CML14 [34], CML15, and CML16 [35] the weaker
affinity for Ca2+ in the presence of Mg2+ indicates that this cation can compete directly for Ca2+

binding [26,42–45], thereby reducing the affinity for Ca2+ by 5-10 fold. For CML16 [35], Mg2+ binding
seems to impede the binding of Ca2+ to at least one EF-hand. Mg2+ also affects the affinity for Ca2+

in CML36 which possesses two Ca2+/Mg2+ mixed sites with high affinity and two Ca2+-specific
sites with low affinity [33]. The observed binding constants of Ca2+/Mg2+ mixed sites for Mg2+ and
Ca2+ are suggestive that both these EF-hands are normally occupied by a divalent cation during
the resting state. This ensures that CML36 is in a folded ion-bound structure at all concentrations of Ca2+.
After a stimulus-induced Ca2+ increase, Mg2+ is displaced and the dominant state of the protein becomes
Ca2+-bound [33]. This finding demonstrates that Mg2+ binding does not preclude the ability of CMLs to
functionally respond to Ca2+.
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Table 1. Summary of available structural and functional information on Arabidopsis CMLs.

Name 1 Accession Number EF-Hands 2 Experimental
Ca2+-Binding Sites 3

Biochemical and Structural
Characterization 4 Identified Target Putative Role Refs

CML1 At3g59450 1 ? ? ? ?
CML2 At4g12860 4 ? ? ? ?
CML3 At3g07490 4 ? Gel shift, HIC AtDEG15 ? [46,47]
CML4 At3g59440 4 ? Gel shift, HIC ? ? [48]
CML5 At2g43290 4 ? Gel shift, HIC ? ? [48]
CML6 At4g03290 4 ? ? ? ?

CML7 At1g05990 4 ? ? ? Development
(Root hair elongation) [49,50]

CML8 At4g14640 4 ? HIC, radioactive Ca2+-
binding assay

BRI1, ZAR1, IQD1,
PEN3

Plant immunity
(Positive regulation) [51–57]

CML9 At3g51920 4 ? ? PPR2, IQD1, PEN3,
ILK1 Signaling hub 5 [52,55,56,58–63]

CML10 At2g41090 4 ? Gel shift PM-MUTASE Abiotic stress
(Oxidative stress) [64]

CML11 At3g22930 4 ? ? ? ?

CML12 At2g41100 6 ? ? PINOID, PEN3 Development;
Plant immunity [56,65]

CML13 At1g12310 3 ? ? ? ?

CML14 At1g62820 3 1 NMR, ITC, DSC, Gel shift, ANS,
SEC, LP, MM ? ? [34]

CML15 At1g18530 4 2 Gel Shift, CD, ANS, ITC, HIC, MM ? ? [35]
CML16 At3g25600 4 3 Gel Shift, CD, ANS, ITC, HIC, MM ? ? [35]
CML17 At1g32250 4 ? ? ? ?
CML18 At3g03000 4 ? ? NHX1, CBP60C Abiotic stress (Salt) [66]

CML19 At4g37010 4 4 NMR, ITC, Gel shift, ANS, SEC,
CD, LP RAD4, SAC3b, DSS1 Abiotic stress (UV-damage) [32,67–69]

CML20 At3g50360 4 ? Gel shift TON1, SAC3, UCH Abiotic stress
(Drought Stress) [69–71]

CML21 At4g26470 4 ? ? ? ?
CML22 At3g24110 4 ? ? ? ?
CML23 At1g66400 4 ? ? ? Development (Flowering) [72]
CML24 At5g37770 4 ? Gel shift, HIC ATG4b Signaling hub5 [72–76]

CML25 At1g24620 4 ? Gel shift, HIC ? Development (Root,
Pollen tube) [77]

CML26 At1g73630 4 ? ? ? ?
CML27 At1g18210 4 ? ? ? ?
CML28 At3g03430 2 ? ? ? ?
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Table 1. Cont.

Name 1 Accession Number EF-Hands 2 Experimental
Ca2+-Binding Sites 3

Biochemical and Structural
Characterization 4 Identified Target Putative Role Refs

CML29 At5g17480 2 ? ? ? ?
CML30 At2g15680 4 ? Gel shift, HIC ? ? [46]
CML31 At2g36180 4 ? ? ? ?
CML32 At5g17470 4 ? ? ? ?
CML33 At3g03400 4 ? ? ? ?
CML34 At3g03410 4 ? NMR ? ? [24]
CML35 At2g41410 4 ? ? TTL3 ? [78]

CML36 At3g10190 4 4 NMR, ITC, DSC, Gel shift, ANS,
SEC, LP, CD ACA8, CERK1 ? [33,79]

CML37 At5g42380 4 ? Gel shift, CD, ANS PEN3 Signaling hub5 [56,80–82]
CML38 At1g76650 4 ? Gel shift RALF1, PEN3 Signaling hub5 [56,80,83,84]
CML39 At1g76640 4 ? Gel shift ? Development (Seed, Fruit) [80,85,86]
CML40 At3g01830 2 ? ? ? ?
CML41 At3g50770 4 ? Gel Shift ? Plant immunity [87]
CML42 At4g20780 3 3 CD, ITC, ANS, NMR, HIC, Gel shift KIC Signaling hub 5 [30,88,89]

CML43 At5g44460 3 3 CD, ITC, ANS, NMR, DSC, HIC,
Gel shift ? Plant Immunity

(positive regulation) [31,88]

CML44 At1g21550 3 ? ? ? ?
CML45 At3g29000 3 ? ? ? ?

CML46 At5g39670 3 ? ? ? Plant Immunity
(negative regulation) [90]

CML47 At3g47480 2 ? ? ? Plant Immunity
(negative regulation) [90]

CML48 At2g27480 2 ? ? ? ?
CML49 At3g10300 2 ? ? ? ?
CML50 At5g04170 2 ? ? ? ?

1 Name according to [13]. The name assigned to four accession numbers differs between [13] and UniProt. At3g59450: CML1 [13], CML46 [UniProt]; At2g15680: CML30 [13], CML1 [UniProt];
At3g29000: CML45 [13], CML30 [UniProt]; At5g39670: CML46 [13], CML45 [UniProt]. 2 Number of EF-hands based on PROSITE-ProRule prediction [91]. Not all motifs found are actually
functional and differences exist between the predicted motifs by MEME (Figure 2) and PROSITE-ProRule. 3 Number of functional Ca2+-binding sites as experimentally measured by ITC
and/or NMR analysis. 4 Techniques used to assess structural and Ca2+-binding properties. Gel shift to study electrophoretic mobility; ITC to study thermodynamic parameters of metal-binding;
ANS and HIC to evaluate surface-exposed hydrophobicity; CD and NMR spectroscopy to evaluate conformational changes in secondary and tertiary structure; DSC and LP to assess thermal
and structural stability; MM, molecular modeling. 5 Role as key hub in plant development and response to both biotic and abiotic stresses. ?, no information available.



Int. J. Mol. Sci. 2018, 19, 1331 8 of 18

It is worth pointing out that, in some cases [30,31], the affinity for Ca2+ has been measured
exclusively in the presence of Mg2+ to mimic physiological conditions. While the approach appears to
be theoretically valid, the study of Ca2+ binding in the absence and presence of Mg2+ may be crucial
for understanding protein functionality. Indeed, performing NMR and ITC titrations of apo-CMLs
with Ca2+ or Mg2+, as well as titration of Ca2+ in CMLs saturated with Mg2+, will provide crucial
information on the possible competition between the two ions and on the influence of Mg2+ binding
on Ca2+ affinities.

The biochemical data on CMLs, albeit limited, give added credit to the hypothesis that
the heterogeneity in the organization and composition of the EF-hands in CMLs is at the basis of
their functional diversity, either by allowing activation at specific Ca2+ spikes due to a specific stimulus
or through selective interaction with precise targets. Preserving multiple CML proteins may be essential
in complex organisms to guarantee that the many Ca2+-dependent processes occur with the appropriate
spatial-temporal resolution. This hypothesis may also explain the presence of 12 highly homologous
(>70% identity) pairs of proteins [13] that could be derived from relatively recent duplication events and
successive diversification (e.g., CML13 and CML14, CML35 and CML36, CML15 and CML16, and CML17
and CML18). Of course, the presence of nearly-identical isoform pairs may have other explanations,
including redundancy, which would not necessarily point to a specific role of CMLs. Unfortunately,
there is not yet sufficient information about the functional properties of these pairs, although recent
biochemical characterization of the two closely-related paralogs CML15 and CML16 [35] appears to
demonstrate that subtle differences in the composition of the EF-hands can be associated with specific
differences in the response to Ca2+.

It is also interesting to note that the structure of the CML genes, including their intron/exon
organization, has significant differences from that of CAMs. Indeed, the majority of CML genes are intron-less,
while those of CAMs are intron rich [15,16,18,92]. There is not yet clear information, from an evolutionary
perspective, about the presence of introns in eukaryotic genes. However, in accordance with the introns-late
hypothesis [93] and recent literature [92], CMLs may have evolved earlier than CaMs and diversified
later [92]. Therefore, it is possible that evolution led to a specific role for CMLs in plants.

3. Structural Consequences of Ca2+ Binding and Conformational Changes

Conventionally, the role of Ca2+ binding has been looked at in terms of signal transduction,
focusing on Ca2+-induced conformational changes and what effects these may have on interactions
with specific targets. This allows distinguishing Ca2+ sensors from what is generally referred to as
“Ca2+ buffers” (exemplified by human calbindin D9K and parvalbumin [94]), which have high affinity
for Ca2+ and undergo minimal conformational changes upon binding of Ca2+. These proteins have
been presumed to chelate Ca2+, which is potentially toxic for the cell.

A conformational change in CaM involves the transition from a “closed” apo-state to an “open”
holo-state that is portrayed by an enlarged interhelical angle of the EF-hand, leading to alterations
in the protein surface from a predominantly hydrophilic to a more hydrophobic state when Ca2+ is
bound. This is largely due to exposition of a hydrophobic region that is rich in Met residues (e.g., 6% in
Arabidopsis CaMs) which were previously embedded within the protein. Through changing exposed
surfaces, it is interesting that CaM regulates more than 300 proteins, including kinases, phosphatases,
receptors, pumps, and channels [95–100]. Such Ca2+-induced changes in surface hydrophobicity
can be utilized for purification of many recombinant Ca2+ proteins by using hydrophobic interaction
chromatography (HIC). The Ca2+-dependent binding to phenyl-sepharose can be considered as a first
step in studying a Ca2+ sensor protein. Along with this, the finding that CaM has increased mobility
in electrophoresis if Ca2+ is present is, in fact, a defining property that can be used as another simple
approach when investigating putative Ca2+ sensors [101]. Several CMLs were found to display Ca2+

-dependent electrophoretic mobility shifts via SDS-PAGE (Table 1) [30–33,37,46,48,64,70,73,77,80,88,102],
although such shifts are often less dramatic than those seen with CaM.
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Significant information on the structural rearrangements that CMLs undergo upon addition of
metals can be obtained by 2D 1H15N HSQC NMR spectra of uniformly 15N-labeled recombinant
CMLs, even in proteins for which conformational changes are difficult to detect in mobility shift assays
or on phenyl-sepharose. In this regard, the 1H15N HSQC spectra of apo-CML19 [32], CML42 [30],
and CML43 [31], while showing characteristics of well-folded proteins, change intensely upon
the addition of Ca2+, with the appearance of several well-dispersed peaks and numerous peaks
that experience chemical shift variations. This implies that these proteins undergo a conformational
rearrangement before acquiring a well-ordered structure. Of interest, the NMR spectra of apo-CML36
is defined by fewer peaks than would be expected, considerable line broadening, and low dispersion
of chemical shift, thereby suggesting that the apo-protein has a loosely folded conformation, probably
similar to a molten globule [33]. Cation binding (both Mg2+ and Ca2+) to Ca2+/Mg2+ mixed sites appear to
guide the change from a molten globule apo-structure to a stable holo-protein. However, when examining
the position of peaks in the forms complexed with Mg2+ and Ca2+, it is clear that the conformational
changes in CML36 induced by binding of Ca2+ are distinct from those induced by Mg2+, in agreement
with its hypothesized function as a Ca2+ sensor [33].

Crucial structural information on CML proteins and their Ca2+ binding ability can also be obtained
by CD spectroscopy in the far-UV region. Multiple lines of evidence have indicated that CMLs contain
substantial α-helical structure as for CaM. Nevertheless, in contrast to CaM for which a distinct increase
in ellipticity has been observed in the presence of Ca2+, the behavior of CMLs is somewhat more variable.
CD data for Arabidopsis CML15 [35] is reminiscent of CML43 [31] and CML42 [30], since the binding of
Ca2+ has almost no impact on secondary structure. A modest effect on the CD spectrum upon addition
of Ca2+ was also observed in tobacco CML (rgs-CaM) and soybean CML27 [37,103]. However, in
Arabidopsis CML16 [35], CML37 [82], CML39 [85], and CML36 [33] the binding of Ca2+ increases the
overall helical content. Rice CMLs (OsCMLs) also have heterogeneous behavior in terms of structural
changes in CD spectroscopy with some members of the family displaying small changes (e.g., OsCML1,
OsCML3, and OsCML9) and others showing large increases in molar ellipticity (OsCML4, OsCML5,
OsCML8, OsCML11, and OsCML13) following binding of Ca2+ [102]. It is still unclear what role such
apparently small structural alterations have on the function of different CMLs. Notwithstanding, this
demonstrates that this sizable family of Ca2+ sensors is much more complex than originally believed.
For CaM, variations in the response to Ca2+ binding mainly involve helix reorientation, and not
merely a change in α-helical content [104], uncovering hydrophobic portions that are likely needed
for association with various targets [26,105]. In particular, the existence of a large proportion of Met
residues gives CaM the conformational plasticity to fine-tune itself to a variety of targets [106–108].
The mean percentage of Met residues detected in Arabidopsis CMLs (4.2%) does not differ substantially
from that in CaM, suggesting that CMLs could share a conserved and analogous mechanism of action
with CaM. Nonetheless, it should be noted that the Met content in Arabidopsis CMLs ranges from 0.9%
to 8.6% and that the amount of exposed hydrophobic surfaces, in the apo- and holo-forms of CMLs,
do indeed vary when considering the different family members, as demonstrated by studies with the
fluorescent probe anilino-8-naphthalene sulfonate (ANS). CML36 (2.4% Met) is similar to CML15 (4.5%)
and CML16 (5.0%) in that they show a significant degree of hydrophobic exposure even when Ca2+ is not
present and only a relatively small increase in hydrophobicity is observed when Ca2+ is bound [33,35].
On the other hand, CML19, CML37, CML42, and CML43, which possess 6.6%, 4.3%, 2.6%, and 2.2% Met,
respectively, are more similar to CaM, as they display a low level of exposure of hydrophobic residues in
the apo- form that augments substantially when bound to Ca2+ [30–32,82]. Remarkably, CML14 binds
only one Ca2+ atom without changes in exposed hydrophobicity, and therefore it does not behave like
a classical Ca2+ sensor [34]. On the other hand, the presence of a single low affinity Ca2+ binding site is
unlikely to be compatible with a buffer function. The behavior of CML14 could point out a role of Ca2+

for target binding of CML14 that differs from the classical switch-like role with exposure of the interfacial
hydrophobic regions. Only the identification of the interaction partners of CML14 will elucidate its
molecular mechanisms of action. Notably, rice CMLs also exhibit a broad spectrum of hydrophobic
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characteristics as measured by ANS fluorescence [102]. This structural multiplicity in CMLs is in line
with the likelihood that they have divergent yet overlapping roles as Ca2+ sensors and further implies
that the binding of a target to a CML might be based on a recognition mechanism that is more specific
than just generalized exposure of hydrophobic residues.

4. Interaction of CMLs with Targets

The recognition of targets for CaM/CML and better appreciation of the impact of CaM/CML-binding
on biological processes are primary goals in untangling the broader role of CaMs/CMLs. Up to now,
several CML targets have been identified by protein microarray analysis, in addition to genetic and in vivo
studies. The protein targets identified to date include transcription factors, protein kinases, metabolic
enzymes, and transport proteins [2,51,60,64,109–111]. These investigations have assigned relatively
specific physiological roles to several CMLs (Table 1). On the one hand, the identification of specific
targets for some CMLs (e.g., CML8, CML18, CML19, and CML20 [52,53,66,67,111]) (Table 1) suggests
that they can have diverse roles in both plant development and response to stress, different from CaM,
which has broad target specificity. This brings the question of which variations in structural features,
and especially of the binding pocket, might define the target specificity in CMLs. On the other hand,
some CMLs (CML9 [52,58,59,62], CML24 [73,74,76], CML37 [81,82], CML38 [84], and CML42 [30])
have been shown to act at crucial points in various signaling pathways, perhaps by helping plants to
handle diverse environmental challenges. Therefore, at least some CMLs might behave as gateways,
being able to assimilate signals from biotic and abiotic stimuli, driving signaling pathways towards
a desired response. Importantly, protein microarray analyses [110] and detailed analyses of specific
CMLs [33,56] suggest the existence of overlap between CaM and CMLs targets. The choice of the most
appropriate signaling pathway involving CaM or CML to provide a specific downstream response
following a stimulus may depend on several factors such as the spatio-temporal expression of the protein,
characteristics of Ca2+ signals, and molecular properties of the two EF-hand proteins (e.g., affinity for ions,
conformational response to ion binding, and post-translational modifications). Therefore, CMLs might
be able to carry out interactions that are common among the different members of the protein family,
in addition to interactions that are specific to individual members. Moreover, the interaction of CML
proteins with other CML family members has been documented, which could be significant in terms of
Ca2+ signaling events [110].

CaM-binding domains (CaMBDs) normally share similar secondary structures consisting of short
(12–30 amino acids) sequences of amino acids with a tendency to form α-helices [112]. These structures
can interact with the hydrophobic regions in CaM that are uncovered following Ca2+ binding. In
addition, electrostatic interactions between CaM and a target CaM binding domain can lead to
stabilization of a CaM-target complex [26,113]. The ability of CaM to engage diverse targets arises both
from the plasticity of the linker region connecting its globular domains, which allows CaM to wrap
around the target, and from the multiple conformations adoptable by the exposed hydrophobic cleft
thanks to the flexibility of Met side chains [26,98,113,114]. Moreover, CaM also interacts with proteins
even in the absence of Ca2+, which reveals its versatility in terms of signaling [113].

Multiple sequence alignment between CaMs and CMLs highlights two major differences that may be
associated with an important impact on structure and target interactions. First, CMLs are widely variant
in length compared to CaM, and have an N- or C-terminal extension in which signal sequences are not
always readily found (Figure 2). These extensions may bring about the existence of a complex structure
that is different from CaM, and thus CMLs might not be able to wrap around their target but rather
bind with a different conformation. Moreover, the possible presence of a linker region with different
length and low sequence homology between CaMs and CMLs could represent a significant difference
in defining the flexibility of CML proteins, and thus their ability to interact with targets [115]. As one
example, a tobacco CML was reported to interact with its targets via electrostatic interactions [37,116],
in contrast with the canonical CaM binding mechanism which is mainly hydrophobic.



Int. J. Mol. Sci. 2018, 19, 1331 11 of 18

In the interaction with target, the presence of secondary modifications is crucial since these can
play particularly important roles in protein function and regulation. Different CMLs (e.g., CML21 from
Arabidopsis, CML5 and CML11 from tomato [15], and CML14 and CML18 from Lotus japonicus [17])
harbor a predicted canonical consensus N-myristoylation motif. Overall, the existence of co- or
post-translational N-myristoylation is suggestive that potential targeting of CaMs/CMLs to membranes
might be an important aspect of their function, especially in plant defense responses. When combined
with N-myristoylation, the existence of several phosphorylation sites in plant CMLs [4,13–17] could
potentially give rise to a large number of species with distinct properties. Moreover, many CMLs
(e.g., CML23, CML24, CML25, CML26, CML27, CML33, CML35, CML36, and CML37 from Arabidopsis)
have pairs of cysteines that can form disulfide bonds that affect the structural properties of the protein,
e.g., allowing dimerization, and target binding. Since the EF-hand is normally present in pairs,
dimerization could explain the existence of CMLs with odd numbers of functional EF-hands.

Thus, greater knowledge of CML-target complexes is needed, and understanding the specific roles of
Ca2+ sensors will require the study of their regulation. A major challenge will be to evaluate the structural
properties and functional aspects of target binding. Certainly, the 3D structures of the apo- and holo-forms
and of the complex with their target will be needed to categorically address these issues, to compare
the recognition mode, and get deeper insight into the structural diversity of CML-binding to their target
regions. Besides X-ray crystallography and NMR spectroscopy, cryo-electron microscopy (cryo-EM),
which emerged as a remarkably successful technique for protein structure determination in the latest years,
can also provide useful information on CML-target complexes (provided that CML-target complexes
of sufficient size are studied). Notwithstanding, an interesting approach to study the interactions
between CaM/CML-target is by identification of the CML-binding region in the target and synthesizing
the corresponding peptide. Different biophysical techniques, including fluorescence, NMR and CD
spectroscopy as well as ITC, SEC and native-PAGE, in fact, can be used to perform thorough structural
and energetic characterization of the CML-peptide interaction and its Ca2+ dependence. Such approaches
have been applied for many Ca2+ sensors, and not only in plants [10,113,117–121]. However, among
Arabidopsis CML members the only CML-target complexes for which a detailed biochemical description
has been achieved are CML19-RAD4 [32] and CML36-ACA8 [33].

A first simple analysis is monitoring the complex formation between CML and the target peptide
via native PAGE. Indeed, upon incubation of the protein with increasing molar ratio of the peptide
the appearance of a new band with a lower mobility than that of free CML is a clear indication that
a protein-peptide complex has been formed [10,32,33]. For example, non-denaturating gel band shift
electrophoresis directly demonstrated that the peptide representing the CML19-binding site on RAD4
(RAD4p) forms 1:1 complex with Ca2+-saturated CML19 [32]. Moreover, native PAGE analysis has
confirmed the ability of CML36 to interact with the N-terminus of ACA8 [33].

Next, Trp fluorescence spectroscopy can give crucial information on the stoichiometry and binding
strength, as well as the mode of binding. Trp is often considered as an intrinsic fluorescent probe to
follow conformational changes. Several binding regions in CaM/CML proteins contain a lone Trp
residue [98], whereas CaM and many CMLs have no Trp. The formation of a CML-target complex
is accompanied by a significant blue shift and increase in intensity of Trp emission fluorescence.
These changes are indicative of an interaction between protein and target that gives rise to insertion of
Trp from a polar to a non-polar environment. The addition of the Ca2+-saturated CML19 to RAD4p
caused a significant increase in the fluorescence intensity of the peptide and a blue shift of maximum
emission wavelength from 353 to 333 nm, indicating that the only Trp in the peptide entered a more
hydrophobic environment and confirming that RAD4p interacts with Ca2+/CML19 [32].

Far-UV CD spectroscopy can complement Trp fluorescence as a basic tool to study the interaction
of CML with peptide, since many CaM/CML-binding peptides are placed into an amphipathic helix
after binding Ca2+ [11,122–124]. Normally, the peptide alone in the presence of Ca2+ has an unordered
structure. Addition of the peptide to the protein usually leads to an increase in the dichroic signal.
A smaller rise in ellipticity signal could be associated to conformational changes of the Ca2+ sensor itself,
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but the major contribution usually comes from the peptide, changing from random coil to α-helical
following interaction with the protein [11,110,125]. This conformational change has been observed
for RAD4p upon incubation with Ca2+-CML19, indicating that RAD4p might be induced to adopt
α-helical structure [32]. Following addition of the peptide to Ca2+-saturated CML19, the NMR spectrum
of the protein also underwent considerable changes with some peaks undergoing chemical shifts, and new
peaks appearing, thereby confirming that the interaction between CML19 and the peptide leads to
a unique, stable structure [32].

Finally, it should be mentioned that the thermodynamic parameters of peptide binding to CMLs can
be determined using ITC, which also gives crucial information about the dominant forces in the association
of the peptide with the specific CML (electrostatic versus hydrophobic interaction). However, up to now,
such an approach has never been used to study the energetics of CML-target interactions.

Clearly, there is a lack of biochemical and biophysical characterization on the binding of CMLs to
their targets (and/or peptides). Further studies of the interaction of CMLs with several natural peptide
targets, as well as CaM-specific targets, in addition to solving the structure of Ca2+-CML complexes,
will undoubtedly provide more insights into the molecular basis of the activity of CMLs.

5. Conclusions

While not exhaustive, we have attempted to summarize the recent advances in our understanding
of the features of CMLs from biochemical and structural points of view (Table 1). To learn more about
the functional role of CMLs, additional information on physiological features must be supplemented
with detailed analysis of both the metal (Ca2+ and Mg2+) binding and structural properties. One of
the major challenges will be obtaining 3D structures of the holo- and apo-CMLs in isolation and
in complex with targets. Moreover, there is a need to expand the knowledge about the roles of
post-translational modifications on CMLs which are strongly related to the biological activity of proteins.
Multiple channels of evidence have indicated that CMLs have the biochemical properties of Ca2+ sensors.
Globally, biochemical and structural analysis of CMLs will provide insight into how such a vast array of
CMLs proteins can coexist, without apparent redundancy, and how they make a distinct contribution to
cellular signaling while being different from CaM and other Ca2+ sensors.
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Abbreviations

CaM Calmodulin
CML CaM-like protein
CD Circular dichroism
ITC Isothermal titration calorimetry
DSC Differential scanning calorimetry
HIC Hydrophobic interaction chromatography
NMR Nuclear magnetic resonance
Cryo-EM Cryo-electron microscopy
HSQC Heteronuclear single-quantum coherence
ANS Anilino-8-naphthalene sulfonate
SEC Size-exclusion chromatography
LP Limited proteolysis
MM Molecular modeling
CaMBD CaM-binding domain
Kd Dissociation constant
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