Old Dominion University ODU Digital Commons

Biological Sciences Theses & Dissertations

Biological Sciences

Summer 2014

Phylogeny and Biogeography of the Family Haemulidae Based on a Multigene Approach

Millicent D. Sanciangco Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the <u>Ecology and Evolutionary Biology Commons</u>

Recommended Citation

Sanciangco, Millicent D.. "Phylogeny and Biogeography of the Family Haemulidae Based on a Multigene Approach" (2014). Doctor of Philosophy (PhD), dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/vkv0-g713 https://digitalcommons.odu.edu/biology_etds/82

This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

PHYLOGENY AND BIOGEOGRAPHY OF THE FAMILY HAEMULIDAE BASED ON A MULTIGENE

APPROACH

by

Millicent D. Sanciangco B.S. Zoology, April 2002, University of the Philippines Los Baños, Philippines M.S. Biology, May 2007, Old Dominion University

> A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

> > DOCTOR OF PHILOSOPHY

ECOLOGICAL SCIENCES

OLD DOMINION UNIVERSITY August 2014

Approved by:

Kent E. Carpenter (Director)

David Gauthier (Member)

John Holsinger (Member)

Mark Westneat (Member)

ABSTRACT

PHYLOGENY AND BIOGEOGRAPHY OF THE FAMILY HAEMULIDAE BASED ON A MULTIGENE APPROACH

Millicent D. Sanciangco Old Dominion University, 2014 Director: Dr. Kent E. Carpenter

Haemulids are one of the most ecologically and commercially important groups of nearshore fishes. They are very diverse, with 145 putative species belonging to 18 genera. The phylogenetic relationships of the genera within the haemulids, however, are uncertain and the limits and relationships with other percomorphs are undefined.

Here, I present the first comprehensive phylogenetic hypothesis for the family based on a combined dataset of five genes (4731 bp; 16 genera, 56 species). Results show strong support for a monophyletic Haemulidae with the inclusion of the former inermiids. However, results of the analyses call into question the monophyly of a number of genera (e.g. *Pomadasys*). Furthermore, results show Haemulidae as sister to Lutjanidae, and *Hapalogenys* as outside the Haemulidae, based on a limited sampling of outgroups, and suggest further studies are needed that will incorporate a wider subset of taxa and more genes.

I provide a phylogenetic hypothesis of the interfamilial relationships within percomorphs based on RAxML (Randomized Axelerated Maximum Likelihood) analysis of 23gene dataset (1231 taxa) to determine sister groups of haemulids. This study presents the most comprehensive dataset, encompassing the major lineages within Percomorphaceae, and poses novel hypothesis regarding relationships of many groups. Results show haemulids are sister to Lutjanidae plus Caesionidae in a clade together with Callanthiidae, Malacanthidae, Pomacanthidae, Emmelichthyidae, Acanthuriformes, Monodactylidae, Sciaenidae, Chaetodontidae, and Leiognathidae; however, support for this group is weak.

Further, I test the utility of mitogenomes (14 genera, 26 species; ~16,000 bp) and multilocus data (22 genes; 19 genera, 82 species) to infer interrelationships within the haemulids in order to address what might have been the limits of the second chapter using RAxML analyses. Similarly, the family Haemulidae and subfamilies Plectorhinchinae and Haemulinae were recovered as monophyletic. Although improvement in nodal support is evident using both datasets, resolution at the species level using the mitogenomes is not possible due to limited availability of mitogenomes for the haemulids. Nevertheless, analyses revealed a possible radiation for the haemulids originating from the Old World to the New World. The more inclusive 22-gene dataset provided resolution for the interrelationships within the family, and better explained the non-monophyly of the genus *Pomadasys*. This dissertation is dedicated to Jonnell, Andre, and Avery.

ACKNOWLEDGMENTS

The completion of my PhD degree has been one of the most significant challenges of my life. It would not have been possible to see the end of my dissertation without the help and support of the many people around me.

I would like to express my sincerest gratitude to my advisor, Dr. Kent Carpenter, for the support and guidance throughout my journey to graduate school (both Masters and PhD), for trusting me and allowing me to manage the ETOL (Euteleost Tree of Life) project and the lab, and for the many discussions and advice in greatly improving this dissertation. Your role has been invaluable. I am thankful to my Advisory committee, Drs. Kent Carpenter, Timothy Motley, John Holsinger, Lisa Horth, and Mark Westneat, and to my Dissertation Committee, Drs. Kent Carpenter, Mark Westneat, David Gauthier, and John Holsinger, for the recommendations and advice in helping improve this dissertation. It is very unfortunate to have lost Dr. Motley on my fifth year in the program. He was a great mentor and a good friend.

I am thankful to Drs. Luiz Rocha and Kent Carpenter for their advice and suggestions that helped improved the *Zootaxa* paper, which is also the second chapter of this dissertation. I am grateful to Drs. Joseph Brown, Chenhong Li, and Derrick Zwickl for their suggestions on analyzing my preliminary datasets. I am also thankful to Dr. Ricardo Betancur-R for the advice and assistance on the ETOL project and for the help in analyzing the percomorph dataset.

I am grateful to the following for providing tissue samples for this study: A. Bentley and E. Wiley (Biodiversity Institute, U. Kansas), A. Carvalho-Filho (FISH-LTD), B. Collette (National Museum of Natural History, Smithsonian Institution), A. Connell (Durban, South Africa), C. Struthers (Museum of New Zealand, Te Papa Tongarewa), Y. Iwatsuki (U. Miyazaki), P.A. Hastings and H.J. Walker (SIO), S. Knudsen (U Auckland), C. Burridge and K. Clements (U Tasmania), T. Darden (Marine Resources Research Institute, South Carolina Department of Natural Resources), M. McGrouther (Australian Museum), R. Robertson (Smithsonian Tropical Research Institute), and B. Stockwell (ODU). W.N. Eschmeyer and J. Fong provided access to their Catalog of Fishes database (through the ETOL).

I am also very thankful to Eric Womack for being my Research Assistant, for performing independent lab work for some of the percomorph sequences as part of the ETOL quality control, for helping me keep the lab organized, for helping me with the tissue and voucher inventories, and keeping the databases up-to-date.

I am extremely grateful to Jeremy Raynal and April Cobos for proofreading and for their suggestions on improving the writing of this dissertation.

I have learnt a great deal of information and computing skills from attending a number of training courses and workshops, including those hosted by NimBIOS, UC Davis/Bodega Bay, Deepfin, and NESCent. I am also grateful for the scholarships/awards I received that made my participation to those courses possible. BGSO (Biology Graduate Student Organization) and UC Davis funded my participation to the Bodega Bay Applied Phylogenetics workshop. The Deep Fin Initiative provided stipend during my Student Exchange Program in Loyola University Chicago. I am thankful to Drs. Guillermo Orti and Terry Grande for granting me the award, and to Dr. Grande for hosting me in her laboratory. I am thankful to Dr. Wm. Leo Smith and the museum staff for accommodating me at The Field Museum during my visit to look at fish specimens. NIMBioS funded my attendance to High Performance Computing for Phylogenetics tutorial, and Dr. Tandy Warnow and the AToL (Assembling the Tree of Life) project sponsored my participation to the AToL workshop at NESCent.

I am also grateful to Lee Weigt (Director, Laboratories of Analytical Biology (LAB), National Museum of Natural History, Smithsonian Institution) and Dr. Guillermo Orti (The George Washington University, formerly in University of Nebraska Lincoln) for allowing me to process some of my samples in their laboratories. I am very thankful to Lee Weigt and his family for allowing me to stay in their house when I worked in the LAB for two weeks and for the ETOL project that subsidized my three-week stay in UNL to work on the ETOL samples.

I would like to acknowledge the financial, academic, and technical support of Old Dominion University and the Department of Biological Sciences. I thank Dr. Ian Bartol and the College of Sciences for awarding me a University Fellowship. Ruben Igloria (formerly at OCCS, ODU) helped me compile programs and setup my account so I could submit jobs through Zorka/HPC cluster. I am thankful to the ILLIAD staff, OCCS staff, Marla Harvey, Mary Hayward, and Norris for doing the work they do. The International Union for Conservation of Nature/Conservation International, Global Marine Species Assessment project, funded by Tom Haas and the New Hampshire Charitable Foundation, provided travel support to Dr. Carpenter for incidental collection of some specimens (e.g. *Parakuhlia*) used in this study. My dissertation was funded through the ETOL project from NSF award DEB-0732894 to Dr. Carpenter, with me, as the Graduate Research Assistant from 2008 to 2013. Members of the Carpenter Lab and GMSA folks also deserve my sincerest gratitude. To Amanda Ackiss, Adam Hanson, Dr. Heather Harwell, Andrew Hines, Jeremy Raynal, Mia Raynal, Brian Stockwell, Emily Stump, Kimberly Wieber, and Eric Womack, your friendship and support have meant more to me (and to my family) than I could ever express.

I am indebted to Drs. Ariel and Luna Pinto, Dr. Nido and Rachel Calida, and Dr. Joe and Jennifer Martin for always inviting Andre to play with their kids when I was working in the lab and/or analyzing my data, and also for making sure we remember and celebrate occasions with them. They have been our immediate family here in the US. I am also grateful to Tita Merly Palomar and family for also treating us like relatives and inviting us to many occasions. I thank Dr. Araceli Suzara, (Director, Filipino-American Center, ODU) for inviting me to serve as a board member of the Center's steering committee and inviting us to the Center's events at ODU. I am very fortunate to have met Leslie Belton (and family), who took care of Avery starting when he was two months until when he was about 13 months old, so I could work on my research.

I am grateful for my parents, Panfilo (Jun) and Arlene Domingo; my in-laws, Jessie and Juanita Sanciangco; my sister Audrey Domingo, and brothers-in-law, Johnvil and Jaysee Sanciangco, for the unconditional and financial support, for checking in on us, for just being there, especially for Andre, even though they are all continents away.

Finally, to my family, Jonnell, Andre, and Avery, who have been my sources of great joy, strength, and inspiration, I thank God for having you three in my life. Thank you, Avery, for always keeping us entertained. I feel terrible for sending you to the babysitter/daycare at a very young age because I had to work on my dissertation. Andre, I am very thankful you have a big heart, and understood the demands of my getting a degree. I know I have not been a very "fun" mom since I started my PhD and you only probably remembered me as a student, and therefore had to be always "busy," for as long as you could remember. I promise I will make it up to you, to Avery, and to Dad. To my husband, Jonnell, who had put up with me and probably felt like a widower, especially during the first two years when I was too busy getting PCRs to work in the lab and during the past two years when I was finishing up, you had been very patient, understanding, and supportive. I know you were also exhausted taking care of most of everything including looking after the kids more and making sure you spent time with them when I literally could not. I am very fortunate to have a husband like you. I am looking forward to spending more time with you and our kids when all this is over.

TABLE OF CONTENTS

TABLE OF CON	TENTS
	Раде
LIST OF TABLES	x
LIST OF FIGURES	xi
Chapter	

Chap	ter	
1. JI.	GENERAL INTRODUCTION A MOLECULAR PHYLOGENY OF THE GRUNTS (PERCIFORMES: HAEMULIDAE) INFERRED USING MITOCHONDRIAL AND NUCLEAR GENES INTRODUCTION	1 4 7 10 13
₩.	A PHYLOGENETIC HYPOTHESIS OF PERCOMORPH FISHES TO DETERMINE THE OUTGROUP OF THE HAEMULIDAE INTRODUCTION MATERIALS AND METHODS RESULTS AND DISCUSSION	19 19 22 23
IV.	THE PHYLOGENY AND BIOGEOGRAPHY OF HAEMULIDAE (SERIES PERCOMORPHARIA) BASED ON COMPLETE MITOGENOMES AND A CONCATENATED DATASET OF 22 GENES INTRODUCTION MATERIALS AND METHODS RESULTS AND DISCUSSION) 48 51 54
v .	CONCLUSIONS	67
REFE	RENCES	70
APPE	NDICES A. LIST OF SPECIES AND THE ACCESSION NUMBER OF HAEMULID	82
	SPECIMENS B. CHARACTERISTICS OF THE FIVE MARKERS AMPLIFIED FOR	82
	HAEMULIDS C. THE TEN INDEPENDENT PARAMETERS OF 15 DATA PARTITIONS	86
	D. TAXON SAMPLING FOR THE PERCOMORPH DATASET INCLUDED	87
	 1231 TAXA AND SEQUENCE DATA FOR 23 GENES. E. PHYLOGENY OF PERCOMORPHS INFERRED FROM RAXML ANALYSIS OF THE 3+ DATASET (1231 TAXA) FROM 23 GENES 	88
	(20 NUCLEAR AND THREE MITOCHONDRIAL) WITH EIGHT PARTITIONS . F. LIST OF SPECIES FOR THE MITOGENOME DATASET INCLUDING	257

G	26 HAEMULIDS PLUS FIVE OUTGROUPS
.	82 UNIQUE HAEMULID TAXA AND FOUR OUTGROUPS
VITA	

LIST OF TABLES

Table		Page
1.	PCR primer sequences and annealing temperatures used to amplify the five markers used	8
2.	Comparison of log likelihoods and Bayes factors among different partitioning schemes (from one to 15 partitions)	12
3.	Models selected by MrModelTest2.0 (Nylander, 2004) under the AIC criterion for the optimal 11-partition scheme for Bayesian analysis, with –InL values and number of parameters for each data block	12
4.	List of PCR sequence primers for the percormorph dataset adapted from previous studies	24
5.	Primers used for the long-PCR technique to amplify the complete mitochondrial genomes of the Haemulidae	52
6.	Results of the substitution saturation test by Xia <i>et al.</i> (2003) conducted for each dataset partition	56
7.	Results of congruence tests between the RAxML trees generated for each partitioning scheme performed using de Vienne <i>et al.</i> 's (2007) congruence index	56

LIST OF FIGURES

Figure		Page
1.	Clustering diagram showing overall similarity among 15 data blocks of the full data set (5 genes × 3 codon positions) using SAS	11
2.	The tree represents a 50% majority rule consensus of the Bayesian topology (numbers represent the posterior probability of the clades), with bootstrap values from MP and ML mapped onto the topology	14
3.	Interfamilial relationships of Arripididae	30
4.	Interfamilial relationships of Lactariidae	32
5.	Interfamilial relationships of Callanthiidae	35
6.	Interfamilial relationships of Hapalogenyidae, Sparidae, and Centracanthidae	36
7.	Interfamilial relationships of Cepolidae	41
8 .	Interfamilial relationships of Symphysanodontidae, Bathyclupeidae, Dichistiidae, Latridae, Chironemidae, and Aplodactylidae	43
9.	Phylogeny of percomorphs inferred from RAxML analysis of the 3+ dataset (1231 f from 23 genes (20 nuclear and three mitochondrial) with eight partitions, showing closest relatives of the Haemulidae	:axa) ; the 47
10.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the first codon positions across all 13 protein-coding regions, as implemented in DAMBE	57
11.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the second codon positions across all 13 protein-coding regions, as implemented in DAMBE	57
12.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the third codon positions across all 13 protein-coding regions, as implemented in DAMBE	58
13.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for all 22 tRNAs, as implemented in DAMBE	58
14.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the 12S region, as implemented in DAMBE	59
15.	Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the 16S region, as implemented	

	in DAMBE	59
16.	Phylogeny of haemulid representatives inferred from RAxML analysis of complete mitochondrial genome sequences	60
17.	Time-calibrated BEAST phylogeny estimated from the complete mitochondrial genome of haemulid representatives	62
18.	Phylogeny of haemulids inferred from RAxML analysis of the 3+ dataset from 22 genes	64

CHAPTER I

GENERAL INTRODUCTION

The family Haemulidae (grunts) is one of the largest percoid families and includes 145 putative species belonging to 18 genera. They are circumglobal and occur in tropical and warm temperate oceans of the Atlantic, Indian, and Pacific. All species are neritic, inhabiting the shallow waters of coral reefs, rocky bottoms, seagrass beds, sand flats, and mud-bottoms in coastal and estuarine waters. Most feed on a wide variety of benthic invertebrates including crustaceans, polychaete worms, clams, and echinoids, while some species primarily feed on plankton (Konchina, 1977; Ogden and Ehrlich, 1977; Williams *et al.*, 2004).

The family name was derived from the Greek word haimaleos, which means "bloody gums" and refers to the red coloration of their interior mouth (Brown, 1956). The family common name "grunt" was derived from the distinctive stridulatory sound, which is amplified by the swim bladder, produced when rubbing their pharyngeal teeth during feeding, territorial display, or fright response (Konchina, 1977). Grunts are oblong, compressed, and moderatesized perch-like fishes with generally small to average-sized mouth. The family is characterized by the presence of series of enlarged sensory chin pores, which range from two to six. They have conical teeth in each jaw but no canines and no teeth on the palate. Their scales (usually ctenoid) extend onto the head except on the snout, lips, and chin (Lindeman and Toxey, 2003; McKay, 1984, 2001; McKay and Schneider, 1995). Other diagnostic features include a single dorsal fin with nine to 15 spines and 11 to 26 rays, moderate to long pectoral fins, each with a single spine and five soft rays, and an anal fin with three spines and six to 13 rays (Lindeman and Toxey, 2003; McKay, 1984, 2001; McKay and Schneider, 1995). Diverse color patterns are distinctive of many adult grunts. Most species of Plectorhinchus also go through diverse color pattern changes during juvenile stages presenting challenges for accurate identification. Early juveniles of Haemulon can look very similar, with almost identical banding patterns to other members of the same genus (Lindeman, 1986).

The journal model for this dissertation is Zootaxa.

Haemulids play a significant role in the ecosystem by providing nutrients, as well as stimulating biological activity, in the reef community (Ogden and Ehrlich, 1977). They also serve as indicators of anthropogenic impacts (e.g. overfishing, cyanide and dynamite fishing) to the reefs (Tupper and Juanes, 1999). Haemulids are also an important component in commercial fisheries, with a global capture production averaging 69,279 tons from 2000 to 2012 (FAO, 2014).

Although haemulids are an ecologically and commercially important group of near-shore fishes, information on the inter- and intrarelationships of the family have remained obscure. Several revisions have been made regarding the diverse taxonomic classification of the family and a number of articles on the systematics and distribution of individual species exist (Courtenay, 1961; Konchina, 1976; Lindeman and Toxey, 2003; McKay, 1984, 2001; Nelson, 1994, 2006), but none exist that could potentially clarify relationships among genera. Furthermore, interfamilial relationships within the ill-defined suborder Percoidei, and order Perciformes, to which haemulids belong, remain to be resolved. Here, I use molecular sequence data to answer three main hypotheses concerning the haemulids.

Question 1: What is the phylogenetic history of the Haemulidae? Do morphological characters support a monophyletic classification for the Haemulidae? Are the two subfamilies, Plectorhinchinae and Haemulinae, and putative genera currently defined by morphological characters valid? The aim of chapter two is to provide a phylogenetic hypothesis for most haemulids using combined mitochondrial and nuclear gene sequences (five genes; 4731 bp) and infer relationships within the family. Several interesting phylogenetic relationships supported by morphological characters were recovered but interrelationships within some genera remain unresolved (chapter published in *Zootaxa*, Sanciangco *et al.* 2011).

Question 2: What are the close relatives of the Haemulidae? Nelson (2006) classified the family Haemulidae in the Order Perciformes, and further, in the suborder Percoidei. Perciformes (*sensu* Nelson, 2006) is the largest group of vertebrates with 10,033 species in 160 families and 20 suborders, including Percoidei (Nelson, 2006). The suborder Percoidei (*sensu* Nelson 2006) is the most species-rich of all perciforms, with 3,176 species belonging to 79 families of unknown integrity (Johnson, 1984; Lauder and Liem, 1983; Nelson, 2006; Wiley and Johnson, 2010). Previous studies have established the limits and relations of some families within percoids using morphological characters and molecular sequences, but they have not been successful in defining the monophyly of the suborder nor in determining broad interfamilial relationships

within the percoids (Dettai and Lecointre, 2005; Johnson, 1984, 1993; Johnson and Patterson, 1993; Li *et al.*, 2009; Li *et al.*, 2008; Mahon, 2007; Smith and Craig, 2007). More recently, Betancur-R. *et al.* (2013a) and Near *et al.* (2013) have examined the phylogenetic relationships of most of bony fishes using mutil-gene sequences. Although these studies have presented novel hypotheses for many taxa, the placement of Haemulidae and its closest relatives remained obscure. Understanding these relationships is necessary to determine the evolutionary history of haemulids and also to provide resolution to the "tips" of the greater perciform tree. Information on interrelationships of perciforms will also be useful for selecting outgroups and testing the monophyly of many taxa. The aim of chapter three is to provide a reliable taxonomic framework for the Haemulidae in the greater percomorphs.

Question 3: What is the best set of data to infer the phylogeny of the Haemulidae? The clades recovered from the analyses presented in chapter two call into question the monophyly of a number of haemulid genera. Will the addition of more genes or more taxa help us to understand the evolutionary history of the family? Will extensive sampling of one gene (complete mitochondrial genome) with a limited subset of species, or extensive sampling of the species with incomplete genes resolve interrelationships within the haemulids? The aim of chapter four is to test the utility of the complete mitochondrial genome to infer the relationships of haemulids and compare results with a limited number of genes and of a combined dataset of 22 markers.

CHAPTER II

A MOLECULAR PHYLOGENY OF THE GRUNTS (PERCIFORMES: HAEMULIDAE) INFERRED USING MITOCHONDRIAL AND NUCLEAR GENES

Note: The entirety of this chapter has been published in:

Sanciangco, M. D., Rocha, L. A., Carpenter, K. E., 2011. A molecular phylogeny of the Grunts (Perciformes: Haemulidae) inferred using mitochondrial and nuclear genes. Zootaxa 2966, 37–50.

INTRODUCTION

The family Haemulidae, or grunts, include 18 genera and about 145 species (Nelson, 2006) in the ill-defined order Perciformes, suborder Percoidei (*sensu* Nelson 2006). Grunts are circumglobal and often prominent in both hard and soft-bottom nearshore tropical, subtropical, and warm temperate waters (Lindeman and Toxey, 2003; McKay, 1984, 2001; McKay and Schneider, 1995). Most are carnivorous, feeding opportunistically on a wide variety of benthic invertebrates including crustaceans, polychaete worms, clams, and echinoids, while smaller species primarily feed on plankton (Konchina, 1977; Ogden and Ehrlich, 1977; Williams *et al.*, 2004).

Johnson (1981) used a number of characters to define Haemulidae and its subfamilies, Haemulinae and Plectorhinchinae. He proposed the superfamily Haemuloidea to include the mostly bottom feeding Haemulidae and the planktivorous Inermiidae. The latter family, commonly known as bonnetmouths, contains only two species that are reef-associated, typically small, and specialized for planktivory with highly protrusible jaws and fusiform bodies (Lindeman, 2006; McEachran and Fechhelm, 2005; Nelson, 2006). Johnson (1981) found that the families Haemulidae and Inermiidae share a suspensorium similar to that of the lutjanoids in having little direct osseous articulation and a simple symplectic but having a unique projection on the margin of the metapterygoid, which projects posteriorly as a vertically oriented rounded flange that overlaps the medial side of the lower arm of the hyomandibular. This, in addition to other osteological characters such as the number of branchiostegals; number of openings in pars jugularis; presence of chin pores and scales on lacrimal, snout, and preopercular margin; absence of subocular shelf and trisegmental pterygiophores; and specializations in their infraorbitals, suspensorium, and procurrent spur provide morphological evidence for a monophyletic Haemuloidea.

The presence of enlarged sensory chin pores and the attachment of the sixth infraorbital to the skull in haemulids are characters that are uncommon among percoids (Johnson, 1981). These enlarged pores are also present in the Lobotidae, Hapalogenyidae, Sciaenidae, and several other families. However, these families are easily recognized based on the presence of other anatomical and osteological characters diagnostic of the members of those families. Lobotidae and Hapalogenyidae, for example, have more than six chin pores, while Sciaenidae has only one or two anal fin spines compared to three anal spines in haemulids. The number, shape, and position of chin pores also help diagnose subfamilies and genera within Haemulidae. Plectorhinchines have four to six chin pores while haemulines, including the former inermiids, possess either two chin pores, a median chin groove, or both (Johnson, 1981). While both haemulid subfamilies and some genera appear to be well defined, many haemulid genera are not well defined and diagnosed only with superficial characters. For example, the monotypic Genyatremus was originally erected to differentiate what is currently recognized as Anisotremus interruptus from other higher bodied species of Anisotremus (Gill, 1861), and it appears to have been only incorrectly placed in another genus and recognized as Genyatremus luteus (Johnson, 1981; Lindeman and Toxey, 2003). Orthopristis (Girard, 1858) was erected based on superficial characters that are not currently used to distinguish members of the genus such as the body configuration and fin meristics (Lindeman and Toxey, 2003; McKay and Schneider, 1995). Boridia, Conodon, Microlepidotus, Xenichthys, and Xenistius were all designated by monotypy (Eschmeyer, 1990) without extensive morphological comparisons.

A number of recent studies that help define the limits of haemulid species and genera (Courtenay, 1961; Iwatsuki *et al.*, 1998; Konchina, 1976; Miles, 1953; Ren and Zhang, 2007; Rocha *et al.*, 2008), or provide basic regional systematic information (Bernardi and Lape, 2005; Konchina, 1977; Lindeman and Toxey, 2003; McKay, 1984, 2001; McKay and Schneider, 1995; Roux, 1981) are available; however, none of these studies have attempted to infer a phylogeny of the family Haemulidae using either molecular or morphological methods. Johnson (1981) studied the morphology of a number of families thought to be closely related to his proposed haemuloids (Haemulidae and Inermiidae) and suggested two additional superfamilies, the Sparoidea (including Sparidae, Centracanthidae, Nemipteridae, and Lethrinidae) and Lutjanoidea (including Lutjanidae and Caesionidae), but he could not find evidence to suggest that any of these groups were directly related to one another. He was not confident in polarizing morphological characters of Haemuloidea and therefore chose not to propose a phylogeny.

Recent studies conducted on higher-level relationships of percomorphs and acanthomorphs have shown potential outgroups for haemulids on the basis of molecular characters including Dettai and Lecointre (2005; Syngnathidae, Uranoscopidae + Cheimarrichthyidae + Ammodytidae, Moronidae, Drepanidae, and Scaridae + Labridae); Smith and Craig (2007; Lutjanidae, Lethrinidae + Priacanthidae, Moronidae, and Lobotidae); Craig and Hastings (2007; Moronidae and Cirrhitidae); and Mahon (unpublished; Dinopercidae and Drepanidae + Acanthuridae + Ephippidae). In addition, the interrelationships of families within the putative Percoidei, the suborder to which Haemulidae belongs (Nelson, 2006), are not well understood, hence making it more challenging to define the possible sister-groups of haemulids. *Hapalogenys* has been classified in the Haemulidae because of the presence of chin pores (Iwatsuki and Russell, 2006; Iwatsuki *et al.*, 2000; Richardson, 1844); however, the phylogenetic placement of the Hapalogenyidae (Ren and Zhang, 2007; Springer and Raasch, 1995) within the haemulids has also been controversial (Iwatsuki and Nakabo, 2005; Iwatsuki *et al.*, 2000; Johnson, 1984; Lindeman and Toxey, 2003).

The purpose of this study is to infer a genus-level phylogeny of haemulids, including a former inermiid species, *Emmelichthyops*, test the validity of the two subfamilies, and provide a basis to further test hypotheses of morphological character evolution and biogeography of the family Haemulidae. Here I use molecular data to help frame questions of generic placement within Haemulidae. The markers used for this study include the mitochondrial Cytochrome Oxidase I (COI) and Cytochrome *b* (CYT *b*) and three nuclear markers, Recombination Activation Gene-1 (RAG1), SH3 and PX domain-containing 3-like protein (SH3PX3), and pleiomorphic adenoma proteinlike 2 (PLAGL2) genes. A phylogeny of haemulids from most genera was inferred from maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of a combined total of 4731 base pairs.

MATERIALS AND METHODS

Taxon sampling

Ten outgroup taxa were included from the families Nemipteridae (*Nemipterus marginatus*), Lethrinidae (*Lethrinus ornatus*), Lutjanidae (*Aphareus furca* and *Lutjanus fulviflamma*), Sparidae (*Sarpa salpa*), and Hapalogenyidae (*Hapalogenys aya, H. kishinouyei*, and *H. nigripinnis*). Lobotidae (*Lobotes pacificus* and *L. surinamensis*), another percoid family that possesses chin pores, was also included in the study. Among the ingroup taxa, 56 species belonging to 18 genera are included among the 144 species and 20 haemulid genera (Appendix A). All genera of haemulids are represented except for the two monotypic genera *Parakuhlia* and *Xenocys*. Specimens were collected by trawling, hook and line, or spearfishing. Samples were also obtained from specimens from fish markets. Muscle tissue of the fish were dissected and preserved in 95% ethanol or DMSO solution (Seutin *et al.*, 1990) and stored at -20°C until processed in the laboratory.

DNA isolation, amplification, and sequencing

Genomic DNA was extracted from approximately 20 mg of tissue following the DNeasy® Kit (Qiagen) protocol and Wizard® SV 96 Genomic DNA Purification System (Promega). Primers used to amplify the mitochondrial and nuclear genes are listed in Table 1. A total of 651 base pairs were amplified using the COI primers under the following conditions: initial denaturation at 95°C for one minute (to activate the Takara Ex Taq HotStart™ DNA polymerase, Takara Bio Inc.), followed by 30 cycles of 95°C for 30 seconds, 52°C for 30 seconds, and 72 °C for 45 seconds; followed by a five minute extension at 72°C. CYT b yielded a total of 1140 base pairs, with amplification conditions similar to those of COI but with 32 cycles and annealing temperature of 52 °C for 45 seconds. For all the nuclear genes used, nested PCRs were employed to successfully amplify approximately 1431 base pairs of RAG1 gene, 705 base pairs of SH3PX3 gene, and 804 base pairs of PLAGL2 gene from DNA extracts, with the following amplification settings: initial denaturation at 95 °C for one minute; 30 cycles of 95 °C for ten seconds, 56 °C to 63 °C for 45 seconds, and 72 °C for five minutes; with an additional final extension at 72 °C for five minutes. Amplification conditions for the second set of internal primers for three nuclear genes follow the same protocol as that of the first PCR, except with annealing temperature set to 63 °C for all three genes. A 0.2 µl of ExoSAP-IT* (USB Corporation) master mix (1:5 dilution of the enzyme) was added for every 1 μ l of PCR product to purify the

target gene, carried out at 37 °C for 30 minutes and 80 °C for 20 minutes. Sequencing reactions were conducted in forward and reverse directions using primers for the second set of PCR. Sequences were assembled and edited in Sequencher version 4.10.1 (Gene Codes). The trimming criteria for sequences include trimming no more than 25% until the first 20 bases contain at least three bases with confidences below 20% for the five-prime end and trimming until the last 20 bases contain less than three bases with confidences below 20% for the five-prime end and trimming until the last 20 bases contain less than three bases with confidences below 20% for the three-prime end. Sequences were then trimmed according to a reference sequence for each gene obtained from GenBank, including COI: FJ237890 *Pomadasys maculatus* (Zhang and Hanner, 2008), CYT *b*: EF512297 *Pomadasys maculatus* (Zhu *et al.*, 2007), RAG1: EF095661 *Haemulon aurolineatum* (Chen *et al.*, 2007), SH3PX3: EF033010 *Lutjanus mahogani* (Li *et al.*, 2007). Multiple alignments of sequences were performed using ClustalX (Thompson *et al.*, 1997) using default settings (Hall, 2004).

TABLE 1. PCR primer sequences and annealing temperatures used to amplify the five markers	i
used. 1st indicates the first round of nested PCR and 2nd for second round of nested PCR usin	g
the following primers for each gene.	

			Tm		
Gene	Primers	Sequences	(°C)	PCR	Reference
COI	FISHCO1LBC_F	5' TCAACYAATCAYAAAGATATYGGCAC 3'	52	1st	Ward et al., 2005
	FISHCO1HBC_R	5' ACTTCYGGGTGRCCRAARAATCA 3'		1st	Ward <i>et al.</i> , 2005
CYT b	CYTb_UniF	5' CGAACGTTGATATGAAAAACCATCGT 3'	52	1 st	Orrell et al., 2002
	CYTb_UniR	5' ATCTTCGGTTTACAAGACCGGTG 3'		1st	Orrell et al., 2002
RAG1	2510F	5' TGGCCATCCGGGTMAACAC 3'	63	1 st	Li and Orti, 2007
	RAG1R1	5' CTGAGTCCTTGTGAGCTTCCATRAAYTT 3'		1 st	López <i>et al.</i> , 2004
	RAG1F1	5' CTGAGCTGCAGTCAGTACCATAAGATGT 3'	63	2 nd	López <i>et al.</i> , 2004
	RAG1R2	5' TGAGCCTCCATGAACTTCTGAAGRTAYTT 3'		2 nd	López <i>et al.</i> , 2004
					Pers. Comm. C.
SH3PX3	F35	5' AAAGYGARAACAAGGAGGAGAT 3'	56	1 st	Li*
					Pers. Comm. C.
	R1373	5' AGCGACAGYTTGTCCARCAT 3'		1 st	Li*
	F532	5' GACGTTCCCATGATGGCWAAAAT 3'	63	2 nd	Li <i>et al.,</i> 2007
	R1299	5' CATCTCYCCGATGTTCTCGTA 3'		2 nd	Li <i>et al.,</i> 2007
PLAGL2	F9	5' CCACACACTCYCCACAGAA 3'	58	1 st	Li <i>et al.,</i> 2007
					Pers. Comm. C.
	R1430	5' TCGTACTGAGGCTRGAGCTGAA 3'		1 st	Li*
	F51	5' AAAAGATGTTTCACCGMAAAGA 3'	63	2 nd	Li <i>et al.,</i> 2007
	R920	5' GGTATGAGGTAGATCCSAGCTG 3'		2 nd	Li <i>et al.,</i> 2007

Phylogenetic analysis

The concatenated data matrix of five genes was partitioned by gene and by codon position, producing 15 data blocks. Each of the data blocks was initially optimized independently under a GTR + I model implemented in MrBayes, with two million MCMC generations and seven chains (Huelsenbeck and Ronquist, 2001; Nylander et al., 2004; Ronquist and Huelsenbeck, 2003). Following Li et al. (2008), the overall similarity among data blocks was evaluated on the basis of their estimated parameter values, counting five substitution rates, three base composition proportions, the gamma parameter (alpha), and the rate multiplier for each data block. Using a hierarchical cluster analysis in SAS, each data partition was used as an observation, with the ten independent parameters estimated from MrBayes as values for each observation. The resulting clustering dendrogram was then used as a guide tree to identify the two most similar data blocks for grouping two partitions and subsequently adding one data block at a time based on overall similarity from the guide tree until only one large data block remained. The AIC values and Bayes Factor have proven that partitioning following the guide tree always resulted in better partitioning scheme than randomly grouping two other partitions (Li et al., 2008). To evaluate the best partitioning scheme, the harmonic means for each MrBayes run was recorded to calculate and compare the harmonic means and Bayes Factor (BF = (-lnLi) - (-lnLbest)). The optimal partitioning strategy is chosen based on the best ln score (top two among all partitioning schemes for comparison) and with the fewest number of parameters. If there is not much difference between the top two In scores, the one with a fewer number of parameters estimated and has a fewer number of partition is preferred. The best strategy should also have a 2InBayes factor of more than 10 between that scheme and the next (stepwise) partitioning scheme. A 2ln Bayes factor of \geq 10 is strong evidence against the alternative hypothesis (Brandley et al., 2005; Kass and Raftery, 1995; Li et al., 2008). I used MP, ML, and Bayesian analyses to infer phylogeny. The minimal length trees were obtained using a heuristic search and 1000 replicates of random taxon addition with tree-bisection-reconnection (TBR) branch swapping algorithm, saving all trees per replicate. In addition to Bremer support (decay index, Sorensen and Franzosa 2007), relative internal branch support was estimated with bootstrap analysis with 1000 replicates, with TBR branch swapping and simple taxon addition. Tree statistics included the consistency index and retention index. MrModelTest2 (Nylander, 2004) was used to determine the best-fit model for each of the data partitions following the best partitioning scheme, with models scored in PAUP* version 4.0b10 (Swofford,

2002). ML was performed using the partition version of the program Genetic Algorithm for Rapid Likelihood Inference (GARLI; Zwickl 2006), with internal branch support estimated with 100 bootstrap replicates for each of the independent search runs. The repeatability of results (recovering the same best scores and same topologies, with very similar log-likelihood scores, at least twice) across independent search replicates indicates the number of search replicates to be conducted. A total of eight independent search replicates were conducted for this study. Trees were collected and scored using Mesquite (Maddison and Maddison, 2007). MrBayes was also used to estimate the evolutionary parameters using posterior probabilities (Ronquist and Huelsenbeck, 2003). The Markov chain Monte Carlo parameters (MCMC) for the final partitioned dataset included 10 million generations with seven chains sampling every one thousand. Convergence was assessed using Tracer looking at the ESS value for each loglikelihood trace and plotting the posterior probability density for the mutation rate (Rambaut and Drummond, 2007) and AWTY (Are We There Yet?) comparing split frequencies, looking at each independent trajectory, and checking for presence of or absence of splits throughout the chain for each one to make sure that the chains are sampling particularly well (Nylander *et al.*, 2008). Resulting topologies for all analyses were viewed in Mesquite (Maddison and Maddison, 2007) and bootstrap values from MP and ML mapped on the Bayesian topology.

RESULTS

The characteristics of the five mitochondrial and nuclear genes are shown in Appendix B. The concatenated dataset of five loci generated a total of 4731 characters for the 66 taxa included in this study. The dataset was partitioned by gene and by codon position yielding 15 block partitions (5 genes x 3 codon positions). Appendix C shows the ten parameters estimated in MrBayes. These parameters were then employed into a hierarchical cluster analysis in SAS. The output from cluster analysis showing which data block should be grouped based on overall similarity using the ten parameters estimated in MrBayes is shown in Figure 1. The resulting dendrogram from SAS is read from left to right looking at the terminal branches, concatenating data blocks on the first node and then concatenating data blocks on the subsequent nodes, adding one data block at a time. Table 2 also shows how the 15 data blocks down to one data block (no partition) were clustered. Starting with 15 partitions (where all data blocks are treated as separate), the 14-partitioning scheme has (SH3PX3_3 and PLAGL2_3) concatenated as one data block, plus the rest of data blocks (13 other data blocks, each treated as separate). The 13partitioning strategy has (SH3PX3_3 and PLAGL2_3) as one data block and (COI_3, CYT*b*_3) as another data block, plus the rest of data blocks (11). Data blocks were concatenated following the dendrogram until only one data block with no partition is left. Boxed text indicates the best partitioning schemes, with 11- and 15- data partitions, chosen by different model selection criteria in this study. Although the 15 data block partitioning scheme is the best partition based on the likelihood scores, it has 40 more parameters than the 11 data block partitioning scheme. Also, the difference between the 11- and 12- partitioning schemes has a value of 42.82, which is more than 10 and satisfies the conventional criterion for choosing the best strategy. Hence the 11-data block partitioning scheme was chosen as the best partitioning strategy (Brandley *et al.*, 2005; Li *et al.*, 2008) in this study (Table 3).

In the limited outgroup comparisons of this study, *Hapalogenys* is sister to *Lobotes*. In addition, the lutjanids are sister to haemulids. A monophyletic Haemulidae, including the former inermiids, is well supported in all analyses (with a Bremer support of 66, bootstrap value of 100 for MP and ML and a posterior probability of 1.0 in Bayesian analysis) (Fig. 2). The phylogenetic position of *Haemulon vittatum* (formerly in *Inermia*) first reported in Rocha *et al.* (2008) is

FIGURE 1. Clustering diagram showing overall similarity among 15 data blocks of the full data set (5 genes × 3 codon positions) using SAS. Each block is indicated at the tip of terminal branches by gene name and codon position. Each node shows clustering terminal branches (data set) based on hierarchical clustering algorithm using a Bayesian approach.

TABLE 2. Comparison of log likelihoods and Bayes factors among different partitioning schemes (from one to 15 partitions). Results show the total number of parameters; the harmonic mean of -log likelihood calculated using MrBayes; the Bayes factor calculated by comparing model i to the model with maximum likelihood, BF = (-lnLi) - (-lnLbest); and the clustering of data blocks for each partitioning scheme based on the hierarchical cluster grouping. Boxed text indicates the best partitioning schemes chosen by different model selection criteria. Concatenated data blocks are enclosed in parentheses. S=SH3PX3; P=PLAGL2; R=RAG1; C=CO1; Cy=CYT *b*. Numbers (1,2,3) after gene initials refer to codon positions 1, 2, and 3, respectively.

No. of	No. of		2LnBayes	Data block partition
partitions	parameters	Ln	Factor	
1	10	-58368.64	233.16	all together
2	20	-58252.06	4483.72	(S3P3R3Cy1P1R1S1R2S2Cy2C2C1C3Cy3) and P2
3	30	-56010.2	144.62	(S3P3R3Cy1P1R1S1R2S2Cy2C2C1)(C3Cy3) and P2
				(S3P3R3Cy1P1R1S1R2S2Cy2C2)(C3Cy3) and the
4	40	-55937.89	216.44	rest
5	50	-55829.67	466.68	(S3P3R3Cy1P1R1S1R2S2Cy2)(C3Cy3) and the rest
				(S3P3R3Cy1P1R1S1)(C3Cy3)(R2, S2Cy2) and the
6	60	-55596.33	110.92	rest
				(S3P3R3Cy1P1)(C3Cy3)(R2S2Cy2)(R1S1) and the
7	70	-55540.87	221.58	rest
8	80	-55430.08	138.16	(S3P3R3Cy1P1)(C3Cy3)(R2S2Cy2) and the rest
9	90	-55361	248.8	(S3P3R3Cy1P1)(C3Cy3)(R2S2) and the rest
10	100	-55236.6	418.44	(S3P3R3)(C3Cy3)(R2S2)(Cy1P1) and the rest
11	110	-55027.38	-145.08	(S3P3R3)(C3Cy3)(R2S2) and the rest
12	120	-55099.92	42.82	(S3P3R3)(C3Cy3) and the rest
13	130	-55078.51	-48.68	(S3P3)(C3Cy3) and the rest
14	140	-55102.85	256.78	(S3P3) and the rest
15	150	-54974.46		all separate

TABLE 3. Models selected by MrModelTest2.0 (Nylander, 2004) under the AIC criterion for the optimal 11-partition scheme for Bayesian analysis, with –InL values and number of parameters for each data block.

		Model chosen by		No. of
Partition	Data blocks	MrModeltest2.0	-InL	parameters
1	SH3PX3_3.PLAGL2_3.RAG1_3	GTR+G	11765.64	9
2	COI_3.CYT <i>b</i> _3	GTR+I+G	28687.79	10
3	RAG1_2.SH3PX3_2	GTR+I+G	2035.76	10
4	COI_1	GTR+I+G	946.92	10
5	COI_2	F81	350.01	3
6	СҮТЬ_1	GTR+I+G	3815.70	10
7	CYTb_2	GTR+I+G	1661.82	10
8	RAG1_1	GTR+I+G	2196.07	10
9	SH3PX3_1	JC+G	641.66	1
10	PLAGL2_1	HKY+G	563.80	5
11	PLAGL2_2	F81	460.41	3

confirmed. In addition, *Xenistius californiensis* is also nested within *Haemulon*. *Emmelichthyops* is sister to *Microlepidotus brevipinnis* and these, sister to *Isacia*. These three species are sister to *Orthopristis*.

Two well-supported clades (Bremer support of 56) corresponding to the subfamilies Plectorhinchinae and Haemulinae were recovered in this study (Fig. 2). Within Plectorhinchinae, Parapristipoma is sister to a clade containing the members of the genus Plectorhinchus, with the inclusion of Diagramma pictum. In addition to the Haemulon plus Xenistius clade noted above, a number of putative haemuline genera appear to be para- and polyphyletic. Species of Pomadasys are recovered in three separate clades and the genus is polyphyletic. Within the haemuline assemblage, a clade (Pomadasys I) containing Pomadasys perotaei, P. incisus, and O. olivaceus is sister to the rest of the haemulines. Several Pomadasys, including P. striatus, P. argyreus, P. maculatus, P. kaakan, and P. stridens (Pomadasys II) plus Brachydeuterus were clustered in a separate clade, and is sister to the remaining haemulines. A clade containing additional species of Pomadasys (Pomadasys III), Boridia, Conodon serrifer, Xenichthys, and Haemulopsis and the clade containing species of Orthopristis, Isacia, Emmelichthyops, and Microlepidotus is sister to a clade containing Anisotremus and Haemulon. Anisotremus is monophyletic with the inclusion of Conodon nobilis. Conodon, therefore, is polyphyletic. Genyatremus is monophyletic, and the clade containing the three species included in this genus was also recovered by a recent morphological analysis (Tavera et al., 2011), albeit branch ordering within the clade is different.

DISCUSSION

The interrelationships of haemulids

Previous molecular studies on higher-level percomorphs and acanthomorphs have shown possible outgroups for haemulids but did not provide morphological evidence to support their relationship. The outgroup sampling for this study is not exhaustive and obviates definitive statements about sister taxa of the Haemulidae. However, my results do confirm recent conclusions that *Hapalogenys* is not a member of the Haemulidae (Ren and Zhang, 2007; Springer and Raasch, 1995). The presence of short barbels or furlike papillae on the chins of hapalogenyids and antrorse spine before the first dorsal fin spine separate them from the haemulids. There is also some support (a clade supported by a decay index of 4, 100% bootstrap for MP and ML and a posterior probability of 1.0 for Bayesian analysis) that *Lobotes* may be

FIGURE 2. The tree represents a 50% majority rule consensus of the Bayesian topology (numbers represent the posterior probability of the clades), with bootstrap values from MP and ML mapped onto the topology. MP, ML, and Bayesian analyses produced similar topologies (MP: TL = 12,869, consistency index CI = 0.2372, retention index RI = 0.4450; ML: Ln Likelihood = - 54309.4503) with differences mostly on nodes with low bootstrap support. The numbers on branches are MP and ML bootstrap values and posterior probabilities from Bayesian analysis, respectively. Asterisks indicate a bootstrap value of 100% for MP and ML and 1.0 for Bayesian analysis. Nodes with less than 50% bootstrap value are marked with an X if the clade had less than 50% support in any of the MP, ML, or Bayesian analyses.

sister to *Hapalogenys* (Fig. 2) based on the molecular data and some morphological characters such as the rounded shape of the caudal fin, absence of distinct canines on palatine and vomer, and the presence of more than six sensory pores on the chin. The possession of sensory chin pores, however, does not appear to be a synapomorphy for haemulids plus *Hapalogenys* and *Lobotes*, since my analysis recovers lutjanids as sister to haemulids. More comprehensive taxon sampling of perciform fishes is required to further test this relationship.

The intrarelationships within haemulids

The monophyly of Haemulidae is only well supported if the former inermiids are included. The placement of this species within Haemulidae is not surprising given the many synapomorphies that are shared among them. Johnson (1981) presented a list of shared meristic and osteological characters between "inermiids" and haemulids and also noted the differences between them, most notably the highly protrusible jaws of Haemulon vittatum (formerly Inermia vittata) and Emmelichthyops atlanticus. He noted that the neurocranium bears little resemblance to the typical haemuloid type, which gives way to its modification for the reception of the extremely long ascending processs of the premaxillary, which is a specialization for planktivory. He believed that this degree of morphological and ecological divergence from other haemulids warrants familial recognition. Rocha et al. (2008) recovered Inermia vittata nested within Haemulon and proposed that Inermia should be recognized as Haemulon vittatum based on both cladistic pattern and genetic sequence divergence. They further hypothesized that the disparity in external morphology between Haemulon and Inermia can be attributed to the morphological specializations brought about by rapid ecological shifts. The specialization to plankton feeding is also seen in other haemulines, such as in some species of Anisotremus, Orthopristis, Pomadasys, Haemulon, and Xenistius, although these genera do not possess a highly specialized jaw similar to that of Haemulon vittatum and Emmelichthyops. Similarly, Emmelichthyops appears to have adapted to planktivory. However, unlike Haemulon vittatum (which is nested deep within the well-supported genus Haemulon), Emmelichthyops is on a long branch within a poorly supported clade (low bootstrap, posterior probability, and Bremer support) that includes Isacia, Microlepidotus, and Orthopristis (Fig. 2). A more precise phylogenetic placement for this species will require exhaustive sampling in the Orthopristis-Haemulopsis clade and rigorous morphological comparisons. This study supports the hypothesis by Rocha et al. (2008) of the placement of Haemulon vittatum and also now provides molecular

evidence for the placement of *Emmelichthyops* in Haemulidae. It is important to note that the placement of these two species in the subfamily Haemulinae is also supported by the following morphological characters: two chin pores and low vertebral, pleural, and epipleural rib counts. Therefore, it is recommended that the family Inermiidae should no longer be treated as valid.

The morphological basis for Haemulinae and Plectorhinchinae (Johnson, 1981) is also corroborated by my molecular analyses. The Plectorhinchinae recovered here includes wellsupported clades (Bremer support of at least 12 and high bootstrap and posterior probability) for all species of *Parapristipoma* and *Plectorhinchus*. However, the paraphyletic *Plectorhinchus* includes *Diagramma*. These two genera are very similar in appearance externally and differ mostly in dorsal-fin ray counts, scale counts, and shape of the swimbladder (McKay, 2001; Smith, 1962). Final disposition of species within the clade containing all *Plectorhinchus*, including *Diagramma*, should await a more exhaustive sampling of these species and re-examination of morphological characters. It is interesting to note that the colorful Indo-Pacific coral reef *Plectorhinchus* + *Diagramma* form a clade within a clade that includes mostly drab species, including the only member of this group found in the Atlantic.

The clades recovered within the Haemulinae call into question the monophyly of a number of genera (Fig. 2). *Pomadasys* is polyphyletic and found in three separate clades that correspond roughly to different biogeographic regions. Haemulinae clade I is composed of *Pomadasys* found in the eastern Atlantic (although one is also found in the Indian Ocean). Clade II is composed of *Pomadasys* from the Indo-West Pacific and the eastern Atlantic *Brachydeuterus*. Clade III includes only species found in the Americas (New World): two eastern Pacific *Pomadasys* plus eastern Pacific/western Atlantic *Orthopristis*, eastern Pacific *Isacia*, *Haemulopsis*, *Xenichthys*, *Microlepidotus* and *Conodon*, and the western Atlantic *Boridia*. If new morphological information corroborates the polyphyly of *Pomadasys*, this and the other genera in these basal haemuline clades will need to be reclassified. The distinct or nearly distinct geographic distribution of these clades suggests interesting biogeographical relationships that warrant further study.

Two haemulid clades are confined to the New World and are composed primarily of *Haemulon* and *Anisotremus*. As noted above, the *Haemulon* clade is paraphyletic with the inclusion of *Xenistius californiensis*. Jordan and Gilbert (1882) diagnosed *X. californiensis* using several meristic and anatomical characters such as having an oblong body; a moderate, very oblique terminal mouth, with the lower jaw strongly protruding; soft parts of vertical fins

densely scaled; the two dorsal fins are almost separate; caudal fin forked; and most notably, having the soft dorsal fin shorter than the spinous dorsal fin and composed of 11 or 12 rays and anal fins also short, with second and third anal spines high. These characters are also diagnostic of the members of the genus *Haemulon* (Courtenay, 1961). The recognition of *Xenistius* under *Haemulon* is supported by my independent and combined analyses of five genes (MP, ML, and Bayesian) and I conclude that *X. californiensis* should be treated as *Haemulon californiensis*.

Similarly, the limits of genera within the 'Anisotremus' clade also need to be redefined. Anisotremus was erected without morphological justification (Gill, 1861) by monotypy (Eschmeyer, 1990) and subsequently recognized to encompass other high-bodied haemulids with black bars (Lindeman and Toxey, 2003; McKay and Schneider, 1995). The molecular analysis appears to support this ill-defined genus with the inclusion of *Conodon nobilis*. Here I follow the taxonomic suggestions of Tavera et al. (2011) and classify the former Anisotremus dovii and A. pacifici in the genus Genyatremus. I also use the name Genyatremus cavifrons to refer to the species historically identified as G. luteus, as suggested by Tavera et al. (2011). The molecular and morphological evidence indicates that further comprehensive examination of osteological and other morphological characters of the members of this clade may result in a revision of generic assignments. The monophyly of Conodon is also rejected in this study. Conodon nobilis, inhabiting the western Atlantic, is clustered within the Anisotremus clade as noted above while C. serrifer is clustered together in a clade with eastern Pacific species, including Xenichthys xanti, Haemulopsis leuciscus, H. axillaris, and H. nitidus. Aiming to avoid future reversals, I defer taxonomic rearrangement of these genera to a future study with better taxon sampling and a more detailed morphological analysis.

The current study presents the first nearly comprehensive phylogenetic hypothesis of haemulid genera. The monophyly of the family and subfamilies and distinct clades within the subfamilies are well supported in all analyses (Bremer support of 56, bootstrap values above 95% and posterior probability of 1.0). This phylogeny calls into question the validity of some haemulid genera and leaves a number of other questions unanswered. The placement of *Xenocys* and *Parakuhlia* within the Haemulidae remains unresolved until specimens become available. However, morphology indicates that their subfamilial designation is Haemulinae. Defining the limits and relationships of the questionable genera will require detailed morphological examination to test and refine the current phylogenetic hypothesis. The molecular data largely corroborate the morphological data that define the family, subfamilies,

and some genera. It also appears that the specialization to "extreme" planktivory evolved separately in some haemulines. A closer examination of the feeding apparatus of the "inermiids" may uncover fundamental differences that support alternative sister-species relationships. Detailed morphological examinations are warranted given the results of this study, as are more tests that may help shed light on the biogeographical history of the Haemulidae.

CHAPTER III

A PHYLOGENETIC HYPOTHESIS OF PERCOMORPH FISHES TO DETERMINE THE OUTGROUP OF THE HAEMULIDAE

INTRODUCTION

Percomorph fishes are one of the nine major radiations of jawed vertebrates (Alfaro et al., 2009), including about 55% (>17,000 species) of extant teleost diversity (Betancur-R et al., 2013a; Friedman, 2010; Johnson and Patterson, 1993; Near et al., 2013; Nelson, 1989; Nelson, 2006). Percomorphs have come to be known as the "bush at the top" (Nelson, 1989) of the fish tree of life due to their historical lack of phylogenetic resolution. The Perciformes (perch-like fishes) is the most species-rich order of percomorphs and the largest order of vertebrates. For a long time, the Perciformes has been regarded as a non-monophyletic "wastebasket" (Nelson, 2006; Wiley and Johnson, 2010), with at least 160 families and 20 suborders of dubious phylogenetic integrity placed within the order (Johnson, 1984; Nelson, 2006; Wiley and Johnson, 2010). Several studies using either morphological or molecular data have hypothesized Perciformes as either a para- or polyphyletic group (Chen et al., 2003; Dettai and Lecointre, 2005; Johnson and Patterson, 1993; Lauder and Liem, 1983; Lautredou et al., 2013; Li et al., 2009; Li et al., 2008; Mahon, 2007; Miya et al., 2003; Nelson, 2006; Smith and Craig, 2007; Wiley and Johnson, 2010). Johnson and Patterson (1993) considered that the Perciformes may be monophyletic but only if its taxonomic limits are expanded to include members of the Scorpaeniformes (mail-cheeked fishes), Pleuronectiformes (flatfishes), and Tetraodontiformes (plectognaths). Springer and Johnson (2004) suggested that the plectognaths (including Caproidei) are "pre-perciforms" lineages, whereas Nelson (2006) noted that flatfishes and plectognaths are probably perciform derivatives. Li et al. (2008) and Li et al. (2009) recovered a polyphyletic Perciformes, in which traditionally-assigned perciform taxa are placed close to the Lophiiformes (anglerfishes), Gasterosteiformes (sticklebacks), Scorpaeniformes, and Mugiliformes (mullets). Wiley and Johnson (2010) also noted the non-monophyly of "Perciformes," but erected monophyletic orders based on morphology for many of the suborders formerly included within the Perciformes sensu lato. They also placed the diversity of

percomorphs, comprised of Pleuronectiformes, Tetraodontiformes, Lophiiformes, Batrachoidiformes (toadfishes), and Ophidiiformes (cusk-eels), in the division Percomorphacea (formerly Percomorpha). Wiley and Johnson (2010) proposed that Perciformes *sensu stricto* should only include the groups (formerly) placed in the suborder Percoidei (*sensu* Nelson 2006), but provided no evidence for its monophyly.

Percoidei (*sensu* Nelson 2006), the largest perciform suborder, is also notorious for the lack of synapomorphies and resolution among higher-level percomorphs (Johnson, 1984; Nelson, 2006). Regan (1913) defined Percoidei by the absence of special peculiarities that characterize other perciform suborders. Johnson (1984) identified two artificial groupings for percoids: the "basal," or more generalized percoids, and the remaining percoids based on the modifications of the cranial bones in addition to opercular and pectoral series spination. His more generalized percoids include Acropomatidae (lanternbellies), Gerreidae (mojarras), Girellidae, Haemulidae (grunts), Kyphosidae (sea chubs), Sciaenidae (drums and croakers), halfmoons, Sparidae (porgies), and Teraponidae (tigerperches), a group that he also considered to be "more primitive" among a large subgroup of percoid families.

Recently, Smith and Craig (2007), based on 4036 bp of combined mitochondrial and nuclear sequences from a broad array of percomorph taxa, noted that there is no phylogenetic distinction between Perciformes, Percoidei, and Percomorpha because "percoids" are spread throughout the Percomorpha (sensu Johnson and Patterson 1993). According to Smith and Craig, members of the Percoidei are placed among lineages of Perciformes, Pleuronectiformes, and Tetraodontiformes, including representatives of Atherinomorpha, Gasterosteiformes, and Scorpaeniformes (Smith and Craig, 2007). Dettai and Lecointre (2005) and Li et al. (2009) also obtained percoids in multiple clades together with members of scorpaenids, trachinoids, and ophidiiforms, and emphasized the need for broad-scale taxonomic sampling to resolve percoids, especially for members of dubious morphological affinity. Smith and Craig (2007) proposed a revision for Nelson's (2006) percoid taxonomy by removing Percidae from Percoidei and Trachinidae from Trachinoidei, and by creating a new non-monophyletic 'wastebasket' suborder, the Moronoidei. In the scheme presented by Smith and Craig (2007), Percoidei is the clade stemming from the most recent common ancestor of Acanthistius, Bembrops, Bovichthys, Etheostoma, Harpagifer, Niphon, Notothenia, Perca, and Sander, which is diagnosed by the loss of suborbital stay, the presence of a caudal fin hypurapophysis, and a laterally expanded and posteriorly flattened post-pelvic process (Smith, 2005). Moronoidei is treated as the node-based definition of the clade stemming from the most recent common ancestor of *Morone* and *Polyprion*, and comprise all other taxa excluded from Percoidei *sensu lato*.

More recently, a broad-scale phylogenetic study of bony fishes by the Euteleost Tree of Life (EToL) project examined 21 genetic markers and 1410 taxa in 369 families (Betancur-R et al., 2013a). This study proposed a revised classification of fishes based on molecular data, erecting nine well-supported series under the subdivision Percomorphaceae (Betancur-R et al., 2013a; Betancur-R et al., 2013c). These series include the cusk eels (Ophidiimorpharia, with one order); toadfishes (Batrachoidimorpharia, with one order); kurtids, apogonids, and gobioids (Gobiomorpharia, with two orders); seahorses, pipefishes, gurnards, goatfishes and allies (Syngnathimorpharia, with one order); tunas, mackerels, butterfishes, and allies (Pelagimorpharia, with one order); armored sticklebacks, gouramies, and snakeheads (Anabantomorpharia, with two orders); billfishes, threadfins, jacks, snooks, flatfishes, and allies (Carangimorpharia, with three orders); cichlids, blennies, needlefishes, killifishes, silversides, mullets, and allies (Ovalentaria, with seven orders); and the new "bush at the top," the Percomorpharia, with 11 orders including Perciformes. The new circumscription of Perciformes is putatively monophyletic, comprising 38 families, but 49 families that were not examined were also tentatively included, for a total of 87 families, compared to Nelson's 160 families in this order (Betancur-R et al., 2013a). Previous molecular studies have also included members of these major clades, in combination with other representatives, as well as with different sets of markers (Betancur-R et al., 2013b; Betancur-R and Orti, 2014; Campbell et al., 2013; Chen et al., 2003; Dettai et al., 2004; Dettai and Lecointre, 2005; Kawahara et al., 2008; Li et al., 2009; Li et al., 2011; Miya et al., 2013; Miya et al., 2001; Miya et al., 2005; Miya et al., 2003; Near et al., 2012a; Near et al., 2012b; Thacker, 2009; Wainwright et al., 2012).

Despite significant progress made in accommodating the diversity of percomorph taxa into major clades, phylogenetic resolution within the newly discovered groups is weak and at least five of these are rapid radiations characterized by short basal internodes that require additional study. Betancur-R *et al.* (2013a) also presented a revised time-scale of bony fish evolution based on 60 calibration points, with all major lineages in Percormorphaceae originating between 132 Ma (million years ago) and 82 Ma, before the end of the Cretaceous. More recently, Near *et al.* (2013) published a phylogeny of 579 (mostly acanthomorph) taxa based on a subset of the EToL markers. Their results are largely congruent with those obtained by Betancur-R *et al.* (2013a), although Near *et al.* (2013) chose to delimit 14 percomorph clades instead of nine. It is noteworthy that Near *et al.* (2013) examined 25 families not included in the global EToL phylogeny, many of which had enigmatic phylogenetic status (e.g., Banjosidae, Callanthiidae, Cepolidae, Ostracoberycidae, Pentacerotidae). Problems still exist, however, regarding the classification of several families not included in these studies and those with uncertain placement in the global fish tree.

There are two main goals in this study that will help better define the close relatives of the Haemulidae. First, I investigate the position of eight families that, to the best of my knowledge, have never been included in any large-scale analysis of the percomorphs and provide a more comprehensive framework for defining interfamilial relationships within the percomorphs. These include the marblefishes (Aplodactylidae), bathyclupeids (Bathyclupeidae), picarel porgies (Centracanthidae), kelpfishes (Chironemidae), galjoen fishes (Dichistiidae), barbeled grunters (Hapalogenyidae), trumpeters (Latridae), and slopefishes (Symphysanodontidae). Second, I augment the familial diversity of the EToL dataset by adding families (e.g., lactariids, arripids) that were previously not examined by Betancur-R et al. (2013a), but that have been included in other recent molecular studies on percomorphs, albeit with a much smaller taxonomic representation. I expand the taxonomic sampling to incorporate representatives from families from the more recent studies to increase generic and species-level resolution of the global fish tree, but restrict the sampling to only the percomorphs plus selected outgroups. In addition to the EToL markers previously employed, I used two additional fast-evolving mitochondrial genes, COI (cytochrome oxidase I) and CYT b (cytochrome b), in order to account for the rapid percomorph radiations.

MATERIALS AND METHODS

Phylogenetic Data and Analyses

I restricted the taxonomic sampling to include only percomorph taxa from the global fish dataset (Betancur-R *et al.*, 2013a) and added 51 species for a total of 1231 unique species for this study (Appendix D). For the additional species, I used fresh samples collected from expeditions, bought from fish markets, or gifts from the Ichthyology Collection at University of Kansas and other museums. In addition to determining the placement of new taxa in the expanded percomorph dataset, I investigated the effects of adding new markers in the analysis. I included all the percomorph sequences from the 21-gene dataset and added two additional rapidly evolving mtDNA genes, 815 COI and 388 CYT *b*, for a total of 1203 additional mtDNA

sequences (Table 4). These mtDNA sequences were newly generated, collected from previous studies (Sanciangco *et al.*, 2011), or retrieved from NCBI database. DNA isolation, amplification via nested PCR (see Table 4 for list of primers), sequencing, sequence alignment, and phylogenetic analyses were followed from previous studies (Betancur-R *et al.*, 2013a; Sanciangco *et al.*, 2011). I used SequenceMatrix v1.7.8 (Vaidya *et al.*, 2011) and Geneious (Biomatters, 2013) to concatenate individual gene sequences. The final dataset is a concatenation of 1231 taxa from three genes or more plus *Symphysanodon*, which only had two genes sequenced. The dataset has eight partitions, which include three codon positions across all exons for the nuclear genes, three codon positions across all exons for the mitochondrial genes, plus 16S and hoxc6a. I performed rapid bootstrapping algorithm for RAxML (Randomized Axelerated Maximum Likelihood) using 1000 replicates estimated under the GTRCAT model, with the collection of sample trees used to draw the bipartition frequencies on the optimal tree. I performed all RAxML analyses via CIPRES portal v3.1.

RESULTS AND DISCUSSION

The final dataset is a concatenated alignment of 23 genes and is 44.70% complete (presence of sequence for a particular gene) for 1231 perciforms, including an outgroup (*Hoplostethus occidentalis atlanticus*, F. Trachichthyidae, O. Beryciformes). The results of the RAXML analysis (Appendix E) are largely concordant with the results of the two recent fish phylogenies (Betancur-R *et al.*, 2013a; Near *et al.*, 2013). I recovered consistent placement for all major groups, with similar clade components. However, I also found some disparities. Figures 3 to 8 provide higher-resolution versions of Appendix E for the target groups (new additions). I recognize the classification of Betancur-R *et al.* (2013a) for the nine highly supported supraordinal groups for Percomorphaceae. I present the new findings below starting from the most basal taxa to the most apical groups in the percomorph tree.
Gene	Description	Primer name	Primer sequence	Reference
165	16S rRNA	16sAR	CGCCTGTTTATCAAAAACAT	Betancur-R et al. 2013;
				Cooper <i>et al.</i> 2009
		16sBR	CGCGTCTGAACTCAGATCACGT	Betancur-R et al. 2013;
				Cooper <i>et al</i> . 2009
COI	Cytochrome oxidase I	CO1LBC_F	TCAACYAATCAYAAAGATATYGGCAC	Ward <i>et al.</i> 2005
		CO1HBC_R	ACTTCYGGGTGRCCRAARAATCA	Ward et al. 2005
CYT b	Cytochrome b	CYT b_UniF	CGAACGTTGATATGAAAAACCATCGT	Orrell et al. 2002
		CYT b_UniR	ATCTTCGGTTTACAAGACCGGTG	Orrell et al. 2002
ENC1	Gene for peroxisomal enoyl-	ENC1_F85	GACATGCTGGAGTTTCAGGA	Li et al. 2007
	CoA hydratase/L-3-	ENC1_R982	ACTTGTTRGCMACTGGGTCAAA	Li <i>et al.</i> 2007
	hydroxyacyl-CoA	ENC1_F88	ATGCTGGAGTTTCAGGACAT	Li <i>et al.</i> 2007
	dehydrogenase			
		ENC1_R975	AGCMACTGGGTCAAACTGCTC	Li et al. 2007
FICD	FIC domain	ficd_F166	GTSGTCCARGCGGAYCACCTCTA	Li et al. 2011
		ficd_R965	GTGCATTTGGCKATRAATCGRA	Li <i>et al.</i> 2011
		ficd_F169	GTCCARGCGGAYCACCTCTACA	Li <i>et al.</i> 2011
		ficd_R965	GTGCATTTGGCKATRAATCGRA	Li <i>et al.</i> 2011
		ficd_F186	CTACACTAARGCCYTSGCCATCTC	Li <i>et al.</i> 2011
		ficd_R941	AAGGGTCGAACRTCSCCCTCRTT	Li et al. 2011
GLYT	Glycosyltransferase-like	Glyt_F559	GGACTGTCMAAGATGACCACMT	Li et al. 2007
	domain containing 2	Glyt_R1562	CCCAAGAGGTTCTTGTTRAAGAT	Li <i>et al.</i> 2007
НОХ	Homeo box C6a	hoxc6a_F215	ATGGATCAAACGTGTTTCTTCA	Betancur-R et al. 2013
		hoxc6a_R1129	GCGATYTCGATGCGTCTGCG	Betancur-R et al. 2013
		hoxc6a_F386	GATCTACCCGTGGATGCAGCG	Betancur-R <i>et al.</i> 2013
KIAA1239	Leucine-rich repeat and WD	KIAA2013_F41	CCAGYCGAACAGTSAACAACACCCT	Li et al. 2010
	repeat-containing protein,	KIAA2013_R829	CGGGTCCRCAGTACTCRTTGTA	Li et al. 2010
	KIAA1239-like	KIAA2013_F49	ACAGTSAACAACACCCTSTACTACAT	Li et al. 2010

TABLE 4. List of PCR sequence primers for the percormorph dataset adapted from previous studies.

Table 4. Continued							
Gene	Description	Primer name	Primer sequence	Reference			
		KIAA2013_R801	TTTGAAGAGGAASAARTGGAAGAG	Li et al. 2010			
MYH6	Myosin, heavy polypeptide 6	myh6_F459	CATMTTYTCCATCTCAGATAATGC	Li et al. 2007			
		myh6_R1325	ATTCTCACCACCATCCAGTTGAA	Li et al. 2007			
		myh6_F507	GGAGAATCARTCKGTGCTCATCA	Li et al. 2007			
		myh6_R1322	CTCACCACCATCCAGTTGAACAT	Li et al. 2007			
PANX2	Pannexin 2			Broughton et al. 2013			
PLAGL2	Pleiomorphic adenoma genelike 2	PLAGL2_F9	CCACACACTCYCCACAGAA	Li et al. 2007			
		PLAGL2_R1430	TCGTACTGAGGCTRGAGCTGAA	Pers. Comm. C. Li*			
		PLAGL2_F51	AAAAGATGTTTCACCGMAAAGA	Li <i>et al</i> . 2007			
		PLAGL2_R920	GGTATGAGGTAGATCCSAGCTG	Li et al. 2007			
PTCHD1 (PTR)	Patched domain containing 4	PtrF458	AGAATGGATWACCAACACYTACG	Li et al. 2007			
		Ptr_R1248	TAAGGCACAGGATTGAGATGCT	Li <i>et al</i> . 2007			
		Ptr_F463	GGATAACCAACACYTACGTCAA	Li et al. 2007			
		Ptr_R1242	ACAGGATTGAGATGCTGTCCA	Li et al. 2007			
RAG1	Recombination activating	RAG1_2510F	TGGCCATCCGGGTMAACAC	Li and Orti 2007			
	gene 1	RAG1_RAG1R1	CTGAGTCCTTGTGAGCTTCCATRAAYTT	López <i>et al</i> . 2004			
		RAG1_RAG1F1	CTGAGCTGCAGTCAGTACCATAAGATGT	López <i>et al.</i> 2004			
		RAG1_RAG1R2	TGAGCCTCCATGAACTTCTGAAGRTAYTT	López <i>et al.</i> 2004			
RAG2	Recombination activating	Rag2_Damsel_R2	TCTGCCCTGCARAAGCTCRA	Cooper <i>et al.</i> 2009			
	gene 2	Rag2_F1	GAGGGCCATCTCCTTCTCCAA	Cooper <i>et al</i> . 2009			
		Rag2_F2	GACTGTCCTCCTCAGGTGTTC	Cooper <i>et al.</i> 2009			
		Rag2_R2	GTCTGTAGAGTCTCACAGGAGAGCA	Cooper <i>et al</i> . 2009			
		Rag2_R3	GATGGCCTTCCCTCTGTGGGTAC	Cooper <i>et al</i> . 2009			
RH	Rhodopsin			Betancur-R et al. 2013;			
				Cooper <i>et al.</i> 2009			
RIPK4	Receptor-interacting	F57	GCCAAGTTGATGAAGATCCTVCAG	Li et al. 2011			
	serinethreonine	R880	ACAGTYAARATGCTGATAGAAGAGGG	Li <i>et al</i> . 2011			
	kinase 4	F65	GATGAAGATCCTVCAGCCTCA	Li et al. 2011			

Table 4. Continued							
Gene	Description	Primer name	Primer sequence	Reference			
		R766	CACACCAGCACYTCTCGTCT	Li et al. 2011			
SH3PX3	Sorting nexin 3; similar to	SH3PX3_F35	AAAGYGARAACAAGGAGGAGAT	Pers. Comm. C. Li*			
	SH3 and PX domain	SH3PX3_R1373	AGCGACAGYTTGTCCARCAT	Pers. Comm. C. Li*			
	containing 3 gene	SH3PX3_F532	GACGTTCCCATGATGGCWAAAAT	Li <i>et al</i> . 2007			
		SH3PX3_R1299	CATCTCYCCGATGTTCTCGTA	Li et al. 2007			
SIDKEY	si:dkey-174m14.3	F116	CGGATGARGYCTGCAGCAG	Li et al. 2010			
		R1360	ACAGTCTGACMAARGCCCAGC	Li <i>et al.</i> 2010			
		F247	GACCTSTACAGCAGYGACAC	Li et al. 2010			
		R1355	AAGGACAGTCTGACMAAGGC	Li <i>et al.</i> 2010			
SREB2	G protein-coupled receptor 85	sreb2_F10	ATGGCGAACTAYAGCCATGC	Li et al. 2007			
		sreb2_R1094	CTGGATTTTCTGCAGTASAGGAG	Li <i>et al</i> . 2007			
		sreb2_F27	TGCAGGGGACCACAMCAT	Li et al. 2007			
		sreb2_R1082	CAGTASAGGAGCGTGGTGCT	Li <i>et al.</i> 2007			
SVEP1	Sushi, von Willebrand factor	svep1_F7960	CCTCCNCAYATYGAYTTTGGDGAMTA	Betancur-R et al. 2013			
	type A, EGF and pentraxin domain containing 1	svep1_R8889	TTCAGGWARCCRTGRCTRATRTCCTC	Betancur-R et al. 2013			
TBR1	T-box, brain, 1b	tbr1_F1	TGTCTACACAGGCTGCGACAT	Li et al. 2007			
		tbr1_R820	GATGTCCTTRGWGCAGTTTTT	Li et al. 2007			
		tbr1_F86	GCCATGMCTGGYTCTTTCCT	Li et al. 2007			
		tbr1_R811	GGAGCAGTTTTTCTCRCATTC	Li <i>et al.</i> 2007			
VCPIP	Valosin-containing protein	vcpip_F84	CCGGACCCGMARTGYCAGGC	Betancur-R et al. 2013			
	p97/p47 complete interacting	vcpip_R946	GTGRTTBCKGCYVGAGCTGCTCCABGC	Betancur-R et al. 2013			
	protein 1	vcpip_F134	AGCATYGAGTGCACSGASTGCGGMCA	Betancur-R et al. 2013			
		vcpip_R930	CTGCTCCASGCRATGCAKATGGGYTTG	Betancur-R et al. 2013			
ZIC1	Zic family member 1	zic1_F9	GGACGCAGGACCGCARTAYC	Li et al. 2007			
		zic1_R967	CTGTGTGTGTCCTTTTGTGRATYTT	Li et al. 2007			
		zic1_F16	GGACCGCAGTATCCCACYMT	Li et al. 2007			
		zic1_R963	GTGTGTCCTTTTGTGAATTTTYAGRT	Li <i>et al.</i> 2007			

Arripididae: Pelagimorpharia

One of the families not included in the two most recent euteleostean phylogenies (Betancur-R et al., 2013a; Near et al., 2013) is the enigmatic family Arripididae (Australasian salmons or kahawais). The family is comprised of a single genus, Arripis, with four putative species, A. georgianus, A. trutta, A. truttacea, and A. xylabion (Paulin, 1993). Previous studies regarding the taxonomic classification and relations of the family are very few and have been controversial (Miya et al., 2013; Paulin, 1993; Yagishita et al., 2002; Yagishita et al., 2009). Gill (1893a) was the first to recognize the family as distinct, but also included Emmelichthys nitidus (now in Emmelichthyidae) in the group. Subsequent studies have used the nomenclature Arripidae to refer to the group; however, Paulin (1993) indicated that the spelling is incorrect (Steyskal, 1980). Following Steyskal (1980), the basonym -is is of feminine gender and has the genitive in -idis in its stem, and, therefore, should follow -id- since the Greek lexicon of the genus name is Arripis. More than 80 years after the family was first recognized, MacDonald (1983), in an unpublished dissertation, provided the preliminary hypothesis regarding the interrelationships within the family based on allozyme markers. Accordingly, he recovered A. trutta and A. truttaceus as sister-species, and the two, sister to A. georgianus. A. xylabion was described in 1993, and therefore, was not included at the time (Paulin, 1993). Johnson and Fritzsche (1989) included one of the four species, A. georgianus, and some other percoids as outgroups to test the sister-group relationship between the nibblers, Graus and Girella (Family Kyphosidae, Subfamily Girellinae). Their choice of outgroups is based on Freihofer's (1963) morphological study, suggesting a close relationship between scorpidids (halfmoons), kyphosids (rudderfishes), girellids (nibblers), oplegnathiods (knifejaws), microcanthids, arripids, kuhliids (flagtails), teraponids (tigerperches), pomatomids (bluefishes), nemastistiids (roosterfishes), and several additional families belonging to Stromateoidea. Freihofer (1963) hypothesized that these groups form a natural assemblage by sharing the unique pattern 10 of the ramus lateralis accessorius nerve (RLA), a feature which he described. Freihofer's description of 17 principal patterns of RLA (with marked disparity exemplified by percomorphs) can be defined according to the intra- and extracranial course of the nerve, its relationships with various bones, and its ultimate peripheral distribution to gustatory organs on the head and fins (Freihofer, 1963; Greenwood, 1964). Accordingly, in RLA pattern 10, the orbito-pectoral branch (RLA-OP) reaches the pectoral girdle by passing directly posteriorly from the sphenotic to the posttemporalsupracleithral joint, without crossing medially beneath the pteroic, lateral tabular, and

posttemporal, and lying just beneath the skin overlying the levator arcus palatini and dilator and the levator opercula muscles (Johnson and Fritzsche, 1989). In their morphological examination of the above groups, Johnson and Fritzsche (1989) concurred with Freihofer's hypothesis that RLA pattern 10 characterizes a natural assemblage. In an effort to evaluate the RLA pattern 10's usefulness as a phylogenetic marker within the percomorphs, Yagishita *et al.* (2009) analyzed the mitogenome sequences of 13 species, including *A. trutta* plus outgroups, exhibiting RLA pattern 10. They proposed two lineages for species with RLA pattern 10 and at least two independent origins for the character. Interestingly, they recovered a highly supported monophyletic clade comprising of Arripididae, Stromateoidei, and Scombridae.

The close relationship among the arripids, stromateoids, and scombrids has been implied by Yagishita et al. (2002) in a previous study, which included A. georgianus; however, support for the group was weak (59% bootstrap support, BS). Yagishita et al. (2009) further noted that this morphologically diverse group is comprised of pelagic dwellers and are often associated with long distance migrations. Miya et al. (2013) used this premise to test evolutionary origins of scombrids and recovered a well-supported monophyletic clade containing all pelagic members, including A. trutta, aptly termed Pelagia. In the present study, I was able to include all three species investigated in the initial allozyme study and found the results to be consistent with MacDonald's (1983), placing A. trutta and A. truttacea as sisterspecies, and this, sister to A. georgianus. My results (Fig. 3) also corroborate the findings of Yagishita et al. (2002), Yagishita et al. (2009), and Miya et al. (2013), placing Arripididae with the pelagic dwellers, scombroids and putative relatives (Pomatomidae and Scombrolabracidae) plus non-scombroid families Bramidae, Chiasmodontids, Icosteidae, Centrolophidae, Nomeidae, Stromateidae, Caristiidae, Ariommatidae, and Tetragonuridae, an assemblage which Miya et al. (2013) first reported. However, my results are different from their topology, with Chiasmodontidae as the basal to the rest of Pelagia in my phylogeny. My results also show Scombridae as paraphyletic, but support for this is low. Arripididae is monophyletic, but the hypothesis regarding its sister relationship with other families within the Pelagia remains inconclusive using my dataset that mostly consists of nuclear markers and partial mitochondrial genes, and are not sufficient to resolve the rapid radiation seen in Pelagia (Miya et al., 2013).

Lactariidae: Carangimorpharia

One of the families not included in Betancur-R et al.'s (2013a) and Near et al.'s (2013) datasets is the monotypic family Lactariidae (false trevally). The available literature on Lactarius lactarius mostly reports on the general biology, ecology, and fisheries statistics and do not provide information regarding interfamilial relationships (Apparao, 1966; Hakkimane and Rathod, 2011; James et al., 1974; Kaikini, 1974; Reuben et al., 1993; Zacharia and Jayabalan, 2007). Previous reports have associated the false trevallies with scombrids, pomatomids, and carangids (Bloch and Schneider, 1801; Cuvier, 1830; Cuvier and Valenciennes, 1833). Others have associated them with Sciaenidae(Günther, 1860) and Serranidae (Regan, 1913), based on similarity in general characteristics. In 1923, Jordan erected the familial classification Lactariidae and placed them within the Carangiformes. Jordan's classification, which was also based on external morphology, has been widely accepted ever since (Johnson, 1984; Smith-Vaniz, 1984). In 1994, Leis provided description of eight larval and adult characters namely, the lack of subopercular and interopercular spines on larvae, series of melanophores along the dorsal midline of trunk and tail of larvae; soft-rayed portion of the dorsal and anal fins as long-based; presence of cycloid scales; fusion of hypurals 1 and 2, and 3 and 4; coracoid with a broad anterior lamella, which extends broadly toward the cleithrum; and the length of the hypobranchial process and its attachment to the midline, which suggests that *Lactarius* and Mene are sister to the carangoid fishes. Leis noted that these synapomorphies support the conventional placement of Lactarius as closely related to carangoids. Moreover, Leis noted that Lactarius and Mene are successive sister groups to the carangoids based on two equivocal characters, namely the absence of spines on the supracleithrum and on the posttemporal of the larvae for both taxa. He also noted two other characters of uncertain reliability, which are the posterior extension of the swim bladder and the arrangement of neural arches and spines, but these differ in construction from the two taxa and raise the question of homology. Leis further mentioned that relationships of false trevallies remain uncertain pending availability of larvae of Lactarius and other carangoids. More recently, Campbell et al. (2013), in their assessment of the monophyly of the flatfishes (Pleuronectiformes), provided molecular evidence of the placement of Lactarius within the carangimorphs. They recovered Lactarius in a clade with Sphyraena, Mene, Makaira, and Xiphias, but received no support for the node. Betancur-R and Orti (2014), however, conducted an analysis combining their previous dataset and that of Campbell et al.'s and including only the carangimorphs and anabantomorphs, and recovered *Lactarius* as sister to

FIGURE 3. Interfamilial relationships of Arripididae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

sphyraenids (60% BS); however, the position of this clade within the carangoids is also not supported.

The results of this study (Fig. 4) corroborate the placement of lactariids within the carangimorphs. These results are concordant with Leis (1994) placing *Lactarius* as sister to Menidae, but support for this is weak. Moreover, *Lactarius* and Menidae are sister to Polynemidae, and this clade is basal to all carangoids. Reexamination of the coracoid and hypobranchial processes, as well as other morphological characters that Leis have investigated, of the carangimorphs will most likely provide more evidence supporting the affinity of these taxa.

In addition, these results corroborate Betancur-R and Orti's (2014) results placing psettodids closer to the flatfishes, than the previous findings in Betancur-R et al. (2013a) phylogeny, which is contrary to previous morphological (Chapleau, 1993; Lauder and Liem, 1983; Regan, 1910) and molecular studies that included a limited taxon sampling of pleuronectoids (Berendzen and Dimmick, 2002; Betancur-R et al., 2013b; Near et al., 2013; Pardo et al., 2005), which placed psettodids close to the flatfishes and supported a monophyletic clade for the order. Betancur-R et al. (2013a) recovered psettodids in a clade with the nematistiids, rachycentrids, coryphaenids, and echeneids and far from the pleuronectiforms. Their placement of psettodids in the Carangiformes renders the Pleuronectiformes polyphyletic. Campbell et al. (2013), in their investigation of the monophyly of the order, recovered psettodids as sister to Toxotes, but also found no support for the group. Betancur-R and Orti's (2014) re-analysis of the combined dataset of two previous studies recovered a monophyletic clade for flatfishes (65% BS), with psettodids as the basal group. Their approach analyzed a more restricted dataset of flatfishes and carangimophs and enabled resolution of the flatfishes. Although this approach is highly recommended (Betancur-R and Orti, 2014), especially when monophyly of the target group is ascertained, this study incorporates the entirety of Percomorphaceae and aims to provide hypothesis of previously unclassified groups. The results, however, shows that the addition of new taxa, as well as expanding taxonomic coverage, can completely change the assumed sister-group relationships and affect placement of species within a group, such in the case for Lactarius. Inclusion of more specimens and more genes will likely help resolve relationships within the Carangimorphariae as well. Moreover, assessment of morphological characters, such as those examined by Leis (1994), can also be key to understanding the relationships uniting the flatfishes, billfishes, and carangids

FIGURE 4. Interfamilial relationships of Lactariidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

(Betancur-R *et al.*, 2013a; Chen *et al.*, 2003; Ishiguro *et al.*, 2003; Johnson, 1984; Li *et al.*, 2009; Little *et al.*, 2010; Smith and Wheeler, 2006). Further examination of morphological characters and gene sequences for members of the Carangimorphariae clade almost certainly will provide more information regarding the close affinity between the carangids and flatfishes.

Callanthiidae, Percomorpharia

The groppos (callanthiids) are one of the families not included in Betancur's *et al.*'s (2013a) fish phylogeny, but are included in the more recent analysis of Near *et al.* (2013). Similar to the bandfishes, Li *et al.* (2009) recovered the groppos in their extended clade, Clade N, and sister to Caproidae (boarfishes). Near *et al.* (2013) recovered the groppos close to sillaginids (sillagos) and emmelichthyids (rovers), but found no support for the group. In the present study (Fig. 5), the genus *Callanthias* is placed close to the tilefishes (Malacanthidae), and nests in a bigger assemblage comprised of haemulids (grunts), lutjanids (snappers) plus caesionids (fusiliers), pomacanthids (angelfishes), chaetodontids (butterflyfishes), emmelichthyids, acanthuriforms, leiognathids, and sciaenids (82% BS).

Hapalogenyidae: Percormorpharia

The family of barbeled grunters, Hapalogenyidae, is one of the enigmatic groups not examined in previous molecular studies that encompass most of percomorphs. The phylogenetic placement of the family within the percomorphs is controversial (Iwatsuki and Nakabo, 2005; Iwatsuki *et al.*, 2000; Johnson, 1984; Lindeman and Toxey, 2003; Ren and Zhang, 2007; Sanciangco *et al.*, 2011; Springer and Raasch, 1995). The members of the family have often been placed in the Haemulidae (Iwatsuki and Russell, 2006; Iwatsuki *et al.*, 2000; McKay, 2001; Nelson, 2006; Richardson, 1844) or classified as *incertae sedis* under the suborder Percoidei (Johnson, 1984). Springer and Raasch (1995) erected the family name, Hapalogenidae (sic Haplogeniidae) for the genus, without strong supporting evidence.McKay (2001) and Iwatsuki and Russell (2006) recognized *Hapalogenys* separate from Haemulidae (grunts), but retained the genus in Haemulidae for convenience, pending further study of more genera.

McKay (2001) also described the genus as similar to the two species of Dinopercidae (cavebasses); however, he observed that species of *Hapalogenys* do not possess the intrinsic muscles on the posterior part of the swimbladder. Leis and Carson-Ewart (2000) observed that *Lobotes, Datnioides*, and *Hapalogenys* all shared remarkable similarity in larval morphology, particularly in head spination, pigmentation, early development of the posteriorly-placed pelvic fins, and general body shape, and placed the three genera in an informal group called "Loboteslike." Ren and Zhang (2007), in their study of phylogenetic relationships of 15 haemulids based on the partial mitochondrial 16S gene, recovered Hapalogenys outside Haemulidae. Sanciangco et al. (2011) corroborated this finding placing Hapalogenys outside Haemulidae in their phylogenetic analysis of most genera and species of the family Haemulidae using five genes. Their study provided substantial molecular evidence that Hapalogenys is indeed not a haemulid. In addition, their study also confirmed Leis and Carson-Ewart's (2000) hypothesis that Hapalogenys is sister to Lobotes (Datnioides was not sampled in their study). Liang et al. (2012) also recovered Hapalogenys outside haemulids based on a more limited taxon sampling inferring relationships within the haemulids. However, relationships of Hapalogenys within the percomorphs remain inconclusive. Previous studies have included Hapalogenys as an outgroup species and none has tested nor included Hapalogenys in any molecular analysis within the broader percomorph. The results of my RAxML analysis (Fig. 6) confirms Hapalogenyidae in a clade together with lobotids (Sanciangco et al., 2011) and Datnioides (Leis and Carson-Ewart, 2000), and is highly supported (100% BS). Furthermore, I recovered the "lobotes-like" clade in a bigger assemblage comprised of the Spariformes (sensu Betancur-R et al. 2013c), siganids, scatophagids, priacanthids, cepolids, caproids, lophiiforms, tetraodontiforms, sillaginids, moronids, ephippiforms, and the clade containing the most recent common ancestor of leiognathids, acanthuriforms, callanthiids, haemulids, and lutjanids plus caesionids (82% BS). The inclusion of Hapalogenys in this study completely changed the sister grouping for Lobotidae. In Betancur-R et al. (2013a), Lobotes was recovered as sister to Sillaginidae, but support for this relationship is weak. The results of this study not only corroborate sister-group relationships for Hapalogenys, but also present novel hypothesis regarding relationships with other percomorphs.

FIGURE 5. Interfamilial relationships of Callanthiidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

FIGURE 6. Interfamilial relationships of Hapalogenyidae, Sparidae, and Centracanthidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

Centracanthidae; Spariform fishes

The inclusion of Centracanthus in this analysis confirms that the family Centracanthidae (picarel porgies) Gill 1893 should be treated as a junior synonym of Sparidae Rafinesque 1810 (Fig. 6). There are currently two putative genera, namely Centracanthus (with one species) and Spicara (with nine species), belonging to the family. Previous relations of the centracanthids include Inermia and Emmelichthyops (Heemstra 1974 as cited in Johnson 1981), which are now in Haemulidae (grunts), and Sparidae (porgies) (Johnson, 1981, 1984; Jordan and Fesler, 1893; Regan, 1913; Smith, 1938). Heemstra (as cited in Johnson 1981), in his delimitation of the family Emmelichthyidae (rovers), placed Inermia and Emmelichthyops, along with several other genera in a separate family, Centracanthidae, which is diagnosed by the presence of a "joint-like articulation at the distal (ventral) ends of the premaxillary and maxillary bones." Johnson (1981) examined this joint and noted a significant difference in its articulation between that of the former inermiids and centracanthids. Accordingly, in the centracanthids, the distal end of the premaxillary gives rise to two flanges that form a trough that cradles the shaft of the maxillary anterior to a distal, ventral expansion, which is a condition shared by the closely related sparids. As opposed to the inermiids, the premaxillary fits into an acute notch in the ventral margin of the maxillary instead of having grooves where the maxillary is situated.

Heemstra and Randall (1977) also corroborated this finding and noted that centracanthids are sparid derivatives, supported by the presence of sparoid suspensorium, infraorbital configuration, and six branchiostegals. Johnson (1981) further observed that Centracanthidae appears closely related to the Sparidae not only based on similarity of the maxillary-premaxillary articulation, but also on a number of general osteological features. He noted that there are many morphological specializations associated with planktivorous lifestyle, which supports the monophyly of Centracanthidae. Johnson retained the centracanthids in a separate family pending investigation of the interrelationships within the sparoids. Carpenter and Johnson (2002) recovered a monophyletic Sparidae plus Centracanthidae (*Spicara maena, S. alta,* and *Centracanthus cirrus*) and found four non-homoplasious synapomorphies: three openings in the lateral wall of pars jugularis, a modified distal end of alveolar ramus of premaxillary to articulate with the distal ventral edge of the maxilla, proximal tips of the first hypural and the parhypural broadly overlap and articulate with the urostyle, and presence of apical pores in the lateral line scales. The monophyletic Sparidae plus Centracanthidae was further supported by subsequent molecular studies that included one or few members of the genus *Spicara* within Sparidae (Chiba *et al.*, 2009; Day, 2002; Orrell and Carpenter, 2004; Orrell *et al.*, 2002), but did not include *Centracanthus*.

Hanel and Tsigenopoulos (2011) conducted a molecular phylogenetic analysis of the sparids (18 genera; 38 species) that included the two centracanthid genera using 16S rRNA gene. Their topology shows members of centracanthids spread throughout the Sparidae family. They recovered Spicara melanurus nested in Diplodus. Although this was not included in my molecular analysis, a morphological examination of S. melanurus shows that it is probably a Diplodus with a highly protrusible jaw and a spot on the caudal peduncle, as in all other Diplodus. S. axillaris (also not sampled in this study) is placed close to Sparus and Pachymetopon, S. maena, S. smaris, and S. flexuosa (not sampled) are nested in a clade together with Spondyliosoma, S. alta is placed close to Dentex, and Centracanthus cirrus is nested with Pagellus. More recently, Santini et al. (2014) provided a more comprehensive phylogeny of the sparids + centracanthids (38 genera, 91 species), confirming previous hypothesis that centracanthids are spread throughout the sparids. The results (29 genera, 38 species) are concordant with previous studies, placing centracanthids within the sparids, and with similar clade composition for the major nodes, with some disparities. I recovered S. maena and S. smaris together with Spondyliosoma. S. alta (not included in the two most recent studies, but included in Orrell et al. 2002) is also nested in a clade with Dentex and with Pagellus, Argyrozona, Porcostoma, Chrysoblephus, Argyrops, Cheimerius, and Viridentex. I found S. nigricauda (not sampled in Hanel and Tsigenopoulos 2011 and Santini et al. 2014) together with Diplodus, Lithognathus, and the rest of sparids. My results are different from Hanel and Tsigenopoulos (2011) in the placement of C. cirrus, which is nested together in a clade with Boops, Oblada, and Pachymetopon, but support for this is low. Disparities in the interrelationships within the sparids + centracanthids can be attributed to the limited number of gene sequences for some of the spariform fishes in my dataset, which mostly consisted of COI, CYT b, and RAG1, as compared to those taxa with more genes, in which placement were consistent with previous studies. Nevertheless, my results confirmed that centracanthids are indeed sparids. Centracanthidae was erected based on its planktivorous life style and highly protrusible jaw. The present study confirms that this trait is highly plastic and evolved several times within the Sparidae. This is an observation found in other percoid families such as the Lutjanidae-Caesionidae relationship and the Hamulidae-Inermiidae relationships. Sparidae is monophyletic, with the inclusion of Spicara (paraphyletic) and Centracanthus (100% BS). Two

genera, *Diplodus* and *Spicara*, however, are not monophyletic. Further, none of the putative subfamilies are monophyletic (Chiba *et al.*, 2009; Hanel and Sturmbauer, 2000; Orrell and Carpenter, 2004; Orrell *et al.*, 2002; Smith and Heemstra, 1986). My findings do not support the current subfamilial classification based on dentition, spinous and soft fin ray counts, scalation, and body colour for the sparids.

The now expanded Sparidae, Nemipteridae (threadfin breams), and Lethrinidae (emperors), make up the spariform fishes. Akazaki (1962) was the first to recognize the "spariform fish," which included a primitive Nemipteridae, an intermediate Sparidae, and a highly specialized Lethrinidae based on osteological relationships, including dentition. Johnson (1981) expanded Akazaki's spariform and erected the superfamily "Sparoidea" to include the primitive Nemipteridae, intermediate Lethrinidae, and the more derived Sparidae plus Centracanthidae, based on similarity of maxillary-premaxillary distal articulation and other osteological characters. Carpenter and Johnson (2002) also recovered a monophyletic superfamily, substantiated by three non-homoplasious characters: symplectic with dorsal and ventral laminar extensions, broad articulation between hyomandibular and metapterygoid, and anterior extension of suborbital shelf behind second infraorbital, based on cladistic analysis of 54 morphological characters. My results are concordant with that of Johnson (1981) and Carpenter and Johnson (2002) for the relationships within spariform fishes, with strong support (87% BS).

Cepolidae, Percomorpharia

The Cepolidae (bandfishes) is one of the five families not included in the global fish phylogeny (Betancur-R *et al.*, 2013a), but is sampled in the Near *et al.*'s (2013) phylogeny. Previous studies regarding the classification and familial relations of cepolids are scarce. The cepolids were placed in separate families in the past, which are recognized as subfamilies, based on the following synapomorphies: toothless vomer and palatine, dorsal and anal fins not divided, dorsal and anal spines flexible and reduced, and presence of a single postclavicle and six branchiostegals (Nelson, 2006; Smith-Vaniz, 2001; Smith and Heemstra, 1986). At present, there are four putative genera and 19 species belonging to the two subfamilies Cepolinae and Owstoniidae. With regards to familial relations, Li *et al.* (2009) placed the Cepolidae close to Labridae (wrasses) and Scaridae (parrotfishes), and is included in an "extended clade (Clade N)," while Smith and Wheeler (2006) placed them close to Leiognathidae (slipmouths) and Bythitidae (viviparous brotulas). Near *et al.* (2013), however, placed the Cepolidae close to Priacanthidae (bigeyes) and close to Scatophagidae (scats) plus Siganidae (rabbitfishes), Caproidae (boarfishes), lophiiforms, tetraodontiforms, Ephippidae (spadefishes), and Moronidae (temperate basses). With a much broader taxon sampling, the results of this study corroborate this most recent finding, and recovered Cepolidae close to Priacanthidae and Scatophagidae (98% BS) (Fig. 7). This group nests in a bigger assemblage consisting of Lophiiformes (anglerfishes) and Tetraodontiformes (plectognaths), and siganids, with moderate support (86% BS).

Symphysanodontidae, Banjosidae, Pentacerotidae, and Bathyclupeidae: Percomorpharia

The phylogenetic position of slopefishes among the percomorphs has been controversial and its relationships unknown. Most information available regarding the symphysanodontids pertain to species accounts and generalized descriptions for the members of the family (Anderson *et al.*, 2011; Anderson, 2000, 2003; Anderson and Springer, 2005; Nelson, 1994, 2006). The family is comprised of a single genus, *Symphysanodon*, with 12 putative species (Anderson *et al.*, 2011). Members of this family have been mistaken for members of the lanternbellies (Acropomatidae), sea basses (Serranidae), or snappers (Lutjanidae) in the past, but can easily be diagnosed by the absence of distinguishing characters for the other three groups (Anderson and Springer, 2005; Nelson, 1994, 2006). Johnson (1984) provided a hypothesis of evolutionary relationships with the acropomatids (lanternbellies) based on his observation of the larvae of *Symphysanodon sp.*, which he described as possessing hornlike frontal spines similar to those of *Synagrops* (Acropomatidae), and noted that presence of this character is suggestive of their close affinity.

FIGURE 7. Interfamilial relationships of Cepolidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

My results are concordant with Johnson's observation placing Symphysanodon close to acropomatids. Furthermore, I recovered the slopefishes belonging to Pempheriformes sedis mutabilis sensu Betancur-R et al. (2013c). My results are concordant with Johnson's observation, with the slopefishes closely related to the lanternbellies (Fig. 8). The lanternbellies, however, are not monophyletic, appearing in three different places for each of the three genera represented in this study. Members of the genus Synagrops are nested in a group containing the bathyclupeids (also a new addition in this study), wreckfishes (Polyprionidae), banjofishes (Banjosidae), and armorheads (Pentacerotidae). Malakichthys is found in a clade together with the Asian seaperches (Lateolabracidae), gapers (Champsodontidae), sandburrowers (Creediidae), duckbills (Percophidae), pearl perches (Glaucosomatidae), and sweepers (Pempheridae). Acropoma is nested in a clade comprised of the epigonids, Howellidae, ostracoberycids (Ostracoberycidae), and Symphysanodontidae. This study is the first to include members of the families Symphysanodontidae and Bathyclupeidae in a molecular phylogenetic analysis of the percomorphs, and although support for the relationships within the order is not recovered in this analysis, the hypothesis shows up in a number of different analyses and deserves further testing. The relationships within this entire assemblage has been recovered in part in other fish phylogenies (Betancur-R et al., 2013a; Near et al., 2013), but they also found no support for the group.

Dichistiidae, Percomorpharia

One of the 49 families not included in Betancur-R *et al.*'s (2013a) and Near *et al.*'s (2013) phylogenies is that of the galjoen fishes (Dichistiidae). Similar to many perciform families, the taxonomic history of galjoen fishes has been controversial. The family is comprised of a single genus, *Dichistius*, with two putative species. Members of this family have been placed together with the squamipinnes, porgies, *Girella*, and *Scorpis*, based on superficial external characters (Cuvier, 1830; Fowler, 1934; Günther, 1860; Jordan, 1923). Smith(1935) was the first

FIGURE 8. Interfamilial relationships of Symphysanodontidae, Bathyclupeidae, Dichistiidae, Latridae, Chironemidae, and Aplodactylidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

to classify the galjoen fishes in a separate family, Dichistiidae (= Coracinidae), and placed them near the sea chubs, Girellidae and Kyphosidae (Leis and van der Lingen, 1997), a classification which has been followed in subsequent studies. There are several relationships hypothesized for galjoen fishes. Johnson (1984) placed them close to *Drepane*, but regarded them as ephippids, based on the similarity in gill arch characters. Nelson (1994) placed them close to Drepaneidae (sicklefishes), but not close to Ephippidae. Leis and van der Lingen (1997) rejected the placement of galjoen fishes in Sparidae and Sparoidea, noting the absence of diagnostic characters for the two families.

Johnson (1984) and Johnson and Fritzsche (1989) noted that the larval features of the galjoen fishes are distinctive of the larval forms of the microcanthids, scorpidid, girellid, and kyphosids (MSG +K). Johnson and Fritzsche (1989) also suggested that the MSG + K group is also related to Arripidae (Australasian salmon), Kuhliidae (flagtails), Oplegnathidae (knifejaws), Terapontidae (tigerperches), and Stromateiodei. Leis and van der Lingen (1997) provided a thorough discussion on the taxonomic issues and history of Dichistiidae relationships. They tested interrelationships of the group to other fishes by looking at the Freihofer's pattern 10 of the ramus lateralis accessorius nerve (RLA) of larval fishes. They concluded that the MSG + K families, as well as the families Dichistiidae and Arripidae, exhibit the RLA pattern 10. However, they do not have information on the sister groups of those possessing the RLA 10 pattern, and therefore, could not assess the monophyly of the group and resolve its relationships among other perciforms.

Yagishita *et al.* (2009) then examined the RLA pattern 10 of two perciform suborders (*sensu* Nelson 2006) that share this character. These include some members of Percoidei, comprised of members of Arripidae, Dichistiidae, Kyphosidae, Terapontidae, Kuhliidae, and Oplegnathidae, and members of the suborder Stromateoidei. Their results, however, showed two independent origins for the facial nerve pattern, one in the group with Kyphosidae, Terapontidae, Kuhliidae, and Oplegnathidae and another one in the group with Arripidae and Stromateoidei. Interestingly, they recovered Arripidae and Stromateoidei together with Scombridae (mackerels and tunas) and allies, which do not possess the RLA pattern 10. This group corroborates an earlier molecular study that examined the venom evolution in fishes (Smith and Wheeler, 2006). Smith and Wheeler (2006) provided a hypothesis of venom evolution and sampled from a wide selection of spiny-rayed fishes. They indicated that galjoen fishes are close to Kyphosidae and Oplegnathidae, and sister to a group comprising of Kuhliidae, Terapontidae, Creediidae (sandburrowers), and Uranoscopidae (stargazers). My analysis supports Johnson and Fritzsche's (1989), Leis and van der Lingen's (1997), Yagishita *et al.*'s (2009), and Smith and Wheeler's (2006) placement of Dichistiidae close to Kyphosidae, and to Oplegnathidae, Kuhliidae, and Terapontidae (Fig. 8) in the newly circumscribed Order Terapontiformes (*sensu* Betancur-R *et al.* 2013c), which also includes Girrellidae (99% BS).

Latridae, Aplodactylidae, and Chironemidae, Cirrhitiformes: Percomorpharia

The inclusion of three additional families, Latridae (trumpeters), Aplodactylidae (marblefishes), and Chironemidae (kelpfishes) in this study confirmed previous hypothesis regarding relationships within the cirrhitiforms (Fig. 8). These families, together with Cheilodactylidae (morwongs) and Cirrhitidae (hawkfishes), represent the monophyletic superfamily Cirrhitoidei (= Cirrhitiformes, *sensu* Betancur-R *et al.* 2013a), and together encompasses Regan's (1911) natural assemblage, which is collectively termed as the cirrhitoids (*sensu* Greenwood 1995). Although the phylogenetic affinity for the cirrhitiforms has been widely accepted, the relationships within the group remain equivocal (Burridge and Smolenski, 2004; Greenwood, 1995). Greenwood (1966) placed all five families close to each other, without inferring interrelationships, and classified them under the suborder Percoidei. Greenwood (1995) then provided a tentative hypothesis of the relationships within the cirrhitoid family, placing the Cirrhitidae as the most plesiomorphic, followed by Chironemidae, and then by an unresolved trichotomy, which is comprised of Aplodactylidae, Cheilodactylidae, and Latridae.

My results show that the family Cheilodactylidae is not monophyletic, and its members are divided into two clades. The non-monophyly of the family was also recovered in Betancur-R *et al.*'s (2013a) fish phylogeny. One group is comprised of the South African cheilodactylids (*Cheilodactylus fasciatus* and *C. pixi*) together with aplodactylids and chironemids (54% BS), and the other group is comprised of *C. variegatus*, *C. brachydactylus*, and *C. jessicalenorum* together with the latrids (100% BS). This finding was first reported by Burridge and Smolenski (2004). They noted that the South African *Cheilodactylus* can be distinguished from the rest of cheilodactylids by having a higher lateral line scale count and the presence of scales on the postcleithrum (Lamb 1990 in Burridge and Smolenski 2004). Further, they noted that the other members of cheilodactylids do not differ from the latrids. Burridge and Smolenski (2004) proposed to redefine the familial classification of these (non- South African) cheilodactylids, and included them in their "expanded Latridae." They also noted that this expanded group will require new morphological diagnosis and generic and familial reassignment since *Cheilodactylus fasciatus* is the nominal species for the genus and family name, Cheilodactylidae. Their preliminary assessment of the dorsal pterygiophore insertion, for the expanded Latridae, suggests that this group possesses two predorsal bones, both of which are anterior to the first neural spine and located anterior to the first pterygiophore. My results also confirm the Cirrhitiformes as monophyletic (100 BS), with Cirrhitidae as basal to the rest of the group as in Greenwood (1995).

Haemulidae and its closest relatives: Percomorpharia

The inclusion of eight new families (plus six other families that were not examined in Betancur et al. 2013a, but were included in Near et al. 2013) in the present dataset posed novel hypotheses regarding many sister-group relationships (Appendix E). More importantly, it provided a better framework for determining the sister group of haemulids. The expanded dataset showed a monophyletic Haemulidae as sister to Lutjanidae plus Caesionidae (Fig. 9, Appendix E). Although the bootstrap support for the Haemulidae + (Lutjanidae + Caesionidae) is low, this value is higher compared to previous large-scale studies that did not show any resolution (Betancur-R et al., 2013a; Near et al., 2013). Furthermore, the families Haemulidae and Lutianidae plus Caesionidae are included in a larger group (Fig. 9, Appendix E) that includes Callanthiidae, Malacanthidae, Pomacanthidae, Emmelichthyidae, Acanthuridae, Zanclidae, Luvaridae, Monodactylidae, Sciaenidae, Chaetodontidae, and Leiognathidae, although support for this is low (31 BS). This group is nested in a bigger assemblage (Fig. 9, Appendix E) that includes the Spariformes, Lobotiformes (including Hapalogenyidae), Siganidae, Scatophagidae, Priacanthidae, Cepolidae, Caproidei, Lophiiformes, Tetraodontiformes, Ephippiformes, Moronidae, and Sillaginidae. This bigger assemblage is highly supported (82 BS), which was also not recovered from previous studies, and shows phylogenetic affinity that deserves further study.

In this study, the addition of two mitochondrial genes, COI and CYT *b*, in addition to Betancur-R *et al.*'s (2013a) 21-gene dataset and the delimitation of the taxonomic sampling to only the Percomorphaceae proved to be useful in improving resolution for some of the more derived clades at different taxonomic levels in the tree. Future efforts should be directed at increasing taxonomic sampling in order to provide a more comprehensive taxonomic framework for determining the close relatives of the haemulids.

FIGURE 9. Phylogeny of percomorphs inferred from RAxML analysis of the 3+ dataset (1231 taxa) from 23 genes (20 nuclear and three mitochondrial) with eight partitions, showing the closest relatives of the Haemulidae (see also Appendix E). Values on the nodes represent bootstrap support from RAxML analysis. Filled black circles on the nodes identify the clades supported with a bootstrap score of 100%.

CHAPTER IV

THE PHYLOGENY AND BIOGEOGRAPHY OF HAEMULIDAE (SERIES PERCOMORPHARIA) BASED ON COMPLETE MITOGENOMES AND A CONCATENATED DATASET OF 22 GENES

INTRODUCTION

The family Haemulidae (grunts) is one of the largest percoid families and includes 145 putative species belonging to 18 genera in the ill-defined suborder Percoidei (sensu Nelson 2006). The systematic classification of the group Percoidei remains unresolved and is classified as incertae sedis within the Series Percomorpharia (sensu Betancur-R et al. 2013c). Within Percomorpharia, there is evidence with moderate support that the haemulids are sister to a group containing snappers (Lutjanidae) and fusiliers (Caesionidae) (Betancur-R et al., 2013a; Sanciangco et al., 2011). A recent molecular study (Sanciangco et al., 2011) supports the monophyly of the family with the inclusion of species of the Inermiidae, which were previously classified with the Haemulidae in the superfamily Haemuloidea (Johnson, 1981; Sanciangco et al., 2011). Similarly, molecular evidence (Sanciangco et al., 2011) corroborates the monophyly of the two well-defined subfamilies, Plectorhinchinae and Haemulinae, diagnosed by several external and anatomical characters (Johnson, 1981; Sanciangco et al., 2011). Several other morphological and molecular studies have examined haemulid relationships based on a limited taxon sampling and using a combination of different markers or morphological characters (Bernardi et al., 2008; Bernardi and Lape, 2005; Betancur-R et al., 2013a; Chen et al., 2007; Dettai and Lecointre, 2005; Li et al., 2009; Liang et al., 2012; Price et al., 2012; Ren and Zhang, 2007; Rocha et al., 2008; Sanciangco et al., 2011; Smith and Craig, 2007; Tavera et al., 2012; Tavera et al., 2011).

Morphological descriptions and molecular data concur on the taxonomic status of several haemulid genera, but also show inconsistencies. These inconsistencies are a result of poor description of several haemulid genera based on superficial characters and are now being realized based on current molecular evidences. For example, a re-examination of 52 morphological characters of all *Anisotremus* and *Genyatremus* species resulted in a reclassification of two former *Anisotremus* species that now belong to the genus *Genyatremus*

(Tavera et al., 2011). This finding is corroborated by a molecular study based on combined mitochondrial and nuclear genes (Sanciangco et al., 2011). The consistent placement of the genus Xenistius among the members of the genus Haemulon (Price et al., 2012; Sanciangco et al., 2011; Tavera et al., 2012) shows Xenistius as ill-defined and has been erected based only on superficial characters. Sanciangco et al. (2011) and Rocha et al. (2008) considered Xenistius as junior synonym of Haemulon and treated the former species as Haemulon chrysargyreum. Several other genera, including Boridia, Xenichthys, Parakuhlia, and Xenocys, were all designated by monotypy (Eschmeyer, 1990) without extensive morphological comparisons, and their placement within the haemulids remains unresolved. In addition, the inter- and intrageneric relationships within the family are also a problem. The genus Plectorhinchus is paraphyletic, with the inclusion of Diagramma (Sanciangco et al., 2011; Tavera et al., 2012). The genus Pomadasys is polyphyletic and its members are scattered in the subfamily Haemulinae in two (Tavera et al., 2012) to three (Sanciangco et al., 2011) clades and nested with other genera. Increased taxonomic sampling and use of additional loci are needed, especially for Plectorhinchus and Pomadasys genera, to establish more clearly their taxonomic status (Roux, 1981; Sanciangco et al., 2011; Tavera et al., 2012).

In this study, I test the utility of complete mitochondrial genomes to infer the relationships of several representatives of the family Haemulidae. Previous studies have utilized partial mitochondrial genes alone, or in combination with a limited number of nuclear genes, to infer the phylogeny of several haemulids. The complete mitochondrial genome has proven valuable in detecting population structures of species for many organisms and for inferring evolutionary relationships of species in many taxa (Chan et al., 2010; Jacobsen et al., 2012; Jex et al., 2010; Minegishi et al., 2005; Morin et al., 2010; Vilstrup et al., 2011) due to its generally higher rate of substitution, compared to nuclear genes, and its maternal non-recombining inheritance (Avise et al., 1987; Moore, 1995). Further, several studies have illustrated that complete mitogenomes are also valuable, not only in resolving recent divergence within species, but also in inferring deep-level relationships across a broad taxonomic group (Ishiguro et al., 2001, 2003; Kawaguchi et al., 2001; Kawahara et al., 2008; Lavoué et al., 2005; Lavoué et al., 2008; Lavoué et al., 2007; Miya et al., 2001; Miya et al., 2003; Saitoh et al., 2006; Setiamarga et al., 2008; Yamanoue et al., 2008; Yamanoue et al., 2007). The rapid rate of substitution in mitochondrial genes, however, can allow the sequences to reach early saturation, and consequently, suffer from systematic bias, especially when estimating divergences of older

lineages, when not accounted for. Mitogenomes, nevertheless, have not been tested to infer intra-familial relationships that can reveal shallow and deep-lineage splits in fishes.

Here, I test the utility of mitogenomes to infer the relationships of several representatives of the family Haemulidae. In a previous study, which included the most comprehensive sampling of haemulids to date, Sanciangco et al. (2011) recovered two highly supported distinct clades for the two haemulid subfamilies, but provided no estimates of divergence time for the members of the group. Nevertheless, their phylogenetic hypothesis for most of the haemulids shows sister-species grouping that corroborates the results of earlier studies. In an investigation of the early mechanisms of allopatric speciation of some haemulids, Bernardi and Lape (2005) provided a more recent estimate for the divergence of two pairs of sister-species in Anisotremus, which is about 3.5 to 5 Ma and dates the closing of the Isthmus of Panama. This estimate is concordant and falls within the range of speciation dates for the same two pairs of sister-species in a review of divergence of several other marine organisms by Lessios (2008). Based on these findings, I can presume that the present-day distribution of haemulids is likely to have been influenced by at least two major vicariant events, including the more recent closing of the Isthmus, and another major event in the past that allowed sufficient lineage diversification for the two subfamilies to become fixed. In addition, the haemulids are an ideal candidate to test the effects of these vicariant events due to their worldwide distribution spanning the Atlantic, Indian, and Pacific Oceans. Furthermore, haemulids in the fossil record dates back from the Cenozoic, at a time when the Tethys was circumtropical and later divided into smaller oceans (Hobson, 2006). For many marine organisms, the geologic events following the closing of the Tethys have led to independent evolutionary paths for many species now separated by this barrier, and eventually gave rise to a diversity of other localized faunas (Adams, 1981; Hrbek and Meyer, 2003). And about six million years ago, another important biogeographic event subsequently influenced the distribution of many of those marine fauna, particularly at the Central American Isthmus. The formation of the land bridge, known as the Isthmus of Panama, had broken the continuity of the seaway and prevented migration of many marine organisms between Atlantic and Pacific sides of America (Bermingham et al., 1997; Bernardi and Lape, 2005; Duque-Caro, 1990; Knowlton and Weigt, 1998; Pielou, 1979; Rocha and Bowen, 2008). Consequently, the gradual differentiation of these isolated marine fauna could have led to a decrease in population for some species that ultimately became extinct, or

could have led to geminate species, as can be explained by the present distribution of many marine fishes, including the two pairs of sister-species of haemulids that we see today.

There are three main goals of this study. First, I test the utility of complete mitochondrial genomes to infer the phylogenetic relationships of several haemulids and compare results with previously published trees. I explore the utility of a high-throughput sequencing platform in generating complete mitogenomes from 26 haemulids. Second, I augment the sampling diversity of the family by adding sequences of species that have not been included in previous phylogenetic study of the group and infer the phylogeny of the haemulids based on available sequences from previous studies. Third, I estimate the dates of divergence for the members of the family using the mitogenome sequences. I hypothesize that the haemulids are Tethyan relicts, with some members subsequently impacted by the closing of the Isthmus of Panama.

MATERIALS AND METHODS

Taxon sampling, DNA isolation, and amplification of mitogenomes using long-PCR

Taxon sampling was limited to 26 unique haemulids, with a single representative for each genus, except for Pomadasys (Appendix F). Genomic DNA was isolated from approximately 20 mg of dorsal muscle tissue following the DNeasy[®] Kit (Qiagen) protocol for all haemulid specimens. A long-PCR technique was adapted to amplify the entire mitogenome sequence for each species in two reactions (Cheng et al., 1994; Kawaguchi et al., 2001; Yamanoue et al., 2007). Each PCR reaction contained 15.25 µl deionized water, 2.5 µl LA Buffer II (provided in kit), 4.0 dNTPs, 1.0 μl of each forward and reverse primers, 0.25 μl of TaKaRa LA Taq® DNA Polymerase (Clontech Laboratories, Inc.), and $1.0 \,\mu$ l of template DNA. The template for the second PCR reaction is a 1:20 dilution of the first PCR product. The volume for the second PCR reaction was doubled (for a total of 50ul per PCR product for each species) in order to comply with volume requirements for the NGS (next-generation sequencing) run using the GS FLX 454 Genome Sequencer (Roche) for quality control purposes. Six fish-versatile long-PCR primers (Table 5) adapted from a previous study (Kawaguchi et al., 2001) were used in various combinations to amplify contiguous, overlapping segments of the entire mitogenome. Samples were amplified using a nested PCR with the following conditions: initial denaturation at 94°C for one minute (to activate the DNA Polymerase), followed by 30 cycles of 98°C for 10 seconds and 68°C for 16 minutes for the first- and second PCR reactions. PCR products were visualized on 1% agarose gel and quantitated using a NanoDrop (NanoDrop 2000c, Thermo Scientific) to estimate DNA concentration. Undiluted PCR products were sent to GenoSeq (UCLA Genotyping and Sequencing Core) for purification, library preparation, and sequencing, following the manufacturer's protocol using Roche's GS FLX 454 NGS platform.

TABLE 5. Primers used for the long-PCR technique to amplify the complete mitochondrial genomes of the Haemulidae.

Primer Sequence
5'-CTC GGC AAA CAT AAG CCT CGC CTG TTT ACC AAA AAC-3'
5'-GGT CTT AGG AAC CAA AAA CTC TTG GTG CAA-3'
5'-GGC ATA GTG GGG TAT CTA ATC CCA GTT TGT-3'
5'-TGC ACC ATT RGG ATG TCC TGA TCC AAC ATC-3'
5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3'
5'-GGT GGC KCC TCA GAA GGA CAT TTG KCC TCA-3'

Phylogenetic analysis

Raw sequence reads were assembled (with 5X iterations for fine-tuning) and annotated using the Geneious (Biomatters) software. After visual inspection of the assembled reads, a consensus sequence was generated for each species. The resulting consensus sequences were then annotated using the same reference sequence used for assembling reads. Gene annotations from the original reference sequence were then transferred to the consensus sequences. Gene regions were extracted from the newly annotated consensus sequences and exported as separate fasta files for downstream analyses.

Individual gene sequence alignments for coding and non-coding regions were conducted using MACSE (Ranwez *et al.*, 2011) and Clustal X (Thompson *et al.*, 1997), respectively, following default parameters (Hall, 2004; Ranwez *et al.*, 2011). The best-fit model for each of the data partitions was estimated using MrModelTest2 (Nylander, 2004) with models scored in PAUP* version 4.0b10 (Swofford, 2002). Substitution saturation tests for all regions were performed using the graphical exploration tool and statistical tests in DAMBE (Xia, 2013). For the mitogenome dataset, six different partitioning schemes were employed, including **Scheme 1**: no partition; **Scheme 2**: seven partitions = three for each of the three codon positions for 13 CDS (coding regions), one for 22 tRNAs (transfer RNA), two for ribosomal RNAs (12S and 16S rRNAs), and the control region (CR); Scheme 3: six partitions = three for each of the three codon positions for the 13 CDS, tRNAs, 12S, and 16S; Scheme 4: three partitions = three for each of the three codon positions for the 13 CDS only; Scheme 5: tRNA only; Scheme 6: two partitions = 12S and 16S (rRNA only); and Scheme 7: four partitions = three for each of the codon positions for the 13 CDS and one for tRNA. A concatenated dataset with six partitions, comprising of three codon positions for each exons, plus tRNAs, 12S, and 16S (Scheme 3), was preferred as the final partitioning scheme. For the non-mitogenome dataset (Appendix F), which is a concatenation of 22 partial mitochondrial and nuclear genes that were generated new in the lab or downloaded from Genbank (19 genera, 82 species), sequences were analyzed by each gene and by gene and by codon positions. A concatenated dataset with eight partitions, comprising of three codon positions across all nuclear exons and three codon positions for all mitochondrial exons, plus two separate partitions for the ribosomal S7 and 16S genes, was preferred as the final partitioning scheme for the 22-gene dataset. A rapid bootstrapping algorithm of RAxML (Randomized Axelerated Maximum Likelihood) (Stamatakis, 2014) with 1000 bootstrap replicates was estimated under the GTRCAT model and the collection of sample trees was used to draw the bipartition frequencies on the optimal tree. All RAxML analyses were performed via **CIPRES** portal.

Divergence time estimates

Divergence times were calculated in BEAST (Drummond *et al.*, 2012) using the uncorrelated lognormal (UCLN) clock-model. The RAxML tree with transformed branch lengths, performed in TreeEdit (v1.0a10), was used as the starting chronogram. The ingroup (Haemulidae) was constrained as monophyletic based on previous studies and a separate nonmonophyletic taxon set was designated for all outgroups. The ingroup was assigned a temporal constraint of 50 million years based on secondary calibration (Betancur-R *et al.*, 2013a) and from Cenozoic record for haemulids (Hobson, 2006). The mitogenome dataset included six partitions (three for each of the three codon positions across all exons, tRNA, 12S, and 16S), which was chosen based on the resulting ML topology with the highest number of highly supported nodes. Other parameters included unlinked substitution model using GTR+G with four rates for each partition according to MrModelTest2 (Nylander, 2004) and clock and tree priors linked across partitions. The speciation birth-death process was used as the tree prior. Three replicates of the Markov chain Monte Carlo (MCMC) analyses were run for 200 million generations. Posterior estimates from MCMC log files were assessed and summarized using Tracer v1.6 (Rambaut and Drummond, 2007) and was considered complete when the effective sample size of each parameter estimate reached >200. All tree files from three MCMC runs were combined in LogCombiner v1.7.5 (Drummond *et al.*, 2012), with the first 10% of trees from each run discarded as burn-in, and re-summarized using Tracer v1.6. The posterior sample of trees were used to produce a maximum clade credibility tree, with means and 95% highest posterior density of divergence times, which was then estimated and summarized using TreeAnnotator v1.7.5 (Drummond *et al.*, 2012). The posterior probabilities were visualized as node annotations in the resulting tree using FigTree v1.4.0 (<u>http://tree.bio.ed.ac.uk/software/figtree/</u>).

RESULTS AND DISCUSSION

Twenty two of the 26 unique long-PCR products submitted for high-throughput sequencing were successfully amplified and produced overlapping segments to complete the mitochondrial genome sequences. Two additional mitogenome sequences with gaps were also included. Twenty four of the 26 unique samples from long-PCR products successfully generated more than 210,000 individual sequence reads with a 30X coverage and varied from 4,223 to 16,366 reads for each species. Complete mitogenome sequences ranged from 15,920 bp to 16,866 bp in length, with mean read length of 187.2 bp and 99% assembling to a reference sequence. Additional mitogenomes for two haemulid species and five outgroups were downloaded from Genbank and included in the analysis. The final dataset is a concatenation of the annotated 13 protein-coding genes, 22 tRNA, and the two ribosomal RNA genes (125 and 16S).

Figures 10 to 15 show scatter plots of the observed transitions and transversions against genetic distance implemented in DAMBE (Xia, 2013). Results of substitution saturation test for all regions illustrate both transitions and transversions generally increasing with genetic distance. This indicates little to no saturation, except at the third codon positions across all coding regions where some level of saturation is evident (Fig. 12). Substitution saturation refers to the state when sequences are no longer informative about the underlying evolutionary process. Therefore, in the extreme case when sequences have become fully saturated, the phylogenetic signal is lost, allowing gene sequences to cluster based on the similarity in their base composition (nucleotide frequencies) regardless of their true genealogy (Xia, 2013). In a

scatter plot, substitution saturation is indicated by the leveling off or curving of data points, as if reaching a plateau, as sequence divergence increases. However, when saturation was assessed using the more quantitative entropy-based index of substitution saturation test (Table 6; also implemented in DAMBE), the third codon positions show little saturation and therefore are still considered phylogenetically informative. The terminology "little saturation" is based on the interpretation of results from Xia *et al.*'s (Xia, 2013; Xia *et al.*, 2003) index of substitution saturation (if p<0.5 and I_{ss}< I_{ss}.c = little saturation; if p<0.5 and I_{ss}> I_{ss}.c = useless sequences; if p>0.5 and I_{ss}< I_{ss}.c = substantial saturation; and if p>0.5 and I_{ss}> I_{ss}.c = very poor for phylogenetics). Nevertheless, saturation at third codon position, which is inherent to many markers, can actually improve resolution for many groups (Källersjö *et al.*, 1999). Therefore caution should be observed when treating third codon positions, especially when weighting or removing characters for further analyses.

The results from RAxML analysis for all partitioning strategies for the mitogenome dataset produced largely congruent topologies with similar clade components for major nodes (Table 7). Scheme 3, which had the most number of highly supported nodes, was chosen as the final partitioning strategy and its resultant phylogeny is presented in Figure 16. The results of the RAxML analyses is also congruent with the ML tree from Sanciangco *et al.* (2011), with $I_{cong} =$ 1.37 and p-value = 9.49 x 10⁻⁴). As expected, I recovered the family Haemulidae and the two subfamilies, Plectorhinchinae and Haemulinae, as monophyletic. The support for the subfamilial diversification is high, with 100% bootstrap score. In addition, I recovered *Plectorhinchus* and *Pomadasys* as not monophyletic. Similar to previous findings, *Diagramma* is nested in the *Plectorhinchus. Pomadasys* is polyphyletic, appearing in three places in the tree. Clade I is a wellsupported clade comprised of *P. perotaei*, *P. maculatus*, and *P. olivaceus*, all of which are restricted to the Old World; Clade II is comprised of *P.argyreus*, *P. kaakan*, *P. macracanthus*, and *P. panamensis*, and close to a clade containing *P. stridens* and *Boridia*, and Clade III includes *P. branickii* and the New World genera *Conodon*, *Xenichthys*, and *Haemulopsis*.

The clade components in my tree are mostly consistent with those of the previously published phylogeny, but with higher support for the nodes using the longer mitogenome sequences. This increase in nodal support can be attributed to the higher number of informative sites and the effectiveness of longer mitochondrial sequences to account for rapid radiations within the family. It is generally accepted that silent substitutions accumulate at a relatively faster rate in mitochondrial genes than in nuclear genes, making them suitable markers for **TABLE 6.** Results of the substitution saturation test by Xia *et al.* (2003) conducted for each dataset partition. CDS_1, CDS_2, and CDS_3 refer to the first, second, and third codon positions of the 13 protein coding regions. CR refers to the control region. The resulting I_{ss} values for all partitions are significantly smaller than I_{ss.c}, which means that the sequences for each region have only experienced little saturation. I_{ss} refers to the index of substitution saturation and I_{ss.c} refers to the critical Iss value, at which the sequences will begin to fail to recover the true tree.

	CDS_1	CDS_2	CDS_3	tRNA	125	16S	CR
Proportion of invariant sites	0.2743	0.2132	0.0068	0.0000	0.0000	0.0000	0.0000
I _{ss}	0.1022	0.0397	0.6075	0.1449	0.0936	0.1207	0.2801
I _{ss.c}	0.7397	0.7433	0.7007	0.6665	0.7402	0.7683	0.7164
Prob (Two-tailed)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

*if p<0.5 and Iss < Iss.c = little saturation; if p<0.5 and Iss > Iss.c = useless sequences; if p>0.5 and Iss < Iss.c = substantial saturation; and if p>0.5 and Iss > Iss.c = very poor for phylogenetics.

TABLE 7. Results of congruence tests between the RAxML trees generated for each partitioning scheme performed using de Vienne *et al.*'s (2007) congruence index. The values refer to the calculated Congruence index lcong and the associated P-value, respectively. All associations show significant congruence (i.e. trees are more congruent than expected by chance).

		1	2	3	4	5	6
		noPartition	wPartition	wPartition_noCR	CDS	tRNA	rRNA
1	noPartition						
		3.69;					
2	wPartition	1.89e-19					
		3.32;	3.44;				
3	wPartition_noCR	7.42e-17	1.01e-17				
		2.95;	3.075;				
4	CDS	2.92e-14	3.99e-15	2.95; 2.92e-14			
					2.34;		
		2.21;	2.21;		6.174e-		
5	tRNA	4.52e-09	4.52e-09	2.58; 1.15e-11	10		
		3.07;	3.075;		2.584;	2.21;	
6	rRNA	3.99e-15	3.99e-15	2.71; 1.57e-12	1.15e-11	4.52e-09	
		2.95;	2.83;		3.20;	2.46;	2.71;
7	CDS+tRNA	2.92e-14	2.14e-13	2.71; 1.57e-12	5.44e-16	8.42e-11	1.57e-12

FIGURE 10. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the first codon positions across all 13 protein-coding regions, as implemented in DAMBE.

FIGURE 11. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the second codon positions across all 13 protein-coding regions, as implemented in DAMBE.

FIGURE 12. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the third codon positions across all 13 protein-coding regions, as implemented in DAMBE.

FIGURE 13. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for all 22 tRNAs, as implemented in DAMBE.

FIGURE 14. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the 12S region, as implemented in DAMBE.

FIGURE 15. Frequency of observed transitions (Xs) and transversions (open triangles) against corrected genetic distance for the 16S region, as implemented in DAMBE.

0.2 substitutions/site

FIGURE 16. Phylogeny of haemulid representatives inferred from RAxML analysis of complete mitochondrial genome sequences. The final dataset is a concatenation of six partitions comprised of three codon positions for each exons, plus tRNAs, 12S, and 16S. Values on the nodes represent bootstrap support from RAxML analysis. Nodes with less than 50% bootstrap score are not shown.

detecting phylogenetic information of species that have recently diverged (Avise *et al.*, 1987; Moore, 1995). However, the results of the mitogenome dataset are only based on a limited taxon sampling of the genus *Pomadasys* and of the family (14 genera, 26 species).

In addition, the results of BEAST analysis (Fig. 17) on the estimated times of divergence gave unexpected insights into the possible biogeographic radiation of haemulid clades of Old World (Indo-Pacific and Eastern Atlantic) and New World (both coasts of the Americas) species, with respect to tectonic movements. All members of the subfamily Plectorhinchinae are Old World, while Haemulinae are mostly New World species. The closing of the Tethys Sea is one possible explanation for the results of the molecular data analysis. The members of the family possibly had a continuous Tethyian distribution when Africa and the Middle East united with Eurasia near the Oligocene-Miocene boundary. Haemulids first evolved during the Cenozoic, a time when the Tethys was circumtropical and later ceased to exist (Hobson, 2006). Haemulids are coastal species and presumably require a more-or-less continuous coastline to become reproductively cohesive. These coastal fishes probably evolved in a continuous distribution during the period of a continuous Tethys Sea. When the Tethys Sea closed and the Atlantic Ocean widened, these haemulids would have continued to evolve in allopatry. The subfamily Plectorhinchinae (Parapristipoma and Plectorhinchus plus Diagramma) has members both in the Indo-Pacific and Eastern Atlantic. Plectorhinchines probably evolved prior to the closing of the Tethys, but after the Atlantic Ocean widened to an extent that prevented transoceanic migration. Conversely, almost all members of the subfamily Haemulinae, with the exception of two genera, Brachydeuterus and Pomadasys, are restricted to the New World, occurring in the Eastern Pacific or Western Central Atlantic, and presumably evolved prior to the relatively recent closing of the Panamanian Isthmus (Bernardi and Lape, 2005). However, the paraphyletic Pomadasys forms a group between Old World and New World haemulid groups as they occur in both the Old- and New Worlds. This can be associated with the separation of the Old World and New World tectonic plates and the widening of the Atlantic Ocean that may have resulted into two separately evolving clades. The intermediate paraphyletic *Pomadasys* group might have evolved when the Old World was separating from the New World and could potentially have been continually evolving as the Atlantic Ocean widened. Consequently, the possible radiation of haemulids is from a basal Old World group leading to a derived (mostly) New World group and places the members of the genus *Pomadasys* in the paraphyletic and intermediate Old

FIGURE 17. Time-calibrated BEAST phylogeny estimated from the complete mitochondrial genome of haemulid representatives. A single calibration is placed on the ingroup (Haemulidae). Bars represent the 95% highest posterior distribution of divergence times. OW – Old World distribution; NW – New World distribution. Ma – million years ago.

World-New World group. Further sampling, including molecular and morphological characterization of all *Pomadasys* species is required to test this hypothesis.

In addition to analyzing the complete mitogenome sequences, I reconstructed a RAXML topology for haemulids (19 genera, 82 species) using a concatenated dataset of 22 genes from all available sequences from Genbank plus some newly generated sequences. Figure 18 shows the RAxML topology for the 22-gene dataset. To date, this is the most inclusive account of sequences included and taxonomic coverage presented for the haemulids and shows resolution for most of the inter-generic relationships that were previously not recovered using a limited taxon sampling and number of genes. The dense taxonomic sampling and using a concatenated dataset of combined mitochondrial and nuclear genes allowed a more accurate estimate of the phylogenetic relationships of the family, particularly for members of *Pomadasys* that has been elusive based on previous molecular studies. Consistent with the results of the mitogenome dataset and from previous studies that have included a limited number of taxa, the monophyly of the family and the two subfamilies are supported (100% BS). Within the subfamily Plectorhinchinae, Plectorhinchus is only monophyletic with the inclusion of Diagramma. Frequent synonyms and/or species misidentification is a common problem for many Plectorhinchus. This is because members of Plectorhinchus exhibit diverse coloration throughout their development, with juveniles looking relatively different from adults. I defer reclassification of this clade and recommend further examination of the members of the group using morphological and molecular evidences.

Within Haemulinae, *Anisotremus* is sister to *Genyatremus* (67% BS). *Anisotremus moricandi* is nested within the *Genyatremus*, a finding that contradicts previous phylogenetic hypothesis (Tavera *et al.*, 2011) for the members of this group based on morphological analysis of the oral and pharyngeal jaws. The *Anisotremus-Genyatremus* clade is sister to all *Haemulon* (96% BS). *Haemulon* is monophyletic, including the former *Xenistius californiensis*. The clade comprising of *Isacia*, *Microlepidotus*, *Emmelichthyops* (not sampled in the mitogenome data), and *Orthopristis* is highly supported (99%), and corroborates results of the mitogenome analysis. *Haemulopsis* is monophyletic, including the former *Pomadasys corvinaeformis* (100% BS). This finding was first reported by Tavera *et al.* (2012), and I follow their taxonomic suggestion for this species. *Haemulopsis* is sister to a clade comprised of *Conodon* and *Xenichthys* (99% BS).

20 substitutions/site

FIGURE 18. Phylogeny of haemulids inferred from RAxML analysis of the 3+ dataset from 22 genes. The final dataset is a concatenation of eight partitions comprised of three codon positions across all nuclear exons, three codon positions for all mitochondrial exons, plus two separate partitions for the ribosomal S7 and 16S genes. Values on the nodes represent bootstrap support from RAxML analysis. OW – Old World distribution; NW – New World distribution.

Members of *Pomadasys* are in three different clades that are consistent with the Old World-New World hypothesis and supported by morphological characters. The New World *Pomadasys* (*P. branickii* and *P. crocro*) is sister to a clade comprised of *Xenicthys*, *Conodon*, and *Haemulopsis* (76% BS). New World *Pomadasys* possess 12-13 dorsal spines, with 11-13 soft rays, and three anal spines, with six to eight soft rays. A secondary clade is comprised of Old World *Pomadasys* (*P. furcatus*, *P. maculatus*, *P. argenteus*, *P. argyreus*, *P. kaakan*, *P. hasta*, *P. stridens*, and *P. striatus*), and includes the monotypic *Brachydeuterus*, but support for this is weak (37% BS). However, the members of this clade are diagnosed by having 12 dorsal spines, with 11-15 soft rays, and three anal spines, with six to nine soft rays (seven common). The third clade, which is basal to all haemulines, is comprised of the rest of the OW *Pomadasys* (*P. olivaceus*, *P. incisus*, *P. perotaei*, and *P. rogerii*), and includes *Parakuhlia* (100% BS). The members of this clade are diagnosed by having 11-13 dorsal spines, with 15-17 soft rays, and three anal spines, with 10 or more soft rays.

The inclusion of the monotypic *Parakuhlia* within the haemulines confirms its placement in the family Haemulidae. Previous studies have suggested close relationships among sunfishes (Centrarchidae) and flagtails (Kuhliidae) (Allen, 1981; Maugé and Desoutter, 1990; Pellegrin, 1913). Nelson (2006), however, suggested that the monotypic species may actually belong in the family Haemulidae (grunts), without providing any explanation. Sanciangco et al. (2011) also indicated that Parakuhlia might belong in the Haemulidae and suggested a haemuline designation based on morphology. Pellegrin (1913) was the first to establish the genus name, Parakuhlia, citing that the species bears striking similarities with Kuhlia. The name is from the Greek para-, which means "beside or near," and which Pellegrin used to describe the genus and species. Pellegrin noted the similarity between Parakuhlia and Kuhlia based on external morphology, in particular, by the presence of a developed pseudobranch. He also noted that Parakuhlia is discernible from Kuhlia by the presence of small scales on the interorbital space, the higher number of spines and soft rays in dorsal and anal fins, and the absence of a separate denticulation palate. According to Pellegrin, this last character is also a synapomorphy shared by the centrarchids (sunfishes), a percoid confined to the fresh waters of North America. Members of Kuhlia, on the other hand, are widely distributed in the Indo-Pacific and South Australia and are marine inhabitants, except for one, which inhabits fresh and brackish waters of eastern Africa. Pellegrin commented that it is not reasonable to assign Parakuhlia in a group that has no documented reports of occurrence for its members in the region and, therefore, subsumed

Parakuhlia within the sunfishes. This study is the first to include this species in a molecular phylogenetic analysis. My results placed *Parakuhlia* in a clade with members currently assigned to *Pomadasys* that are found in the Old World and share similar meristic characters. My sampling for members of *Pomadasys*, however, is not complete. A comprehensive sampling of the members of the genus *Pomadasys* and further investigation of the interrelationships within the family using morphological characters is necessary for reclassification, and possibly, renaming members of the new group. To date, there are 35 putative species belonging to the genus *Pomadasys* (Eschmeyer, 2013).

In this study, I showed the power of complete mitogenomes in inferring intra-familial relationships, as corroborated by results of previous studies using a combination of nuclear and mitochondrial genes. The complete mitogenomes of haemulid representatives showed improved support for some of the nodes in the topology, and better accounted for the more recent radiation within the family. My results are concordant with previous findings and support the monophyly of the family Haemulidae, as well as the two subfamilies, Plectorhinchinae and Haemulinae. My clade components for some of the major nodes are also concordant regardless of the limited taxon sampling for the mitogenome dataset. However, inclusion of dense taxon sampling and using a concatenated 22 genes of combined mitochondrial and molecular markers provided better resolution for inter-generic relationships and a more accurate phylogenetic hypothesis for Haemulidae. In particular, the molecular evidence shows three separate clades for members of Pomadasys that are consistent with Old and New World distributions and are supported by morphological characters such as the number of dorsal and anal fin spines and rays. A more comprehensive examination of the members of Pomadasys, as well as for the Plectorhincus plus Diagramma group, using both molecular and morphological characters will likely result in a revision of generic assignments within the Haemulidae.

CHAPTER V

CONCLUSIONS

The goals of this dissertation were to infer the phylogenetic relationships of the members of the family Haemulidae, to provide a reliable taxonomic framework for the haemulids in the greater percomorph group, and to test the utility of mitochondrial genomes and multi-locus data to better resolve interrelationships within the family.

In Chapter two I presented the first nearly comprehensive phylogenetic hypothesis for the family Haemulidae based on a combined dataset of five genes (mitochondrial and nuclear, 4731 bp) with all sequences present for 56 species representing 18 genera of the expanded haemulids. Results from maximum parsimony, maximum likelihood, and Bayesian analyses show strong support for a monophyletic Haemulidae with the inclusion of former inermiids, Inermia vittata and Emmelichthyops atlanticus. The former inermiids did not form a clade indicating that the highly protrusible upper jaw specialization to planktivory evolved more than once within the Haemulidae. The subfamilies Haemulinae and Plectorhinchinae, currently diagnosed by eight morphological characters, most notably the number of chin pores and the origin of the retractor dorsalis, are also recovered as monophyletic from these analyses, with the Haemulinae sister to the Plectorhinchinae. However, results of the analyses also call into question the monophyly of a number of genera, including Plectorhincus, Anisotremus, Haemulon, and Pomadasys. Furthermore, results show Haemulidae as sister to Lutjanidae and Hapalogenys as outside the Haemulidae based on a limited sampling of outgroup taxa. These results suggest that further taxon sampling within the haemulids, as well as an expanded sampling to include other percomorphs, and possibly use of more genes can help define limits and relationships of haemulids.

Perciformes, the order to which the haemulids belong, is a large and diverse group of spiny-finned fishes that has come to be known as the "bush at the top" due to the persistent lack of phylogenetic resolution among its members. Despite significant progress made in accommodating the diversity of percomorph taxa into major clades, there were ca. 49 families, traditionally placed in Perciformes that were not examined in previous studies. In Chapter three I provided evidence for the phylogenetic affinities of 14 of those 49 families, five of which have

remained enigmatic. I restricted the taxonomic sampling to 1231 percomorph species, including taxa from more recent studies. Results of maximum likelihood analysis revealed that the new additions, bathyclupeids (Bathyclupeidae), galjoen fishes (Dichistiidae), kelpfishes (Chironemidae), marblefishes (Aplodactyliodae), trumpeters (Latridae), barbeled grunters (Hapalogenyidae), slopefishes (Symphysanodontidae), and picarel porgies (Centracanthidae), are placed within the Percomorpharia ("new bush at the top"). The superfamily Sparoidea was recovered as monophyletic and closely related to tripletails (Lobotidae), barbeled grunters, and sillagos (Sillaginidae), albeit support for this group is low. The picarel porgies and porgies (Sparidae) are now in one clade. None of the newly examined families belongs in the order Perciformes, as previously defined. The results also corroborate placement for the Australasian salmons (Arripidae) within Pelagimorpharia, and the false trevallies (Lactariidae) within Carangimorpharia. Furthermore, the results for this chapter show sister group relationships for the haemulids, previously classified as incertae sedis in Percomorpharia. The phylogenetic hypothesis shows haemulids are sister to Lutjanidae plus Caesionidae and in a clade together with Callanthiidae, Malacanthidae, Pomacanthidae, Emmelichthyidae, Acanthuridae, Zanclidae, Luvaridae, Monodactylidae, Sciaenidae, Chaetodontidae, and Leiognathidae, however, support for this group is weak (31 % bootstrap score). Nevertheless, a bigger assemblage comprised of this clade, plus the most recent common ancestor of Lobotiformes (including Hapalogenyidae), Spariformes, Lophiiformes, Tetraodontiformes, Ephippiformes, Sillaginidae, and Moronidae, is now supported (82% bootstrap score), indicating phylogenetic affinity for the members of this group. This study presents the most inclusive dataset for the percomorphs to date, reports novel hypothesis regarding interfamilial relationships of many groups, and provides a framework for delimiting groups for examining morphological characters and investigating intrafamilial relationships.

Chapter four further investigated the phylogenetic relationships within the Haemulidae by testing the utility of complete mitochondrial genome sequences (about 16,000 bp) to infer the relationships among the genera (14 genera with 26 haemulids) in order to address what might have been the limits (e.g. fewer number of characters) in chapter two. The complete mitogenome sequences, comprised of six partitions (three codon positions for each exon, plus tRNAs, 12S, and 16S) were subjected to RAxML analysis. The results are concordant with previous molecular studies that have used a limited number of genes, and with similar clade components for most of the genera, but with higher support for the nodes. Similar to previous findings, the family Haemulidae and the two subfamilies were recovered as monophyletic. The genus *Plectorhinchus* is paraphyletic, with the inclusion of *Diagramma*. *Pomadasys* is polyphyletic, including a restricted Old World *Pomadasys* clade that is basal to all haemulines. Resolution at the species level, however, is not possible due to limited availability of mitogenome sequences for the haemulids. The results of the more inclusive 22-gene dataset (19 genera, 82 species), but which suffers from incomplete or missing data, provided resolution of the interrelationships within the family, including those for the three *Pomadasys* clades that are consistent with biogeographic distribution and are supported by morphological characters.

The results of this dissertation also indicate that dense taxonomic sampling, in combination with an increased number of genes (character sampling), greatly improved the accuracy of inferences regarding phylogenetic relationships within the family, compared to analyzing datasets with a limited number of genes (e.g. 5-gene dataset) or those with limited taxonomic sampling (e.g. mitogenome dataset). This is also true for the percomorph phylogeny, in which no previous information is available regarding the placement and relationships of many taxa. The inclusion of new taxa in this dataset posed novel hypotheses regarding many sistergroup relationships. Also, the addition of two mitochondrial genes, though they did not resolve all recalcitrant nodes, provided increased resolution to some of the more derived clades in the percomorph tree. Future studies that will incorporate many more taxa and include a wider subset of genes will help get investigators closer to unraveling the complex phylogenetic relationships within percomorphs. Furthermore, a more comprehensive molecular and morphological examination of the members of *Pomadasys*, as well as for the *Plectorhincus* plus *Diagramma* group, will likely result in a revision of generic assignments within the Haemulidae.

REFERENCES

- Adams, C.G. (1981) An outline of tertiary palaeogeography. *In:* Cocks, L.R.M. (Ed), *The evolving earth*, London, UK: British Museum of Natural History, pp. 221–235.
- Akazaki, M. (1962) Studies on the spariform fishes Anatomy, phylogeny, ecology and taxonomy. Misaki Marine Biological Institute, Kyoto University, pp. 1–368.
- Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G. & Harmon, L.J. (2009) Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. *Proceedings of the National Academy of Sciences of the United States of America*, 106, 13410–13414.
- Allen, G.R. (1981) Kuhliidae. In: Fischer, W. & Bianchi, G. (Eds), FAO species identification sheets for fishery purposes. Eastern Central Atlantic (Fishing areas 34, 47 (in part)), FAO, Rome.
- Anderson, W., Jr., Baranes, A. & Goren, M. (2011) Redescription of the perciform fish *Symphysanodon disii* (Symphysanodontidae) from the Gulf of Aqaba, Red Sea, with comments on *S. pitondelafournaisei* and sexual dimorphism in the genus. *Zootaxa*, 3027, 1–8.
- Anderson, W.D., Jr. (2000) Symphysanodontidae. In: Carpenter, K.E. & Niem, V.H. (Eds), FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific Vol. 4. Bony Fishes Part 2 (Mugilidae to Carangidae), Food and Agriculture Organization of the United Nations, Rome, pp. 2438–2441.
- Anderson, W.D., Jr. (2003) Symphysanodontidae. *In:* Carpenter, K.E. (Ed), *The Living Marine Resources of the Western Central Atlantic. Vol. 2. Bony Fishes Part 1 (Acipenseridae to Grammatidae)*, Food and Agriculture Organization of the United Nations, Rome, pp. 1304–1307.
- Anderson, W.D., Jr. & Springer, V.G. (2005) Review of the perciform fish genus *Symphysanodon* Bleeker (Symphysanodontidae), with descriptions of three new species, *S. mona*, *S. parini*, and *S. rhax. Zootaxa*, 996, 1–44.
- Apparao, T. (1966) On some aspects of the Biology of Lactarius lactarius (Schneider). Indian Journal of Fisheries, 13, 334–349.
- Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. & Saunders, N.C. (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between Population Genetics and Systematics. *Annual Review of Ecology and Systematics*, 18, 489–522.
- Berendzen, P.B. & Dimmick, W.W. (2002) Phylogenetic relationships of Pleuronectiformes based on molecular evidence. *Copeia*, 642–652.
- Bermingham, E., McCafferty, S.S. & Martin, A.P. (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. *In:* Kocher, T.D. & Stepien, C.A. (Eds), *Molecular Systematics of Fishes*. Academic Press, New York, pp. 113–128.
- Bernardi, G., Alva-Campbell, Y.R., Gasparini, J.L. & Floeter, S.R. (2008) Molecular ecology, speciation, and evolution of the reef fish genus *Anisotremus*. *Molecular Phylogenetics and Evolution*, 48, 929–935.
- Bernardi, G. & Lape, J. (2005) Tempo and mode of speciation in the Baja California disjunct fish species Anisotremus davidsonii. Molecular Ecology, 14, 4085–4096.
- Betancur-R, R., Broughton, R.E., Wiley, E.O., Carpenter, K., Lopez, J.A., Li, C., Holcroft, N.I., Arcila, D., Sanciangco, M., Cureton, J.C., II., Zhang, F., Buser, T., Campbell, M.A., Ballesteros, J.A., Roa-Varon, A., Willis, S., Borden, W.C., Rowley, T., Reneau, P.C., Hough, D.J., Lu, G.,

Grande, T., Arratia, G. & Orti, G. (2013a) The tree of life and a new classification of bony fishes. *PLOS Currents*, 5.

- Betancur-R, R., Li, C., Munroe, T.A., Ballesteros, J.A. & Orti, G. (2013b) Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Systematic Biology, 62, 763–785.
- Betancur-R, R. & Orti, G. (2014) Molecular evidence for the monophyly of flatfishes (Carangimorpharia: Pleuronectiformes). *Molecular Phylogenetics and Evolution*.
- Betancur-R, R., Wiley, E., Miya, M., Lecointre, G., Bailly, N. & Ortí, G. (2013c) New and Revised Classification of Bony Fishes Version 2 (<u>http://www.deepfin.org/Classification_v2.htm</u>).
- Biomatters (2013) Geneious version (6.1.6). Available from http://www.geneious.com/. In.
- Bloch, M.E. & Schneider, J.G. (1801) *M.E. Blochii Systema Ichthyologiae iconibus cx illustratum*. Berlin.
- Brandley, M.C., Schmitz, A. & Reeder, T.W. (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. *Systematic Biology*, 54, 373–390.
- Brown, R.W. (1956) Composition of scientific words: A manual of methods and a lexicon of materials for the practice of logotechnics. Washington, D.C.: Smithsonian Institution Press.
- Burridge, C.P. & Smolenski, A.J. (2004) Molecular phylogeny of the Cheilodactylidae and Latridae (Perciformes: Cirrhitoidea) with notes on taxonomy and biogeography. *Molecular Phylogenetics and Evolution*, 30, 118–127.
- Campbell, M.A., Chen, W.-J. & Lopez, J.A. (2013) Are flatfishes (Pleuronectiformes) monophyletic? *Molecular Phylogenetics and Evolution*, 69, 664–673.
- Carpenter, K.E. & Johnson, G.D. (2002) A phylogeny of sparoid fishes (Perciformes, Percoidei) based on morphology. *Ichthyological Research*, 49, 114–127.
- Chan, Y.-C., Roos, C., Inoue-Murayama, M., Inoue, E., Shih, C., Pei, K.J. & Vigilant, L. (2010) Mitochondrial genome sequences effectively reveal the phylogeny of gibbons. *PLOS One*, 5.
- Chapleau, F. (1993) Pleuronectiform relationships: A cladistic reassessment. *Bulletin of Marine Science*, 52, 516–540.
- Chen, W.-J., Bonillo, C. & Lecointre, G. (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. *Molecular Phylogenetics and Evolution*, 26, 262–288.
- Chen, W.J., Ruiz-Carus, R. & Ortí, G. (2007) Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. *Journal of Fish Biology*, 70, 202–218.
- Cheng, S., Higuchi, R. & Stoneking, M. (1994) Complete mitochondrial genome amplification. *Nature Genetics*, 7, 350–351.
- Chiba, S.N., Iwatsuki, Y., Yoshino, T. & Hanzawa, N. (2009) Comprehensive phylogeny of the family Sparidae (Perciformes: Teleostei) inferred from mitochondrial gene analyses. *Genes & Genetic Systems*, 84, 153–170.
- Courtenay, W.R.J. (1961) Western Atlantic fishes of the genus Haemulon (Pomadasyidae): Systematic status and juvenile pigmentation. *Bulletin of Marine Science* 66–149.
- Craig, M.T. & Hastings, P.A. (2007) A molecular phylogeny of the groupers of the subfamily Epinephelinae (Serranidae) with a revised classification of the Epinephelini. *Ichthyological Research*, 54, 1–17.

- Cuvier, G.L. (1830) Le Règne Animal Distribué d'Après son Organisation, pour Servir de Base à l'Histoire Naturelle des Animaux et d'Introduction à l'Anatomie Comparée. Nouvelle Edition, Revue et Augmentée par P.A. Latreill (Vol. 3). Paris: Deterville.
- Cuvier, G.L. & Valenciennes, A. (1833) *Histoire Naturelle des Poissons* (Vol. 9). Levrault, Paris.
- Day, J.J. (2002) Phylogenetic relationships of the Sparidae (Teleostei: Percoidei) and implications for convergent trophic evolution. *Biological Journal of the Linnean Society*, 76, 269–301.
- de Vienne, D.M., Giraud, T. & Martin, O.C. (2007) A congruence index for testing topological similarity between trees. *Bioinformatics*, 23, 3119–3124.
- Dettai, A., Bailly, N., Vignes-Lebbe, R. & Lecointre, G. (2004) Metacanthomorpha: essay on a phylogeny-oriented database for morphology--the acanthomorph (Teleostei) example. *Systematic Biology*, 53, 822–834.
- Dettai, A. & Lecointre, G. (2005) Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. *Comptes rendus Biologies*, 328 674–689.
- Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution*.
- Duque-Caro, H. (1990) Neogene stratigraphy, paleocea-nography and paleobiography in northwest SouthAmerica and the evolution of the Panama Seaway. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 77, 203–234.
- Eschmeyer, W.N. (1990) Catalog of the genera of recent fishes (Vol. VI): Special Publication California Academy of Sciences
- Eschmeyer, W.N. (2013) Genera, species, references. (<u>http://research.calacademy.org/research/ichthyology/catalog/fishcatmain.asp</u>). Electronic version accessed 16 Oct 2013.
- FAO (2014) Global capture production 1950–2012. *In*. Food and Agriculture Organization of the United Nations.
- Fowler, H.W. (1934) Fishes obtained by Mr. H. W. Bell-Marley chiefly in Natal and Zululand in 1929 to 1932. *Proceedings of the Academy of Natural Sciences of Philadelphia* 86, 405– 514.
- Freihofer, W.C. (1963) Patterns of the ramus lateralis accessorius and their systematic significance in teleostean fishes. *Stanford Ichthyological Bulletin*, 8, 80–189.
- Friedman, M. (2010) Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. *Proceedings of the Royal Society B*, 277, 1675–1683.
- Gill, T.N. (1861) Catalogue of the fishes of the eastern coast of North America, from Greenland to Georgia. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 13 (Suppl.), 1–63.
- Gill, T.N. (1893a) A comparison of antipodal faunas. *Memoirs of the National Academy of Sciences*, 6, 91–124.
- Gill, T.N. (1893b) Families and subfamilies of fishes. *Memoirs of the National Academy of Sciences, Washington,* 6, 125–138.
- Girard, C.F. (1858) Notes upon various new genera and new species of fishes, in the museum of the Smithsonian Institution, and collected in connection with the United States and Mexican boundary survey: Major William Emory, Commissioner. *Proceedings of the Academy of Natural Sciences of Philadelphia*, 10, 167–171.
- Greenwood, P.H. (1964) Patterns of the ramus lateralis accessorius and their systematic significance in teleostean fishes by Warren C. Freihofer. *Copeia*, 1, 248–250.

- Greenwood, P.H. (1995) A revised familial classification for certain cirrhitoid genera (Teleostei, Percoidei Cirrhitoidea), with comments on the group's monophyly and taxonomic ranking. *Bulletin of The Natural History Museum Zoology Series*, 61, 1–10.
- Greenwood, P.H., Rosen, D.E., Weitzman, S.H. & Myers, G.S. (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. *Bulletin of the American Museum of Natural History*, 131, 339–456.
- Günther, A. (1860) Catalogue of the acanthopterygian fishes in the collection of the british museum (Vol. 2). British Museum.
- Hakkimane, S.S. & Rathod, J.L. (2011) Isolation and enumeration of bacterial flora in false trevally, *Lactarius lactarius* of Karwar, central west coast of India. *Indian Journal of Geo-Marine Science*, 40, 583–586.
- Hall, B.G. (2004) *Phylogenetic trees made easy: A how-to-manual* (Second ed.): Sinauer Associates, Inc.
- Hanel, R. & Sturmbauer, C. (2000) Multiple recurrent evolution of trophic types in northeastern Atlantic and Mediterranean seabreams (Sparidae, Percoidei). *Journal of Molecular Evolution*, 50, 276–283.
- Hanel, R. & Tsigenopoulos, C.S. (2011) Phylogeny, evolution, and taxonomy of sparids with some notion their ecology and biology. *In:* Pavlidis, M. & Mylonas, C. (Eds), *Sparidae: Biology* and aquaculture of gilthead sea bream and other species (Google eBook). John Wiley & Sons, p. 416.
- Heemstra, P.C. & Randall, J.E. (1977) A revision of the Emmelichthyidae (Pisces : Perciformes). Australian Journal of Marine and Freshwater Research, 28, 361–396.
- Hobson, E.S. (2006) Evolution. In: Allen, L.G., Pondella, D.J. & Horn, M.H. (Eds), The ecology of marine fishes: California and adjacent waters. University of California Press, Berkeley, pp. 55–80.
- Hrbek, T. & Meyer, A. (2003) Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). *Journal of Evolutionary Biology*, 16, 17–36.
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.
- Ishiguro, N.B., Miya, M. & Nishida, M. (2001) Complete mitochondrial DNA sequence of ayu *Plecoglossus altivelis. Fisheries Science*, 67, 474–481.
- Ishiguro, N.B., Miya, M. & Nishida, M. (2003) Basal euteleostean relationships: a mitogenomic perspective on the phylogenetic reality of the "Protacanthopterygii". *Molecular Phylogenetics and Evolution*, 27, 476–488.
- Iwatsuki, Y., Kohno, H. & Ida, H. (1998) Redescription of a poorly-known haemulid fish, *Pomadasys unimaculatus* Tian, 1982, from Malaysia and comparison with *P. maculatus* (Bloch, 1797) (Perciformes: Haemulidae). *ICHTHYOLOGICAL RESEARCH*, 45, 195–200.
- Iwatsuki, Y. & Nakabo, T. (2005) Redescription of Hapalogenys nigripinnis (Schlegel in Temminck and Schlegel, 1843), a senior synonym of *H. nitens* Richardson, 1844, and a new species from Japan. Copeia, 4, 854–867.
- Iwatsuki, Y. & Russell, B.C. (2006) Revision of the genus Hapalogenys (Teleostei: Perciformes) with two new species from the Indo-West Pacific. Memoirs of Museum Victoria, 63, 29– 46.
- Iwatsuki, Y., Satapoomin, U. & Amaoka, K. (2000) New Species: *Hapalogenys merguiensis* (Teleostei; Perciformes) from Andaman Sea. *Copeia*, 2000, 129–139.
- Jacobsen, M.W., Hansen, M.M., Orlando, L., Bekkevold, D., Bernatchez, L., Willerslev, E. & Gilbert, M.T. (2012) Mitogenome sequencing reveals shallow evolutionary histories and

recent divergence time between morphologically and ecologically distinct European whitefish (*Coregonus* spp.). *Molecular Ecology*, 21, 2727–2742.

- James, P.S.B.R., Shanbhogue, S.L. & Gupta, T.R.C. (1974) Biology and fishery of *Lactarius lactarius* (Schneider) off Mangalore. *Indian Journal of Marine Sciences*, 3, 72–79.
- Jex, A.R., Hall, R.S., Littlewood, D.T. & Gasser, R.B. (2010) An integrated pipeline for nextgeneration sequencing and annotation of mitochondrial genomes. *Nucleic Acids Research*, 38, 522–533.
- Johnson, G.D. (1981) The limits and relationships of the Lutjanidae and associated families. Bulletin of the Scripps Institution of Oceanography, 24, 1–114.
- Johnson, G.D. (1984) Percoidei: development and relationships. *In:* Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall, A.W., Jr. & Richardson, S.L. (Eds). American Society of Ichthyologists and Herpetologists, pp. 464–498.
- Johnson, G.D. (1993) Percomorph phylogeny: progress and problems. *Bulletin of Marine Science*, 52, 3–28.
- Johnson , G.D. & Fritzsche, R.A. (1989) *Graus nigra*, an omnivorous girellid, with a comparative osteology and comments on relationships of the Girellidae (Pisces: Perciformes). *Proceedings of the Academy of Natural Sciences of Philadelphia*, 141, 1–27.
- Johnson, G.D. & Patterson, C. (1993) Percomorph phylogeny: a survey of acanthomorphs and a new proposal. *Bulletin of Marine Science*, 52, 554–626.
- Jordan, D.S. (1923) A classification of fishes including families and genera as far as known. Stanford University publications: University series, 3, 77–243 + i-x.
- Jordan, D.S. & Fesler, B. (1893) A review of the sparoid fishes of American and Europe.
- Jordan, D.S. & Gilbert, C.H. (1882) Synopsis of the fishes of North America. Bulletin of the United States National Museum, 16, 1–1018.
- Kaikini, A.S. (1974) Regional and seasonal abundance of the white fish Lactarius lactarius (Schneider) in the trawling grounds off Bombay — Saurashtra coasts 1957–'63. Annual Reports of the Central Marine Fisheries Research Institute, 21.
- Källersjö, M., Albert, V.A. & Farris, J.S. (1999) Homoplasy increases phylogenetic structure. *Cladistics*, 15, 91–93.
- Kass, R.E. & Raftery, A.E. (1995) Bayes Factors. Journal of the American Statistical Association, 90, 773–795.
- Kawaguchi, A., Miya, M. & Nishida, M. (2001) Complete mitochondrial DNA sequence of *Aulopus japonicus* (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and higher-level relationships. *Ichthyological Research*, 48, 213–223.

Kawahara, R., Miya, M., Mabuchi, K., Lavoue, S., Inoue, J.G., Satoh, T.P., Kawaguchi, A. & Nishida, M. (2008) Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): a new perspective based on whole mitogenome sequences from 75 higher teleosts. *Molecular Phylogenetics and Evolution*, 46, 224–236.

Knowlton, N. & Weigt, L.A. (1998) New dates and new rates for divergence across the Isthmus of Panama. *Proceedings of the Royal Society of London*, 265, 2257–2263.

- Konchina, Y.V. (1976) The systematics and distribution of the grunts family (Pomadasyidae). Japanese Journal of Ichthyology, 16, 883–900.
- Konchina, Y.V. (1977) Some data on the biology of grunts (Family Pomadasyidae). *Japanese Journal of Ichthyology*, 17, 548–558.
- Lauder, G.V. & Liem, K.F. (1983) The evolution and interrelationships of the actinopterygian fishes. *Bulletin of The Museum of Comparative Zoology*, 150, 95–197.
- Lautredou, A.C., Motomura, H., Gallut, C., Ozouf-Costaz, C., Cruaud, C., Lecointre, G. & Dettai, A. (2013) New nuclear markers and exploration of the relationships among Serraniformes

(Acanthomorpha, Teleostei): the importance of working at multiple scales. *Molecular Phylogenetics and Evolution*, 67, 140–155.

- Lavoué, S., Miya, M., Inoue, J.G., Saitoh, K., Ishiguro, N.B. & Nishida, M. (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. *Molecular Phylogenetics and Evolution*, 37, 165–177.
- Lavoué, S., Miya, M., Poulsen, J.Y., Møller, P.R. & Nishida, M. (2008) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. *Molecular Phylogenetics and Evolution*, 47, 1111–1121.
- Lavoué, S., Miya, M., Saitoh, K., Ishiguro, N.B. & Nishida, M. (2007) Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences. *Molecular Phylogenetics and Evolution*, 43, 1096–1105.
- Leis, J.M. (1994) Larvae, adults and relationships of the monotypic perciform fish family Lactariidae. *Records of the Australian Museum*, 46, 131–143.
- Leis, J.M. & Carson-Ewart, B.M. (2000) The larvae of Indo-Pacific coastal fishes. An identification guide to marine fish larvae. Fauna Malesiana Handbooks 2 (soft cover edition 2004): E.J. Brill, Leiden.
- Leis, J.M. & van der Lingen, C.D. (1997) Larval development and relationships of the perciform family Dichistiidae (=Coracinidae), the galjoen fishes. *Bulletin of Marine Science*, 60, 100–116.
- Lessios, H.A. (2008) The great american schism: Divergence of marine organisms after the rise of the Central American Isthmus. *Annual Review of Ecology, Evolution, and Systematics,* 39, 63–91.
- Li, B., Dettaï, A., Cruaud, C., Couloux, A., Desoutter-Meniger, M. & Lecointre, G. (2009) RNF213, a new nuclear marker for acanthomorph phylogeny. *Molecular Phylogenetics and Evolution*, 50, 345–363.
- Li, C., Betancur-R, R., Smith, W.L. & Orti, G. (2011) Monophyly and interrelationships of snook and barramundi (Centropomidae *sensu* Greenwood) and five new markers for fish phylogenetics. *Molecular Phylogenetics and Evolution*, 60, 463–471.
- Li, C., Lu, G. & Ortí, G. (2008) Optimal data partitioning and a test case for ray-finned fishes (Actinopterygii) based on ten nuclear loci. *Systematic Biology*, 57, 519–539.
- Li, C. & Ortí, G. (2007) Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences. *Molecular Phylogenetics and Evolution*, 44, 386–398.
- Li, C., Ortí, G., Zhang, G. & Lu, G. (2007) A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. *BMC Evolutionary Biology*, 7, 44.
- Liang, R., Zhuo, X., Yang, G., Luo, D., Zhong, S. & Zou, J. (2012) Molecular phylogenetic relationships of family Haemulidae (Perciformes: Percoidei) and the related species based on mitochondrial and nuclear genes. *Mitochondrial DNA*, 23, 264–277.
- Lindeman, K.C. (1986) Development of larvae of the French grunt, *Haemulon flavolineatum*, and comparative development of twelve western Atlantic species of *Haemulon* (Percoidei, Haemulidae). *Bulletin of Marine Science*, 39, 673–716.
- Lindeman, K.C. (2006) CHAPTER 141 Inermiidae: Bonnetmouths. *In:* Richards, W.J. (Ed), *Early* Stages of Atlantic Fishes: An Identification Guide for the Western Central North Atlantic, Two Volume Set. Taylor & Francis, CRC Press, USA, Boca Raton, FL, p. 1341
- Lindeman, K.C. & Toxey, C. (2003) Haemulidae Grunts. In: Carpenter, K.E. (Ed), The living marine resources of the Western Central Atlantic. FAO species identification guide for

fishery purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5, FAO, Rome, Italy, pp. 1375–2127.

Little, A.G., Lougheed, S.C. & Moyes, C.D. (2010) Evolutionary affinity of billfishes (Xiphiidae and Istiophoridae) and flatfishes (Plueronectiformes): Independent and trans-subordinal origins of endothermy in teleost fishes. *Molecular Phylogenetics and Evolution*, 56, 897–904.

López, J.A., Chen, W.-J. & Ortí, G. (2004) Esociform Phylogeny. Copeia, 2004, 449-564.

MacDonald, C.M. (1983) Taxonomic and evolutionary studies on marine fishes of the genus Arripis (Perciformes: Arripidae). Bulletin of Marine Science, 33, 780.

Maddison, W.P. & Maddison, D.R. (2007) Mesquite: a modular system for evolutionary analysis.

- Mahon, A.R. (2007) Molecular phylogenetics of perciform fishes using the nuclear recombination activating gene 1. Unpublished PhD Dissertation. Old Dominion University, Norfolk, Virginia, USA, p. 303.
- Maugé, L.A. & Desoutter, M. (1990) Kuhliidae. *In:* Quero, J.C., Hureau, J.C., Karrer, C., Post, A. & Saldanha, L. (Eds), *Check-list of the fishes of the eastern tropical Atlantic (CLOFETA)*, JNICT, Lisbon; SEI, Paris; and UNESCO, Paris.
- McEachran, J.D. & Fechhelm, J.D. (2005) Fishes of the Gulf of Mexico: Scorpaeniformes to Tetraodontiformes (Vol. 2). Austin: University of Texas Press.
- McKay, R.J. (1984) Haemulidae. In: Fischer, W. & Bianchi, G. (Eds), FAO species identification sheets for fishery purposes. Western Indian Ocean (Fishing Area 51), p. pag. var.
- McKay, R.J. (2001) Haemulidae (= Pomadasyidae). Grunts (also sweetlips, rubberlips, hotlips, and velvetchins). In: Carpenter, K.E.N., V. (Ed), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific, FAO, Rome, Italy, p. 589.
- McKay, R.J. & Schneider, M. (1995) Haemulidae. Burros, corocoros, chulas, gallinazos, roncos. In: Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. & Niem, V. (Eds), Guia FAO para Identification de especies para lo fines de la pesca. Pacifico Centro-Oriental. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 1136–1173.
- Miles, C. (1953) A new pomadasid fish from the Colombian Caribbean. *Journal of the Linnean Society of London*, 42, 273–275.
- Minegishi, Y., Aoyama, J., Inoue, J.G., Miya, M., Nishida, M. & Tsukamoto, K. (2005) Molecular phylogeny and evolution of the freshwater eels genus *Anguilla* based on the whole mitochondrial genome sequences. *Molecular Phylogenetics and Evolution*, 34, 134–146.
- Miya, M., Friedman, M., Satoh, T.P., Takeshima, H., Sado, T., Iwasaki, W., Yamanoue, Y.,
 Nakatani, M., Mabuchi, K., Inoue, J.G., Poulsen, J.Y., Fukunaga, T., Sato, Y. & Nishida, M.
 (2013) Evolutionary origin of the scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families. *PLOS One*, 8, e73535.
- Miya, M., Kawaguchi, A. & Nishida, M. (2001) Mitogenomic exploration of higher teleostean phylogenies: A case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. *Molecular Biology and Evolution*, 18, 1993–2009.
- Miya, M., Satoh, T.P. & Nishida, M. (2005) The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. *Biological Journal of the Linnean Society*, 85, 289–306.
- Miya, M., Takeshima, H., Endo, H., Ishiguro, N.B., Inoue, J.G., Mukai, T., Satoh, T.P., Yamaguchi, M., Kawaguchi, A., Mabuchi, K., Shirai, S.M. & Nishida, M. (2003) Major patterns of

higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. *Molecular Phylogenetics and Evolution*, 26, 121–138.

- Moore, W.S. (1995) Inferring phylogenies from mtDNA variation: Mitochondrial-gene trees versus nuclear-gene trees. *Evolution*, 49, 718–726.
- Morin, P.A., Archer, F.I., Foote, A.D., Vilstrup, J., Allen, E.E., Wade, P., Durban, J., Parsons, K.,
 Pitman, R., Li, L., Bouffard, P., Nielsen, S.C.A., Rasmussen, M., Willerslev, E., Gilbert, M.T.
 & Harkins, T. (2010) Complete mitochondrial genome phylogeographic analysis of killer
 whales (Orcinus orca) indicates multiple species. Genome Research, 20, 908–916.
- Near, T.J., Dornburg, A., Eytan, R.I., Keck, B.P., Smith, W.L., Kuhn, K.L., Moore, J.A., Price, S.A., Burbrink, F.T., Friedman, M. & Wainwright, P.C. (2013) Phylogeny and tempo of diversification in the superradiation of spiny-rayed fishes. *Proceedings of the National Academy of Sciences of the United States of America*.
- Near, T.J., Eytan, R.I., Dornburg, A., Kuhn, K.L., Moore, J.A., Davis, M.P., Wainwright, P.C., Friedman, M. & Smith, W.L. (2012a) Resolution of ray-finned fish phylogeny and timing of diversification. *Proceedings of the National Academy of Sciences of the United States* of America, 109, 13698–13703.
- Near, T.J., Sandel, M., Kuhn, K.L., Unmack, P.J., Wainwright, P.C. & Smith, W.L. (2012b) Nuclear gene-inferred phylogenies resolve the relationships of the enigmatic Pygmy Sunfishes, Elassoma (Teleostei: Percomorpha). *Molecular Phylogenetics and Evolution*, 63, 388– 395.
- Nelson, G.J. (1989) Phylogeny of major fish groups. *In:* Femholm, B., Bremer, K. & Jomvall, H. (Eds), *The hierarchy of life*, Excerpta Medica, Amsterdam, pp. 325–336.
- Nelson, J.S. (1994) Fishes of the World Third Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Nelson, J.S. (2006) Fishes of the World Fourth Edition. Hoboken, New Jersey: John Wiley & Sons, Inc.
- Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey, J.L. (2004) Bayesian phylogenetic analysis of combined data. *Systematic Biology*, 53, 47–67.
- Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swofford, D.L. (2008) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. *Bioinformatics*, 24, 581–583.
- Ogden, J.C. & Ehrlich, P.R. (1977) The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). *Marine Biology*, 42, 273–280.
- Orrell, T.M. & Carpenter, K.E. (2004) A phylogeny of the fish family Sparidae (porgies) inferred from mitochondrial sequence data. *Molecular Phylogenetics and Evolution*, 32, 425–434.
- Orrell, T.M., Carpenter, K.E., Musick, J.A. & Graves, J.E. (2002) Phylogenetic and biogeographic analysis of the Sparidae (Perciformes: Percoidei) from cytochrome *b* sequences. *Copeia*, 2002, 618–631.
- Pardo, B.G., Machordom, A., Porto-Foresti, F., Sánchez, L., Foresti, F., Azevedo, M.F.C. & Martínez, P. (2005) Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences. *Scientia Marina*, 69, 531–543.
- Paulin, C. (1993) Review of the Australian fish family Arripididae (Percomorpha), with the description of a new species. Australian Journal of Marine and Freshwater Research, 44, 459–471.
- Pellegrin, J. (1913) Poissons marins de Guinée, de la Côte d'Ivoire, du Dahomey, du Gabon et du Congo. Mission de M. Gruvel. *Bulletin de la Société Zoologique de France,* 38, 151–158.

Pielou, E.C. (1979) Biogeography: John Wiley & Sons.

- Price, S.A., Tavera, J.J.N., T.J. & Wainwright, P.C. (2012) Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. *Evolution*, 674, 417–428.
- Rafinesque, C.S. (1810) Indice d'ittiologia siciliana; ossia, catalogo metodico dei nomi latini, italiani, e siciliani dei psci, che si rinvengono in Sicilia disposti secondo un metodo naturale e seguito da un appendice che contiene la descrizione di alcu. ni nuovi pesci siciliani. In, Messina, Presso Giovanni del Nobolo, p. 70.
- Author (2007) Tracer v1.4. Available from <u>http://beast.bio.ed.ac.uk/Tracer</u>, Available from: http://beast.bio.ed.ac.uk/Tracer
- Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E.J. (2011) MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons. *PLOS One*, 6, e22594.
- Regan, C.T. (1910) The origin and evolution of the teleostean fishes of the order Heterosomata. Annals and Magazine of Natural History, 8, 484–496.
- Regan, C.T. (1911) On the cirrhitiform percoids. *The Annals and magazine of natural history*, 7, 259–262.
- Regan, C.T. (1913) On the classification of the percoid fishes. Annals and Magazine of Natural History, 8, 111–145.
- Ren, G. & Zhang, Q. (2007) Phylogeny of haemulid with discussion on systematic position of the genus *Hapalogenys*. *Acta Zootaxonomica Sinica*, 32, 835–841.
- Reuben, S.K., Vijayakumaran, K. & Sekhar, M.C. (1993) Growth, maturity and mortality of false trevally *Lactarius lactarius* Bloch & Schneider from Andhra Pradesh-Orissa coast. *Indian Journal of Fisheries*, 40, 156–161.
- Richardson, J. (1844) Description of a genus of Chinese fish. *Annals and Magazine of Natural History*, 13, 461–462.
- Rocha, L.A. & Bowen, B.W. (2008) Speciation in coral-reef fishes. *Journal of Fish Biology*, 72, 1101–1121.
- Rocha, L.A., Lindeman, K.C., Rocha, C.R. & Lessios, H.A. (2008) Historical biogeography and speciation in the reef fish genus *Haemulon* (Teleostei: Haemulidae). *Molecular Phylogenetics and Evolution*, 48, 918–928.
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics*, 19, 1572–1574.
- Roux, C. (1981) Pomadasyidae. In: Fischer, W., Bianchi, G. & Scott, W.B. (Eds), FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34, 47 (in part). Department of Fisheries and Oceans Canada and FAO. Vol. 3. Bony fishes (Malacanthidae to Scombridae) FAO, Rome, Italy, p. pag. var.
- Saitoh, K., Sado, T., Mayden, R.L., Hanzawa, N., Nakamura, K., Nishida, M. & Miya, M. (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): The first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. *Journal* of Molecular Evolution, 63, 826–841.
- Sanciangco, M.D., Rocha, L.A. & Carpenter, K.E. (2011) A molecular phylogeny of the Grunts (Perciformes: Haemulidae) inferred using mitochondrial and nuclear genes. *Zootaxa*, 2966, 37–50.
- Santini, F., Carnevale, G. & Sorenson, L. (2014) First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). *Italian Journal of Zoology*, 1–17.
- Setiamarga, D.H., Miya, M., Yamanoue, Y., Mabuchi, K., Satoh, T.P., Inoue, J.G. & Nishida, M. (2008) Interrelationships of Atherinomorpha (medakas, flyingfishes, killifishes,

silversides, and their relatives): The first evidence based on whole mitogenome sequences. *Molecular Phylogenetics and Evolution*, 49, 598–605.

- Seutin, G., White, B.N. & Boag, P.T. (1990) Preservation of avian blood and tissue samples for DNA analysis. *Canadian Journal of Zoology*, 69, 82–90.
- Smith-Vaniz, W.F. (1984) Carangidae: relationships. In: Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, D.M., Kendall, A.W., Jr. & Richardson, S.L. (Eds), Ontogeny and Systematics of Fishes, pp. 522–530.
- Smith-Vaniz, W.F. (2001) "Cepolidae. Bandfishes" In: Carpenter, K.E. & Niem, V. (Eds), FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific, pp. 3331–3332.
- Smith, J.L.B. (1935) The "galjoen" fishes of South Africa. *Transactions of the Royal Society of South Africa*, 23, 265–276.
- Smith, J.L.B. (1938) The South African fishes of the families Sparidae and Denticidae. Transactions of the Royal Society of South Africa, 26, 225–305.
- Smith, J.L.B. (1962) Fishes of the Family Gaterinidae of the Western Indian Ocean and the Red Sea with a Resume of all known Indo Pacific Species. *Ichthyological Bulletin*, 25, 469– 502.
- Smith, M.M. & Heemstra, P.C. (1986) Smith's sea fishes. Macmillan South Africa, Johannesburg.
- Smith, W.L. (2005) The limits and relationships of mail-cheeked fishes (Teleostei: Percomorpha) and the evolution of venom in fishes. Unpublished PhD Dissertation, Columbia University, New York.
- Smith, W.L. & Craig, M. (2007) Casting the percomorph net widely: The importance of broad taxonomic sampling in the search for the placement of serranid and percid fishes. *Copeia*, 2007, 35–55.
- Smith, W.L. & Wheeler, W.C. (2006) Venom evolution widespread in fishes: Venom evolution widespread in fishes: A phylogenetic road map for the bioprospecting of piscine venoms. *Journal of Heredity*, 97, 206–217.
- Sorenson, M.D. & Franzosa, E.A. (2007) TreeRot, version 3.
- Springer, V.G. & Johnson, G.D. (2004) Study of the dorsal gill-arch musculature of teleostome fishes, with special reference to Actinopterygii. *Bulletin of the Biological Society of Washington*, 11, 1–235.
- Springer, V.G. & Raasch, M.S. (1995) *Fishes, angling, and finfish fisheries on stamps of the world.* Tucson, Arizona: American Topical Association.
- Stamatakis, A. (2014) Raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*.
- Steyskal, G.C. (1980) The grammar of family-group names as exemplified by those of fishes. Proceedings of the Biological Society of Washington, 93, 168–177.
- Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.
- Tavera, J.J., Near, T.J., Acero, A., Balart, E.F. & Bernardi, G. (2012) Molecular phylogeny of grunts (Teleostei, Haemulidae), with an emphasis on the ecology, evolution, and speciation history of New World species. *BMC Evolutionary Biology*, 12.
- Tavera, J.J., Pizarro, A.A., De la Cruz-Agüero, J. & Balart, E.F. (2011) Phylogeny and reclassification of the species of two neotropical grunt genera, Anisotremus and Genyatremus (Perciformes: Haemulidae), based on morphological evidence. Journal of Zoological Systematics and Evolutionary Research, 49, 315–323.

- Thacker, C.E. (2009) Phylogeny of Gobioidei and placement within Acanthomorpha, with a new classification and investigation of diversification and character evolution. *Copeia*, 2009, 93–104.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 24, 4876–4882.
- Tupper, M. & Juanes, F. (1999) Effects of a marine reserve on recruitment of grunts (Pisces: Haemulidae) at Barbados, West Indies. *Environmental Biology of Fishes*, 55, 53–63.
- Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics*, 27.
- Vilstrup, J.T., Ho, S.Y., Foote, A.D., Morin, P.A., Kreb, D., Krutzen, M., Parra, G.J., Robertson, K.M., de Stephanis, R., Verborgh, P., Willerslev, E., Orlando, L. & Gilbert, M.T. (2011)
 Mitogenomic phylogenetic analyses of the Delphinidae with an emphasis on the Globicephalinae. *BMC Evolutionary Biology*, 11, 65.
- Wainwright, P.C., Smith, W.L., Price, S.A., Tang, K.L., Sparks, J.S., Ferry, L.A., Kuhn, K.L., Eytan, R.I.
 & Near, T.J. (2012) The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. *Systematic Biology*, 61, 1001–1027.
- Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D. (2005) DNA barcoding Australia's fish species. *Philosophical Transactions of the Royal Society B: Biological Sciences* 360, 1847–1857.
- Wiley, E.O. & Johnson, G.D. (2010) A teleost classification based on monophyletic groups. In: Nelson, J.S., Schultze, H.-P. & Wilson, M.V.H. (Eds), Origin and phylogenetic interrelationships of teleosts. Verlag Dr. Friedrich Pfeil, München, Germany, pp. 123– 182.
- Williams, A., Begg, G., Garrett, R., Larson, H. & Griffiths, S. (2004) Coastal Fishes. In: National Oceans Office. Description of key species groups in the Northern Planning Area. National Oceans Office, Hobart, Australia, p. 320.
- Xia, X. (2013) DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. *Molecular Biology and Evolution*, 30, 1720–1728.
- Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. *Molecular Phylogenetics and Evolution*, 26, 1–7.
- Yagishita, N., Kobayashi, T. & Nakabo, T. (2002) Review of monophyly of the Kyphosidae (*sensu* Nelson, 1994), inferred from the mitochondrial ND2 gene. *Ichthyological Research*, 49, 103–108.
- Yagishita, N., Miya, M., Yamanoue, Y., Shirai, S.M., Nakayama, K., Suzuki, N., Satoh, T.P., Mabuchi, K., Nishida, M. & Nakabo, T. (2009) Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the percifom fishes (Teleostei: Percomorpha). *Molecular Phylogenetics and Evolution*, 53, 258–266.
- Yamanoue, Y., Miya, M., Matsuura, K., Katoh, M., Sakai, H. & Nishida, M. (2008) A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces: Acanthopterygii) based on whole mitochondrial genome sequences: basal ecological diversification? BMC Evolutionary Biology, 8, 212.
- Yamanoue, Y., Miya, M., Matsuura, K., Yagishita, N., Mabuchi, K., Sakai, H., Katoh, M. & Nishida, M. (2007) Phylogenetic position of tetraodontiform fishes within the higher teleosts: Bayesian inferences based on 44 whole mitochondrial genome sequences. *Molecular Phylogenetics and Evolution*, 45, 89–101.

- Zacharia, P.U. & Jayabalan, N. (2007) Maturation and spawning of the whitefish, *Lactarius lactarius* (Bloch and Schneider, 1801) (Family Lactariidae) along the Karnataka coast, India. *Journal of the Marine Biological Association of India*, 49, 166–176.
- Zhang, J. & Hanner, R. (2008) DNA barcoding of fishes in the South China Sea. Unpublished.
- Zhu, S.H., Zheng, W.J. & Zou, J.X. (2007) Molecular phylogenetic relationship of Carangidae based on sequence of complete mitochondrial cytochrome *b* gene. *Dong Wu Xue Bao*.
- Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas at

APPENDIX A

LIST OF SPECIES AND THE ACCESSION NUMBER OF HAEMULID SPECIMENS

				GenBank Accession Numbers							
Family	Subfamily	Species	Accession No.	COI	сүт ь	RAG1	SH3PX3	PLAGL2			
Haemulidae	Plectorhinchinae	Diagramma picta	ODU 3219	HQ676758	HQ676699	HQ676637	HQ667185	HQ667252			
Haemulidae	Plectorhinchinae	Parapristipoma octolineatum	ODU 3220	HQ676781	HQ676726	HQ676666	HQ667214	HQ667281			
Haemulidae	Plectorhinchinae	Parapristipoma trilineatum	ODU 3221	HQ676782	HQ676727	HQ676667	HQ667215	HQ667282			
Haemulidae	Plectorhinchinae	Plectorhinchus chaetodonoides	ODU 3222	HQ676783	HQ676728	HQ676668	HQ667216	HQ667283			
Haemulidae	Plectorhinchinae	Plectorhinchus cinctus	ODU 3223	HQ676784	HQ676729	HQ676669	HQ667217	HQ667284			
Haemulidae	Plectorhinchinae	Plectorhinchus diagrammus	ODU 3224	HQ676785	HQ676730	HQ676670	HQ667218	HQ667285			
Haemulidae	Plectorhinchinae	Plectorhinchus gibbosus	KUT-6832	HQ676786	HQ676731	HQ676671	HQ667219	HQ667286			
Haemulidae	Plectorhinchinae	Plectorhinchus lessonii	ODU 3225	HQ676787	HQ676732	HQ676672	HQ667220	HQ667287			
Haemulidae	Plectorhinchinae	Plectorhinchus macrolepis	ODU 3226	HQ676788	HQ676733	166092559	HQ667221	HQ667288			
Haemulidae	Plectorhinchinae	Plectorhinchus schotaf	ODU 3228	HQ676790	HQ676735	HQ676674	HQ667223	HQ667290			
Haemulidae	Plectorhinchinae	Plectorhinchus sordidus	ODU 3229	HQ676791	HQ676736	HQ676675	HQ667224	HQ667291			
Haemulidae	Plectorhinchinae	Plectorhinchus vittatus	KUT-6921	HQ676789	HQ676734	HQ676673	HQ667222	HQ667289			
Haemulidae	Haemulinae	Anisotremus davidsonii	SIO-04-181	HQ676749	HQ676689	HQ676626	HQ667172	HQ667239			
Haemulidae	Haemulinae	Anisotremus interruptus	ODU 3232	203282643	HQ676690	HQ676628	HQ667174	HQ667241			
Haemulidae	Haemulinae	Anisotremus scapularis	ODU 3234	HQ676751	HQ676692	HQ676630	HQ667176	HQ667243			
Haemulidae	Haemulinae	Anisotremus surinamensis	KUT-2425	HQ676752	203282593	HQ676631	HQ667177	HQ667244			
Haemulidae	Haemulinae	Anisotremus taeniatus	ODU 3235	203282647	HQ676693	HQ676632	HQ667178	HQ667245			
Haemulidae	Haemulinae	Anisotremus virginicus	ODU 3236	223366616	189032143	166092457	HQ667179	HQ667246			
Haemulidae	Haemulinae	Boridia grossidens	ODU 3237	HQ676754	HQ676695	HQ676634	HQ667181	HQ667248			
Haemulidae	Haemulinae	Brachydeuterus auritus	ODU 3238	HQ676755	HQ676696	166092459	HQ667182	HQ667249			
Haemulidae	Haemulinae	Conodon nobilis	KUT-5135	HQ676756	HQ676697	HQ676635	HQ667183	HQ667250			
Haemulidae	Haemulinae	Conodon serrifer	ODU 3239	HQ676757	HQ676698	HQ676636	HQ667184	HQ667251			
Haemulidae	Haemulinae	Emmelichthyops atlanticus	ODU 3265	HQ676759	HQ676700	HQ676638	HQ667186	HQ667253			
Haemulidae	Haemulinae	Genyatremus cavifrons	ODU 3240	HQ676760	HQ676701	HQ676639	HQ667187	HQ667254			
Haemulidae	Haemulinae	Genyatremus dovii	ODU 3231	HQ684719	189032063	HQ676627	HQ667173	HQ667240			
Haemulidae	Haemulinae	Genyatremus pacifici	ODU 3233	HQ676750	HQ676691	HQ676629	HQ667175	HQ667242			
Haemulidae	Haemulinae	Haemulon aurolineatum	ODU 3241	HQ676761	HQ676702	HQ676640	HQ667188	HQ667255			
Haemulidae	Haemulinae	Haemulon carbonarium	NMFS 018	203282675	13183276	HQ676647	HQ667195	HQ667262			
Haemulidae	Haemulinae	Haemulon chrysargyreum	KUT-232	203282657	HQ676703	HQ676641	HQ667189	HQ667256			

TABLE A1. List of species and the accession number of haemulid specimens (56), including outgroups (10).

Table A1. Continued

				GenBank Accession Numbers				
Family	Subfamily	Species	Accession No.	COI	CYT b	RAG1	SH3PX3	PLAGL2
Haemulidae	Haemulinae	Haemulon flaviguttatum	ODU 3242	203282659	HQ676704	HQ676642	HQ667190	HQ667257
Haemulidae	Haemulinae	Haemulon flavolineatum	ODU 3243	203282661	203282607	HQ676643	HQ667191	HQ667258
Haemulidae	Haemulinae	Haemulon macrostomum	KUT-235	HQ676762	HQ676705	HQ676644	HQ667192	HQ667259
Haemulidae	Haemulinae	Haemulon melanurum	ODU 3244	HQ676763	HQ676706	HQ676645	HQ667193	HQ667260
Haemulidae	Haemulinae	Haemulon plumierii	ODU 3245	203282673	HQ676707	HQ676646	HQ667194	HQ667261
Haemulidae	Haemulinae	Haemulon scudderii	ODU 3246	203282677	HQ676708	HQ676648	HQ667196	HQ667263
Haemulidae	Haemulinae	Haemulon steindachneri	ODU 3247	HQ676764	HQ676709	HQ676649	HQ667197	HQ667264
Haemulidae	Haemulinae	Haemulon vittatum	USNM 349224	HQ676771	HQ676716	HQ676656	HQ667204	HQ667271
Haemulidae	Haemulinae	Haemulopsis axillaris	ODU 3248	HQ676765	HQ676710	HQ676650	HQ667198	HQ667265
Haemulidae	Haemulinae	Haemulopsis leuciscus	ODU 3249	HQ676766	HQ676711	HQ676651	HQ667199	HQ667266
Haemulidae	Haemulinae	Haemulopsis nitidus	ODU 3250	HQ676767	HQ676712	HQ676652	HQ667200	HQ667267
Haemulidae	Haemulinae	Isacia conceptionis	ODU 3251	HQ676772	HQ676717	HQ676657	HQ667205	HQ667272
Haemulidae	Haemulinae	Microlepidotus brevipinnis	ODU 3252	HQ676777	HQ676722	HQ676662	HQ667210	HQ667277
Haemulidae	Haemulinae	Orthopristis chalceus	ODU 3253	HQ676779	HQ676724	HQ676664	HQ667212	HQ667279
Haemulidae	Haemulinae	Orthopristis chrysoptera	KUT-1195	HQ676780	HQ676725	HQ676665	HQ667213	HQ667280
Haemulidae	Haemulinae	Pomadasys argyreus	ODU 3254	HQ676793	HQ676738	HQ676677	HQ667226	HQ667293
Haemulidae	Haemulinae	Pomadasys branickii	ODU 3255	HQ676794	HQ676739	HQ676678	HQ667227	HQ667294
Haemulidae	Haemulinae	Pomadasys incisus	ODU 3256	HQ676795	133923650	HQ676679	HQ667228	HQ667295
Haemulidae	Haemulinae	Pomadasys kaakan	ODU 3257	HQ676796	HQ676740	HQ676680	HQ667229	HQ667296
Haemulidae	Haemulinae	Pomadasys maculatus	ODU 3258	HQ676797	13183278	HQ676681	HQ667230	HQ667297
Haemulidae	Haemulinae	Pomadasys olivaceus	KUT-6467	HQ676798	HQ676741	164417780	HQ667231	HQ667298
Haemulidae	Haemulinae	Pomadasys panamensis	ODU 3259	HQ676799	HQ676742	HQ676682	HQ667232	HQ667299
Haemulidae	Haemulinae	Pomadasys perotaei	ODU 3260	HQ676800	HQ676743	HQ676683	HQ667233	HQ667300
Haemulidae	Haemulinae	Pomadasys striatus	ODU 3261	HQ676801	HQ676744	HQ676684	HQ667234	HQ667301
Haemulidae	Haemulinae	Pomadasys stridens	ODU 3262	HQ676802	HQ676745	HQ676685	HQ667235	HQ667302
Haemulidae	Haemulinae	Xenichthys xanti	ODU 3263	HQ676804	HQ676747	HQ676687	HQ667237	HQ667304
Haemulidae	Haemulinae	Xenistius californiensis	SIO-02-1	HQ676805	HQ676748	HQ676688	HQ667238	HQ667305
Hapalogenyidae		Hapalogenys aya	MUFS 23038	HQ676768	HQ676713	HQ676653	HQ667201	HQ667268
Hapalogenyidae		Hapalogenys kishinouyei	MUFS 23603	HQ676769	HQ676714	HQ676654	HQ667202	HQ667269
Hapalogenyidae		Hapalogenys nigripinnis	ODU 3264	HQ676770	HQ676715	HQ676655	HQ667203	HQ667270

Table A1. Continued

				GenBank Accession Numbers							
Family	Subfamily	Species	Accession No.	COI	сүт ь	RAG1	SH3PX3	PLAGL2			
Lethrinidae		Lethrinus ornatus	ODU 3266	HQ676773	HQ676718	HQ676658	HQ667206	HQ667273			
Lobotidae		Lobotes pacificus	SIO-98-170	HQ676774	HQ676719	HQ676659	HQ667207	HQ667274			
Lobotidae		Lobotes surinamensis	MUFS 23031	HQ676775	HQ676720	HQ676660	HQ667208	HQ667275			
Lutjanidae		Aphareus furca	ODU 3267	HQ676753	HQ676694	HQ676633	HQ667180	HQ667247			
Lutjanidae		Lutjanus fulviflamma	ODU 3268	HQ676776	HQ676721	HQ676661	HQ667209	HQ667276			
Nemipteridae		Nemipterus marginatus	ODU 3269	HQ676778	HQ676723	HQ676663	HQ667211	HQ667278			
Sparidae		Sarpa salpa	ODU 3270	HQ676803	HQ676746	HQ676686	HQ667236	HQ667303			

* KU - University of Kansas Natural History Museum & Biodiversity Research Center; MUFS – Miyazaki University, Division of Fisheries Sciences, Miyazaki, Japan; NMFS - National Marine Fisheries Services; ODU - Old Dominion University, Norfolk, VA; SIO - Scripps Institution of Oceanography, University of California San Diego, CA; UF-University of Florida; USNM - United States National Museum, Smithsonian, Washington, D.C.

APPENDIX B

CHARACTERISTICS OF THE FIVE MARKERS AMPLIFIED FOR HAEMULIDS

TABLE A2. Characteristics of the five markers amplified for haemulids. Pi: Parsimony-informative sites; ci: Consistency Index on the Maximum Parsimony tree.

<u></u>		No. of constant		
Gene	No. of bp	sites	No. of PI sites	CI
COI	651	373	245	0.1317
CYT b	1140	491	533	0.1698
RAG1	1431	870	385	0.4934
SH3PX3	705	499	144	0.3924
PLAGL2	804	618	112	0.4989

APPENDIX C

THE TEN INDEPENDENT PARAMETERS OF 15 DATA PARTITIONS ESTIMATED IN MRBAYES

TABLE A3. The ten independent parameters of 15 data partitions estimated in MrBayes. Data shows five substitution rates, three base composition proportions, the gamma parameter (alpha), and the rate multiplier for each data block.

		Subs	titution	rates		Base	freque	ncies		
Partitions	AC	AG	AT	CG	ст	Α	С	G	Alpha	Multiplier
COI_1	0.009	0.038	0.011	0.001	0.918	0.256	0.300	0.288	0.153	0.738
COI_2	0.067	0.200	0.055	0.373	0.258	0.152	0.292	0.147	0.051	3.897
COI_3	0.031	0.598	0.024	0.036	0.262	0.261	0.348	0.106	1.704	3.904
СҮТ <i>Ь</i> _1	0.031	0.259	0.128	0.039	0.470	0.249	0.289	0.260	0.264	0.462
СҮТ <i>Ь</i> _2	0.063	0.112	0.079	0.306	0.391	0.202	0.234	0.147	0.243	0.117
СҮТ <i>Ь</i> _З	0.018	0.540	0.029	0.043	0.295	0.301	0.409	0.076	1.596	5.545
RAG1_1	0.247	0.287	0.156	0.061	0.179	0.292	0.197	0.325	0.276	0.072
RAG1_2	0.076	0.351	0.044	0.203	0.289	0.319	0.220	0.191	0.056	0.034
RAG1_3	0.084	0.378	0.062	0.056	0.377	0.200	0.271	0.280	1.081	0.313
SH3PX3_1	0.185	0.065	0.118	0.135	0.429	0.286	0.273	0.261	0.069	0.031
SH3PX3_2	0.039	0.139	0.026	0.265	0.456	0.372	0.208	0.149	0.104	0.216
SH3PX3_3	0.080	0.361	0.082	0.023	0.399	0.125	0.357	0.349	0.815	0.396
PLAGL2_1	0.123	0.248	0.166	0.071	0.354	0.245	0.367	0.222	0.143	0.021
PLAGL2_2	0.194	0.239	0.017	0.403	0.080	0.377	0.260	0.173	50.158	0.511
Pagl2_3	0.068	0.455	0.098	0.019	0.316	0.126	0.326	0.329	0.837	0.216

APPENDIX D

TAXON SAMPLING FOR THE PERCOMORPH DATASET INCLUDED 1231 TAXA AND SEQUENCE

DATA FOR 23 GENES

TABLE A4a. Taxon sampling for the percomorph dataset included 1231 taxa and sequence data for 23 genes. The dataset is comprised of sequences for 1180 percomorph species from previous studies (e.g. Li *et al.* 2007; Li *et al.* 2008; Li *et al.* 2010; Li *et al.* 2011; Betancur-R *et al.* 2013b; Broughton *et al.* 2013; Near *et al.* 2013) or public databases, plus newly generated sequences for the 51 additional taxa for this study. The matrix is presented in four parts to show presence of sequence data for the 23 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, and PANX2; (b.) PLAGL2, PTCHD1, RAG1, RAG2, RH, and RIPK4; (c.) SH3PX3, SIDKEY, SREB2, SVEP1, TBR1, and VCPIP; (d.) ZIC1, COI, CYT *B*, 16S, and HOX.

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Acanthuridae	Acanthurus bahianus	E00005	11794	14	657	0	891	0	720	808
Acanthuridae	Acanthurus guttatus	E00709	7379	8	657	0	0	0	0	0
Acanthuridae	Acanthurus leucosternon	E00880	14819	16	810	645	891	0	744	0
Acanthuridae	Acanthurus lineatus	E00889	11234	12	0	645	0	0	0	0
Acanthuridae	Acanthurus triostegus	E00711	11027	13	657	654	0	0	744	750
Acanthuridae	Ctenochaetus striatus	E00982	6461	8	657	636	0	0	0	713
Acanthuridae	Ctenochaetus strigosus	E00050	9642	12	657	0	891	0	645	0
Acanthuridae	Ctenochaetus truncatus	E00854	6572	9	0	645	0	0	714	818
Acanthuridae	Naso brevirostris	E00918	11979	15	657	657	822	774	744	884
Acanthuridae	Naso lituratus	G01514	9769	12	657	0	822	0	744	0
Acanthuridae	Naso unicornis	E00701	6934	9	0	654	0	0	719	0
Acanthuridae	Paracanthurus hepatus	E00002	9321	11	657	0	0	0	744	843
Acanthuridae	Zebrasoma flavescens	E00730	9002	10	0	654	0	0	705	0
Acanthuridae	Zebrasoma rostratum	N01742	6780	8	810	0	873	0	744	0
Acanthuridae	Zebrasoma scopas	E00859	12917	16	657	636	0	0	684	890
Acanthuridae	Zebrasoma velifer	E00029	5029	6	0	0	0	738	681	0
Achiridae	Achirus lineatus	E00605	13596	16	759	654	816	915	723	0
Achiridae	Gymnachirus melas	E00609	14260	16	750	0	825	729	691	900
Achiridae	Gymnachirus texae	E00630	9146	10	0	654	0	738	737	0
Achiridae	Hypoclinemus sp	E01162	6483	7	0	0	0	918	0	0
Achiridae	Trinectes maculatus	E00046	11078	11	0	0	0	918	708	0
Achiropsettidae	Mancopsetta maculata	E01169	6861	8	0	0	0	918	744	0
Achiropsettidae	Neoachiropsetta milfordi	E01170	6200	8	0	0	0	915	744	0
Acropomatidae	Acropoma japonicum	G01188	12298	14	756	0	852	0	731	0
Acropomatidae	Malakichthys elegans	N01922	6894	9	753	0	816	0	675	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Acropomatidae	Synagrops bellus	E01125	11059	13	657	0	0	765	744	885
Acropomatidae	Synagrops spinosus	E01123	6676	7	0	0	0	0	743	885
Adrianichthyidae	Oryzias latipes	G01408	18061	19	657	732	708	930	744	984
Agonidae	Aspidophoroides monopterygius	N01986	7472	9	786	0	891	0	744	0
Agonidae	Bathyagonus alascanus	E00268	5458	7	0	657	0	0	678	0
Agonidae	Bathyagonus pentacanthus	E00430	5127	7	0	0	0	0	692	0
Agonidae	Hypsagonus quadricornis	E00269	7151	9	0	696	0	918	0	0
Agonidae	Sarritor frenatus	E00264	4738	6	0	684	0	918	0	0
Agonidae	Sarritor leptorhynchus	E00254	5516	7	0	657	0	918	710	0
Agonidae	Stellerina xyosterna	N02010	6750	8	0	0	891	0	744	0
Agonidae	Xeneretmus latifrons	E00278	6400	8	0	0	0	0	710	0
Ambassidae	Ambassis agrammus	G01196	8877	9	0	0	0	879	744	0
Ambassidae	Ambassis interrupta	E01100	10212	10	0	0	0	930	0	924
Ambassidae	Ambassis urotaenia	G01197	8268	10	633	0	873	0	744	0
Ambassidae	Parambassis ranga	N01735	7892	10	753	0	834	0	668	0
Ammodytidae	Ammodytes dubius	N02375	6015	7	0	0	891	0	0	0
Ammodytidae	Ammodytes hexapterus	E00414	15128	17	694	0	879	711	743	0
Anabantidae	Ctenopoma acutirostre kingsleyae	E01141	14536	15	657	0	891	918	744	0
Anabantidae	Microctenopoma nanum	G01373	12070	13	657	0	846	0	744	0
Anarhichadidae	Anarhichas denticulatus	E00787	8620	9	0	0	0	765	0	914
Anarhichadidae	Anarhichas orientalis lupus	E00117	15266	17	657	0	873	753	743	850
Anarhichadidae	Anarrhichthys ocellatus	E00119	7893	10	0	0	0	765	0	912
Anoplopomatidae	Anoplopoma fimbria	E00423	15741	18	657	690	891	774	744	916
Antennariidae	Antennatus coccineus	E01092	15457	17	804	606	831	759	728	941
Antennariidae	Antennatus nummifer	E00587	9899	13	0	654	0	753	743	793
Antennariidae	Fowlerichthys radiosus	E01124	4779	6	0	0	0	753	0	783
Antennariidae	Histiophryne cryptacanthus	G01326	9853	12	738	0	873	0	726	0
Antennariidae	Histrio histrio	E00643	7964	9	0	0	0	0	0	750
Aphyonidae	Barathronus maculatus	N02779	7479	9	678	0	801	0	744	0
Aplocheilidae	Pachypanchax playfairii	G01414	7524	9	786	0	819	0	0	0

Table A4a. Continued

Family	Genus Species	ETOL ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Aplodactylidae	Aplodactylus arctidens	M01536	4728	5	0	0	0	0	0	0
Aplodactylidae	Aplodactylus etheridgii	M01537	4710	5	0	0	0	0	0	0
Apogonidae	Apogon campbelli	E01069	9380	10	0	0	0	765	730	906
Apogonidae	Archamia biguttata	E00522	8166	11	0	657	0	702	728	747
Apogonidae	Astrapogon puncticulatus	E00109	7227	9	0	684	0	0	0	925
Apogonidae	Astrapogon stellatus	N03004	7517	9	798	0	852	0	626	0
Apogonidae	Cercamia eremia	E00546	6660	9	0	0	0	657	410	901
Apogonidae	Cheilodipterus isostigmus	E00528	8272	10	0	675	0	741	729	883
Apogonidae	Cheilodipterus quinquelineatus	G01247	9762	12	657	0	885	0	738	0
Apogonidae	Fowleria aurita	E01090	8780	11	0	675	0	732	743	910
Apogonidae	Gymnapogon urospilotus	E00539	5107	7	0	657	0	0	743	897
Apogonidae	Nectamia bandanensis	E01040	8860	11	0	0	0	696	743	911
Apogonidae	Nectamia fusca	E00732	8861	10	0	0	0	750	723	802
Apogonidae	Ostorhinchus cookii	E01087	6400	8	0	675	0	741	730	910
Apogonidae	Ostorhinchus lateralis	G01203	8273	10	657	0	855	0	701	0
Apogonidae	Phaeoptyx pigmentaria	E00506	12882	15	804	648	0	741	729	866
Apogonidae	Pristiapogon exostigma	E00702	8433	11	0	654	0	678	743	798
Apogonidae	Pseudamia gelatinosa	E00568	7391	9	0	0	0	0	0	794
Apogonidae	Pterapogon kauderni	E00190	6329	8	0	0	0	702	742	740
Apogonidae	Rhabdamia cypselura	E01095	6022	7	0	657	0	720	742	906
Apogonidae	Sphaeramia orbicularis	N03178	8446	10	810	0	843	0	744	0
Aracanidae	Anoplocapros lenticularis	G01533	6886	7	0	0	0	0	744	0
Aracanidae	Aracana aurita	G01205	10032	12	810	0	852	0	744	0
Ariommatidae	Ariomma bondi	E01126	7867	9	0	0	0	783	743	863
Ariommatidae	Ariomma melanum	E00665	9682	12	0	663	0	747	726	896
Arripidae	Arripis georgianus	M01539	4794	5	0	0	0	0	0	0
Arripidae	Arripis trutta	M01540	3327	4	0	0	0	0	0	0
Arripidae	Arripis truttacea	M01541	4659	5	0	0	0	0	0	0
Artedidraconidae	Artedidraco orianae	G01525	6898	8	0	0	0	0	676	0
Artedidraconidae	Pogonophryne barsukovi	E00158	12842	14	0	0	0	810	744	941

Table A4a. Continued

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Atherinidae	Atherinomorus lacunosus	E00548	15021	18	657	681	849	702	710	842
Atherinidae	Atherinomorus stipes	E00115	13436	16	0	684	0	750	744	906
Atherinidae	Atherinomorus vaigiensis	E00181	7813	10	0	684	0	744	744	877
Atherinidae	Craterocephalus honoriae	E00180	8597	10	0	684	0	756	0	876
Atherinopsidae	Atherinopsis californiensis	E00121	5600	7	0	0	0	771	0	920
Atherinopsidae	Labidesthes sicculus	E01112	14372	17	657	0	891	747	744	906
Atherinopsidae	Membras martinica	E00170	7275	9	0	0	0	0	657	868
Atherinopsidae	Menidia beryllina	E00174	10176	13	789	0	891	0	744	882
Atherinopsidae	Menidia menidia	E00167	12560	13	0	0	0	687	0	896
Atherinopsidae	Menidia peninsulae	N03847	5694	7	618	0	867	0	744	0
Atherinopsidae	Odontesthes argentinensis	E00393	5125	7	0	0	0	756	0	893
Atherinopsidae	Odontesthes bonariensis	E00396	9234	11	0	645	0	918	0	830
Atherinopsidae	Odontesthes humensis	E00394	5561	7	0	657	0	765	0	842
Atherinopsidae	Odontesthes retropinnis	E00395	4826	6	0	681	0	747	0	802
Atherinopsidae	Poblana ferdebueni	N01733	5919	7	810	0	858	0	744	0
Aulorhynchidae	Aulorhynchus flavidus	G01217	11313	12	657	0	891	0	744	0
Aulostomidae	Aulostomus chinensis	E0 087 1	15665	19	810	693	891	726	722	0
Aulostomidae	Aulostomus maculatus	E00293	13058	16	657	0	870	915	696	706
Badidae	Badis pyema	N03996	7191	9	762	0	813	0	667	0
Badidae	Dario dario	N04003	5626	7	762	0	822	0	674	0
Balistidae	Abalistes stellatus	E00936	14580	18	759	693	873	714	744	0
Balistidae	Balistapus undulatus	E00743	12372	14	809	657	888	0	744	785
Balistidae	Balistes capriscus	E00591	13798	17	657	636	876	606	723	879
Balistidae	Balistes vetula	E00755	13640	15	810	660	891	0	734	860
Balistidae	Balistoides conspicillum	E00373	9468	10	0	648	0	0	708	836
Balistidae	Canthidermis maculata	E00378	9887	10	0	645	0	0	729	0
Balistidae	Melichthys indicus	E00919	7484	10	0	693	0	0	726	0
Balistidae	Melichthys niger	E00922	8652	11	0	693	0	0	722	0
Balistidae	Pseudobalistes flavimarginatus	N04225	6715	8	810	0	891	0	734	0
Balistidae	Pseudobalistes fuscus	E00524	4607	6	0	0	0	0	0	0

Table A4a, Continueu	· · · · · · · · · · · · · · · · · · ·									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Balistidae	Rhinecanthus aculeatus	E00735	9140	10	657	654	0	0	744	817
Balistidae	Rhinecanthus assasi	E00381	5259	6	0	0	0	747	712	833
Balistidae	Rhinecanthus verrucosus	N04231	7465	9	810	0	891	0	744	0
Balistidae	Sufflamen chrysopterum	E00551	11210	14	810	651	891	0	744	777
Balistidae	Sufflamen fraenatum	E00935	9148	10	0	693	0	717	714	0
Balistidae	Xanthichthys auromarginatus	E00380	11574	12	0	693	0	753	717	857
Balistidae	Xanthichthys ringens	N04239	7595	9	810	0	867	0	744	0
Banjosidae	Banjos banjos	M01542	4794	5	0	0	0	0	0	0
Banjosidae	Banjos banjos	N01542	6206	8	747	0	828	0	674	0
Bathyclupeidae	Bathyclupea argentea	M01543	2787	4	0	0	0	0	0	0
Bathydraconidae	Gymnodraco acuticeps	E00155	12486	14	0	0	891	0	744	888
Bathydraconidae	Parachaenichthys charcoti	E00157	15082	17	648	0	873	0	731	907
Bathymasteridae	Bathymaster caeruleofasciatus	E00191	7525	10	0	0	0	0	744	847
Bathymasteridae	Bathymaster signatus	E00420	12500	16	810	663	846	723	738	889
Bathymasteridae	Rathbunella hypoplecta	E00128	12273	15	804	684	876	729	704	896
Batrachoididae	Batrachoides pacifici	N04533	6761	8	753	0	891	0	737	0
Batrachoididae	Opsanus beta	E00698	11611	14	810	654	888	0	545	831
Batrachoididae	Opsanus pardus	E00513	11301	14	786	654	891	762	744	0
Batrachoididae	Opsanus tau	E00040	4773	6	0	0	0	918	0	832
Batrachoididae	Porichthys notatus	E00058	13187	16	810	696	891	0	744	0
Batrachoididae	Porichthys plectrodon	E00590	13538	16	657	654	891	750	645	0
Batrachoididae	Sanopus sp	E00009	4902	6	0	690	0	918	0	849
Bedotiidae	Rheocles wrightae	G01467	11051	13	645	0	891	0	744	0
Belonidae	Ablennes hians	E00162	11443	13	0	684	0	750	744	915
Belonidae	Platybelone argalus	E00114	12856	15	624	0	873	765	744	916
Belonidae	Strongylura notata	E00110	15115	19	657	684	891	753	744	906
Belonidae	Tylosurus crocodilus	E01051	7580	10	0	675	0	753	0	875
Belonidae	Xenentodon cancila	G01508	11377	14	657	0	891	0	744	0
Bembridae	Bembras japonica	N01723	6876	9	750	0	825	0	675	0
Bembropidae	Bembrops anatirostris	E01120	10273	13	597	0	873	708	743	941

Table A4a. Continued

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Bembropidae	Bembrops gobioides	E01128	8878	11	657	0	891	780	0	790
Blenniidae	Alticus arnoldorum	E00989	2775	4	0	693	0	0	0	0
Blenniidae	Atrosalarias fuscus	E00525	2877	4	0	0	0	717	0	906
Blenniidae	Blenniella chrysospilos paula	E00986	4186	5	0	0	0	720	0	0
Blenniidae	Blenniella cyanostigma	E00715	7419	9	0	0	0	717	707	759
Blenniidae	Blenniella paula	E00979	7982	10	0	693	0	717	709	0
Blenniidae	Cirripectes castaneus	E00892	8002	10	0	693	0	711	0	0
Blenniidae	Cirripectes filamentosus	E00893	5912	7	0	0	0	732	0	0
Blenniidae	Cirripectes quagga	E00330	4362	5	0	0	0	915	729	0
Blenniidae	Cirripectes stigmaticus	E00520	4037	6	0	0	0	717	690	0
Blenniidae	Ecsenius bicolor	E00984	5909	8	0	0	0	720	692	934
Blenniidae	Ecsenius midas	E00934	3749	5	0	0	0	726	705	0
Blenniidae	Ecsenius opsifrontalis	E00723	5497	7	0	666	0	717	0	799
Blenniidae	Ecsenius pardus	E00523	4285	5	0	0	0	717	0	775
Blenniidae	Enchelyurus flavipes	N04786	6887	9	750	0	819	0	0	0
Blenniidae	Entomacrodus nigricans	E00297	9132	11	801	0	0	915	702	0
Blenniidae	Entomacrodus niuafoouensis	E00980	6091	8	0	654	0	723	705	0
Blenniidae	Entomacrodus striatus	E00987	5295	7	0	693	0	714	0	0
Blenniidae	Hypleurochilus sp	E00298	5653	7	0	693	0	0	0	903
Blenniidae	Hypsoblennius hentz	E00289	7330	9	774	0	0	720	0	0
Blenniidae	Istiblennius dussumieri	E00556	4755	6	0	0	0	717	0	895
Blenniidae	Meiacanthus oualanensis grammistes	E00526	9615	12	657	0	888	0	741	0
Blenniidae	Nannosalarias nativitatis	E00521	6717	8	0	0	0	717	0	887
Blenniidae	Ophioblennius atlanticus	E00296	11932	15	648	0	871	735	718	734
Blenniidae	Petroscirtes mitratus	E00909	5741	8	0	0	0	720	722	0
Blenniidae	Plagiotremus rhinorhynchos	E00586	4112	5	0	0	0	0	728	875
Blenniidae	Plagiotremus tapeinosoma	E00540	4423	6	0	0	0	717	726	919
Blenniidae	Praealticus caesius	E00329	5179	6	0	693	0	915	0	862
Blenniidae	Salarias fasciatus	E00988	12606	14	747	693	813	726	0	0
Blenniidae	Stanulus sp	E00332	3369	4	0	693	0	0	0	0
			and the second se							***************************************

Table A4a. Continued

Table A4a. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Bothidae	Arnoglossus blachei	E01160	6253	7	0	0	0	918	0	0
Bothidae	Arnoglossus imperialis	E01163	7399	8	0	0	0	912	0	0
Bothidae	Asterorhombus cocosensis	E00904	10399	11	0	636	0	0	711	905
Bothidae	Bothus lunatus	E00007	8248	9	0	699	819	0	714	856
Bothidae	Bothus robinsi	E00038	6724	7	0	675	0	732	660	0
Bothidae	Chascanopsetta lugubris	E01181	5982	7	0	0	0	912	0	0
Bothidae	Laeops kitaharae	E00082	7794	8	0	678	0	915	721	820
Bothidae	Monolene sp	E01172	3326	3	0	0	0	0	0	0
Bothidae	Psettina tosana	E00083	7617	8	0	0	0	915	718	0
Bothidae	Trichopsetta ventralis	E00599	9704	10	0	654	0	918	731	811
Bovichtidae	Bovichtus diacanthus	G01229	12547	13	645	0	891	0	743	0
Bovichtidae	Cottoperca trigloides	G01267	5753	6	0	0	0	0	656	0
Bramidae	Brama brama	E00970	11377	13	0	0	0	732	690	0
Bramidae	Brama japonica	N05217	8586	10	810	0	891	0	744	0
Bramidae	Pteraclis aesticola	N05223	7106	9	747	0	816	0	675	0
Bramidae	Pterycombus brama	E00996	9728	12	0	0	0	747	0	854
Bramidae	Taractes asper	N05227	8588	10	810	0	891	0	744	0
Bramidae	Taractichthys longipinnis	E00684	8997	11	0	0	0	0	0	926
Bythitidae	Bidenichthys capensis	E00794	7231	9	0	630	0	768	0	0
Bythitidae	Brosmophyciops pautzkei	E00717	5948	8	0	690	0	765	0	0
Bythitidae	Brosmophycis marginata	N05317	7691	9	717	0	882	0	744	0
Bythitidae	Cataetyx rubrirostris lepidogenys	E00261	14883	16	723	699	879	918	717	0
Bythitidae	Diancistrus sp	E00236	6903	9	0	657	0	0	717	0
Bythitidae	Dinematichthys iluocoeteoides	E00235	4750	6	0	660	0	0	721	0
Bythitidae	Diplacanthopoma brachysoma	E00452	8606	9	0	690	0	765	744	0
Bythitidae	Diplacanthopoma brunnea	N05377	8280	10	804	0	882	0	742	0
Caesionidae	Caesio caerulaurea lunaris	E00920	13727	15	0	630	0	747	0	846
Caesionidae	Caesio cuning	N01544	6786	8	810	0	891	0	744	0
Caesionidae	Caesio teres	E00951	7741	10	0	630	0	720	0	856
Caesionidae	Caesio varilineata	E00949	9671	12	0	630	0	723	0	851
Table A4a. Continued										
----------------------	---------------------------	---------	-------------	---------	------	------	------	----------	------	-------
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Caesionidae	Caesio xanthonota	E00950	9615	12	0	630	0	693	0	876
Caesionidae	Pterocaesio pisang	N01547	8535	10	809	0	890	0	744	0
Caesionidae	Pterocaesio tile	E00961	7369	8	0	630	0	741	0	0
Callanthiidae	Callanthias australis	M01721	3528	4	0	0	0	0	0	0
Callanthiidae	Grammatonotus surugaensis	N05516	4774	6	747	0	822	0	679	0
Callionymidae	Callionymus sp bairdi	E00946	14247	16	750	657	891	0	693	916
Callionymidae	Diplogrammus goramensis	E00744	3443	4	0	654	0	0	0	896
Callionymidae	Foetorepus sp	N01725	7524	9	750	0	891	0	744	0
Callionymidae	Neosynchiropus ocellatus	E00030	9857	12	810	0	804	756	708	795
Callionymidae	Synchiropus agassizii	E01004	13911	16	750	669	891	702	744	921
Callionymidae	Synchiropus splendidus	E00003	7623	9	810	0	891	0	744	0
Callionymidae	Synchiropus stellatus	E00925	4153	5	0	0	0	771	0	907
Caproidae	Antigonia capros	E01024	15924	18	657	0	858	696	744	904
Caproidae	Antigonia rubescens	N05907	8327	10	801	0	849	0	737	0
Caproidae	Capros aper	N05913	6917	9	756	0	819	0	673	0
Carangidae	Alectis ciliaris	E00469	9715	12	0	690	0	801	712	0
Carangidae	Atule mate	E00942	13914	15	0	0	0	735	702	870
Carangidae	Carangoides ferdau	E00869	9160	10	0	0	0	738	0	0
Carangidae	Carangoides plagiotaenia	E00917	10641	12	0	0	0	747	0	0
Carangidae	Caranx crysos ruber	E00510	15973	18	810	0	891	918	744	931
Carangidae	Caranx ignobilis	E00574	14220	16	0	690	0	792	702	0
Carangidae	Caranx sexfasciatus	E00834	10100	10	0	0	0	753	0	0
Carangidae	Chloroscombrus chrysurus	E00763	5515	7	0	0	0	758	0	0
Carangidae	Decapterus macarellus	E00212	3266	5	0	0	0	591	0	0
Carangidae	Decapterus punctatus	E00671	9777	11	0	690	0	918	0	0
Carangidae	Elagatis bipinnulata	E00841	11967	15	0	630	0	768	0	940
Carangidae	Gnathanodon speciosus	E00938	13565	15	0	0	0	918	0	917
Carangidae	Hemicaranx amblyrhynchus	E00616	11426	13	0	690	0	786	694	838
Carangidae	Oligoplites saurus	E00195	16021	19	810	720	883	918	731	0
Carangidae	Scomberoides lysan	E00738	10887	13	0	0	0	918	744	0

. -

Table A4a. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Carangidae	Selar crumenophthalmus	E00833	11277	13	0	630	0	765	0	0
Carangidae	Selene brownii	E00767	7866	10	0	0	0	711	0	0
Carangidae	Selene setapinnis	N01705	6120	8	753	0	891	0	744	0
Carangidae	Seriola dumerili	E00623	16521	18	657	0	882	909	732	881
Carangidae	Seriola rivoliana	E00467	11164	13	0	0	0	0	729	0
Carangidae	Trachinotus carolinus	G01504	11145	13	654	0	882	0	741	0
Carangidae	Trachinotus falcatus	E00819	10693	12	0	0	0	756	714	0
Carangidae	Trachinotus ovatus	E01145	14822	16	801	0	891	918	744	0
Carangidae	Trachurus lathami	E00598	11710	13	657	0	0	798	0	884
Carangidae	Uraspis secunda	E00515	11843	13	0	0	0	798	729	917
Carapidae	Carapus bermudensis	E00244	3497	5	750	0	0	0	668	0
Carapidae	Onuxodon parvibrachium	N06009	5285	7	804	0	882	0	741	0
Carapidae	Pyramodon ventralis	N06013	5272	7	801	0	882	0	743	0
Caristiidae	Caristius macropus	N06078	5912	8	753	0	813	0	684	0
Caristiidae	Caristius sp	E00810	9564	11	0	0	0	774	0	0
Caristiidae	Platyberyx opalescens	N06085	7781	10	747	0	822	0	675	0
Centracanthidae	Centracanthus cirrus	M01560	2897	3	0	0	0	0	0	0
Centracanthidae	Spicara alta	M01561	4032	4	0	0	0	0	0	0
Centracanthidae	Spicara maena	M01562	5142	5	0	0	0	0	0	0
Centracanthidae	Spicara nigricauda	M01564	4791	5	0	0	0	0	0	0
Centracanthidae	Spicara smaris	M01565	5111	5	0	0	0	0	0	0
Centrarchidae	Acantharchus pomotis	G01185	10678	10	0	0	0	0	744	0
Centrarchidae	Ambloplites rupestris	E00392	18681	20	657	0	891	744	744	863
Centrarchidae	Archoplites interruptus	N01722	8586	10	810	0	891	0	744	0
Centrarchidae	Lepomis cyanellus	E00132	18334	20	798	684	876	768	732	891
Centrarchidae	Lepomis macrochirus	E01113	15647	17	0	660	804	768	743	884
Centrarchidae	Micropterus salmoides	E01110	18682	20	798	702	804	735	744	892
Centrarchidae	Pomoxis nigromaculatus	E00131	14489	15	0	0	0	699	744	909
Centriscidae	Aeoliscus strigatus	G01189	10258	10	657	0	0	0	728	0
Centriscidae	Macroramphosus gracilis	E00335	4196	5	0	0	0	915	711	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Centriscidae	Macroramphosus scolopax	E00473	10717	12	756	663	0	0	669	0
Centrogenyidae	Centrogenys vaigiensis	G01239	9161	11	657	0	891	0	744	0
Centrolophidae	Icichthys lockingtoni	E00387	15879	18	810	0	873	717	733	831
Centropomidae	Centropomus ensiferus	E00766	14482	15	0	702	0	930	0	902
Centropomidae	Centropomus medius	E01158	10458	11	0	702	0	930	0	0
Centropomidae	Centropomus undecimalis	E00194	15428	17	657	702	891	918	709	0
Centropomidae	Centropomus viridis	E01153	14374	16	810	702	813	801	669	0
Centropomidae	Lates calcarifer	E01135	11083	12	0	702	0	930	744	0
Centropomidae	Lates japonicus	E01147	10695	11	0	702	0	930	0	0
Centropomidae	Lates microlepis	E01149	9785	11	0	702	0	930	0	0
Centropomidae	Psammoperca waigiensis	E01148	12243	13	0	702	0	927	744	0
Cepolidae	Acanthocepola sp	M01669	4129	4	0	0	0	0	0	0
Cepolidae	Cepola macrophthalma	M01566	3339	4	0	0	0	0	0	0
Cepolidae	Cepola schlegelii	N06269	6961	9	0	0	822	0	650	0
Cepolidae	Sphenanthias tosaensis	N06282	6620	9	750	0	819	0	0	0
Ceratiidae	Ceratias holboelli	E00175	8091	11	0	654	861	0	743	0
Ceratiidae	Ceratias sp	E00160	6019	7	0	0	0	0	0	903
Ceratiidae	Cryptopsaras couesii	E00686	9907	10	0	0	891	750	0	869
Chaenopsidae	Acanthemblemaria aspera	E00320	6836	9	0	0	0	915	713	778
Chaenopsidae	Acanthemblemaria paula	E00295	6314	8	0	0	0	915	713	891
Chaenopsidae	Chaenopsis sp alepidota	E00313	11049	13	0	0	891	915	733	848
Chaenopsidae	Emblemaria pandionis	E00310	6208	7	0	0	0	906	717	0
Chaenopsidae	Lucayablennius zingaro	E00294	7789	9	0	0	0	915	0	877
Chaenopsidae	Neoclinus blanchardi	E00326	6535	8	0	0	0	915	717	0
Chaenopsidae	Stathmonotus stahli	E00317	7886	9	0	0	0	915	708	895
Chaetodontidae	Chaetodon auriga	E00921	12220	14	0	630	0	747	0	779
Chaetodontidae	Chaetodon capistratus	E00205	3871	5	0	720	0	0	740	0
Chaetodontidae	Chaetodon ocellatus	E00752	3799	5	0	0	0	0	0	0
Chaetodontidae	Chaetodon ornatissimus	G01243	11727	14	657	0	858	0	744	0
Chaetodontidae	Chaetodon plebeius	E00573	2874	4	0	690	0	0	0	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Chaetodontidae	Chaetodon reticulatus	E00719	9187	11	0	690	0	0	0	868
Chaetodontidae	Chaetodon striatus	E00753	15347	19	657	630	869	708	739	824
Chaetodontidae	Chelmon rostratus	G01248	10379	13	810	0	891	0	744	0
Chaetodontidae	Forcipiger flavissimus	E00562	14191	17	657	687	891	0	744	925
Chaetodontidae	Hemitaurichthys polylepis	E00240	12410	15	810	705	891	0	717	0
Chaetodontidae	Heniochus chrysostomus	E00748	14747	18	657	630	0	729	744	0
Chaetodontidae	Heniochus varius	E00547	11101	14	0	690	0	786	715	921
Chaetodontidae	Johnrandallia nigrirostris	N06546	7594	9	810	0	891	0	734	0
Chaetodontidae	Prognathodes aya aculeatus	E00632	16211	20	810	690	888	0	704	905
Champsodontidae	Champsodon snyderi	N06574	5798	8	744	0	825	0	675	0
Channichthyidae	Chionobathyscus dewitti	G01250	11735	13	657	0	891	0	744	0
Channichthyidae	Chionodraco rastrospinosus	E00156	10249	11	0	0	891	0	0	0
Channidae	Channa lucius	N06615	7562	9	753	0	0	0	744	0
Channidae	Channa melasoma	N06621	8195	10	693	0	891	0	744	0
Channidae	Channa striata	E01133	15424	17	657	0	891	918	744	0
Chaunacidae	Chaunax stigmaeus	E01121	11544	14	810	0	822	729	742	941
Chaunacidae	Chaunax suttkusi	E01117	13670	16	657	675	819	0	743	928
Cheilodactylidae	Cheilodactylus fasciatus	E00795	8950	11	0	630	0	759	675	874
Cheilodactylidae	Cheilodactylus pixi	E00797	7523	10	753	630	0	711	668	0
Cheilodactylidae	Cheilodactylus variegatus	N07699	7481	9	786	0	870	0	744	0
Cheilodactylidae	Chirodactylus brachydactylus	E00796	10572	13	690	0	813	0	669	0
Cheilodactylidae	Chirodactylus jessicalenorum	E00585	5511	7	0	0	0	0	0	0
Cheimarrichthyidae	Cheimarrichthys fosteri	N07713	7400	9	810	0	891	0	705	0
Chiasmodontidae	Chiasmodon niger	E01115	6819	8	0	0	0	744	0	897
Chiasmodontidae	Chiasmodon sp	N33662	8114	10	735	0	891	0	744	0
Chiasmodontidae	Kali indica	E01106	8049	10	0	0	0	720	743	932
Chiasmodontidae	Kali kerberti	E00385	8712	11	741	0	879	693	739	857
Chironemidae	Chironemus georgianus	M01569	3606	4	0	0	0	0	0	0
Chironemidae	Chironemus maculosus	M01570	3605	4	0	0	0	0	0	0
Cichlidae	Astatotilapia burtoni	G01518	14530	19	639	712	360	903	648	966

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Cichlidae	Cichla temensis	G01256	12888	15	657	0	891	0	744	0
Cichlidae	Crenicichla lepidota	E00137	9593	12	0	684	0	753	0	928
Cichlidae	Etroplus maculatus	E00133	16104	17	657	0	891	0	744	928
Cichlidae	Herichthys cyanoguttatus	G01319	10449	13	657	0	891	0	744	0
Cichlidae	Heros efasciatus	G01320	12037	14	657	0	891	0	744	0
Cichlidae	Heterochromis multidens	G01321	10659	13	633	0	854	0	744	0
Cichlidae	Maylandia zebra	G01519	15105	19	639	711	360	903	744	966
Cichlidae	Nanochromis parilus	G01390	2645	4	615	0	0	0	0	0
Cichlidae	Neolamprologus brichardi	G01520	18935	21	639	712	360	903	648	966
Cichlidae	Oreochromis niloticus	G01407	20724	22	639	732	891	930	744	966
Cichlidae	Paratilapia polleni	G01420	11328	12	657	0	891	0	744	0
Cichlidae	Paretroplus maculatus	G01423	11220	12	657	0	891	0	744	0
Cichlidae	Ptychochromis grandidieri	G01459	9350	12	647	0	819	0	744	0
Cichlidae	Pundamilia nyererei	G01521	14440	18	639	712	360	903	648	966
Cichlidae	Steatocranus gibbiceps	G01494	2873	4	633	0	0	0	0	0
Cichlidae	Symphysodon discus	E00390	10909	13	0	0	0	696	743	879
Cichlidae	Tilapia louka	G01503	2873	4	633	0	0	0	0	0
Cirrhitidae	Amblycirrhitus pinos	E00314	16355	19	756	657	849	915	711	865
Cirrhitidae	Cirrhitichthys falco	N09466	4867	7	0	0	0	0	665	0
Cirrhitidae	Cirrhitichthys oxycephalus	E00884	8380	11	0	693	0	735	713	0
Cirrhitidae	Neocirrhites armatus	E00725	12592	16	810	651	831	717	714	816
Cirrhitidae	Paracirrhites forsteri arcatus	E00924	12505	15	657	693	891	699	744	0
Citharidae	Citharoides macrolepis	E00071	12901	15	801	0	849	888	706	875
Citharidae	Citharus linguatula	E01174	6850	8	0	0	0	918	0	0
Citharidae	Lepidoblepharon ophthalmolepis	E00080	7005	8	0	0	0	750	717	868
Clinidae	Blennophis striatus	E00800	3454	4	0	0	0	699	0	884
Clinidae	Clinus cottoides	E00804	4782	6	0	0	0	675	0	926
Clinidae	Clinus superciliosus	E00803	5297	7	0	0	0	672	0	839
Clinidae	Gibbonsia metzi	N09738	6827	8	0	0	0	0	738	0
Clinidae	Muraenoclinus dorsalis	E00805	4559	6	0	0	0	708	0	0

Table A4a. Continued				-						
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Clinidae	Pavoclinus profundus	E00799	3475		0	0	0	696	0	907
Coryphaenidae	Coryphaena hippurus	E00937	17390	19	810	630	891	918	741	256
Cottidae	Artediellus uncinatus	N10447	7522	9	810	0	891	0	744	0
Cottidae	Chitonotus pugetensis	E00233	6714	8	0	0	0	918	715	0
Cottidae	Cottus carolinae	E00281	10765	13	0	675	864	0	738	0
Cottidae	Enophrys taurina	E00234	3576	5	0	660	0	0	0	0
Cottidae	Gymnocanthus galeatus	E00259	3095	4	0	0	0	0	0	0
Cottidae	Hemilepidotus jordani	E00263	7975	10	0	618	0	0	0	0
Cottidae	Hemilepidotus zapus	E00272	5096	6	0	696	0	918	0	0
Cottidae	Icelinus filamentosus	E00277	8203	10	0	720	0	918	714	0
Cottidae	Icelinus quadriseriatus	E00228	5018	6	0	720	0	918	705	0
Cottidae	Leptocottus armatus	E00266	12068	14	0	720	888	918	711	0
Cottidae	Microcottus sellaris	E00223	2282	3	0	720	0	0	0	0
Cottidae	Myoxocephalus octodecemspinosus	E00221	3991	4	0	717	0	0	0	0
Cottidae	Myoxocephalus polyacanthocephalus	E00267	4736	5	0	0	0	0	0	0
Cottidae	Radulinus asprellus	E00429	6882	9	0	0	0	774	744	904
Cottidae	Rastrinus scutiger	E00256	6088	7	0	720	0	918	717	0
Cottidae	Scorpaenichthys marmoratus	E00232	10450	13	810	708	891	0	730	0
Cottidae	Triglops macellus	E00435	8082	10	0	690	0	777	0	901
Cottidae	Triglops scepticus	E00421	5233	7	0	693	0	0	0	851
Creediidae	Limnichthys sp	E01081	6256	8	810	0	0	0	734	0
Cryptacanthodidae	Cryptacanthodes maculatus	E00116	10532	13	810	0	888	729	744	906
Cyclopteridae	Cyclopterus lumpus	E00220	12165	15	657	720	891	0	744	0
Cyclopteridae	Eumicrotremus orbis	E00270	12456	15	780	720	891	0	702	868
Cynoglossidae	Cynoglossus interruptus	E00076	7900	8	0	0	0	894	0	0
Cynoglossidae	Symphurus atricaudus	E00023	10924	12	750	0	891	714	744	804
Cynoglossidae	Symphurus civitatium	E00604	7546	8	0	0	0	804	702	919
Cynoglossidae	Symphurus plagiusa	E01164	7027	8	0	0	0	744	744	0
Cyprinodontidae	Cyprinodon variegatus	E01066	12469	15	780	675	887	747	732	0
Cyprinodontidae	Floridichthys carpio	E01063	9295	11	0	675	0	741	732	910

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Cyprinodontidae	Jordanella floridae	N14002	5915	7	786	0	0	0	744	0
Dactylopteridae	Dactyloptena gilberti	N14051	5845	7	786	0	879	0	736	0
Dactylopteridae	Dactyloptena orientalis	E00237	13665	15	792	0	873	918	729	0
Dactylopteridae	Dactyloptena peterseni	E00749	14553	15	0	0	873	765	736	928
Dactylopteridae	Dactylopterus volitans	E00214	7789	10	0	0	0	918	731	0
Dactyloscopidae	Gillellus semicinctus	G01299	6655	8	0	0	0	0	744	0
Dactyloscopidae	Platygillellus rubrocinctus	E00319	5427	7	0	0	0	765	723	761
Datnioididae	Datnioides microlepis	N14199	7836	10	753	0	819	0	676	0
Dichistiidae	Dichistius capensis	M01571	3582	4	0	0	0	0	0	0
Diodontidae	Chilomycterus schoepfii	E00517	12554	15	657	0	891	0	744	908
Diodontidae	Diodon holocanthus	E00312	13884	15	657	0	867	738	744	826
Drepaneidae	Drepane punctata	E00250	13305	15	753	699	825	918	722	0
Echeneidae	Echeneis naucrates	E00615	16441	18	810	0	891	795	0	787
Echeneidae	Echeneis neucratoides	E00245	7118	7	0	0	0	0	702	0
Echeneidae	Phtheirichthys lineatus	G01438	7650	8	0	0	0	0	705	867
Echeneidae	Remora osteochir australis	E00503	10993	11	0	0	0	798	699	0
Elassomatidae	Elassoma evergladei	E00146	15293	17	0	696	0	771	744	748
Elassomatidae	Elassoma okefenokee	G01283	9813	12	795	0	891	0	744	0
Elassomatidae	Elassoma zonatum	G01284	14834	15	798	0	888	0	744	0
Eleginopsidae	Eleginops maclovinus	G01286	10593	13	645	0	891	0	744	0
Eleotridae	Dormitator maculatus	E00169	5763	7	0	0	891	0	662	0
Eleotridae	Eleotris acanthopoma pisonis	E00741	12447	14	783	0	870	771	744	750
Eleotridae	Ophiocara porocephala	E01101	11395	13	777	0	0	0	744	0
Eleotridae	Oxyeleotris selheimi	N01730	5975	7	0	0	0	0	725	0
Embiotocidae	Amphistichus argenteus	E00129	8893	12	0	684	0	744	737	891
Embiotocidae	Cymatogaster aggregata	E00139	14184	16	657	648	0	744	744	282
Embiotocidae	Embiotoca jacksoni	E00120	14177	17	657	639	846	696	744	884
Embiotocidae	Embiotoca lateralis	N14635	6883	8	810	0	0	0	731	0
Embiotocidae	Hyperprosopon anale argenteum	E00134	14767	18	657	648	810	759	744	862
Embiotocidae	Phanerodon furcatus	E00122	11479	14	606	684	0	759	726	933
······································										

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Embiotocidae	Rhacochilus vacca	E00124	12585	15	657	0	855	756	716	909
Embiotocidae	Zalembius rosaceus	E00135	4565	6	0	0	0	747	0	0
Emmelichthyidae	Erythrocles schlegelii	E00954	12039	15	657	0	822	747	708	0
Emmelichthyidae	Erythrocles scintillans	N14652	6911	9	756	0	828	0	675	0
Enoplosidae	Enoplosus armatus	G01287	10134	11	756	0	819	0	673	0
Ephippidae	Chaetodipterus faber	E00614	14589	18	657	654	852	735	644	920
Ephippidae	Platax orbicularis	E00898	13969	16	657	669	825	0	710	0
Ephippidae	Platax teira	E00858	12410	15	657	657	0	747	744	882
Epigonidae	Epigonus pandionis	E01019	5505	7	0	0	0	0	0	0
Epigonidae	Epigonus telescopus	E00652	10314	12	0	699	0	0	0	0
Exocoetidae	Cheilopogon dorsomacula	E00624	11475	14	0	0	0	666	0	876
Exocoetidae	Cheilopogon melanurus	N14975	5883	7	687	0	0	0	744	0
Exocoetidae	Cheilopogon pinnatibarbatus	E00399	13294	16	567	0	0	681	744	892
Exocoetidae	Cypselurus callopterus	E00402	6837	8	0	0	0	0	738	882
Exocoetidae	Exocoetus monocirrhus	E00403	10246	13	0	675	0	729	744	648
Exocoetidae	Hirundichthys marginatus	E00401	9589	12	0	0	0	666	727	900
Exocoetidae	Parexocoetus brachypterus	E00645	4220	5	0	0	0	0	0	741
Exocoetidae	Prognichthys brevipinnis	E00400	6286	8	0	0	0	657	744	839
Fistulariidae	Fistularia commersonii	E00941	7080	7	753	0	0	0	666	0
Fistulariidae	Fistularia petimba	E00602	6969	9	753	0	0	0	666	0
Fundulidae	Adinia xenica	E00173	8890	10	0	645	0	726	733	910
Fundulidae	Fundulus blairae	E00130	9841	11	0	684	0	702	718	892
Fundulidae	Fundulus chrysotus	E00186	8599	9	0	0	0	702	0	916
Fundulidae	Fundulus heteroclitus	G01293	12304	13	657	0	891	0	744	0
Fundulidae	Fundulus parvipinnis	E00389	11368	13	0	660	0	666	705	0
Fundulidae	Lucania parva goodei	E01064	13730	16	657	675	876	747	731	911
Gasterosteidae	Apeltes quadracus	E00791	11199	12	657	0	891	0	744	0
Gasterosteidae	Culaea inconstans	E00368	12338	14	648	0	0	777	701	744
Gasterosteidae	Gasterosteus aculeatus	E01012	20181	21	657	732	891	930	744	984
Gasterosteidae	Gasterosteus wheatlandi	N15128	8456	10	795	0	876	0	741	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Gasterosteidae	Pungitius pungitius	G01460	10820	11	0	0	0	0	743	0
Gasterosteidae	Spinachia spinachia	G01491	10498	11	648	0	0	0	744	0
Gempylidae	Gempylus serpens	E00693	9797	13	0	0	0	0	708	917
Gempylidae	Nealotus tripes	E00287	6043	8	0	0	0	573	0	871
Gempylidae	Neoepinnula americana	E00471	5662	7	0	690	0	804	0	913
Gempylidae	Neoepinnula orientalis	E00518	6702	9	0	0	0	810	0	883
Gempylidae	Paradiplospinus gracilis	N15143	7281	9	810	0	873	0	733	0
Gempylidae	Ruvettus pretiosus	E00226	13794	16	657	0	891	597	744	0
Gerreidae	Eucinostomus argenteus	E00575	5749	7	0	0	0	717	736	903
Gerreidae	Eucinostomus gula	E00756	7604	9	0	0	0	702	733	920
Gerreidae	Eugerres plumieri	G01291	11242	14	655	0	891	0	744	0
Gerreidae	Gerres cinereus	E00292	11457	12	0	0	0	738	734	678
Gerreidae	Gerres longirostris	E00835	6053	8	0	693	0	690	0	0
Gerreidae	Gerres oyena	E00823	6770	8	0	693	0	699	0	0
Gerreidae	Ulaema lefroyi	G01507	8309	10	657	0	891	0	728	0
Gigantactinidae	Gigantactis ios	E01053	4539	6	0	675	0	750	743	916
Gigantactinidae	Gigantactis sp	N34852	6412	8	663	0	885	0	733	0
Gigantactinidae	Gigantactis vanhoeffeni	E00177	13239	15	657	684	891	0	744	898
Girellidae	Girella nigricans mezina	E00197	11742	13	759	0	822	0	671	0
Glaucosomatidae	Glaucosoma buergeri	N15231	7808	10	759	0	825	0	675	0
Glaucosomatidae	Glaucosoma hebraicum	G01300	16039	18	810	702	891	930	665	0
Gobiesocidae	Arcos sp	E00102	13747	16	759	684	871	765	742	733
Gobiesocidae	Diademichthys lineatus	G01276	8298	10	618	0	891	0	732	0
Gobiesocidae	Gobiesox maeandricus	G01302	8270	10	657	0	891	0	741	0
Gobiesocidae	Lepadichthys lineatus	E01080	3896	5	0	669	0	0	743	0
Gobiidae	Amblyeleotris guttata	E01043	8728	11	0	0	0	735	743	930
Gobiidae	Amblyeleotris gymnocephala	E00409	6038	8	0	0	0	720	743	907
Gobiidae	Amblyeleotris wheeleri	E01073	7397	9	0	0	0	750	710	931
Gobiidae	Amblygobius decussatus	E00533	2824	4	0	0	0	0	722	0
Gobiidae	Amblygobius phalaena	E00736	7217	10	0	0	0	585	646	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Gobiidae	Asterropteryx semipunctata	E01089	6719	8	0	0	0	753	741	0
Gobiidae	Bathygobius mystacium	E00104	6412	8	0	0	0	0	0	920
Gobiidae	Bollmannia communis	E00617	5108	5	0	0	0	0	734	905
Gobiidae	Cabillus lacertops	E01093	3915	5	0	0	0	774	742	941
Gobiidae	Caffrogobius caffer	E01056	6198	8	0	0	0	774	743	0
Gobiidae	Caffrogobius saldanha	E01057	6207	8	0	0	0	756	728	0
Gobiidae	Coryphopterus glaucofraenum	E00100	5342	7	0	0	0	726	0	0
Gobiidae	Coryphopterus personatus	E00405	4791	7	0	0	0	747	0	0
Gobiidae	Cryptocentrus sp	E00407	3883	5	0	663	0	0	0	872
Gobiidae	Ctenogobiops crocineus	E01097	5981	7	0	0	0	717	742	941
Gobiidae	Ctenogobius boleosoma	E00172	3520	5	0	0	0	0	0	780
Gobiidae	Elacatinus oceanops	E00108	11459	12	0	645	0	774	0	777
Gobiidae	Eviota albolineata	E01041	6182	8	0	672	0	753	0	932
Gobiidae	Eviota prasites	E01044	5506	7	0	0	0	753	743	811
Gobiidae	Eviota saipanensis	E00714	4913	6	0	0	0	663	0	801
Gobiidae	Evorthodus lyricus	E00171	6129	8	0	648	0	756	0	939
Gobiidae	Fusigobius duospilus	E00863	7305	9	0	0	0	0	743	940
Gobiidae	Fusigobius inframaculatus	E01076	4985	6	0	0	0	738	743	937
Gobiidae	Fusigobius neophytus	E00733	7031	10	0	675	0	753	669	834
Gobiidae	Gnatholepis anjerensis	E01075	4977	7	0	0	0	0	737	868
Gobiidae	Gnatholepis cauerensis	E00099	3361	5	0	660	0	0	644	0
Gobiidae	Gobiodon quinquestrigatus	E01085	6985	9	0	0	0	705	673	937
Gobiidae	Gobiosoma bosc	E00097	9910	10	0	591	0	756	0	0
Gobiidae	Istigobius decoratus	E01078	9124	11	0	0	0	0	743	937
Gobiidae	Istigobius ornatus	E01107	2776	3	0	675	0	0	0	931
Gobiidae	Lepidogobius lepidus	G01351	5076	6	0	0	0	0	744	0
Gobiidae	Lophogobius cyprinoides	E00508	6153	8	0	0	0	666	720	0
Gobiidae	Lythrypnus dalli	E00126	6746	9	0	663	0	723	0	786
Gobiidae	Oplopomus oplopomus	E01067	6654	8	0	0	0	759	0	882
Gobiidae	Paragobiodon modestus	E01098	8154	11	0	285	0	732	742	930

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Gobiidae	Periophthalmus kalolo	E00537	6876	9	0	663	0	762	680	809
Gobiidae	Priolepis cincta	E01077	5030	6	0	0	0	0	744	871
Gobiidae	Priolepis hipoliti	E00106	5717	7	0	0	0	0	0	893
Gobiidae	Psammogobius biocellatus	E00740	5797	8	0	0	0	0	671	751
Gobiidae	Risor ruber	E00107	10310	10	0	0	0	762	0	894
Gobiidae	Stonogobiops nematodes	N16820	2850	4	0	0	0	0	673	0
Gobiidae	Trimma caesiura	E01039	8870	11	0	0	0	750	0	748
Gobiidae	Trimma haima	E01084	5533	7	0	0	0	777	743	0
Gobiidae	Trimma okinawae	E00726	2759	4	0	0	0	687	0	0
Gobiidae	Valenciennea puellaris	E01096	5328	7	0	0	0	768	0	909
Gobiidae	Valenciennea strigata	E01094	4256	6	0	0	0	0	743	0
Gobiidae	Vanderhorstia ornatissima	E01088	6501	8	0	675	0	0	742	928
Grammatidae	Gramma loreto	E00280	14197	16	657	720	891	918	744	0
Grammatidae	Lipogramma anabantoides	E00211	6519	8	0	720	0	918	729	0
Grammatidae	Lipogramma trilineata	E00210	6532	8	0	720	0	918	720	0
Haemulidae	Anisotremus surinamensis	N17175	7479	9	804	0	864	0	715	0
Haemulidae	Anisotremus virginicus	E00200	9338	11	Ó	720	0	918	0	0
Haemulidae	Conodon nobilis	E00613	10862	13	0	690	0	804	696	909
Haemulidae	Haemulon aurolineatum	E00635	16270	20	798	690	891	798	702	905
Haemulidae	Haemulon plumierii	E00279	12545	15	810	720	891	774	717	0
Haemulidae	Haemulon sciurus	E00199	14796	18	657	720	891	918	735	0
Haemulidae	Haemulon vittatum	E00218	14636	17	657	0	873	918	733	0
Haemulidae	Orthopristis chrysoptera	E00607	15170	18	810	690	891	807	709	905
Haemulidae	Plectorhinchus chaetodonoides	E00857	12011	14	0	630	0	729	0	0
Haemulidae	Plectorhinchus vittatus	E00856	9448	12	0	630	0	729	0	906
Haemulidae	Pomadasys corvinaeformis	E00761	10420	14	651	630	0	759	0	0
Haemulidae	Xenistius californiensis	E00229	11494	14	0	720	0	918	704	0
Hapalogenyidae	Hapalogenys aya	M01722	4098	4	0	0	0	0	0	0
Hapalogenyidae	Hapalogenys kishinouyei	M01723	3627	4	0	0	0	0	0	0
Hapalogenyidae	Hapalogenys nigripinnis	M01724	4735	5	0	0	0	0	0	0

	······································			•						
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Harpagiferidae	Harpagifer antarcticus	G01524	_10362	11	657	0	891	0	744	0
Helostomatidae	Helostoma temminkii	G01315	8144	9	0	0	831	0	669	0
Hemiramphidae	Arrhamphus sclerolepis	G01209	7917	10	657	0	0	0	744	0
Hemiramphidae	Hemiramphus brasiliensis	E00098	10104	12	0	0	0	0	0	917
Hemiramphidae	Hyporhamphus affinis	E01068	5623	7	0	0	0	771	0	937
Hemiramphidae	Hyporhamphus dussumieri	E01086	3078	4	0	0	0	756	743	928
Hemiramphidae	Oxyporhamphus micropterus	E00397	8076	9	0	0	0	0	733	755
Hexagrammidae	Hexagrammos decagrammus	E00348	7318	10	0	657	0	774	699	0
Hexagrammidae	Hexagrammos lagocephalus otakii	E00363	13109	16	657	660	891	759	730	0
Hexagrammidae	Pleurogrammus monopterygius	E00367	6904	9	0	690	0	774	711	862
Hexagrammidae	Zaniolepis frenata	E00353	6326	9	0	666	0	702	709	868
Himantolophidae	Himantolophus albinares sagamius	E00656	16540	18	657	666	891	702	744	896
Hoplichthyidae	Hoplichthys gilberti	N17743	5272	7	570	0	828	0	679	0
Hoplichthyidae	Hoplichthys langsdorfii	N17745	5443	7	750	0	828	0	679	0
Howellidae	Howella brodiei	E00816	11083	12	0	702	0	930	0	932
Howellidae	Howella zina	N17756	5489	7	759	0	825	0	674	0
Hypoptychidae	Aulichthys japonicus	G01216	11602	12	645	0	891	0	744	0
Hypoptychidae	Hypoptychus dybowskii	G01335	10399	11	645	0	891	0	744	0
Icosteidae	lcosteus aenigmaticus	G01336	7173	9	612	0	0	0	744	0
Indostomidae	Indostomus crocodilus	N17863	5047	7	762	0	0	0	733	0
Indostomidae	Indostomus paradoxus	E01156	10345	11	810	0	0	0	733	0
Isonidae	lso sp	E00145	8043	10	753	0	840	0	744	0
Istiophoridae	Istiophorus platypterus	E00695	12698	12	0	0	0	786	0	877
Istiophoridae	Kajikia albida	E00681	7868	10	0	690	0	783	711	905
Istiophoridae	Makaira nigricans	E00697	11395	12	0	690	0	777	0	854
Istiophoridae	Makaira sp	E00692	8009	9	0	0	0	777	711	912
Istiophoridae	Tetrapturus angustirostris	N01741	7787	10	669	0	852	0	668	0
Kuhliidae	Kuhlia marginata	G01341	10248	12	654	0	849	0	744	0
Kuhliidae	Kuhlia mugil	E00712	16962	18	0	690	0	762	720	883
Kuhliidae	Kuhlia rupestris	E00957	12721	15	717	0	828	0	695	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Kurtidae	Kurtus gulliveri	E00188	16737	18	756	0	816	762	744	931
Kurtidae	Kurtus indicus	N17950	5074	7	789	0	816	0	673	0
Kyphosidae	Kyphosus cinerascens	N17975	7672	10	717	0	822	0	668	0
Kyphosidae	Kyphosus elegans	G01342	9674	11	657	0	891	0	731	0
Kyphosidae	Kyphosus incisor	E00202	6684	8	0	0	0	0	744	0
Kyphosidae	Kyphosus sectatrix	E00775	12318	14	0	630	0	771	0	928
Labridae	Anampses lineatus	E00932	8645	11	0	0	0	762	0	881
Labridae	Bodianus axillaris	E00947	9242	11	0	627	0	0	693	0
Labridae	Bodianus mesothorax	E00560	14044	17	657	654	891	711	694	0
Labridae	Cheilinus chlorourus	E00907	9227	12	0	0	0	756	705	929
Labridae	Cheilinus fasciatus	E00876	8639	11	0	669	0	777	0	0
Labridae	Cheilinus oxycephalus	E00901	6640	8	0	0	0	0	0	906
Labridae	Cheilio inermis	E00906	9477	11	0	0	0	0	709	940
Labridae	Cirrhilabrus katherinae	E00728	6057	8	0	654	0	0	693	882
Labridae	Cirrhilabrus punctatus	E00553	5794	7	0	0	0	762	681	0
Labridae	Clepticus parrae	E00015	14928	18	657	699	0	684	744	923
Labridae	Coris batuensis	N18137	4801	6	792	0	0	0	744	0
Labridae	Coris caudimacula	E00861	11177	14	0	645	0	0	714	873
Labridae	Coris formosa	E00912	8465	11	0	657	0	771	710	940
Labridae	Coris gaimard	E00091	11874	15	657	0	891	0	618	807
Labridae	Decodon puellaris	E00620	7367	9	0	0	0	729	696	0
Labridae	Diproctacanthus xanthurus	G01278	8556	10	657	0	858	0	744	0
Labridae	Epibulus insidiator	E00879	16078	19	657	639	861	771	708	794
Labridae	Gomphosus varius	E00085	11071	14	651	0	858	0	744	0
Labridae	Halichoeres bathyphilus bivittatus	E00637	13256	16	657	654	888	0	732	0
Labridae	Halichoeres biocellatus	E00727	5094	7	0	654	0	0	0	0
Labridae	Halichoeres iridis	E00928	6442	8	0	0	0	768	0	884
Labridae	Halichoeres margaritaceus	N18205	5528	7	774	0	0	0	744	0
Labridae	Hologymnosus doliatus	E00567	10593	13	0	654	0	750	711	915
Labridae	Labrichthys unilineatus	G01344	10143	12	657	0	858	0	744	0

Family	Conus Spories		Longth (ba)	charset	ENC1		GLVT	KIAA1220		DANY2
<u>ranniy</u>	Jenus species	E10L_10			CINCI				715	PANAZ
Labridae		C01245	9040	11	657	009	0		715	0
Labridae		G01345	9319	11	657	0	801		744	<u> </u>
Labridae		E00014	12305	15	057	0	840		744	860
	Macropharyngoaon bipartitus	E00895	/503	10	0	669	0	/65	/14	892
	Novaculicntnys taeniourus	E00926	12181	15	0	657	0	/68	696	924
Labridae	Oxychellinus celebicus	G01412	8510	10	657	0	861	0	744	0
Labridae	Oxycheilinus digramma	E00873	10757	13	0	669	0	765	0	870
Labridae	Oxycheilinus unifasciatus	E00721	7878	9	0	0	0	0	0	851
Labridae	Oxyjulis californica	G01413	7537	9	657	0	861	0	0	0
Labridae	Pseudocheilinus evanidus	E00944	6483	9	0	657	0	0	714	907
Labridae	Pseudocheilinus hexataenia	E00945	7019	9	0	660	0	0	693	929
Labridae	Pteragogus enneacanthus	G01457	6723	8	645	0	855	0	0	0
Labridae	Stethojulis balteata	E00089	4889	6	0	0	0	0	0	843
Labridae	Stethojulis strigiventer	E00908	11343	15	0	651	0	753	705	0
Labridae	Tautoga onitis	G01499	9257	11	657	0	0	0	744	0
Labridae	Tautogolabrus adspersus	G01500	10397	12	657	0	0	0	744	0
Labridae	Thalassoma amblycephalum	E00891	10041	13	0	669	0	0	711	915
Labridae	Thalassoma lunare	E00902	11967	15	0	645	0	0	693	912
Labridae	Thalassoma quinquevittatum	E00092	6872	9	0	0	0	0	720	806
Labridae	Wetmorella nigropinnata	E00948	11203	14	0	0	0	762	708	0
Labridae	Xyrichtys novacula martinicensis	E00016	18002	21	657	699	861	684	727	932
Labrisomidae	Labrisomus bucciferus	E00301	5621	7	0	0	0	915	706	882
Labrisomidae	Labrisomus guppyi multiporosus	E00300	8447	10	0	0	891	0	744	0
Labrisomidae	Labrisomus nigricinctus	E00302	4582	6	0	0	0	915	703	844
Labrisomidae	Malacoctenus aurolineatus	E00299	2229	3	0	669	0	0	0	873
Labrisomidae	Malacoctenus triangulatus	E00321	3751	4	0	0	0	0	0	882
Labrisomidae	Paraclinus marmoratus	E00309	4124	5	0	0	0	915	0	859
Labrisomidae	Starksia atlantica	E00304	5512	7	0	0	0	915	658	677
Labrisomidae	Starksia fasciata	E00303	7567	9	0	0	0	915	711	912
Labrisomidae	Starksia ocellata	E00318	4469	6	0	0	0	915	0	933
••••••••••••••••••••••••••••••••••••••										****

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Lactariidae	Lactarius lactarius Fiji	M01673	3453	4	0	0	0	0	0	0
Lactariidae	Lactarius lactarius Qatar	M01593	_4041	5	0	0	0	0	0	0
Lateolabracidae	Lateolabrax japonicus	E01130	12539	12	0	702	0	927	744	0
Latridae	Latridopsis forsteri	M01594	4790	5	0	0	0	0	0	0
Latridae	Latris lineata	M01595	4794	5	0	0	0	0	0	0
Leiognathidae	Gazza minuta	G01298	8150	10	657	0	891	0	711	0
Leiognathidae	Leiognathus equulus	G01348	8522	11	657	0	891	0	726	0
Leptobramidae	Leptobrama muelleri	E01150	6470	8	0	0	0	777	0	0
Lethrinidae	Gymnocranius grandoculis	E00952	7334	9	0	630	0	747	0	0
Lethrinidae	Lethrinus atkinsoni	E00750	7416	10	0	630	0	702	0	0
Lethrinidae	Lethrinus erythropterus	N18731	7589	9	810	0	870	0	0	0
Lethrinidae	Lethrinus harak	E00905	18169	21	657	630	870	567	731	916
Lethrinidae	Lethrinus obsoletus	E00910	14297	15	0	630	0	747	720	924
Lethrinidae	Lethrinus olivaceus	E00751	11020	13	0	630	0	705	0	788
Lethrinidae	Monotaxis grandoculis	G01379	11352	12	657	0	861	0	744	0
Liparidae	Careproctus melanurus	E00422	5235	7	0	690	0	765	739	912
Liparidae	Careproctus rastrinus	E00255	6920	8	0	0	0	918	717	0
Liparidae	Liparis gibbus	E00224	9360	11	0	0	8 91	0	744	922
Liparidae	Liparis pulchellus	E00225	5675	7	0	717	0	0	720	0
Liparidae	Paraliparis beani	E00458	3871	5	0	690	0	807	0	895
Liparidae	Paraliparis copei	E00453	6908	9	0	690	0	747	737	905
Liparidae	Paraliparis hystrix	E00454	8881	11	0	690	891	783	712	883
Liparidae	Rhinoliparis barbulifer	E00262	5284	7	0	705	0	0	710	0
Lobotidae	Lobotes pacificus surinamensis	G01359	9710	12	801	0	885	0	744	0
Lophiidae	Lophiodes reticulatus	E00625	8318	11	0	636	0	0	731	613
Lophiidae	Lophius americanus	E00578	16809	19	657	660	891	0	743	875
Lophiidae	Lophius gastrophysus	E01119	13495	17	657	675	0	732	743	894
Lutjanidae	Aphareus furca	E00563	13687	16	0	690	0	807	723	912
Lutjanidae	Aprion virescens	E00828	8178	10	0	0	0	765	0	0
Lutjanidae	Apsilus dentatus	E00770	8017	10	0	630	0	0	0	877

Table A4a. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Lutjanidae	Lutjanus biguttatus	E00569	10110	12	657	690	848	0	744	866
Lutjanidae	Lutjanus campechanus	E00592	9830	12	0	690	0	804	693	906
Lutjanidae	Lutjanus griseus	N20115	7237	9	581	0	876	0	744	0
Lutjanidae	Lutjanus mahogoni	G01362	10416	12	657	0	891	0	744	0
Lutjanidae	Macolor niger	E00939	9071	11	0	0	0	738	0	858
Lutjanidae	Ocyurus chrysurus	E00283	13831	16	657	720	891	918	738	0
Lutjanidae	Pristipomoides aquilonaris	E00594	10332	13	0	690	0	798	696	931
Lutjanidae	Pristipomoides auricilla	E00746	6210	8	0	630	0	765	0	0
Lutjanidae	Rhomboplites aurorubens	E00593	13759	16	810	690	884	804	730	902
Luvaridae	Luvarus imperialis	E00509	15760	19	657	654	825	756	744	0
Malacanthidae	Caulolatilus intermedius	E00595	8981	11	0	690	0	789	699	0
Malacanthidae	Caulolatilus princeps	E00231	11865	15	657	708	888	918	717	0
Malacanthidae	Malacanthus plumieri	E00774	8060	10	0	0	891	0	735	0
Mastacembelidae	Macrognathus siamensis	G01367	8287	10	657	0	891	0	744	0
Mastacembelidae	Mastacembelus brachyrhinus	N01727	6948	8	744	0	891	0	744	0
Mastacembelidae	Mastacembelus cunningtoni	N20638	7046	8	756	0	891	0	744	0
Mastacembelidae	Mastacembelus erythrotaenia	E01157	5328	7	0	0	0	885	744	0
Mastacembelidae	Mastacembelus niger	N20658	7640	9	810	0	891	0	744	0
Melanocetidae	Melanocetus johnsonii	E00657	12119	14	0	678	0	711	731	885
Melanocetidae	Melanocetus murrayi	E00477	8829	10	0	678	0	738	741	905
Melanotaeniidae	Melanotaenia sp	N35702	6890	8	810	0	0	0	0	0
Melanotaeniidae	Melanotaenia splendida	E00179	10979	13	0	0	0	753	0	929
Melanotaeniidae	Melanotaenia trifasciata	E00178	7620	9	0	0	0	768	657	0
Melanotaeniidae	Rhadinocentrus ornatus	E00183	8085	9	0	0	0	0	0	0
Menidae	Mene maculata	E01131	14538	17	756	0	819	918	744	0
Microdesmidae	Cerdale floridana	E00113	5251	7	0	642	0	0	0	0
Microdesmidae	Gunnellichthys monostigma	E00545	4244	6	0	657	0	0	0	855
Microdesmidae	Microdesmus bahianus	E00112	6294	8	0	0	0	0	0	916
Microdesmidae	Microdesmus longipinnis	E00388	7384	9	0	675	0	705	0	891
Microdesmidae	Nemateleotris magnifica	N20888	3449	4	0	0	0	0	0	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Microdesmidae	Ptereleotris evides	E00565	10142	12	0	0	0	750	0	819
Microdesmidae	Ptereleotris microlepis	E00554	6773	9	0	681	0	681	0	0
Molidae	Masturus lanceolatus	E00651	10906	12	657	666	852	0	669	0
Molidae	Mola mola	E00683	12859	14	810	0	891	0	732	0
Molidae	Ranzania laevis	G01463	10882	12	771	0	828	0	690	0
Monacanthidae	Acreichthys tomentosus	N21168	5898	7	810	0	879	0	744	0
Monacanthidae	Aluterus scriptus	E00316	8934	9	0	0	0	849	723	0
Monacanthidae	Amanses scopas	E00536	7667	7	0	0	0	0	727	796
Monacanthidae	Cantherhines pardalis pullus	E00887	13701	14	810	0	870	729	727	0
Monacanthidae	Oxymonacanthus longirostris	E00914	7920	8	0	663	0	732	0	0
Monacanthidae	Paraluteres prionurus	E00913	10156	10	810	0	882	0	727	0
Monacanthidae	Pervagor janthinosoma	N21229	7625	9	810	0	888	0	744	0
Monacanthidae	Pervagor nigrolineatus	N21232	5912	7	810	0	842	0	744	0
Monacanthidae	Stephanolepis hispidus	E00646	10631	13	657	0	879	0	744	860
Monodactylidae	Monodactylus argenteus	E00827	11839	12	0	0	0	840	744	0
Monodactylidae	Monodactylus sebae	N21267	8411	10	750	0	867	0	744	0
Moronidae	Dicentrarchus labrax	E01132	13167	14	0	699	0	930	744	0
Moronidae	Morone americana	E00017	4648	6	0	0	0	0	0	844
Moronidae	Morone chrysops	E00992	15777	17	657	0	891	930	738	0
Moronidae	Morone mississippiensis	E00087	11851	14	810	0	875	0	741	838
Moronidae	Morone saxatilis	G01380	9541	12	756	0	891	0	744	0
Mugilidae	Chelon macrolepis	E00845	8599	11	0	0	0	0	0	877
Mugilidae	Crenimugil crenilabis	E00846	12826	14	0	645	0	765	719	0
Mugilidae	Liza richardsonii	E00808	12339	15	0	0	0	0	690	893
Mugilidae	Moolgarda engeli	E00739	6506	8	0	0	0	0	0	435
Mugilidae	Mugil cephalus	E00049	13859	15	648	0	891	774	744	0
Mugilidae	Mugil curema	E00031	15184	16	657	0	891	753	705	0
Mugilidae	Mugil trichodon	E00765	10230	11	0	654	0	0	702	0
Mugilidae	Myxus capensis	E00809	9832	10	0	0	0	0	722	912
Mugilidae	Neomyxus leuciscus	E00742	10501	12	0	654	0	0	714	760

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Mugilidae	Valamugil buchanani	E00847	12275	15	0	669	0	753	706	906
Mullidae	Mulloidichthys flavolineatus	E00844	9135	11	714	654	0	0	695	931
Mullidae	Mullus auratus	E00634	10617	12	0	654	0	741	723	0
Mullidae	Parupeneus barberinus	E00899	8131	10	0	657	734	0	744	941
Mullidae	Parupeneus ciliatus	E00840	5965	8	0	645	0	0	0	908
Mullidae	Parupeneus trifasciatus	N21710	5845	7	786	0	734	0	744	0
Mullidae	Pseudupeneus maculatus	E00773	9043	11	0	654	734	0	671	0
Mullidae	Upeneus moluccensis	E00825	7964	10	0	669	0	0	729	788
Mullidae	Upeneus parvus	N21732	3287	4	0	0	0	0	668	0
Nandidae	Nandus andrewi	N22312	8474	10	810	0	891	0	735	0
Nandidae	Nandus nandus	G01388	11524	13	810	0	891	0	672	0
Nandidae	Nandus nebulosus	N22314	7688	9	810	0	891	0	744	0
Nematistiidae	Nematistius pectoralis	E01146	12623	14	750	0	734	0	744	0
Nemipteridae	Pentapodus caninus	G01427	8879	11	657	0	876	0	744	0
Nemipteridae	Scolopsis bilineata	E00028	14791	16	657	0	882	0	744	849
Nemipteridae	Scolopsis frenata	E00911	6514	8	0	0	0	756	711	881
Nemipteridae	Scolopsis margaritifera	G01478	7404	9	657	0	879	0	744	0
Niphonidae	Niphon spinosus	G01398	4377	5	753	0	891	0	705	0
Nomeidae	Cubiceps baxteri	G01271	9684	12	657	0	891	0	744	0
Nomeidae	Cubiceps gracilis	E00672	8634	11	0	630	0	759	0	885
Nomeidae	Cubiceps pauciradiatus	E00667	9277	9	0	0	0	723	733	873
Nomeidae	Psenes cyanophrys	E00666	6230	6	0	0	0	0	0	0
Nomeidae	Psenes maculatus	N23089	7094	9	747	0	828	0	675	0
Nototheniidae	Aethotaxis mitopteryx	G01528	7979	9	0	0	0	0	744	0
Nototheniidae	Dissostichus eleginoides	G01279	12707	14	597	0	891	0	744	0
Nototheniidae	Gobionotothen gibberifrons	G01529	8961	10	657	0	0	0	729	0
Nototheniidae	Notothenia coriiceps	G01526	9628	10	657	0	0	0	744	0
Nototheniidae	Pagothenia borchgrevinki	G01527	9352	10	0	0	882	0	718	0
Nototheniidae	Patagonotothen tessellata	G01530	10915	12	0	0	891	0	744	0
Odacidae	Haletta semifasciata	G01312	9038	11	654	0	876	0	744	0

Table A4a. Continueu										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Odontobutidae	Odontobutis potamophila	E01137	12389	14	654	0	891	0	738	0
Odontobutidae	Perccottus glenii	G01429	9285	11	633	0	891	0	744	0
Ogcocephalidae	Dibranchus tremendus	E00975	8668	11	0	675	0	735	743	896
Ogcocephalidae	Halieutichthys aculeatus	E01122	5969	8	0	0	885	747	703	0
Ogcocephalidae	Ogcocephalus parvus nasutus	E00610	11181	14	657	681	891	714	738	886
Ogcocephalidae	Ogcocephalus radiatus	E00641	3592	4	0	0	0	0	0	766
Oneirodidae	Bertella idiomorpha	E00386	7368	8	0	681	0	0	743	909
Oneirodidae	Dolopichthys sp	E00484	3002	4	0	681	0	0	0	854
Oneirodidae	Oneirodes bulbosus	E00176	5086	7	0	684	0	0	744	902
Oneirodidae	Oneirodes macrosteus	E00655	7815	10	657	0	0	678	744	706
Ophidiidae	Bassogigas gillii	E00481	5439	7	0	690	0	0	687	0
Ophidiidae	Brotula barbata	E00629	8900	12	0	690	0	0	711	764
Ophidiidae	Brotula multibarbata	E00883	12654	16	657	630	891	744	744	0
Ophidiidae	Brotulotaenia crassa	E00659	7913	10	0	690	0	0	714	0
Ophidiidae	Brotulotaenia nigra	E00817	8794	11	0	630	0	762	0	793
Ophidiidae	Chilara taylori	E00260	6335	8	0	720	0	918	744	0
Ophidiidae	Dicrolene introniger	E00480	8819	11	651	690	0	0	686	918
Ophidiidae	Genypterus blacodes	E00241	3596	4	0	0	0	0	729	0
Ophidiidae	Lamprogrammus niger	E00275	11903	13	678	705	882	0	714	0
Ophidiidae	Lepophidium brevibarbe	E00758	5469	7	0	630	0	768	0	0
Ophidiidae	Lepophidium jeannae	E00621	4709	6	0	0	0	0	694	691
Ophidiidae	Lepophidium profundorum	E00248	3341	4	0	0	0	0	0	0
Ophidiidae	Neobythites gilli	E00612	7830	10	0	690	0	0	690	0
Ophidiidae	Ophidion holbrookii	E01033	7171	9	0	0	0	744	705	919
Ophidiidae	Ophidion josephi	E00648	6546	8	0	0	0	798	717	894
Ophidiidae	Ophidion robinsi	E01007	6730	8	0	606	0	765	0	871
Ophidiidae	Petrotyx sanguineus	E00206	4716	6	0	0	0	0	459	0
Opistognathidae	Lonchopisthus micrognathus	E00603	6548	8	0	0	0	723	705	0
Opistognathidae	Opistognathus aurifrons	E00216	9008	11	657	0	876	0	744	0
Opistognathidae	Opistognathus maxillosus	E00207	6793	8	0	0	0	0	720	0
	······································									

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Oplegnathidae	Oplegnathus punctatus	G01405	12420	13	780	0	879	0	739	0
Osphronemidae	Betta splendens	G01226	9892	10	657	0	891	0	744	0
Osphronemidae	Trichopodus pectoralis	N24415	4860	7	750	0	0	0	668	0
Ostraciidae	Acanthostracion quadricornis	E00760	5464	6	0	0	0	0	0	0
Ostraciidae	Ostracion cubicus	E00588	12421	15	657	633	846	717	744	0
Ostraciidae	Rhinesomus triqueter	G01469	10814	13	657	0	863	0	744	0
Ostracoberycidae	Ostracoberyx dorygenys	N24448	6883	9	756	0	828	0	671	0
Parabembridae	Parabembras curtus	N24483	6893	9	750	0	822	0	675	0
Paralichthyidae	Ancylopsetta ommata	E00001	8842	10	0	0	0	699	0	763
Paralichthyidae	Citharichthys arctifrons	E00043	6688	8	0	0	0	756	702	823
Paralichthyidae	Citharichthys sordidus	E00446	12907	14	810	0	891	774	714	931
Paralichthyidae	Cyclopsetta chittendeni	E00597	10244	12	0	654	0	756	708	0
Paralichthyidae	Etropus crossotus	E00647	8021	9	0	0	0	909	693	0
Paralichthyidae	Etropus microstomus	E00047	5197	5	0	0	0	0	695	0
Paralichthyidae	Gastropsetta frontalis	E00640	2345	3	0	0	0	741	485	0
Paralichthyidae	Paralichthys albigutta	E01171	8241	9	0	0	0	918	744	0
Paralichthyidae	Paralichthys californicus	E00020	8905	10	0	0	0	732	729	909
Paralichthyidae	Paralichthys dentatus	N24591	7812	9	810	0	891	0	744	0
Paralichthyidae	Pseudorhombus pentophthalmus	E00077	10302	11	0	0	0	765	711	819
Paralichthyidae	Syacium micrurum	E00633	9035	11	0	654	0	738	711	0
Paralichthyidae	Xystreurys liolepis	E00021	9760	10	0	0	0	744	706	911
Pegasidae	Eurypegasus draconis	N24699	2094	3	750	0	0	0	0	0
Pempheridae	Parapriacanthus ransonneti	E00923	11086	13	0	630	0	753	0	886
Pempheridae	Pempheris oualensis	E00718	9245	11	0	690	0	0	0	887
Pempheridae	Pempheris schomburgkii	E00213	10586	12	810	717	891	0	736	0
Pempheridae	Pempheris schwenkii	N01628	5322	7	747	0	0	0	654	0
Pempheridae	Pempheris vanicolensis	E00886	8350	10	0	630	0	0	0	842
Pentacerotidae	Histiopterus typus	N24730	6890	9	747	0	828	0	675	0
Pentacerotidae	Paristiopterus labiosus	M01629	3261	4	0	0	0	0	0	0
Pentacerotidae	Pentaceros japonicus	N24735	7793	10	747	0	825	0	675	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Pentacerotidae	Pentaceros pectoralis	N01736	5434	7	753	0	891	0	744	0
Pentacerotidae	Pentaceros wheeleri	N01737	7434	9	750	0	861	0	710	0
Pentacerotidae	Zanclistius elevatus	M01631	2901	3	0	0	0	0	0	0
Percichthyidae	Gadopsis marmoratus	E01144	13223	14	657	0	891	918	744	0
Percichthyidae	Maccullochella peelii	G01365	11015	13	657	0	891	0	744	0
Percichthyidae	Macquaria ambigua	G01366	10488	13	762	0	816	0	633	0
Percichthyidae	Macquaria colonorum	G01431	10574	13	762	0	825	0	668	0
Percichthyidae	Macquaria novemaculeata	G01432	10525	13	759	0	810	0	673	0
Percichthyidae	Nannoperca australis	G01389	11969	14	762	0	852	0	668	0
Percichthyidae	Percichthys trucha	G01430	9417	9	0	0	0	930	744	0
Percidae	Ammocrypta beanii	E00187	8350	10	0	684	0	714	0	930
Percidae	Ammocrypta meridiana	E00148	8201	10	0	0	0	0	743	782
Percidae	Ammocrypta pellucida	E00149	9339	11	0	0	0	0	743	790
Percidae	Crystallaria asprella	E00153	8415	10	0	0	0	699	732	894
Percidae	Etheostoma atripinne	G01290	7713	9	810	0	831	0	0	0
Percidae	Etheostoma juliae	E00168	11455	14	0	684	0	696	743	911
Percidae	Etheostoma simoterum	E00152	12189	15	657	0	831	717	733	909
Percidae	Etheostoma vitreum	E00147	11025	13	0	0	0	0	743	901
Percidae	Etheostoma zonale	E01111	13171	16	648	675	0	750	0	915
Percidae	Gymnocephalus cernuus	E00140	7525	10	657	0	0	0	739	693
Percidae	Gymnocephalus schraetser	E00141	6323	8	657	0	0	693	744	920
Percidae	Perca flavescens	E00391	14692	16	657	0	840	669	743	858
Percidae	Perca fluviatilis	G01428	10413	11	648	0	0	924	744	0
Percidae	Percina caprodes	E01054	15273	18	654	675	891	756	0	906
Percidae	Percina nigrofasciata	E00154	7519	9	0	0	0	711	743	0
Percidae	Percina phoxocephala	E00150	9105	11	0	0	0	717	740	898
Percidae	Romanichthys valsanicola	E00143	9564	12	0	657	0	696	0	895
Percidae	Sander vitreus	E01109	10398	10	0	675	0	756	0	910
Percidae	Zingel streber	E00144	5447	7	657	0	0	0	744	0
Percidae	Zingel zingel	E00142	6114	8	0	648	0	0	742	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Perciliidae	Percilia irwini	N24981	6918	9	762	0	765	0	676	0
Percophidae	Acanthaphritis unoorum	N24985	5579	7	750	0	0	0	677	0
Peristediidae	Peristedion ecuadorense	E00456	6094	7	0	0	0	696	726	892
Peristediidae	Peristedion gracile	E01029	2905	4	0	0	0	0	0	0
Peristediidae	Peristedion truncatum	E00450	3441	5	0	642	0	717	0	0
Phallostethidae	Phenacostethus smithi	E00398	7945	10	810	0	818	0	743	0
Pholidae	Pholis crassispina	G01437	12482	14	657	0	891	0	744	0
Pholidae	Pholis ornata	N01732	8528	10	810	0	891	0	734	0
Pholidichthyidae	Pholidichthys leucotaenia	E00251	11101	12	657	720	891	0	699	0
Pinguipedidae	Parapercis clathrata	E00707	10851	13	0	0	873	678	738	836
Pinguipedidae	Parapercis hexophtalma	E01083	11528	14	0	675	810	780	725	910
Pinguipedidae	Parapercis punctulata	E01091	7008	9	0	0	0	750	743	871
Platycephalidae	Platycephalus indicus	N25405	6719	9	741	0	822	0	528	0
Platycephalidae	Rogadius asper	N25418	6352	9	750	0	804	0	671	0
Platycephalidae	Sunagocia arenicola	E00708	5403	7	0	666	0	717	0	877
Platycephalidae	Thysanophrys chiltonae	E00864	8747	10	0	693	0	711	0	0
Plesiopidae	Plesiops coeruleolineatus	E00855	15452	18	753	630	861	753	696	846
Plesiopidae	Plesiops melas	G01442	8238	10	609	0	861	0	744	0
Pleuronectidae	Atheresthes evermanni	E00055	8437	8	0	0	0	771	0	895
Pleuronectidae	Embassichthys bathybius	E00064	11340	12	0	0	0	762	641	825
Pleuronectidae	Eopsetta jordani	E00444	14474	17	0	654	0	762	711	890
Pleuronectidae	Glyptocephalus zachirus	E00416	10353	12	0	0	0	771	711	0
Pleuronectidae	Hippoglossoides elassodon	E00424	12527	13	0	0	0	774	708	0
Pleuronectidae	Hippoglossus hippoglossus	E00689	10279	12	0	654	0	0	0	774
Pleuronectidae	Hypsopsetta guttulata	E00022	9133	9	0	0	0	753	693	0
Pleuronectidae	Isopsetta isolepis	E00018	6603	8	0	0	0	0	708	745
Pleuronectidae	Lepidopsetta bilineata	E00438	16335	19	804	654	882	780	691	0
Pleuronectidae	Limanda limanda	E00690	7013	8	0	0	0	0	705	0
Pleuronectidae	Lyopsetta exilis	E01173	6171	7	0	0	0	0	744	0
Pleuronectidae	Microstomus pacificus	E00433	10016	12	0	654	0	780	675	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Pleuronectidae	Parophrys vetulus	E00445	12033	14	0	654	0	765	705	0
Pleuronectidae	Platichthys stellatus	E00026	7842	9	0	699	0	0	705	788
Pleuronectidae	Pleuronectes platessa	E00053	14871	17	0	0	891	756	744	906
Pleuronectidae	Psettichthys melanostictus	E00025	9364	11	0	0	0	741	707	913
Pleuronectidae	Pseudopleuronectes americanus	E00035	15563	18	657	696	891	750	744	846
Poeciliidae	Belonesox belizanus	E01052	10182	11	0	675	0	765	713	861
Poeciliidae	Gambusia affinis	G01296	11403	12	657	0	891	0	744	0
Poeciliidae	Heterandria formosa	E00185	10113	11	0	684	0	762	0	863
Poeciliidae	Poecilia latipinna reticulata	E01065	12149	14	657	675	891	759	0	897
Poeciliidae	Poeciliopsis elongata	N01734	6863	8	783	0	876	0	734	0
Poecilopsettidae	Poecilopsetta beanii	E00448	5472	7	0	654	0	735	672	0
Poecilopsettidae	Poecilopsetta plinthus	E00073	9752	10	0	0	0	753	0	889
Polycentridae	Monocirrhus polyacanthus	G01377	8420	10	657	0	852	0	738	0
Polycentridae	Polycentropsis abbreviata	N26006	8369	10	810	0	891	0	744	0
Polycentridae	Polycentrus schomburgkii	G01444	8382	10	657	0	891	0	729	0
Polynemidae	Eleutheronema rhadinum	N26015	7791	10	756	0	819	0	673	0
Polynemidae	Eleutheronema tetradactylum	E01154	7961	9	0	0	0	918	0	0
Polynemidae	Leptomelanosoma indicum	E00842	11242	14	0	630	0	765	0	864
Polynemidae	Polydactylus octonemus	E00606	9992	13	0	627	0	804	717	911
Polynemidae	Polydactylus sextarius	N26043	5532	7	0	0	813	0	675	0
Polynemidae	Polydactylus virginicus	E00217	11602	13	0	0	0	918	714	0
Polyprionidae	Polyprion americanus	E00242	7677	9	0	0	0	0	711	0
Polyprionidae	Polyprion oxygeneios	M01632	4716	5	0	0	0	0	0	0
Polyprionidae	Stereolepis gigas	E00227	14211	17	651	705	891	918	744	0
Pomacanthidae	Apolemichthys trimaculatus	E00839	9202	12	0	630	0	762	0	906
Pomacanthidae	Centropyge bicolor	E00550	11381	15	657	687	0	795	660	883
Pomacanthidae	Centropyge loricula	E00284	9087	10	0	720	0	0	720	0
Pomacanthidae	Centropyge nox	E00542	8384	11	0	0	0	792	699	882
Pomacanthidae	Chaetodontoplus melanosoma	G01244	8178	10	657	0	876	0	732	0
Pomacanthidae	Holacanthus ciliaris	E00209	6815	8	0	720	0	918	744	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Pomacanthidae	Holacanthus passer	E00282	12494	15	657	720	873	918	732	0
Pomacanthidae	Holacanthus tricolor	E00198	7349	9	0	705	0	0	731	0
Pomacanthidae	Pomacanthus arcuatus	E00754	8027	10	0	630	0	777	0	0
Pomacanthidae	Pomacanthus imperator	E00710	9192	12	0	690	0	762	711	938
Pomacanthidae	Pomacanthus semicirculatus	E00849	10414	14	0	5 8 2	0	771	720	814
Pomacanthidae	Pomacanthus zonipectus	G01448	9113	11	657	0	891	0	744	0
Pomacanthidae	Pygoplites diacanthus	E00534	10507	13	0	0	0	807	740	0
Pomacentridae	Abudefduf saxatilis	E00820	14973	18	657	0	870	768	712	0
Pomacentridae	Abudefduf sexfasciatus	E00881	12145	15	0	630	0	735	717	891
Pomacentridae	Abudefduf vaigiensis	E00890	12132	13	0	0	0	747	714	0
Pomacentridae	Acanthochromis polyacanthus	E00466	8743	10	0	690	0	789	0	0
Pomacentridae	Amblyglyphidodon leucogaster	E00529	3808	4	0	0	0	0	0	0
Pomacentridae	Amphiprion clarkii	E00196	4604	6	0	0	0	0	0	0
Pomacentridae	Amphiprion ocellaris	E00193	7717	7	0	0	0	0	0	0
Pomacentridae	Azurina hirundo	E00580	9629	12	0	690	0	798	723	886
Pomacentridae	Chromis atripectoralis	E00238	9353	11	0	711	0	753	708	0
Pomacentridae	Chromis cyanea	E00201	13033	15	657	717	891	918	735	0
Pomacentridae	Chromis dimidiata	E00851	9724	12	0	630	0	762	0	930
Pomacentridae	Chrysiptera taupou	E00564	9950	13	0	690	0	801	702	747
Pomacentridae	Dascyllus aruanus	E00700	11886	14	0	690	0	0	714	885
Pomacentridae	Dascyllus carneus	E00862	11899	14	0	630	0	723	0	895
Pomacentridae	Dascyllus reticulatus	E00724	8549	10	0	690	0	0	0	882
Pomacentridae	Dascyllus trimaculatus	E00865	6439	7	0	0	0	729	0	0
Pomacentridae	Dischistodus perspicillatus	E00464	8931	11	0	690	0	804	0	89 9
Pomacentridae	Hypsypops rubicundus	E00459	7285	10	0	690	0	804	684	0
Pomacentridae	Lepidozygus tapeinosoma	E00929	7795	10	0	630	0	735	0	0
Pomacentridae	Microspathodon bairdii	G01375	8331	10	636	0	891	0	744	0
Pomacentridae	Microspathodon chrysurus	E00772	10751	13	0	630	0	771	0	751
Pomacentridae	Neoglyphidodon melas	E00465	9828	12	0	0	0	801	0	936
Pomacentridae	Neoglyphidodon polyacanthus	E00285	6455	8	0	720	0	918	0	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Pomacentridae	Neopomacentrus cyanomos	E00933	8888	11	0	0	0	741	0	0
Pomacentridae	Parma microlepis	E00286	5332	7	0	720	0	918	0	720
Pomacentridae	Plectroglyphidodon dickii	E00572	13722	16	0	0	0	0	705	887
Pomacentridae	Plectroglyphidodon johnstonianus	E00722	7987	10	0	0	0	0	0	884
Pomacentridae	Pomacentrus brachialis	E00239	9865	12	0	0	0	918	708	0
Pomacentridae	Pomacentrus pavo	E00729	12503	15	0	690	0	0	670	0
Pomacentridae	Pomacentrus spilotoceps	E00557	6421	9	0	690	0	798	714	866
Pomacentridae	Pomachromis richardsoni	E00559	8319	11	0	690	0	807	699	902
Pomacentridae	Stegastes albifasciatus	E00713	6612	9	0	0	0	765	710	0
Pomacentridae	Stegastes diencaeus	E00219	6060	8	0	720	0	918	744	0
Pomacentridae	Stegastes fuscus	E00203	12679	15	645	0	872	918	744	881
Pomacentridae	Stegastes partitus	E00204	4367	6	0	0	0	0	0	0
Pomatomidae	Pomatomus saltatrix	E00516	16569	18	810	0	876	807	709	929
Priacanthidae	Heteropriacanthus cruentatus	E00570	14367	17	810	0	882	792	739	893
Priacanthidae	Priacanthus arenatus	E00618	14657	18	753	0	822	786	687	909
Priacanthidae	Pristigenys alta	E00252	12492	14	753	0	825	930	744	0
Pristolepididae	Pristolepis fasciata	N26580	7608	9	753	0	870	0	744	0
Pristolepididae	Pristolepis sp	N36627	8543	10	810	0	891	0	744	0
Psettodidae	Psettodes belcheri	E01180	6046	7	0	0	0	918	0	0
Psettodidae	Psettodes erumei	E01165	12034	14	0	0	819	918	744	0
Pseudaphritidae	Pseudaphritis urvillii	G01453	8567	9	657	0	0	0	744	0
Pseudochromidae	Congrogadus subducens	G01262	8360	10	621	0	876	0	744	0
Pseudochromidae	Halidesmus scapularis	E00793	10231	13	0	630	0	768	705	904
Pseudochromidae	Labracinus cyclophthalmus	G01343	11328	12	657	0	891	0	744	0
Pseudochromidae	Natalichthys sam	E00589	7891	10	0	690	0	807	717	928
Pseudochromidae	Ogilbyina novaehollandiae	G01403	8345	10	609	0	891	0	740	0
Pseudochromidae	Pholidochromis cerasina	G01436	8319	10	657	0	879	0	744	0
Pseudochromidae	Pseudochromis cyanotaenia	E00706	7668	10	0	690	0	762	660	0
Pseudochromidae	Pseudochromis fridmani	N26709	8561	10	810	0	873	0	744	0
Pseudochromidae	Pseudochromis jamesi	E00535	6957	9	0	690	0	795	696	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Pseudochromidae	Pseudoplesiops revellei	E00745	4311	6	0	0	0	0	684	0
Pseudomugilidae	Pseudomugil gertrudae	E00182	14736	18	810	0	819	771	660	720
Pseudomugilidae	Pseudomugil signifer	E00184	11998	15	756	684	804	0	744	0
Psychrolutidae	Cottunculus thomsonii	E00963	2374	3	0	0	0	0	0	0
Psychrolutidae	Dasycottus setiger	E00288	5136	6	0	0	0	0	0	0
Psychrolutidae	Malacocottus zonurus	E00253	8212	10	0	720	0	0	717	0
Psychrolutidae	Psychrolutes phrictus	E00276	5502	7	0	720	0	0	734	0
Rachycentridae	Rachycentron canadum	E00468	15775	17	804	0	891	918	744	888
Rhombosoleidae	Oncopterus darwinii	E01184	6659	7	0	0	0	918	0	0
Rhombosoleidae	Rhombosolea leporina	E01166	2980	3	0	0	0	0	0	0
Rhombosoleidae	Rhombosolea plebeia	E01167	5378	6	0	0	0	720	744	0
Rhombosoleidae	Rhombosolea tapirina	E01168	3805	4	0	0	0	0	744	0
Samaridae	Plagiopsetta glossa	E00074	7559	8	0	663	0	789	717	0
Samaridae	Samariscus japonicus	E00072	7912	8	0	0	0	891	0	855
Samaridae	Samariscus latus	N27771	2733	3	0	0	810	0	0	0
Samaridae	Samariscus xenicus	E00078	7553	8	0	0	0	786	612	0
Scaridae	Calotomus carolinus	N27783	7195	9	753	0	828	0	635	0
Scaridae	Cetoscarus bicolor	E00566	14113	17	624	0	882	756	744	0
Scaridae	Chlorurus gibbus	E00561	6813	9	0	654	0	762	696	676
Scaridae	Chlorurus sordidus	E00837	14642	16	657	0	855	0	671	0
Scaridae	Cryptotomus roseus	N27805	7128	9	753	0	810	0	652	0
Scaridae	Hipposcarus longiceps	E00737	4541	6	0	0	0	0	0	0
Scaridae	Leptoscarus vaigiensis	E00877	8427	11	0	669	0	780	713	0
Scaridae	Scarus ghobban	E00878	9678	11	0	657	0	0	716	863
Scaridae	Scarus globiceps	N27829	4729	6	711	0	0	0	652	0
Scaridae	Scarus iseri	E00013	7345	9	0	696	0	675	711	730
Scaridae	Scarus niger	E00875	11274	14	0	0	810	0	705	898
Scaridae	Scarus quoyi	E00872	7432	10	0	669	0	762	684	916
Scaridae	Scarus rubroviolaceus	E00874	12027	13	0	669	0	0	710	0
Scaridae	Sparisoma aurofrenatum	E00008	5465	7	0	0	0	0	0	920

	<u> </u>									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Scaridae	Sparisoma chrysopterum	E00070	2776	4	0	0	0	0	0	0
Scaridae	Sparisoma viride	E00004	6443	9	0	0	0	0	730	912
Scatophagidae	Scatophagus argus	E00051	13219	16	657	0	849	0	744	902
Scatophagidae	Selenotoca multifasciata	G01483	9576	12	657	0	825	0	744	0
Sciaenidae	Aplodinotus grunniens	E01108	17827	19	657	0	873	720	743	906
Sciaenidae	Atractoscion nobilis	E00125	9878	13	0	684	0	741	741	906
Sciaenidae	Bairdiella chrysoura	E00165	7670	10	0	684	0	744	743	933
Sciaenidae	Cheilotrema saturnum	E00118	6644	9	0	684	0	759	0	910
Sciaenidae	Corvula sanctaeluciae	E01047	5698	7	0	663	0	732	0	883
Sciaenidae	Cynoscion arenarius	E00511	11444	13	0	681	0	708	740	862
Sciaenidae	Cynoscion regalis	E00164	14880	18	756	684	867	714	744	904
Sciaenidae	Genyonemus lineatus	E00138	9138	12	0	684	0	747	0	883
Sciaenidae	Larimus breviceps	E01048	4776	7	0	675	0	444	743	905
Sciaenidae	Leiostomus xanthurus	G01349	9972	12	657	0	873	0	735	0
Sciaenidae	Menticirrhus saxatilis	E00166	7177	9	0	684	0	771	744	895
Sciaenidae	Menticirrhus undulatus littoralis	E00127	15027	19	657	684	891	750	744	696
Sciaenidae	Micropogonias undulatus	N01637	5789	8	747	0	834	0	671	0
Sciaenidae	Odontoscion dentex	E01049	5655	7	0	657	0	0	0	921
Sciaenidae	Pareques acuminatus	E01050	3516	4	0	675	0	0	0	930
Sciaenidae	Pareques umbrosus	E00639	6228	8	0	678	0	0	0	813
Sciaenidae	Pogonias cromis	E00699	8505	11	0	681	0	0	0	915
Sciaenidae	Sciaenops ocellatus	E01055	18596	20	810	702	882	768	744	931
Sciaenidae	Seriphus politus	E00123	7497	10	0	0	0	756	744	870
Sciaenidae	Stellifer lanceolatus	E00608	9278	12	0	681	0	720	743	852
Sciaenidae	Umbrina coroides	E00628	8595	11	0	681	0	750	743	871
Scomberesocidae	Cololabis saira	E00192	10242	11	0	684	0	756	744	768
Scomberesocidae	Scomberesox saurus	E00404	10373	13	657	0	0	738	735	865
Scombridae	Acanthocybium solandri	E00927	14337	16	0	0	0	738	0	881
Scombridae	Auxis rochei	E00673	14617	18	810	690	834	0	668	0
Scombridae	Euthynnus affinis	E00830	9732	12	0	0	0	774	0	903

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Scombridae	Euthynnus alletteratus	E00696	7879	11	654	0	0	0	0	0
Scombridae	Gymnosarda unicolor	E00832	9359	11	0	0	0	690	0	877
Scombridae	Katsuwonus pelamis	E00747	11259	13	0	630	0	750	0	0
Scombridae	Sarda sarda	E00243	16203	19	657	0	867	747	702	0
Scombridae	Scomber japonicus	E00247	10495	12	0	687	0	756	0	0
Scombridae	Scomber scombrus	E00626	19143	20	810	690	891	756	723	931
Scombridae	Scomberomorus maculatus sp	E00631	16041	19	747	0	891	798	744	917
Scombridae	Scomberomorus regalis commerson	E00694	9863	12	0	0	0	0	0	0
Scombridae	Thunnus albacares	E00831	18226	21	810	0	849	687	668	907
Scombrolabracidae	Scombrolabrax heterolepis	E00976	11570	14	0	630	0	729	726	798
Scophthalmidae	Lepidorhombus boscii	E00462	9162	10	0	0	0	720	0	0
Scophthalmidae	Scophthalmus aquosus	E00039	10410	12	657	0	891	0	738	819
Scophthalmidae	Scophthalmus maximus	E01161	6280	5	0	0	0	0	0	0
Scorpaenidae	Caracanthus maculatus	E00716	8029	10	0	654	0	0	0	882
Scorpaenidae	Caracanthus unipinna	E00558	6573	8	0	654	0	762	0	0
Scorpaenidae	Dendrochirus zebra	E00897	7402	10	0	669	0	0	687	0
Scorpaenidae	Iracundus signifer	E00583	7125	9	0	654	0	753	699	0
Scorpaenidae	Neomerinthe hemingwayi	E00619	10221	12	0	654	0	729	715	0
Scorpaenidae	Pontinus longispinis	E01010	7126	10	0	693	0	723	528	0
Scorpaenidae	Pontinus rathbuni	E00463	6391	8	0	699	0	717	735	893
Scorpaenidae	Pterois antennata	E00705	8496	11	0	666	0	717	732	895
Scorpaenidae	Pterois miles	E00882	7015	9	0	648	0	726	0	0
Scorpaenidae	Pterois radiata	E00850	8182	10	0	693	0	726	0	0
Scorpaenidae	Scorpaena agassizii	E01038	2193	3	0	0	0	741	0	0
Scorpaenidae	Scorpaena brasiliensis	E00759	4986	7	0	666	0	714	0	857
Scorpaenidae	Scorpaena dispar	E00512	3690	5	0	699	0	717	691	869
Scorpaenidae	Scorpaena guttata	E00291	8547	10	0	693	0	915	723	788
Scorpaenidae	Scorpaenodes albaiensis	E00532	4039	5	0	0	0	0	731	0
Scorpaenidae	Scorpaenodes guamensis	E00870	6637	9	0	693	0	720	714	0
Scorpaenidae	Scorpaenopsis longispina	E00903	7186	9	0	651	0	726	0	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Scorpaenidae	Scorpaenopsis oxycephala	E00581	5118	7	0	651	0	717	732	912
Scorpaenidae	Sebastapistes cyanostigma	E00888	8326	10	0	693	0	729	0	0
Scorpaenidae	Taenianotus triacanthus	E00866	8147	10	0	0	0	0	0	0
Sebastidae	Adelosebastes latens	E00066	2246	3	0	699	0	0	0	782
Sebastidae	Helicolenus dactylopterus	E00044	9920	12	648	0	0	744	744	859
Sebastidae	Sebastes aurora	E00349	8679	10	0	0	0	696	714	898
Sebastidae	Sebastes diploproa	E00432	6421	8	0	0	0	0	0	897
Sebastidae	Sebastes fasciatus	G01482	8330	10	657	0	891	0	738	0
Sebastidae	Sebastes jordani	E00350	6619	9	0	0	0	699	702	882
Sebastidae	Sebastes paucispinis	E00354	6853	9	0	0	0	702	717	862
Sebastidae	Sebastes ruberrimus	N28709	6206	8	810	0	891	0	744	0
Sebastidae	Sebastolobus alascanus	E00417	12929	16	654	633	876	660	744	892
Serranidae	Aethaloperca rogaa	E01079	6350	8	642	0	0	0	0	912
Serranidae	Anthias nicholsi	E00447	6801	6	0	0	0	0	0	0
Serranidae	Aporops bilinearis	E00531	7661	10	0	678	0	720	713	817
Serranidae	Baldwinella aureorubens	G01220	8097	10	657	678	858	0	744	0
Serranidae	Baldwinella vivana	E00338	3660	5	0	693	0	777	723	0
Serranidae	Centropristis striata	E00163	8944	11	0	654	0	738	744	861
Serranidae	Cephalopholis argus	E00868	14648	18	657	693	891	717	744	0
Serranidae	Cephalopholis fulva	E00771	5807	7	0	0	0	0	0	874
Serranidae	Cephalopholis miniata	E00838	9601	12	642	693	0	717	0	0
Serranidae	Diplectrum bivittatum	E01008	4699	6	0	0	0	708	0	0
Serranidae	Diplectrum formosum	E01002	8832	10	0	0	0	738	727	0
Serranidae	Epinephelus maculatus	E00549	12180	14	648	702	0	717	717	859
Serranidae	Epinephelus merra	E00552	8076	10	0	699	0	717	714	897
Serranidae	Grammistes sexlineatus	E00900	15699	17	753	702	822	930	744	0
Serranidae	Grammistops ocellatus	E00571	6588	8	0	657	0	717	0	894
Serranidae	Hypoplectrus puella	E00505	12795	16	657	651	891	717	732	819
Serranidae	Hyporthodus flavolimbatus	E00627	5022	7	0	666	0	717	0	882
Serranidae	Liopropoma mowbrayi	E00307	4911	6	0	0	0	915	651	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Serranidae	Liopropoma rubre	E00306	13426	14	0	702	0	930	744	858
Serranidae	Mycteroperca bonaci microlepis	E00311	14036	17	657	693	879	915	714	874
Serranidae	Odontanthias chrysostictus	G01327	10158	10	0	0	0	858	744	0
Serranidae	Paralabrax nebulifer	E00325	12094	15	657	693	876	915	732	0
Serranidae	Pronotogrammus martinicensis	E00636	3713	4	0	666	0	0	0	0
Serranidae	Pseudanthias pascalus	G01452	9024	11	657	0	891	0	705	0
Serranidae	Pseudanthias squamipinnis	E00860	6941	8	0	669	0	717	0	0
Serranidae	Pseudogramma polyacantha	E00852	7643	10	0	693	0	693	0	0
Serranidae	Rypticus saponaceus	E00764	15840	19	657	666	867	0	738	893
Serranidae	Rypticus subbifrenatus	E00347	6320	7	0	693	0	780	723	0
Serranidae	Serranus baldwini	E00322	14886	16	0	702	0	930	725	768
Serranidae	Serranus notospilus	E00337	5719	7	0	684	0	768	729	694
Serranidae	Serranus phoebe	E00336	6229	8	0	681	0	717	733	0
Serranidae	Serranus tigrinus	G01486	8954	11	657	0	891	0	744	0
Setarchidae	Setarches guentheri	E01035	5731	8	0	0	0	723	0	0
Siganidae	Siganus argenteus	E00940	7215	10	0	0	0	750	0	836
Siganidae	Siganus punctatus	E00958	3704	4	657	0	0	0	0	0
Siganidae	Siganus spinus	N29369	8207	10	807	0	828	0	744	0
Siganidae	Siganus stellatus	G01488	6854	9	0	0	0	0	0	892
Siganidae	Siganus vulpinus	E00090	11306	14	657	0	891	0	744	0
Sillaginidae	Sillago chondropus	N29390	6780	9	0	0	822	0	673	0
Sillaginidae	Sillago sihama	E00824	13627	15	0	0	834	765	669	0
Sinipercidae	Coreoperca whiteheadi	G01264	8180	8	0	0	0	0	744	0
Sinipercidae	Siniperca chuatsi	E01136	15198	17	785	702	849	930	744	0
Sinipercidae	Siniperca scherzeri	G01489	8368	7	0	0	0	0	0	0
Soleidae	Aseraggodes heemstrai	E00582	9255	10	0	654	0	720	0	0
Soleidae	Aseraggodes kobensis	E00075	12391	14	801	0	834	753	677	0
Soleidae	Brachirus annularis	E01182	5846	7	0	0	0	918	0	0
Soleidae	Heteromycteris japonicus	E00079	14809	17	810	666	815	756	666	882
Soleidae	Microchirus frechkopi	E01175	5082	6	0	0	0	0	0	0

Table A4a. Continue	d									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Soleidae	Pegusa lascaris	E01183	8261	10	0	0	0	918	743	0
Soleidae	Pseudaesopia japonica	E00081	10067	11	0	0	0	885	744	802
Soleidae	Solea solea	E00054	7675	8	0	0	0	918	0	861
Soleidae	Soleichthys heterorhinos	E00943	10673	11	0	0	0	918	708	898
Sparidae	Acanthopagrus catenula	E00953	10468	14	0	630	0	747	0	889
Sparidae	Acanthopagrus latus	M01638	3048	4	0	0	0	0	0	0
Sparidae	Archosargus probatocephalus	E00249	8388	10	0	720	0	0	744	0
Sparidae	Argyrops spinifer	M01668	2629	3	0	0	0	0	0	0
Sparidae	Argyrozona argyrozona	E00802	9618	12	0	630	0	681	705	937
Sparidae	Boops boops	M01640	3246	3	0	0	0	0	0	0
Sparidae	Boopsoidea inornata	M01639	3951	4	0	0	0	0	0	0
Sparidae	Calamus calamus	N29934	7496	9	810	0	891	0	744	0
Sparidae	Calamus nodosus	M01641	3290	4	0	0	0	0	0	0
Sparidae	Calamus penna	E00762	7629	10	0	630	0	708	0	0
Sparidae	Cheimerius nufar	M01642	3243	3	0	0	0	0	0	0
Sparidae	Chrysoblephus laticeps	M01644	3594	4	0	0	0	0	0	0
Sparidae	Crenidens crenidens	M01645	4737	5	0	0	0	0	0	0
Sparidae	Dentex dentex	M01646	4731	5	0	0	0	0	0	0
Sparidae	Diplodus annularis	M01647	4730	5	0	0	0	0	0	0
Sparidae	Diplodus bermudensis	M01648	3953	4	0	0	0	0	0	0
Sparidae	Diplodus capensis	E00807	5192	7	0	630	0	774	0	896
Sparidae	Lagodon rhomboides	G01346	10209	12	657	0	891	0	744	0
Sparidae	Lithognathus mormyrus	M01649	4731	5	0	0	0	0	0	0
Sparidae	Oblada melanura	M01650	3249	3	0	0	0	0	0	0
Sparidae	Pachymetopon grande	M01651	3549	4	0	0	0	0	0	0
Sparidae	Pagellus affinis	M01652	3072	4	0	0	0	0	0	0
Sparidae	Pagellus erythrinus	M01653	4029	4	0	0	0	0	0	0
Sparidae	Pagrus pagrus	E00514	12441	15	657	690	891	0	744	0
Sparidae	Porcostoma dentata	M01654	4728	5	0	0	0	0	0	0
Sparidae	Rhabdosargus haffara	M01655	2151	3	0	0	0	0	0	0
· · · · · · · · · · · · · · · · · · ·										

Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Sparidae	Sarpa salpa	E00806	12445	15	0	630	0	681	714	921
Sparidae	Sparidentex hasta	M01657	4746	5	0	0	0	0	0	0
Sparidae	Sparus aurata	M01658	3954	4	0	0	0	0	0	0
Sparidae	Spondyliosoma cantharus	M01659	3257	4	0	0	0	0	0	0
Sparidae	Stenotomus chrysops	E00246	12458	15	657	720	891	0	744	0
Sparidae	Virididentex acromegalus	M01660	4676	5	0	0	0	0	0	0
Sphyraenidae	Sphyraena argentea	E00230	8319	10	0	0	0	918	717	0
Sphyraenidae	Sphyraena barracuda	E00836	19387	22	762	0	891	753	729	876
Sphyraenidae	Sphyraena japonica	N30022	5263	7	723	0	825	0	682	0
Sphyraenidae	Sphyraena jello	N30023	4747	6	0	0	825	0	682	0
Sphyraenidae	Sphyraena putnamae	E00955	13026	14	0	0	0	918	720	868
Sphyraenidae	Sphyraena sphyraena	E01143	7520	8	0	0	0	918	0	0
Stichaeidae	Bryozoichthys marjorius	E00442	7041	9	0	681	0	702	743	908
Stichaeidae	Cebidichthys violaceus	N30217	6500	9	759	0	852	0	669	0
Stichaeidae	Leptoclinus maculatus	E00323	5549	7	0	693	0	0	0	0
Stichaeidae	Lumpenus fabricii	E00361	3593	5	0	660	0	0	719	0
Stichaeidae	Lumpenus lampretaeformis	E00371	5472	7	0	648	0	762	743	0
Stichaeidae	Poroclinus rothrocki	E00431	5685	7	0	651	0	717	0	879
Stromateidae	Peprilus burti	E00600	5597	7	0	0	0	771	0	794
Stromateidae	Peprilus paru	E00622	7448	10	0	678	0	663	0	891
Stromateidae	Peprilus simillimus	E00136	10724	12	0	684	0	771	0	937
Stromateidae	Peprilus triacanthus	N30548	8492	10	810	0	891	0	744	0
Symphysanodontidae	Symphysanodon typus	M01725	1508	2	0	0	0	0	0	0
Synanceiidae	Synanceia verrucosa	E00867	10214	13	0	693	0	723	712	0
Synbranchidae	Monopterus albus	E01134	14200	15	657	0	891	858	744	0
Syngnathidae	Corythoichthys intestinalis	E00734	5411	6	0	0	0	0	0	876
Syngnathidae	Corythoichthys schultzi	E00829	4587	5	0	0	0	708	0	0
Syngnathidae	Doryrhamphus excisus	E00915	8801	10	0	0	0	735	0	0
Syngnathidae	Hippocampus erectus	N30799	2880	4	0	0	0	0	744	0
Syngnathidae	Syngnathus fuscus	E00792	6471	8	0	0	849	0	744	910

Family	Genus Species	ETOL ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Syngnathidae	Synanathus leptorhynchus	N30969	2247	3	0	0	861	0	744	0
Syngnathidae	Syngnathus louisianae	E00821	4535	5	0	0	0	723	0	0
Syngnathidae	Syngnathus scovelli	E00346	4744	6	0	0	0	726	0	886
Telmatherinidae	Marosatherina ladigesi	E00406	9346	12	0	678	0	765	737	894
Terapontidae	Hephaestus fuliginosus	G01318	10031	11	783	0	852	0	707	0
Terapontidae	Scortum barcoo	G01480	10071	11	783	0	852	0	732	0
Terapontidae	Terapon jarbua	E00826	14339	16	753	0	822	687	674	0
Tetraodontidae	Arothron hispidus	E00985	8771	8	0	0	0	0	0	0
Tetraodontidae	Arothron nigropunctatus	N31143	7811	9	810	0	888	0	744	0
Tetraodontidae	Canthigaster bennetti	E00530	8390	9	0	0	0	717	0	894
Tetraodontidae	Canthigaster jactator	N31165	6260	7	0	0	891	0	0	0
Tetraodontidae	Canthigaster valentini	E00853	7767	8	0	0	0	693	0	0
Tetraodontidae	Lagocephalus laevigatus	E00601	8160	8	0	0	0	717	743	893
Tetraodontidae	Sphoeroides maculatus	E00339	4428	5	0	666	0	786	0	0
Tetraodontidae	Sphoeroides nephelus	N01739	6070	7	0	0	891	0	742	0
Tetraodontidae	Takifugu rubripes	E00460	20045	21	657	732	891	930	744	984
Tetraodontidae	Tetractenos hamiltoni	E00383	2976	4	0	654	0	750	706	866
Tetraodontidae	Tetraodon fluviatilis	E00374	4553	5	0	0	0	768	0	0
Tetraodontidae	Tetraodon miurus	N01740	8550	10	810	0	885	0	744	0
Tetraodontidae	Tetraodon nigroviridis	G01513	17489	18	657	732	891	930	744	984
Tetrarogidae	Coccotropsis gymnoderma	E00801	6200	8	0	615	0	0	672	0
Toxotidae	Toxotes chatareus	E01139	10242	10	0	0	0	918	744	0
Toxotidae	Toxotes jaculatrix	E01155	11428	14	657	0	891	0	744	0
Trachichthyidae	Hoplostethus occidentalis atlanticus	E01018	11766	14	657	0	891	759	0	0
Triacanthidae	Triacanthus biaculeatus	G01531	11323	12	810	0	891	0	744	0
Triacanthodidae	Halimochirurgus alcocki	N31459	6920	9	759	0	816	0	675	0
Triacanthodidae	Triacanthodes anomalus	E00382	12061	13	657	0	891	711	744	0
Triacanthodidae	Triacanthodes ethiops	G01532	6829	7	0	0	0	0	744	0
Trichiuridae	Aphanopus carbo	E00274	5425	7	0	0	0	918	0	0
Trichiuridae	Assurger anzac	G01210	9581	12	810	0	891	0	744	0

Table A4a. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Trichiuridae	Benthodesmus simonyi	E00475	4383	6	0	0	0	813	622	0
Trichiuridae	Evoxymetopon taeniatus	E00650	3573	5	0	0	0	0	603	0
Trichiuridae	Lepidopus altifrons	E00474	6788	9	0	690	0	0	720	929
Trichiuridae	Trichiurus lepturus	E00596	12574	14	657	0	866	795	741	908
Trichodontidae	Trichodon trichodon	N31563	7181	9	756	0	873	0	704	0
Triglidae	Bellator militaris	E01026	4452	6	0	0	0	759	0	0
Triglidae	Prionotus carolinus	E00340	7371	9	0	642	0	720	696	703
Triglidae	Prionotus evolans	E01021	4575	6	0	0	891	0	744	0
Triglidae	Prionotus stephanophrys	E00328	6883	9	0	588	0	0	714	882
Triglidae	Pterygotrigla hemisticta	N31939	4770	6	750	0	822	0	0	0
Triodontidae	Triodon macropterus	N31959	7201	9	774	0	891	0	692	0
Tripterygiidae	Enneanectes altivelis	E00315	5180	7	0	693	0	738	729	917
Tripterygiidae	Enneanectes boehlkei	E00305	8688	11	0	0	888	915	739	863
Tripterygiidae	Enneapterygius abeli	E00896	2369	3	0	0	0	720	708	941
Tripterygiidae	Enneapterygius gruschkai	E00916	3832	5	0	0	0	723	0	0
Tripterygiidae	Helcogramma ellioti sp	E00331	9671	11	0	672	0	900	728	903
Tripterygiidae	Helcogramma fuscopinna	E00885	2098	3	0	0	0	723	730	0
Uranoscopidae	Astroscopus ygraecum	E01028	11671	14	657	0	873	771	742	0
Uranoscopidae	Kathetostoma albigutta	E01022	2118	3	0	0	0	0	0	0
Uranoscopidae	Kathetostoma averruncus	E00324	11393	14	657	0	876	915	740	870
Uranoscopidae	Uranoscopus sulphureus	E00538	5752	7	0	0	0	717	0	883
Xiphiidae	Xiphias gladius	E01151	16644	17	807	0	891	0	744	0
Zanclidae	Zanclus cornutus	E00894	18204	20	657	669	891	0	731	892
Zaproridae	Zaprora silenus	E00362	6043	8	0	0	0	765	727	856
Zenarchopteridae	Dermogenys collettei	G01275	6851	8	0	0	891	0	744	0
Zenarchopteridae	Zenarchopterus dispar	E00541	5209	6	0	0	0	774	0	809
Zoarcidae	Bothrocara brunneum	E00357	6304	8	0	690	0	0	730	852
Zoarcidae	Bothrocara hollandi	N01721	4677	6	0	0	891	0	744	0
Zoarcidae	Eucryphycus californicus	E00327	5531	7	0	693	0	0	727	902
Zoarcidae	Lycenchelys crotalinus	E00425	4583	6	0	696	0	0	0	0

Table A4a. Continueu										
Family	Genus Species	ETOL_ID	Length (bp)	charset	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2
Zoarcidae	Lycodapus mandibularis	E00355	8784	11	0	693	0	0	726	862
Zoarcidae	Lycodes brevipes	E00413	4381	5	0	0	0	0	0	0
Zoarcidae	Lycodes diapterus	G01364	8790	11	753	0	891	0	744	0
Zoarcidae	Lycodes terraenovae	E00675	15952	18	657	693	891	738	729	902
Zoarcidae	Melanostigma pammelas	E00365	6342	8	0	693	0	0	717	876
Zoarcidae	Zoarces americanus viviparus	E00370	5571	8	558	693	0	0	731	0

Table A4a. Continued

TABLE A4b. Taxon sampling for the percomorph dataset included 1231 taxa and sequence data for 23 genes. The dataset is comprised of sequences for 1180 percomorph species from previous studies (e.g. Li *et al.* 2007; Li *et al.* 2008; Li *et al.* 2010; Li *et al.* 2011; Betancur-R *et al.* 2013b; Broughton *et al.* 2013; Near *et al.* 2013) or public databases, plus newly generated sequences for the 51 additional taxa for this study. The matrix is presented in four parts to show presence of sequence data for the 23 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, and PANX2; (b.) PLAGL2, PTCHD1, RAG1, RAG2, RH, and RIPK4; (c.) SH3PX3, SIDKEY, SREB2, SVEP1, TBR1, and VCPIP; (d.) ZIC1, COI, CYT *B*, 16S, and HOX.

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Acanthuridae	Acanthurus bahianus	E00005	11794	14	801	765	1368	0	0	0
Acanthuridae	Acanthurus guttatus	E00709	7379	8	825	0	1464	0	0	0
Acanthuridae	Acanthurus leucosternon	E00880	14819	16	810	750	1398	0	0	0
Acanthuridae	Acanthurus lineatus	E00889	11234	12	810	753	0	0	0	0
Acanthuridae	Acanthurus triostegus	E00711	11027	13	810	0	1461	0	0	0
Acanthuridae	Ctenochaetus striatus	E00982	6461	8	819	0	1464	0	751	0
Acanthuridae	Ctenochaetus strigosus	E00050	9642	12	708	765	1398	0	0	0
Acanthuridae	Ctenochaetus truncatus	E00854	6572	9	801	753	0	0	0	642
Acanthuridae	Naso brevirostris	E00918	11979	15	825	582	1458	0	0	0
Acanthuridae	Naso lituratus	G01514	9769	12	825	585	1461	0	852	0
Acanthuridae	Naso unicornis	E00701	6934	9	810	0	0	0	0	636
Acanthuridae	Paracanthurus hepatus	E00002	9321	11	825	765	1176	0	0	0
Acanthuridae	Zebrasoma flavescens	E00730	9002	10	0	0	0	0	0	630
Acanthuridae	Zebrasoma rostratum	N01742	6780	8	708	708	1398	0	0	0
Acanthuridae	Zebrasoma scopas	E00859	12917	16	825	753	1464	0	0	636
Acanthuridae	Zebrasoma velifer	E00029	5029	6	0	0	0	0	0	0
Achiridae	Achirus lineatus	E00605	13596	16	636	597	1428	0	762	636
Achiridae	Gymnachirus melas	E00609	14260	16	603	591	1311	0	774	645
Achiridae	Gymnachirus texae	E00630	9146	10	0	0	1296	0	774	642
Achiridae	Hypoclinemus sp	E01162	6483	7	819	0	1446	0	672	645
Achiridae	Trinectes maculatus	E00046	11078	11	792	765	1462	1206	852	0
Achiropsettidae	Mancopsetta maculata	E01169	6861	8	813	0	0	0	747	645
Achiropsettidae	Neoachiropsetta milfordi	E01170	6200	8	813	0	0	0	738	645
Acropomatidae	Acropoma japonicum	G01188	12298	14	708	708	1398	0	0	0
Table A4b. Continued	1									
---------------------------------------	----------------------------------	---------	-------------	---------	--------	--------	------	------	-----	-------
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Acropomatidae	Malakichthys elegans	N01922	6894	9	651	591	1278	0	0	0
Acropomatidae	Synagrops bellus	E01125	11059	13	0	0	1464	0	927	633
Acropomatidae	Synagrops spinosus	E01123	6676	7	0	0	0	0	0	624
Adrianichthyidae	Oryzias latipes	G01408	18061	19	708	708	1464	1206	927	645
Agonidae	Aspidophoroides monopterygius	N01986	7472	9	705	708	1317	0	0	0
Agonidae	Bathyagonus alascanus	E00268	5458	7	807	0	0	0	0	630
Agonidae	Bathyagonus pentacanthus	E00430	5127	7	810	756	0	0	0	633
Agonidae	Hypsagonus quadricornis	E00269	7151	9	810	675	0	0	0	645
Agonidae	Sarritor frenatus	E00264	4738	6	810	0	0	0	0	0
Agonidae	Sarritor leptorhynchus	E00254	5516	7	0	0	0	0	0	0
Agonidae	Stellerina xyosterna	N02010	6750	8	705	708	1398	0	0	0
Agonidae	Xeneretmus latifrons	E00278	6400	8	0	756	0	0	852	633
Ambassidae	Ambassis agrammus	G01196	8877	9	825	0	1455	0	0	645
Ambassidae	Ambassis interrupta	E01100	10212	10	819	0	1464	0	0	645
Ambassidae	Ambassis urotaenia	G01197	8268	10	696	708	1377	0	0	0
Ambassidae	Parambassis ranga	N01735	7892	10	645	597	1377	0	0	0
Ammodytidae	Ammodytes dubius	N02375	6015	7	693	708	1377	0	0	0
Ammodytidae	Ammodytes hexapterus	E00414	15128	17	819	755	1266	0	759	630
Anabantidae	Ctenopoma acutirostre kingsleyae	E01141	14536	15	696	0	1446	0	758	645
Anabantidae	Microctenopoma nanum	G01373	12070	13	672	624	1398	0	0	0
Anarhichadidae	Anarhichas denticulatus	E00787	8620	9	810	765	0	0	0	633
Anarhichadidae	Anarhichas orientalis lupus	E00117	15266	17	810	756	1398	0	852	645
Anarhichadidae	Anarrhichthys ocellatus	E00119	7893	10	810	756	0	0	0	630
Anoplopomatidae	Anoplopoma fimbria	E00423	15741	18	810	756	762	0	0	0
Antennariidae	Antennatus coccineus	E01092	15457	17	810	765	1398	501	759	0
Antennariidae	Antennatus nummifer	E00587	9899	13	810	755	0	489	0	645
Antennariidae	Fowlerichthys radiosus	E01124	4779	6	813	0	0	501	0	645
Antennariidae	Histiophryne cryptacanthus	G01326	9853	12	705	699	1398	0	0	0
Antennariidae	Histrio histrio	E00643	7964	9	0	0	0	519	0	645
Aphyonidae	Barathronus maculatus	N02779	7479	9	633	705	1302	0	0	0
· · · · · · · · · · · · · · · · · · ·			÷							

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Aplocheilidae	Pachypanchax playfairii	G01414	7524	9	0	612	1344	0	0	0
Aplodactylidae	Aplodactylus arctidens	M01536	4728	5	792	0	1455	0	0	0
Aplodactylidae	Aplodactylus etheridgii	M01537	4710	5	792	0	1455	0	0	0
Apogonidae	Apogon campbelli	E01069	9380	10	825	0	0	0	824	633
Apogonidae	Archamia biguttata	E00522	8166	11	810	752	0	0	0	633
Apogonidae	Astrapogon puncticulatus	E00109	7227	9	0	752	0	0	0	645
Apogonidae	Astrapogon stellatus	N03004	7517	9	693	705	1398	0	0	0
Apogonidae	Cercamia eremia	E00546	6660	9	810	0	0	0	0	633
Apogonidae	Cheilodipterus isostigmus	E00528	8272	10	810	752	0	0	0	0
Apogonidae	Cheilodipterus quinquelineatus	G01247	9762	12	690	708	1398	0	0	0
Apogonidae	Fowleria aurita	E01090	8780	11	810	765	0	0 _	0	636
Apogonidae	Gymnapogon urospilotus	E00539	5107	7	0	752	0	0	0	0
Apogonidae	Nectamia bandanensis	E01040	8860	11	810	0	0	0	0	630
Apogonidae	Nectamia fusca	E00732	8861	10	810	752	0	0	0	624
Apogonidae	Ostorhinchus cookii	E01087	6400	8	810	765	0	0	0	600
Apogonidae	Ostorhinchus lateralis	G01203	8273	10	705	675	1398	0	0	0
Apogonidae	Phaeoptyx pigmentaria	E00506	12882	15	810	752	1398	0	0	0
Apogonidae	Pristiapogon exostigma	E00702	8433	11	810	752	0	0	0	633
Apogonidae	Pseudamia gelatinosa	E00568	7391	9	810	755	0	0	0	612
Apogonidae	Pterapogon kauderni	E00190	6329	8	801	752	0	0	0	630
Apogonidae	Rhabdamia cypselura	E01095	6022	7	0	0	0	0	0	0
Apogonidae	Sphaeramia orbicularis	N03178	8446	10	703	672	1398	0	0	0
Aracanidae	Anoplocapros lenticularis	G01533	6886	7	0	0	518	0	771	0
Aracanidae	Aracana aurita	G01205	10032	12	705	708	1287	0	0	0
Ariommatidae	Ariomma bondi	E01126	7867	9	810	0	1455	0	0	621
Ariommatidae	Ariomma melanum	E00665	9682	12	810	756	0	0	0	645
Arripidae	Arripis georgianus	M01539	4794	5	792	0	1455	0	0	642
Arripidae	Arripis trutta	M01540	3327	4	780	0	0	0	0	642
Arripidae	Arripis truttacea	M01541	4659	5	0	0	1455	0	0	639
Artedidraconidae	Artedidraco orianae	G01525	6898	8	0	0	0	0	701	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Artedidraconidae	Pogonophryne barsukovi	E00158	12842	14	801	756	0	0	738	645
Atherinidae	Atherinomorus lacunosus	E00548	15021	18	810	753	1398	0	0	645
Atherinidae	Atherinomorus stipes	E00115	13436	16	810	753	1434	0	0	645
Atherinidae	Atherinomorus vaigiensis	E00181	7813	10	810	0	0	0	0	630
Atherinidae	Craterocephalus honoriae	E00180	8597	10	0	753	0	0	0	0
Atherinopsidae	Atherinopsis californiensis	E00121	5600	7	810	756	0	0	0	0
Atherinopsidae	Labidesthes sicculus	E01112	14372	17	0	708	1398	0	0	624
Atherinopsidae	Membras martinica	E00170	7275	9	0	0	1437	0	0	618
Atherinopsidae	Menidia beryllina	E00174	10176	13	0	755	1059	0	0	645
Atherinopsidae	Menidia menidia	E00167	12560	13	0	754	1457	0	852	627
Atherinopsidae	Menidia peninsulae	N03847	5694	7	0	708	1299	0	0	0
Atherinopsidae	Odontesthes argentinensis	E00393	5125	7	0	755	0	0	0	645
Atherinopsidae	Odontesthes bonariensis	E00396	9234	11	0	0	0	0	822	645
Atherinopsidae	Odontesthes humensis	E00394	5561	7	0	755	0	0	0	645
Atherinopsidae	Odontesthes retropinnis	E00395	4826	6	0	755	0	0	0	0
Atherinopsidae	Poblana ferdebueni	N01733	5919	7	0	708	1332	0	0	0
Aulorhynchidae	Aulorhynchus flavidus	G01217	11313	12	759	708	1341	0	0	0
Aulostomidae	Aulostomus chinensis	E00871	15665	19	810	708	1398	0	755	630
Aulostomidae	Aulostomus maculatus	E00293	13058	16	810	693	1398	0	0	645
Badidae	Badis pyema	N03996	7191	9	0	588	1362	0	0	0
Badidae	Dario dario	N04003	5626	7	0	585	1359	0	0	0
Balistidae	Abalistes stellatus	E00936	14580	18	708	765	1419	0	360	0
Balistidae	Balistapus undulatus	E00743	12372	14	708	708	1333	0	360	0
Balistidae	Balistes capriscus	E00591	13798	17	669	708	1419	1206	459	0
Balistidae	Balistes vetula	E00755	13640	15	703	708	1419	0	360	0
Balistidae	Balistoides conspicillum	E00373	9468	10	0	0	1419	0	360	0
Balistidae	Canthidermis maculata	E00378	9887	10	0	0	1404	0	360	0
Balistidae	Melichthys indicus	E00919	7484	10	0	765	0	0	0	0
Balistidae	Melichthys niger	E00922	8652	11	0	762	1419	0	360	0
Balistidae	Pseudobalistes flavimarginatus	N04225	6715	8	705	708	1284	0	0	0

Family Genus Species ETOL_ID Length (bp) charset PLAGL2 PTCHD1 RAG1	RAG2	RH	RIPK4
BalistidaePseudobalistes fuscusE0052446076001419	0	360	0
BalistidaeRhinecanthus aculeatusE0073591401082501464	0	360	0
BalistidaeRhinecanthus assasiE0038152596001419	0	0	0
BalistidaeRhinecanthus verrucosusN04231746597017081284	0	0	0
BalistidaeSufflamen chrysopterumE0055111210147056961332	0	360	0
BalistidaeSufflamen fraenatumE0093591481007650	0	0	0
BalistidaeXanthichthys auromarginatusE003801157412001404	0	360	0
BalistidaeXanthichthys ringensN04239759596697081296	0	0	0
Banjosidae Banjos banjos M01542 4794 5 792 0 1455	0	0	642
Banjosidae Banjos banjos N01542 6206 8 651 591 1281	0	0	0
Bathyclupeidae Bathyclupea argentea M01543 2787 4 792 0 0	0	0	636
Bathydraconidae Gymnodraco acuticeps E00155 12486 14 810 756 1332	0	756	645
Bathydraconidae Parachaenichthys charcoti E00157 15082 17 804 756 1332	0	756	645
Bathymasteridae Bathymaster caeruleofasciatus E00191 7525 10 747 756 0	0	0	630
Bathymasteridae Bathymaster signatus E00420 12500 16 810 756 0	0	0	645
Bathymasteridae Rathbunella hypoplecta E00128 12273 15 654 756 1350	0	0	0
Batrachoididae Batrachoides pacifici N04533 6761 8 0 708 1275	0	0	0
Batrachoididae Opsanus beta E00698 11611 14 0 708 1464	0	0	0
Batrachoididae Opsanus pardus E00513 11301 14 672 708 1314	795	819	0
Batrachoididae Opsanus tau E00040 4773 6 0 0 0	0	810	642
Batrachoididae Porichthys notatus E00058 13187 16 705 765 1464	0	819	570
Batrachoididae Porichthys plectrodon E00590 13538 16 708 708 1284	0	0	0
BatrachoididaeSanopus spE0000949026000	0	822	0
Bedotiidae Rheocles wrightae G01467 11051 13 693 708 1464	0	0	0
Belonidae Ablennes hians E00162 11443 13 810 0 0	999	0	645
Belonidae Platybelone argalus E00114 12856 15 810 0 1386	1017	0	633
Belonidae Strongylura notata E00110 15115 19 810 0 1350	998	0	645
Belonidae Tylosurus crocodilus E01051 7580 10 810 0 0	1001	0	630
Belonidae Xenentodon cancila G01508 11377 14 708 708 1389	1017	0	0
Bembridae Bembras japonica N01723 6876 9 645 591 1275	0	0	0

Table A4b. Continued			_							
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Bembropidae	Bembrops anatirostris	E01120	10273	13	810	762	1365	0	0	645
Bembropidae	Bembrops gobioides	E01128	8878	11	708	708	1365	0	0	645
Blenniidae	Alticus arnoldorum	E00989	2775	4	0	0	0	0	0	621
Blenniidae	Atrosalarias fuscus	E00525	2877	4	0	0	0	0	0	540
Blenniidae	Blenniella chrysospilos paula	E00986	4186	5	810	0	0	0	0	0
Blenniidae	Blenniella cyanostigma	E00715	7419	9	822	0	0	0	0	645
Blenniidae	Blenniella paula	E00979	7982	10	0	765	0	0	0	618
Blenniidae	Cirripectes castaneus	E00892	8002	10	810	764	0	0	0	633
Blenniidae	Cirripectes filamentosus	E00893	5912	7	810	762	0	0	0	0
Blenniidae	Cirripectes quagga	E00330	4362	5	810	0	0	0	0	0
Blenniidae	Cirripectes stigmaticus	E00520	4037	6	0	0	0	0	0	573
Blenniidae	Ecsenius bicolor	E00984	5909	8	0	0	0	0	0	630
Blenniidae	Ecsenius midas	E00934	3749	5	0	765	0	0	0	0
Blenniidae	Ecsenius opsifrontalis	E00723	5497	7	810	0	0	0	0	0
Blenniidae	Ecsenius pardus	E00523	4285	5	810	0	0	0	0	0
Blenniidae	Enchelyurus flavipes	N04786	6887	9	621	588	1380	0	0	0
Blenniidae	Entomacrodus nigricans	E00297	9132	11	810	696	1398	0	0	0
Blenniidae	Entomacrodus niuafoouensis	E00980	6091	8	0	765	0	0	0	630
Blenniidae	Entomacrodus striatus	E00987	5295	7	0	765	0	0	0	633
Blenniidae	Hypleurochilus sp	E00298	5653	7	810	0	0	0	759	0
Blenniidae	Hypsoblennius hentz	E00289	7330	9	635	696	1272	0	0	0
Blenniidae	Istiblennius dussumieri	E00556	4755	6	0	0	0	0	0	597
Blenniidae	Meiacanthus oualanensis grammistes	E00526	9615	12	707	699	1398	0	0	0
Blenniidae	Nannosalarias nativitatis	E00521	6717	8	0	0	0	0	0	612
Blenniidae	Ophioblennius atlanticus	E00296	11932	15	810	704	1398	0	0	0
Blenniidae	Petroscirtes mitratus	E00909	5741	8	795	765	0	0	0	633
Blenniidae	Plagiotremus rhinorhynchos	E00586	4112	5	0	0	0	0	0	0
Blenniidae	Plagiotremus tapeinosoma	E00540	4423	6	0	0	0	0	0	0
Blenniidae	Praealticus caesius	E00329	5179	6	810	0	0	0	0	0
Blenniidae	Salarias fasciatus	E00988	12606	14	636	744	1368	0	0	633

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Blenniidae	Stanulus sp	E00332	3369	4	810	0	0	0	0	609
Bothidae	Arnoglossus blachei	E01160	6253	7	813	0	1446	0	795	0
Bothidae	Arnoglossus imperialis	E01163	7399	8	0	0	1446	0	756	645
Bothidae	Asterorhombus cocosensis	E00904	10399	11	810	752	1446	0	741	645
Bothidae	Bothus lunatus	E00007	8248	9	0	696	1374	0	0	0
Bothidae	Bothus robinsi	E00038	6724	7	0	765	1377	0	762	0
Bothidae	Chascanopsetta lugubris	E01181	5982	7	813	0	0	0	801	0
Bothidae	Laeops kitaharae	E00082	7794	8	0	765	1368	0	774	0
Bothidae	Monolene sp	E01172	3326	3	0	0	0	0	729	0
Bothidae	Psettina tosana	E00083	7617	8	0	765	1428	0	738	637
Bothidae	Trichopsetta ventralis	E00599	9704	10	0	0	1344	0	774	0
Bovichtidae	Bovichtus diacanthus	G01229	12547	13	708	705	1395	0	745	0
Bovichtidae	Cottoperca trigloides	G01267	5753	6	0	0	0	0	741	0
Bramidae	Brama brama	E00970	11377	13	810	0	0	0	459	645
Bramidae	Brama japonica	N05217	8586	10	703	708	1398	0	0	0
Bramidae	Pteraclis aesticola	N05223	7106	9	0	591	1275	0	0	0
Bramidae	Pterycombus brama	E00996	9728	12	0	0	0	0	852	636
Bramidae	Taractes asper	N05227	8588	10	708	708	1398	0	0	0
Bramidae	Taractichthys longipinnis	E00684	8997	11	810	756	0	0	459	0
Bythitidae	Bidenichthys capensis	E00794	7231	9	810	0	0	0	0	0
Bythitidae	Brosmophyciops pautzkei	E00717	5948	8	810	755	0	0	0	0
Bythitidae	Brosmophycis marginata	N05317	7691	9	702	705	1398	0	0	0
Bythitidae	Cataetyx rubrirostris lepidogenys	E00261	14883	16	810	753	1290	0	852	0
Bythitidae	Diancistrus sp	E00236	6903	9	810	690	0	0	0	537
Bythitidae	Dinematichthys iluocoeteoides	E00235	4750	6	810	672	0	0	0	0
Bythitidae	Diplacanthopoma brachysoma	E00452	8606	9	798	753	0	0	0	633
Bythitidae	Diplacanthopoma brunnea	N05377	8280	10	696	675	1236	0	0	0
Caesionidae	Caesio caerulaurea lunaris	E00920	13727	15	813	0	1455	0	738	645
Caesionidae	Caesio cuning	N01544	6786	8	708	705	1398	0	0	0
Caesionidae	Caesio teres	E00951	7741	10	810	729	0	0	0	645

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Caesionidae	Caesio varilineata	E00949	9671	12	810	729	0	0	0	621
Caesionidae	Caesio xanthonota	E00950	9615	12	810	729	0	0	0	618
Caesionidae	Pterocaesio pisang	N01547	8535	10	702	708	1398	0	0	0
Caesionidae	Pterocaesio tile	E00961	7369	8	810	0	0	0	852	0
Callanthiidae	Callanthias australis	M01721	3528	4	849	0	1455	0	0	0
Callanthiidae	Grammatonotus surugaensis	N05516	4774	6	651	591	1284	0	0	0
Callionymidae	Callionymus sp bairdi	E00946	14247	16	825	708	1455	0	758	0
Callionymidae	Diplogrammus goramensis	E00744	3443	4	0	0	0	0	0	642
Callionymidae	Foetorepus sp	N01725	7524	9	708	708	1347	0	0	0
Callionymidae	Neosynchiropus ocellatus	E00030	9857	12	708	708	1455	0	0	0
Callionymidae	Synchiropus agassizii	E01004	13911	16	810	752	1335	0	0	0
Callionymidae	Synchiropus splendidus	E00003	7623	9	708	708	1329	0	0	0
Callionymidae	Synchiropus stellatus	E00925	4153	5	0	0	0	0	0	0
Caproidae	Antigonia capros	E01024	15924	18	813	705	1461	0	852	630
Caproidae	Antigonia rubescens	N05907	8327	10	705	705	1371	0	0	0
Caproidae	Capros aper	N05913	6917	9	623	591	1326	0	0	0
Carangidae	Alectis ciliaris	E00469	9715	12	816	0	0	0	699	645
Carangidae	Atule mate	E00942	13914	15	798	0	1365	0	750	645
Carangidae	Carangoides ferdau	E00869	9160	10	816	0	0	0	768	645
Carangidae	Carangoides plagiotaenia	E00917	10641	12	816	0	0	0	759	645
Carangidae	Caranx crysos ruber	E00510	15973	18	807	708	1398	0	459	594
Carangidae	Caranx ignobilis	E00574	14220	16	804	755	1374	0	753	645
Carangidae	Caranx sexfasciatus	E00834	10100	10	0	0	1389	0	753	645
Carangidae	Chloroscombrus chrysurus	E00763	5515	7	0	0	0	0	754	636
<u>Carangidae</u>	Decapterus macarellus	E00212	3266	5	0	0	0	0	0	636
Carangidae	Decapterus punctatus	E00671	9777	11	810	0	1308	0	753	630
Carangidae	Elagatis bipinnulata	E00841	11967	15	810	0	0	0	756	645
Carangidae	Gnathanodon speciosus	E00938	13565	15	0	755	1365	0	852	645
Carangidae	Hemicaranx amblyrhynchus	E00616	11426	13	0	755	1131	0	750	645
Carangidae	Oligoplites saurus	E00195	16021	19	0	681	1338	0	753	639

Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Scomberoides lysan	E00738	10887	13	807	756	1446	0	642	633
Selar crumenophthalmus	E00833	11277	13	813	0	0	939	471	645
Selene brownii	E00767	7866	10	810	0	0	0	852	645
Selene setapinnis	N01705	6120	8	699	708	0	0	0	0
Seriola dumerili	E00623	16521	18	813	708	1425	0	459	645
Seriola rivoliana	E00467	11164	13	813	756	0	0	459	645
Trachinotus carolinus	G01504	11145	13	707	708	1398	0	0	0
Trachinotus falcatus	E00819	10693	12	810	0	0	0	714	645
Trachinotus ovatus	E01145	14822	16	690	708	1386	0	758	645
Trachurus lathami	E00598	11710	13	825	705	0	0	852	645
Uraspis secunda	E00515	11843	13	810	0	1122	0	600	645
Carapus bermudensis	E00244	3497	5	612	597	0	0	0	0
Onuxodon parvibrachium	N06009	5285	7	705	708	0	0	0	0
Pyramodon ventralis	N06013	5272	7	705	705	0	0	0	0
Caristius macropus	N06078	5912	8	645	624	0	0	0	0
Caristius sp	E00810	9564	11	825	0	1455	0	774	645
Platyberyx opalescens	N06085	7781	10	651	591	1275	0	0	0
Centracanthus cirrus	M01560	2897	3	788	0	1455	0	0	0
Spicara alta	M01561	4032	4	792	0	1455	0	0	0
Spicara maena	M01562	5142	5	0	0	1455	0	0	642
Spicara nigricauda	M01564	4791	5	792	0	1455	0	0	642
Spicara smaris	M01565	5111	5	0	0	1454	0	0	624
Acantharchus pomotis	G01185	10678	10	689	0	1341	0	852	0
Ambloplites rupestris	E00392	18681	20	810	756	1341	0	852	645
Archoplites interruptus	N01722	8586	10	708	708	1392	0	0	0
Lepomis cyanellus	E00132	18334	20	810	756	1341	0	852	0
Lepomis macrochirus	E01113	15647	17	810	708	1464	0	852	645
Micropterus salmoides	E01110	18682	20	825	708	1464	0	852	645
Pomoxis nigromaculatus	E00131	14489	15	804	756	1341	0	852	645
Aeoliscus strigatus	G01189	10258	10	0	708	1398	0	852	0
	Genus SpeciesScomberoides lysanSelar crumenophthalmusSelene browniiSelene browniiSelene setapinnisSeriola dumeriliSeriola rivolianaTrachinotus carolinusTrachinotus falcatusTrachinotus ovatusTrachinotus ovatusTrachurus lathamiUraspis secundaCarapus bermudensisOnuxodon parvibrachiumPyramodon ventralisCaristius macropusCaristius spPlatyberyx opalescensCentracanthus cirrusSpicara altaSpicara nigricaudaSpicara smarisAcantharchus pomotisAmbloplites rupestrisArchoplites interruptusLepomis macrochirusMicropterus salmoidesPomoxis nigromaculatusAeoliscus strigatus	Genus SpeciesETOL_IDScomberoides lysanE00738Selar crumenophthalmusE00833Selene browniiE00767Selene setapinnisN01705Seriola dumeriliE00623Seriola rivolianaE00467Trachinotus carolinusG01504Trachinotus falcatusE00819Trachinotus ovatusE01145Trachurus lathamiE00598Uraspis secundaE00515Carapus bermudensisE00244Onuxodon parvibrachiumN06009Pyramodon ventralisN06078Caristius spE00810Platyberyx opalescensN06085Centracanthus cirrusM01561Spicara nigricaudaM01564Spicara smarisG01185Ambloplites rupestrisE00392Archoplites interruptusN01722Lepomis macrochirusE01113Micropterus salmoidesE01110Pomoxis nigromaculatusE0131Aeoliscus strigatusG01189	Genus SpeciesETOL_IDLength (bp)Scomberoides lysanE0073810887Selar crumenophthalmusE0083311277Selene browniiE007677866Selene setapinnisN017056120Seriola dumeriliE0062316521Seriola rivolianaE0046711164Trachinotus carolinusG0150411145Trachinotus carolinusE014514822Trachinotus ovatusE0114514822Trachinotus ovatusE0051511843Carapus bermudensisE002443497Onuxodon parvibrachiumN060095285Pyramodon ventralisN060785912Caristius spE008109564Platyberyx opalescensN006857781Centracanthus cirrusM015614032Spicara anigricaudaM015655111Acantharchus pomotisG0118510678Ambloplites rupestrisE0039218681Archoplites interruptusN017228586Lepomis macrochirusE011315647Micropterus salmoidesE011018682Pomoxis nigromaculatusE0013114489Aeoliscus strigatusG0118910258	Genus Species ETOL_ID Length (bp) charset Scomberoides lysan E00738 10887 13 Selar crumenophthalmus E00833 11277 13 Selene setapinnis N01705 6120 8 Seriola dumerili E00623 16521 18 Seriola dumerili E00467 11164 13 Trachinotus carolinus G01504 11145 13 Trachinotus carolinus E00819 10693 12 Trachinotus ovatus E01145 14822 16 Trachinotus ovatus E00515 11843 13 Carapus bermudensis E00244 3497 5 Onuxodon parvibrachium N06009 5285 7 Pyramodon ventralis N06013 5272 7 Caristius sp E00810 9564 11 Platyberyx opalescens N06078 5912 8 Caristius sp E00810 9564 11 Platyberyx opalescens N06078 5111	Genus Species ETOL_ID Length (bp) charset PLAGL2 Scomberoides lysan E00738 10887 13 807 Selar crumenophthalmus E00833 11277 13 813 Selene brownii E00767 7866 10 810 Selene setapinnis N01705 6120 8 699 Seriola dumerili E00623 16521 18 813 Seriola rivoliana E00467 11164 13 813 Trachinotus carolinus G01504 11145 13 707 Trachinotus falcatus E00819 10693 12 810 Trachinotus ovatus E01145 14822 16 690 Trachurus lathami E00598 11710 13 825 Uraspis secunda E00244 3497 5 612 Onuxodon parvibrachium N0609 5285 7 705 Pyramodon ventralis N0613 5272 7 705 Caristius macropus </td <td>Genus Species ETOL_ID Length (bp) charset PLAGL2 PTCHD1 Scomberoides lysan E00738 10887 13 807 756 Selar crumenophthalmus E00833 11277 13 813 0 Selene brownii E00767 7866 10 810 0 Selene setapinnis N01705 6120 8 699 708 Seriola dumerili E00623 16521 18 813 756 Trachinotus carolinus G01504 11145 13 707 708 Trachinotus falcatus E00819 10693 12 810 0 Trachinotus ovatus E0145 14822 16 690 708 Trachinotus ovatus E00515 11843 13 810 0 Carapus bermudensis E00244 3497 5 612 597 Onuxodon parvibrachium N06009 5285 7 705 708 Pyramodon ventralis N06013</td> <td>Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1Scomberoides lysanE0073810887138077561446Selar crumenophthalmusE00833112771381300Selene browniiE0076778661081000Selene setapinnisN01705612086997080Seriola dumeriliE0062316521188137061425Seriola rivolianaE004711164138137560Trachinotus carolinusG0150411145137077081398Trachinotus falcatusE00819106931281000Trachinotus ovatusE0114514822166907081386Trachinotus ovatusE00151118431381001122Carapus bermudensisE00244349756125970Onuxodon parvibrachiumN06009528577057080Pyramodon ventralisN06013527277057080Caristius macropusN06078591286456240Caristius spE0081095641182501455Spicara altaM015614032479201455Spicara ongricaudaM015644791579201455Spicara smarisM015655111<td>Genus SpeciesETOL_DLength (bp)charsetPLAGL2PTCHD1RAG1RAG2Scomberoides lysanE00738108871380775614460Selar crumenophthalmusE00833112771381300939Selene browniiE00767786610810000Selene setapinnisN017056120869970800Seriola dumeriliE00623165211881370814250Seriola rivolianaE00467111641381375600Trachinotus carolinusG01504111451370770813860Trachinotus falcatusE00147148221669070813860Trachinotus falcatusE00151148221669070813860Trachinotus lathamiE00598117101382570500Uraspis secundaE005151184313810011220Caragus bermudensisE002443497561259700Caristius macropusN060785912864562400Caristius macropusN060785912864562400Caristius spE00810956411825014550Spicara andraM0156251425001455<t< td=""><td>Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1RAG2RHScomberoides lysanE00738108871380775614460642Selar crumenophthalmusE00833112771381300939471Selene setapininsE00767786610810000852Selene setapininsN0170561208699708000Seriola dumeriliE00623165211881370814250459Seriola dumeriliE006231652118813708132800714Trachinotus carolinusG01504111451370770813860758Trachinotus folactusE008191069312810000852Uraspis secundaE005151184313810011220600Onuxadon parvibrachiumN060952857705708000Caristius macropusN06078591286456240000Caristius spE0081915641182501455000Onuxadon parvibrachiumN060857781106515911275000Caristius spE0081995641182501455000<tr< td=""></tr<></td></t<></td></td>	Genus Species ETOL_ID Length (bp) charset PLAGL2 PTCHD1 Scomberoides lysan E00738 10887 13 807 756 Selar crumenophthalmus E00833 11277 13 813 0 Selene brownii E00767 7866 10 810 0 Selene setapinnis N01705 6120 8 699 708 Seriola dumerili E00623 16521 18 813 756 Trachinotus carolinus G01504 11145 13 707 708 Trachinotus falcatus E00819 10693 12 810 0 Trachinotus ovatus E0145 14822 16 690 708 Trachinotus ovatus E00515 11843 13 810 0 Carapus bermudensis E00244 3497 5 612 597 Onuxodon parvibrachium N06009 5285 7 705 708 Pyramodon ventralis N06013	Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1Scomberoides lysanE0073810887138077561446Selar crumenophthalmusE00833112771381300Selene browniiE0076778661081000Selene setapinnisN01705612086997080Seriola dumeriliE0062316521188137061425Seriola rivolianaE004711164138137560Trachinotus carolinusG0150411145137077081398Trachinotus falcatusE00819106931281000Trachinotus ovatusE0114514822166907081386Trachinotus ovatusE00151118431381001122Carapus bermudensisE00244349756125970Onuxodon parvibrachiumN06009528577057080Pyramodon ventralisN06013527277057080Caristius macropusN06078591286456240Caristius spE0081095641182501455Spicara altaM015614032479201455Spicara ongricaudaM015644791579201455Spicara smarisM015655111 <td>Genus SpeciesETOL_DLength (bp)charsetPLAGL2PTCHD1RAG1RAG2Scomberoides lysanE00738108871380775614460Selar crumenophthalmusE00833112771381300939Selene browniiE00767786610810000Selene setapinnisN017056120869970800Seriola dumeriliE00623165211881370814250Seriola rivolianaE00467111641381375600Trachinotus carolinusG01504111451370770813860Trachinotus falcatusE00147148221669070813860Trachinotus falcatusE00151148221669070813860Trachinotus lathamiE00598117101382570500Uraspis secundaE005151184313810011220Caragus bermudensisE002443497561259700Caristius macropusN060785912864562400Caristius macropusN060785912864562400Caristius spE00810956411825014550Spicara andraM0156251425001455<t< td=""><td>Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1RAG2RHScomberoides lysanE00738108871380775614460642Selar crumenophthalmusE00833112771381300939471Selene setapininsE00767786610810000852Selene setapininsN0170561208699708000Seriola dumeriliE00623165211881370814250459Seriola dumeriliE006231652118813708132800714Trachinotus carolinusG01504111451370770813860758Trachinotus folactusE008191069312810000852Uraspis secundaE005151184313810011220600Onuxadon parvibrachiumN060952857705708000Caristius macropusN06078591286456240000Caristius spE0081915641182501455000Onuxadon parvibrachiumN060857781106515911275000Caristius spE0081995641182501455000<tr< td=""></tr<></td></t<></td>	Genus SpeciesETOL_DLength (bp)charsetPLAGL2PTCHD1RAG1RAG2Scomberoides lysanE00738108871380775614460Selar crumenophthalmusE00833112771381300939Selene browniiE00767786610810000Selene setapinnisN017056120869970800Seriola dumeriliE00623165211881370814250Seriola rivolianaE00467111641381375600Trachinotus carolinusG01504111451370770813860Trachinotus falcatusE00147148221669070813860Trachinotus falcatusE00151148221669070813860Trachinotus lathamiE00598117101382570500Uraspis secundaE005151184313810011220Caragus bermudensisE002443497561259700Caristius macropusN060785912864562400Caristius macropusN060785912864562400Caristius spE00810956411825014550Spicara andraM0156251425001455 <t< td=""><td>Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1RAG2RHScomberoides lysanE00738108871380775614460642Selar crumenophthalmusE00833112771381300939471Selene setapininsE00767786610810000852Selene setapininsN0170561208699708000Seriola dumeriliE00623165211881370814250459Seriola dumeriliE006231652118813708132800714Trachinotus carolinusG01504111451370770813860758Trachinotus folactusE008191069312810000852Uraspis secundaE005151184313810011220600Onuxadon parvibrachiumN060952857705708000Caristius macropusN06078591286456240000Caristius spE0081915641182501455000Onuxadon parvibrachiumN060857781106515911275000Caristius spE0081995641182501455000<tr< td=""></tr<></td></t<>	Genus SpeciesETOL_IDLength (bp)charsetPLAGL2PTCHD1RAG1RAG2RHScomberoides lysanE00738108871380775614460642Selar crumenophthalmusE00833112771381300939471Selene setapininsE00767786610810000852Selene setapininsN0170561208699708000Seriola dumeriliE00623165211881370814250459Seriola dumeriliE006231652118813708132800714Trachinotus carolinusG01504111451370770813860758Trachinotus folactusE008191069312810000852Uraspis secundaE005151184313810011220600Onuxadon parvibrachiumN060952857705708000Caristius macropusN06078591286456240000Caristius spE0081915641182501455000Onuxadon parvibrachiumN060857781106515911275000Caristius spE0081995641182501455000 <tr< td=""></tr<>

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Centriscidae	Macroramphosus gracilis	E00335	4196	5	0	0	0	0	0	627
Centriscidae	Macroramphosus scolopax	E00473	10717	12	810	591	1275	0	748	0
Centrogenyidae	Centrogenys vaigiensis	G01239	9161	11	691	708	1398	0	0	0
Centrolophidae	Icichthys lockingtoni	E00387	15879	18	810	756	1398	0	0	645
Centropomidae	Centropomus ensiferus	E00766	14482	15	825	0	1464	0	741	645
Centropomidae	Centropomus medius	E01158	10458	11	744	0	1464	0	531	645
Centropomidae	Centropomus undecimalis	E00194	15428	17	825	612	1398	0	0	645
Centropomidae	Centropomus viridis	E01153	14374	16	813	582	1437	0	804	624
Centropomidae	Lates calcarifer	E01135	11083	12	729	0	1444	0	690	645
Centropomidae	Lates japonicus	E01147	10695	11	822	0	1446	0	771	645
Centropomidae	Lates microlepis	E01149	9785	11	822	0	1464	0	741	645
Centropomidae	Psammoperca waigiensis	E01148	12243	13	741	0	1464	0	756	644
Cepolidae	Acanthocepola sp	M01669	4129	4	783	0	1453	0	0	642
Cepolidae	Cepola macrophthalma	M01566	3339	4	792	0	0	0	0	642
Cepolidae	Cepola schlegelii	N06269	6961	9	657	591	1278	0	0	0
Cepolidae	Sphenanthias tosaensis	N06282	6620	9	654	591	765	0	0	0
Ceratiidae	Ceratias holboelli	E00175	8091	11	705	755	0	0	751	0
Ceratiidae	Ceratias sp	E00160	6019	7	810	755	0	0	0	645
Ceratiidae	Cryptopsaras couesii	E00686	9907	10	810	708	1398	0	0	0
Chaenopsidae	Acanthemblemaria aspera	E00320	6836	9	0	0	0	0	735	609
Chaenopsidae	Acanthemblemaria paula	E00295	6314	8	0	0	0	0	0	630
Chaenopsidae	Chaenopsis sp alepidota	E00313	11049	13	696	708	1464	0	735	0
Chaenopsidae	Emblemaria pandionis	E00310	6208	7	0	0	1464	0	735	0
Chaenopsidae	Lucayablennius zingaro	E00294	778 9	9	0	0	1464	0	735	645
Chaenopsidae	Neoclinus blanchardi	E00326	6535	8	0	0	1464	0	735	0
Chaenopsidae	Stathmonotus stahli	E00317	7886	9	0	0	1464	0	735	0
Chaetodontidae	Chaetodon auriga	E00921	12220	14	813	0	0	849	0	645
Chaetodontidae	Chaetodon capistratus	E00205	3871	5	0	0	0	849	0	0
Chaetodontidae	Chaetodon ocellatus	E00752	3799	5	0	0	0	849	0	0
Chaetodontidae	Chaetodon ornatissimus	G01243	11727	14	708	708	1398	849	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Chaetodontidae	Chaetodon plebeius	E00573	2874	4	0	0	0	849	0	627
Chaetodontidae	Chaetodon reticulatus	E00719	9187	11	810	756	0	849	0	0
Chaetodontidae	Chaetodon striatus	E00753	15347	19	825	693	1341	849	753	0
Chaetodontidae	Chelmon rostratus	G01248	10379	13	708	708	1398	0	0	0
Chaetodontidae	Forcipiger flavissimus	E00562	14191	17	825	756	1464	849	0	0
Chaetodontidae	Hemitaurichthys polylepis	E00240	12410	15	810	756	1455	849	0	636
Chaetodontidae	Heniochus chrysostomus	E00748	14747	18	825	756	1464	816	0	645
Chaetodontidae	Heniochus varius	E00547	11101	14	810	756	0	849	0	645
Chaetodontidae	Johnrandallia nigrirostris	N06546	7594	9	708	708	1398	0	0	0
Chaetodontidae	Prognathodes aya aculeatus	E00632	16211	20	695	753	1398	849	0	612
Champsodontidae	Champsodon snyderi	N06574	5798	8	648	593	0	0	0	0
Channichthyidae	Chionobathyscus dewitti	G01250	11735	13	708	708	1398	0	756	0
Channichthyidae	Chionodraco rastrospinosus	E00156	10249	11	810	756	1305	0	756	645
Channidae	Channa lucius	N06615	7562	9	639	708	1386	0	0	0
Channidae	Channa melasoma	N06621	8195	10	639	609	1374	0	0	0
Channidae	Channa striata	E01133	15424	17	801	708	1446	0	759	645
Chaunacidae	Chaunax stigmaeus	E01121	11544	14	645	600	1380	0	0	645
Chaunacidae	Chaunax suttkusi	E01117	13670	16	786	705	1374	0	0	645
Cheilodactylidae	Cheilodactylus fasciatus	E00795	8950	11	813	0	0	0	0	633
Cheilodactylidae	Cheilodactylus pixi	E00797	7523	10	636	597	1398	0	0	0
Cheilodactylidae	Cheilodactylus variegatus	N07699	7481	9	693	708	1359	0	0	0
Cheilodactylidae	Chirodactylus brachydactylus	E00796	10572	13	810	600	1398	0	0	645
Cheilodactylidae	Chirodactylus jessicalenorum	E00585	5511	7	810	723	0	0	0	645
Cheimarrichthyidae	Cheimarrichthys fosteri	N07713	7400	9	702	708	1116	0	0	0
Chiasmodontidae	Chiasmodon niger	E01115	6819	8	801	0	0	0	0	645
Chiasmodontidae	Chiasmodon sp	N33662	8114	10	693	693	1104	0	0	0
Chiasmodontidae	Kali indica	E01106	8049	10	810	765	0	0	755	0
Chiasmodontidae	Kali kerberti	E00385	8712	11	702	753	0	0	0	0
Chironemidae	Chironemus georgianus	M01569	3606	4	792	0	1455	0	0	0
Chironemidae	Chironemus maculosus	M01570	3605	4	792	0	1454	0	0	0

Table A4b. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Cichlidae	Astatotilapia burtoni	G01518	14530	19	825	417	1464	639	462	642
Cichlidae	Cichla temensis	G01256	12888	15	708	708	1398	963	0	0
Cichlidae	Crenicichla lepidota	E00137	9593	12	810	756	0	0	0	645
Cichlidae	Etroplus maculatus	E00133	16104	17	810	756	1464	865	735	0
Cichlidae	Herichthys cyanoguttatus	G01319	10449	13	708	708	1038	927	0	0
Cichlidae	Heros efasciatus	G01320	12037	14	708	708	1398	902	0	0
Cichlidae	Heterochromis multidens	G01321	10659	13	692	693	1368	897	0	0
Cichlidae	Maylandia zebra	G01519	15105	19	0	744	1464	855	462	642
Cichlidae	Nanochromis parilus	G01390	2645	4	0	693	0	0	0	0
Cichlidae	Neolamprologus brichardi	G01520	18935	21	825	744	1464	855	924	642
Cichlidae	Oreochromis niloticus	G01407	20724	22	708	693	1464	1206	909	594
Cichlidae	Paratilapia polleni	G01420	11328	12	705	708	1398	0	0	0
Cichlidae	Paretroplus maculatus	G01423	11220	12	696	708	1347	0	0	0
Cichlidae	Ptychochromis grandidieri	G01459	9350	12	705	570	1398	0	0	0
Cichlidae	Pundamilia nyererei	G01521	14440	18	825	417	1464	855	924	642
Cichlidae	Steatocranus gibbiceps	G01494	2873	4	0	693	0	0	0	0
Cichlidae	Symphysodon discus	E00390	10909	13	810	756	1452	908	0	645
Cichlidae	Tilapia louka	G01503	2873	4	0	693	0	0	0	0
Cirrhitidae	Amblycirrhitus pinos	E00314	16355	19	825	597	1377	0	741	645
Cirrhitidae	Cirrhitichthys falco	N09466	4867	7	639	597	0	0	0	0
Cirrhitidae	Cirrhitichthys oxycephalus	E00884	8380	11	0	765	0	0	0	645
Cirrhitidae	Neocirrhites armatus	E00725	12592	16	639	597	1398	0	0	630
Cirrhitidae	Paracirrhites forsteri arcatus	E00924	12505	15	810	765	1422	0	0	0
Citharidae	Citharoides macrolepis	E00071	12901	15	0	597	1415	0	744	645 _
Citharidae	Citharus linguatula	E01174	6850	8	0	0	1446	0	755	645
Citharidae	Lepidoblepharon ophthalmolepis	E00080	7005	8	0	765	0	0	729	645
Clinidae	Blennophis striatus	E00800	3454	4	0	0	0	0	0	0
Clinidae	Clinus cottoides	E00804	4782	6	0	0	0	0	429	0
Clinidae	Clinus superciliosus	E00803	5297	7	0	0	0	0	429	0
Clinidae	Gibbonsia metzi	N09738	6827	8	696	705	1398	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Clinidae	Muraenoclinus dorsalis	E00805	4559	6	0	0	0	0	429	0
Clinidae	Pavoclinus profundus	E00799	3475	4	0	0	0	0	0	0
Coryphaenidae	Coryphaena hippurus	E00937	17390	19	804	708	1437	0	819	645
Cottidae	Artediellus uncinatus	N10447	7522	9	704	708	1398	0	0	0
Cottidae	Chitonotus pugetensis	E00233	6714	8	810	687	0	0	0	0
Cottidae	Cottus carolinae	E00281	10765	13	669	708	1398	0	0	0
Cottidae	Enophrys taurina	E00234	3576	5	810	684	0	0	0	0
Cottidae	Gymnocanthus galeatus	E00259	3095	4	0	0	0	0	0	0
Cottidae	Hemilepidotus jordani	E00263	7975	10	801	756	0	0	0	615
Cottidae	Hemilepidotus zapus	E00272	5096	6	810	0	0	0	0	0
Cottidae	Icelinus filamentosus	E00277	8203	10	810	684	0	0	0	0
Cottidae	Icelinus quadriseriatus	E00228	5018	6	0	0	0	0	0	0
Cottidae	Leptocottus armatus	E00266	12068	14	807	708	1398	0	0	621
Cottidae	Microcottus sellaris	E00223	2282	3	0	0	0	0	0	0
Cottidae	Myoxocephalus octodecemspinosus	E00221	3991	4	0	0	0	0	0	0
Cottidae	Myoxocephalus polyacanthocephalus	E00267	4736	5	0	0	0	0	0	0
Cottidae	Radulinus asprellus	E00429	6882	9	810	756	0	0	0	630
Cottidae	Rastrinus scutiger	E00256	6088	7	0	0	0	0	0	633
Cottidae	Scorpaenichthys marmoratus	E00232	10450	13	705	708	1389	0	0	624
Cottidae	Triglops macellus	E00435	8082	10	810	756	0	0	0	645
Cottidae	Triglops scepticus	E00421	5233	7	810	756	0	0	0	645
Creediidae	Limnichthys sp	E01081	6256	8	801	708	0	0	0	579
Cryptacanthodidae	Cryptacanthodes maculatus	E00116	10532	13	810	756	1397	0	0	645
Cyclopteridae	Cyclopterus lumpus	E00220	12165	15	669	708	1398	0	755	0
Cyclopteridae	Eumicrotremus orbis	E00270	12456	15	795	708	1278	0	0	627
Cynoglossidae	Cynoglossus interruptus	E00076	7900	8	0	765	1425	0	459	645
Cynoglossidae	Symphurus atricaudus	E00023	10924	12	0	708	1383	0	0	558
Cynoglossidae	Symphurus civitatium	E00604	7546	8	0	0	0	0	0	645
Cynoglossidae	Symphurus plagiusa	E01164	7027	8	0	0	1445	0	600	645
Cyprinodontidae	Cyprinodon variegatus	E01066	12469	15	702	612	1302	0	0	0

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Cyprinodontidae	Floridichthys carpio	E01063	9295	11	0	758	1464	0	0	645
Cyprinodontidae	Jordanella floridae	N14002	5915	7	693	0	1287	0	0	0
Dactylopteridae	Dactyloptena gilberti	N14051	5845	7	702	705	1347	0	0	0
Dactylopteridae	Dactyloptena orientalis	E00237	13665	15	804	705	1446	0	0	645
Dactylopteridae	Dactyloptena peterseni	E00749	14553	15	810	705	1398	0	0	612
Dactylopteridae	Dactylopterus volitans	E00214	7789	10	0	0	0	0	750	600
Dactyloscopidae	Gillellus semicinctus	G01299	6655	8	693	708	1398	0	0	0
Dactyloscopidae	Platygillellus rubrocinctus	E00319	5427	7	0	0	0	0	0	0
Datnioididae	Datnioides microlepis	N14199	7836	10	636	588	1377	0	0	0
Dichistiidae	Dichistius capensis	M01571	3582	4	792	0	1455	0	0	0
Diodontidae	Chilomycterus schoepfii	E00517	12554	15	708	708	1416	0	0	642
Diodontidae	Diodon holocanthus	E00312	13884	15	678	708	1419	0	0	0
Drepaneidae	Drepane punctata	E00250	13305	15	825	582	1452	0	754	645
Echeneidae	Echeneis naucrates	E00615	16441	18	810	708	1398	0	738	591
Echeneidae	Echeneis neucratoides	E00245	7118	7	810	0	0	0	0	0
Echeneidae	Phtheirichthys lineatus	G01438	7650	8	0	756	0	0	0	0
Echeneidae	Remora osteochir australis	E00503	10993	11	810	0	1455	0	750	0
Elassomatidae	Elassoma evergladei	E00146	15293	17	807	756	1464	0	926	606
Elassomatidae	Elassoma okefenokee	G01283	9813	12	708	708	1389	0	0	0
Elassomatidae	Elassoma zonatum	G01284	14834	15	708	708	1464	0	927	0
Eleginopsidae	Eleginops maclovinus	G01286	10593	13	708	708	1338	0	747	0
Eleotridae	Dormitator maculatus	E00169	5763	7	0	708	1293	0	0	0
Eleotridae	Eleotris acanthopoma pisonis	E00741	12447	14	613	708	1398	0	0	576
Eleotridae	Ophiocara porocephala	E01101	11395	13	0	705	1290	0	819	645
Eleotridae	Oxyeleotris selheimi	N01730	5975	7	636	708	1398	0	0	0
Embiotocidae	Amphistichus argenteus	E00129	8893	12	810	756	0	870	0	645
Embiotocidae	Cymatogaster aggregata	E00139	14184	16	810	756	1383	0	0	0
Embiotocidae	Embiotoca jacksoni	E00120	14177	17	810	756	1464	870	759	0
Embiotocidae	Embiotoca lateralis	N14635	6883	8	708	708	1398	0	0	0
Embiotocidae	Hyperprosopon anale argenteum	E00134	14767	18	825	708	1398	0	0	645

Table A4b. Continued			_							
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Embiotocidae	Phanerodon furcatus	E00122	11479	14	810	756	1398	0	0	0
Embiotocidae	Rhacochilus vacca	E00124	12585	15	708	756	1398	852	0	0
Embiotocidae	Zalembius rosaceus	E00135	4565	6	0	756	0	0	0	0
Emmelichthyidae	Erythrocles schlegelii	E00954	12039	15	810	582	1464	0	0	630
Emmelichthyidae	Erythrocles scintillans	N14652	6911	9	654	591	1278	0	0	0
Enoplosidae	Enoplosus armatus	G01287	10134	11	645	591	1398	0	927	0
Ephippidae	Chaetodipterus faber	E00614	14589	18	825	666	1464	846	0	0
Ephippidae	Platax orbicularis	E00898	13969	16	708	747	1188	870	0	615
Ephippidae	Platax teira	E00858	12410	15	825	750	1464	0	759	0
Epigonidae	Epigonus pandionis	E01019	5505	7	810	0	0	0	0	645
Epigonidae	Epigonus telescopus	E00652	10314	12	810	0	1455	0	852	618
Exocoetidae	Cheilopogon dorsomacula	E00624	11475	14	810	750	0	1002	852	642
Exocoetidae	Cheilopogon melanurus	N14975	5883	7	696	708	1368	0	0	0
Exocoetidae	Cheilopogon pinnatibarbatus	E00399	13294	16	704	750	1380	933	0	645
Exocoetidae	Cypselurus callopterus	E00402	6837	8	0	750	0	933	0	642
Exocoetidae	Exocoetus monocirrhus	E00403	10246	13	0	750	0	1002	0	636
Exocoetidae	Hirundichthys marginatus	E00401	9589	12	810	750	0	999	0	0
Exocoetidae	Parexocoetus brachypterus	E00645	4220	5	0	0	0	933	0	645
Exocoetidae	Prognichthys brevipinnis	E00400	6286	8	810	750	0	0	0	0
Fistulariidae	Fistularia commersonii	E00941	7080	7	639	591	1287	0	0	0
Fistulariidae	Fistularia petimba	E00602	6969	9	636	591	1131	0	0	0
Fundulidae	Adinia xenica	E00173	8890	10	0	752	1464	0	0	0
Fundulidae	Fundulus blairae	E00130	9841	11	810	752	1464	0	0	0
Fundulidae	Fundulus chrysotus	E00186	8599	9	810	0	1464	0	0	0
Fundulidae	Fundulus heteroclitus	G01293	12304	13	708	708	1371	0	0	0
Fundulidae	Fundulus parvipinnis	E00389	11368	13	810	752	1464	0	0	0
Fundulidae	Lucania parva goodei	E01064	13730	16	708	612	1464	0	0	0
Gasterosteidae	Apeltes quadracus	E00791	11199	12	789	708	1251	0	0	0
Gasterosteidae	Culaea inconstans	E00368	12338	14	780	702	1245	0	0	633
Gasterosteidae	Gasterosteus aculeatus	E01012	20181	21	825	765	1464	1206	921	645

Table A4b. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Gasterosteidae	Gasterosteus wheatlandi	N15128	8456	10	696	699	1332	0	0	0
Gasterosteidae	Pungitius pungitius	G01460	10820	11	798	702	1245	0	0	0
Gasterosteidae	Spinachia spinachia	G01491	10498	11	780	708	1326	0	751	0
Gempylidae	Gempylus serpens	E00693	9797	13	810	756	0	348	819	633
Gempylidae	Nealotus tripes	E00287	6043	8	0	747	0	0	0	630
Gempylidae	Neoepinnula americana	E00471	5662	7	0	0	0	0	0	0
Gempylidae	Neoepinnula orientalis	E00518	6702	9	810	0	0	0	0	636
Gempylidae	Paradiplospinus gracilis	N15143	7281	9	639	708	1284	0	0	0
Gempylidae	Ruvettus pretiosus	E00226	13794	16	807	675	1398	1206	819	0
Gerreidae	Eucinostomus argenteus	E00575	5749	7	0	0	0	0	0	645
Gerreidae	Eucinostomus gula	E00756	7604	9	0	0	1462	0	750	636
Gerreidae	Eugerres plumieri	G01291	11242	14	693	708	1464	0	745	0
Gerreidae	Gerres cinereus	E00292	11457	12	825	0	1464	0	743	645
Gerreidae	Gerres longirostris	E00835	6053	8	0	765	0	0	0	645
Gerreidae	Gerres oyena	E00823	6770	8	0	753	1455	0	0	645
Gerreidae	Ulaema lefroyi	G01507	8309	10	696	708	1347	0	0	0
Gigantactinidae	Gigantactis ios	E01053	4539	6	810	0	0	0	0	645
Gigantactinidae	Gigantactis sp	N34852	6412	8	705	705	1293	0	0	0
Gigantactinidae	Gigantactis vanhoeffeni	E00177	13239	15	810	755	1329	0	0	645
Girellidae	Girella nigricans mezina	E00197	11742	13	810	696	1275	0	0	645
Glaucosomatidae	Glaucosoma buergeri	N15231	7808	10	654	591	1278	0	0	0
Glaucosomatidae	Glaucosoma hebraicum	G01300	16039	18	741	708	1464	0	759	644
Gobiesocidae	Arcos sp	E00102	13747	16	639	0	756	0	0	645
Gobiesocidae	Diademichthys lineatus	G01276	8298	10	678	672	1398	0	0	0
Gobiesocidae	Gobiesox maeandricus	G01302	8270	10	678	0	1398	0	0	0
Gobiesocidae	Lepadichthys lineatus	E01080	3896	5	0	0	0	0	0	0
Gobiidae	Amblyeleotris guttata	E01043	8728	11	0	750	0	837	765	630
Gobiidae	Amblyeleotris gymnocephala	E00409	6038	8	0	755	0	828	759	645
Gobiidae	Amblyeleotris wheeleri	E01073	7397	9	0	765	0	837	759	0
Gobiidae	Amblygobius decussatus	E00533	2824	4	0	755	0	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAGZ	RH	RIPK4
Gobiidae	Amblygobius phalaena	E00736	7217	10	0	755	0	837	765	603
Gobiidae	Asterropteryx semipunctata	E01089	_ 6719	8	0	765	0	831	756	0
Gobiidae	Bathygobius mystacium	E00104	6412	8	0	756	891	0	765	636
Gobiidae	Bollmannia communis	E00617	5108	5	0	755	0	0	0	645
Gobiidae	Cabillus lacertops	E01093	3915	5	0	0	0	0	750	0
Gobiidae	Caffrogobius caffer	E01056	6198	8	0	752	0	0	0	630
Gobiidae	Caffrogobius saldanha	E01057	6207	8	0	765	0	813	750	558
Gobiidae	Coryphopterus glaucofraenum	E00100	5342	7	0	756	0	0	0	642
Gobiidae	Coryphopterus personatus	E00405	4791	7	0	755	0	813	750	0
Gobiidae	Cryptocentrus sp	E00407	3883	5	0	755	0	828	765	0
Gobiidae	Ctenogobiops crocineus	E01097	5981	7	0	765	0	837	0	0
Gobiidae	Ctenogobius boleosoma	E00172	3520	5	0	755	0	0	0	630
Gobiidae	Elacatinus oceanops	E00108	11459	12	0	755	1317	813	798	0
Gobiidae	Eviota albolineata	E01041	6182	8	0	765	0	0	0	525
Gobiidae	Eviota prasites	E01044	5506	7	0	765	0	0	0	555
Gobiidae	Eviota saipanensis	E00714	4913	6	0	0	0	813	750	0
Gobiidae	Evorthodus lyricus	E00171	6129	8	0	755	0	0	0	0
Gobiidae	Fusigobius duospilus	E00863	7305	9	0	765	0	813	750	0
Gobiidae	Fusigobius inframaculatus	E01076	4985	6	0	764	0	0	0	0
Gobiidae	Fusigobius neophytus	E00733	7031	10	0	754	0	0	750	630
Gobiidae	Gnatholepis anjerensis	E01075	4977	7	0	0	0	825	0	645
Gobiidae	Gnatholepis cauerensis	E00099	3361	5	0	0	0	0	750	0
Gobiidae	Gobiodon quinquestrigatus	E01085	6985	9	0	0	0	813	750	531
Gobiidae	Gobiosoma bosc	E00097	9910	10	0	752	1317	0	798	0
Gobiidae	Istigobius decoratus	E01078	9124	11	0	765	891	813	750	615
Gobiidae	Istigobius ornatus	E01107	2776	3	0	0	0	0	0	0
Gobiidae	Lepidogobius lepidus	G01351	5076	6	591	708	1284	0	0	0
Gobiidae	Lophogobius cyprinoides	E00508	6153	8	0	0	0	834	765	0
Gobiidae	Lythrypnus dalli	E00126	6746	9	0	755	798	810	750	0
Gobiidae	Oplopomus oplopomus	E01067	6654	8	0	737	0	837	762	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Gobiidae	Paragobiodon modestus	E01098	8154	11	0	765	0	813	750	597
Gobiidae	Periophthalmus kalolo	E00537	6876	9	0	0	0	0	852	0
Gobiidae	Priolepis cincta	E01077	5030	6	0	0	0	831	765	0
Gobiidae	Priolepis hipoliti	E00106	5717	7	0	756	798	747	750	0
Gobiidae	Psammogobius biocellatus	E00740	5797	8	0	755	0	813	750	0
Gobiidae	Risor ruber	E00107	10310	10	0	756	1317	813	798	0
Gobiidae	Stonogobiops nematodes	N16820	2850	4	0	585	0	0	0	0
Gobiidae	Trimma caesiura	E01039	8870	11	0	765	0	813	750	630
Gobiidae	Trimma haima	E01084	5533	7	0	765	0	0	0	636
Gobiidae	Trimma okinawae	E00726	2759	4	0	755	0	0	0	645
Gobiidae	Valenciennea puellaris	E01096	5328	7	0	765	0	834	765	636
Gobiidae	Valenciennea strigata	E01094	4256	6	0	0	0	837	852	585
Gobiidae	Vanderhorstia ornatissima	E01088	6501	8	0	765	0	834	765	621
Grammatidae	Gramma loreto	E00280	14197	16	693	624	1434	0	0	630
Grammatidae	Lipogramma anabantoides	E00211	6519	8	810	0	0	0	0	0
Grammatidae	Lipogramma trilineata	E00210	6532	8	810	678	0	0	0	0
Haemulidae	Anisotremus surinamensis	N17175	7479	9	708	708	1353	0	0	0
Haemulidae	Anisotremus virginicus	E00200	9338	11	801	0	1455	696	0	633
Haemulidae	Conodon nobilis	E00613	10862	13	825	0	1455	696	0	642
Haemulidae	Haemulon aurolineatum	E00635	16270	20	825	756	1463	696	756	630
Haemulidae	Haemulon plumierii	E00279	12545	15	825	756	1416	696	0	630
Haemulidae	Haemulon sciurus	E00199	14796	18	825	708	1437	0	0	645
Haemulidae	Haemulon vittatum	E00218	14636	17	813	708	1455	696	702	606
Haemulidae	Orthopristis chrysoptera	E00607	15170	18	810	756	1455	696	0	630
Haemulidae	Plectorhinchus chaetodonoides	E00857	12011	14	825	0	1455	696	0	645
Haemulidae	Plectorhinchus vittatus	E00856	9448	12	810	0	0	696	0	615
Haemulidae	Pomadasys corvinaeformis	E00761	10420	14	765	0	0	696	690	645
Haemulidae	Xenistius californiensis	E00229	11494	14	825	0	1455	696	0	645
Hapalogenyidae	Hapalogenys aya	M01722	4098	4	849	0	1455	0	0	0
Hapalogenyidae	Hapalogenys kishinouyei	M01723	3627	4	840	0	1455	0	0	0

Family Genus Species FTOL_D Length (bp) charget (char control of control c	Table A4b. Continued			_							
Hapalogenyidae Hapalogeny nigripinnis M01724 4735 5 846 0 1455 0 0 0 Harpagiferidae Harpagifer antarcticus G01524 10362 11 711 708 1322 0 758 0 <th>Family</th> <th>Genus Species</th> <th>ETOL_ID</th> <th>Length (bp)</th> <th>charset</th> <th>PLAGL2</th> <th>PTCHD1</th> <th>RAG1</th> <th>RAG2</th> <th>RH</th> <th>RIPK4</th>	Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Harpagiferidae Harpagifer ontarcticus G01524 10362 11 711 708 1332 0 758 0 Helostomatidae Helostoma temminkii G01315 8144 9 645 588 1089 0	Hapalogenyidae	Hapalogenys nigripinnis	M01724	4735	5	846	0	1455	0	0	0
Helostomatidae Helostoma terminkii G01315 8144 9 645 588 1089 0 0 Hemiramphidae Arrhamphus sclerolegis G01209 7917 10 693 708 1182 0 0 0 Hemiramphidae Hyporhamphus salilensis E00098 10104 12 810 0 143 999 0 642 Hemiramphidae Hyporhamphus adius and uses and use and uses and uses and uses and uses and uses and u	Harpagiferidae	Harpagifer antarcticus	G01524	10362	11	711	708	1332	0	758	0
HemiramphidaeArrhamphus sclerolepisG012097917106937081182000HemiramphidaeHemiramphus brasiliensisE000981010412810014349990642HemiramphidaeHyporhamphus dussumieriE010685633700<	Helostomatidae	Helostoma temminkii	G01315	8144	9	645	588	1089	0	0	0
Hemiramphidae Hemiramphus brasiliensis E00098 10104 12 810 0 1434 999 0 642 Hemiramphidae Hyporhamphus affinis E01086 5623 7 0 0 0 0 588 Hemiramphidae Hyporhamphus micropterus E00397 8076 9 0 0 0 0 645 Hexagrammidae Hexagrammos decagrammus E00348 7318 10 825 0 0 0 633 Hexagrammidae Hexagrammos lagocephalus otakii E00367 6904 9 810 0 0 0 0 630 Hexagrammidae Pleurogrammus monopterygius E00357 6326 9 810 <td< td=""><td>Hemiramphidae</td><td>Arrhamphus sclerolepis</td><td>G01209</td><td>7917</td><td>10</td><td>693</td><td>708</td><td>1182</td><td>0</td><td>0</td><td>0</td></td<>	Hemiramphidae	Arrhamphus sclerolepis	G01209	7917	10	693	708	1182	0	0	0
Hemiramphidae Hyporhamphus affinis E01068 5623 7 0 0 0 0 0 588 Hemiramphidae Hyporhamphus dussumieri E01086 3078 4 0	Hemiramphidae	Hemiramphus brasiliensis	E00098	10104	12	810	0	1434	999	0	642
HemiramphidaeHyporhamphus dussumieriE010863078400 <t< td=""><td>Hemiramphidae</td><td>Hyporhamphus affinis</td><td>E01068</td><td>5623</td><td>7</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>588</td></t<>	Hemiramphidae	Hyporhamphus affinis	E01068	5623	7	0	0	0	0	0	588
HemiramphidaeOxyporhamphus micropterusE00397807690009650645HexagrammidaeHexagrammos decagrammusE00348731810825000753645HexagrammidaeHexagrammos logocephalus otakiiE003631310916705708139800633HexagrammidaePleurogrammus monopterygiusE00367690498100<	Hemiramphidae	Hyporhamphus dussumieri	E01086	3078	4	0	0	0	0	0	0
HexagrammidaeHexagrammos lagocephalus otakiiE00348731810825000753645HexagrammidaeHexagrammos lagocephalus otakiiE003631310916705708139800633HexagrammidaePleurogrammus monopterygiusE00367690498100000630HexagrammidaeZaniolepis frenataE00353632698100	Hemiramphidae	Oxyporhamphus micropterus	E00397	8076	9	0	0	0	965	0	645
HexagrammidaeHexagrammos lagocephalus otakiiE003631310916705708139800633HexagrammidaePleurogrammus monopterygiusE00367690498100000630HexagrammidaeZoniolepis frenataE00353632698100<	Hexagrammidae	Hexagrammos decagrammus	E00348	7318	10	825	0	0	0	753	645
HexagrammidaePleurogrammus monopterygiusE00367690498100000630HexagrammidaeZaniolepis frenataE00353632698100<	Hexagrammidae	Hexagrammos lagocephalus otakii	E00363	13109	16	705	708	1398	0	0	633
HexagrammidaeZaniolepis frenataE0035363269810000000HimantolophidaeHimantolophus albinares sagamiusE00656165401882575514640828645HoplichthyidaeHoplichthys gilbertiN17743527276455911269000Hoplichthy alagsdorfiiN177455443764557612750000HowellidaeHowella bradieiE008161108312825000852644HowellidaeHowella bradieiE00816110831281070812780000HypoptychidaeAulichthys japonicusG01216116021281070812270000IcosteidaeIcosteus aenigmaticusG01335103991165170812270000IndostomidaeIndostomus crocodilusN1786350477576645765000000645IstiophoridaeIndostomus paradoxusE0156103451157370813530852645IstiophoridaeIstiophorus platypterusE00695126981200144600645IstiophoridaeKakira nigricansE00697136990000645	Hexagrammidae	Pleurogrammus monopterygius	E00367	6904	9	810	0	0	0	0	630
HimantolophidaeHimantolophus albinares sagamiusE00656165401882575514640828645HoplichthyidaeHoplichthys gilbertiN17743527276455911269000HoplichthyidaeHoplichthys langsdorfiiN177455443764557612750000HowellidaeHowella brodieiE008161108312825000852644HowellidaeHowella zinaN177565489765759112780000HypoptychidaeAulichthys japonicusG01216116021281070812270000IcosteidaeIcosteus aenigmaticusG013351039911651708122700 <td>Hexagrammidae</td> <td>Zaniolepis frenata</td> <td>E00353</td> <td>6326</td> <td>9</td> <td>810</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	Hexagrammidae	Zaniolepis frenata	E00353	6326	9	810	0	0	0	0	0
HoplichthyidaeHoplichthys gilbertiN17743527276455911269000HoplichthyidaeHoplichthys langsdorfiiN17745544376455761275000HowellidaeHowella brodieiE008161108312825000852644HowellidaeHowella zinaN177565489765759112780000HypoptychidaeAulichthys japonicusG01216116021281070812270000HypoptychidaeHypoptychus dybowskiiG01335103991165170812270000IcosteidaeIcosteus aenigmaticusG0136717397020145500<	Himantolophidae	Himantolophus albinares sagamius	E00656	16540	18	825	755	1464	0	828	645
HoplichthyidaeHoplichthys langsdorfiiN17745544376455761275000HowellidaeHowella brodieiE008161108312825000852644HowellidaeHowella zinaN177565489765759112780000HypoptychidaeAulichthys japonicusG01216116021281070812270000HypoptychidaeHypoptychus dybowskiiG01335103991165170812270000IcosteidaeIcosteus aenigmaticusG0133671739702014550000IndostomidaeIndostomus crocodilusN1786350477576645765000 <t< td=""><td>Hoplichthyidae</td><td>Hoplichthys gilberti</td><td>N17743</td><td>5272</td><td>7</td><td>645</td><td>591</td><td>1269</td><td>0</td><td>0</td><td>0</td></t<>	Hoplichthyidae	Hoplichthys gilberti	N17743	5272	7	645	591	1269	0	0	0
HowellidaeHowella brodieiE008161108312825000852644Howella zinaN17756548976575911278000HypoptychidaeAulichthys japonicusG0121611602128107081254000HypoptychidaeHypoptychus dybowskiiG01335103991165170812270000IcosteidaeIcosteus aenigmaticusG0133671739702014550000IndostomidaeIndostomus crocodilusN178635047757664576500	Hoplichthyidae	Hoplichthys langsdorfii	N17745	5443	7	645	576	1275	0	0	0
HowellidaeHowella zinaN17756548976575911278000HypoptychidaeAulichthys japonicusG0121611602128107081254000HypoptychidaeHypoptychus dybowskiiG0133510399116517081227000IcosteidaeIcosteus aenigmaticusG013367173970201455000IndostomidaeIndostomus crocodilusN1786350477576645765000IndostomidaeIndostomus paradoxusE01156103451157370813530852645IsonidaeIso spE00145804310810591146400645IstiophoridaeIstiophorus platypterusE0069512698120014551206813645IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE00692800990000000IstiophoridaeTetrapturus angustirostrisN017417787106335911386000000000000000000000000000	Howellidae	Howella brodiei	E00816	11083	12	825	0	0	0	852	644
HypoptychidaeAulichthys japonicusG0121611602128107081254000HypoptychidaeHypoptychus dybowskiiG0133510399116517081227000IcosteidaeIcosteus aenigmaticusG013367173970201455000IndostomidaeIndostomus crocodilusN1786350477576645765000IndostomidaeIndostomus paradoxusE01156103451157370813530852645IsonidaeIso spE0014580431081059114640645645IstiophoridaeIstiophorus platypterusE0069512698120014451206819645IstiophoridaeKajikia albidaE0069711395120014551206813645IstiophoridaeMakaira nigricansE00692800990000645IstiophoridaeTetrapturus angustirostrisN0174177871063359113860000Kuhlia marginataG01341102481269668713980000000KuhliidaeKuhlia marginataE0071216962188197561437954927645	Howellidae	Howella zina	N17756	5489	7	657	591	1278	0	0	0
HypoptychidaeHypoptychus dybowskiiG0133510399116517081227000IcosteidaeIcosteus aenigmaticusG013367173970201455000IndostomidaeIndostomus crocodilusN1786350477576645765000IndostomidaeIndostomus paradoxusE01156103451157370813530852645IsonidaeIso spE00145804310810591146400645IstiophoridaeIstiophorus platypterusE0069512698120014461206819645IstiophoridaeKajikia albidaE0069711395120014551206813645IstiophoridaeMakaira nigricansE0069280099000810640642IstiophoridaeTetrapturus angustirostrisN0174177871063359113860000KuhliidaeKuhlia marginataG013411024812696687139800000KuhliidaeKuhlia mugilE0071216962188197561437954927645	Hypoptychidae	Aulichthys japonicus	G01216	11602	12	810	708	1254	0	0	0
IcosteidaeIcosteus aenigmaticusG013367173970201455000IndostomidaeIndostomus crocodilusN1786350477576645765000IndostomidaeIndostomus paradoxus£01156103451157370813530852645IsonidaeIso sp£00145804310810591146400645IstiophoridaeIstiophorus platypterus£0069512698120014461206819645IstiophoridaeKajikia albida£00697113951200000609IstiophoridaeMakaira nigricans£0069280099000810660642IstiophoridaeTetrapturus angustirostrisN0174177871063359113860000KuhliidaeKuhlia marginata£0071216962188197561437954927645	Hypoptychidae	Hypoptychus dybowskii	G01335	10399	11	651	708	1227	0	0	0
IndostomidaeIndostomus crocodilusN1786350477576645765000IndostomidaeIndostomus paradoxusE01156103451157370813530852645IsonidaeIso spE00145804310810591146400645IstiophoridaeIstiophorus platypterusE0069512698120014461206819645IstiophoridaeKajikia albidaE0069178681000000609IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE0069280099000810660642IstiophoridaeTetrapturus angustirostrisN017417787106335911386000Kuhlia marginataG013411024812696687139800000Kuhlia mugilE0071216962188197561437954927645	Icosteidae	Icosteus aenigmaticus	G01336	7173	9	702	0	1455	0	0	0
IndostomidaeIndostomus paradoxusE01156103451157370813530852645IsonidaeIso spE00145804310810591146400645IstiophoridaeIstiophorus platypterusE0069512698120014461206819645IstiophoridaeKajikia albidaE0069178681000000609IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE0069280099000810660642IstiophoridaeTetrapturus angustirostrisN017417787106335911386000Kuhlia marginataG01341102481269668713980000KuhliidaeKuhlia mugilE0071216962188197561437954927645	Indostomidae	Indostomus crocodilus	N17863	5047	7	576	645	765	0	0	0
IsonidaeIso spE00145804310810591146400645IstiophoridaeIstiophorus platypterusE0069512698120014461206819645IstiophoridaeKajikia albidaE0068178681000000609IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE0069280099000810660642IstiophoridaeTetrapturus angustirostrisN017417787106335911386000KuhliidaeKuhlia marginataG0134110248126966871398000KuhliidaeKuhlia mugilE0071216962188197561437954927645	Indostomidae	Indostomus paradoxus	E01156	10345	11	573	708	1353	0	852	645
IstiophoridaeIstiophorus platypterusE0069512698120014461206819645IstiophoridaeKajikia albidaE0068178681000000609IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE0069280099000810660642IstiophoridaeTetrapturus angustirostrisN017417787106335911386000KuhliidaeKuhlia marginataG0134110248126966871398000KuhliidaeKuhlia mugilE0071216962188197561437954927645	Isonidae	lso sp	E00145	8043	10	810	591	1464	0	0	645
IstiophoridaeKajikia albidaE0068178681000000609IstiophoridaeMakaira nigricansE0069711395120014551206813645IstiophoridaeMakaira spE0069280099000810660642IstiophoridaeTetrapturus angustirostrisN017417787106335911386000KuhliidaeKuhlia marginataG0134110248126966871398000KuhliidaeKuhlia mugilE0071216962188197561437954927645	Istiophoridae	Istiophorus platypterus	E00695	12698	12	0	0	1446	1206	819	645
Istiophoridae Makaira nigricans E00697 11395 12 0 0 1455 1206 813 645 Istiophoridae Makaira sp E00692 8009 9 0 0 0 810 660 642 Istiophoridae Tetrapturus angustirostris N01741 7787 10 633 591 1386 0 0 0 Kuhliidae Kuhlia marginata G01341 10248 12 696 687 1398 0 0 0 Kuhliidae Kuhlia mugil E00712 16962 18 819 756 1437 954 927 645	Istiophoridae	Kajikia albida	E00681	7868	10	0	0	0	0	0	609
Istiophoridae Makaira sp E00692 8009 9 0 0 0 810 660 642 Istiophoridae Tetrapturus angustirostris N01741 7787 10 633 591 1386 0 <	Istiophoridae	Makaira nigricans	E00697	11395	12	0	0	1455	1206	813	645
Istiophoridae Tetrapturus angustirostris N01741 7787 10 633 591 1386 0 0 0 Kuhlia Kuhlia marginata G01341 10248 12 696 687 1398 0 0 0 Kuhliidae Kuhlia mugil E00712 16962 18 819 756 1437 954 927 645	Istiophoridae	Makaira sp	E00692	8009	9	0	0	0	810	660	642
Kuhlia Kuhlia marginata G01341 10248 12 696 687 1398 0 0 0 Kuhlia Kuhlia mugil E00712 16962 18 819 756 1437 954 927 645	Istiophoridae	Tetrapturus angustirostris	N01741	7787	10	633	591	1386	0	0	0
Kuhlia Kuhlia mugil E00712 16962 18 819 756 1437 954 927 645	Kuhliidae	Kuhlia marginata	G01341	10248	12	696	687	1398	0	0	0
	Kuhliidae	Kuhlia mugil	E00712	16962	18	819	756	1437	954	927	645

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Kuhliidae	Kuhlia rupestris	E00957	12721	15	627	597	1437	954	0	0
Kurtidae	Kurtus gulliveri	E00188	16737	18	816	752	1455	0	762	0
Kurtidae	Kurtus indicus	N17950	5074	7	639	588	0	0	0	0
Kyphosidae	Kyphosus cinerascens	N17975	7672	10	636	600	1224	0	0	0
Kyphosidae	Kyphosus elegans	G01342	9674	11	708	708	1398	0	0	0
Kyphosidae	Kyphosus incisor	E00202	6684	8	810	684	1437	954	0	645
Kyphosidae	Kyphosus sectatrix	E00775	12318	14	810	756	0	0	0	645
Labridae	Anampses lineatus	E00932	8645	11	0	753	0	0	0	0
Labridae	Bodianus axillaris	E00947	9242	11	0	753	0	0	0	645
Labridae	Bodianus mesothorax	E00560	14044	17	681	708	1329	876	0	618
Labridae	Cheilinus chlorourus	E00907	9227	12	0	0	0	0	0	645
Labridae	Cheilinus fasciatus	E00876	8639	11	0	752	0	870	0	0
Labridae	Cheilinus oxycephalus	E00901	6640	8	0	0	0	833	0	0
Labridae	Cheilio inermis	E00906	9477	11	0	747	0	876	0	621
Labridae	Cirrhilabrus katherinae	E00728	6057	8	0	0	0	0	0	645
Labridae	Cirrhilabrus punctatus	E00553	5794	7	0	0	0	874	0	0
Labridae	Clepticus parrae	E00015	14928	18	696	765	1398	874	0	0
Labridae	Coris batuensis	N18137	4801	6	0	708	0	0	0	0
Labridae	Coris caudimacula	E00861	11177	14	0	753	0	0	0	618
Labridae	Coris formosa	E00912	8465	11	0	753	0	0	0	0
Labridae	Coris gaimard	E00091	11874	15	708	708	1398	870	0	582
Labridae	Decodon puellaris	E00620	7367	9	810	0	0	0	0	639
Labridae	Diproctacanthus xanthurus	G01278	8556	10	0	708	1398	876	0	0
Labridae	Epibulus insidiator	E00879	16078	19	666	752	1398	825	0	0
Labridae	Gomphosus varius	E00085	11071	14	702	708	1398	872	0	0
Labridae	Halichoeres bathyphilus bivittatus	E00637	13256	16	675	708	1389	876	0	639
Labridae	Halichoeres biocellatus	E00727	5094	7	0	0	0	0	0	642
Labridae	Halichoeres iridis	E00928	6442	8	0	0	0	0	0	630
Labridae	Halichoeres margaritaceus	N18205	5528	7	0	708	0	0	0	0
Labridae	Hologymnosus doliatus	E00567	10593	13	0	0	0	876	0	630

Table A4b. Continued	·									
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Labridae	Labrichthys unilineatus	G01344	10143	12	0	708	1398	876	0	0
Labridae	Labroides dimidiatus	E00848	9046	11	0	753	0	0	0	0
Labridae	Labropsis australis	G01345	9319	11	0	708	1398	876	0	0
Labridae	Lachnolaimus maximus	E00014	12305	15	696	708	0	875	0	0
Labridae	Macropharyngodon bipartitus	E00895	7503	10	0	0	0	0	0	0
Labridae	Novaculichthys taeniourus	E00926	12181	15	0	753	0	876	0	627
Labridae	Oxycheilinus celebicus	G01412	8510	10	0	708	1398	0	0	0
Labridae	Oxycheilinus digramma	E00873	10757	13	0	752	0	825	0	0
Labridae	Oxycheilinus unifasciatus	E00721	7878	9	0	0	0	858	0	642
Labridae	Oxyjulis californica	G01413	7537	9	0	708	1398	0	0	0
Labridae	Pseudocheilinus evanidus	E00944	6483	9	0	752	0	0	0	561
Labridae	Pseudocheilinus hexataenia	E00945	7019	9	0	0	0	0	0	0
Labridae	Pteragogus enneacanthus	G01457	6723	8	696	708	1398	0	0	0
Labridae	Stethojulis balteata	E00089	4889	6	810	0	0	0	0	0
Labridae	Stethojulis strigiventer	E00908	11343	15	0	753	0	0	0	630
Labridae	Tautoga onitis	G01499	9257	11	0	708	1398	876	0	0
Labridae	Tautogolabrus adspersus	G01500	10397	12	0	708	1398	876	0	0
Labridae	Thalassoma amblycephalum	E00891	10041	13	0	753	0	0	0	645
Labridae	Thalassoma lunare	E00902	11967	15	0	753	0	861	0	624
Labridae	Thalassoma quinquevittatum	E00092	6872	9	0	0	0	0	0	582
Labridae	Wetmorella nigropinnata	E00948	11203	14	0	752	0	854	0	591
Labridae	Xyrichtys novacula martinicensis	E00016	18002	21	705	708	1398	876	852	597
Labrisomidae	Labrisomus bucciferus	E00301	5621	7	0	0	0	0	0	0
Labrisomidae	Labrisomus guppyi multiporosus	E00300	8447	10	693	624	1398	0	0	0
Labrisomidae	Labrisomus nigricinctus	E00302	4582	6	0	0	0	0	0	0
Labrisomidae	Malacoctenus aurolineatus	E00299	2229	3	0	0	0	0	0	0
Labrisomidae	Malacoctenus triangulatus	E00321	3751	4	0	0	0	0	0	0
Labrisomidae	Paraclinus marmoratus	E00309	4124	5	0	0	0	0	0	0
Labrisomidae	Starksia atlantica	E00304	5512	7	0	0	0	0	0	0
Labrisomidae	Starksia fasciata	E00303	7567	9	0	0	0	0	0	615

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Labrisomidae	Starksia ocellata	E00318	4469	6	0	0	0	0	0	636
Lactariidae	Lactarius lactarius Fiji	M01673	3453	4	0	0	1455	0	0	642
Lactariidae	Lactarius lactarius Qatar	M01593	4041	5	582	0	1455	0	0	645
Lateolabracidae	Lateolabrax japonicus	E01130	12539	12	825	0	1464	0	747	0
Latridae	Latridopsis forsteri	M01594	4790	5	792	0	1454	0	0	642
Latridae	Latris lineata	M01595	4794	5	792	0	1455	0	0	642
Leiognathidae	Gazza minuta	G01298	8150	10	705	672	1398	0	0	0
Leiognathidae	Leiognathus equulus	G01348	8522	11	702	633	1356	0	0	0
Leptobramidae	Leptobrama muelleri	E01150	6470	8	810	0	0	0	795	645
Lethrinidae	Gymnocranius grandoculis	E00952	7334	9	810	714	0	0	0	0
Lethrinidae	Lethrinus atkinsoni	E00750	7416	10	0	756	0	0	0	645
Lethrinidae	Lethrinus erythropterus	N18731	758 9	9	708	696	1398	0	0	0
Lethrinidae	Lethrinus harak	E00905	18169	21	822	696	1455	0	705	645
Lethrinidae	Lethrinus obsoletus	E00910	14297	15	810	0	1455	0	0	642
Lethrinidae	Lethrinus olivaceus	E00751	11020	13	810	0	1455	0	0	645
Lethrinidae	Monotaxis grandoculis	G01379	11352	12	708	708	1455	0	0	0
Liparidae	Careproctus melanurus	E00422	5235	7	0	756	0	0	0	0
Liparidae	Careproctus rastrinus	E00255	6920	8	804	0	0	0	0	0
Liparidae	Liparis gibbus	E00224	9360	11	0	756	1398	0	0	0
Liparidae	Liparis pulchellus	E00225	5675	7	0	0	0	0	0	0
Liparidae	Paraliparis beani	E00458	3871	5	0	756	0	0	0	0
Liparidae	Paraliparis copei	E00453	6908	9	0	756	0	0	0	0
Liparidae	Paraliparis hystrix	E00454	8881	11	0	756	1344	0	0	645
Liparidae	Rhinoliparis barbulifer	E00262	5284	7	789	756	0	0	0	0
Lobotidae	Lobotes pacificus surinamensis	G01359	9710	12	825	708	1455	0	0	0
Lophiidae	Lophiodes reticulatus	E00625	8318	11	810	746	852	0	0	645
Lophiidae	Lophius americanus	E00578	16809	19	819	755	1452	0	759	633
Lophiidae	Lophius gastrophysus	E01119	13495	17	708	759	0	0	0	645
Lutjanidae	Aphareus furca	E00563	13687	16	810	756	1455	0	0	645
Lutjanidae	Aprion virescens	E00828	8178	10	810	0	0	0	0	645

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Lutjanidae	Apsilus dentatus	E00770	8017	10	810	0	0	0	0	645
Lutjanidae	Lutjanus biguttatus	E00569	10110	12	810	756	1398	0	0	0
Lutjanidae	Lutjanus campechanus	E00592	9830	12	807	756	0	0	0	0
Lutjanidae	Lutjanus griseus	N20115	7237	9	705	708	1356	0	0	0
Lutjanidae	Lutjanus mahogoni	G01362	10416	12	825	708	1464	0	0	0
Lutjanidae	Macolor niger	E00939	9071	11	810	0	0	0	0	645
Lutjanidae	Ocyurus chrysurus	E00283	13831	16	810	708	1398	0	0	0
Lutjanidae	Pristipomoides aquilonaris	E00594	10332	13	810	756	0	0	0	636
Lutjanidae	Pristipomoides auricilla	E00746	6210	8	810	0	0	0	0	645
Lutjanidae	Rhomboplites aurorubens	E00593	13759	16	810	756	1398	0	0	645
Luvaridae	Luvarus imperialis	E00509	15760	19	819	585	1035	0	447	645
Malacanthidae	Caulolatilus intermedius	E00595	8981	11	810	0	0	0	0	0
Malacanthidae	Caulolatilus princeps	E00231	11865	15	807	708	1398	0	0	621
Malacanthidae	Malacanthus plumieri	E00774	8060	10	708	708	1398	0	0	0
Mastacembelidae	Macrognathus siamensis	G01367	8287	10	708	708	1376	0	0	0
Mastacembelidae	Mastacembelus brachyrhinus	N01727	6948	8	0	708	1350	0	0	0
Mastacembelidae	Mastacembelus cunningtoni	N20638	7046	8	0	708	1338	0	0	0
Mastacembelidae	Mastacembelus erythrotaenia	E01157	5328	7	813	0	0	0	744	645
Mastacembelidae	Mastacembelus niger	N20658	7640	9 [`]	693	708	1338	0	0	0
Melanocetidae	Melanocetus johnsonii	E00657	12119	14	810	755	0	0	0	645
Melanocetidae	Melanocetus murrayi	E00477	8829	10	810	755	0	0	0	645
Melanotaeniidae	Melanotaenia sp	N35702	6890	8	696	708	1398	0	0	0
Melanotaeniidae	Melanotaenia splendida	E00179	10979	13	810	753	801	0	0	633
Melanotaeniidae	Melanotaenia trifasciata	E00178	7620	9	810	753	1464	0	0	630
Melanotaeniidae	Rhadinocentrus ornatus	E00183	8085	9	810	752	1464	0	0	576
Menidae	Mene maculata	E01131	14538	17	645	267	1464	0	755	645
Microdesmidae	Cerdale floridana	E00113	5251	7	0	756	0	0	765	636
Microdesmidae	Gunnellichthys monostigma	E00545	4244	6	0	755	0	0	765	561
Microdesmidae	Microdesmus bahianus	E00112	6294	8	0	755	0	813	765	558
Microdesmidae	Microdesmus longipinnis	E00388	7384	9	0	755	0	0	750	642

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Microdesmidae	Nemateleotris magnifica	N20888	3449	4	0	591	1254	0	0	0
Microdesmidae	Ptereleotris evides	E00565	10142	12	0	755	1398	0	852	636
Microdesmidae	Ptereleotris microlepis	E00554	6773	9	0	755	0	813	765	642
Molidae	Masturus lanceolatus	E00651	10906	12	825	582	1464	0	0	0
Molidae	Mola mola	E00683	12859	14	708	624	1464	0	843	0
Molidae	Ranzania laevis	G01463	10882	12	657	600	1368	0	459	0
Monacanthidae	Acreichthys tomentosus	N21168	5898	7	705	696	1359	0	0	0
Monacanthidae	Aluterus scriptus	E00316	8934	9	0	0	1419	0	459	0
Monacanthidae	Amanses scopas	E00536	7667	7	0	0	1464	0	0	0
Monacanthidae	Cantherhines pardalis pullus	E00887	13701	14	0	763	1419	0	0	0
Monacanthidae	Oxymonacanthus longirostris	E00914	7920	8	0	765	1419	0	0	0
Monacanthidae	Paraluteres prionurus	E00913	10156	10	0	759	1419	0	0	0
Monacanthidae	Pervagor janthinosoma	N21229	7625	9	695	687	1398	0	0	0
Monacanthidae	Pervagor nigrolineatus	N21232	5912	7	705	708	1398	0	0	0
Monacanthidae	Stephanolepis hispidus	E00646	10631	13	810	764	1419	0	459	0
Monodactylidae	Monodactylus argenteus	E00827	11839	12	825	753	1464	0	852	636
Monodactylidae	Monodactylus sebae	N21267	8411	10	693	696	1350	0	0	0
Moronidae	Dicentrarchus labrax	E01132	13167	14	825	0	1458	0	459	645
Moronidae	Morone americana	E00017	4648	6	0	765	0	0	0	0
Moronidae	Morone chrysops	E00992	15777	17	825	753	1461	0	0	645
Moronidae	Morone mississippiensis	E00087	11851	14	810	765	1350	0	0	630
Moronidae	Morone saxatilis	G01380	9541	12	693	696	1350	0	852	0
Mugilidae	Chelon macrolepis	E00845	8599	11	810	752	0	0	513	0
Mugilidae	Crenimugil crenilabis	E00846	12826	14	0	752	0	0	0	0
Mugilidae	Liza richardsonii	E00808	12339	15	810	752	0	0	759	0
Mugilidae	Moolgarda engeli	E00739	6506	8	810	0	0	0	0	0
Mugilidae	Mugil cephalus	E00049	13859	15	705	615	1443	0	759	0
Mugilidae	Mugil curema	E00031	15184	16	708	708	1464	0	0	0
Mugilidae	Mugil trichodon	E00765	10230	11	0	0	852	0	0	0
Mugilidae	Myxus capensis	E00809	9832	10	810	752	0	0	0	0

Table A4b. Continued	1			_						
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Mugilidae	Neomyxus leuciscus	E00742	10501	12	810	0	0	0	0	0
Mugilidae	Valamugil buchanani	E00847	12275	15	810	752	0	0	0	0
Mullidae	Mulloidichthys flavolineatus	E00844	9135	11	645	753	1377	0	0	0
Mullidae	Mullus auratus	E00634	10617	12	819	0	0	0	852	645
Mullidae	Parupeneus barberinus	E00899	8131	10	708	708	1398	0	0	0
Mullidae	Parupeneus ciliatus	E00840	5965	8	810	0	0	0	0	0
Mullidae	Parupeneus trifasciatus	N21710	5845	7	708	699	1398	0	0	0
Mullidae	Pseudupeneus maculatus	E00773	9043	11	810	696	1398	0	0	0
Mullidae	Upeneus moluccensis	E00825	7964	10	801	750	1455	0	0	0
Mullidae	Upeneus parvus	N21732	3287	4	645	597	1377	0	0	0
Nandidae	Nandus andrewi	N22312	8474	10	639	708	1398	0	0	0
Nandidae	Nandus nandus	G01388	11524	13	639	696	1464	0	0	0
Nandidae	Nandus nebulosus	N22314	7688	9	0	708	1308	0	0	0
Nematistiidae	Nematistius pectoralis	E01146	12623	14	816	708	1455	0	726	645
Nemipteridae	Pentapodus caninus	G01427	8879	11	708	708	1398	0	0	0
Nemipteridae	Scolopsis bilineata	E00028	14791	16	708	708	1398	0	0	645
Nemipteridae	Scolopsis frenata	E00911	6514	8	810	752	0	0	0	0
Nemipteridae	Scolopsis margaritifera	G01478	7404	9	708	708	1398	0	0	0
Niphonidae	Niphon spinosus	G01398	4377	5	0	0	1338	0	0	0
Nomeidae	Cubiceps baxteri	G01271	9684	12	704	708	1380	0	0	0
Nomeidae	Cubiceps gracilis	E00672	8634	11	810	756	0	0	852	645
Nomeidae	Cubiceps pauciradiatus	E00667	9277	9	810	756	0	0	0	0
Nomeidae	Psenes cyanophrys	E00666	6230	6	810	756	0	0	0	618
Nomeidae	Psenes maculatus	N23089	7094	9	657	591	1275	0	0	0
Nototheniidae	Aethotaxis mitopteryx	G01528	7979	9	0	705	0	0	759	0
Nototheniidae	Dissostichus eleginoides	G01279	12707	14	708	708	1398	0	759	0
Nototheniidae	Gobionotothen gibberifrons	G01529	8961	10	0	705	0	0	676	0
Nototheniidae	Notothenia coriiceps	G01526	9628	10	0	693	1455	0	750	0
Nototheniidae	Pagothenia borchgrevinki	G01527	9352	10	711	708	1398	0	750	0
Nototheniidae	Patagonotothen tessellata	G01530	10915	12	711	708	1332	0	750	0

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Odacidae	Haletta semifasciata	G01312	9038	11	693	0	1329	897	0	0
Odontobutidae	Odontobutis potamophila	E01137	12389	14	693	708	0	0	753	645
Odontobutidae	Perccottus glenii	G01429	9285	11	675	708	1398	0	0	0
Ogcocephalidae	Dibranchus tremendus	E00975	8668	11	681	765	0	0	0	645
Ogcocephalidae	Halieutichthys aculeatus	E01122	5969	8	702	699	0	0	0	0
Ogcocephalidae	Ogcocephalus parvus nasutus	E00610	11181	14	825	756	0	0	0	0
Ogcocephalidae	Ogcocephalus radiatus	E00641	3592	4	810	756	0	0	0	0
Oneirodidae	Bertella idiomorpha	E00386	7368	8	0	755	0	0	0	645
Oneirodidae	Dolopichthys sp	E00484	3002	4	810	0	0	0	0	0
Oneirodidae	Oneirodes bulbosus	E00176	5086	7	0	755	0	0	0	627
Oneirodidae	Oneirodes macrosteus	E00655	7815	10	825	755	1233	0	0	0
Ophidiidae	Bassogigas gillii	E00481	5439	7	801	0	0	0	0	639
Ophidiidae	Brotula barbata	E00629	8900	12	810	753	0	0	459	630
Ophidiidae	Brotula multibarbata	E00883	12654	16	708	708	1398	0	0	642
Ophidiidae	Brotulotaenia crassa	E00659	7913	10	810	753	0	0	0	0
Ophidiidae	Brotulotaenia nigra	E00817	8794	11	810	0	852	0	0	0
Ophidiidae	Chilara taylori	E00260	6335	8	0	0	0	0	0	645
Ophidiidae	Dicrolene introniger	E00480	8819	11	810	705	0	0	0	630
Ophidiidae	Genypterus blacodes	E00241	3596	4	0	0	1437	0	0	0
Ophidiidae	Lamprogrammus niger	E00275	11903	13	810	690	0	0	852	0
Ophidiidae	Lepophidium brevibarbe	E00758	5469	7	0	0	0	0	0	642
Ophidiidae	Lepophidium jeannae	E00621	4709	6	0	756	0	0	0	633
Ophidiidae	Lepophidium profundorum	E00248	3341	4	0	0	0	0	0	645
Ophidiidae	Neobythites gilli	E00612	7830	10	810	756	0	0	0	612
Ophidiidae	Ophidion holbrookii	E01033	7171	9	0	0	0	0	0	645
Ophidiidae	Ophidion josephi	E00648	6546	8	810	756	0	0	0	633
Ophidiidae	Ophidion robinsi	E01007	6730	8	0	0	0	0	0	645
Ophidiidae	Petrotyx sanguineus	E00206	4716	6	0	756	1464	0	0	645
Opistognathidae	Lonchopisthus micrognathus	E00603	6548	8	810	0	0	0	0	639
Opistognathidae	Opistognathus aurifrons	E00216	9008	11	810	708	1446	0	0	645

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Opistognathidae	Opistognathus maxillosus	E00207	6793	8	813	0	0	0	777	606
Oplegnathidae	Oplegnathus punctatus	G01405	12420	13	705	708	1437	954	0	0
Osphronemidae	Betta splendens	G01226	9892	10	0	708	1398	0	0	0
Osphronemidae	Trichopodus pectoralis	N24415	4860	7	645	585	792	0	0	0
Ostraciidae	Acanthostracion quadricornis	E00760	5464	6	810	0	1419	0	0	0
Ostraciidae	Ostracion cubicus	E00588	12421	15	810	708	1398	0	0	0
Ostraciidae	Rhinesomus triqueter	G01469	10814	13	695	696	1416	0	0	0
Ostracoberycidae	Ostracoberyx dorygenys	N24448	6883	9	645	591	1275	0	0	0
Parabembridae	Parabembras curtus	N24483	6893	9	645	591	1287	0	0	0
Paralichthyidae	Ancylopsetta ommata	E00001	8842	10	0	0	1431	0	741	645
Paralichthyidae	Citharichthys arctifrons	E00043	6688	8	0	0	0	0	771	540
Paralichthyidae	Citharichthys sordidus	E00446	12907	14	708	708	1398	0	0	0
Paralichthyidae	Cyclopsetta chittendeni	E00597	10244	12	819	0	0	0	738	645
Paralichthyidae	Etropus crossotus	E00647	8021	9	0	0	0	0	714	645
Paralichthyidae	Etropus microstomus	E00047	5197	5	0	0	1368	0	747	0
Paralichthyidae	Gastropsetta frontalis	E00640	2345	3	0	0	0	0	0	0
Paralichthyidae	Paralichthys albigutta	E01171	8241	9	813	0	0	0	738	645
Paralichthyidae	Paralichthys californicus	E00020	8905	10	822	0	0	0	0	645
Paralichthyidae	Paralichthys dentatus	N24591	7812	9	705	708	1396	0	0	0
Paralichthyidae	Pseudorhombus pentophthalmus	E00077	10302	11	816	765	1446	0	747	645
Paralichthyidae	Syacium micrurum	E00633	9035	11	822	0	0	0	431	645
Paralichthyidae	Xystreurys liolepis	E00021	9760	10	810	0	1440	0	744	0
Pegasidae	Eurypegasus draconis	N24699	2094	3	0	582	762	0	0	0
Pempheridae	Parapriacanthus ransonneti	E00923	11086	13	810	0	1455	0	0	645
Pempheridae	Pempheris oualensis	E00718	9245	11	810	756	1455	0	0	633
Pempheridae	Pempheris schomburgkii	E00213	10586	12	810	756	1398	0	0	645
Pempheridae	Pempheris schwenkii	N01628	5322	7	651	591	1275	0	0	0
Pempheridae	Pempheris vanicolensis	E00886	8350	10	810	0	0	0	0	618
Pentacerotidae	Histiopterus typus	N24730	6890	9	651	591	1278	0	0	0
Pentacerotidae	Paristionterus labiosus	M01629	3261	4	792	0	0	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Pentacerotidae	Pentaceros japonicus	N24735	7793	10	648	591	1278	0	0	0
Pentacerotidae	Pentaceros pectoralis	N01736	5434	7	0	0	0	0	0	0
Pentacerotidae	Pentaceros wheeleri	N01737	7434	9	639	0	1383	0	0	0
Pentacerotidae	Zanclistius elevatus	M01631	2901	3	792	0	1455	0	0	0
Percichthyidae	Gadopsis marmoratus	E01144	13223	14	822	708	1437	0	927	645
Percichthyidae	Maccullochella peelii	G01365	11015	13	708	708	1347	0	0	0
Percichthyidae	Macquaria ambigua	G01366	10488	13	627	579	1398	0	0	0
Percichthyidae	Macquaria colonorum	G01431	10574	13	627	579	1398	0	0	0
Percichthyidae	Macquaria novemaculeata	G01432	10525	13	624	579	1398	0	0	0
Percichthyidae	Nannoperca australis	G01389	11969	14	627	579	1398	0	0	0
Percichthyidae	Percichthys trucha	G01430	9417	9	825	0	1434	0	0	645
Percidae	Ammocrypta beanii	E00187	8350	10	810	756	1341	0	0	0
Percidae	Ammocrypta meridiana	E00148	8201	10	810	756	1341	0	0	630
Percidae	Ammocrypta pellucida	E00149	9339	11	810	756	1404	0	0	645
Percidae	Crystallaria asprella	E00153	8415	10	810	756	1404	0	0	618
Percidae	Etheostoma atripinne	G01290	7713	9	705	708	1341	0	0	0
Percidae	Etheostoma juliae	E00168	11455	14	810	756	1344	0	0	645
Percidae	Etheostoma simoterum	E00152	12189	15	705	756	1308	0	0	630
Percidae	Etheostoma vitreum	E00147	11025	13	798	756	1404	0	0	630
Percidae	Etheostoma zonale	E01111	13171	16	684	764	1341	0	0	645
Percidae	Gymnocephalus cernuus	E00140	7525	10	810	708	0	0	756	0
Percidae	Gymnocephalus schraetser	E00141	6323	8	0	708	0	0	0	0
Percidae	Perca flavescens	E00391	14692	16	825	756	1464	0	0	546
Percidae	Perca fluviatilis	G01428	10413	11	0	666	1464	0	758	634
Percidae	Percina caprodes	E01054	15273	18	810	765	1398	0	0	645
Percidae	Percina nigrofasciata	E00154	7519	9	810	756	1341	0	0	645
Percidae	Percina phoxocephala	E00150	9105	11	810	756	1341	0	0	639
Percidae	Romanichthys valsanicola	E00143	9564	12	810	756	0	0	0	645
Percidae	Sander vitreus	E01109	10398	10	0	0	1404	0	0	645
Percidae	Zingel streber	E00144	5447	7	0	705	0	0	0	0

Percidae Zingel zingel E00142 6114 8 810 756 0 0 0 6 Perciliae Percilia invini N24981 6918 9 624 579 1398 0 <t< th=""><th>545</th></t<>	545
Percilidae Percilia irwini N24981 6918 9 624 579 1398 0 0 0	
)
Percophidae Acanthaphritis unoorum N24985 5579 7 648 591 1302 0 0 0)
Peristediidae Peristedion ecuadorense E00456 6094 7 810 0 0 0 0 0)
Peristediidae Peristedion gracile E01029 2905 4 0 0 0 0 0 6	636
Peristediidae Peristedion truncatum E00450 3441 5 804 0 0 0 0 6	521
Phallostethidae Phenacostethus smithi E00398 7945 10 630 600 1377 0 0 0)
Pholidae Pholis crassispina G01437 12482 14 708 708 1397 0 745 0)
Pholidae Pholis ornata N01732 8528 10 708 708 1398 0 0 0)
Pholidichthyidae Pholidichthys leucotaenia E00251 11101 12 696 672 1398 0 0 0)
Pinguipedidae Parapercis clathrata E00707 10851 13 810 756 1398 0 738 6	645
Pinguipedidae Parapercis hexophtalma E01083 11528 14 810 719 1368 0 6	542
Pinguipedidae Parapercis punctulata E01091 7008 9 0 765 0 0 0 6	521
Platycephalidae Platycephalus indicus N25405 6719 9 645 588 1278 0 0 0)
Platycephalidae Rogadius asper N25418 6352 9 645 591 765 0 0 0)
Platycephalidae Sunagocia arenicola E00708 5403 7 0 0 0 0 0 6	645
Platycephalidae Thysanophrys chiltonae E00864 8747 10 819 765 0 0 780 6	545
Plesiopidae Plesiops coeruleolineatus E00855 15452 18 813 708 1398 0 0 6	545
Plesiopidae Plesiops melas G01442 8238 10 687 708 1398 0 0 0)
Pleuronectidae Atheresthes evermanni E00055 8437 8 807 0 1401 837 0 0)
Pleuronectidae Embassichthys bathybius E00064 11340 12 786 0 1368 822 690 6	542
Pleuronectidae Eopsetta jordani E00444 14474 17 825 0 1257 849 690 6	545
Pleuronectidae Glyptocephalus zachirus E00416 10353 12 816 0 1440 849 459 6	545
Pleuronectidae Hippoglossoides elassodon E00424 12527 13 822 0 1422 849 0 6	545
Pleuronectidae Hippoglossus hippoglossus E00689 10279 12 825 0 0 0 459 6	518
Pleuronectidae Hypsopsetta guttulata E00022 9133 9 819 0 1446 0 0 6	545
Pleuronectidae Isopsetta isolepis E00018 6603 8 810 0 0 849 768 0)
Pleuronectidae Lepidopsetta bilineata E00438 16335 19 825 612 1386 849 699 6	545
Pleuronectidae Limanda limanda E00690 7013 8 825 0 0 0 459 6	645
Pleuronectidae Lyopsetta exilis E01173 6171 7 813 0 0 813 753 6	545

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Pleuronectidae	Microstomus pacificus	E00433	10016	12	825	0	0	807	459	645
Pleuronectidae	Parophrys vetulus	E00445	12033	14	825	0	0	822	750	645
Pleuronectidae	Platichthys stellatus	E00026	7842	9	807	0	0	849	459	645
Pleuronectidae	Pleuronectes platessa	E00053	14871	17	825	708	1446	0	459	645
Pleuronectidae	Psettichthys melanostictus	E00025	9364	11	816	0	0	849	717	645
Pleuronectidae	Pseudopleuronectes americanus	E00035	15563	18	825	612	1350	849	0	645
Poeciliidae	Belonesox belizanus	E01052	10182	11	810	0	1464	0	0	0
Poeciliidae	Gambusia affinis	G01296	11403	12	708	708	1464	0	0	0
Poeciliidae	Heterandria formosa	E00185	10113	11	810	0	1464	0	0	645
Poeciliidae	Poecilia latipinna reticulata	E01065	12149	14	810	764	1459	0	754	0
Poeciliidae	Poeciliopsis elongata	N01734	6863	8	705	708	1398	0	0	0
Poecilopsettidae	Poecilopsetta beanii	E00448	5472	7	0	0	0	0	771	645
Poecilopsettidae	Poecilopsetta plinthus	E00073	9752	10	816	765	1446	0	738	645
Polycentridae	Monocirrhus polyacanthus	G01377	8420	10	707	708	1398	0	0	0
Polycentridae	Polycentropsis abbreviata	N26006	8369	10	708	708	1344	0	0	0
Polycentridae	Polycentrus schomburgkii	G01444	8382	10	705	705	1398	0	0	0
Polynemidae	Eleutheronema rhadinum	N26015	7791	10	654	591	1272	0	0	0
Polynemidae	Eleutheronema tetradactylum	E01154	7961	9	810	0	1380	0	780	645
Polynemidae	Leptomelanosoma indicum	E00842	11242	14	810	0	0	0	735	645
Polynemidae	Polydactylus octonemus	E00606	9992	13	813	756	0	0	753	645
Polynemidae	Polydactylus sextarius	N26043	5532	7	654	0	1269	0	0	0
Polynemidae	Polydactylus virginicus	E00217	11602	13	813	708	0	0	0	645
Polyprionidae	Polyprion americanus	E00242	7677	9	822	0	1437	0	753	645
Polyprionidae	Polyprion oxygeneios	M01632	4716	5	792	0	1455	0	0	0
Polyprionidae	Stereolepis gigas	E00227	14211	17	708	681	1389	0	812	645
Pomacanthidae	Apolemichthys trimaculatus	E00839	9202	12	810	0	0	0	0	0
Pomacanthidae	Centropyge bicolor	E00550	11381	15	810	0	0	0	0	645
Pomacanthidae	Centropyge loricula	E00284	9087	10	810	0	0	0	0	615
Pomacanthidae	Centropyge nox	E00542	8384	11	810	0	0	0	0	0
Pomacanthidae	Chaetodontoplus melanosoma	G01244	8178	10	708	702	1398	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Pomacanthidae	Holacanthus ciliaris	E00209	6815	8	810	0	1452	0	759	0
Pomacanthidae	Holacanthus passer	E00282	12494	15	708	708	1398	0	0	0
Pomacanthidae	Holacanthus tricolor	E00198	7349	9	810	0	0	0	0	645
Pomacanthidae	Pomacanthus arcuatus	E00754	8027	10	804	0	0	849	852	645
Pomacanthidae	Pomacanthus imperator	E00710	9192	12	813	0	0	0	0	645
Pomacanthidae	Pomacanthus semicirculatus	E00849	10414	14	810	0	0	0	0	645
Pomacanthidae	Pomacanthus zonipectus	G01448	9113	11	708	708	1398	0	0	0
Pomacanthidae	Pygoplites diacanthus	E00534	10507	13	810	0	1455	849	0	630
Pomacentridae	Abudefduf saxatilis	E00820	14973	18	810	693	1464	876	0	633
Pomacentridae	Abudefduf sexfasciatus	E00881	12145	15	810	714	1464	0	0	645
Pomacentridae	Abudefduf vaigiensis	E00890	12132	13	810	0	0	0	0	645
Pomacentridae	Acanthochromis polyacanthus	E00466	8743	10	807	756	1464	0	0	633
Pomacentridae	Amblyglyphidodon leucogaster	E00529	3808	4	0	0	1464	876	0	0
Pomacentridae	Amphiprion clarkii	E00196	4604	6	804	684	0	0	0	0
Pomacentridae	Amphiprion ocellaris	E00193	7717	7	768	0	1464	843	0	0
Pomacentridae	Azurina hirundo	E00580	9629	12	810	756	0	0	0	0
Pomacentridae	Chromis atripectoralis	E00238	9353	11	810	0	0	0	0	0
Pomacentridae	Chromis cyanea	E00201	13033	15	810	678	1464	0	0	0
Pomacentridae	Chromis dimidiata	E00851	9724	12	810	0	0	0	0	624
Pomacentridae	Chrysiptera taupou	E00564	9950	13	810	756	0	0	0	645
Pomacentridae	Dascyllus aruanus	E00700	11886	14	810	0	1463	0	734	642
Pomacentridae	Dascyllus carneus	E00862	11899	14	0	756	1464	0	0	633
Pomacentridae	Dascyllus reticulatus	E00724	8549	10	0	0	1464	0	0	639
Pomacentridae	Dascyllus trimaculatus	E00865	6439	7	0	0	1464	855	852	0
Pomacentridae	Dischistodus perspicillatus	E00464	8931	11	804	756	0	0	0	0
Pomacentridae	Hypsypops rubicundus	E00459	7285	10	810	756	0	0	0	645
Pomacentridae	Lepidozygus tapeinosoma	E00929	7795	10	810	0	0	0	0	645
Pomacentridae	Microspathodon bairdii	G01375	8331	10	708	708	1398	0	0	0
Pomacentridae	Microspathodon chrysurus	E00772	10751	13	810	0	1464	0	0	645
Pomacentridae	Neoglyphidodon melas	E00465	9828	12	810	756	0	0	0	633

Table A4b. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Pomacentridae	Neoglyphidodon polyacanthus	E00285	6455	8	810	705	0	0	0	615
Pomacentridae	Neopomacentrus cyanomos	E00933	8888	11	810	0	0	0	0	645
Pomacentridae	Parma microlepis	E00286	5332	7	807	0	0	0	0	645
Pomacentridae	Plectroglyphidodon dickii	E00572	13722	16	810	756	1464	0	927	636
Pomacentridae	Plectroglyphidodon johnstonianus	E00722	7987	10	810	756	0	0	0	618
Pomacentridae	Pomacentrus brachialis	E00239	9865	12	813	744	0	0	0	633
Pomacentridae	Pomacentrus pavo	E00729	12503	15	810	756	1464	0	744	633
Pomacentridae	Pomacentrus spilotoceps	E00557	6421	9	0	0	0	0	0	633
Pomacentridae	Pomachromis richardsoni	E00559	8319	11	0	756	0	0	0	630
Pomacentridae	Stegastes albifasciatus	E00713	6612	9	810	0	0	0	0	645
Pomacentridae	Stegastes diencaeus	E00219	6060	8	0	681	0	0	0	0
Pomacentridae	Stegastes fuscus	E00203	12679	15	801	693	1398	0	0	630
Pomacentridae	Stegastes partitus	E00204	4367	6	810	0	0	0	0	618
Pomatomidae	Pomatomus saltatrix	E00516	16569	18	813	708	1443	0	459	645
Priacanthidae	Heteropriacanthus cruentatus	E00570	14367	17	810	756	1398	0	459	645
Priacanthidae	Priacanthus arenatus	E00618	14657	18	645	756	1389	0	852	645
Priacanthidae	Pristigenys alta	E00252	12492	14	825	588	1377	0	0	624
Pristolepididae	Pristolepis fasciata	N26580	7608	9	0	708	1332	0	0	0
Pristolepididae	Pristolepis sp	N36627	8543	10	705	708	1398	0	0	0
Psettodidae	Psettodes belcheri	E01180	6046	7	810	0	0	0	795	645
Psettodidae	Psettodes erumei	E01165	12034	14	819	591	1434	0	747	645
Pseudaphritidae	Pseudaphritis urvillii	G01453	8567	9	0	708	0	0	744	0
Pseudochromidae	Congrogadus subducens	G01262	8360	10	696	708	1398	0	0	0
Pseudochromidae	Halidesmus scapularis	E00793	10231	13	819	0	0	0	750	642
Pseudochromidae	Labracinus cyclophthalmus	G01343	11328	12	708	708	1398	0	0	0
Pseudochromidae	Natalichthys sam	E00589	7891	10	810	0	0	0	0	639
Pseudochromidae	Ogilbyina novaehollandiae	G01403	8345	10	690	708	1398	0	0	0
Pseudochromidae	Pholidochromis cerasina	G01436	8319	10	693	708	1398	0	0	0
Pseudochromidae	Pseudochromis cyanotaenia	E00706	7668	10	0	756	0	0	0	627
Pseudochromidae	Pseudochromis fridmani	N26709	8561	10	708	708	1398	0	0	0

Table A4b. Continued	,									
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Pseudochromidae	Pseudochromis jamesi	E00535	6957	9	0	0	0	0	0	0
Pseudochromidae	Pseudoplesiops revellei	E00745	4311	6	810	756	0	0	0	645
Pseudomugilidae	Pseudomugil gertrudae	E00182	14736	18	810	753	1464	0	0	645
Pseudomugilidae	Pseudomugil signifer	E00184	11998	15	810	753	1374	0	0	633
Psychrolutidae	Cottunculus thomsonii	E00963	2374	3	0	0	0	0	744	0
Psychrolutidae	Dasycottus setiger	E00288	5136	6	810	756	0	0	0	0
Psychrolutidae	Malacocottus zonurus	E00253	8212	10	810	756	0	0	0	624
Psychrolutidae	Psychrolutes phrictus	E00276	5502	7	810	0	0	0	0	0
Rachycentridae	Rachycentron canadum	E00468	15775	17	801	708	1446	0	729	642
Rhombosoleidae	Oncopterus darwinii	E01184	6659	7	813	0	1368	0	780	645
Rhombosoleidae	Rhombosolea leporina	E01166	2980	3	0	0	0	0	585	642
Rhombosoleidae	Rhombosolea plebeia	E01167	5378	6	813	0	0	0	729	618
Rhombosoleidae	Rhombosolea tapirina	E01168	3805	4	0	0	0	0	654	0
Samaridae	Plagiopsetta glossa	E00074	7559	8	813	0	1431	0	756	645
Samaridae	Samariscus japonicus	E00072	7912	8	810	765	1437	0	756	645
Samaridae	Samariscus latus	N27771	2733	3	648	0	1275	0	0	0
Samaridae	Samariscus xenicus	E00078	7553	8	798	765	1446	0	759	642
Scaridae	Calotomus carolinus	N27783	7195	9	708	582	1386	0	0	0
Scaridae	Cetoscarus bicolor	E00566	14113	17	690	708	1335	750	0	0
Scaridae	Chlorurus gibbus	E00561	6813	9	0	0	0	0	0	621
Scaridae	Chlorurus sordidus	E00837	14642	16	0	752	1365	812	0	606
Scaridae	Cryptotomus roseus	N27805	7128	9	642	579	1380	0	0	0
Scaridae	Hipposcarus longiceps	E00737	4541	6	0	0	0	825	0	612
Scaridae	Leptoscarus vaigiensis	E00877	8427	11	0	752	0	750	0	0
Scaridae	Scarus ghobban	E00878	9678	11	0	752	0	750	759	0
Scaridae	Scarus globiceps	N27829	4729	6	0	582	1350	0	0	0
Scaridae	Scarus iseri	E00013	7345	9	0	765	0	0	0	0
Scaridae	Scarus niger	E00875	11274	14	630	752	1371	750	0	0
Scaridae	Scarus quoyi	E00872	7432	10	0	752	0	0	0	0
Scaridae	Scarus rubroviolaceus	E00874	12027	13	0	752	0	750	0	0

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Scaridae	Sparisoma aurofrenatum	E00008	5465	7	0	765	513	750	0	0
Scaridae	Sparisoma chrysopterum	E00070	2776	4	0	0	507	869	0	0
Scaridae	Sparisoma viride	E00004	6443	9	0	765	513	750	0	0
Scatophagidae	Scatophagus argus	E00051	13219	16	825	708	1464	849	753	642
Scatophagidae	Selenotoca multifasciata	G01483	9576	12	705	588	1398	0	852	0
Sciaenidae	Aplodinotus grunniens	E01108	17827	19	810	762	1380	0	0	645
Sciaenidae	Atractoscion nobilis	E00125	9878	13	810	756	0	0	0	573
Sciaenidae	Bairdiella chrysoura	E00165	7670	10	810	756	0	0	0	645
Sciaenidae	Cheilotrema saturnum	E00118	6644	9	810	756	0	0	0	606
Sciaenidae	Corvula sanctaeluciae	E01047	5698	7	810	0	0	0	0	630
Sciaenidae	Cynoscion arenarius	E00511	11444	13	810	756	0	0	0	0
Sciaenidae	Cynoscion regalis	E00164	14880	18	699	756	1464	0	752	0
Sciaenidae	Genyonemus lineatus	E00138	9138	12	810	756	0	0	0	642
Sciaenidae	Larimus breviceps	E01048	4776	7	0	0	0	0	0	642
Sciaenidae	Leiostomus xanthurus	G01349	9972	12	708	708	1455	0	0	0
Sciaenidae	Menticirrhus saxatilis	E00166	7177	9	0	756	0	0	0	0
Sciaenidae	Menticirrhus undulatus littoralis	E00127	15027	19	708	756	1398	0	0	606
Sciaenidae	Micropogonias undulatus	N01637	5 78 9	8	639	591	0	0	0	0
Sciaenidae	Odontoscion dentex	E01049	5655	7	810	0	0	0	0	645
Sciaenidae	Pareques acuminatus	E01050	3516	4	0	0	0	0	0	0
Sciaenidae	Pareques umbrosus	E00639	6228	8	810	0	0	0	0	645
Sciaenidae	Pogonias cromis	E00699	8505	11	810	0	0	0	0	645
Sciaenidae	Sciaenops ocellatus	E01055	18596	20	825	708	1464	0	0	645
Sciaenidae	Seriphus politus	E00123	7497	10	801	756	0	0	0	645
Sciaenidae	Stellifer lanceolatus	E00608	9278	12	807	756	0	0	0	645
Sciaenidae	Umbrina coroides	E00628	8595	11	807	756	0	0	0	645
Scomberesocidae	Cololabis saira	E00192	10242	11	0	0	0	1001	0	0
Scomberesocidae	Scomberesox saurus	E00404	10373	13	0	624	1463	1011	0	645
Scombridae	Acanthocybium solandri	E00927	14337	16	810	0	1464	1206	818	630
Scombridae	Auxis rochei	E00673	14617	18	810	756	1386	0	510	645

Table A4b. continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Scombridae	Euthynnus affinis	E00830	9732	12	810	0	0	0	0	627
Scombridae	Euthynnus alletteratus	E00696	7879	11	810	756	0	1128	510	633
Scombridae	Gymnosarda unicolor	E00832	9359	11	810	0	0	0	0	600
Scombridae	Katsuwonus pelamis	E00747	11259	13	810	0	0	1197	459	645
Scombridae	Sarda sarda	E00243	16203	19	810	705	1398	1123	819	633
Scombridae	Scomber japonicus	E00247	10495	12	0	756	0	0	743	645
Scombridae	Scomber scombrus	E00626	19143	20	825	756	1464	1197	819	645
Scombridae	Scomberomorus maculatus sp	E00631	16041	19	810	756	1455	1041	819	645
Scombridae	Scomberomorus regalis commerson	E00694	9863	12	810	756	1464	1095	819	645
Scombridae	Thunnus albacares	E00831	18226	21	810	597	1377	1137	819	633
Scombrolabracidae	Scombrolabrax heterolepis	E00976	11570	14	825	0	1455	0	651	645
Scophthalmidae	Lepidorhombus boscii	E00462	9162	10	693	0	0	0	753	645
Scophthalmidae	Scophthalmus aquosus	E00039	10410	12	810	708	1398	0	852	645
Scophthalmidae	Scophthalmus maximus	E01161	6280	5	0	0	1452	0	0	0
Scorpaenidae	Caracanthus maculatus	E00716	8029	10	0	0	0	0	0	642
Scorpaenidae	Caracanthus unipinna	E00558	6573	8	810	0	0	0	0	0
Scorpaenidae	Dendrochirus zebra	E00897	7402	10	810	753	0	0	0	630
Scorpaenidae	Iracundus signifer	E00583	7125	9	810	0	0	0	0	0
Scorpaenidae	Neomerinthe hemingwayi	E00619	10221	12	810	0	0	1186	819	645
Scorpaenidae	Pontinus longispinis	E01010	7126	10	810	764	0	0	852	630
Scorpaenidae	Pontinus rathbuni	E00463	6391	8	810	0	0	0	0	633
Scorpaenidae	Pterois antennata	E00705	8496	11	810	0	1092	0	0	645
Scorpaenidae	Pterois miles	E00882	7015	9	807	0	0	0	0	645
Scorpaenidae	Pterois radiata	E00850	8182	10	0	765	0	0	0	633
Scorpaenidae	Scorpaena agassizii	E01038	2193	3	810	0	0	0	0	642
Scorpaenidae	Scorpaena brasiliensis	E00759	4986	7	0	0	0	0	755	561
Scorpaenidae	Scorpaena dispar	E00512	3690	5	0	0	0	0	0	0
Scorpaenidae	Scorpaena guttata	E00291	8547	10	810	0	0	0	0	0
Scorpaenidae	Scorpaenodes albaiensis	E00532	4039	5	810	0	0	0	0	615
Scorpaenidae	Scorpaenodes guamensis	E00870	6637	9	0	765	0	0	0	645

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Scorpaenidae	Scorpaenopsis longispina	E00903	7186	9	0	0	0	0	0	645
Scorpaenidae	Scorpaenopsis oxycephala	E00581	5118	7	810	0	0	0	0	645
Scorpaenidae	Sebastapistes cyanostigma	E00888	8326	10	810	765	0	0	0	624
Scorpaenidae	Taenianotus triacanthus	E00866	8147	10	807	765	0	0	0	645
Sebastidae	Adelosebastes latens	E00066	2246	3	0	765	0	0	0	0
Sebastidae	Helicolenus dactylopterus	E00044	9920	12	0	624	0	0	459	615
Sebastidae	Sebastes aurora	E00349	8679	10	822	0	0	0	720	645
Sebastidae	Sebastes diploproa	E00432	6421	8	810	0	0	0	720	630
Sebastidae	Sebastes fasciatus	G01482	8330	10	708	708	1377	0	0	0
Sebastidae	Sebastes jordani	E00350	6619	9	810	0	0	0	0	645
Sebastidae	Sebastes paucispinis	E00354	6853	9	810	0	0	0	720	0
Sebastidae	Sebastes ruberrimus	N28709	6206	8	708	708	0	0	0	0
Sebastidae	Sebastolobus alascanus	E00417	12929	16	810	708	1398	0	0	624
Serranidae	Aethaloperca rogaa	E01079	6350	8	810	0	0	0	0	642
Serranidae	Anthias nicholsi	E00447	6801	6	816	0	1464	0	0	624
Serranidae	Aporops bilinearis	E00531	7661	10	0	756	0	0	0	633
Serranidae	Baldwinella aureorubens	G01220	8097	10	693	708	1359	0	0	0
Serranidae	Baldwinella vivana	E00338	3660	5	0	0	0	0	0	0
Serranidae	Centropristis striata	E00163	8944	11	0	756	1464	0	0	645
Serranidae	Cephalopholis argus	E00868	14648	18	810	708	1398	0	0	621
Serranidae	Cephalopholis fulva	E00771	5807	7	810	0	0	0	0	555
Serranidae	Cephalopholis miniata	E00838	9601	12	0	762	0	0	0	645
Serranidae	Diplectrum bivittatum	E01008	4699	6	810	0	0	0	0	0
Serranidae	Diplectrum formosum	E01002	8832	10	810	765	0	0	0	0
Serranidae	Epinephelus maculatus	E00549	12180	14	810	678	1464	0	746	645
Serranidae	Epinephelus merra	E00552	8076	10	810	0	0	0	0	0
Serranidae	Grammistes sexlineatus	E00900	15699	17	825	765	1464	0	0	644
Serranidae	Grammistops ocellatus	E00571	6588	8	0	0	0	0	0	645
Serranidae	Hypoplectrus puella	E00505	12795	16	705	708	1398	0	0	630
Serranidae	Hyporthodus flavolimbatus	E00627	5022	7	810	0	0	0	0	618

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Serranidae	Liopropoma mowbrayi	E00307	4911	6	810	0	0	0	0	645
Serranidae	Liopropoma rubre	E00306	13426	14	825	0	1464	0	0	641
Serranidae	Mycteroperca bonaci microlepis	E00311	14036	17	708	696	1398	0	0	636
Serranidae	Odontanthias chrysostictus	G01327	10158	10	825	0	1464	0	756	614
Serranidae	Paralabrax nebulifer	E00325	12094	15	810	708	1398	0	0	588
Serranidae	Pronotogrammus martinicensis	E00636	3713	4	0	0	0	0	0	606
Serranidae	Pseudanthias pascalus	G01452	9024	11	705	708	1398	_0	0	0
Serranidae	Pseudanthias squamipinnis	E00860	6941	8	810	0	0	0	0	0
Serranidae	Pseudogramma polyacantha	E00852	7643	10	810	765	0	0	0	645
Serranidae	Rypticus saponaceus	E00764	15840	19	810	681	1398	0	444	636
Serranidae	Rypticus subbifrenatus	E00347	6320	7	0	0	1436	0	0	0
Serranidae	Serranus baldwini	E00322	14886	16	825	0	1464	0	758	642
Serranidae	Serranus notospilus	E00337	5719	7	810	0	0	0	0	0
Serranidae	Serranus phoebe	E00336	6229	8	810	0	0.	0	0	615
Serranidae	Serranus tigrinus	G01486	8954	11	702	657	1398	0	0	0
Setarchidae	Setarches guentheri	E01035	5731	8	810	765	0	0	0	645
Siganidae	Siganus argenteus	E00940	7215	10	810	752	0	0	0	645
Siganidae	Siganus punctatus	E00958	3704	4	825	0	1449	0	0	0
Siganidae	Siganus spinus	N29369	8207	10	708	588	1398	0	0	0
Siganidae	Siganus stellatus	G01488	6854	9	810	752	0	0	0	0
Siganidae	Siganus vulpinus	E00090	11306	14	825	708	1464	0	852	0
Sillaginidae	Sillago chondropus	N29390	6780	9	645	591	1047	0	0	0
Sillaginidae	Sillago sihama	E00824	13627	15	825	597	1455	0	815	636
Sinipercidae	Coreoperca whiteheadi	G01264	8180	8	825	0	1464	0	0	0
Sinipercidae	Siniperca chuatsi	E01136	15198	17	825	612	1464	0	513	645
Sinipercidae	Siniperca scherzeri	G01489	8368	7	825	0	1464	0	0	0
Soleidae	Aseraggodes heemstrai	E00582	9255	10	810	0	1287	0	717	645
Soleidae	Aseraggodes kobensis	E00075	12391	14	615	765	1377	0	588	645
Soleidae	Brachirus annularis	E01182	5846	7	810	0	0	0	741	642
Soleidae	Heteromycteris japonicus	E00079	14809	17	627	765	1446	0	741	642
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
----------	-----------------------------	---------	-------------	---------	--------	--------	------	------	-----	-------
Soleidae	Microchirus frechkopi	E01175	5082	6	813	0	0	0	735	645
Soleidae	Pegusa lascaris	E01183	8261	10	789	0	1446	0	783	642
Soleidae	Pseudaesopia japonica	E00081	10067	11	792	0	1431	0	738	645
Soleidae	Solea solea	E00054	7675	8	0	0	0	0	852	645
Soleidae	Soleichthys heterorhinos	E00943	10673	11	813	0	1383	0	753	645
Sparidae	Acanthopagrus catenula	E00953	10468	14	810	726	0	0	0	630
Sparidae	Acanthopagrus latus	M01638	3048	4	792	0	0	0	0	0
Sparidae	Archosargus probatocephalus	E00249	8388	10	810	0	0	0	0	642
Sparidae	Argyrops spinifer	M01668	2629	3	781	0	1455	0	0	0
Sparidae	Argyrozona argyrozona	E00802	9618	12	810	0	0	0	0	645
Sparidae	Boops boops	M01640	3246	3	0	0	1455	0	0	0
Sparidae	Boopsoidea inornata	M01639	3951	4	0	0	1455	0	0	0
Sparidae	Calamus calamus	N29934	7496	9	708	708	1398	0	0	0
Sparidae	Calamus nodosus	M01641	3290	4	791	0	0	0	0	0
Sparidae	Calamus penna	E00762	7629	10	798	0	0	0	0	645
Sparidae	Cheimerius nufar	M01642	3243	3	0	0	1455	0	0	0
Sparidae	Chrysoblephus laticeps	M01644	3594	4	792	0	1452	0	0	0
Sparidae	Crenidens crenidens	M01645	4737	5	792	0	1455	0	0	0
Sparidae	Dentex dentex	M01646	4731	5	780	0	1454	0	0	0
Sparidae	Diplodus annularis	M01647	4730	5	780	0	1454	0	0	0
Sparidae	Diplodus bermudensis	M01648	3953	4	0	0	1455	0	0	0
Sparidae	Diplodus capensis	E00807	5192	7	810	0	0	0	0	618
Sparidae	Lagodon rhomboides	G01346	10209	12	708	708	1455	0	0	0
Sparidae	Lithognathus mormyrus	M01649	4731	5	780	0	1455	0	0	0
Sparidae	Oblada melanura	M01650	3249	3	0	0	1455	0	0	0
Sparidae	Pachymetopon grande	M01651	3549	4	780	0	1455	0	0	0
Sparidae	Pagellus affinis	M01652	3072	4	792	0	0	0	0	0
Sparidae	Pagellus erythrinus	M01653	4029	4	780	0	1455	0	0	0
Sparidae	Pagrus pagrus	E00514	12441	15	825	708	1431	0	459	639
Sparidae	Porcostoma dentata	M01654	4728	5	780	0	1455	0	0	0

Table A4b. Continued

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Sparidae	Rhabdosargus haffara	M01655	2151	3	792	0	0	0	0	0
Sparidae	Sarpa salpa	E00806	12445	15	825	0	1455	0	459	645
Sparidae	Sparidentex hasta	M01657	4746	5	792	0	1455	0	0	0
Sparidae	Sparus aurata	M01658	3954	4	0	0	1455	0	0	0
Sparidae	Spondyliosoma cantharus	M01659	3257	4	792	0	0	0	0	0
Sparidae	Stenotomus chrysops	E00246	12458	15	801	752	1455	0	0	645
_Sparidae	Virididentex acromegalus	M01660	4676	5	795	0	1455	0	0	0
Sphyraenidae	Sphyraena argentea	E00230	8319	10	786	756	1053	0	0	645
Sphyraenidae	Sphyraena barracuda	E00836	19387	22	807	708	1398	1206	750	630
_Sphyraenidae	Sphyraena japonica	N30022	5263	7	657	591	1266	0	0	0
Sphyraenidae	Sphyraena jello	N30023	4747	6	657	591	1287	0	0	0
Sphyraenidae	Sphyraena putnamae	E00955	13026	14	810	732	1446	0	732	645
Sphyraenidae	Sphyraena sphyraena	E01143	7520	8	819	0	0	0	738	645
Stichaeidae	Bryozoichthys marjorius	E00442	7041	9	0	756	0	0	0	645
Stichaeidae	Cebidichthys violaceus	N30217	6500	9	642	<u>597</u>	0	0	0	0
Stichaeidae	Leptoclinus maculatus	E00323	5549	7	810	0	0	0	0	0
_Stichaeidae	Lumpenus fabricii	E00361	3593	5	810	0	0	0	0	0
Stichaeidae	Lumpenus lampretaeformis	E00371	5472	7	0	0	0	0	0	645
Stichaeidae	Poroclinus rothrocki	E00431	5685	7	810	0	0	0	0	0
Stromateidae	Peprilus burti	E00600	5597	7	810	0	0	0	0	645
Stromateidae	Peprilus paru	E00622	7448	10	810	0	0	0	0	645
Stromateidae	Peprilus simillimus	E00136	10724	12	807	756	0	0	0	618
Stromateidae	Peprilus triacanthus	N30548	8492	10	639	708	1398	0	0	0
Symphysanodontidae	Symphysanodon typus	M01725	1508	2	822	0	0	0	0	0
Synanceiidae	Synanceia verrucosa	E00867	10214	13	810	765	0	0	852	645
Synbranchidae	Monopterus albus	E01134	14200	15	708	630	1464	0	756	642
Syngnathidae	Corythoichthys intestinalis	E00734	5411	6	795	0	0	0	0	0
Syngnathidae	Corythoichthys schultzi	E00829	4587	5	0	0	0	0	0	0
Syngnathidae	Doryrhamphus excisus	E00915	8801	10	0	756	1464	0	447	0
Syngnathidae	Hippocampus erectus	N30799	2880	4	0	708	765	0	0	0
			·····			the second s				

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Syngnathidae	Syngnathus fuscus	E00792	6471	8	0	708	0	0	0	0
Syngnathidae	Syngnathus leptorhynchus	N30969	2247	3	0	642	0	0	0	0
Syngnathidae	Syngnathus louisianae	E00821	4535	5	0	765	0	0	0	0
Syngnathidae	Syngnathus scovelli	E00346	4744	6	0	0	0	0	0	0
Telmatherinidae	Marosatherina ladigesi	E00406	9346	12	810	753	0	0	0	642
Terapontidae	Hephaestus fuliginosus	G01318	10031	11	654	612	1437	954	0	0
Terapontidae	Scortum barcoo	G01480	10071	11	654	612	1437	954	0	0
Terapontidae	Terapon jarbua	E00826	14339	16	825	594	1437	954	0	645
Tetraodontidae	Arothron hispidus	E00985	8771	8	0	765	1419	0	0	645
Tetraodontidae	Arothron nigropunctatus	N31143	7811	9	0	708	1398	0	0	0
Tetraodontidae	Canthigaster bennetti	E00530	8390	9	810	0	1419	0	0	0
Tetraodontidae	Canthigaster jactator	N31165	6260	7	0	708	1398	0	0	0
Tetraodontidae	Canthigaster valentini	E00853	7767	8	0	747	1419	0	0	630
Tetraodontidae	Lagocephalus laevigatus	E00601	8160	8	0	0	1419	0	759	0
Tetraodontidae	Sphoeroides maculatus	E00339	4428	5	0	0	0	0	0	0
Tetraodontidae	Sphoeroides nephelus	N01739	6070	7	0	708	1398	0	0	0
Tetraodontidae	Takifugu rubripes	E00460	20045	21	825	708	1464	1206	810	645
Tetraodontidae	Tetractenos hamiltoni	E00383	2976	4	0	0	0	0	0	0
Tetraodontidae	Tetraodon fluviatilis	E00374	4553	5	0	0	1287	0	0	0
Tetraodontidae	Tetraodon miurus	N01740	8550	10	705	708	1398	0	0	0
Tetraodontidae	Tetraodon nigroviridis	G01513	17489	18	708	708	1464	1206	927	644
Tetrarogidae	Coccotropsis gymnoderma	E00801	6200	8	0	753	0	0	0	0
Toxotidae	Toxotes chatareus	E01139	10242	10	813	0	1455	0	747	645
Toxotidae	Toxotes jaculatrix	E01155	11428	14	810	708	1416	0	450	645
Trachichthyidae	Hoplostethus occidentalis atlanticus	E01018	11766	14	708	705	1395	0	0	645
Triacanthidae	Triacanthus biaculeatus	G01531	11323	12	708	708	1287	0	0	0
Triacanthodidae	Halimochirurgus alcocki	N31459	6920	9	651	585	1293	0	0	0
Triacanthodidae	Triacanthodes anomalus	E00382	12061	13	707	708	1458	0	647	0
Triacanthodidae	Triacanthodes ethiops	G01532	6829	7	0	0	645	0	743	0
Trichiuridae	Aphanopus carbo	E00274	5425	7	810	0	0	0	510	0

Table A4b. Continued

Table A4b. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Trichiuridae	Assurger anzac	G01210	9581	12	705	669	1311	0	0	0
Trichiuridae	Benthodesmus simonyi	E00475	4383	6	801	756	0	0	0	0
Trichiuridae	Evoxymetopon taeniatus	E00650	3573	5	810	756	0	0	0	0
Trichiuridae	Lepidopus altifrons	E00474	6788	9	810	756	0	0	0	0
Trichiuridae	Trichiurus lepturus	E00596	12574	14	825	756	1455	1129	819	645
Trichodontidae	Trichodon trichodon	N31563	7181	9	639	612	1377	0	0	0
Triglidae	Bellator militaris	E01026	4452	6	810	765	0	0	0	645
Triglidae	Prionotus carolinus	E00340	7371	9	810	0	0	0	0	618
Triglidae	Prionotus evolans	E01021	4575	6	693	765	0	0	0	603
Triglidae	Prionotus stephanophrys	E00328	6883	9	0	0	0	0	0	585
Triglidae	Pterygotrigla hemisticta	N31939	4770	6	639	591	1275	0	0	0
Triodontidae	Triodon macropterus	N31959	7201	9	654	612	1374	0	0	0
Tripterygiidae	Enneanectes altivelis	E00315	5180	7	0	0	0	0	0	630
Tripterygiidae	Enneanectes boehlkei	E00305	8688	11	810	699	0	0	0	0
Tripterygiidae	Enneapterygius abeli	E00896	2369	3	0	0	0	0	0	0
Tripterygiidae	Enneapterygius gruschkai	E00916	3832	5	0	0	0	0	0	630
Tripterygiidae	Helcogramma ellioti sp	E00331	9671	11	0	705	1455	0	0	630
Tripterygiidae	Helcogramma fuscopinna	E00885	2098	3	0	0	0	0	0	645
Uranoscopidae	Astroscopus ygraecum	E01028	11671	14	810	704	1398	0	0	645
Uranoscopidae	Kathetostoma albigutta	E01022	2118	3	0	0	0	0	0	645
Uranoscopidae	Kathetostoma averruncus	E00324	11393	14	810	705	1290	0	0	618
Uranoscopidae	Uranoscopus sulphureus	E00538	5752	7	810	0	0	0	753	633
Xiphiidae	Xiphias gladius	E01151	16644	17	810	708	1446	1206	818	582
Zanclidae	Zanclus cornutus	E00894	18204	20	825	749	1398	846	0	639
Zaproridae	Zaprora silenus	E00362	6043	8	810	0	0	0	0	0
Zenarchopteridae	Dermogenys collettei	G01275	6851	8	0	708	1398	0	0	0
Zenarchopteridae	Zenarchopterus dispar	E00541	5209	6	0	0	0	0	0	630
Zoarcidae	Bothrocara brunneum	E00357	6304	8	810	0	0	0	0	618
Zoarcidae	Bothrocara hollandi	N01721	4677	6	708	708	0	0	0	0
Zoarcidae	Eucryphycus californicus	E00327	5531	7	0	0	0	0	0	645

Family	Genus Species	ETOL_ID	Length (bp)	charset	PLAGL2	PTCHD1	RAG1	RAG2	RH	RIPK4
Zoarcidae	Lycenchelys crotalinus	E00425	4583	6	0	0	0	0	0	621
Zoarcidae	Lycodapus mandibularis	E00355	8784	11	810	0	0	0	852	576
Zoarcidae	Lycodes brevipes	E00413	4381	5	0	0	1455	0	0	618
Zoarcidae	Lycodes diapterus	G01364	8790	11	681	708	1290	0	0	0
Zoarcidae	Lycodes terraenovae	E00675	15952	18	825	765	0	0	927	645
Zoarcidae	Melanostigma pammelas	E00365	6342	8	810	0	0	0	0	645
Zoarcidae	Zoarces americanus viviparus	E00370	5571	8	0	705	0	0	0	0

Table A4b. Continued

TABLE A4c. Taxon sampling for the percomorph dataset included 1231 taxa and sequence data for 23 genes. The dataset is comprised of sequences for 1180 percomorph species from previous studies (e.g. Li *et al.* 2007; Li *et al.* 2008; Li *et al.* 2010; Li *et al.* 2011; Betancur-R *et al.* 2013b; Broughton *et al.* 2013; Near *et al.* 2013) or public databases, plus newly generated sequences for the 51 additional taxa for this study. The matrix is presented in four parts to show presence of sequence data for the 23 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, and PANX2; (b.) PLAGL2, PTCHD1, RAG1, RAG2, RH, and RIPK4; (c.) SH3PX3, SIDKEY, SREB2, SVEP1, TBR1, and VCPIP; (d.) ZIC1, COI, CYT *B*, 16S, and HOX.

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Acanthuridae	Acanthurus bahianus	E00005	11794	14	705	1257	945	0	762	0
Acanthuridae	Acanthurus guttatus	E00709	7379	8	0	1257	0	825	0	0
Acanthuridae	Acanthurus leucosternon	E00880	14819	16	705	0	972	825	762	765
Acanthuridae	Acanthurus lineatus	E00889	11234	12	705	1260	0	825	762	657
Acanthuridae	Acanthurus triostegus	E00711	11027	13	705	1257	0	825	0	0
Acanthuridae	Ctenochaetus striatus	E00982	6461	8	0	0	0	0	0	0
Acanthuridae	Ctenochaetus strigosus	E00050	9642	12	705	0	951	0	762	0
Acanthuridae	Ctenochaetus truncatus	E00854	6572	9	669	0	0	0	762	0
Acanthuridae	Naso brevirostris	E00918	11979	15	705	0	0	732	690	0
Acanthuridae	Naso lituratus	G01514	9769	12	693	0	0	0	681	0
Acanthuridae	Naso unicornis	E00701	6934	9	0	1260	0	717	0	0
Acanthuridae	Paracanthurus hepatus	E00002	9321	11	0	1257	0	0	762	0
Acanthuridae	Zebrasoma flavescens	E00730	9002	10	705	1260	0	825	0	0
Acanthuridae	Zebrasoma rostratum	N01742	6780	8	0	0	0	0	762	0
Acanthuridae	Zebrasoma scopas	E00859	12917	16	693	0	0	825	762	747
Acanthuridae	Zebrasoma velifer	E00029	5029	6	0	1230	0	0	762	0
Achiridae	Achirus lineatus	E00605	13596	16	693	0	0	825	0	753
Achiridae	Gymnachirus melas	E00609	14260	16	660	1308	879	810	0	0
Achiridae	Gymnachirus texae	E00630	9146	10	693	1047	0	813	0	0
Achiridae	Hypoclinemus sp	E01162	6483	7	696	1287	0	0	0	0
Achiridae	Trinectes maculatus	E00046	11078	11	705	1269	0	0	0	0
Achiropsettidae	Mancopsetta maculata	E01169	6861	8	705	0	0	0	0	0
Achiropsettidae	Neoachiropsetta milfordi	E01170	6200	8	705	0	0	0	0	0
Acropomatidae	Acropoma japonicum	G01188	12298	14	705	1287	960	0	738	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Acropomatidae	Malakichthys elegans	N01922	6894	9	705	0	0	0	711	0
Acropomatidae	Synagrops bellus	E01125	11059	13	705	1236	0	825	0	0
Acropomatidae	Synagrops spinosus	E01123	6676	7	705	1260	0	0	0	0
Adrianichthyidae	Oryzias latipes	G01408	18061	19	705	1308	987	0	762	756
Agonidae	Aspidophoroides monopterygius	N01986	7472	9	692	0	0	0	762	0
Agonidae	Bathyagonus alascanus	E00268	5458	7	0	0	0	0	0	0
Agonidae	Bathyagonus pentacanthus	E00430	5127	7	0	0	0	0	0	0
Agonidae	Hypsagonus quadricornis	E00269	7151	9	705	1260	0	0	0	0
Agonidae	Sarritor frenatus	E00264	4738	6	0	0	0	0	762	0
Agonidae	Sarritor leptorhynchus	E00254	5516	7	378	1257	0	819	0	0
Agonidae	Stellerina xyosterna	N02010	6750	8	684	0	0	0	741	0
Agonidae	Xeneretmus latifrons	E00278	6400	8	0	1233	0	0	0	0
Ambassidae	Ambassis agrammus	G01196	8877	9	0	711	978	0	0	0
Ambassidae	Ambassis interrupta	E01100	10212	10	0	0	987	0	0	0
Ambassidae	Ambassis urotaenia	G01 197	8268	10	699	0	897	0	762	0
Ambassidae	Parambassis ranga	N01735	7892	10	705	0	882	0	693	0
Ammodytidae	Ammodytes dubius	N02375	6015	7	705	0	0	0	762	0
Ammodytidae	Ammodytes hexapterus	E00414	15128	17	672	1281	944	0	762	0
Anabantidae	Ctenopoma acutirostre kingsleyae	E01141	14536	15	705	1305	966	0	720	0
Anabantidae	Microctenopoma nanum	G01373	12070	13	705	0	969	0	750	0
Anarhichadidae	Anarhichas denticulatus	E00787	8620	9	0	0	0	0	0	669
Anarhichadidae	Anarhichas orientalis lupus	E00117	15266	17	705	0	951	0	762	0
Anarhichadidae	Anarrhichthys ocellatus	E00119	7893	10	705	0	0	0	0	0
Anoplopomatidae	Anoplopoma fimbria	E00423	15741	18	705	1260	974	687	761	764
Antennariidae	Antennatus coccineus	E01092	15457	17	696	1257	0	0	747	723
Antennariidae	Antennatus nummifer	E00587	9899	13	672	1257	0	0	0	729
Antennariidae	Fowlerichthys radiosus	E01124	4779	6	0	1284	0	0	0	0
Antennariidae	Histiophryne cryptacanthus	G01326	9853	12	696	0	876	0	753	0
Antennariidae	Histrio histrio	E00643	7964	9	705	1011	0	0	762	0
Aphyonidae	Barathronus maculatus	N02779	7479	9	0	0	987	0	750	0

Aplocheilidae Pachypanchax playfairii G01414 7524 9 696 0 945 0 762 0 Aplodactylidae Aplodactylus arctidens M01536 4728 5 705 0	Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Aplodactylidae Aplodactylus arctidens M01536 4728 5 705 0 0 0 0 Aplodactylidae Aplodactylus etheridgii M01537 4710 5 705 0 0 0 0 0 Apogonidae Apragon compbelli E00522 8166 11 705 0 <t< td=""><td>Aplocheilidae</td><td>Pachypanchax playfairii</td><td>G01414</td><td>7524</td><td>9</td><td>696</td><td>0</td><td>945</td><td>0</td><td>762</td><td>0</td></t<>	Aplocheilidae	Pachypanchax playfairii	G01414	7524	9	696	0	945	0	762	0
Aplodactylidae Aplodactylius etheridgii M01537 4710 5 705 0 0 0 0 0 Apogonidae Apagon campbelli E01069 9380 10 705 1071 0 0 0 0 0 0 Apogonidae Astrapogon puncticulatus E00109 7227 9 0 1257 0 825 762 0 Apogonidae Astrapogon stellatus N03004 7517 9 681 0 9 0	Aplodactylidae	Aplodactylus arctidens	M01536	4728	5	705	0	0	0	0	0
ApogonidaeApogon campbelliE01069938010705107100000ApogonidaeArchamia biguttataE00522816611705000000ApogonidaeAstrapogon puncticulatusE00109722790125708257620ApogonidaeAstrapogon stellatusN030475179681095100<	Aplodactylidae	Aplodactylus etheridgii	M01537	4710	5	705	0	0	0	0	0
Apogonidae Archamia biguttata E00522 8166 11 705 0 0 0 0 0 Apogonidae Astrapogon puncticulatus E00109 7227 9 0 1257 0 825 762 0 Apogonidae Astrapogon stellatus N03004 7517 9 681 0 951 0 <td< td=""><td>Apogonidae</td><td>Apogon campbelli</td><td>E01069</td><td>9380</td><td>10</td><td>705</td><td>1071</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	Apogonidae	Apogon campbelli	E01069	9380	10	705	1071	0	0	0	0
Apogonidae Astrapogon puncticulatus E00109 7227 9 0 1257 0 825 762 0 Apogonidae Astrapogon stellatus N0304 7517 9 681 0 951 0 <td< td=""><td>Apogonidae</td><td>Archamia biguttata</td><td>E00522</td><td>8166</td><td>11</td><td>705</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	Apogonidae	Archamia biguttata	E00522	8166	11	705	0	0	0	0	0
Apogonidae Astrapogon stellatus N03004 7517 9 681 0 951 0 0 0 Apogonidae Cercamia eremia E00546 6660 9 0 0 0 762 0 Apogonidae Cheilodipterus siostigmus E00528 8272 10 0 1257 0 0 0 0 0 0 Apogonidae Cheilodipterus quinquelineatus 601247 9762 12 705 0	Apogonidae	Astrapogon puncticulatus	E00109	7227	9	0	1257	0	825	762	0
ApogonidaeCercamia eremiaE00546666090007620ApogonidaeCheilodipterus isotigmusG0124797612705096007620ApogonidaeFowleria auritaG0124797612705096000000ApogonidaeFowleria auritaE0109087801169900 <td>Apogonidae</td> <td>Astrapogon stellatus</td> <td>N03004</td> <td>7517</td> <td>9</td> <td>681</td> <td>0</td> <td>951</td> <td>0</td> <td>0</td> <td>0</td>	Apogonidae	Astrapogon stellatus	N03004	7517	9	681	0	951	0	0	0
ApogonidaeCheilodipterus isostigmusE00528827210012570000ApogonidaeCheilodipterus quinquelineatusG01247976212705096007620ApogonidaeFowleria auritaE010908780116990000000ApogonidaeGymnapogon urospilotusE0053951077696000	Apogonidae	Cercamia eremia	E00546	6660	9	0	0	0	0	762	0
ApogonidaeCheilodipterus quinquelineatusG01247976212705096007620ApogonidaeFowleria auritaE01090878011699000000ApogonidaeGymapogon urospilotusE005395107769600	Apogonidae	Cheilodipterus isostigmus	E00528	8272	10	0	1257	0	0	0	0
ApogonidaeFowleria auritaE01090878011699000000ApogonidaeGymnapogon urospilotusE0053951077696000000ApogonidaeNectamia bandanensisE0104088601170512600651000ApogonidaeNectamia fuscaE007328861100125700000ApogonidaeOstorhinchus cookiiE01203827310705095707620ApogonidaePhaeoptyx pigmentariaE005061282215680125495107620ApogonidaePhaeoptyx pigmentariaE005087391970512570000ApogonidaePristiapogon exostigmaE0019063298705125700000ApogonidaeRhabdamia cypseluraE01095602270125700 </td <td>Apogonidae</td> <td>Cheilodipterus quinquelineatus</td> <td>G01247</td> <td>9762</td> <td>12</td> <td>705</td> <td>0</td> <td>960</td> <td>0</td> <td>762</td> <td>0</td>	Apogonidae	Cheilodipterus quinquelineatus	G01247	9762	12	705	0	960	0	762	0
ApogonidaeGymnapogon urospilotusE005395107769600000ApogonidaeNectamia bandanensisE010408860117051260065100ApogonidaeNectamia fuscaE007328861100125700000ApogonidaeOstorhinchus cookiiE010876400800	Apogonidae	Fowleria aurita	E01090	8780	11	699	0	0	0	0	0
ApogonidaeNectamia bandanensisE010408860117051260065100ApogonidaeNectamia fuscaE007328861100125700000ApogonidaeOstorhinchus cookiiE010876400800 <td< td=""><td>Apogonidae</td><td>Gymnapogon urospilotus</td><td>E00539</td><td>5107</td><td>7</td><td>696</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	Apogonidae	Gymnapogon urospilotus	E00539	5107	7	696	0	0	0	0	0
ApogonidaeNectamia fuscaE00732886110012570000ApogonidaeOstorhinchus cookiiE0108764008000000ApogonidaeOstorhinchus lateralisG01203827310705095707620ApogonidaePhaeoptyx pigmentariaE005061288215680125495107620ApogonidaePristiapogon exostigmaE0070284331101257007620ApogonidaePreapogon kauderniE0050673919705125700000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE0195602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0120310321270509540000ArianmatidaeArionma bondiE016559682126961257000000AriandaeArionma melanumE00665968212696125700000000000	Apogonidae	Nectamia bandanensis	E01040	8860	11	705	1260	0	651	0	0
ApogonidaeOstorhinchus cookiiE0108764008000000ApogonidaeOstorhinchus lateralisG01203827310705095707620ApogonidaePhaeoptyx pigmentariaE005061288215680125495107620ApogonidaePristiapogon exostigmaE007028433110125700000ApogonidaePseudamia gelatinosaE0056873919705125700000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE01095602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG01205100321270509540000AracanidaeAriomma bondiE0112678679705123300000000AripidaeAriomma melanumE00655968212696125700000000000000000000000	Apogonidae	Nectamia fusca	E00732	8861	10	0	1257	0	0	0	0
ApogonidaeOstorhinchus lateralisG01203827310705095707620ApogonidaePhaeoptyx pigmentariaE005061288215680125495107620ApogonidaePristiapogon exostigmaE00702843311012570007620ApogonidaePseudamia gelatinosaE0056873919705125700000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE0195602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0153368867000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000AriipidaeArioma melanumE006559682126961257000000AriommatidaeArioma melanumE006559682126961251000000AripidaeAripis	Apogonidae	Ostorhinchus cookii	E01087	6400	8	0	0	0	0	0	0
ApogonidaePhaeoptyx pigmentariaE005061288215680125495107620ApogonidaePristiapogon exostigmaE00702843311012570000ApogonidaePseudamia gelatinosaE0056873919705125700000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE01095602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0153368867000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000AriommatidaeAriomma melanumE006659682126961257000000ArripidaeArripis georgianusM015394794501251000000000000000000000000000	Apogonidae	Ostorhinchus lateralis	G01203	8273	10	705	0	957	0	762	0
ApogonidaePristiapogon exostigmaE0070284331101257007620ApogonidaePseudamia gelatinosaE005687391970512570000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE01095602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0153368867000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000ArripidaeAriomma melanumE006559682126961257000000ArripidaeArripis truttaM015403327401251000000ArripidaeArripis truttaceaM0154146595705125100000ArripidaeArripis truttaceaM01541868886180006990	Apogonidae	Phaeoptyx pigmentaria	E00506	12882	15	680	1254	951	0	762	0
ApogonidaePseudamia gelatinosaE005687391970512570000ApogonidaePterapogon kauderniE0019063298705125700000ApogonidaeRhabdamia cypseluraE010956022701257000000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG01533688670000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000ArripidaeArripis georgianusM01539479450125100000ArripidaeArripis truttaM015403327401251000000ArripidaeArripis truttaceaM01541465957051251000000Artedidraco orianaeG015256898861800069900	Apogonidae	Pristiapogon exostigma	E00702	8433	11	0	1257	0	0	762	0
ApogonidaePterapogon kauderniE001906329870512570000ApogonidaeRhabdamia cypseluraE0109560227012570000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0153368867000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000AriommatidaeAriomma melanumE00665968212696125700000ArripidaeArripis georgianusM01539479450125100000ArripidaeArripis truttaM01540332740125100000ArripidaeArripis truttaceaM0154146595705125100000Artedidraco orianaeG015256898861800069900	Apogonidae	Pseudamia gelatinosa	E00568	7391	9	705	1257	0	0	0	0
ApogonidaeRhabdamia cypseluraE01095602270125700000ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG01533688670000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000AriommatidaeAriomma melanumE0066596821269612570000744ArripidaeArripis georgianusM01539479450125100000ArripidaeArripis truttaceaM01540332740125100000ArripidaeArripis truttaceaM0154146595705125100000ArripidaeArtedidraco orianaeG01525689886180006990	Apogonidae	Pterapogon kauderni	E00190	6329	8	705	1257	0	0	0	0
ApogonidaeSphaeramia orbicularisN03178844610705093007620AracanidaeAnoplocapros lenticularisG0153368867000000AracanidaeAracana auritaG012051003212705095407620AriommatidaeAriomma bondiE0112678679705123300000AriommatidaeAriomma melanumE006659682126961257000744ArripidaeArripis georgianusM0154947945012510000ArripidaeArripis truttaceaM0154033274012510000Artedidraco orianaeG01525689886180006990	Apogonidae	Rhabdamia cypselura	E01095	6022	7	0	1257	0	0	0	0
Aracanidae Anoplocapros lenticularis G01533 6886 7 0 0 0 0 0 0 0 0 Aracanidae Aracana aurita G01205 10032 12 705 0 954 0 762 0 Ariommatidae Ariomma bondi E01126 7867 9 705 1233 0 0 0 0 0 Ariommatidae Ariomma melanum E00665 9682 12 696 1257 0 0 0 744 Arripidae Arripis georgianus M01539 4794 5 0 1251 0 0 0 0 Arripidae Arripis trutta M01540 3327 4 0 1251 0 0 0 0 Arripidae Arripis truttacea M01541 4659 5 705 1251 0	Apogonidae	Sphaeramia orbicularis	N03178	8446	10	705	0	930	0	762	0
Aracanidae Aracana aurita G01205 10032 12 705 0 954 0 762 0 Ariommatidae Ariomma bondi E01126 7867 9 705 1233 0	Aracanidae	Anoplocapros lenticularis	G01533	6886	7	0	0	0	0	0	0
Ariommatidae Ariomma bondi E01126 7867 9 705 1233 0 0 0 0 Ariommatidae Ariomma melanum E00665 9682 12 696 1257 0 0 0 744 Arripidae Arripis georgianus M01539 4794 5 0 1251 0 0 0 0 0 Arripidae Arripis trutta M01540 3327 4 0 1251 0 <	Aracanidae	Aracana aurita	G01205	10032	12	705	0	954	0	762	0
Ariommatidae Ariomma melanum E00665 9682 12 696 1257 0 0 0 744 Arripidae Arripis georgianus M01539 4794 5 0 1251 0	Ariommatidae	Ariomma bondi	E01126	7867	9	705	1233	0	0	0	0
Arripidae Arripis georgianus M01539 4794 5 0 1251 0	Ariommatidae	Ariomma melanum	E00665	9682	12	696	1257	0	0	0	744
Arripidae Arripis trutta M01540 3327 4 0 1251 0 0 0 0 Arripidae Arripis truttacea M01541 4659 5 705 1251 0 0 0 0 0 Artedidraconidae Artedidraco orianae G01525 6898 8 618 0 0 0 699 0	Arripidae	Arripis georgianus	M01539	4794	5	0	1251	0	0	0	0
Arripidae Arripis truttacea M01541 4659 5 705 1251 0	Arripidae	Arripis trutta	M01540	3327	4	0	1251	0	0	0	0
Artedidraconidae Artedidraco orianae G01525 6898 8 618 0 0 699 0	Arripidae	Arripis truttacea	M01541	4659	5	705	1251	0	0	0	0
	Artedidraconidae	Artedidraco orianae	G01525	6898	8	618	0	0	0	699	0

Table 4AC. Continueu										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Artedidraconidae	Pogonophryne barsukovi	E00158	12842	14	657	1308	0	0	762	0
Atherinidae	Atherinomorus lacunosus	E00548	15021	18	705	1260	957	0	762	0
Atherinidae	Atherinomorus stipes	E00115	13436	16	705	1260	0	813	762	684
Atherinidae	Atherinomorus vaigiensis	E00181	7813	10	705	0	0	0	762	0
Atherinidae	Craterocephalus honoriae	E00180	8597	10	0	1254	0	804	759	762
Atherinopsidae	Atherinopsis californiensis	E00121	5600	7	705	0	0	0	0	0
Atherinopsidae	Labidesthes sicculus	E01112	14372	17	705	1242	987	0	762	0
Atherinopsidae	Membras martínica	E00170	7275	9	696	0	0	0	0	0
Atherinopsidae	Menidia beryllina	E00174	10176	13	705	0	0	0	762	0
Atherinopsidae	Menidia menidia	E00167	12560	13	705	0	0	0	762	0
Atherinopsidae	Menidia peninsulae	N03847	5694	7	696	0	0	0	762	0
Atherinopsidae	Odontesthes argentinensis	E00393	5125	7	0	0	0	0	0	720
Atherinopsidae	Odontesthes bonariensis	E00396	9234	11	705	870	0	0	0	0
Atherinopsidae	Odontesthes humensis	E00394	5561	7	0	0	0	0	0	0
Atherinopsidae	Odontesthes retropinnis	E00395	4826	6	0	0	0	0	0	0
Atherinopsidae	Poblana ferdebueni	N01733	5919	7	705	0	0	0	762	0
Aulorhynchidae	Aulorhynchus flavidus	G01217	11313	12	705	0	962	0	762	0
Aulostomidae	Aulostomus chinensis	E00871	15665	19	705	0	966	780	756	705
Aulostomidae	Aulostomus maculatus	E00293	13058	16	679	0	951	0	741	0
Badidae	Badis pyema	N03996	7191	9	699	0	879	0	690	0
Badidae	Dario dario	N04003	5626	7	0	0	0	0	693	0
Balistidae	Abalistes stellatus	E00936	14580	18	705	1257	930	0	762	711
Balistidae	Balistapus undulatus	E00743	12372	14	672	0	0	0	0	0
Balistidae	Balistes capriscus	E00591	13798	17	690	0	0	0	762	0
Balistidae	Balistes vetula	E00755	13640	15	705	1257	947	0	0	0
Balistidae	Balistoides conspicillum	E00373	9468	10	657	0	0	0	0	0
Balistidae	Canthidermis maculata	E00378	9887	10	705	1257	0	0	0	0
Balistidae	Melichthys indicus	E00919	7484	10	696	0	0	825	762	669
Balistidae	Melichthys niger	E00922	8652	11	696	0	0	0	762	0
Balistidae	Pseudobalistes flavimarginatus	N04225	6715	8	705	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Balistidae	Pseudobalistes fuscus	E00524	4607	6	705	0	0	0	0	0
Balistidae	Rhinecanthus aculeatus	E00735	9140	10	0	0	0	0	0	0
Balistidae	Rhinecanthus assasi	E00381	5259	6	0	0	0	0	0	0
Balistidae	Rhinecanthus verrucosus	N04231	7465	9	705	0	0	0	762	0
Balistidae	Sufflamen chrysopterum	E00551	11210	14	703	1245	0	0	0	0
Balistidae	Sufflamen fraenatum	E00935	9148	10	705	1239	0	0	753	0
Balistidae	Xanthichthys auromarginatus	E00380	11574	12	696	1260	0	0	0	0
Balistidae	Xanthichthys ringens	N04239	7595	9	705	0	918	0	0	0
Banjosidae	Banjos banjos	M01542	4794	5	0	1251	0	0	0	0
Banjosidae	Banjos banjos	N01542	6206	8	0	0	0	0	711	0
Bathyclupeidae	Bathyclupea argentea	M01543	2787	4	705	0	0	0	0	0
Bathydraconidae	Gymnodraco acuticeps	E00155	12486	14	705	0	0	0	759	0
Bathydraconidae	Parachaenichthys charcoti	E00157	15082	17	696	0	0	756	762	762
Bathymasteridae	Bathymaster caeruleofasciatus	E00191	7525	10	705	0	0	0	762	669
Bathymasteridae	Bathymaster signatus	E00420	12500	16	690	1256	0	0	762	765
Bathymasteridae	Rathbunella hypoplecta	E00128	12273	15	705	0	0	0	753	0
Batrachoididae	Batrachoides pacifici	N04533	6761	8	693	0	948	0	756	0
Batrachoididae	Opsanus beta	E00698	11611	14	705	0	945	0	762	0
Batrachoididae	Opsanus pardus	E00513	11301	14	705	0	954	0	762	735
Batrachoididae	Opsanus tau	E00040	4773	6	0	861	0	0	0	0
Batrachoididae	Porichthys notatus	E00058	13187	16	705	861	950	0	762	0
Batrachoididae	Porichthys plectrodon	E00590	13538	16	705	1257	987	792	762	741
Batrachoididae	Sanopus sp	E00009	4902	6	0	861	0	0	762	0
Bedotiidae	Rheocles wrightae	G01467	11051	13	699	0	978	0	762	0
Belonidae	Ablennes hians	E00162	11443	13	705	0	0	0	0	0
Belonidae	Platybelone argalus	E00114	12856	15	678	1260	957	0	69 9	0
Belonidae	Strongylura notata	E00110	15115	19	705	0	966	732	761	570
Belonidae	Tylosurus crocodilus	E01051	7580	10	705	0	0	0	0	0
Belonidae	Xenentodon cancila	G01508	11377	14	705	0	963	0	762	0
Bembridae	Bembras japonica	N01723	6876	9	690	0	0	0	711	0
			······							

Table 4Ac. Continued									_	
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Bembropidae	Bembrops anatirostris	E01120	10273	13	693	0	0	0	762	0
Bembropidae	Bembrops gobioides	E01128	8878	11	693	0	0	0	762	0
Blenniidae	Alticus arnoldorum	E00989	2775	4	0	0	0	0	762	0
Blenniidae	Atrosalarias fuscus	E00525	2877	4	0	0	0	0	0	0
Blenniidae	Blenniella chrysospilos paula	E00986	4186	5	0	0	0	0	762	0
Blenniidae	Blenniella cyanostigma	E00715	7419	9	0	1308	0	0	0	0
Blenniidae	Blenniella paula	E00979	7982	10	0	1245	0	0	762	0
Blenniidae	Cirripectes castaneus	E00892	8002	10	672	1251	0	0	0	0
Blenniidae	Cirripectes filamentosus	E00893	5912	7	693	1260	0	0	0	0
Blenniidae	Cirripectes quagga	E00330	4362	5	0	1257	0	0	0	0
Blenniidae	Cirripectes stigmaticus	E00520	4037	6	705	0	0	0	0	0
Blenniidae	Ecsenius bicolor	E00984	5909	8	0	0	0	0	753	0
Blenniidae	Ecsenius midas	E00934	3749	5	0	0	0	0	0	0
Blenniidae	Ecsenius opsifrontalis	E00723	5497	7	660	0	0	0	0	0
Blenniidae	Ecsenius pardus	E00523	4285	5	0	1251	0	0	0	0
Blenniidae	Enchelyurus flavipes	N04786	6887	9	459	0	873	0	693	0
Blenniidae	Entomacrodus nigricans	E00297	9132	11	684	0	957	0	738	0
Blenniidae	Entomacrodus niuafoouensis	E00980	6091	8	0	0	0	0	762	0
Blenniidae	Entomacrodus striatus	E00987	5295	7	0	1200	0	0	0	654
Blenniidae	Hypleurochilus sp	E00298	5653	7	0	0	0	0	0	0
Blenniidae	Hypsoblennius hentz	E00289	7330	9	693	0	0	0	750	0
Blenniidae	Istiblennius dussumieri	E00556	4755	6	0	0	0	0	0	0
Blenniidae	Meiacanthus oualanensis grammistes	E00526	9615	12	705	0	933	0	756	0
Blenniidae	Nannosalarias nativitatis	E00521	6717	8	705	1251	0	0	0	0
Blenniidae	Ophioblennius atlanticus	E00296	11932	15	705	0	906	0	755	0
Blenniidae	Petroscirtes mitratus	E00909	5741	8	0	0	0	0	762	0
Blenniidae	Plagiotremus rhinorhynchos	E00586	4112	5	0	0	0	0	0	0
Blenniidae	Plagiotremus tapeinosoma	E00540	4423	6	696	0	0	0	0	0
Blenniidae	Praealticus caesius	E00329	5179	6	0	0	0	0	0	0
Blenniidae	Salarias fasciatus	E00988	12606	14	684	0	0	0	762	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Blenniidae	Stanulus sp	E00332	3369	4	0	1257	0	0	0	0
Bothidae	Arnoglossus blachei	E01160	6253	7	681	855	0	0	0	0
Bothidae	Arnoglossus imperialis	E01163	7399	8	705	1281	0	0	0	0
Bothidae	Asterorhombus cocosensis	E00904	10399	11	705	1308	0	0	0	0
Bothidae	Bothus lunatus	E00007	8248	9	684	0	0	0	0	0
Bothidae	Bothus robinsi	E00038	6724	7	0	0	0	0	0	0
Bothidae	Chascanopsetta lugubris	E01181	5982	7	651	1284	0	0	0	0
Bothidae	Laeops kitaharae	E00082	7794	8	0	0	0	0	0	0
Bothidae	Monolene sp	E01172	3326	3	0	858	0	0	0	0
Bothidae	Psettina tosana	E00083	7617	8	663	0	0	0	0	0
Bothidae	Trichopsetta ventralis	E00599	9704	10	693	1308	0	0	0	726
Bovichtidae	Bovichtus diacanthus	G01229	12547	13	702	0	987	0	759	0
Bovichtidae	Cottoperca trigloides	G01267	5753	6	660	0	0	0	696	0
Bramidae	Brama brama	E00970	11377	13	690	1281	0	0	762	765
Bramidae	Brama japonica	N05217	8586	10	705	0	987	0	762	0
Bramidae	Pteraclis aesticola	N05223	7106	9	672	0	906	0	711	0
Bramidae	Pterycombus brama	E00996	9728	12	690	1260	0	801	762	765
Bramidae	Taractes asper	N05227	8588	10	705	0	9 87	0	762	0
Bramidae	Taractichthys longipinnis	E00684	8997	11	0	1257	0	0	693	759
Bythitidae	Bidenichthys capensis	E00794	7231	9	0	1257	0	825	720	552
Bythitidae	Brosmophyciops pautzkei	E00717	5948	8	0	0	0	825	0	732
Bythitidae	Brosmophycis marginata	N05317	7691	9	690	0	975	0	0	0
Bythitidae	Cataetyx rubrirostris lepidogenys	E00261	14883	16	474	1242	987	0	753	0
Bythitidae	Diancistrus sp	E00236	6903	9	705	1257	0	0	762	0
Bythitidae	Dinematichthys iluocoeteoides	E00235	4750	6	0	1248	0	0	0	0
Bythitidae	Diplacanthopoma brachysoma	E00452	8606	9	0	1257	0	0	0	0
Bythitidae	Diplacanthopoma brunnea	N05377	8280	10	678	0	987	0	702	0
Caesionidae	Caesio caerulaurea lunaris	E00920	13727	15	0	1215	0	0	762	765
Caesionidae	Caesio cuning	N01544	6786	8	0	0	0	0	741	0
Caesionidae	Caesio teres	E00951	7741	10	0	1233	0	0	0	765

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Caesionidae	Caesio varilineata	E00949	9671	12	0	1236	0	825	762	759
Caesionidae	Caesio xanthonota	E00950	9615	12	0	1233	0	0	762	765
Caesionidae	Pterocaesio pisang	N01547	8535	10	704	0	939	0	762	0
Caesionidae	Pterocaesio tile	E00961	7369	8	0	0	0	0	762	0
Callanthiidae	Callanthias australis	M01721	3528	4	672	0	0	0	0	0
Callanthiidae	Grammatonotus surugaensis	N05516	4774	6	0	0	0	0	0	0
Callionymidae	Callionymus sp bairdi	E00946	14247	16	696	1260	978	801	0	0
Callionymidae	Diplogrammus goramensis	E00744	3443	4	0	1251	0	0	0	0
Callionymidae	Foetorepus sp	N01725	7524	9	690	0	927	0	0	0
Callionymidae	Neosynchiropus ocellatus	E00030	9857	12	690	0	987	0	0	0
Callionymidae	Synchiropus agassizii	E01004	13911	16	696	1236	987	825	0	0
Callionymidae	Synchiropus splendidus	E00003	7623	9	690	0	981	0	762	0
Callionymidae	Synchiropus stellatus	E00925	4153	5	0	0	0	0	0	0
Caproidae	Antigonia capros	E01024	15924	18	603	1284	693	0	762	606
Caproidae	Antigonia rubescens	N05907	8327	10	690	0	987	0	748	0
Caproidae	Capros aper	N05913	6917	9	0	0	693	0	702	0
Carangidae	Alectis ciliaris	E00469	9715	12	705	1296	0	0	0	0
Carangidae	Atule mate	E00942	13914	15	705	1236	0	0	762	0
Carangidae	Carangoides ferdau	E00869	9160	10	0	1281	0	0	762	0
Carangidae	Carangoides plagiotaenia	E00917	10641	12	705	1290	0	0	762	765
Carangidae	Caranx crysos ruber	E00510	15973	18	705	1230	0	0	762	744
Carangidae	Caranx ignobilis	E00574	14220	16	705	1296	0	0	736	750
Carangidae	Caranx sexfasciatus	E00834	10100	10	0	1212	0	0	0	0
Carangidae	Chloroscombrus chrysurus	E00763	5515	7	0	0	0	0	0	0
Carangidae	Decapterus macarellus	E00212	3266	5	0	0	0	0	0	0
Carangidae	Decapterus punctatus	E00671	9777	11	705	1290	0	0	0	0
Carangidae	Elagatis bipinnulata	E00841	11967	15	705	822	0	825	762	720
Carangidae	Gnathanodon speciosus	E00938	13565	15	705	840	0	0	762	765
Carangidae	Hemicaranx amblyrhynchus	E00616	11426	13	0	1287	0	0	735	0
Carangidae	Oligoplites saurus	E00195	16021	19	705	1287	921	825	762	744

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Carangidae	Scomberoides lysan	E00738	10887	13	0	1254	0	825	0	744
Carangidae	Selar crumenophthalmus	E00833	11277	13	705	1287	0	0	762	0
Carangidae	Selene brownii	E00767	7866	10	705	879	0	0	0	0
Carangidae	Selene setapinnis	N01705	6120	8	705	0	0	0	762	0
Carangidae	Seriola dumerili	E00623	16521	18	705	1290	927	0	738	0
Carangidae	Seriola rivoliana	E00467	11164	13	705	1257	0	825	0	744
Carangidae	Trachinotus carolinus	G01504	11145	13	705	0	972	0	762	0
Carangidae	Trachinotus falcatus	E00819	10693	12	705	1233	0	825	0	0
Carangidae	Trachinotus ovatus	E01145	14822	16	705	0	975	0	762	0
Carangidae	Trachurus lathami	E00598	11710	13	0	1308	0	0	762	0
Carangidae	Uraspis secunda	E00515	11843	13	705	1287	0	0	0	0
Carapidae	Carapus bermudensis	E00244	3497	5	0	0	870	0	0	0
Carapidae	Onuxodon parvibrachium	N06009	5285	7	678	0	0	0	0	0
Carapidae	Pyramodon ventralis	N06013	5272	7	678	0	0	0	0	0
Caristiidae	Caristius macropus	N06078	5912	8	0	0	918	0	744	0
Caristiidae	Caristius sp	E00810	9564	11	0	1281	0	786	762	765
Caristiidae	Platyberyx opalescens	N06085	7781	10	690	0	906	0	711	0
Centracanthidae	Centracanthus cirrus	M01560	2897	3	0	0	0	0	0	0
Centracanthidae	Spicara alta	M01561	4032	4	0	0	0	0	0	0
Centracanthidae	Spicara maena	M01562	5142	5	0	1251	0	0	0	0
Centracanthidae	Spicara nigricauda	M01564	4791	5	0	1251	0	0	0	0
Centracanthidae	Spicara smaris	M01565	5111	5	0	1248	0	0	0	0
Centrarchidae	Acantharchus pomotis	G01185	10678	10	0	1287	939	0	0	0
Centrarchidae	Ambloplites rupestris	E00392	18681	20	705	1287	<u>98</u> 4	0	762	759
Centrarchidae	Archoplites interruptus	N01722	8586	10	705	0	987	0	762	0
Centrarchidae	Lepomis cyanellus	E00132	18334	20	687	1203	951	825	762	639
Centrarchidae	Lepomis macrochirus	E01113	15647	17	687	0	0	819	0	597
Centrarchidae	Micropterus salmoides	E01110	18682	20	687	1266	987	0	759	0
Centrarchidae	Pomoxis nigromaculatus	E00131	14489	15	696	1236	0	0	0	0
Centriscidae	Aeoliscus strigatus	G01189	10258	10	696	0	960	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Centriscidae	Macroramphosus gracilis	E00335	4196	5	0	0	0	0	0	0
Centriscidae	Macroramphosus scolopax	E00473	10717	12	690	0	897	0	0	0
Centrogenyidae	Centrogenys vaigiensis	G01239	9161	11	705	0	944	0	762	0
Centrolophidae	Icichthys lockingtoni	E00387	15879	18	624	1260	957	0	762	0
Centropomidae	Centropomus ensiferus	E00766	14482	15	705	1212	975	825	762	0
Centropomidae	Centropomus medius	E01158	10458	11	705	1308	789	0	0	0
Centropomidae	Centropomus undecimalis	E00194	15428	17	705	1287	903	0	762	0
Centropomidae	Centropomus viridis	E01153	14374	16	705	1308	987	0	699	0
Centropomidae	Lates calcarifer	E01135	11083	12	0	1260	900	0	0	0
Centropomidae	Lates japonicus	E01147	10695	11	657	1284	903	0	0	0
Centropomidae	Lates microlepis	E01149	9785	11	654	1272	921	0	0	0
Centropomidae	Psammoperca waigiensis	E01148	12243	13	676	1308	987	0	0	0
Cepolidae	Acanthocepola sp	M01669	4129	4	0	1251	0	0	0	0
Cepolidae	Cepola macrophthalma	M01566	3339	4	0	1251	0	0	0	0
Cepolidae	Cepola schlegelii	N06269	6961	9	705	0	825	0	711	0
Cepolidae	Sphenanthias tosaensis	N06282	6620	9	705	0	906	0	708	0
Ceratiidae	Ceratias holboelli	E00175	8091	11	687	0	0	0	0	0
Ceratiidae	Ceratias sp	E00160	6019	7	0	1257	0	0	0	0
Ceratiidae	Cryptopsaras couesii	E00686	9907	10	0	0	0	0	762	0
Chaenopsidae	Acanthemblemaria aspera	E00320	6836	9	693	0	0	0	0	0
Chaenopsidae	Acanthemblemaria paula	E00295	6314	8	693	0	0	0	0	0
Chaenopsidae	Chaenopsis sp alepidota	E00313	11049	13	685	0	0	0	762	0
Chaenopsidae	Emblemaria pandionis	E00310	6208	7	0	0	0	0	0	0
Chaenopsidae	Lucayablennius zingaro	E00294	7789	9	707	0	0	0	0	0
Chaenopsidae	Neoclinus blanchardi	E00326	6535	8	0	0	0	0	0	0
Chaenopsidae	Stathmonotus stahli	E00317	7886	9	693	0	0	0	0	0
Chaetodontidae	Chaetodon auriga	E00921	12220	14	0	996	0	0	762	753
Chaetodontidae	Chaetodon capistratus	E00205	3871	5	0	0	0	0	0	0
Chaetodontidae	Chaetodon ocellatus	E00752	3799	5	675	0	0	0	0	0
Chaetodontidae	Chaetodon ornatissimus	G01243	11727	14	705	0	945	0	762	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Chaetodontidae	Chaetodon plebeius	E00573	2874	_4	0	0	0	0	0	0
Chaetodontidae	Chaetodon reticulatus	E00719	9187	11	705	1260	0	0	0	0
Chaetodontidae	Chaetodon striatus	E00753	15347	19	705	1236	825	705	741	753
Chaetodontidae	Chelmon rostratus	G01248	10379	13	705	0	936	0	753	0
Chaetodontidae	Forcipiger flavissimus	E00562	14191	17	663	1260	966	0	762	0
Chaetodontidae	Hemitaurichthys polylepis	E00240	12410	15	705	0	0	0	762	0
Chaetodontidae	Heniochus chrysostomus	E00748	14747	18	705	1236	0	822	762	729
Chaetodontidae	Heniochus varius	E00547	11101	14	705	1236	0	0	744	0
Chaetodontidae	Johnrandallia nigrirostris	N06546	7594	9	705	0	0	0	762	0
Chaetodontidae	Prognathodes aya aculeatus	E00632	16211	20	705	1257	945	822	762	762
Champsodontidae	Champsodon snyderi	N06574	5798	8	705	0	906	0	702	0
Channichthyidae	Chionobathyscus dewitti	G01250	11735	13	705	0	972	0	759	0
Channichthyidae	Chionodraco rastrospinosus	E00156	10249	11	696	0	0	0	762	0
Channidae	Channa lucius	N06615	7562	9	705	0	987	0	762	0
Channidae	Channa melasoma	N06621	8195	10	705	0	966	0	732	0
Channidae	Channa striata	E01133	15424	17	705	1308	987	0	762	0
Chaunacidae	Chaunax stigmaeus	E01121	11544	14	690	1236	879	0	714	0
Chaunacidae	Chaunax suttkusi	E01117	13670	16	705	1260	978	0	762	0
Cheilodactylidae	Cheilodactylus fasciatus	E00795	8950	11	693	0	0	0	762	0
Cheilodactylidae	Cheilodactylus pixi	E00797	7523	10	0	0	0	0	762	0
Cheilodactylidae	Cheilodactylus variegatus	N07699	7481	9	696	0	0	0	762	0
Cheilodactylidae	Chirodactylus brachydactylus	E00796	10572	13	705	1236	879	0	762	0
Cheilodactylidae	Chirodactylus jessicalenorum	E00585	5511	7	0	1257	0	0	0	750
Cheimarrichthyidae	Cheimarrichthys fosteri	N07713	7400	9	0	0	936	0	762	0
Chiasmodontidae	Chiasmodon niger	E01115	6819	8	678	1257	0	0	0	0
Chiasmodontidae	Chiasmodon sp	N33662	8114	10	696	0	957	0	762	0
Chiasmodontidae	Kali indica	E01106	8049	10	0	1248	0	678	0	750
Chiasmodontidae	Kali kerberti	E00385	8712	11	687	1257	0	0	750	0
Chironemidae	Chironemus georgianus	M01569	3606	4	705	0	0	0	0	0
Chironemidae	Chironemus maculosus	M01570	3605	4	705	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Cichlidae	Astatotilapia burtoni	G01518	14530	19	699	1308	987	459	0	756
Cichlidae	Cichla temensis	G01256	12888	15	699	1287	987	0	762	0
Cichlidae	Crenicichla lepidota	E00137	9593	12	705	0	0	0	0	0
Cichlidae	Etroplus maculatus	E00133	16104	17	705	0	960	0	762	0
Cichlidae	Herichthys cyanoguttatus	G01319	10449	13	705	0	987	0	762	0
Cichlidae	Heros efasciatus	G01320	12037	14	705	1281	987	0	762	0
Cichlidae	Heterochromis multidens	G01321	10659	13	681	0	978	0	762	0
Cichlidae	Maylandia zebra	G01519	15105	19	699	1308	987	459	762	756
Cichlidae	Nanochromis parilus	G01390	2645	4	681	0	0	0	0	0
Cichlidae	Neolamprologus brichardi	G01520	18935	21	699	1308	987	459	762	756
Cichlidae	Oreochromis niloticus	G01407	20724	22	705	1308	987	810	762	756
Cichlidae	Paratilapia polleni	G01420	11328	12	705	0	978	0	762	0
Cichlidae	Paretroplus maculatus	G01423	11220	12	699	0	960	0	762	0
Cichlidae	Ptychochromis grandidieri	G01459	9350	12	705	0	891	0	693	0
Cichlidae	Pundamilia nyererei	G01521	14440	18	696	1308	987	459	0	756
Cichlidae	Steatocranus gibbiceps	G01494	2873	4	681	0	0	0	0	0
Cichlidae	Symphysodon discus	E00390	10909	13	0	0	0	0	0	753
Cichlidae	Tilapia louka	G01503	2873	4	681	0	0	0	0	0
Cirrhitidae	Amblycirrhitus pinos	E00314	16355	19	666	867	882	0	690	0
Cirrhitidae	Cirrhitichthys falco	N09466	4867	7	660	0	873	0	702	0
Cirrhitidae	Cirrhitichthys oxycephalus	E00884	8380	11	705	1257	0	0	0	322
Cirrhitidae	Neocirrhites armatus	E00725	12592	16	663	0	873	0	699	0
Cirrhitidae	Paracirrhites forsteri arcatus	E00924	12505	15	705	0	951	0	762	0
Citharidae	Citharoides macrolepis	E00071	12901	15	687	0	882	0	702	0
Citharidae	Citharus linguatula	E01174	6850	8	705	0	0	0	0	0
Citharidae	Lepidoblepharon ophthalmolepis	E00080	7005	8	0	855	0	0	0	0
Clinidae	Blennophis striatus	E00800	3454	4	0	0	0	0	0	0
Clinidae	Clinus cottoides	E00804	4782	6	0	0	0	0	0	0
Clinidae	Clinus superciliosus	E00803	5297	7	0	0	0	0	0	0
Clinidae	Gibbonsia metzi	N09738	6827	8	705	0	957	0	762	0

Table 4Ac. Continued	1								_	
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Clinidae	Muraenoclinus dorsalis	E00805	4559	6	0	0	0	0	0	0
Clinidae	Pavoclinus profundus	E00799	3475	4	0	0	0	0	0	0
Coryphaenidae	Coryphaena hippurus	E00937	17390	19	693	1281	969	0	0	0
Cottidae	Artediellus uncinatus	N10447	7522	9	627	0	0	0	762	0
Cottidae	Chitonotus pugetensis	E00233	6714	8	0	1257	0	0	0	0
Cottidae	Cottus carolinae	E00281	10765	13	705	0	974	0	762	0
Cottidae	Enophrys taurina	E00234	3576	5	0	0	0	0	0	0
Cottidae	Gymnocanthus galeatus	E00259	3095	4	0	1215	0	0	0	0
Cottidae	Hemilepidotus jordani	E00263	7975	10	0	1260	0	726	0	0
Cottidae	Hemilepidotus zapus	E00272	5096	6	0	1233	0	0	0	0
Cottidae	Icelinus filamentosus	E00277	8203	10	0	1233	0	0	762	0
Cottidae	Icelinus quadriseriatus	E00228	5018	6	0	1257	0	0	0	0
Cottidae	Leptocottus armatus	E00266	12068	14	0	0	0	0	738	0
Cottidae	Microcottus sellaris	E00223	2282	3	0	0	0	0	0	0
Cottidae	Myoxocephalus octodecemspinosus	E00221	3991	4	0	1254	0	0	0	0
Cottidae	Myoxocephalus polyacanthocephalus	E00267	4736	5	0	1233	0	0	0	0
Cottidae	Radulinus asprellus	E00429	6882	9	0	0	0	0	0	0
Cottidae	Rastrinus scutiger	E00256	6088	7	0	1257	0	0	0	0
Cottidae	Scorpaenichthys marmoratus	E00232	10450	13	705	0	0	0	0	0
Cottidae	Triglops macellus	E00435	8082	10	0	1263	0	0	0	0
Cottidae	Triglops scepticus	E00421	5233	7	0	0	0	0	0	0
Creediidae	Limnichthys sp	E01081	6256	8	693	0	0	0	0	0
Cryptacanthodidae	Cryptacanthodes maculatus	E00116	10532	13	705	0	0	0	762	0
Cyclopteridae	Cyclopterus lumpus	E00220	12165	15	705	0	870	0	762	0
Cyclopteridae	Eumicrotremus orbis	E00270	12456	15	705	1257	0	0	762	0
Cynoglossidae	Cynoglossus interruptus	E00076	7900	8	0	1308	0	0	0	0
Cynoglossidae	Symphurus atricaudus	E00023	10924	12	705	1284	0	0	0	0
Cynoglossidae	Symphurus civitatium	E00604	7546	8	0	1308	0	768	0	0
Cynoglossidae	Symphurus plagiusa	E01164	7027	8	0	1287	0	0	0	0
Cyprinodontidae	Cyprinodon variegatus	E01066	12469	15	705	1245	954	825	0	630
			· · · · · · · · · · · · · · · · · · ·							·····

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Cyprinodontidae	Floridichthys carpio	E01063	9295	11	0	1257	0	0	0	411
Cyprinodontidae	Jordanella floridae	N14002	5915	7	705	0	936	0	0	0
Dactylopteridae	Dactyloptena gilberti	N14051	5845	7	690	0	0	0	0	0
Dactylopteridae	Dactyloptena orientalis	E00237	13665	15	705	1254	987	825	0	0
Dactylopteridae	Dactyloptena peterseni	E00749	14553	15	681	1259	987	825	0	0
Dactylopteridae	Dactylopterus volitans	E00214	7789	10	705	0	0	723	0	0
Dactyloscopidae	Gillellus semicinctus	G01299	6655	8	692	0	0	0	762	0
Dactyloscopidae	Platygillellus rubrocinctus	E00319	5427	7	711	0	0	0	0	0
Datnioididae	Datnioides microlepis	N14199	7836	10	696	0	879	0	693	0
Dichistiidae	Dichistius capensis	M01571	3582	4	681	0	0	0	0	0
Diodontidae	Chilomycterus schoepfii	E00517	12554	15	705	0	951	0	762	0
Diodontidae	Diodon holocanthus	E00312	13884	15	705	0	957	0	762	0
Drepaneidae	Drepane punctata	E00250	13305	15	0	1284	0	0	693	0
Echeneidae	Echeneis naucrates	E00615	16441	18	705	0	0	810	762	762
Echeneidae	Echeneis neucratoides	E00245	7118	7	693	1281	0	0	0	699
Echeneidae	Phtheirichthys lineatus	G01438	7650	8	0	0	0	795	0	654
Echeneidae	Remora osteochir australis	E00503	10993	11	705	1302	0	0	0	0
Elassomatidae	Elassoma evergladei	E00146	15293	17	693	0	0	825	762	747
Elassomatidae	Elassoma okefenokee	G01283	9813	12	705	606	975	0	762	0
Elassomatidae	Elassoma zonatum	G01284	14834	15	705	1287	933	0	762	0
Eleginopsidae	Eleginops maclovinus	G01286	10593	13	705	0	987	0	759	0
Eleotridae	Dormitator maculatus	E00169	5763	7	702	0	0	0	0	0
Eleotridae	Eleotris acanthopoma pisonis	E00741	12447	14	501	0	948	0	0	0
Eleotridae	Ophiocara porocephala	E01101	11395	13	705	1236	0	0	0	0
Eleotridae	Oxyeleotris selheimi	N01730	5975	7	705	0	948	0	0	0
Embiotocidae	Amphistichus argenteus	E00129	8893	12	705	0	0	0	0	0
Embiotocidae	Cymatogaster aggregata	E00139	14184	16	705	0	987	0	762	0
Embiotocidae	Embiotoca jacksoni	E00120	14177	17	705	1257	957	0	762	0
Embiotocidae	Embiotoca lateralis	N14635	6883	8	705	0	945	0	0	0
Embiotocidae	Hyperprosopon anale argenteum	E00134	14767	18	705	1245	966	0	762	0

Table 4Ac. Continued							_			
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Embiotocidae	Phanerodon furcatus	E00122	11479	14	705	0	948	0	762	0
Embiotocidae	Rhacochilus vacca	E00124	12585	15	705	0	948	0	0	0
Embiotocidae	Zalembius rosaceus	E00135	4565	6	0	0	0	0	0	0
Emmelichthyidae	Erythrocles schlegelii	E00954	12039	15	669	1233	879	780	762	0
Emmelichthyidae	Erythrocles scintillans	N14652	6911	9	705	0	0	0	711	0
Enoplosidae	Enoplosus armatus	G01287	10134	11	0	0	0	0	702	0
Ephippidae	Chaetodipterus faber	E00614	14589	18	705	0	972	732	762	744
Ephippidae	Platax orbicularis	E00898	13969	16	705	0	0	813	762	0
Ephippidae	Platax teira	E00858	12410	15	0	0	0	825	0	735
Epigonidae	Epigonus pandionis	E01019	5505	7	690	1236	0	0	762	0
Epigonidae	Epigonus telescopus	E00652	10314	12	0	858	0	0	762	708
Exocoetidae	Cheilopogon dorsomacula	E00624	11475	14	705	1260	0	0	762	0
Exocoetidae	Cheilopogon melanurus	N14975	5883	7	696	0	984	0	0	0
Exocoetidae	Cheilopogon pinnatibarbatus	E00399	13294	16	705	0	957	0	0	0
Exocoetidae	Cypselurus callopterus	E00402	6837	8	0	0	0	0	0	735
Exocoetidae	Exocoetus monocirrhus	E00403	10246	13	0	0	0	0	0	735
Exocoetidae	Hirundichthys marginatus	E00401	9589	12	0	0	0	0	762	765
Exocoetidae	Parexocoetus brachypterus	E00645	4220	5	0	0	0	0	0	0
Exocoetidae	Prognichthys brevipinnis	E00400	6286	8	0	0	0	0	762	0
Fistulariidae	Fistularia commersonii	E00941	7080	7	0	0	897	0	0	0
Fistulariidae	Fistularia petimba	E00602	6969	9	705	0	894	0	0	0
Fundulidae	Adinia xenica	E00173	8890	10	0	1257	0	0	762	0
Fundulidae	Fundulus blairae	E00130	9841	11	0	1233	0	0	0	0
Fundulidae	Fundulus chrysotus	E00186	8599	9	0	1236	0	0	762	0
Fundulidae	Fundulus heteroclitus	G01293	12304	13	705	0	987	0	762	0
Fundulidae	Fundulus parvipinnis	E00389	11368	13	0	1245	0	0	762	756
Fundulidae	Lucania parva goodei	E01064	13730	16	705	1257	0	813	762	0
Gasterosteidae	Apeltes quadracus	E00791	11199	12	696	0	972	0	756	0
Gasterosteidae	Culaea inconstans	E00368	12338	14	693	0	984	0	756	0
Gasterosteidae	Gasterosteus aculeatus	E01012	20181	21	705	1308	963	0	762	756

Table 4Ac. Continued					-					
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Gasterosteidae	Gasterosteus wheatlandi	N15128	8456	10	705	0	972	0	762	0
Gasterosteidae	Pungitius pungitius	G01460	10820	11	693	0	963	0	756	0
Gasterosteidae	Spinachia spinachia	G01491	10498	11	693	0	963	0	756	0
Gempylidae	Gempylus serpens	E00693	9797	13	0	1248	0	0	762	759
Gempylidae	Nealotus tripes	E00287	6043	8	705	1233	0	0	0	0
Gempylidae	Neoepinnula americana	E00471	5662	7	669	1257	0	0	0	0
Gempylidae	Neoepinnula orientalis	E00518	6702	9	0	0	0	0	762	648
Gempylidae	Paradiplospinus gracilis	N15143	7281	9	705	0	0	0	762	0
Gempylidae	Ruvettus pretiosus	E00226	13794	16	705	0	987	0	762	0
Gerreidae	Eucinostomus argenteus	E00575	5749	7	0	0	0	0	0	0
Gerreidae	Eucinostomus gula	E00756	7604	9	0	0	0	0	0	0
Gerreidae	Eugerres plumieri	G01291	11242	14	695	0	969	0	762	0
Gerreidae	Gerres cinereus	E00292	11457	12	0	1281	0	0	0	0
Gerreidae	Gerres longirostris	E00835	6053	8	0	0	0	825	0	0
Gerreidae	Gerres oyena	E00823	6770	8	0	0	0	0	0	714
Gerreidae	Ulaema lefroyi	G01507	8309	10	696	0	954	0	762	0
Gigantactinidae	Gigantactis ios	E01053	4539	6	0	0	0	0	0	0
Gigantactinidae	Gigantactis sp	N34852	6412	8	675	0	0	0	753	0
Gigantactinidae	Gigantactis vanhoeffeni	E00177	13239	15	648	0	0	819	762	729
Girellidae	Girella nigricans mezina	E00197	11742	13	705	1236	0	0	711	0
Glaucosomatidae	Glaucosoma buergeri	N15231	7808	10	690	0	906	0	708	0
Glaucosomatidae	Glaucosoma hebraicum	G01300	16039	18	705	1308	975	0	762	0
Gobiesocidae	Arcos sp	E00102	13747	16	678	873	960	0	702	0
Gobiesocidae	Diademichthys lineatus	G01276	8298	10	705	0	963	0	762	0
Gobiesocidae	Gobiesox maeandricus	G01302	8270	10	705	0	981	0	0	0
Gobiesocidae	Lepadichthys lineatus	E01080	3896	5	0	0	0	0	0	669
Gobiidae	Amblyeleotris guttata	E01043	8728	11	0	0	0	792	0	0
Gobiidae	Amblyeleotris gymnocephala	E00409	6038	8	0	0	0	0	0	0
Gobiidae	Amblyeleotris wheeleri	E01073	7397	9	0	0	0	810	0	0
Gobiidae	Amblygobius decussatus	E00533	2824	4	0	0	0	0	0	0
······										

Fan	nily	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Got	piidae	Amblygobius phalaena	E00736	7217	10	0	0	0	0	0	0
Got	piidae	Asterropteryx semipunctata	E01089	6719	8	0	0	0	0	0	0
Got	piidae	Bathygobius mystacium	E00104	6412	8	0	0	0	0	0	0
Got	piidae	Bollmannia communis	E00617	5108	5	0	0	0	0	0	0
Got	piidae	Cabillus lacertops	E01093	3915	5	0	0	0	0	0	0
Got	piidae	Caffrogobius caffer	E01056	6198	8	696	0	0	810	0	0
Got	piidae	Caffrogobius saldanha	E01057	6207	8	666	0	0	0	0	0
Got	piidae	Coryphopterus glaucofraenum	E00100	5342	7	0	0	0	810	0	0
Got	oiidae	Coryphopterus personatus	E00405	4791	7	0	0	0	0	0	0
Got	oiidae	Cryptocentrus sp	E00407	3883	5	0	0	0	0	0	0
Got	piidae	Ctenogobiops crocineus	E01097	5981	7	0	0	0	810	0	0
Got	piidae	Ctenogobius boleosoma	E00172	3520	5	0	0	0	0	0	0
Gob	piidae	Elacatinus oceanops	E00108	11459	12	0	0	0	0	0	0
Gob	piidae	Eviota albolineata	E01041	6182	8	0	0	0	0	0	0
Got	piidae	Eviota prasites	E01044	5506	7	0	0	0	0	0	0
Got	piidae	Eviota saipanensis	E00714	4913	6	0	0	0	0	0	0
Got	piidae	Evorthodus lyricus	E00171	6129	8	705	0	0	0	0	0
Got	oiidae	Fusigobius duospilus	E00863	7305	9	692	0	0	807	0	0
Got	biidae	Fusigobius inframaculatus	E01076	4985	6	0	0	0	0	0	0
Got	piidae	Fusigobius neophytus	E00733	7031	10	663	0	0	0	0	0
Got	piidae	Gnatholepis anjerensis	E01075	4977	7	0	0	0	0	0	0
Got	biidae	Gnatholepis cauerensis	E00099	3361	5	0	0	0	0	0	0
Got	oiidae	Gobiodon quinquestrigatus	E01085	6985	9	0	0	0	0	0	0
Got	piidae	Gobiosoma bosc	E00097	9910	10	0	0	0	711	0	0
Got	oiidae	Istigobius decoratus	E01078	9124	11	0	0	0	0	0	0
Got	piidae	Istigobius ornatus	E01107	2776	3	0	0	0	0	0	0
Got	piidae	Lepidogobius lepidus	G01351	5076	6	0	0	981	0	0	0
Got	piidae	Lophogobius cyprinoides	E00508	6153	8	706	0	0	0	0	0
Got	oiidae	Lythrypnus dalli	E00126	6746	9	0	0	0	0	0	0
Got	biidae	Oplopomus oplopomus	E01067	6654	8	0	0	0	801	0	0
											-

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Gobiidae	Paragobiodon modestus	E01098	8154	11	0	0	0	732	0	0
Gobiidae	Periophthalmus kalolo	E00537	6876	9	705	0	0	0	0	0
Gobiidae	Priolepis cincta	E01077	5030	6	0	0	0	0	0	0
Gobiidae	Priolepis hipoliti	E00106	5717	7	0	0	0	0	0	0
Gobiidae	Psammogobius biocellatus	E00740	5797	8	705	0	0	0	0	0
Gobiidae	Risor ruber	E00107	10310	10	0	0	0	0	0	0
Gobiidae	Stonogobiops nematodes	N16820	2850	4	0	0	879	0	0	0
Gobiidae	Trimma caesiura	E01039	8870	11	0	0	0	786	0	0
Gobiidae	Trimma haima	E01084	5533	7	0	0	0	714	0	0
Gobiidae	Trimma okinawae	E00726	275 9	4	0	0	0	0	0	0
Gobiidae	Valenciennea puellaris	E01096	5328	7	0	0	0	0	0	0
Gobiidae	Valenciennea strigata	E01094	4256	6	0	0	0	0	0	0
Gobiidae	Vanderhorstia ornatissima	E01088	6501	8	0	0	0	0	0	0
Grammatidae	Gramma loreto	E00280	14197	16	696	1287	978	0	762	0
Grammatidae	Lipogramma anabantoides	E00211	6519	8	0	1233	0	0	762	693
Grammatidae	Lipogramma trilineata	E00210	6532	8	0	1257	0	0	0	0
Haemulidae	Anisotremus surinamensis	N17175	7479	9	693	0	0	0	762	0
Haemulidae	Anisotremus virginicus	E00200	9338	11	705	1260	0	0	0	0
Haemulidae	Conodon nobilis	E00613	10862	13	705	1260	0	0	0	0
Haemulidae	Haemulon aurolineatum	E00635	16270	20	705	1242	0	0	762	723
Haemulidae	Haemulon plumierii	E00279	12545	15	705	1254	0	0	762	0
Haemulidae	Haemulon sciurus	E00199	14796	18	705	1257	796	0	759	684
Haemulidae	Haemulon vittatum	E00218	14636	17	684	1278	0	0	762	0
Haemulidae	Orthopristis chrysoptera	E00607	15170	18	705	1260	0	0	762	0
Haemulidae	Plectorhinchus chaetodonoides	E00857	12011	14	693	1236	0	795	762	0
Haemulidae	Plectorhinchus vittatus	E00856	9448	12	705	1236	0	0	0	0
Haemulidae	Pomadasys corvinaeformis	E00761	10420	14	696	1257	0	741	0	0
Haemulidae	Xenistius californiensis	E00229	11494	14	705	1236	0	0	0	609
Hapalogenyidae	Hapalogenys aya	M01722	4098	4	705	0	0	0	0	0
Hapalogenyidae	Hapalogenys kishinouyei	M01723	3627	4	681	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Hapalogenyidae	Hapalogenys nigripinnis	M01724	4735	5	705	0	0	0	0	0
Harpagiferidae	Harpagifer antarcticus	G01524	10362	11	660	0	0	0	759	0
Helostomatidae	Helostoma temminkii	G01315	8144	9	693	0	0	0	702	0
Hemiramphidae	Arrhamphus sclerolepis	G01209	7917	10	696	0	972	0	762	0
Hemiramphidae	Hemiramphus brasiliensis	E00098	10104	12	705	1233	0	0	0	708
Hemiramphidae	Hyporhamphus affinis	E01068	5623	7	696	0	0	825	0	0
Hemiramphidae	Hyporhamphus dussumieri	E01086	3078	4	0	0	0	0	0	0
Hemiramphidae	Oxyporhamphus micropterus	E00397	8076	9	0	1260	0	0	0	0
Hexagrammidae	Hexagrammos decagrammus	E00348	7318	10	702	867	0	0	0	0
Hexagrammidae	Hexagrammos lagocephalus otakii	E00363	13109	16	699	0	867	0	762	0
Hexagrammidae	Pleurogrammus monopterygius	E00367	6904	9	633	0	0	0	0	0
Hexagrammidae	Zaniolepis frenata	E00353	6326	9	648	0	0	0	0	0
Himantolophidae	Himantolophus albinares sagamius	E00656	16540	18	705	1254	0	0	762	759
Hoplichthyidae	Hoplichthys gilberti	N17743	5272	7	690	0	0	0	0	0
Hoplichthyidae	Hoplichthys langsdorfii	N17745	5443	7	690	0	0	0	0	0
Howellidae	Howella brodiei	E00816	11083	12	0	1308	0	825	0	765
Howellidae	Howella zina	N17756	5489	7	705	0	0	0	0	0
Hypoptychidae	Aulichthys japonicus	G01216	11602	12	690	0	963	0	0	0
Hypoptychidae	Hypoptychus dybowskii	G01335	10399	11	696	0	960	0	756	0
lcosteidae	Icosteus aenigmaticus	G01336	7173	9	705	0	0	0	762	0
Indostomidae	Indostomus crocodilus	N17863	5047	7	693	0	873	0	0	0
Indostomidae	Indostomus paradoxus	E01156	10345	11	693	861	861	0	0	0
Isonidae	lso sp	E00145	8043	10	705	0	0	0	762	0
Istiophoridae	Istiophorus platypterus	E00695	12698	12	0	1299	0	825	0	0
Istiophoridae	Kajikia albida	E00681	7868	10	0	1236	0	795	0	729
Istiophoridae	Makaira nigricans	E00697	11395	12	0	0	0	825	0	732
Istiophoridae	Makaira sp	E00692	8009	9	0	1011	0	0	0	0
Istiophoridae	Tetrapturus angustirostris	N01741	7787	10	696	0	882	0	690	0
Kuhliidae	Kuhlia marginata	G01341	10248	12	705	1287	957	0	744	0
Kuhliidae	Kuhlia mugil	E00712	16962	18	705	1281	0	825	762	759

Table 4AC. Continueu	· · · · · · · · · · · · · · · · · · ·									
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Kuhliidae	Kuhlia rupestris	E00957	12721	15	705	1287	882	0	699	0
Kurtidae	Kurtus gulliveri	E00188	16737	18	645	1308	906	0	762	0
Kurtidae	Kurtus indicus	N17950	5074	7	687	0	882	0	0	0
Kyphosidae	Kyphosus cinerascens	N17975	7672	10	705	0	882	0	693	0
Kyphosidae	Kyphosus elegans	G01342	9674	11	705	1287	948	0	762	0
Kyphosidae	Kyphosus incisor	E00202	6684	8	0	0	0	0	756	0
Kyphosidae	Kyphosus sectatrix	E00775	12318	14	705	1281	0	825	0	765
Labridae	Anampses lineatus	E00932	8645	11	693	0	0	798	762	681
Labridae	Bodianus axillaris	E00947	9242	11	0	1257	0	825	0	0
Labridae	Bodianus mesothorax	E00560	14044	17	0	1257	984	0	762	0
Labridae	Cheilinus chlorourus	E00907	9227	12	696	0	0	816	762	600
Labridae	Cheilinus fasciatus	E00876	8639	11	678	0	0	819	762	0
Labridae	Cheilinus oxycephalus	E00901	6640	8	0	0	0	825	762	0
Labridae	Cheilio inermis	E00906	9477	11	678	1215	0	0	0	0
Labridae	Cirrhilabrus katherinae	E00728	6057	8	693	0	0	807	0	0
Labridae	Cirrhilabrus punctatus	E00553	5794	7	705	1257	0	0	0	0
Labridae	Clepticus parrae	E00015	14928	18	705	1239	984	0	762	513
Labridae	Coris batuensis	N18137	4801	6	705	0	974	0	0	0
Labridae	Coris caudimacula	E00861	11177	14	696	1257	0	825	762	720
Labridae	Coris formosa	E00912	8465	11	705	0	0	723	0	756
Labridae	Coris gaimard	E00091	11874	15	705	0	966	0	762	0
Labridae	Decodon puellaris	E00620	7367	9	705	1257	0	753	0	0
Labridae	Diproctacanthus xanthurus	G01278	8556	10	678	0	962	0	0	0
Labridae	Epibulus insidiator	E00879	16078	19	705	1257	960	0	762	0
Labridae	Gomphosus varius	E00085	11071	14	705	0	927	0	762	0
Labridae	Halichoeres bathyphilus bivittatus	E00637	13256	16	705	0	987	0	762	0
Labridae	Halichoeres biocellatus	E00727	5094	7	705	0	0	825	0	0
Labridae	Halichoeres iridis	E00928	6442	8	0	1257	0	0	762	720
Labridae	Halichoeres margaritaceus	N18205	5528	7	705	0	957	0	762	0
Labridae	Hologymnosus doliatus	E00567	10593	13	696	1257	0	681	0	711

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Labridae	Labrichthys unilineatus	G01344	10143	12	705	0	972	0	762	0
Labridae	Labroides dimidiatus	E00848	9046	11	0	1257	0	825	762	762
Labridae	Labropsis australis	G01345	9319	11	705	0	912	0	762	0
Labridae	Lachnolaimus maximus	E00014	12305	15	696	1245	933	0	762	0
Labridae	Macropharyngodon bipartitus	E00895	7503	10	690	0	0	765	762	0
Labridae	Novaculichthys taeniourus	E00926	12181	15	696	1257	0	783	0	747
Labridae	Oxycheilinus celebicus	G01412	8510	10	705	0	972	0	762	0
Labridae	Oxycheilinus digramma	E00873	10757	13	693	1245	0	0	762	0
Labridae	Oxycheilinus unifasciatus	E00721	7878	9	705	1257	0	0	0	0
Labridae	Oxyjulis californica	G01413	7537	9	705	0	984	0	0	0
Labridae	Pseudocheilinus evanidus	E00944	6483	9	654	0	0	0	0	0
Labridae	Pseudocheilinus hexataenia	E00945	7019	9	0	0	0	0	762	702
Labridae	Pteragogus enneacanthus	G01457	6723	8	705	0	954	0	762	0
Labridae	Stethojulis balteata	E00089	4889	6	0	0	0	0	0	0
Labridae	Stethojulis strigiventer	E00908	11343	15	705	1257	0	825	762	609
Labridae	Tautoga onitis	G01499	9257	11	705	0	975	0	762	0
Labridae	Tautogolabrus adspersus	G01500	10397	12	705	0	972	0	762	0
Labridae	Thalassoma amblycephalum	E00891	10041	13	705	1251	0	825	762	0
Labridae	Thalassoma lunare	E00902	11967	15	696	1251	0	825	762	0
Labridae	Thalassoma quinquevittatum	E00092	6872	9	0	1251	0	0	762	0
Labridae	Wetmorella nigropinnata	E00948	11203	14	705	1245	0	825	762	696
Labridae	Xyrichtys novacula martinicensis	E00016	18002	21	703	1257	966	0	762	0
Labrisomidae	Labrisomus bucciferus	E00301	5621	7	678	0	0	0	0	0
Labrisomidae	Labrisomus guppyi multiporosus	E00300	8447	10	699	0	978	0	762	0
Labrisomidae	Labrisomus nigricinctus	E00302	4582	6	696	0	0	0	0	0
Labrisomidae	Malacoctenus aurolineatus	E00299	2229	3	0	0	0	0	0	0
Labrisomidae	Malacoctenus triangulatus	E00321	3751	4	0	1182	0	0	0	0
Labrisomidae	Paraclinus marmoratus	E00309	4124	5	0	0	0	0	0	0
Labrisomidae	Starksia atlantica	E00304	5512	7	706	0	0	0	0	0
Labrisomidae	Starksia fasciata	E00303	7567	9	707	1257	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Labrisomidae	Starksia ocellata	E00318	4469	6	621	0	0	0	0	0
Lactariidae	Lactarius lactarius Fiji	M01673	3453	4	705	0	0	0	0	0
Lactariidae	Lactarius lactarius Qatar	M01593	4041	5	705	0	0	0	0	0
Lateolabracidae	Lateolabrax japonicus	E01130	12539	12	0	1281	984	0	0	0
Latridae	Latridopsis forsteri	M01594	4790	5	0	1251	0	0	0	0
Latridae	Latris lineata	M01595	4794	5	0	1251	0	0	0	0
Leiognathidae	Gazza minuta	G01298	8150	10	693	0	0	0	0	0
Leiognathidae	Leiognathus equulus	G01348	8522	11	693	0	0	0	0	0
Leptobramidae	Leptobrama muelleri	E01150	6470	8	669	1287	0	0	0	0
Lethrinidae	Gymnocranius grandoculis	E00952	7334	9	705	1260	0	0	0	0
Lethrinidae	Lethrinus atkinsoni	E00750	7416	10	681	0	0	0	762	759
Lethrinidae	Lethrinus erythropterus	N18731	7589	9	534	0	951	0	762	0
Lethrinidae	Lethrinus harak	E00905	18169	21	693	1281	950	813	762	759
Lethrinidae	Lethrinus obsoletus	E00910	14297	15	705	1257	0	813	762	723
Lethrinidae	Lethrinus olivaceus	E00751	11020	13	687	1260	0	765	762	0
Lethrinidae	Monotaxis grandoculis	G01379	11352	12	705	0	969	0	762	0
Liparidae	Careproctus melanurus	E00422	5235	7	0	0	0	0	0	0
Liparidae	Careproctus rastrinus	E00255	6920	8	705	0	0	0	0	0
Liparidae	Liparis gibbus	E00224	9360	11	705	0	0	0	744	0
Liparidae	Liparis pulchellus	E00225	5675	7	0	0	0	0	762	0
Liparidae	Paraliparis beani	E00458	3871	5	0	0	0	0	0	0
Liparidae	Paraliparis copei	E00453	6908	9	690	0	0	0	762	0
Liparidae	Paraliparis hystrix	E00454	8881	11	705	0	0	0	762	0
Liparidae	Rhinoliparis barbulifer	E00262	5284	7	0	0	0	0	762	0
Lobotidae	Lobotes pacificus surinamensis	G01359	9710	12	705	0	0	0	762	0
Lophiidae	Lophiodes reticulatus	E00625	8318	11	696	1260	0	0	0	0
Lophiidae	Lophius americanus	E00578	16809	19	705	1260	966	0	762	747
Lophiidae	Lophius gastrophysus	E01119	13495	17	705	1257	987	0	762	744
Lutjanidae	Aphareus furca	E00563	13687	16	705	1236	0	0	762	747
Lutjanidae	Aprion virescens	E00828	8178	10	651	1251	0	825	0	0

•

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Lutjanidae	Apsilus dentatus	E00770	8017	10	705	1257	0	0	762	0
Lutjanidae	Lutjanus biguttatus	E00569	10110	12	672	1257	0	0	762	0
Lutjanidae	Lutjanus campechanus	E00592	9830	12	0	1260	0	0	762	0
Lutjanidae	Lutjanus griseus	N20115	7237	9	690	0	0	0	762	0
Lutjanidae	Lutjanus mahogoni	G01362	10416	12	705	0	987	0	762	0
Lutjanidae	Macolor niger	E00939	9071	11	0	1236	0	813	0	765
Lutjanidae	Ocyurus chrysurus	E00283	13831	16	680	1233	951	0	762	0
Lutjanidae	Pristipomoides aquilonaris	E00594	10332	13	0	1233	0	0	0	684
Lutjanidae	Pristipomoides auricilla	E00746	6210	8	0	1257	0	717	762	0
Lutjanidae	Rhomboplites aurorubens	E00593	13759	16	696	1236	0	0	0	0
Luvaridae	Luvarus imperialis	E00509	15760	19	636	0	885	825	693	726
Malacanthidae	Caulolatilus intermedius	E00595	8981	11	705	1260	0	825	0	729
Malacanthidae	Caulolatilus princeps	E00231	11865	15	654	0	894	0	762	0
Malacanthidae	Malacanthus plumieri	E00774	8060	10	705	0	0	0	762	0
Mastacembelidae	Macrognathus siamensis	G01367	8287	10	0	0	947	0	756	0
Mastacembelidae	Mastacembelus brachyrhinus	N01727	6948	8	0	0	963	0	762	0
Mastacembelidae	Mastacembelus cunningtoni	N20638	7046	8	0	0	969	0	762	0
Mastacembelidae	Mastacembelus erythrotaenia	E01157	5328	7	0	0	0	0	0	0
Mastacembelidae	Mastacembelus niger	N20658	7640	9	690	0	966	0	0	0
Melanocetidae	Melanocetus johnsonii	E00657	12119	14	669	0	0	0	762	732
Melanocetidae	Melanocetus murrayi	E00477	8829	10	0	0	0	0	0	645
Melanotaeniidae	Melanotaenia sp	N35702	6890	8	660	0	987	0	762	0
Melanotaeniidae	Melanotaenia splendida	E00179	10979	13	0	1257	987	807	0	741
Melanotaeniidae	Melanotaenia trifasciata	E00178	7620	9	705	0	0	0	0	0
Melanotaeniidae	Rhadinocentrus ornatus	E00183	8085	9	0	1260	0	0	0	0
Menidae	Mene maculata	E01131	14538	17	705	1281	906	0	708	0
Microdesmidae	Cerdale floridana	E00113	5251	7	0	0	0	0	0	0
Microdesmidae	Gunnellichthys monostigma	E00545	4244	6	0	0	0	0	0	0
Microdesmidae	Microdesmus bahianus	E00112	6294	8	0	0	0	0	0	0
Microdesmidae	Microdesmus longipinnis	E00388	7384	9	0	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Microdesmidae	Nemateleotris magnifica	N20888	3449	4	0	0	882	0	0	0
Microdesmidae	Ptereleotris evides	E00565	10142	12	705	0	954	0	750	0
Microdesmidae	Ptereleotris microlepis	E00554	6773	9	0	0	0	0	0	0
Molidae	Masturus lanceolatus	E00651	10906	12	669	0	0	0	696	0
Molidae	Mola mola	E00683	12859	14	705	0	957	0	753	0
Molidae	Ranzania laevis	G01463	10882	12	699	0	0	0	0	0
Monacanthidae	Acreichthys tomentosus	N21168	5898	7	705	0	0	0	0	0
Monacanthidae	Aluterus scriptus	E00316	8934	9	672	0	0	0	0	0
Monacanthidae	Amanses scopas	E00536	7667	7	636	0	0	0	0	0
Monacanthidae	Cantherhines pardalis pullus	E00887	13701	14	675	1257	939	804	0	0
Monacanthidae	Oxymonacanthus longirostris	E00914	7920	8	693	0	0	0	0	747
Monacanthidae	Paraluteres prionurus	E00913	10156	10	690	1215	0	0	762	0
Monacanthidae	Pervagor janthinosoma	N21229	7625	9	705	0	957	0	741	0
Monacanthidae	Pervagor nigrolineatus	N21232	5912	7	705	0	0	0	0	0
Monacanthidae	Stephanolepis hispidus	E00646	10631	13	705	0	0	0	0	0
Monodactylidae	Monodactylus argenteus	E00827	11839	12	0	1308	0	0	762	0
Monodactylidae	Monodactylus sebae	N21267	8411	10	705	0	969	0	759	0
Moronidae	Dicentrarchus labrax	E01132	13167	14	705	1287	975	0	0	0
Moronidae	Morone americana	E00017	4648	6	0	0	0	0	747	0
Moronidae	Morone chrysops	E00992	15777	17	705	1269	987	825	762	0
Moronidae	Morone mississippiensis	E00087	11851	14	705	0	0	0	762	0
Moronidae	Morone saxatilis	G01380	9541	12	705	0	903	0	762	0
Mugilidae	Chelon macrolepis	E00845	8599	11	705	0	0	0	762	0
Mugilidae	Crenimugil crenilabis	E00846	12826	14	705	1257	0	825	762	765
Mugilidae	Liza richardsonii	E00808	12339	15	705	1257	0	825	762	756
Mugilidae	Moolgarda engeli	E00739	6506	8	696	1254	0	810	0	0
Mugilidae	Mugil cephalus	E00049	13859	15	705	0	888	0	762	0
Mugilidae	Mugil curema	E00031	15184	16	705	1188	987	0	762	0
Mugilidae	Mugil trichodon	E00765	10230	11	684	1257	0	819	0	0
Mugilidae	Myxus capensis	E00809	9832	10	0	1257	0	0	762	0

Table 4Ac. Continue	d									
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Mugilidae	Neomyxus leuciscus	E00742	10501	12	678	1257	0	660	0	0
Mugilidae	Valamugil buchanani	E00847	12275	15	703	1257	0	822	762	0
Mullidae	Mulloidichthys flavolineatus	E00844	9135	11	705	1257	0	0	0	0
Mullidae	Mullus auratus	E00634	10617	12	693	1254	0	825	0	0
Mullidae	Parupeneus barberinus	E00899	8131	10	0	0	0	819	0	0
Mullidae	Parupeneus ciliatus	E00840	5965	8	680	0	0	819	0	684
Mullidae	Parupeneus trifasciatus	N21710	5845	7	0	0	0	0	0	0
Mullidae	Pseudupeneus maculatus	E00773	9043	11	0	0	0	825	0	0
Mullidae	Upeneus moluccensis	E00825	7964	10	705	0	0	0	0	651
Mullidae	Upeneus parvus	N21732	3287	4	0	0	0	0	0	0
Nandidae	Nandus andrewi	N22312	8474	10	705	0	957	0	759	0
Nandidae	Nandus nandus	G01388	11524	13	705	1284	981	0	762	0
Nandidae	Nandus nebulosus	N22314	7688	9	705	0	939	0	762	0
Nematistiidae	Nematistius pectoralis	E01146	12623	14	705	0	900	0	762	0
Nemipteridae	Pentapodus caninus	G01427	8879	11	705	0	0	0	762	0
Nemipteridae	Scolopsis bilineata	E00028	14791	16	669	1098	906	0	762	0
Nemipteridae	Scolopsis frenata	E00911	6514	8	0	0	0	825	0	0
Nemipteridae	Scolopsis margaritifera	G01478	7404	9	669	0	0	0	762	0
Niphonidae	Niphon spinosus	G01398	4377	5	690	0	0	0	0	0
Nomeidae	Cubiceps baxteri	G01271	9684	12	705	0	912	0	762	0
Nomeidae	Cubiceps gracilis	E00672	8634	11	696	1254	0	0	0	0
Nomeidae	Cubiceps pauciradiatus	E00667	9277	9	705	1257	0	0	0	0
Nomeidae	Psenes cyanophrys	E00666	6230	6	0	0	0	0	0	0
Nomeidae	Psenes maculatus	N23089	7094	9	0	0	906	0	702	0
Nototheniidae	Aethotaxis mitopteryx	G01528	7979	9	705	0	0	0	759	0
Nototheniidae	Dissostichus eleginoides	G01279	12707	14	705	0	987	0	759	0
Nototheniidae	Gobionotothen gibberifrons	G01529	8961	10	681	0	0	0	762	0
Nototheniidae	Notothenia coriiceps	G01526	9628	10	705	0	0	0	759	0
Nototheniidae	Pagothenia borchgrevinki	G01527	9352	10	696	0	0	0	0	0
Nototheniidae	Patagonotothen tessellata	G01530	10915	12	705	0	0	0	759	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Odacidae	Haletta semifasciata	G01312	9038	11	699	0	969	0	762	0
Odontobutidae	Odontobutis potamophila	E01137	12389	14	693	1287	978	0	0	0
Odontobutidae	Perccottus glenii	G01429	9285	11	705	0	933	0	0	0
Ogcocephalidae	Dibranchus tremendus	E00975	8668	11	0	1236	0	813	762	717
Ogcocephalidae	Halieutichthys aculeatus	E01122	5969	8	696	0	0	825	0	0
Ogcocephalidae	Ogcocephalus parvus nasutus	E00610	11181	14	705	1260	0	822	762	696
Ogcocephalidae	Ogcocephalus radiatus	E00641	3592	4	0	1260	0	0	0	0
Oneirodidae	Bertella idiomorpha	E00386	7368	8	0	0	0	0	0	732
Oneirodidae	Dolopichthys sp	E00484	3002	4	0	0	0	0	0	0
Oneirodidae	Oneirodes bulbosus	E00176	5086	7	0	0	0	0	0	0
Oneirodidae	Oneirodes macrosteus	E00655	7815	10	0	0	0	0	762	759
Ophidiidae	Bassogigas gillii	E00481	5439	7	669	1257	0	0	0	0
Ophidiidae	Brotula barbata	E00629	8900	12	690	0	0	0	762	765
Ophidiidae	Brotula multibarbata	E00883	12654	16	705	0	963	825	759	750
Ophidiidae	Brotulotaenia crassa	E00659	7913	10	0	1245	0	825	762	744
Ophidiidae	Brotulotaenia nigra	E00817	8794	11	0	1251	0	825	762	765
Ophidiidae	Chilara taylori	E00260	6335	8	0	0	0	0	0	0
Ophidiidae	Dicrolene introniger	E00480	8819	11	678	1236	0	0	0	0
Ophidiidae	Genypterus blacodes	E00241	3596	4	0	0	0	0	0	0
Ophidiidae	Lamprogrammus niger	E00275	11903	13	693	1236	975	0	0	0
Ophidiidae	Lepophidium brevibarbe	E00758	5469	7	0	1257	0	825	0	0
Ophidiidae	Lepophidium jeannae	E00621	4709	6	0	1257	0	0	0	0
Ophidiidae	Lepophidium profundorum	E00248	3341	4	0	1257	0	0	0	0
Ophidiidae	Neobythites gilli	E00612	7830	10	705	1257	0	825	0	765
Ophidiidae	Ophidion holbrookii	E01033	7171	9	0	1257	0	825	762	0
Ophidiidae	Ophidion josephi	E00648	6546	8	0	1233	0	0	0	0
Ophidiidae	Ophidion robinsi	E01007	6730	8	0	1215	0	0	762	0
Ophidiidae	Petrotyx sanguineus	E00206	4716	6	0	0	0	0	0	0
Opistognathidae	Lonchopisthus micrognathus	E00603	6548	8	0	1257	0	780	0	0
Opistognathidae	Opistognathus aurifrons	E00216	9008	11	699	0	981	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Opistognathidae	Opistognathus maxillosus	E00207	6793	8	693	0	0	0	0	0
Oplegnathidae	Oplegnathus punctatus	G01405	12420	13	696	0	987	0	750	0
Osphronemidae	Betta splendens	G01226	9892	10	0	0	0	0	762	0
Osphronemidae	Trichopodus pectoralis	N24415	4860	7	0	0	0	0	692	0
Ostraciidae	Acanthostracion quadricornis	E00760	5464	6	0	0	0	0	0	0
Ostraciidae	Ostracion cubicus	E00588	12421	15	705	0	0	0	756	0
Ostraciidae	Rhinesomus triqueter	G01469	10814	13	669	0	954	0	738	0
Ostracoberycidae	Ostracoberyx dorygenys	N24448	6883	9	705	0	0	0	699	0
Parabembridae	Parabembras curtus	N24483	6893	9	690	0	0	0	711	0
Paralichthyidae	Ancylopsetta ommata	E00001	8842	10	705	1305	0	0	0	0
Paralichthyidae	Citharichthys arctifrons	E00043	6688	8	693	0	0	0	0	0
Paralichthyidae	Citharichthys sordidus	E00446	12907	14	693	1284	0	756	762	745
Paralichthyidae	Cyclopsetta chittendeni	E00597	10244	12	693	1281	0	807	0	747
Paralichthyidae	Etropus crossotus	E00647	8021	9	693	1191	0	780	0	0
Paralichthyidae	Etropus microstomus	E00047	5197	5	0	0	0	0	0	0
Paralichthyidae	Gastropsetta frontalis	E00640	2345	3	0	0	0	0	0	0
Paralichthyidae	Paralichthys albigutta	E01171	8241	9	705	1308	0	0	0	0
Paralichthyidae	Paralichthys californicus	E00020	8905	10	0	1260	0	0	0	0
Paralichthyidae	Paralichthys dentatus	N24591	7812	9	705	0	975	0	0	0
Paralichthyidae	Pseudorhombus pentophthalmus	E00077	10302	11	0	0	0	0	0	0
Paralichthyidae	Syacium micrurum	E00633	9035	11	693	1281	0	0	0	654
Paralichthyidae	Xystreurys liolepis	E00021	9760	10	693	1308	0	0	0	0
Pegasidae	Eurypegasus draconis	N24699	2094	3	0	0	0	0	0	0
Pempheridae	Parapriacanthus ransonneti	E00923	11086	13	705	1245	0	747	762	0
Pempheridae	Pempheris oualensis	E00718	9245	11	705	1185	0	0	762	0
Pempheridae	Pempheris schomburgkii	E00213	10586	12	702	0	0	0	0	0
Pempheridae	Pempheris schwenkii	N01628	5322	7	705	0	0	0	699	0
Pempheridae	Pempheris vanicolensis	E00886	8350	10	0	1260	0	825	0	0
Pentacerotidae	Histiopterus typus	N24730	6890	9	705	0	0	0	702	0
Pentacerotidae	Paristiopterus labiosus	M01629	3261	4	705	0	0	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Pentacerotidae	Pentaceros japonicus	N24735	7793	10	705	0	906	0	705	0
Pentacerotidae	Pentaceros pectoralis	N01736	5434	7	666	0	879	0	762	0
Pentacerotidae	Pentaceros wheeleri	N01737	7434	9	706	0	882	0	744	0
Pentacerotidae	Zanclistius elevatus	M01631	2901	3	0	0	0	0	0	0
Percichthyidae	Gadopsis marmoratus	E01144	13223	14	705	1287	975	0	762	0
Percichthyidae	Maccullochella peelii	G01365	11015	13	705	1287	954	0	762	0
Percichthyidae	Macquaria ambigua	G01366	10488	13	696	1287	864	0	702	0
Percichthyidae	Macquaria colonorum	G01431	10574	13	696	1287	879	0	696	0
Percichthyidae	Macquaria novemaculeata	G01432	10525	13	696	1287	864	0	702	0
Percichthyidae	Nannoperca australis	G01389	11969	14	696	1287	627	0	669	0
Percichthyidae	Percichthys trucha	G01430	9417	9	0	1287	906	0	0	0
Percidae	Ammocrypta beanii	E00187	8350	10	705	0	0	0	0	0
Percidae	Ammocrypta meridiana	E00148	8201	10	705	0	0	0	0	0
Percidae	Ammocrypta pellucida	E00149	9339	11	705	0	0	0	0	0
Percidae	Crystallaria asprella	E00153	8415	10	0	0	0	0	0	0
Percidae	Etheostoma atripinne	G01290	7713	9	705	0	975	0	759	0
Percidae	Etheostoma juliae	E00168	11455	14	0	0	0	825	762	765
Percidae	Etheostoma simoterum	E00152	12189	15	705	0	978	0	758	0
Percidae	Etheostoma vitreum	E00147	11025	13	705	0	0	0	762	759
Percidae	Etheostoma zonale	E01111	13171	16	705	0	0	822	762	765
Percidae	Gymnocephalus cernuus	E00140	7525	10	0	0	0	0	762	0
Percidae	Gymnocephalus schraetser	E00141	6323	8	0	0	0	0	750	0
Percidae	Perca flavescens	E00391	14692	16	0	0	903	0	759	759
Percidae	Perca fluviatilis	G01428	10413	11	0	0	0	0	744	0
Percidae	Percina caprodes	E01054	15273	18	705	0	975	0	744	750
Percidae	Percina nigrofasciata	E00154	7519	9	0	0	0	0	0	0
Percidae	Percina phoxocephala	E00150	9105	11	705	0	0	0	0	0
Percidae	Romanichthys valsanicola	E00143	9564	12	690	0	0	819	762	738
Percidae	Sander vitreus	E01109	10398	10	696	1236	0	0	0	0
O	Zingal strahar	E00144	5447	7	0	0	0	 	762	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Percidae	Zingel zingel	E00142	6114	8	0	0	0	0	0	0
Perciliidae	Percilia irwini	N24981	6918	9	696	0	0	0	687	0
Percophidae	Acanthaphritis unoorum	N24985	5579	7	705	0	906	0	0	0
Peristediidae	Peristedion ecuadorense	E00456	6094	7	0	1245	0	0	0	0
Peristediidae	Peristedion gracile	E01029	2905	4	0	0	0	0	762	0
Peristediidae	Peristedion truncatum	E00450	3441	5	0	0	0	0	0	0
Phallostethidae	Phenacostethus smithi	E00398	7945	10	678	0	873	0	693	0
Pholidae	Pholis crassispina	G01437	12482	14	693	0	942	0	762	0
Pholidae	Pholis ornata	N01732	8528	10	690	0	954	0	756	0
Pholidichthyidae	Pholidichthys leucotaenia	E00251	11101	12	693	1287	987	0	0	0
Pinguipedidae	Parapercis clathrata	E00707	10851	13	693	1234	0	0	762	0
Pinguipedidae	Parapercis hexophtalma	E01083	11528	14	696	1260	0	0	0	753
Pinguipedidae	Parapercis punctulata	E01091	7008	9	0	0	0	0	0	741
Platycephalidae	Platycephalus indicus	N25405	6719	9	690	0	0	0	714	0
Platycephalidae	Rogadius asper	N25418	6352	9	693	0	0	0	711	0
Platycephalidae	Sunagocia arenicola	E00708	5403	7	0	0	0	0	0	0
Platycephalidae	Thysanophrys chiltonae	E00864	8747	10	0	0	0	813	0	0
Plesiopidae	Plesiops coeruleolineatus	E00855	15452	18	705	1308	906	0	762	765
Plesiopidae	Plesiops melas	G01442	8238	10	699	0	912	0	762	0
Pleuronectidae	Atheresthes evermanni	E00055	8437	8	0	1308	0	0	0	0
Pleuronectidae	Embassichthys bathybius	E00064	11340	12	0	1281	0	0	0	0
Pleuronectidae	Eopsetta jordani	E00444	14474	17	705	840	0	717	762	753
Pleuronectidae	Glyptocephalus zachirus	E00416	10353	12	0	0	0	753	762	744
Pleuronectidae	Hippoglossoides elassodon	E00424	12527	13	693	1278	0	0	762	0
Pleuronectidae	Hippoglossus hippoglossus	E00689	10279	12	693	867	0	807	0	0
Pleuronectidae	Hypsopsetta guttulata	E00022	9133	9	0	1308	0	0	0	0
Pleuronectidae	Isopsetta isolepis	E00018	6603	8	0	1308	0	0	0	0
Pleuronectidae	Lepidopsetta bilineata	E00438	16335	19	696	0	981	0	762	765
Pleuronectidae	Limanda limanda	E00690	7013	8	0	834	0	0	0	0
Pleuronectidae	Lyopsetta exilis	E01173	6171	7	0	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Pleuronectidae	Microstomus pacificus	E00433	10016	12	681	1011	0	0	0	0
Pleuronectidae	Parophrys vetulus	E00445	12033	14	693	1245	0	0	762	744
Pleuronectidae	Platichthys stellatus	E00026	7842	9	0	0	0	0	0	0
Pleuronectidae	Pleuronectes platessa	E00053	14871	17	705	861	975	0	762	0
Pleuronectidae	Psettichthys melanostictus	E00025	9364	11	0	879	0	0	0	0
Pleuronectidae	Pseudopleuronectes americanus	E00035	15563	18	705	1215	921	0	741	0
Poeciliidae	Belonesox belizanus	E01052	10182	11	0	1260	0	825	0	0
Poeciliidae	Gambusia affinis	G01296	11403	12	705	0	987	0	762	0
Poeciliidae	Heterandria formosa	E00185	10113	11	0	1257	0	0	762	0
Poeciliidae	Poecilia latipinna reticulata	E01065	12149	14	705	1248	0	0	0	720
Poeciliidae	Poeciliopsis elongata	N01734	6863	8	705	0	954	0	0	0
Poecilopsettidae	Poecilopsetta beanii	E00448	5472	7	0	1233	0	0	762	0
Poecilopsettidae	Poecilopsetta plinthus	E00073	9752	10	0	1305	0	0	0	0
Polycentridae	Monocirrhus polyacanthus	G01377	8420	10	0	0	957	0	762	0
Polycentridae	Polycentropsis abbreviata	N26006	8369	10	705	0	951	0	762	0
Polycentridae	Polycentrus schomburgkii	G01444	8382	10	705	0	951	0	762	0
Polynemidae	Eleutheronema rhadinum	N26015	7791	10	708	0	906	0	702	0
Polynemidae	Eleutheronema tetradactylum	E01154	7961	9	705	1287	0	0	0	0
Polynemidae	Leptomelanosoma indicum	E00842	11242	14	0	1287	0	825	762	750
Polynemidae	Polydactylus octonemus	E00606	9992	13	561	1284	0	696	0	714
Polynemidae	Polydactylus sextarius	N26043	5532	7	706	0	0	0	702	0
Polynemidae	Polydactylus virginicus	E00217	11602	13	705	1284	0	0	762	696
Polyprionidae	Polyprion americanus	E00242	7677	9	0	0	0	0	762	0
Polyprionidae	Polyprion oxygeneios	M01632	4716	5	705	0	0	0	0	0
Polyprionidae	Stereolepis gigas	E00227	14211	17	705	1260	912	0	762	0
Pomacanthidae	Apolemichthys trimaculatus	E00839	9202	12	654	1257	0	825	759	0
Pomacanthidae	Centropyge bicolor	E00550	11381	15	705	1257	0	0	762	750
Pomacanthidae	Centropyge loricula	E00284	9087	10	705	1236	0	0	0	0
Pomacanthidae	Centropyge nox	E00542	8384	11	696	1257	0	786	0	729
Pomacanthidae	Chaetodontoplus melanosoma	G01244	8178	10	705	0	954	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Pomacanthidae	Holacanthus ciliaris	E00209	6815	8	0	0	0	0	0	0
Pomacanthidae	Holacanthus passer	E00282	12494	15	657	0	978	0	0	0
Pomacanthidae	Holacanthus tricolor	E00198	7349	9	705	1233	0	0	0	0
Pomacanthidae	Pomacanthus arcuatus	E00754	8027	10	0	1203	0	0	0	0
Pomacanthidae	Pomacanthus imperator	E00710	9192	12	693	1281	0	0	0	0
Pomacanthidae	Pomacanthus semicirculatus	E00849	10414	14	705	1236	0	0	762	759
Pomacanthidae	Pomacanthus zonipectus	G01448	9113	11	705	0	975	0	0	0
Pomacanthidae	Pygoplites diacanthus	E00534	10507	13	696	1257	0	0	0	612
Pomacentridae	Abudefduf saxatilis	E00820	14973	18	687	1260	0	825	762	765
Pomacentridae	Abudefduf sexfasciatus	E00881	12145	15	0	0	0	825	762	711
Pomacentridae	Abudefduf vaigiensis	E00890	12132	13	690	1215	0	825	0	765
Pomacentridae	Acanthochromis polyacanthus	E00466	8743	10	0	1260	0	822	0	0
Pomacentridae	Amblyglyphidodon leucogaster	E00529	3808	4	0	0	0	0	0	0
Pomacentridae	Amphiprion clarkii	E00196	4604	6	705	0	0	0	0	0
Pomacentridae	Amphiprion ocellaris	E00193	7717	7	0	0	0	0	762	0
Pomacentridae	Azurina hirundo	E00580	9629	12	0	1257	0	0	762	765
Pomacentridae	Chromis atripectoralis	E00238	9353	11	705	1260	0	0	0	0
Pomacentridae	Chromis cyanea	E00201	13033	15	705	1260	909	0	762	0
Pomacentridae	Chromis dimidiata	E00851	9724	12	705	1236	0	0	762	0
Pomacentridae	Chrysiptera taupou	E00564	9950	13	0	1260	0	825	720	639
Pomacentridae	Dascyllus aruanus	E00700	11886	14	698	1260	0	0	0	741
Pomacentridae	Dascyllus carneus	E00862	11899	14	705	1260	0	810	0	765
Pomacentridae	Dascyllus reticulatus	E00724	8549	10	700	1260	0	0	726	0
Pomacentridae	Dascyllus trimaculatus	E00865	6439	7	0	0	0	0	0	0
Pomacentridae	Dischistodus perspicillatus	E00464	8931	11	0	1260	0	783	762	645
Pomacentridae	Hypsypops rubicundus	E00459	7285	10	0	0	0	0	762	0
Pomacentridae	Lepidozygus tapeinosoma	E00929	7795	10	0	1245	0	819	762	0
Pomacentridae	Microspathodon bairdii	G01375	8331	10	696	0	909	0	762	0
Pomacentridae	Microspathodon chrysurus	E00772	10751	13	696	1260	0	825	0	750
Pomacentridae	Neoglyphidodon melas	E00465	9828	12	0	1260	0	0	735	642
		· · · · · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·					
Table 4AC. Continueu										
----------------------	----------------------------------	---------	-------------	---------	--------	--------	-------	-------	------	-------
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Pomacentridae	Neoglyphidodon polyacanthus	E00285	6455	8	0	1260	0	0	0	0
Pomacentridae	Neopomacentrus cyanomos	E00933	8888	11	696	1260	0	753	0	738
Pomacentridae	Parma microlepis	E00286	5332	7	705	0	0	0	0	0
Pomacentridae	Plectroglyphidodon dickii	E00572	13722	16	693	1260	0	822	761	750
Pomacentridae	Plectroglyphidodon johnstonianus	E00722	7987	10	0	1260	0	0	762	729
Pomacentridae	Pomacentrus brachialis	E00239	9865	12	693	1284	0	804	0	645
Pomacentridae	Pomacentrus pavo	E00729	12503	15	696	1257	0	825	0	708
Pomacentridae	Pomacentrus spilotoceps	E00557	6421	9	0	0	0	0	762	636
Pomacentridae	Pomachromis richardsoni	E00559	8319	11	0	0	0	825	762	726
Pomacentridae	Stegastes albifasciatus	E00713	6612	9	0	0	0	735	762	0
Pomacentridae	Stegastes diencaeus	E00219	6060	8	0	0	0	0	762	0
Pomacentridae	Stegastes fuscus	E00203	12679	15	686	0	960	0	744	0
Pomacentridae	Stegastes partítus	E00204	4367	6	705	0	0	0	0	0
Pomatomidae	Pomatomus saltatrix	E00516	16569	18	705	1284	951	0	762	0
Priacanthidae	Heteropriacanthus cruentatus	E00570	14367	17	702	1257	957	0	762	0
Priacanthidae	Priacanthus arenatus	E00618	14657	18	705	1224	885	0	693	765
Priacanthidae	Pristigenys alta	E00252	12492	14	534	1095	861	0	699	0
Pristolepididae	Pristolepis fasciata	N26580	7608	9	658	0	963	0	762	0
Pristolepididae	Pristolepis sp	N36627	8543	10	690	0	957	0	762	0
Psettodidae	Psettodes belcheri	E01180	6046	7	705	1302	0	0	0	0
Psettodidae	Psettodes erumei	E01165	12034	14	705	1308	906	0	0	0
Pseudaphritidae	Pseudaphritis urvillii	G01453	8567	9	705	0	0	0	759	0
Pseudochromidae	Congrogadus subducens	G01262	8360	10	699	0	987	0	762	0
Pseudochromidae	Halidesmus scapularis	E00793	10231	13	705	1284	0	0	756	0
Pseudochromidae	Labracinus cyclophthalmus	G01343	11328	12	705	0	963	0	762	0
Pseudochromidae	Natalichthys sam	E00589	7891	10	0	1233	0	0	762	0
Pseudochromidae	Ogilbyina novaehollandiae	G01403	8345	10	699	0	978	0	762	0
Pseudochromidae	Pholidochromis cerasina	G01436	8319	10	699	0	987	0	678	0
Pseudochromidae	Pseudochromis cyanotaenia	E00706	7668	10	705	1260	0	0	762	738
Pseudochromidae	Pseudochromis fridmani	N26709	8561	10	705	0	975	0	762	0

.

Table AAc Continued

Table 4Ac. Continued	1									
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Pseudochromidae	Pseudochromis jamesi	E00535	6957	9	705	1260	0	0	762	726
Pseudochromidae	Pseudoplesiops revellei	E00745	4311	6	0	0	0	0	762	0
Pseudomugilidae	Pseudomugil gertrudae	E00182	14736	18	705	1248	873	798	762	747
Pseudomugilidae	Pseudomugil signifer	E00184	11998	15	0	1254	870	0	702	0
Psychrolutidae	Cottunculus thomsonii	E00963	2374	3	0	0	0	0	0	0
Psychrolutidae	Dasycottus setiger	E00288	5136	6	0	1236	0	744	0	0
Psychrolutidae	Malacocottus zonurus	E00253	8212	10	0	1236	0	0	0	0
Psychrolutidae	Psychrolutes phrictus	E00276	5502	7	0	1233	0	0	0	0
Rachycentridae	Rachycentron canadum	E00468	15775	17	693	0	984	0	762	0
Rhombosoleidae	Oncopterus darwinii	E01184	6659	7	0	1263	0	0	0	0
Rhombosoleidae	Rhombosolea leporina	E01166	2980	3	0	0	0	0	0	0
Rhombosoleidae	Rhombosolea plebeia	E01167	5378	6	0	0	0	0	0	0
Rhombosoleidae	Rhombosolea tapirina	E01168	3805	4	0	0	0	0	0	0
Samaridae	Plagiopsetta glossa	E00074	7559	8	0	0	0	0	0	0
Samaridae	Samariscus japonicus	E00072	7912	8	0	0	0	0	0	0
Samaridae	Samariscus latus	N27771	2733	3	0	0	0	0	0	0
Samaridae	Samariscus xenicus	E00078	7553	8	0	0	0	0	0	0
Scaridae	Calotomus carolinus	N27783	7195	9	627	0	918	0	0	0
Scaridae	Cetoscarus bicolor	E00566	14113	17	695	1251	972	0	762	723
Scaridae	Chlorurus gibbus	E00561	6813	9	0	0	0	783	0	0
Scaridae	Chlorurus sordidus	E00837	14642	16	696	1251	974	825	762	747
Scaridae	Cryptotomus roseus	N27805	7128	9	678	0	909	0	0	0
Scaridae	Hipposcarus longiceps	E00737	4541	6	0	0	0	0	0	720
Scaridae	Leptoscarus vaigiensis	E00877	8427	11	0	0	0	825	762	765
Scaridae	Scarus ghobban	E00878	9678	11	696	0	0	825	0	0
Scaridae	Scarus globiceps	N27829	4729	6	552	0	882	0	0	0
Scaridae	Scarus íseri	E00013	7345	9	0	1251	0	0	762	0
Scaridae	Scarus niger	E00875	11274	14	706	0	873	738	744	714
Scaridae	Scarus quoyi	E00872	7432	10	705	0	0	741	762	624
Scaridae	Scarus rubroviolaceus	E00874	12027	13	705	1251	0	825	762	765

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Scaridae	Sparisoma aurofrenatum	E00008	5465	7	0	0	0	0	0	0
Scaridae	Sparisoma chrysopterum	E00070	2776	4	0	0	0	0	0	0
Scaridae	Sparisoma viride	E00004	6443	9	705	0	0	0	0	0
Scatophagidae	Scatophagus argus	E00051	13219	16	654	0	<u>9</u> 69	0	762	0
Scatophagidae	Selenotoca multifasciata	G01483	9576	12	705	0	879	0	693	0
Sciaenidae	Aplodinotus grunniens	E01108	17827	19	705	1236	954	732	756	0
Sciaenidae	Atractoscion nobilis	E00125	9878	13	705	0	0	0	0	0
Sciaenidae	Bairdiella chrysoura	E00165	7670	10	0	0	0	0	762	0
Sciaenidae	Cheilotrema saturnum	E00118	6644	9	0	0	0	0	0	0
Sciaenidae	Corvula sanctaeluciae	E01047	5698	7	0	1257	0	0	0	0
Sciaenidae	Cynoscion arenarius	E00511	11444	13	696	1257	0	0	762	0
Sciaenidae	Cynoscion regalis	E00164	14880	18	705	0	942	0	762	0
Sciaenidae	Genyonemus lineatus	E00138	9138	12	705	1260	0	0	0	0
Sciaenidae	Larimus breviceps	E01048	4776	7	0	0	0	0	0	0
Sciaenidae	Leiostomus xanthurus	G01349	9972	12	705	0	926	0	762	0
Sciaenidae	Menticirrhus saxatilis	E00166	7177	9	705	1257	0	0	0	0
Sciaenidae	Menticirrhus undulatus littoralis	E00127	15027	19	705	0	963	813	762	690
Sciaenidae	Micropogonias undulatus	N01637	5789	8	0	0	879	0	693	0
Sciaenidae	Odontoscion dentex	E01049	5655	7	0	1257	0	0	0	0
Sciaenidae	Pareques acuminatus	E01050	3516	4	0	1257	0	0	0	0
Sciaenidae	Pareques umbrosus	E00639	6228	8	705	1257	0	0	0	0
Sciaenidae	Pogonias cromis	E00699	8505	11	705	1257	0	0	762	0
Sciaenidae	Sciaenops ocellatus	E01055	18596	20	705	1278	903	816	762	0
Sciaenidae	Seriphus politus	E00123	7497	10	705	0	0	0	762	0
Sciaenidae	Stellifer lanceolatus	E00608	9278	12	705	1257	0	0	762	0
Sciaenidae	Umbrina coroides	E00628	8595	11	0	1257	0	0	0	744
Scomberesocidae	Cololabis saira	E00192	10242	11	705	1236	0	0	0	0
Scomberesocidae	Scomberesox saurus	E00404	10373	13	705	0	987	0	0	0
Scombridae	Acanthocybium solandri	E00927	14337	16	705	1236	0	0	762	675
Scombridae	Auxis rochei	E00673	14617	18	705	1233	879	0	762	756

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Scombridae	Euthynnus affinis	E00830	9732	12	0	1260	0	813	762	765
Scombridae	Euthynnus alletteratus	E00696	7879	11	0	0	0	723	762	738
Scombridae	Gymnosarda unicolor	E00832	9359	11	0	1233	0	810	762	0
Scombridae	Katsuwonus pelamis	E00747	11259	13	684	1233	0	0	762	0
Scombridae	Sarda sarda	E00243	16203	19	705	1260	957	0	756	642
Scombridae	Scomber japonicus	E00247	10495	12	705	1257	0	0	762	0
Scombridae	Scomber scombrus	E00626	19143	20	705	1308	954	0	762	0
Scombridae	Scomberomorus maculatus sp	E00631	16041	19	705	1260	966	774	762	723
Scombridae	Scomberomorus regalis commerson	E00694	9863	12	0	0	0	759	747	720
Scombridae	Thunnus albacares	E00831	18226	21	705	1233	885	786	762	540
Scombrolabracidae	Scombrolabrax heterolepis	E00976	11570	14	657	1308	0	0	762	762
Scophthalmidae	Lepidorhombus boscii	E00462	9162	10	693	1308	0	0	0	699
Scophthalmidae	Scophthalmus aquosus	E00039	10410	12	0	1281	960	0	0	0
Scophthalmidae	Scophthalmus maximus	E01161	6280	5	0	1281	0	0	0	0
Scorpaenidae	Caracanthus maculatus	E00716	8029	10	687	1251	0	825	0	0
Scorpaenidae	Caracanthus unipinna	E00558	6573	8	705	1257	0	0	0	0
Scorpaenidae	Dendrochirus zebra	E00897	7402	10	0	0	0	0	762	0
Scorpaenidae	Iracundus signifer	E00583	7125	9	0	1257	0	825	0	747
Scorpaenidae	Neomerinthe hemingwayi	E00619	10221	12	0	1257	0	813	0	0
Scorpaenidae	Pontinus longispinis	E01010	7126	10	0	0	0	0	762	0
Scorpaenidae	Pontinus rathbuni	E00463	6391	8	0	0	0	0	0	0
Scorpaenidae	Pterois antennata	E00705	8496	11	0	0	0	0	0	0
Scorpaenidae	Pterois miles	E00882	7015	9	0	0	0	0	0	0
Scorpaenidae	Pterois radiata	E00850	8182	10	0	1200	0	0	0	0
Scorpaenidae	Scorpaena agassizii	E01038	2193	3	0	0	0	0	0	0
Scorpaenidae	Scorpaena brasiliensis	E00759	4986	7	0	0	0	0	0	0
Scorpaenidae	Scorpaena dispar	E00512	3690	5	0	0	0	0	0	0
Scorpaenidae	Scorpaena guttata	E00291	8547	10	0	1260	0	0	0	0
Scorpaenidae	Scorpaenodes albaiensis	E00532	4039	5	0	0	0	0	0	0
Scorpaenidae	Scorpaenodes guamensis	E00870	6637	9	0	0	0	0	0	696

Table 4Ac. Continued

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Scorpaenidae	Scorpaenopsis longispina	E00903	7186	9	0	1257	0	0	762	699
Scorpaenidae	Scorpaenopsis oxycephala	E00581	5118	7	0	0	0	0	0	0
Scorpaenidae	Sebastapistes cyanostigma	E00888	8326	10	0	1260	0	819	0	723
Scorpaenidae	Taenianotus triacanthus	E00866	8147	10	0	1257	0	777	0	720
Sebastidae	Adelosebastes latens	E00066	2246	3	0	0	0	0	0	0
Sebastidae	Helicolenus dactylopterus	E00044	9920	12	0	1257	0	0	0	0
Sebastidae	Sebastes aurora	E00349	8679	10	651	1308	0	0	0	0
Sebastidae	Sebastes diploproa	E00432	6421	8	0	1257	0	0	0	0
Sebastidae	Sebastes fasciatus	G01482	8330	10	705	0	0	0	753	0
Sebastidae	Sebastes jordani	E00350	6619	9	705	0	0	0	0	0
Sebastidae	Sebastes paucispinis	E00354	6853	9	672	0	0	0	0	0
Sebastidae	Sebastes ruberrimus	N28709	6206	8	705	0	0	0	762	0
Sebastidae	Sebastolobus alascanus	E00417	12929	16	705	0	0	0	729	0
Serranidae	Aethaloperca rogaa	E01079	6350	8	0	0	0	690	0	0
Serranidae	Anthias nicholsi	E00447	6801	6	0	1257	0	0	0	0
Serranidae	Aporops bilinearis	E00531	7661	10	0	1260	0	0	0	741
Serranidae	Baldwinella aureorubens	G01220	8097	10	705	0	957	0	0	0
Serranidae	Baldwinella vivana	E00338	3660	5	696	0	0	0	0	0
Serranidae	Centropristis striata	E00163	8944	11	0	0	0	0	762	0
Serranidae	Cephalopholis argus	E00868	14648	18	696	0	948	0	762	702
Serranidae	Cephalopholis fulva	E00771	5807	7	0	1236	0	0	0	0
Serranidae	Cephalopholis miniata	E00838	9601	12	696	1257	0	0	0	750
Serranidae	Diplectrum bivittatum	E01008	4699	6	0	0	0	0	762	702
Serranidae	Diplectrum formosum	E01002	8832	10	0	0	0	0	762	531
Serranidae	Epinephelus maculatus	E00549	12180	14	0	0	903	0	0	0
Serranidae	Epinephelus merra	E00552	8076	10	0	0	0	0	0	0
Serranidae	Grammistes sexlineatus	E00900	15699	17	666	1308	987	0	762	0
Serranidae	Grammistops ocellatus	E00571	6588	8	0	1203	0	0	0	0
Serranidae	Hypoplectrus puella	E00505	12795	16	663	1257	0	0	756	0
Serranidae	Hyporthodus flavolimbatus	E00627	5022	7	696	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Serranidae	Liopropoma mowbrayi	E00307	4911	6	0	1236	0	0	0	0
Serranidae	Liopropoma rubre	E00306	13426	14	705	1278	900	0	0	0
Serranidae	Mycteroperca bonaci microlepis	E00311	14036	17	712	0	951	0	762	0
Serranidae	Odontanthias chrysostictus	G01327	10158	10	0	1287	975	0	0	0
Serranidae	Paralabrax nebulifer	E00325	12094	15	705	0	948	0	741	0
Serranidae	Pronotogrammus martinicensis	E00636	3713	4	0	1257	0	0	0	0
Serranidae	Pseudanthias pascalus	G01452	9024	11	705	0	963	0	762	0
Serranidae	Pseudanthias squamipinnis	E00860	6941	8	705	0	0	0	711	0
Serranidae	Pseudogramma polyacantha	E00852	7643	10	0	0	0	0	759	759
Serranidae	Rypticus saponaceus	E00764	15840	19	687	1245	957	0	744	0
Serranidae	Rypticus subbifrenatus	E00347	6320	7	0	1257	0	0	0	0
Serranidae	Serranus baldwini	E00322	14886	16	650	1275	900	0	0	0
Serranidae	Serranus notospilus	E00337	5719	7	0	1257	0	0	0	0
Serranidae	Serranus phoebe	E00336	6229	8	0	1236	0	0	0	0
Serranidae	Serranus tigrinus	G01486	8954	11	0	0	905	0	762	0
Setarchidae	Setarches guentheri	E01035	5731	8	0	0	0	0	762	0
Siganidae	Siganus argenteus	E00940	7215	10	705	0	0	0	0	0
Siganidae	Siganus punctatus	E00958	3704	4	0	0	0	0	0	0
Siganidae	Siganus spinus	N29369	8207	10	684	0	879	0	693	0
Siganidae	Siganus stellatus	G01488	6854	9	696	0	0	0	762	735
Siganidae	Siganus vulpinus	E00090	11306	14	705	0	888	0	762	0
Sillaginidae	Sillago chondropus	N29390	6780	9	657	0	918	0	702	0
Sillaginidae	Sillago sihama	E00824	13627	15	663	1281	0	0	762	0
Sinipercidae	Coreoperca whiteheadi	G01264	8180	8	0	1269	981	0	0	0
Sinipercidae	Siniperca chuatsi	E01136	15198	17	522	840	900	0	732	0
Sinipercidae	Siniperca scherzeri	G01489	8368	7	0	846	975	0	0	0
Soleidae	Aseraggodes heemstrai	E00582	9255	10	588	1281	0	807	0	0
Soleidae	Aseraggodes kobensis	E00075	12391	14	690	1293	929	0	0	0
Soleidae	Brachirus annularis	E01182	5846	7	705	1284	0	0	0	0
Soleidae	Heteromycteris japonicus	E00079	14809	17	705	1308	873	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Soleidae	Microchirus frechkopi	E01175	5082	6	705	1284	0	0	0	0
Soleidae	Pegusa lascaris	E01183	8261	10	705	0	0	0	0	0
Soleidae	Pseudaesopia japonica	E00081	10067	11	705	864	0	0	0	0
Soleidae	Solea solea	E00054	7675	8	0	864	0	0	0	0
Soleidae	Soleichthys heterorhinos	E00943	10673	11	693	1284	0	825	0	0
Sparidae	Acanthopagrus catenula	E00953	10468	14	696	1233	0	822	762	765
Sparidae	Acanthopagrus latus	M01638	3048	4	705	0	0	0	0	0
Sparidae	Archosargus probatocephalus	E00249	8388	10	0	1233	0	0	762	0
Sparidae	Argyrops spinifer	M01668	2629	3	0	0	0	0	0	0
Sparidae	Argyrozona argyrozona	E00802	9618	12	705	1260	0	0	762	0
Sparidae	Boops boops	M01640	3246	3	0	0	0	0	0	0
Sparidae	Boopsoidea inornata	M01639	3951	4	705	0	0	0	0	0
Sparidae	Calamus calamus	N29934	7496	9	705	0	0	0	762	0
Sparidae	Calamus nodosus	M01641	3290	4	705	0	0	0	0	0
Sparidae	Calamus penna	E00762	7629	10	705	1257	0	0	762	0
Sparidae	Cheimerius nufar	M01642	3243	3	0	0	0	0	0	0
Sparidae	Chrysoblephus laticeps	M01644	3594	4	705	0	0	0	0	0
Sparidae	Crenidens crenidens	M01645	4737	5	705	0	0	0	0	0
Sparidae	Dentex dentex	M01646	4731	5	703	0	0	0	0	0
Sparidae	Diplodus annularis	M01647	4730	5	705	0	0	0	0	0
Sparidae	Diplodus bermudensis	M01648	3953	4	704	0	0	0	0	0
Sparidae	Diplodus capensis	E00807	5192	7	0	0	0	0	759	0
Sparidae	Lagodon rhomboides	G01346	10209	12	705	0	0	0	762	0
Sparidae	Lithognathus mormyrus	M01649	4731	5	705	0	0	0	0	0
Sparidae	Oblada melanura	M01650	3249	3	0	0	0	0	0	0
Sparidae	Pachymetopon grande	M01651	3549	4	705	0	0	0	0	0
Sparidae	Pagellus affinis	M01652	3072	4	705	0	0	0	0	0
Sparidae	Pagellus erythrinus	M01653	4029	4	0	0	0	0	0	0
Sparidae	Pagrus pagrus	E00514	12441	15	705	1257	0	0	762	0
Sparidae	Porcostoma dentata	M01654	4728	5	705	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Sparidae	Rhabdosargus haffara	M01655	2151	3	705	0	0	0	0	0
Sparidae	Sarpa salpa	E00806	12445	15	693	1287	0	0	762	0
Sparidae	Sparidentex hasta	M01657	4746	5	705	0	0	0	0	0
Sparidae	Sparus aurata	M01658	3954	4	705	0	0	0	0	0
Sparidae	Spondyliosoma cantharus	M01659	3257	4	674	0	0	0	0	0
Sparidae	Stenotomus chrysops	E00246	12458	15	705	0	0	0	762	744
Sparidae	Virididentex acromegalus	M01660	4676	5	705	0	0	0	0	0
Sphyraenidae	Sphyraena argentea	E00230	8319	10	702	1260	0	0	0	0
Sphyraenidae	Sphyraena barracuda	E00836	19387	22	705	1287	969	816	720	762
Sphyraenidae	Sphyraena japonica	N30022	5263	7	519	0	0	0	0	0
Sphyraenidae	Sphyraena jello	N30023	4747	6	705	0	0	0	0	0
Sphyraenidae	Sphyraena putnamae	E00955	13026	14	705	1281	0	0	0	741
Sphyraenidae	Sphyraena sphyraena	E01143	7520	8	0	861	0	0	0	0
Stichaeidae	Bryozoichthys marjorius	E00442	7041	9	0	1256	0	0	0	657
Stichaeidae	Cebidichthys violaceus	N30217	6500	9	672	0	882	0	702	0
Stichaeidae	Leptoclinus maculatus	E00323	5549	7	0	0	0	0	0	0
Stichaeidae	Lumpenus fabricii	E00361	3593	5	0	0	0	0	0	0
Stichaeidae	Lumpenus lampretaeformis	E00371	5472	7	0	1256	0	0	0	0
Stichaeidae	Poroclinus rothrocki	E00431	5685	7	0	1260	0	0	0	0
Stromateidae	Peprilus burti	E00600	5597	7	660	1245	0	0	0	0
Stromateidae	Peprilus paru	E00622	7448	10	705	1257	0	0	0	0
Stromateidae	Peprilus simillimus	E00136	10724	12	693	1281	0	0	0	0
Stromateidae	Peprilus triacanthus	N30548	8492	10	705	0	975	0	753	0
Symphysanodontidae	Symphysanodon typus	M01725	1508	2	686	0	0	0	0	0
Synanceiidae	Synanceia verrucosa	E00867	10214	13	0	1260	0	0	0	732
Synbranchidae	Monopterus albus	E01134	14200	15	705	1269	978	0	762	0
Syngnathidae	Corythoichthys intestinalis	E00734	5411	6	0	0	0	0	0	0
Syngnathidae	Corythoichthys schultzi	E00829	4587	5	696	1245	0	768	0	0
Syngnathidae	Doryrhamphus excisus	E00915	8801	10	0	1260	0	804	0	732
Syngnathidae	Hippocampus erectus	N30799	2880	4	663	0	0	0	0	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Syngnathidae	Syngnathus fuscus	E00792	6471	8	705	0	0	0	0	0
Syngnathidae	Syngnathus leptorhynchus	N30969	2247	3	0	0	0	0	0	0
Syngnathidae	Syngnathus louisianae	E00821	4535	5	0	0	0	0	0	0
Syngnathidae	Syngnathus scovelli	E00346	4744	6	621	0	0	0	0	0
Telmatherinidae	Marosatherina ladigesi	E00406	9346	12	0	1251	0	0	0	717
Terapontidae	Hephaestus fuliginosus	G01318	10031	11	705	1287	906	0	0	0
Terapontidae	Scortum barcoo	G01480	10071	11	705	1287	921	0	0	0
Terapontidae	Terapon jarbua	E00826	14339	16	0	1281	0	654	762	762
Tetraodontidae	Arothron hispidus	E00985	8771	8	669	1248	0	0	0	0
Tetraodontidae	Arothron nigropunctatus	N31143	7811	9	705	0	957	0	756	0
Tetraodontidae	Canthigaster bennetti	E00530	8390	9	0	1248	0	0	0	0
Tetraodontidae	Canthigaster jactator	N31165	6260	7	705	0	951	0	762	0
Tetraodontidae	Canthigaster valentini	E00853	7767	8	678	0	0	0	0	0
Tetraodontidae	Lagocephalus laevigatus	E00601	8160	8	0	0	0	0	0	0
Tetraodontidae	Sphoeroides maculatus	E00339	4428	5	0	1251	0	0	0	0
Tetraodontidae	Sphoeroides nephelus	N01739	6070	7	705	0	0	0	762	0
Tetraodontidae	Takifugu rubripes	E00460	20045	21	705	1308	987	0	762	753
Tetraodontidae	Tetractenos hamiltoni	E00383	2976	4	0	0	0	0	0	0
Tetraodontidae	Tetraodon fluviatilis	E00374	4553	5	702	0	0	0	0	0
Tetraodontidae	Tetraodon miurus	N01740	8550	10	705	0	954	0	762	0
Tetraodontidae	Tetraodon nigroviridis	G01513	17489	18	705	1308	987	0	762	0
Tetrarogidae	Coccotropsis gymnoderma	E00801	6200	8	0	0	0	813	762	678
Toxotidae	Toxotes chatareus	E01139	10242	10	705	1308	0	0	0	0
Toxotidae	Toxotes jaculatrix	E01155	11428	14	705	1287	0	0	756	0
Trachichthyidae	Hoplostethus occidentalis atlanticus	E01018	11766	14	705	1248	978	810	783	0
Triacanthidae	Triacanthus biaculeatus	G01531	11323	12	705	0	954	0	762	0
Triacanthodidae	Halimochirurgus alcocki	N31459	6920	9	693	0	0	0	702	0
Triacanthodidae	Triacanthodes anomalus	E00382	12061	13	705	0	978	0	756	0
Triacanthodidae	Triacanthodes ethiops	G01532	6829	7	0	0	0	0	0	0
Trichiuridae	Aphanopus carbo	E00274	5425	7	0	0	0	0	762	0

Table 4Ac. Continued										
Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Trichiuridae	Assurger anzac	G01210	9581	12	705	0	942	0	735	0
Trichiuridae	Benthodesmus simonyi	E00475	4383	6	0	0	0	0	0	0
Trichiuridae	Evoxymetopon taeniatus	E00650	3573	5	0	0	0	0	0	0
Trichiuridae	Lepidopus altifrons	E00474	6788	9	666	0	0	807	0	0
Trichiuridae	Trichiurus lepturus	E00596	12574	14	0	0	0	0	0	0
Trichodontidae	Trichodon trichodon	N31563	7181	9	706	0	0	0	744	0
Triglidae	Bellator militaris	E01026	4452	6	0	0	0	0	762	0
Triglidae	Prionotus carolinus	E00340	7371	9	0	1233	0	0	0	0
Triglidae	Prionotus evolans	E01021	4575	6	0	0	0	0	0	0
Triglidae	Prionotus stephanophrys	E00328	6883	9	705	1212	0	0	0	0
Triglidae	Pterygotrigla hemisticta	N31939	4770	6	693	0	0	0	0	0
Triodontidae	Triodon macropterus	N31959	7201	9	705	0	0	0	750	0
Tripterygiidae	Enneanectes altivelis	E00315	5180	7	696	0	0	0	0	0
Tripterygiidae	Enneanectes boehlkei	E00305	8688	11	705	0	942	0	690	0
Tripterygiidae	Enneapterygius abeli	E00896	2369	3	0	0	0	0	0	0
Tripterygiidae	Enneapterygius gruschkai	E00916	3832	5	0	0	0	0	756	0
Tripterygiidae	Helcogramma ellioti sp	E00331	9671	11	705	1257	94 8	0	0	0
Tripterygiidae	Helcogramma fuscopinna	E00885	2098	3	0	0	0	0	0	0
Uranoscopidae	Astroscopus ygraecum	E01028	11671	14	690	1257	975	0	755	693
Uranoscopidae	Kathetostoma albigutta	E01022	2118	3	0	0	0	0	762	0
Uranoscopidae	Kathetostoma averruncus	E00324	11393	14	705	0	0	0	747	0
Uranoscopidae	Uranoscopus sulphureus	E00538	5752	7	0	1233	0	0	0	0
Xiphiidae	Xiphias gladius	E01151	16644	17	705	1287	951	0	762	0
Zanclidae	Zanclus cornutus	E00894	18204	20	705	1308	954	825	762	657
Zaproridae	Zaprora silenus	E00362	6043	8	0	0	0	0	0	0
Zenarchopteridae	Dermogenys collettei	G01275	6851	8	699	0	0	0	762	0
Zenarchopteridae	Zenarchopterus dispar	E00541	5209	6	0	1236	0	0	0	0
Zoarcidae	Bothrocara brunneum	E00357	6304	8	0	0	0	0	0	0
Zoarcidae	Bothrocara hollandi	N01721	4677	6	0	0	0	0	762	0
Zoarcidae	Eucryphycus californicus	E00327	5531	7	0	0	0	0	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	SH3PX3	SIDKEY	SREB2	SVEP1	TBR1	VCPIP
Zoarcidae	Lycenchelys crotalinus	E00425	4583	6	0	0	0	0	0	0
Zoarcidae	Lycodapus mandibularis	E00355	8784	11	705	1256	0	0	0	0
Zoarcidae	Lycodes brevipes	E00413	4381	5	0	0	0	0	0	0
Zoarcidae	Lycodes diapterus	G01364	8790	11	705	0	0	0	756	0
Zoarcidae	Lycodes terraenovae	E00675	15952	18	705	1245	987	0	762	711
Zoarcidae	Melanostigma pammelas	E00365	6342	8	0	0	0	0	0	0
Zoarcidae	Zoarces americanus viviparus	E00370	5571	8	0	0	0	0	711	0

TABLE A4d. Taxon sampling for the percomorph dataset included 1231 taxa and sequence data for 23 genes. The dataset is comprised ofsequences for 1180 percomorph species from previous studies (e.g. Li *et al.* 2007; Li *et al.* 2008; Li *et al.* 2010; Li *et al.* 2011; Betancur-R *et al.*2013b; Broughton *et al.* 2013; Near *et al.* 2013) or public databases, plus newly generated sequences for the 51 additional taxa for this study.The matrix is presented in four parts to show presence of sequence data for the 23 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, and PANX2;(b.) PLAGL2, PTCHD1, RAG1, RAG2, RH, and RIPK4; (c.) SH3PX3, SIDKEY, SREB2, SVEP1, TBR1, and VCPIP; (d.) ZIC1, COI, CYT B, 16S, and HOX.

Acanthuridae Acanthurus bahianus E00005 11794 14 858 651 606 0 0 Acanthuridae Acanthurus guttatus E00709 7379 8 717 645 0 0 989 Acanthuridae Acanthurus leucosternon E00880 14819 16 774 651 0 2252 1065 Acanthuridae Acanthurus lineatus E00889 11234 12 768 645 0 2252 1152
Acanthuridae Acanthurus guttatus E00709 7379 8 717 645 0 989 Acanthuridae Acanthurus leucosternon E00880 14819 16 774 651 0 2252 1065 Acanthuridae Acanthurus lineatus E00889 11234 12 768 645 0 2252 1152
Acanthuridae Acanthurus leucosternon E00880 14819 16 774 651 0 2252 1065 Acanthuridae Acanthurus lineatus E00889 11234 12 768 645 0 2252 1152
Acanthuridae Acanthurus lineatus E00889 11234 12 768 645 0 2252 1152
Acanthuridae Acanthurus triostegus E00711 11027 13 717 645 0 773 1029
AcanthuridaeCtenochaetus striatusE0098264618064807730
Acanthuridae Ctenochaetus strigosus E00050 9642 12 879 651 630 0 0
AcanthuridaeCtenochaetus truncatusE0085465729768000
Acanthuridae Naso brevirostris E00918 11979 15 879 648 0 922 0
Acanthuridae Naso lituratus G01514 9769 12 879 648 0 922 0
Acanthuridae Naso unicornis E00701 6934 9 720 645 0 773 0
Acanthuridae <i>Paracanthurus hepatus</i> E00002 9321 11 722 648 0 922 0
Acanthuridae Zebrasoma flavescens E00730 9002 10 720 654 597 2252 0
Acanthuridae Zebrasoma rostratum N01742 6780 8 777 0 0 0 0
Acanthuridae Zebrasoma scopas E00859 12917 16 767 648 0 922 1008
Acanthuridae Zebrasoma velifer E00029 5029 6 696 0 0 922 0
Achiridae Achirus lineatus E00605 13596 16 0 651 0 1699 1049
Achiridae Gymnachirus melas E00609 14260 16 0 0 1749 1035
Achiridae Gymnachirus texae E00630 9146 10 0 0 1752 0
Achiridae Hypoclinemus sp E01162 6483 7 0 <t< td=""></t<>
Achiridae Trinectes maculatus E00046 11078 11 0 648 0 1753 0
Achiropsettidae Mancopsetta maculata E01169 6861 8 0 544 0 1745 0
Achiropsettidae Neoachiropsetta milfordi E01170 6200 8 0 653 0 987 0
Acropomatidae Acropoma japonicum G01188 12298 14 750 654 1140 911 0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	НОХ
Acropomatidae	Malakichthys elegans	N01922	6894	9	714	0	0	0	0
Acropomatidae	Synagrops bellus	E01125	11059	13	776	654	0	788	0
Acropomatidae	Synagrops spinosus	E01123	6676	7	706	0	0	1753	0
Adrianichthyidae	Oryzias latipes	G01408	18061	19	879	0	0	2251	0
Agonidae	Aspidophoroides monopterygius	N01986	7472	9	867	0	0	0	0
Agonidae	Bathyagonus alascanus	E00268	5458	7	0	647	0	934	1105
Agonidae	Bathyagonus pentacanthus	E00430	5127	7	648	654	0	934	0
Agonidae	Hypsagonus quadricornis	E00269	7151	9	0	654	0	788	0
Agonidae	Sarritor frenatus	E00264	4738	6	776	0	0	788	0
Agonidae	Sarritor leptorhynchus	E00254	5516	7	777	0	0	0	0
Agonidae	Stellerina xyosterna	N02010	6750	8	879	0	0	0	0
Agonidae	Xeneretmus latifrons	E00278	6400	8	777	651	0	788	0
Ambassidae	Ambassis agrammus	G01196	8877	9	867	0	0	1773	0
Ambassidae	Ambassis interrupta	E01100	10212	10	867	654	0	1759	1163
Ambassidae	Ambassis urotaenia	G01197	8268	10	879	0	0	0	0
Ambassidae	Parambassis ranga	N01735	7892	10	738	0	0	0	0
Ammodytidae	Ammodytes dubius	N02375	6015	7	879	0	0	0	0
Ammodytidae	Ammodytes hexapterus	E00414	15128	17	687	654	0	1753	1119
Anabantidae	Ctenopoma acutirostre kingsleyae	E01141	14536	15	876	0	1140	2069	0
Anabantidae	Microctenopoma nanum	G01373	12070	13	879	631	1128	2067	0
Anarhichadidae	Anarhichas denticulatus	E00787	8620	9	0	654	0	2252	1158
Anarhichadidae	Anarhichas orientalis lupus	E00117	15266	17	723	647	0	2252	889
Anarhichadidae	Anarrhichthys ocellatus	E00119	7893	10	722	654	0	935	1004
Anoplopomatidae	Anoplopoma fimbria	E00423	15741	18	723	615	0	2252	0
Antennariidae	Antennatus coccineus	E01092	15457	17	879	0	0	2253	0
Antennariidae	Antennatus nummifer	E00587	9899	13	678	0	0	921	0
Antennariidae	Fowlerichthys radiosus	E01124	4779	6	0	0	0	0	0
Antennariidae	Histiophryne cryptacanthus	G01326	9853	12	801	654	0	934	0
Antennariidae	Histrio histrio	E00643	7964	9	669	648	0	2255	0
Aphyonidae	Barathronus maculatus	N02779	7479	9	879	0	0	0	0

Table A4d. Continued

Table A4d. Continued	1								
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	Сүт ь	16s	нох
Aplocheilidae	Pachypanchax playfairii	G01414	7524	9	852	0	0	708	0
Aplodactylidae	Aplodactylus arctidens	M01536	4728	5	0	654	1122	0	0
Aplodactylidae	Aplodactylus etheridgii	M01537	4710	5	0	654	1104	0	0
Apogonidae	Apogon campbelli	E01069	9380	10	0	0	0	1753	1168
Apogonidae	Archamia biguttata	E00522	8166	11	696	632	1104	0	0
Apogonidae	Astrapogon puncticulatus	E00109	7227	9	723	654	0	0	0
Apogonidae	Astrapogon stellatus	N03004	7517	9	813	0	0	0	0
Apogonidae	Cercamia eremia	E00546	6660	9	663	654	0	0	1170
Apogonidae	Cheilodipterus isostigmus	E00528	8272	10	684	654	0	0	1087
Apogonidae	Cheilodipterus quinquelineatus	G01247	9762	12	840	651	0	768	0
Apogonidae	Fowleria aurita	E01090	8780	11	0	654	1104	0	1052
Apogonidae	Gymnapogon urospilotus	E00539	5107	7	708	654	0	0	0
Apogonidae	Nectamia bandanensis	E01040	8860	11	722	651	0	0	1081
Apogonidae	Nectamia fusca	E00732	8861	10	672	650	0	1821	0
Apogonidae	Ostorhinchus cookii	E01087	6400	8	0	0	0	0	1169
Apogonidae	Ostorhinchus lateralis	G01203	8273	10	858	0	0	0	0
Apogonidae	Phaeoptyx pigmentaria	E00506	12882	15	666	654	0	0	1167
Apogonidae	Pristiapogon exostigma	E00702	8433	11	696	650	0	0	0
Apogonidae	Pseudamia gelatinosa	E00568	7391	9	666	654	0	0	1138
Apogonidae	Pterapogon kauderni	E00190	6329	8	0	0	0	0	0
Apogonidae	Rhabdamia cypselura	E01095	6022	7	0	654	0	0	1086
Apogonidae	Sphaeramia orbicularis	N03178	8446	10	879	0	0	0	0
Aracanidae	Anoplocapros lenticularis	G01533	6886	7	846	654	1089	2264	0
Aracanidae	Aracana aurita	G01205	10032	12	762	654	1089	0	0
Ariommatidae	Ariomma bondi	E01126	7867	9	0	654	0	0	0
Ariommatidae	Ariomma melanum	E00665	9682	12	699	0	0	0	1043
Arripidae	Arripis georgianus	M01539	4794	5	0	654	0	0	0
Arripidae	Arripis trutta	M01540	3327	4	0	654	0	0	0
Arripidae	Arripis truttacea	M01541	4659	5	0	609	0	0	0
Artedidraconidae	Artedidraco orianae	G01525	6898	8	737	651	561	2255	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Artedidraconidae	Pogonophryne barsukovi	E00158	12842	14	719	651	0	2252	1058
Atherinidae	Atherinomorus lacunosus	E00548	15021	18	687	651	1140	812	0
Atherinidae	Atherinomorus stipes	E00115	13436	16	711	654	1121	0	0
Atherinidae	Atherinomorus vaigiensis	E00181	7813	10	717	0	1140	0	0
Atherinidae	Craterocephalus honoriae	E00180	8597	10	0	0	1140	809	0
Atherinopsidae	Atherinopsis californiensis	E00121	5600	7	723	0	0	0	915
Atherinopsidae	Labidesthes sicculus	E01112	14372	17	879	644	500	809	1169
Atherinopsidae	Membras martinica	E00170	7275	9	0	606	500	828	1065
Atherinopsidae	Menidia beryllina	E00174	10176	13	723	651	500	0	1070
Atherinopsidae	Menidia menidia	E00167	12560	13	723	651	1121	2253	1072
Atherinopsidae	Menidia peninsulae	N03847	5694	7	0	0	0	0	0
Atherinopsidae	Odontesthes argentinensis	E00393	5125	7	705	651	0	0	0
Atherinopsidae	Odontesthes bonariensis	E00396	9234	11	699	651	702	1747	0
Atherinopsidae	Odontesthes humensis	E00394	5561	7	717	0	0	0	1180
Atherinopsidae	Odontesthes retropinnis	E00395	4826	6	687	0	0	0	1154
Atherinopsidae	Poblana ferdebueni	N01733	5919	7	0	0	0	0	0
Aulorhynchidae	Aulorhynchus flavidus	G01217	11313	12	879	654	0	2251	0
Aulostomidae	Aulostomus chinensis	E00871	15665	19	705	600	1140	0	1165
Aulostomidae	Aulostomus maculatus	E00293	13058	16	879	588	0	659	1171
Badidae	Badis pyema	N03996	7191	9	731	0	0	0	0
Badidae	Dario dario	N04003	5626	7	731	0	0	0	0
Balistidae	Abalistes stellatus	E00936	14580	18	720	645	0	777	1038
Balistidae	Balistapus undulatus	E00743	12372	14	720	654	1089	2245	0
Balistidae	Balistes capriscus	E00591	13798	17	710	651	1140	1007	0
Balistidae	Balistes vetula	E00755	13640	15	723	618	0	2245	0
Balistidae	Balistoides conspicillum	E00373	9468	10	777	651	0	2245	1167
Balistidae	Canthidermis maculata	E00378	9887	10	771	651	0	2245	1120
Balistidae	Melichthys indicus	E00919	7484	10	576	645	0	0	1127
Balistidae	Melichthys niger	E00922	8652	11	711	606	0	784	1137
Balistidae	Pseudobalistes flavimarginatus	N04225	6715	8	878	0	0	0	0

•

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТЬ	16s	НОХ
Balistidae	Pseudobalistes fuscus	E00524	4607	6	720	630	0	773	0
Balistidae	Rhinecanthus aculeatus	E00735	9140	10	723	651	0	2245	0
Balistidae	Rhinecanthus assasi	E00381	5259	6	771	0	0	777	0
Balistidae	Rhinecanthus verrucosus	N04231	7465	9	860	0	0	0	0
Balistidae	Sufflamen chrysopterum	E00551	11210	14	879	639	0	778	0
Balistidae	Sufflamen fraenatum	E00935	9148	10	705	612	0	2245	0
Balistidae	Xanthichthys auromarginatus	E00380	11574	12	771	651	0	2245	1167
Balistidae	Xanthichthys ringens	N04239	7595	9	878	0	0	0	0
Banjosidae	Banjos banjos	M01542	4794	5	0	654	0	0	0
Banjosidae	Banjos banjos	N01542	6206	8	723	0	0	0	0
Bathyclupeidae	Bathyclupea argentea	M01543	2787	4	0	654	0	0	0
Bathydraconidae	Gymnodraco acuticeps	E00155	12486	14	722	651	576	2251	0
Bathydraconidae	Parachaenichthys charcoti	E00157	15082	17	717	606	1081	2250	0
Bathymasteridae	Bathymaster caeruleofasciatus	E00191	7525	10	722	0	0	0	943
Bathymasteridae	Bathymaster signatus	E00420	12500	16	705	654	0	788	0
Bathymasteridae	Rathbunella hypoplecta	E00128	12273	15	879	654	0	780	1049
Batrachoididae	Batrachoides pacifici	N04533	6761	8	0	0	0	0	0
Batrachoididae	Opsanus beta	E00698	11611	14	879	651	0	788	981
Batrachoididae	Opsanus pardus	E00513	11301	14	0	0	0	0	0
Batrachoididae	Opsanus tau	E00040	4773	6	0	0	0	710	0
Batrachoididae	Porichthys notatus	E00058	13187	16	861	651	0	933	0
Batrachoididae	Porichthys plectrodon	E00590	13538	16	879	0	0	0	1118
Batrachoididae	Sanopus sp	E00009	4902	6	0	0	0	0	0
Bedotiidae	Rheocles wrightae	G01467	11051	13	873	645	1140	809	0
Belonidae	Ablennes hians	E00162	11443	13	708	635	541	2252	1055
Belonidae	Platybelone argalus	E00114	12856	15	723	0	0	771	0
Belonidae	Strongylura notata	E00110	15115	19	723	647	800	773	0
Belonidae	Tylosurus crocodilus	E01051	7580	10	0	560	800	771	0
Belonidae	Xenentodon cancila	G01508	11377	14	879	654	531	769	0
Bembridae	Bembras japonica	N01723	6876	9	714	0	0	0	0

Table A4d. Continued

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Bembropidae	Bembrops anatirostris	E01120	10273	13	723	651	0	0	0
Bembropidae	Bembrops gobioides	E01128	8878	11	879	0	0	0	0
Blenniidae	Alticus arnoldorum	E00989	2775	4	699	0	0	0	0
Blenniidae	Atrosalarias fuscus	E00525	2877	4	714	0	0	0	0
Blenniidae	Blenniella chrysospilos paula	E00986	4186	5	710	0	0	0	1184
Blenniidae	Blenniella cyanostigma	E00715	7419	9	710	567	0	0	1184
Blenniidae	Blenniella paula	E00979	7982	10	713	636	0	0	1124
Blenniidae	Cirripectes castaneus	E00892	8002	10	717	638	0	0	1113
Blenniidae	Cirripectes filamentosus	E00893	5912	7	714	0	0	0	941
Blenniidae	Cirripectes quagga	E00330	4362	5	0	651	0	0	0
Blenniidae	Cirripectes stigmaticus	E00520	4037	6	714	638	0	0	0
Blenniidae	Ecsenius bicolor	E00984	5909	8	696	573	0	911	0
Blenniidae	Ecsenius midas	E00934	3749	5	0	642	0	911	0
Blenniidae	Ecsenius opsifrontalis	E00723	5497	7	722	0	0	0	1123
Blenniidae	Ecsenius pardus	E00523	4285	5	732	0	0	0	0
Blenniidae	Enchelyurus flavipes	N04786	6887	9	704	0	0	0	0
Blenniidae	Entomacrodus nigricans	E00297	9132	11	777	654	0	0	0
Blenniidae	Entomacrodus niuafoouensis	E00980	6091	8	680	0	0	0	1172
Blenniidae	Entomacrodus striatus	E00987	5295	7	0	636	0	0	0
Blenniidae	Hypleurochilus sp	E00298	5653	7	0	651	0	739	1098
Blenniidae	Hypsoblennius hentz	E00289	7330	9	879	0	0	911	0
Blenniidae	Istiblennius dussumieri	E00556	4755	6	711	651	0	0	1184
Blenniidae	Meiacanthus oualanensis grammistes	E00526	9615	12	720	623	0	788	0
Blenniidae	Nannosalarias nativitatis	E00521	6717	8	710	651	0	0	1184
Blenniidae	Ophioblennius atlanticus	E00296	11932	15	776	631	630	911	0
Blenniidae	Petroscirtes mitratus	E00909	5741	8	708	636	0	0	0
Blenniidae	Plagiotremus rhinorhynchos	E00586	4112	5	726	635	0	0	1148
Blenniidae	Plagiotremus tapeinosoma	E00540	4423	6	714	651	0	0	0
Blenniidae	Praealticus caesius	E00329	5179	6	741	0	0	0	1158
Blenniidae	Salarias fasciatus	E00988	12606	14	710	651	0	2255	1184

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Blenniidae	Stanulus sp	E00332	3369	4	0	0	0	0	0
Bothidae	Arnoglossus blachei	E01160	6253	7	0	0	0	745	0
Bothidae	Arnoglossus imperialis	E01163	7399	8	0	651	0	1003	0
Bothidae	Asterorhombus cocosensis	E00904	10399	11	0	0	0	1740	0
Bothidae	Bothus lunatus	E00007	8248	9	0	654	0	1752	0
Bothidae	Bothus robinsi	E00038	6724	7	0	0	0	1753	0
Bothidae	Chascanopsetta lugubris	E01181	5982	7	0	650	0	871	0
Bothidae	Laeops kitaharae	E00082	7794	8	0	0	0	1753	0
Bothidae	Monolene sp	E01172	3326	3	0	0	0	1739	0
Bothidae	Psettina tosana	E00083	7617	8	0	0	0	1753	0
Bothidae	Trichopsetta ventralis	E00599	9704	10	0	0	0	1745	0
Bovichtidae	Bovichtus diacanthus	G01229	12547	13	879	0	1134	2254	0
Bovichtidae	Cottoperca trigloides	G01267	5753	6	744	0	0	2256	0
Bramidae	Brama brama	E00970	11377	13	0	654	1140	1753	996
Bramidae	Brama japonica	N05217	8586	10	878	0	0	0	0
Bramidae	Pteraclis aesticola	N05223	7106	9	713	0	0	0	0
Bramidae	Pterycombus brama	E00996	9728	12	648	647	0	0	1066
Bramidae	Taractes asper	N05227	8588	10	875	0	0	0	0
Bramidae	Taractichthys longipinnis	E00684	8997	11	708	654	1140	835	0
Bythitidae	Bidenichthys capensis	E00794	7231	9	720	0	0	0	949
Bythitidae	Brosmophyciops pautzkei	E00717	5948	8	720	651	0	0	0
Bythitidae	Brosmophycis marginata	N05317	7691	9	878	0	0	0	0
Bythitidae	Cataetyx rubrirostris lepidogenys	E00261	14883	16	879	654	0	2253	0
Bythitidae	Diancistrus sp	E00236	6903	9	768	0	0	0	0
Bythitidae	Dinematichthys iluocoeteoides	E00235	4750	6	0	639	0	0	0
Bythitidae	Diplacanthopoma brachysoma	E00452	8606	9	713	0	0	2253	0
Bythitidae	Diplacanthopoma brunnea	N05377	8280	10	878	0	0	0	0
Caesionidae	Caesio caerulaurea lunaris	E00920	13727	15	708	651	879	1744	1129
Caesionidae	Caesio cuning	N01544	6786	8	789	0	0	0	0
Caesionidae	Caesio teres	E00951	7741	10	702	651	0	0	0

Table Add Continued

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	НОХ
Caesionidae	Caesio varilineata	E00949	9671	12	705	0	0	0	1020
Caesionidae	Caesio xanthonota	E00950	9615	12	698	651	0	0	1150
Caesionidae	Pterocaesio pisang	N01547	8535	10	879	0	0	0	0
Caesionidae	Pterocaesio tile	E00961	7369	8	671	651	0	2252	0
Callanthiidae	Callanthias australis	M01721	3528	4	0	552	0	0	0
Callanthiidae	Grammatonotus surugaensis	N05516	4774	6	0	0	0	0	0
Callionymidae	Callionymus sp bairdi	E00946	14247	16	773	0	0	903	1183
Callionymidae	Diplogrammus goramensis	E00744	3443	4	0	0	0	0	0
Callionymidae	Foetorepus sp	N01725	7524	9	759	0	0	0	0
Callionymidae	Neosynchiropus ocellatus	E00030	9857	12	0	648	0	788	0
Callionymidae	Synchiropus agassizii	E01004	13911	16	768	642	0	0	1183
Callionymidae	Synchiropus splendidus	E00003	7623	9	0	0	0	0	0
Callionymidae	Synchiropus stellatus	E00925	4153	5	771	651	0	0	1053
Caproidae	Antigonia capros	E01024	15924	18	768	636	0	2252	0
Caproidae	Antigonia rubescens	N05907	8327	10	734	0	0	0	0
Caproidae	Capros aper	N05913	6917	9	734	0	0	0	0
Carangidae	Alectis ciliaris	E00469	9715	12	711	648	1140	852	0
Carangidae	Atule mate	E00942	13914	15	710	651	1088	1752	1145
Carangidae	Carangoides ferdau	E00869	9160	10	738	654	1016	1742	0
Carangidae	Carangoides plagiotaenia	E00917	10641	12	714	651	0	1746	1041
Carangidae	Caranx crysos ruber	E00510	15973	18	728	651	1140	1753	0
Carangidae	Caranx ignobilis	E00574	14220	16	708	651	1107	1752	0
Carangidae	Caranx sexfasciatus	E00834	10100	10	711	627	1126	1753	1131
Carangidae	Chloroscombrus chrysurus	E00763	5515	7	708	654	1115	890	0
Carangidae	Decapterus macarellus	E00212	3266	5	0	651	511	877	0
Carangidae	Decapterus punctatus	E00671	9777	11	0	654	1140	879	0
Carangidae	Elagatis bipinnulata	E00841	11967	15	717	651	1140	1076	0
Carangidae	Gnathanodon speciosus	E00938	13565	15	702	648	942	1753	996
Carangidae	Hemicaranx amblyrhynchus	E00616	11426	13	711	651	0	1753	0
Carangidae	Oligoplites saurus	E00195	16021	19	777	654	1117	756	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	сут ь	16s	нох
Carangidae	Scomberoides lysan	E00738	10887	13	708	654	0	756	0
Carangidae	Selar crumenophthalmus	E00833	11277	13	717	651	1140	1752	0
Carangidae	Selene brownii	E00767	7866	10	729	651	1135	749	0
Carangidae	Selene setapinnis	N01705	6120	8	858	0	0	0	0
Carangidae	Seriola dumerili	E00623	16521	18	705	651	1140	2254	0
Carangidae	Seriola rivoliana	E00467	11164	13	708	651	1140	1732	0
Carangidae	Trachinotus carolinus	G01504	11145	13	879	651	1116	970	0
Carangidae	Trachinotus falcatus	E00819	10693	12	762	654	1122	1753	0
Carangidae	Trachinotus ovatus	E01145	14822	16	813	654	1116	2256	0
Carangidae	Trachurus lathami	E00598	11710	13	735	654	1140	1745	0
Carangidae	Uraspis secunda	E00515	11843	13	711	651	1115	1753	0
Carapidae	Carapus bermudensis	E00244	3497	5	0	0	0	0	0
Carapidae	Onuxodon parvibrachium	N06009	5285	7	767	0	0	0	0
Carapidae	Pyramodon ventralis	N06013	5272	7	758	0	0	0	0
Caristiidae	Caristius macropus	N06078	5912	8	731	0	0	0	0
Caristiidae	Caristius sp	E00810	9564	11	711	0	0	786	0
Caristiidae	Platyberyx opalescens	N06085	7781	10	713	0	0	0	0
Centracanthidae	Centracanthus cirrus	M01560	2897	3	0	654	0	0	0
Centracanthidae	Spicara alta	M01561	4032	4	0	654	1131	0	0
Centracanthidae	Spicara maena	M01562	5142	5	0	654	1140	0	0
Centracanthidae	Spicara nigricauda	M01564	4791	5	0	651	0	0	0
Centracanthidae	Spicara smaris	M01565	5111	5	0	645	1140	0	0
Centrarchidae	Acantharchus pomotis	G01185	10678	10	879	561	1134	2252	0
Centrarchidae	Ambloplites rupestris	E00392	18681	20	678	654	1134	2252	1163
Centrarchidae	Archoplites interruptus	N01722	8586	10	879	0	0	0	0
Centrarchidae	Lepomis cyanellus	E00132	18334	20	723	651	1134	2251	0
Centrarchidae	Lepomis macrochirus	E01113	15647	17	0	651	1134	2252	1169
Centrarchidae	Micropterus salmoides	E01110	18682	20	741	651	1134	2252	1036
Centrarchidae	Pomoxis nigromaculatus	E00131	14489	15	723	651	1134	2252	1047
Centriscidae	Aeoliscus strigatus	G01189	10258	10	867	0	1140	2252	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Centriscidae	Macroramphosus gracilis	E00335	4196	5	774	0	0	0	1169
Centriscidae	Macroramphosus scolopax	E00473	10717	12	714	651	0	2253	0
Centrogenyidae	Centrogenys vaigiensis	G01239	9161	11	873	0	0	788	0
Centrolophidae	Icichthys lockingtoni	E00387	15879	18	825	654	1140	921	1163
Centropomidae	Centropomus ensiferus	E00766	14482	15	867	0	0	1773	1154
Centropomidae	Centropomus medius	E01158	10458	11	867	0	0	1773	0
Centropomidae	Centropomus undecimalis	E00194	15428	17	867	654	1140	1753	0
Centropomidae	Centropomus viridis	E01153	14374	16	867	0	0	1753	0
Centropomidae	Lates calcarifer	E01135	11083	12	627	654	0	1758	0
Centropomidae	Lates japonicus	E01147	10695	11	762	0	0	1773	0
Centropomidae	Lates microlepis	E01149	9785	11	759	0	0	875	0
Centropomidae	Psammoperca waigiensis	E01148	12243	13	867	654	0	1773	0
Cepolidae	Acanthocepola sp	M01669	4129	4	0	0	0	0	0
Cepolidae	Cepola macrophthalma	M01566	3339	4	0	654	0	0	0
Cepolidae	Cepola schlegelii	N06269	6961	9	722	0	0	0	0
Cepolidae	Sphenanthias tosaensis	N06282	6620	9	722	0	0	0	0
Ceratiidae	Ceratias holboelli	E00175	8091	11	722	651	0	610	952
Ceratiidae	Ceratias sp	E00160	6019	7	722	0	0	0	927
Ceratiidae	Cryptopsaras couesii	E00686	9907	10	830	651	0	2238	0
Chaenopsidae	Acanthemblemaria aspera	E00320	6836	9	696	654	0	0	1043
Chaenopsidae	Acanthemblemaria paula	E00295	6314	8	774	654	0	0	1044
Chaenopsidae	Chaenopsis sp alepidota	E00313	11049	13	777	0	0	782	1053
Chaenopsidae	Emblemaria pandionis	E00310	6208	7	777	570	0	0	1039
Chaenopsidae	Lucayablennius zingaro	E00294	7789	9	777	651	0	0	1018
Chaenopsidae	Neoclinus blanchardi	E00326	6535	8	774	651	528	751	0
Chaenopsidae	Stathmonotus stahli	E00317	7886	9	771	570	0	0	1135
Chaetodontidae	Chaetodon auriga	E00921	12220	14	714	651	1067	1753	1061
Chaetodontidae	Chaetodon capistratus	E00205	3871	5	0	651	0	911	0
Chaetodontidae	Chaetodon ocellatus	E00752	3799	5	716	648	0	911	0
Chaetodontidae	Chaetodon ornatissimus	G01243	11727	14	879	651	1038	825	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	HO
Chaetodontidae	Chaetodon plebeius	E00573	2874	4	708	0	0	0	0
Chaetodontidae	Chaetodon reticulatus	E00719	9187	11	705	651	1068	825	0
Chaetodontidae	Chaetodon striatus	E00753	15347	19	879	615	0	0	0
Chaetodontidae	Chelmon rostratus	G01248	10379	13	777	648	390	911	0
Chaetodontidae	Forcipiger flavissimus	E00562	14191	17	879	648	390	825	0
Chaetodontidae	Hemitaurichthys polylepis	E00240	12410	15	770	651	1068	825	0
Chaetodontidae	Heniochus chrysostomus	E00748	14747	18	683	651	1068	825	0
Chaetodontidae	Heniochus varius	E00547	11101	14	711	622	0	911	0
Chaetodontidae	Johnrandallia nigrirostris	N06546	7594	9	878	0	0	0	0
Chaetodontidae	Prognathodes aya aculeatus	E00632	16211	20	711	621	411	911	0
Champsodontidae	Champsodon snyderi	N06574	5798	8	0	0	0	0	0
Channichthyidae	Chionobathyscus dewitti	G01250	11735	13	879	651	0	1907	0
Channichthyidae	Chionodraco rastrospinosus	E00156	10249	11	722	654	0	2252	0
Channidae	Channa lucius	N06615	7562	9	878	0	0	0	0
Channidae	Channa melasoma	N06621	8195	10	842	0	0	0	0
Channidae	Channa striata	E01133	15424	17	879	654	807	1753	0
Chaunacidae	Chaunax stigmaeus	E01121	11544	14	711	0	0	0	0
Chaunacidae	Chaunax suttkusi	E01117	13670	16	711	0	1134	788	0
Cheilodactylidae	Cheilodactylus fasciatus	E00795	8950	11	711	654	0	1746	0
Cheilodactylidae	Cheilodactylus pixi	E00797	7523	10	717	651	0	0	0
Cheilodactylidae	Cheilodactylus variegatus	N07699	7481	9	863	0	0	0	0
Cheilodactylidae	Chirodactylus brachydactylus	E00796	10572	13	714	651	0	0	0
Cheilodactylidae	Chirodactylus jessicalenorum	E00585	5511	7	675	651	0	0	0
Cheimarrichthyidae	Cheimarrichthys fosteri	N07713	7400	9	770	0	0	0	0
Chiasmodontidae	Chiasmodon niger	E01115	6819	8	0	654	0	0	114
Chiasmodontidae	Chiasmodon sp	N33662	8114	10	839	0	0	0	0
Chiasmodontidae	Kali indica	E01106	8049	10	0	648	0	0	0
Chiasmodontidae	Kali kerberti	E00385	8712	11	0	654	0	0	0
Chironemidae	Chironemus georgianus	M01569	3606	4	0	654	0	0	0
Chironemidae	Chironemus maculosus	M01570	3605	4	0	654	0	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Cichlidae	Astatotilapia burtoni	G01518	14530	19	879	0	0	765	0
Cichlidae	Cichla temensis	G01256	12888	15	858	645	670	911	0
Cichlidae	Crenicichla lepidota	E00137	9593	12	723	654	1128	752	1055
Cichlidae	Etroplus maculatus	E00133	16104	17	879	586	1115	2253	994
Cichlidae	Herichthys cyanoguttatus	G01319	10449	13	879	651	0	792	0
Cichlidae	Heros efasciatus	G01320	12037	14	879	623	0	792	0
Cichlidae	Heterochromis multidens	G01321	10659	13	879	649	829	0	0
Cichlidae	Maylandia zebra	G01519	15105	19	879	0	0	765	0
Cichlidae	Nanochromis parilus	G01390	2645	4	0	0	0	656	0
Cichlidae	Neolamprologus brichardi	G01520	18935	21	879	0	1140	2263	0
Cichlidae	Oreochromis niloticus	G01407	20724	22	879	645	1140	2256	0
Cichlidae	Paratilapia polleni	G01420	11328	12	879	648	0	2253	0
Cichlidae	Paretroplus maculatus	G01423	11220	12	855	648	0	2253	0
Cichlidae	Ptychochromis grandidieri	G01459	9350	12	765	648	0	765	0
Cichlidae	Pundamilia nyererei	G01521	14440	18	879	0	0	0	0
Cichlidae	Steatocranus gibbiceps	G01494	2873	4	0	0	0	866	0
Cichlidae	Symphysodon discus	E00390	10909	13	693	651	0	765	1158
Cichlidae	Tilapia louka	G01503	2873	4	0	0	0	866	0
Cirrhitidae	Amblycirrhitus pinos	E00314	16355	19	777	651	0	1728	1156
Cirrhitidae	Cirrhitichthys falco	N09466	4867	7	731	0	0	0	0
Cirrhitidae	Cirrhitichthys oxycephalus	E00884	8380	11	717	654	0	0	1174
Cirrhitidae	Neocirrhites armatus	E00725	12592	16	729	654	0	0	1171
Cirrhitidae	Paracirrhites forsteri arcatus	E00924	12505	15	711	613	0	911	1171
Citharidae	Citharoides macrolepis	E00071	12901	15	717	651	0	1742	0
Citharidae	Citharus linguatula	E01174	6850	8	0	654	826	901	0
Citharidae	Lepidoblepharon ophthalmolepis	E00080	7005	8	0	0	0	1676	0
Clinidae	Blennophis striatus	E00800	3454	4	720	0	0	0	1151
Clinidae	Clinus cottoides	E00804	4782	6	0	654	0	957	1141
Clinidae	Clinus superciliosus	E00803	5297	7	744	651	0	814	1148
Clinidae	Gibbonsia metzi	N09738	6827	8	866	0	0	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Clinidae	Muraenoclinus dorsalis	E00805	4559	6	720	651	0	962	1089
Clinidae	Pavoclinus profundus	E00799	3475	4	720	0	0	0	1152
Coryphaenidae	Coryphaena hippurus	E00937	17390	19	861	654	1128	2169	976
Cottidae	Artediellus uncinatus	N10447	7522	9	878	0	0	0	0
Cottidae	Chitonotus pugetensis	E00233	6714	8	756	635	0	936	0
Cottidae	Cottus carolinae	E00281	10765	13	879	651	1077	665	0
Cottidae	Enophrys taurina	E00234	3576	5	777	645	0	0	0
Cottidae	Gymnocanthus galeatus	E00259	3095	4	777	651	0	452	0
Cottidae	Hemilepidotus jordani	E00263	7975	10	0	597	1071	427	1104
Cottidae	Hemilepidotus zapus	E00272	5096	6	0	651	0	788	0
Cottidae	Icelinus filamentosus	E00277	8203	10	777	651	0	934	0
Cottidae	Icelinus quadriseriatus	E00228	5018	6	0	651	0	767	0
Cottidae	Leptocottus armatus	E00266	12068	14	777	654	1083	935	1110
Cottidae	Microcottus sellaris	E00223	2282	3	774	0	0	788	0
Cottidae	Myoxocephalus octodecemspinosus	E00221	3991	4	0	0	1140	880	0
Cottidae	Myoxocephalus polyacanthocephalus	E00267	4736	5	777	651	1140	935	0
Cottidae	Radulinus asprellus	E00429	6882	9	696	639	0	929	0
Cottidae	Rastrinus scutiger	E00256	6088	7	776	0	0	0	1067
Cottidae	Scorpaenichthys marmoratus	E00232	10450	13	750	651	1083	696	0
Cottidae	Triglops macellus	E00435	8082	10	651	654	0	935	0
Cottidae	Triglops scepticus	E00421	5233	7	690	0	0	788	0
Creediidae	Limnichthys sp	E01081	6256	8	765	0	0	0	1166
Cryptacanthodidae	Cryptacanthodes maculatus	E00116	10532	13	726	654	0	0	0
Cyclopteridae	Cyclopterus lumpus	E00220	12165	15	879	654	1140	613	0
Cyclopteridae	Eumicrotremus orbis	E00270	12456	15	777	651	0	935	0
Cynoglossidae	Cynoglossus interruptus	E00076	7900	8	0	651	0	1753	0
Cynoglossidae	Symphurus atricaudus	E00023	10924	12	0	651	0	1732	0
Cynoglossidae	Symphurus civitatium	E00604	7546	8	0	647	0	1753	0
Cynoglossidae	Symphurus plagiusa	E01164	7027	8	0	651	0	911	0
Cyprinodontidae	Cyprinodon variegatus	E01066	12469	15	0	645	0	0	1028

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Cyprinodontidae	Floridichthys carpio	E01063	9295	11	0	651	0	0	1051
Cyprinodontidae	Jordanella floridae	N14002	5915	7	764	0	0	0	0
Dactylopteridae	Dactyloptena gilberti	N14051	5845	7	0	0	0	0	0
Dactylopteridae	Dactyloptena orientalis	E00237	13665	15	774	654	0	1554	0
Dactylopteridae	Dactyloptena peterseni	E00749	14553	15	680	0	0	2261	1033
Dactylopteridae	Dactylopterus volitans	E00214	7789	10	759	651	1140	812	0
Dactyloscopidae	Gillellus semicinctus	G01299	6655	8	870	0	0	788	0
Dactyloscopidae	Platygillellus rubrocinctus	E00319	5427	7	774	654	0	0	1039
Datnioididae	Datnioides microlepis	N14199	7836	10	719	0	0	0	0
Dichistiidae	Dichistius capensis	M01571	3582	4	0	654	0	0	0
Diodontidae	Chilomycterus schoepfii	E00517	12554	15	879	654	0	778	1151
Diodontidae	Diodon holocanthus	E00312	13884	15	777	624	0	2251	1171
Drepaneidae	Drepane punctata	E00250	13305	15	774	654	0	1725	0
Echeneidae	Echeneis naucrates	E00615	16441	18	879	654	1134	2159	1048
Echeneidae	Echeneis neucratoides	E00245	7118	7	774	0	0	2159	0
Echeneidae	Phtheirichthys lineatus	G01438	7650	8	0	651	1063	2159	0
Echeneidae	Remora osteochir australis	E00503	10993	11	705	651	959	2159	0
Elassomatidae	Elassoma evergladei	E00146	15293	17	717	654	1125	2252	0
Elassomatidae	Elassoma okefenokee	G01283	9813	12	879	651	0	0	0
Elassomatidae	Elassoma zonatum	G01284	14834	15	879	650	1128	2253	0
Eleginopsidae	Eleginops maclovinus	G01286	10593	13	879	651	831	0	0
Eleotridae	Dormitator maculatus	E00169	5763	7	768	0	0	739	0
Eleotridae	Eleotris acanthopoma pisonis	E00741	12447	14	879	654	0	2252	0
Eleotridae	Ophiocara porocephala	E01101	11395	13	768	606	1107	911	1082
Eleotridae	Oxyeleotris selheimi	N01730	5975	7	855	0	0	0	0
Embiotocidae	Amphistichus argenteus	E00129	8893	12	693	654	0	704	0
Embiotocidae	Cymatogaster aggregata	E00139	14184	16	711	654	1114	2255	972
Embiotocidae	Embiotoca jacksoni	E00120	14177	17	717	654	0	0	0
Embiotocidae	Embiotoca lateralis	N14635	6883	8	878	0	0	0	0
Embiotocidae	Hyperprosopon anale argenteum	E00134	14767	18	711	651	0	763	908

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	сүт ь	16s	нох
Embiotocidae	Phanerodon furcatus	E00122	11479	14	717	0	0	704	971
Embiotocidae	Rhacochilus vacca	E00124	12585	15	720	654	0	920	1031
Embiotocidae	Zalembius rosaceus	E00135	4565	6	702	654	0	704	1002
Emmelichthyidae	Erythrocles schlegelii	E00954	12039	15	642	654	0	0	0
Emmelichthyidae	Erythrocles scintillans	N14652	6911	9	713	0	0	0	0
Enoplosidae	Enoplosus armatus	G01287	10134	11	720	651	0	2252	0
Ephippidae	Chaetodipterus faber	E00614	14589	18	729	651	0	0	1031
Ephippidae	Platax orbicularis	E00898	13969	16	771	654	0	2252	1023
Ephippidae	Platax teira	E00858	12410	15	768	648	0	903	1046
Epigonidae	Epigonus pandionis	E01019	5505	7	708	654	0	0	0
Epigonidae	Epigonus telescopus	E00652	10314	12	711	653	1131	1057	0
Exocoetidae	Cheilopogon dorsomacula	E00624	11475	14	699	0	636	774	1041
Exocoetidae	Cheilopogon melanurus	N14975	5883	7	0	0	0	0	0
Exocoetidae	Cheilopogon pinnatibarbatus	E00399	13294	16	699	651	1131	779	1076
Exocoetidae	Cypselurus callopterus	E00402	6837	8	0	0	1131	0	1026
Exocoetidae	Exocoetus monocirrhus	E00403	10246	13	675	647	1131	774	1100
Exocoetidae	Hirundichthys marginatus	E00401	9589	12	687	0	631	774	1118
Exocoetidae	Parexocoetus brachypterus	E00645	4220	5	0	0	1131	770	0
Exocoetidae	Prognichthys brevipinnis	E00400	6286	8	675	0	0	0	1049
Fistulariidae	Fistularia commersonii	E00941	7080	7	0	0	0	2247	0
Fistulariidae	Fistularia petimba	E00602	6969	9	0	651	0	942	0
Fundulidae	Adinia xenica	E00173	8890	10	0	651	990	0	0
Fundulidae	Fundulus blairae	E00130	9841	11	0	651	990	0	945
Fundulidae	Fundulus chrysotus	E00186	8599	9	0	637	990	0	1082
Fundulidae	Fundulus heteroclitus	G01293	12304	13	879	650	990	2252	0
Fundulidae	Fundulus parvipinnis	E00389	11368	13	0	651	990	743	1164
Fundulidae	Lucania parva goodei	E01064	13730	16	0	651	990	0	1171
Gasterosteidae	Apeltes quadracus	E00791	11199	12	870	615	0	2250	0
Gasterosteidae	Culaea inconstans	E00368	12338	14	777	648	0	2250	0
Gasterosteidae	Gasterosteus aculeatus	E01012	20181	21	879	654	1140	2250	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Gasterosteidae	Gasterosteus wheatlandi	N15128	8456	10	878	0	0	0	0
Gasterosteidae	Pungitius pungitius	G01460	10820	11	879	651	1140	2250	0
Gasterosteidae	Spinachia spinachia	G0 <u>1491</u>	10498	11	879	0	0	2250	0
Gempylidae	Gempylus serpens	E00693	9797	13	747	508	0	782	0
Gempylidae	Nealotus tripes	E00287	6043	8	776	508	0	0	0
Gempylidae	Neoepinnula americana	E00471	5662	7	675	654	0	0	0
Gempylidae	Neoepinnula orientalis	E00518	6702	9	720	651	0	782	0
Gempylidae	Paradiplospinus gracilis	N15143	7281	9	767	0	0	0	0
Gempylidae	Ruvettus pretiosus	E00226	13794	16	879	651	1140	876	0
Gerreidae	Eucinostomus argenteus	E00575	5749	7	0	654	0	911	1183
Gerreidae	Eucinostomus gula	E00756	7604	9	0	654	0	613	1134
Gerreidae	Eugerres plumieri	G01291	11242	14	870	513	720	813	0
Gerreidae	Gerres cinereus	E00292	11457	12	777	654	0	1753	1165
Gerreidae	Gerres longirostris	E00835	6053	8	705	568	0	0	1162
Gerreidae	Gerres oyena	E00823	6770	8	0	648	0	0	1163
Gerreidae	Ulaema lefroyi	G01507	8309	10	870	0	0	0	0
Gigantactinidae	Gigantactis ios	E01053	4539	6	0	0	0	0	0
Gigantactinidae	Gigantactis sp	N34852	6412	8	0	0	0	0	0
Gigantactinidae	Gigantactis vanhoeffeni	E00177	13239	15	0	618	0	2250	0
Girellidae	Girella nigricans mezina	E00197	11742	13	777	654	0	1981	0
Glaucosomatidae	Glaucosoma buergeri	N15231	7808	10	722	0	0	0	0
Glaucosomatidae	Glaucosoma hebraicum	G01300	16039	18	843	651	708	1773	0
Gobiesocidae	Arcos sp	E00102	13747	16	716	0	0	2256	968
Gobiesocidae	Diademichthys lineatus	G01276	8298	10	879	0	0	0	0
Gobiesocidae	Gobiesox maeandricus	G01302	8270	10	879	650	0	690	0
Gobiesocidae	Lepadichthys lineatus	E01080	3896	5	0	654	0	0	1161
Gobiidae	Amblyeleotris guttata	E01043	8728	11	723	654	0	0	1169
Gobiidae	Amblyeleotris gymnocephala	E00409	6038	8	681	0	0	0	0
Gobiidae	Amblyeleotris wheeleri	E01073	7397	9	0	651	0	0	1184
Gobiidae	Amblygobius decussatus	E00533	2824	4	696	651	0	0	0

.

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Gobiidae	Amblygobius phalaena	E00736	7217	10	652	651	556	0	1167
Gobiidae	Asterropteryx semipunctata	E01089	6719	8	0	641	1097	0	1135
Gobiidae	Bathygobius mystacium	E00104	6412	8	708	651	1085	0	0
Gobiidae	Bollmannia communis	E00617	5108	5	0	0	0	2069	0
Gobiidae	Cabillus lacertops	E01093	3915	5	708	0	0	0	0
Gobiidae	Caffrogobius caffer	E01056	6198	8	0	651	0	0	1142
Gobiidae	Caffrogobius saldanha	E01057	6207	8	0	0	0	0	1171
Gobiidae	Coryphopterus glaucofraenum	E00100	5342	7	708	651	0	0	1049
Gobiidae	Coryphopterus personatus	E00405	4791	7	549	652	525	0	0
Gobiidae	Cryptocentrus sp	E00407	3883	5	0	0	0	0	0
Gobiidae	Ctenogobiops crocineus	E01097	5981	7	0	0	0	0	1169
Gobiidae	Ctenogobius boleosoma	E00172	3520	5	708	647	0	0	0
Gobiidae	Elacatinus oceanops	E00108	11459	12	708	634	1140	2069	1029
Gobiidae	Eviota albolineata	E01041	6182	8	711	651	0	0	1173
Gobiidae	Eviota prasites	E01044	5506	7	708	0	0	0	1171
Gobiidae	Eviota saipanensis	E00714	4913	6	702	0	0	0	1184
Gobiidae	Evorthodus lyricus	E00171	6129	8	708	622	0	0	996
Gobiidae	Fusigobius duospilus	E00863	7305	9	0	613	0	0	1182
Gobiidae	Fusigobius inframaculatus	E01076	4985	6	0	619	0	0	1184
Gobiidae	Fusigobius neophytus	E00733	7031	10	675	628	0	0	0
Gobiidae	Gnatholepis anjerensis	E01075	4977	7	708	651	543	0	0
Gobiidae	Gnatholepis cauerensis	E00099	3361	5	656	651	0	0	0
Gobiidae	Gobiodon quinquestrigatus	E01085	6985	9	0	651	0	756	1169
Gobiidae	Gobiosoma bosc	E00097	9910	10	707	0	1140	2069	1069
Gobiidae	Istigobius decoratus	E01078	9124	11	708	647	1085	0	1170
Gobiidae	Istigobius ornatus	E01107	2776	3	0	0	0	0	1170
Gobiidae	Lepidogobius lepidus	G01351	5076	6	768	0	0	0	0
Gobiidae	Lophogobius cyprinoides	E00508	6153	8	639	654	0	0	1169
Gobiidae	Lythrypnus dolli	E00126	6746	9	0	651	0	810	0
Gobiidae	Oplopomus oplopomus	E01067	6654	8	708	0	0	0	1168

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	сүт ь	16s	нох
Gobiidae	Paragobiodon modestus	E01098	8154	11	0	638	0	0	1170
Gobiidae	Periophthalmus kalolo	E00537	6876	9	696	0	0	706	1003
Gobiidae	Priolepis cincta	E01077	5030	6	0	650	0	0	1169
Gobiidae	Priolepis hipoliti	E00106	5717	7	708	0	0	0	1065
Gobiidae	Psammogobius biocellatus	E00740	5797	8	701	651	0	0	0
Gobiidae	Risor ruber	E00107	10310	10	723	0	1140	2069	1038
Gobiidae	Stonogobiops nematodes	N16820	2850	4	713	0	0	0	0
Gobiidae	Trimma caesiura	E01039	8870	11	720	621	1104	0	1183
Gobiidae	Trimma haima	E01084	5533	7	729	0	0	0	1169
Gobiidae	Trimma okinawae	E00726	2759	4	672	0	0	0	0
Gobiidae	Valenciennea puellaris	E01096	5328	7	0	651	0	0	0
Gobiidae	Valenciennea strigata	E01094	4256	6	0	651	588	0	0
Gobiidae	Vanderhorstia ornatissima	E01088	6501	8	0	0	0	0	1171
Grammatidae	Gramma loreto	E00280	14197	16	869	597	0	1697	0
Grammatidae	Lipogramma anabantoides	E00211	6519	8	0	654	0	0	0
Grammatidae	Lipogramma trilineata	E00210	6532	8	775	654	0	0	0
Haemulidae	Anisotremus surinamensis	N17175	7479	9	872	0	0	0	0
Haemulidae	Anisotremus virginicus	E00200	9338	11	0	654	684	812	0
Haemulidae	Conodon nobilis	E00613	10862	13	717	651	0	812	0
Haemulidae	Haemulon aurolineatum	E00635	16270	20	718	651	747	812	0
Haemulidae	Haemulon plumierii	E00279	12545	15	777	0	0	812	0
Haemulidae	Haemulon sciurus	E00199	14796	18	861	639	747	812	0
Haemulidae	Haemulon vittatum	E00218	14636	17	776	513	720	1742	0
Haemulidae	Orthopristis chrysoptera	E00607	15170	18	708	642	1122	812	0
Haemulidae	Plectorhinchus chaetodonoides	E00857	12011	14	0	651	1047	813	1034
Haemulidae	Plectorhinchus vittatus	E00856	9448	12	0	513	720	812	1076
Haemulidae	Pomadasys corvinaeformis	E00761	10420	14	708	651	720	811	0
Haemulidae	Xenistius californiensis	E00229	11494	14	772	651	746	812	0
Hapalogenyidae	Hapalogenys aya	M01722	4098	4	0	0	1089	0	0
Hapalogenyidae	Hapalogenys kishinouyei	M01723	3627	4	0	651	0	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Hapalogenyidae	Hapalogenys nigripinnis	M01724	4735	5	0	651	1078	0	0
Harpagiferidae	Harpagifer antarcticus	G01524	10362	11	879	0	0	2263	0
Helostomatidae	Helostoma temminkii	G01315	8144	9	858	0	0	2069	0
Hemiramphidae	Arrhamphus sclerolepis	G01209	7917	10	867	0	636	0	0
Hemiramphidae	Hemiramphus brasiliensis	E00098	10104	12	715	632	541	768	0
Hemiramphidae	Hyporhamphus affinis	E01068	5623	7	0	636	0	0	1170
Hemiramphidae	Hyporhamphus dussumieri	E01086	3078	4	0	651	0	0	0
Hemiramphidae	Oxyporhamphus micropterus	E00397	8076	9	0	651	1127	774	1166
Hexagrammidae	Hexagrammos decagrammus	E00348	7318	10	776	620	0	0	0
Hexagrammidae	Hexagrammos lagocephalus otakii	E00363	13109	16	777	651	1140	1072	0
Hexagrammidae	Pleurogrammus monopterygius	E00367	6904	9	0	654	1140	0	0
Hexagrammidae	Zaniolepis frenata	E00353	6326	9	777	654	0	492	0
Himantolophidae	Himantolophus albinares sagamius	E00656	16540	18	695	0	0	2252	1040
Hoplichthyidae	Hoplichthys gilberti	N17743	5272	7	0	0	0	0	0
Hoplichthyidae	Hoplichthys langsdorfii	N17745	5443	7	0	0	0	0	0
Howellidae	Howella brodiei	E00816	11083	12	873	654	0	1773	0
Howellidae	Howella zina	N17756	5489	7	0	0	0	0	0
Hypoptychidae	Aulichthys japonicus	G01216	11602	12	879	647	1119	2252	0
Hypoptychidae	Hypoptychus dybowskii	G01335	10399	11	870	0	0	2251	0
lcosteidae	Icosteus aenigmaticus	G01336	7173	9	774	651	0	768	0
Indostomidae	Indostomus crocodilus	N17863	5047	7	0	0	0	0	0
Indostomidae	Indostomus paradoxus	E01156	10345	11	0	0	0	2256	0
Isonidae	lso sp	E00145	8043	10	729	0	0	0	0
Istiophoridae	Istiophorus platypterus	E00695	12698	12	747	654	1140	2254	0
Istiophoridae	Kajikia albida	E00681	7868	10	756	654	0	0	0
Istiophoridae	Makaira nigricans	E00697	11395	12	0	654	1140	1604	0
Istiophoridae	Makaira sp	E00692	8009	9	741	0	0	1745	0
Istiophoridae	Tetrapturus angustirostris	N01741	7787	10	720	0	0	0	0
Kuhliidae	Kuhlia marginata	G01341	10248	12	879	648	0	0	0
Kuhliidae	Kuhlia mugil	E00712	16962	18	0	651	1134	2252	0

Table A4d. Continu	ed								
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	сүт ь	16s	нох
Kuhliidae	Kuhlia rupestris	E00957	12721	15	729	654	1122	788	0
Kurtidae	Kurtus gulliveri	E00188	16737	18	705	654	1101	1743	1119
Kurtidae	Kurtus indicus	N17950	5074	7	0	0	0	0	0
Kyphosidae	Kyphosus cinerascens	N17975	7672	10	725	0	0	0	0
Kyphosidae	Kyphosus elegans	G01342	9674	11	879	0	0	0	0
Kyphosidae	Kyphosus incisor	E00202	6684	8	0	654	0	0	0
Kyphosidae	Kyphosus sectatrix	E00775	12318	14	696	654	1122	1730	0
Labridae	Anampses lineatus	E00932	8645	11	771	651	1068	825	0
Labridae	Bodianus axillaris	E00947	9242	11	750	654	1068	825	1145
Labridae	Bodianus mesothorax	E00560	14044	17	711	651	0	817	1043
Labridae	Cheilinus chlorourus	E00907	9227	12	774	651	1068	825	0
Labridae	Cheilinus fasciatus	E00876	8639	11	768	651	1068	825	0
Labridae	Cheilinus oxycephalus	E00901	6640	8	770	651	1068	825	0
Labridae	Cheilio inermis	E00906	9477	11	0	645	1053	825	1168
Labridae	Cirrhilabrus katherinae	E00728	6057	8	720	0	0	0	963
Labridae	Cirrhilabrus punctatus	E00553	5794	7	698	0	0	817	0
Labridae	Clepticus parrae	E00015	14928	18	720	648	0	817	1100
Labridae	Coris batuensis	N18137	4801	6	878	0	0	0	0
Labridae	Coris caudimacula	E00861	11177	14	770	651	1068	825	0
Labridae	Coris formosa	E00912	8465	11	771	651	0	0	1028
Labridae	Coris gaimard	E00091	11874	15	726	651	0	825	0
Labridae	Decodon puellaris	E00620	7367	9	0	651	0	0	1127
Labridae	Diproctacanthus xanthurus	G01278	8556	10	858	0	0	817	0
Labridae	Epibulus insidiator	E00879	16078	19	768	651	1068	825	1011
Labridae	Gomphosus varius	E00085	11071	14	713	648	558	825	0
Labridae	Halichoeres bathyphilus bivittatus	E00637	13256	16	879	651	0	942	1112
Labridae	Halichoeres biocellatus	E00727	50 9 4	7	675	651	0	942	0
Labridae	Halichoeres iridis	E00928	6442	8	771	650	0	0	0
Labridae	Halichoeres margaritaceus	N18205	5528	7	878	0	0	0	0
Labridae	Hologymnosus doliatus	E00567	10593	13	0	645	0	942	1125

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Labridae	Labrichthys unilineatus	G01344	10143	12	879	645	0	939	0
Labridae	Labroides dimidiatus	E00848	9046	11	759	651	1068	825	0
Labridae	Labropsis australis	G01345	9319	11	879	0	0	817	0
Labridae	Lachnolaimus maximus	E00014	12305	15	695	654	0	817	1117
Labridae	Macropharyngodon bipartitus	E00895	7503	10	770	651	0	825	0
Labridae	Novaculichthys taeniourus	E00926	12181	15	777	651	0	825	1144
Labridae	Oxycheilinus celebicus	G01412	8510	10	879	0	0	824	0
Labridae	Oxycheilinus digramma	E00873	10757	13	771	651	1068	825	861
Labridae	Oxycheilinus unifasciatus	E00721	7878	9	0	651	1041	825	1048
Labridae	Oxyjulis californica	G01413	7537	9	879	654	0	691	0
Labridae	Pseudocheilinus evanidus	E00944	6483	9	764	651	0	823	0
Labridae	Pseudocheilinus hexataenia	E00945	7019	9	768	609	0	824	1072
Labridae	Pteragogus enneacanthus	G01457	6723	8	0	0	0	0	0
Labridae	Stethojulis balteata	E00089	4889	6	717	651	0	927	941
Labridae	Stethojulis strigiventer	E00908	11343	15	768	651	498	825	951
Labridae	Tautoga onitis	G01499	9257	11	879	648	0	905	0
Labridae	Tautogolabrus adspersus	G01500	10397	12	879	651	1140	905	0
Labridae	Thalassoma amblycephalum	E00891	10041	13	771	651	558	825	0.
Labridae	Thalassoma lunare	E00902	11967	15	771	651	558	825	1140
Labridae	Thalassoma quinquevittatum	E00092	6872	9	717	651	558	825	0
Labridae	Wetmorella nigropinnata	E00948	11203	14	768	651	1059	825	0
Labridae	Xyrichtys novacula martinicensis	E00016	18002	21	879	654	1140	772	1173
Labrisomidae	Labrisomus bucciferus	E00301	5621	7	777	641	0	0	1022
Labrisomidae	Labrisomus guppyi multiporosus	E00300	8447	10	870	0	0	788	0
Labrisomidae	Labrisomus nigricinctus	E00302	4582	6	777	647	0	0	0
Labrisomidae	Malacoctenus aurolineatus	E00299	2229	3	687	0	0	0	0
Labrisomidae	Malacoctenus triangulatus	E00321	3751	4	776	0	0	911	0
Labrisomidae	Paraclinus marmoratus	E00309	4124	5	777	651	0	0	922
Labrisomidae	Starksia atlantica	E00304	5512	7	777	654	0	0	1125
Labrisomidae	Starksia fasciata	E00303	7567	9	776	633	0	0	1041

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Labrisomidae	Starksia ocellata	E00318	4469	6	777	587	0	0	0
Lactariidae	Lactarius lactarius Fiji	M01673	3453	4	0	651	0	0	0
Lactariidae	Lactarius lactarius Qatar	M01593	4041	5	0	654	0	0	0
Lateolabracidae	Lateolabrax japonicus	E01130	12539	12	873	606	1134	2252	0
Latridae	Latridopsis forsteri	M01594	4790	5	0	651	0	0	0
Latridae	Latris lineata	M01595	4794	5	0	654	0	0	0
Leiognathidae	Gazza minuta	G01298	8150	10	858	654	0	911	0
Leiognathidae	Leiognathus equulus	G01348	8522	11	726	645	582	911	0
Leptobramidae	Leptobrama muelleri	E01150	6470	8	0	615	0	872	0
Lethrinidae	Gymnocranius grandoculis	E00952	7334	9	677	651	1140	0	0
Lethrinidae	Lethrinus atkinsoni	E00750	7416	10	687	654	1140	0	0
Lethrinidae	Lethrinus erythropterus	N18731	7589	9	860	0	0	0	0
Lethrinidae	Lethrinus harak	E00905	18169	21	708	651	1140	1718	0
Lethrinidae	Lethrinus obsoletus	E00910	14297	15	705	0	1140	2264	0
Lethrinidae	Lethrinus olivaceus	E00751	11020	13	722	651	1140	0	0
Lethrinidae	Monotaxis grandoculis	G01379	11352	12	879	651	0	2253	0
Liparidae	Careproctus melanurus	E00422	5235	7	0	654	0	719	0
Liparidae	Careproctus rastrinus	E00255	6920	8	773	651	741	1611	0
Liparidae	Liparis gibbus	E00224	9360	11	846	651	768	935	0
Liparidae	Liparis pulchellus	E00225	5675	7	777	654	0	935	1110
Liparidae	Paraliparis beani	E00458	3871	5	723	0	0	0	0
Liparidae	Paraliparis copei	E00453	6908	9	711	0	0	910	0
Liparidae	Paraliparis hystrix	E00454	8881	11	710	0	0	0	0
Liparidae	Rhinoliparis barbulifer	E00262	5284	7	0	651	0	911	0
Lobotidae	Lobotes pacificus surinamensis	G01359	9710	12	638	651	723	813	0
Lophiidae	Lophiodes reticulatus	E00625	8318	11	705	624	0	0	0
Lophiidae	Lophius americanus	E00578	16809	19	690	654	525	2256	0
Lophiidae	Lophius gastrophysus	E01119	13495	17	879	654	525	0	1169
Lutjanidae	Aphareus furca	E00563	13687	16	702	654	1140	943	0
Lutjanidae	Aprion virescens	E00828	8178	10	714	654	918	945	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	HOX
Lutjanidae	Apsilus dentatus	E00770	8017	10	714	654	963	0	0
Lutjanidae	Lutjanus biguttatus	E00569	10110	12	650	0	0	0	0
Lutjanidae	Lutjanus campechanus	E00592	9830	12	729	651	801	971	0
Lutjanidae	Lutjanus griseus	N20115	7237	9	815	0	0	0	0
Lutjanidae	Lutjanus mahogoni	G01362	10416	12	879	654	1140	0	0
Lutjanidae	Macolor niger	E00939	9071	11	711	654	894	947	0
Lutjanidae	Ocyurus chrysurus	E00283	13831	16	777	654	963	971	0
Lutjanidae	Pristipomoides aquilonaris	E00594	10332	13	693	654	963	788	0
Lutjanidae	Pristipomoides auricilla	E00746	6210	8	0	624	0	0	0
Lutjanidae	Rhomboplites aurorubens	E00593	13759	16	711	654	1062	971	0
Luvaridae	Luvarus imperialis	E00509	15760	19	879	654	0	2252	1043
Malacanthidae	Caulolatilus intermedius	E00595	8981	11	696	654	1124	0	0
Malacanthidae	Caulolatilus princeps	E00231	11865	15	768	627	0	738	0
Malacanthidae	Malacanthus plumieri	E00774	8060	10	642	639	0	872	0
Mastacembelidae	Macrognathus siamensis	G01367	8287	10	87 9	621	0	0	0
Mastacembelidae	Mastacembelus brachyrhinus	N01727	6948	8	786	0	0	0	0
Mastacembelidae	Mastacembelus cunningtoni	N20638	7046	8	878	0	0	0	0
Mastacembelidae	Mastacembelus erythrotaenia	E01157	5328	7	0	627	0	870	0
Mastacembelidae	Mastacembelus niger	N20658	7640	9	800	0	0	0	0
Melanocetidae	Melanocetus johnsonii	E00657	12119	14	698	651	1140	2252	0
Melanocetidae	Melanocetus murrayi	E00477	8829	10	660	0	0	2252	0
Melanotaeniidae	Melanotaenia sp	N35702	6890	8	869	0	0	0	0
Melanotaeniidae	Melanotaenia splendida	E00179	10979	13	729	651	1128	0	0
Melanotaeniidae	Melanotaenia trifasciata	E00178	7620	9	705	0	1128	0	0
Melanotaeniidae	Rhadinocentrus ornatus	E00183	8085	9	720	602	1128	773	0
Menidae	Mene maculata	E01131	14538	17	714	654	828	1729	0
Microdesmidae	Cerdale floridana	E00113	5251	7	729	620	1103	0	0
Microdesmidae	Gunnellichthys monostigma	E00545	4244	6	0	651	0	0	0
Microdesmidae	Microdesmus bahianus	E00112	6294	8	729	654	1104	0	0
Microdesmidae	Microdesmus Ionaipinnis	F00388	7384	9	699	0	1104	0	1163

Table A4d. Continued	d								
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Microdesmidae	Nemateleotris magnifica	N20888	3449	4	722	0	0	0	0
Microdesmidae	Ptereleotris evides	E00565	10142	12	699	650	0	0	1174
Microdesmidae	Ptereleotris microlepis	E00554	6773	9	681	0	581	0	1174
Molidae	Masturus lanceolatus	E00651	10906	12	879	0	693	2254	0
Molidae	Mola mola	E00683	12859	14	771	651	696	2254	0
Molidae	Ranzania laevis	G01463	10882	12	765	651	1140	2254	0
Monacanthidae	Acreichthys tomentosus	N21168	5898	7	0	0	0	0	0
Monacanthidae	Aluterus scriptus	E00316	8934	9	771	648	1140	2253	0
Monacanthidae	Amanses scopas	E00536	7667	7	0	651	0	2253	1140
Monacanthidae	Cantherhines pardalis pullus	E00887	13701	14	714	650	0	2253	1091
Monacanthidae	Oxymonacanthus longirostris	E00914	7920	8	0	648	0	2253	0
Monacanthidae	Paraluteres prionurus	E00913	10156	10	0	639	0	2253	0
Monacanthidae	Pervagor janthinosoma	N21229	7625	9	0	0	0	0	0
Monacanthidae	Pervagor nigrolineatus	N21232	5912	7	0	0	0	0	0
Monacanthidae	Stephanolepis hispidus	E00646	10631	13	780	654	1128	772	0
Monodactylidae	Monodactylus argenteus	E00827	11839	12	764	639	0	2252	0
Monodactylidae	Monodactylus sebae	N21267	8411	10	878	0	0	0	0
Moronidae	Dicentrarchus labrax	E01132	13167	14	873	654	1140	1773	0
Moronidae	Morone americana	E00017	4648	6	732	651	0	909	0
Moronidae	Morone chrysops	E00992	15777	17	765	651	1140	1773	0
Moronidae	Morone mississippiensis	E00087	11851	14	684	612	1140	0	1129
Moronidae	Morone saxatilis	G01380	9541	12	843	0	0	346	0
Mugilidae	Chelon macrolepis	E00845	8599	11	771	598	784	908	1119
Mugilidae	Crenimugil crenilabis	E00846	12826	14	771	586	912	2255	1107
Mugilidae	Liza richardsonii	E00808	12339	15	771	598	784	810	1167
Mugilidae	Moolgarda engeli	E00739	6506	8	0	598	784	0	1119
Mugilidae	Mugil cephalus	E00049	13859	15	879	651	1140	2255	0
Mugilidae	Mugil curema	E00031	15184	16	879	651	702	2253	1171
Mugilidae	Mugil trichodon	E00765	10230	11	717	619	1044	1841	1041
Mugilidae	Myxus capensis	E00809	9832	10	762	556	1044	2255	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	НОХ
Mugilidae	Neomyxus leuciscus	E00742	10501	12	708	602	784	1821	1053
Mugilidae	Valamugil buchanani	E00847	12275	15	768	651	784	810	1122
Mullidae	Mulloidichthys flavolineatus	E00844	9135	11	750	654	0	0	0
Mullidae	Mullus auratus	E00634	10617	12	0	654	0	1726	1031
Mullidae	Parupeneus barberinus	E00899	8131	10	768	654	0	0	0
Mullidae	Parupeneus ciliatus	E00840	5965	8	768	651	0	0	0
Mullidae	Parupeneus trifasciatus	N21710	5845	7	776	0	0	0	0
Mullidae	Pseudupeneus maculatus	E00773	9043	11	789	640	0	788	1038
Mullidae	Upeneus moluccensis	E00825	7964	10	762	654	0	0	0
Mullidae	Upeneus parvus	N21732	3287	4	0	0	0	0	0
Nandidae	Nandus andrewi	N22312	8474	10	872	0	0	0	0
Nandidae	Nandus nandus	G01388	11524	13	861	631	1128	0	0
Nandidae	Nandus nebulosus	N22314	7688	9	821	0	0	0	0
Nematistiidae	Nematistius pectoralis	E01146	12623	14	879	634	0	2165	0
Nemipteridae	Pentapodus caninus	G01427	8879	11	879	654	0	788	0
Nemipteridae	Scolopsis bilineata	E00028	14791	16	879	0	1116	1718	1052
Nemipteridae	Scolopsis frenata	E00911	6514	8	768	0	0	0	1011
Nemipteridae	Scolopsis margaritifera	G01478	7404	9	879	0	0	0	0
Niphonidae	Niphon spinosus	G01398	4377	5	0	0	0	0	0
Nomeidae	Cubiceps baxteri	G01271	9684	12	765	651	0	805	0
Nomeidae	Cubiceps gracilis	E00672	8634	11	693	654	0	0	0
Nomeidae	Cubiceps pauciradiatus	E00667	9277	9	0	0	0	2255	1165
Nomeidae	Psenes cyanophrys	E00666	6230	6	0	651	1140	2255	0
Nomeidae	Psenes maculatus	N23089	7094	9	713	0	0	0	0
Nototheniidae	Aethotaxis mitopteryx	G01528	7979	9	879	648	517	2263	0
Nototheniidae	Dissostichus eleginoides	G01279	12707	14	879	642	678	2252	0
Nototheniidae	Gobionotothen gibberifrons	G01529	8961	10	759	654	1075	2263	0
Nototheniidae	Notothenia coriiceps	G01526	9628	10	0	513	1089	2263	0
Nototheniidae	Pagothenia borchgrevinki	G01527	9352	10	0	651	575	2263	0
Nototheniidae	Patagonotothen tessellata	G01530	10915	12	879	648	525	2263	0
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	HOX
-----------------	-----------------------------	---------	-------------	---------	------	-----	-------	------	------
Odacidae	Haletta semifasciata	G01312	9038	11	0	654	0	761	0
Odontobutidae	Odontobutis potamophila	E01137	12389	14	879	621	1104	1745	0
Odontobutidae	Perccottus glenii	G01429	9285	11	837	654	1107	0	0
Ogcocephalidae	Dibranchus tremendus	E00975	8668	11	0	0	0	0	0
Ogcocephalidae	Halieutichthys aculeatus	E01122	5969	8	0	0	0	712	0
Ogcocephalidae	Ogcocephalus parvus nasutus	E00610	11181	14	0	0	0	788	0
Ogcocephalidae	Ogcocephalus radiatus	E00641	3592	4	0	0	0	0	0
Oneirodidae	Bertella idiomorpha	E00386	7368	8	0	651	0	2252	0
Oneirodidae	Dolopichthys sp	E00484	3002	4	657	0	0	0	0
Oneirodidae	Oneirodes bulbosus	E00176	5086	7	720	654	0	0	0
Oneirodidae	Oneirodes macrosteus	E00655	7815	10	696	0	0	0	0
Ophidiidae	Bassogigas gillii	E00481	5439	7	696	0	0	0	0
Ophidiidae	Brotula barbata	E00629	8900	12	726	0	1140	0	0
Ophidiidae	Brotula multibarbata	E00883	12654	16	879	651	0	0	0
Ophidiidae	Brotulotaenia crassa	E00659	7913	10	716	654	0	0	0
Ophidiidae	Brotulotaenia nigra	E00817	8794	11	720	624	0	0	0
Ophidiidae	Chilara taylori	E00260	6335	8	777	650	0	743	1138
Ophidiidae	Dicrolene introniger	E00480	8819	11	675	0	1140	0	0
Ophidiidae	Genypterus blacodes	E00241	3596	4	0	648	0	782	0
Ophidiidae	Lamprogrammus niger	E00275	11903	13	762	654	0	2252	0
Ophidiidae	Lepophidium brevibarbe	E00758	5469	7	699	648	0	0	0
Ophidiidae	Lepophidium jeannae	E00621	4709	6	678	0	0	0	0
Ophidiidae	Lepophidium profundorum	E00248	3341	4	0	651	0	788	0
Ophidiidae	Neobythites gilli	E00612	7830	10	720	0	0	0	0
Ophidiidae	Ophidion holbrookii	E01033	7171	9	663	651	0	0	0
Ophidiidae	Ophidion josephi	E00648	6546	8	705	0	0	0	0
Ophidiidae	Ophidion robinsi	E01007	6730	8	705	0	0	0	1161
Ophidiidae	Petrotyx sanguineus	E00206	4716	6	768	624	0	0	0
Opistognathidae	Lonchopisthus micrognathus	E00603	6548	8	0	605	0	0	1029
Opistognathidae	Opistognathus aurifrons	E00216	9008	11	0	654	0	788	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Opistognathidae	Opistognathus maxillosus	E00207	6793	8	777	654	0	1753	0
Oplegnathidae	Oplegnathus punctatus	G01405	12420	13	879	654	0	2252	0
Osphronemidae	Betta splendens	G01226	9892	10	873	651	1137	2071	0
Osphronemidae	Trichopodus pectoralis	N24415	4860	7	728	0	0	0	0
Ostraciidae	Acanthostracion quadricornis	E00760	5464	6	717	651	1089	778	0
Ostraciidae	Ostracion cubicus	E00588	12421	15	714	654	1140	788	1151
Ostraciidae	Rhinesomus triqueter	G01469	10814	13	861	654	1089	778	0
Ostracoberycidae	Ostracoberyx dorygenys	N24448	6883	9	713	0	0	0	0
Parabembridae	Parabembras curtus	N24483	6893	9	722	0	0	0	0
Paralichthyidae	Ancylopsetta ommata	E00001	8842	10	705	0	0	773	1075
Paralichthyidae	Citharichthys arctifrons	E00043	6688	8	0	651	0	1752	0
Paralichthyidae	Citharichthys sordidus	E00446	12907	14	0	0	0	1733	0
Paralichthyidae	Cyclopsetta chittendeni	E00597	10244	12	0	651	0	1745	0
Paralichthyidae	Etropus crossotus	E00647	8021	9	0	651	0	1745	0
Paralichthyidae	Etropus microstomus	E00047	5197	5	0	651	0	1736	0
Paralichthyidae	Gastropsetta frontalis	E00640	2345	3	0	0	0	0	1119
Paralichthyidae	Paralichthys albigutta	E01171	8241	9	0	617	0	1753	0
Paralichthyidae	Paralichthys californicus	E00020	8905	10	723	651	681	1753	0
Paralichthyidae	Paralichthys dentatus	N24591	7812	9	878	0	0	0	0
Paralichthyidae	Pseudorhombus pentophthalmus	E00077	10302	11	0	651	0	1753	1184
Paralichthyidae	Syacium micrurum	E00633	9035	11	0	653	0	1753	0
Paralichthyidae	Xystreurys liolepis	E00021	9760	10	0	651	0	1753	0
Pegasidae	Eurypegasus draconis	N24699	2094	3	0	0	0	0	0
Pempheridae	Parapriacanthus ransonneti	E00923	11086	13	717	654	0	0	1077
Pempheridae	Pempheris oualensis	E00718	9245	11	714	648	0	0	0
Pempheridae	Pempheris schomburgkii	E00213	10586	12	777	627	0	1717	0
Pempheridae	Pempheris schwenkii	N01628	5322	7	0	0	0	0	0
Pempheridae	Pempheris vanicolensis	E00886	8350	10	708	653	0	972	1032
Pentacerotidae	Histiopterus typus	N24730	6890	9	713	0	0	0	0
Pentacerotidae	Paristiopterus labiosus	M01629	3261	4	0	654	1110	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	HOX
Pentacerotidae	Pentaceros japonicus	N24735	7793	10	713	0	0	0	0
Pentacerotidae	Pentaceros pectoralis	N01736	5434	7	739	0	0	0	0
Pentacerotidae	Pentaceros wheeleri	N01737	7434	9	759	0	0	0	0
Pentacerotidae	Zanclistius elevatus	M01631	2901	3	0	654	0	0	0
Percichthyidae	Gadopsis marmoratus	E01144	13223	14	0	0	0	1745	0
Percichthyidae	Maccullochella peelii	G01365	11015	13	858	654	0	740	0
Percichthyidae	Macquaria ambigua	G01366	10488	13	723	654	0	747	0
Percichthyidae	Macquaria colonorum	G01431	10574	13	756	654	0	747	0
Percichthyidae	Macquaria novemaculeata	G01432	10525	13	732	654	0	747	0
Percichthyidae	Nannoperca australis	G01389	11969	14	732	600	1140	1332	0
Percichthyidae	Percichthys trucha	G01430	9417	9	873	0	0	1773	0
Percidae	Ammocrypta beanii	E00187	8350	10	722	639	0	0	1049
Percidae	Ammocrypta meridiana	E00148	8201	10	717	645	0	0	1072
Percidae	Ammocrypta pellucida	E00149	9339	11	714	651	1077	0	1044
Percidae	Crystallaria asprella	E00153	8415	10	723	639	1140	0	0
Percidae	Etheostoma atripinne	G01290	7713	9	879	0	0	0	0
Percidae	Etheostoma juliae	E00168	11455	14	723	651	1140	0	0
Percidae	Etheostoma simoterum	E00152	12189	15	711	651	1140	0	0
Percidae	Etheostoma vitreum	E00147	11025	13	716	651	1119	0	1081
Percidae	Etheostoma zonale	E01111	13171	16	735	651	1140	0	1169
Percidae	Gymnocephalus cernuus	E00140	7525	10	0	651	1140	609	0
Percidae	Gymnocephalus schraetser	E00141	6323	8	711	0	1140	0	0
Percidae	Perca flavescens	E00391	14692	16	873	654	1134	2252	0
Percidae	Perca fluviatilis	G01428	10413	11	0	651	1134	2046	0
Percidae	Percina caprodes	E01054	15273	18	861	651	1140	788	1159
Percidae	Percina nigrofasciata	E00154	7519	9	722	651	1140	0	0
Percidae	Percina phoxocephala	E00150	9105	11	741	651	1107	0	0
Percidae	Romanichthys valsanicola	E00143	9564	12	0	0	1140	0	956
Percidae	Sander vitreus	E01109	10398	10	0	651	0	2251	1174
Percidae	Zingel streber	E00144	5447	7	0	651	1140	788	0

ł

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Percidae	Zingel zingel	E00142	6114	8	723	650	1140	0	0
Perciliidae	Percilia irwini	N24981	6918	9	731	0	0	0	0
Percophidae	Acanthaphritis unoorum	N24985	5579	7	0	0	0	0	0
Peristediidae	Peristedion ecuadorense	E00456	6094	7	687	0	0	0	1038
Peristediidae	Peristedion gracile	E01029	2905	4	719	0	0	788	0
Peristediidae	Peristedion truncatum	E00450	3441	5	657	0	0	0	0
Phallostethidae	Phenacostethus smithi	E00398	7945	10	723	0	0	0	0
Pholidae	Pholis crassispina	G01437	12482	14	879	585	519	2252	0
Pholidae	Pholis ornata	N01732	8528	10	879	0	0	0	0
Pholidichthyidae	Pholidichthys leucotaenia	E00251	11101	12	0	648	0	1753	0
Pinguipedidae	Parapercis clathrata	E00707	10851	13	690	0	0	0	0
Pinguipedidae	Parapercis hexophtalma	E01083	11528	14	729	651	0	0	0
Pinguipedidae	Parapercis punctulata	E01091	7008	9	723	621	0	0	1173
Platycephalidae	Platycephalus indicus	N25405	6719	9	713	0	0	0	0
Platycephalidae	Rogadius asper	N25418	6352	9	722	0	0	0	0
Platycephalidae	Sunagocia arenicola	E00708	5403	7	714	650	0	0	1134
Platycephalidae	Thysanophrys chiltonae	E00864	8747	10	0	602	0	1751	1168
Plesiopidae	Plesiops coeruleolineatus	E00855	15452	18	720	654	0	1529	0
Plesiopidae	Plesiops melas	G01442	8238	10	858	0	0	0	0
Pleuronectidae	Atheresthes evermanni	E00055	8437	8	0	0	665	1753	0
Pleuronectidae	Embassichthys bathybius	E00064	11340	12	0	654	0	1742	1127
Pleuronectidae	Eopsetta jordani	E00444	14474	17	0	651	0	1732	1031
Pleuronectidae	Glyptocephalus zachirus	E00416	10353	12	0	650	0	1753	0
Pleuronectidae	Hippoglossoides elassodon	E00424	12527	13	0	651	1140	1752	1031
Pleuronectidae	Hippoglossus hippoglossus	E00689	10279	12	0	654	1140	1750	1038
Pleuronectidae	Hypsopsetta guttulata	E00022	9133	9	0	651	0	1753	1065
Pleuronectidae	Isopsetta isolepis	E00018	6603	8	0	654	0	761	0
Pleuronectidae	Lepidopsetta bilineata	E00438	16335	19	879	654	0	1721	1050
Pleuronectidae	Limanda limanda	E00690	7013	8	0	654	1140	1751	0
Pleuronectidae	Lyopsetta exilis	E01173	6171	7	0	651	0	1752	0

Table Add Continued

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Pleuronectidae	Microstomus pacificus	E00433	10016	12	0	654	0	1751	1074
Pleuronectidae	Parophrys vetulus	E00445	12033	14	0	651	0	1731	1041
Pleuronectidae	Platichthys stellatus	E00026	7842	9	0	636	0	2254	0
Pleuronectidae	Pleuronectes platessa	E00053	14871	17	879	651	906	1752	0
Pleuronectidae	Psettichthys melanostictus	E00025	9364	11	717	651	0	1729	0
Pleuronectidae	Pseudopleuronectes americanus	E00035	15563	18	717	651	0	1748	0
Poeciliidae	Belonesox belizanus	E01052	10182	11	0	654	1128	0	1027
Poeciliidae	Gambusia affinis	G01296	11403	12	879	651	0	2247	0
Poeciliidae	Heterandria formosa	E00185	10113	11	0	647	1128	0	1091
Poeciliidae	Poecilia latipinna reticulata	E01065	12149	14	0	641	0	0	1169
Poeciliidae	Poeciliopsis elongata	N01734	6863	8	0	0	0	0	0
Poecilopsettidae	Poecilopsetta beanii	E00448	5472	7	0	0	0	0	0
Poecilopsettidae	Poecilopsetta plinthus	E00073	9752	10	642	0	0	1753	0
Polycentridae	Monocirrhus polyacanthus	G01377	8420	10	876	0	0	765	0
Polycentridae	Polycentropsis abbreviata	N26006	8369	10	746	0	0	0	0
Polycentridae	Polycentrus schomburgkii	G01444	8382	10	879	0	0	0	0
Polynemidae	Eleutheronema rhadinum	N26015	7791	10	710	0	0	0	0
Polynemidae	Eleutheronema tetradactylum	E01154	7961	9	0	654	0	782	0
Polynemidae	Leptomelanosoma indicum	E00842	11242	14	711	654	0	755	1049
Polynemidae	Polydactylus octonemus	E00606	9992	13	711	0	0	0	0
Polynemidae	Polydactylus sextarius	N26043	5532	7	713	0	0	0	0
Polynemidae	Polydactylus virginicus	E00217	11602	13	777	654	0	1753	1173
Polyprionidae	Polyprion americanus	E00242	7677	9	771	654	1122	0	0
Polyprionidae	Polyprion oxygeneios	M01632	4716	5	0	654	1110	0	0
Polyprionidae	Stereolepis gigas	E00227	14211	17	858	654	0	916	0
Pomacanthidae	Apolemichthys trimaculatus	E00839	9202	12	708	651	387	853	0
Pomacanthidae	Centropyge bicolor	E00550	11381	15	708	651	594	817	0
Pomacanthidae	Centropyge loricula	E00284	9087	10	768	623	639	2251	0
Pomacanthidae	Centropyge nox	E00542	8384	11	710	636	387	0	0
Pomacanthidae	Chaetodontoplus melanosoma	G01244	8178	10	801	645	0	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	НОХ
Pomacanthidae	Holacanthus ciliaris	E00209	6815	8	777	635	0	0	0
Pomacanthidae	Holacanthus passer	E00282	12494	15	861	654	696	813	1121
Pomacanthidae	Holacanthus tricolor	E00198	7349	9	0	654	0	847	1019
Pomacanthidae	Pomacanthus arcuatus	E00754	8027	10	702	654	0	911	0
Pomacanthidae	Pomacanthus imperator	E00710	9192	12	708	651	393	907	0
Pomacanthidae	Pomacanthus semicirculatus	E00849	10414	14	711	648	393	858	0
Pomacanthidae	Pomacanthus zonipectus	G01448	9113	11	879	651	0	797	0
Pomacanthidae	Pygoplites diacanthus	E00534	10507	13	702	651	387	911	0
Pomacentridae	Abudefduf saxatilis	E00820	14973	18	879	654	0	817	841
Pomacentridae	Abudefduf sexfasciatus	E00881	12145	15	696	651	1069	825	0
Pomacentridae	Abudefduf vaigiensis	E00890	12132	13	708	654	1071	2253	1035
Pomacentridae	Acanthochromis polyacanthus	E00466	8743	10	705	0	0	817	0
Pomacentridae	Amblyglyphidodon leucogaster	E00529	3808	4	0	651	0	817	0
Pomacentridae	Amphiprion clarkii	E00196	4604	6	0	582	1031	798	0
Pomacentridae	Amphiprion ocellaris	E00193	7717	7	0	5 9 9	1031	2250	0
Pomacentridae	Azurina hirundo	E00580	9629	12	714	651	0	817	0
Pomacentridae	Chromis atripectoralis	E00238	9353	11	770	651	1071	825	1089
Pomacentridae	Chromis cyanea	E00201	13033	15	774	629	0	0	1124
Pomacentridae	Chromis dimidiata	E00851	9724	12	720	649	1071	825	0
Pomacentridae	Chrysiptera taupou	E00564	9950	13	705	650	0	0	0
Pomacentridae	Dascyllus aruanus	E00700	11886	14	702	651	1071	825	0
Pomacentridae	Dascyllus carneus	E00862	11899	14	711	651	1071	825	0
Pomacentridae	Dascyllus reticulatus	E00724	8549	10	720	651	0	817	0
Pomacentridae	Dascyllus trimaculatus	E00865	6439	7	0	651	1071	817	0
Pomacentridae	Dischistodus perspicillatus	E00464	8931	11	711	0	0	817	0
Pomacentridae	Hypsypops rubicundus	E00459	7285	10	693	654	0	787	0
Pomacentridae	Lepidozygus tapeinosoma	E00929	7795	10	681	651	0	817	0
Pomacentridae	Microspathodon bairdii	G01375	8331	10	879	0	0	0	0
Pomacentridae	Microspathodon chrysurus	E00772	10751	13	678	654	0	817	0
Pomacentridae	Neoglyphidodon melas	E00465	9828	12	708	651	1071	825	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	НОХ
Pomacentridae	Neoglyphidodon polyacanthus	E00285	6455	8	777	650	0	0	0
Pomacentridae	Neopomacentrus cyanomos	E00933	8888	11	699	650	1071	825	0
Pomacentridae	Parma microlepis	E00286	5332	7	0	0	0	817	0
Pomacentridae	Plectroglyphidodon dickii	E00572	13722	16	705	650	1071	825	0
Pomacentridae	Plectroglyphidodon johnstonianus	E00722	7987	10	702	641	0	825	0
Pomacentridae	Pomacentrus brachialis	E00239	9865	12	768	0	0	897	958
Pomacentridae	Pomacentrus pavo	E00729	12503	15	705	650	1070	825	0
Pomacentridae	Pomacentrus spilotoceps	E00557	6421	9	705	617	0	0	0
Pomacentridae	Pomachromis richardsoni	£00559	8319	11	705	0	0	817	0
Pomacentridae	Stegastes albifasciatus	E00713	6612	9	710	650	0	825	0
Pomacentridae	Stegastes diencaeus	E00219	6060	8	768	650	0	817	0
Pomacentridae	Stegastes fuscus	E00203	12679	15	768	0	0	817	1122
Pomacentridae	Stegastes partitus	E00204	4367	6	768	650	0	816	0
Pomatomidae	Pomatomus saltatrix	E00516	16569	18	710	654	1140	2164	0
Priacanthidae	Heteropriacanthus cruentatus	E00570	14367	17	711	654	1140	0	0
Priacanthidae	Priacanthus arenatus	E00618	14657	18	705	648	0	788	0
Priacanthidae	Pristigenys alta	E00252	12492	14	864	0	0	1773	0
Pristolepididae	Pristolepis fasciata	N26580	7608	9	818	0	0	0	0
Pristolepididae	Pristolepis sp	N36627	8543	10	878	0	0	0	0
Psettodidae	Psettodes belcheri	E01180	6046	7	0	0	0	871	0
Psettodidae	Psettodes erumei	E01165	12034	14	738	654	0	1006	0
Pseudaphritidae	Pseudaphritis urvillii	G01453	8567	9	879	0	1119	2252	0
Pseudochromidae	Congrogadus subducens	G01262	8360	10	869	0	0	0	0
Pseudochromidae	Halidesmus scapularis	E00793	10231	13	711	654	0	903	0
Pseudochromidae	Labracinus cyclophthalmus	G01343	11328	12	879	651	0	2262	0
Pseudochromidae	Natalichthys sam	E00589	7891	10	654	651	0	0	0
Pseudochromidae	Ogilbyina novaehollandiae	G01403	8345	10	870	0	0	0	0
Pseudochromidae	Pholidochromis cerasina	G01436	8319	10	876	0	0	0	0
Pseudochromidae	Pseudochromis cyanotaenia	E00706	7668	10	708	0	0	0	0
Pseudochromidae	Pseudochromis fridmani	N26709	8561	10	878	0	0	0	0

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	НОХ
Pseudochromidae	Pseudochromis jamesi	E00535	6957	9	669	654	0	0	0
Pseudochromidae	Pseudoplesiops revellei	E00745	4311	6	0	654	0	0	0
Pseudomugilidae	Pseudomugil gertrudae	E00182	14736	18	720	622	0	809	0
Pseudomugilidae	Pseudomugil signifer	E00184	11998	15	699	602	504	809	0
Psychrolutidae	Cottunculus thomsonii	E00963	2374	3	0	0	0	613	1017
Psychrolutidae	Dasycottus setiger	E00288	5136	6	0	654	0	936	0
Psychrolutidae	Malacocottus zonurus	E00253	8212	10	771	651	1139	788	0
Psychrolutidae	Psychrolutes phrictus	E00276	5502	7	777	582	0	646	0
Rachycentridae	Rachycentron canadum	E00468	15775	17	723	654	1128	2260	0
Rhombosoleidae	Oncopterus darwinii	E01184	6659	7	0	0	0	872	0
Rhombosoleidae	Rhombosolea leporina	E01166	2980	3	0	0	0	1753	0
Rhombosoleidae	Rhombosolea plebeia	E01167	5378	6	0	0	0	1754	0
Rhombosoleidae	Rhombosolea tapirina	E01168	3805	4	0	654	0	1753	0
Samaridae	Plagiopsetta glossa	E00074	7559	8	0	0	0	1745	0
Samaridae	Samariscus japonicus	E00072	7912	8	0	0	0	1753	0
Samaridae	Samariscus latus	N27771	2733	3	0	0	0	0	0
Samaridae	Samariscus xenicus	E00078	7553	8	0	0	0	1745	0
Scaridae	Calotomus carolinus	N27783	7195	9	758	0	0	0	0
Scaridae	Cetoscarus bicolor	E00566	14113	17	762	651	0	770	1038
Scaridae	Chlorurus gibbus	E00561	6813	9	0	636	0	943	1042
Scaridae	Chlorurus sordidus	E00837	14642	16	768	648	0	2253	0
Scaridae	Cryptotomus roseus	N27805	7128	9	725	0	0	0	0
Scaridae	Hipposcarus longiceps	E00737	4541	6	0	0	579	770	1035
Scaridae	Leptoscarus vaigiensis	E00877	8427	11	0	627	0	770	1014
Scaridae	Scarus ghobban	E00878	9678	11	759	648	0	2253	0
Scaridae	Scarus globiceps	N27829	4729	6	0	0	0	0	0
Scaridae	Scarus iseri	E00013	7345	9	0	654	0	0	1101
Scaridae	Scarus niger	E00875	11274	14	766	0	0	817	0
Scaridae	Scarus quoyi	E00872	7432	10	0	0	0	817	0
Scaridae	Scarus rubroviolaceus	E00874	12027	13	764	650	0	2253	1171

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Scaridae	Sparisoma aurofrenatum	E00008	5465	7	0	58 9	0	770	1158
Scaridae	Sparisoma chrysopterum	E00070	2776	4	0	630	0	770	0
Scaridae	Sparisoma viride	E00004	6443	9	644	654	0	770	0
Scatophagidae	Scatophagus argus	E00051	13219	16	720	651	0	0	1070
Scatophagidae	Selenotoca multifasciata	G01483	9576	12	879	651	0	0	0
Sciaenidae	Aplodinotus grunniens	E01108	17827	19	879	654	1134	2255	1026
Sciaenidae	Atractoscion nobilis	E00125	9878	13	717	654	717	813	1061
Sciaenidae	Bairdiella chrysoura	E00165	7670	10	0	654	0	939	0
Sciaenidae	Cheilotrema saturnum	E00118	6644	9	717	651	0	751	0
Sciaenidae	Corvula sanctaeluciae	E01047	5698	7	723	0	0	0	0
Sciaenidae	Cynoscion arenarius	E00511	11444	13	699	654	741	2078	0
Sciaenidae	Cynoscion regalis	E00164	14880	18	723	654	741	971	1042
Sciaenidae	Genyonemus lineatus	E00138	9138	12	711	639	0	346	955
Sciaenidae	Larimus breviceps	E01048	4776	7	716	651	0	0	0
Sciaenidae	Leiostomus xanthurus	G01349	9972	12	879	621	0	943	0
Sciaenidae	Menticirrhus saxatilis	E00166	7177	9	711	654	0	0	0
Sciaenidae	Menticirrhus undulatus littoralis	E00127	15027	19	710	651	0	814	1029
Sciaenidae	Micropogonias undulatus	N01637	5789	8	735	0	0	0	0
Sciaenidae	Odontoscion dentex	E01049	5655	7	711	654	0	0	0
Sciaenidae	Pareques acuminatus	E01050	3516	4	0	654	0	0	0
Sciaenidae	Pareques umbrosus	E00639	6228	8	693	627	0	0	0
Sciaenidae	Pogonias cromis	E00699	8505	11	659	651	601	819	0
Sciaenidae	Sciaenops ocellatus	E01055	18596	20	873	654	705	2255	1166
Sciaenidae	Seriphus politus	E00123	7497	10	717	0	741	0	0
Sciaenidae	Stellifer lanceolatus	E00608	9278	12	696	654	0	0	0
Sciaenidae	Umbrina coroides	E00628	8595	11	687	654	0	0	0
Scomberesocidae	Cololabis saira	E00192	10242	11	0	654	541	2239	914
Scomberesocidae	Scomberesox saurus	E00404	10373	13	0	651	541	751	0
Scombridae	Acanthocybium solandri	E00927	14337	16	743	654	1140	835	1040
Scombridae	Auxis rochei	E00673	14617	18	764	518	511	1380	0

Table A40. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Scombridae	Euthynnus affinis	E00830	9732	12	737	651	511	0	1119
Scombridae	Euthynnus alletteratus	E00696	7879	11	0	654	511	0	0
Scombridae	Gymnosarda unicolor	E00832	9359	11	752	651	1140	0	1034
Scombridae	Katsuwonus pelamis	E00747	11259	13	723	508	604	2254	0
Scombridae	Sarda sarda	E00243	16203	19	768	507	1140	1007	0
Scombridae	Scomber japonicus	E00247	10495	12	767	654	511	2252	0
Scombridae	Scomber scombrus	E00626	19143	20	861	654	1140	2252	0
Scombridae	Scomberomorus maculatus sp	E00631	16041	19	717	0	511	0	0
Scombridae	Scomberomorus regalis commerson	E00694	9863	12	0	651	511	886	0
Scombridae	Thunnus albacares	E00831	18226	21	738	518	511	2254	0
Scombrolabracidae	Scombrolabrax heterolepis	E00976	11570	14	0	654	0	968	0
Scophthalmidae	Lepidorhombus boscii	E00462	9162	10	0	654	1140	1857	0
Scophthalmidae	Scophthalmus aquosus	E00039	10410	12	0	651	0	0	0
Scophthalmidae	Scophthalmus maximus	E01161	6280	5	0	654	1140	1753	0
Scorpaenidae	Caracanthus maculatus	E00716	8029	10	711	552	0	788	1037
Scorpaenidae	Caracanthus unipinna	E00558	6573	8	723	651	0	0	1011
Scorpaenidae	Dendrochirus zebra	E00897	7402	10	768	650	888	785	0
Scorpaenidae	Iracundus signifer	E00583	7125	9	720	0	0	660	0
Scorpaenidae	Neomerinthe hemingwayi	E00619	10221	12	642	0	0	1007	944
Scorpaenidae	Pontinus longispinis	E01010	7126	10	704	0	0	660	0
Scorpaenidae	Pontinus rathbuni	E00463	6391	8	723	0	0	0	1181
Scorpaenidae	Pterois antennata	E00705	8496	11	732	648	774	785	0
Scorpaenidae	Pterois miles	E00882	7015	9	711	651	876	785	1166
Scorpaenidae	Pterois radiata	E00850	8182	10	720	651	888	785	1121
Scorpaenidae	Scorpaena agassizii	E01038	2193	3	0	0	0	0	0
Scorpaenidae	Scorpaena brasiliensis	E00759	4986	7	0	645	0	788	0
Scorpaenidae	Scorpaena dispar	E00512	3690	5	714	0	0	0	0
Scorpaenidae	Scorpaena guttata	E00291	8547	10	777	651	0	760	1170
Scorpaenidae	Scorpaenodes albaiensis	E00532	4039	5	699	0	0	0	1184
Scorpaenidae	Scorpaenodes guamensis	E00870	6637	9	588	651	0	0	1165

Table A40. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Scorpaenidae	Scorpaenopsis longispina	E00903	7186	9	696	648	0	0	1102
Scorpaenidae	Scorpaenopsis oxycephala	E00581	5118	7	0	651	0	0	0
Scorpaenidae	Sebastapistes cyanostigma	E00888	8326	10	720	0	0	0	1183
Scorpaenidae	Taenianotus triacanthus	E00866	8147	10	704	642	0	658	1172
Sebastidae	Adelosebastes latens	E00066	2246	3	0	0	0	0	0
Sebastidae	Helicolenus dactylopterus	E00044	9920	12	717	645	1140	1468	0
Sebastidae	Sebastes aurora	E00349	8679	10	0	480	0	1745	0
Sebastidae	Sebastes diploproa	E00432	6421	8	711	456	0	940	0
Sebastidae	Sebastes fasciatus	G01482	8330	10	858	0	0	935	0
Sebastidae	Sebastes jordani	E00350	6619	9	0	456	780	940	0
Sebastidae	Sebastes paucispinis	E00354	6853	9	777	654	0	939	0
Sebastidae	Sebastes ruberrimus	N28709	6206	8	878	0	0	0	0
Sebastidae	Sebastolobus alascanus	E00417	12929	16	726	654	0	935	1181
Serranidae	Aethaloperca rogaa	E01079	6350	8	0	654	0	911	1089
Serranidae	Anthias nicholsi	E00447	6801	6	867	0	0	1773	0
Serranidae	Aporops bilinearis	E00531	7661	10	723	620	0	0	0
Serranidae	Baldwinella aureorubens	G01220	8097	10	738	0	0	0	0
Serranidae	Baldwinella vivana	E00338	3660	5	771	0	0	0	0
Serranidae	Centropristis striata	E00163	8944	11	701	654	0	9 65	0
Serranidae	Cephalopholis argus	E00868	14648	18	870	654	726	955	1096
Serranidae	Cephalopholis fulva	E00771	5807	7	711	654	0	967	0
Serranidae	Cephalopholis miniata	E00838	9601	12	720	651	0	946	1122
Serranidae	Diplectrum bivittatum	E01008	4699	6	687	0	0	0	1030
Serranidae	Diplectrum formosum	E01002	8832	10	717	0	768	1983	1031
Serranidae	Epinephelus maculatus	E00549	12180	14	867	651	0	1773	0
Serranidae	Epinephelus merra	E00552	8076	10	723	648	807	940	1121
Serranidae	Grammistes sexlineatus	E00900	15699	17	867	645	0	1773	1042
Serranidae	Grammistops ocellatus	E00571	6588	8	726	588	0	0	1158
Serranidae	Hypoplectrus puella	E00505	12795	16	879	651	681	0	0
Serranidae	Hyporthodus flavolimbatus	E00627	5022	7	633	0	0	0	0

Table A4d. Continued

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Serranidae	Liopropoma mowbrayi	E00307	4911	6	0	654	0	0	0
Serranidae	Liopropoma rubre	E00306	13426	14	777	654	0	1773	1175
Serranidae	Mycteroperca bonaci microlepis	E00311	14036	17	777	654	0	939	1071
Serranidae	Odontanthias chrysostictus	G01327	10158	10	873	0	0	1762	0
Serranidae	Paralabrax nebulifer	E00325	12094	15	771	600	0	952	0
Serranidae	Pronotogrammus martinicensis	E00636	3713	4	0	0	0	0	1184
Serranidae	Pseudanthias pascalus	G01452	9024	11	879	651	0	0	0
Serranidae	Pseudanthias squamipinnis	E00860	6941	8	711	624	0	1994	0
Serranidae	Pseudogramma polyacantha	E00852	7643	10	711	0	0	818	990
Serranidae	Rypticus saponaceus	E00764	15840	19	864	651	780	970	1152
Serranidae	Rypticus subbifrenatus	E00347	6320	7	777	654	0	0	0
Serranidae	Serranus baldwini	E00322	14886	16	867	654	789	1773	1164
Serranidae	Serranus notospilus	E00337	5719	7	777	0	0	0	0
Serranidae	Serranus phoebe	E00336	6229	8	756	0	681	0	0
Serranidae	Serranus tigrinus	G01486	8954	11	879	570	789	0	0
Setarchidae	Setarches guentheri	E01035	5731	8	715	651	0	660	0
Siganidae	Siganus argenteus	E00940	7215	10	768	654	522	773	0
Siganidae	Siganus punctatus	E00958	3704	4	0	0	0	773	0
Siganidae	Siganus spinus	N29369	8207	10	878	0	0	0	0
Siganidae	Siganus stellatus	G01488	6854	9	771	648	0	788	0
Siganidae	Siganus vulpinus	E00090	11306	14	864	651	522	773	0
Sillaginidae	Sillago chondropus	N29390	6780	9	725	0	0	0	0
Sillaginidae	Sillago sihama	E00824	13627	15	0	651	393	2263	1018
Sinipercidae	Coreoperca whiteheadi	G01264	8180	8	873	0	1134	890	0
Sinipercidae	Siniperca chuatsi	E01136	15198	17	750	0	1134	2251	0
Sinipercidae	Siniperca scherzeri	G01489	8368	7	873	0	1134	2251	0
Soleidae	Aseraggodes heemstrai	E00582	9255	10	0	0	0	1746	0
Soleidae	Aseraggodes kobensis	E00075	12391	14	687	0	0	1737	0
Soleidae	Brachirus annularis	E01182	5846	7	0	0	0	746	0
Soleidae	Heteromycteris japonicus	E00079	14809	17	720	650	0	1737	0

Table Add Continued

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	НОХ
Soleidae	Microchirus frechkopi	E01175	5082	6	0	0	0	900	0
Soleidae	Pegusa lascaris	E01183	8261	10	0	654	711	870	0
Soleidae	Pseudaesopia japonica	E00081	10067	11	714	0	0	1747	0
Soleidae	Solea solea	E00054	7675	8	0	651	1140	1744	0
Soleidae	Soleichthys heterorhinos	E00943	10673	11	0	0	0	1753	0
Sparidae	Acanthopagrus catenula	E00953	10468	14	708	654	396	0	0
Sparidae	Acanthopagrus latus	M01638	3048	4	0	654	897	0	0
Sparidae	Archosargus probatocephalus	E00249	8388	10	777	651	1140	909	0
Sparidae	Argyrops spinifer	M01668	2629	3	0	0	393	0	0
Sparidae	Argyrozona argyrozona	E00802	9618	12	707	645	1131	0	0
Sparidae	Boops boops	M01640	3246	3	0	651	1140	0	0
Sparidae	Boopsoidea inornata	M01639	3951	4	0	651	1140	0	0
Sparidae	Calamus calamus	N29934	7496	9	770	0	0	0	0
Sparidae	Calamus nodosus	M01641	3290	4	0	654	1140	0	0
Sparidae	Calamus penna	E00762	7629	10	705	654	0	765	0
Sparidae	Cheimerius nufar	M01642	3243	3	0	648	1140	0	0
Sparidae	Chrysoblephus laticeps	M01644	3594	4	0	645	0	0	0
Sparidae	Crenidens crenidens	M01645	4737	5	0	645	1140	0	0
Sparidae	Dentex dentex	M01646	4731	5	0	654	1140	0	0
Sparidae	Diplodus annularis	M01647	4730	5	0	651	1140	0	0
Sparidae	Diplodus bermudensis	M01648	3953	4	0	654	1140	0	0
Sparidae	Diplodus capensis	E00807	5192	7	705	0	0	0	0
Sparidae	Lagodon rhomboides	G01346	10209	12	879	651	1140	909	0
Sparidae	Lithognathus mormyrus	M01649	4731	5	0	651	1140	0	0
Sparidae	Oblada melanura	M01650	3249	3	0	654	1140	0	0
Sparidae	Pachymetopon grande	M01651	3549	4	0	609	0	0	0
Sparidae	Pagellus affinis	M01652	3072	4	0	654	921	0	0
Sparidae	Pagellus erythrinus	M01653	4029	4	0	654	1140	0	0
Sparidae	Pagrus pagrus	E00514	12441	15	879	654	1140	0	0
Sparidae	Porcostoma dentata	M01654	4728	5	0	648	1140	0	0

Table A40. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Sparidae	Rhabdosargus haffara	M01655	2151	3	0	654	0	0	0
Sparidae	Sarpa salpa	E00806	12445	15	714	651	1140	868	0
Sparidae	Sparidentex hasta	M01657	4746	5	0	654	1140	0	0
Sparidae	Sparus aurata	M01658	3954	4	0	654	1140	0	0
Sparidae	Spondyliosoma cantharus	M01659	3257	4	0	651	1140	0	0
Sparidae	Stenotomus chrysops	E00246	12458	15	879	654	1140	909	0
Sparidae	Virididentex acromegalus	M01660	4676	5	0	654	1067	0	0
Sphyraenidae	Sphyraena argentea	E00230	8319	10	0	651	0	831	0
Sphyraenidae	Sphyraena barracuda	E00836	19387	22	720	555	629	1753	961
Sphyraenidae	Sphyraena japonica	N30022	5263	7	0	0	0	0	0
Sphyraenidae	Sphyraena jello	N30023	4747	6	0	0	0	0	0
Sphyraenidae	Sphyraena putnamae	E00955	13026	14	0	651	0	1745	1032
Sphyraenidae	Sphyraena sphyraena	E01143	7520	8	0	654	1140	1745	0
Stichaeidae	Bryozoichthys marjorius	E00442	7041	9	693	0	0	0	0
Stichaeidae	Cebidichthys violaceus	N30217	6500	9	725	0	0	0	0
Stichaeidae	Leptoclinus maculatus	E00323	5549	7	765	651	519	942	1169
Stichaeidae	Lumpenus fabricii	E00361	3593	5	765	639	0	0	0
Stichaeidae	Lumpenus lampretaeformis	E00371	5472	7	764	654	0	0	0
Stichaeidae	Poroclinus rothrocki	E00431	5685	7	723	645	0	0	0
Stromateidae	Peprilus burti	E00600	5597	7	672	0	0	0	0
Stromateidae	Peprilus paru	E00622	7448	10	357	654	0	788	0
Stromateidae	Peprilus simillimus	E00136	10724	12	716	654	0	1753	1054
Stromateidae	Peprilus triacanthus	N30548	8492	10	869	0	0	0	0
Symphysanodontidae	Symphysanodon typus	M01725	1508	2	0	0	0	0	0
Synanceiidae	Synanceia verrucosa	E00867	10214	13	711	645	0	493	1173
Synbranchidae	Monopterus albus	E01134	14200	15	879	0	0	2257	0
Syngnathidae	Corythoichthys intestinalis	E00734	5411	6	0	651	1135	770	1184
Syngnathidae	Corythoichthys schultzi	E00829	4587	5	0	0	0	0	1170
Syngnathidae	Doryrhamphus excisus	E00915	8801	10	0	603	1125	875	0
Syngnathidae	Hippocampus erectus	N30799	2880	4	0	0	0	0	0

Table A4d. Continued

Table A4d. Continued									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Syngnathidae	Syngnathus fuscus	E00792	6471	8	0	648	1138	769	0
Syngnathidae	Syngnathus leptorhynchus	N30969	2247	3	0	0	0	0	0
Syngnathidae	Syngnathus Iouisianae	E00821	4535	5	0	0	1140	739	1168
Syngnathidae	Syngnathus scovelli	E00346	4744	6	0	632	1140	739	0
Telmatherinidae	Marosatherina ladigesi	E00406	9346	12	648	642	0	809	0
Terapontidae	Hephaestus fuliginosus	G01318	10031	11	0	0	1134	0	0
Terapontidae	Scortum barcoo	G01480	10071	11	0	0	1134	0	0
Terapontidae	Terapon jarbua	E00826	14339	16	0	618	1119	1752	0
Tetraodontidae	Arothron hispidus	E00985	8771	8	0	645	1128	2252	0
Tetraodontidae	Arothron nigropunctatus	N31143	7811	9	845	0	0	0	0
Tetraodontidae	Canthigaster bennetti	E00530	8390	9	753	651	0	774	1124
Tetraodontidae	Canthigaster jactator	N31165	6260	7	845	0	0	0	0
Tetraodontidae	Canthigaster valentini	E00853	7767	8	696	651	0	2253	0
Tetraodontidae	Lagocephalus laevigatus	E00601	8160	8	726	651	0	2252	0
Tetraodontidae	Sphoeroides maculatus	E00339	4428	5	777	0	0	948	0
Tetraodontidae	Sphoeroides nephelus	N01739	6070	7	864	0	0	0	0
Tetraodontidae	Takifugu rubripes	E00460	20045	21	879	621	0	2250	1184
Tetraodontidae	Tetractenos hamiltoni	E00383	2976	4	0	0	0	0	0
Tetraodontidae	Tetraodon fluviatilis	E00374	4553	5	777	0	0	1019	0
Tetraodontidae	Tetraodon miurus	N01740	8550	10	879	0	0	0	0
Tetraodontidae	Tetraodon nigroviridis	G01513	17489	18	879	0	0	2253	0
Tetrarogidae	Coccotropsis gymnoderma	E00801	6200	8	771	0	0	0	1136
Toxotidae	Toxotes chatareus	E01139	10242	10	0	654	0	2253	0
Toxotidae	Toxotes jaculatrix	E01155	11428	14	837	651	0	871	0
Trachichthyidae	Hoplostethus occidentalis atlanticus	E01018	11766	14	701	0	0	781	0
Triacanthidae	Triacanthus biaculeatus	G01531	11323	12	837	651	0	2266	0
Triacanthodidae	Halimochirurgus alcocki	N31459	6920	9	746	0	0	0	0
Triacanthodidae	Triacanthodes anomalus	E00382	12061	13	846	0	0	2253	0
Triacanthodidae	Triacanthodes ethiops	G01532	6829	7	846	499	1089	2263	0
Trichiuridae	Aphanopus carbo	E00274	5425	7	777	508	1140	0	0

Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	СҮТ Ь	16s	нох
Trichiuridae	Assurger anzac	G01210	9581	12	765	508	0	796	0
Trichiuridae	Benthodesmus simonyi	E00475	4383	6	741	650	0	0	0
Trichiuridae	Evoxymetopon taeniatus	E00650	3573	5	750	654	0	0	0
Trichiuridae	Lepidopus altífrons	E00474	6788	9	759	651	0	0	0
Trichiuridae	Trichiurus lepturus	E00596	12574	14	0	624	601	1753	0
Trichodontidae	Trichodon trichodon	N31563	7181	9	770	0	0	0	0
Triglidae	Bellator militaris	E01026	4452	6	711	0	0	0	0
Triglidae	Prionotus carolinus	E00340	7371	9	777	0	0	0	1172
Triglidae	Prionotus evolans	E01021	4575	6	879	0	0	0	0
Triglidae	Prionotus stephanophrys	E00328	6883	9	762	651	0	784	0
Triglidae	Pterygotrigla hemisticta	N31939	4770	6	0	0	0	0	0
Triodontidae	Triodon macropterus	N31959	7201	9	749	0	0	0	0
Tripterygiidae	Enneanectes altivelis	E00315	5180	7	777	0	0	0	0
Tripterygiidae	Enneanectes boehlkei	E00305	8688	11	786	651	0	0	0
Tripterygiidae	Enneapterygius abeli	E00896	2369	3	0	0	0	0	0
Tripterygiidae	Enneapterygius gruschkai	E00916	3832	5	698	0	0	0	1025
Tripterygiidae	Helcogramma ellioti sp	E00331	9671	11	768	0	0	0	0
Tripterygiidae	Helcogramma fuscopinna	E00885	2098	3	0	0	0	0	0
Uranoscopidae	Astroscopus ygraecum	E01028	11671	14	701	0	0	0	0
Uranoscopidae	Kathetostoma albigutta	E01022	2118	3	711	0	0	0	0
Uranoscopidae	Kathetostoma averruncus	E00324	11393	14	777	651	0	0	1032
Uranoscopidae	Uranoscopus sulphureus	E00538	5752	7	723	0	0	0	0
Xiphiidae	Xiphias gladius	E01151	16644	17	879	654	1140	2254	0
Zanclidae	Zanclus cornutus	E00894	18204	20	771	636	0	2254	1035
Zaproridae	Zaprora silenus	E00362	6043	8	777	654	519	935	0
Zenarchopteridae	Dermogenys collettei	G01275	6851	8	861	0	0	788	0
Zenarchopteridae	Zenarchopterus dispar	E00541	5209	6	669	0	0	0	1091
Zoarcidae	Bothrocara brunneum	E00357	6304	8	777	651	0	0	1176
Zoarcidae	Bothrocara hollandi	N01721	4677	6	864	0	0	0	0
Zoarcidae	Eucryphycus californicus	E00327	5531	7	766	654	0	0	1144

Table A4d. Continued

Table A40. Continu									
Family	Genus Species	ETOL_ID	Length (bp)	charset	ZIC1	COI	CYT b	16s	нох
Zoarcidae	Lycenchelys crotalinus	E00425	4583	6	714	651	0	767	1134
Zoarcidae	Lycodapus mandibularis	E00355	8784	11	777	585	0	942	0
Zoarcidae	Lycodes brevipes	E00413	4381	5	720	654	0	934	0
Zoarcidae	Lycodes diapterus	G01364	8790	11	819	651	0	792	0
Zoarcidae	Lycodes terraenovae	E00675	15952	18	879	0	0	1745	1146
Zoarcidae	Melanostigma pammelas	E00365	6342	8	777	654	0	0	1170
Zoarcidae	Zoarces americanus viviparus	E00370	5571	8	0	647	584	942	0

Table A4d. Continued

APPENDIX E

PHYLOGENY OF PERCOMORPHS INFERRED FROM RAXML ANALYSIS OF THE 3+ DATASET (1231 TAXA) FROM 23 GENES (20 NUCLEAR AND THREE MITOCHONDRIAL) WITH EIGHT PARTITIONS

(b)

(c)

Pomacentridae

6.09

FIGURE A1. Phylogeny of percomorphs inferred from RAxML analysis of the 3+ dataset (1231 taxa) from 23 genes (20 nuclear and three mitochondrial) with eight partitions. The phylogeny is illustrated in ten parts, labeled a-j. See also Figures 3 to 8 for higher resolution versions of the tree for the additional taxa.

APPENDIX F

LIST OF SPECIES FOR THE MITOGENOME DATASET INCLUDING 26 HAEMULIDS PLUS FIVE

OUTGROUPS

•

TABLE A5. List of species for the mitogenome dataset including 26 haemulids plus five outgroups. The last three columns show the percentage of sequences with phred (quality) scores of at least Q20, Q30, and Q40, respectively. Seven sequences were obtained from Genbank and the rest were newly generated from amplicon sequencing using Roche GS Flx 454 genome sequencer.

								Mean	1		
						Used		read			
Family	Genus	Species	Voucher	Genbank	Reads	reads	Length	length	≤ Q20	≤ Q30	<u>≤ Q40</u>
Caesionidae	Pterocaesio	tile		AP004447	ļ	<u> </u>					ļ
Emmelichthyidae	Emmelichthys	struhsakeri		AP004446							
Haemulidae	Boridia	grossidens	ODU 3237		6022	6019	16666	131	81	54	16
Haemulidae	Brachydeuterus	auritus	ODU 3290		4771	4707	16569	120	81	51	13
Haemulidae	Conodon	nobilis	KU 30150		5661	5659	16722	123	83	55	17
Haemulidae	Conodon	serrifer	ODU 3239		6709	6703	16708	157	82	54	15
Haemulidae	Diagramma	picta		AP009167							
Haemulidae	Haemulon	aurolineatum	USNM 349060		7055	7048	16663	165	82	54	15
Haemulidae	Haemulon	vittatum	USNM 349224		6925	6919	16676	170	83	55	16
Haemulidae	Haemulopsis	axillaris	ODU 3291		8614	8588	15920	181	82	53	15
Haemulidae	Haemulopsis	nitidus	ODU 3250		7440	7436	16777	161	82	54	15
Haemulidae	Isacia	conceptionis	ODU 3251		9315	9309	16738	231	83	55	17
Haemulidae	Microlepidotus	brevipinnis	ODU 3252		7407	7404	16749	169	83	55	17
Haemulidae	Orthopristis	chalceus	ODU 3253		6941	6937	16758	170	82	53	14
Haemulidae	Parapristipoma	trilineatum		AP009168							
Haemulidae	Plectorhinchus	picus	KU 32545		10263	10254	16556	228	82	54	16
Haemulidae	Plectorhinchus	vittatus	SAIAB 78102		9854	9851	16512	219	83	56	18
Haemulidae	Pomadasys	argyreus	ODU 3292		5037	5034	16626	108	82	54	16
Haemulidae	Pomadasys	branickii	ODU 3255		8861	8853	16766	202	83	55	16
Haemulidae	Pomadasys	kaakan	ODU 3293		7862	7860	16002	196	82	53	14
Haemulidae	Pomadasys	macracanthus	ODU 3294		6880	6643	17193	156	80	50	11
Haemulidae	Pomadasys	maculatus	ODU 3090		13100	13088	16492	342	82	55	17
Haemulidae	Pomadasys	olivaceus	SAIAB		9238	9224	16452	222	83	55	15
Haemulidae	Pomadasys	panamensis	ODU 3259		5693	5691	16865	125	81	53	15
Haemulidae	Pomadasys	perotaei	ODU 3295		6068	6062	13678	42	74	41	0
Haemulidae	Pomadasys	stridens	ODU 3262		4223	4219	16729	93	82	54	16

Table A5. Continued

Family	Genus	Species	Voucher	Genbank	Reads	Used reads	Length	Mean read length	≤ Q20	≤ Q30	≤ Q40
Haemulidae	Xenichthys	xanti	ODU 3263		10615	10580	16866	382	82	55	17
Haemulidae	Xenistius	californiensis	KU 28128		16366	16352	16713	406	81	54	16
Lethrinidae	Monotaxis	grandoculis		AP009166					ł		
Lutjanidae	Lutjanus	rivulatus		AP006000					1	1	
Sparidae	Pagrus	major		AP002949	1				1	[

* KU - University of Kansas Natural History Museum & Biodiversity Research Center; ODU - Old Dominion University, Norfolk, VA; SAIAB - South African Institute for Aquatic Biodiversity; USNM - United States National Museum (now National Museum of Natural History; Smithsonian Institution; Washington, DC

APPENDIX G

TAXON SAMPLING FOR THE 22-GENE DATASET, INCLUDING 82 UNIQUE HAEMULID TAXA AND

FOUR OUTGROUPS

TABLE A6a. Taxon sampling for the 22-gene dataset, including 82 unique haemulid taxa and four outgroups. Sequences were obtained from
previous studies, public databases, or generated new in the lab. The matrix is presented in three parts to show presence of sequence data for
the 22 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, PANX2, and PLAGL2; (b.) PTCHD1, RAG1, RAG2, RH, RIPK4, SH3PX3, and SIDKEY; (C.) TBR,
VCPIP, ZIC1, TMO-4C4, COI, CYT B, S7, and 16S.

Family	Taxon	Total length	No. of charsets	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2	PLAGL2
Haemulidae	Anisotremus caesius	2418 bp	4	0	0	0	0	0	0	0
Haemulidae	Anisotremus davidsonii	5415 bp	7	0	0	0	0	0	0	804
Haemulidae	Anisotremus interruptus	5883 bp	7	0	0	0	0	0	0	804
Haemulidae	Anisotremus moricandi	2504 bp	4	0	0	0	0	0	0	0
Haemulidae	Anisotremus scapularis	5874 bp	7	0	0	0	0	0	0	804
Haemulidae	Anisotremus surinamensis	10416 bp	14	804	0	843	0	699	0	801
Haemulidae	Anisotremus taeniatus	6023 bp	7	0	0	0	0	0	0	804
Haemulidae	Anisotremus virginicus	9977 bp	13	0	720	0	918	0	0	780
Haemulidae	Boridia grossidens	4419 bp	5	0	0	0	0	0	0	552
Haemulidae	Brachydeuterus auritus	4596 bp	5	0	0	0	0	0	0	690
Haemulidae	Conodon nobilis	12303 bp	16	0	690	0	804	681	705	804
Haemulidae	Conodon serrifer	5910 bp	7	0	0	0	0	0	0	804
Haemulidae	Diagramma centurio	1710 bp	3	0	0	0	0	0	0	0
Haemulidae	Diagramma picta	5684 bp	7	0	0	0	0	0	0	804
Haemulidae	Emmelichthyops atlanticus	4596 bp	5	0	0	0	0	0	0	717
Haemulidae	Genyatremus cavifrons	5901 bp	7	0	0	0	0	0	0	792
Haemulidae	Genyatremus dovii	5580 bp	7	0	0	0	0	0	0	804
Haemulidae	Genyatremus pacifici	6002 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulon album	2603 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon aurolineatum	16494 bp	22	798	690	870	798	687	702	669
Haemulidae	Haemulon bonariense	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon carbonarium	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon chrysargyreum	6309 bp	8	0	0	0	0	0	0	786
Haemulidae	Haemulon flaviguttatum	5817 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulon flavolineatum	5991 bp	8	0	0	0	0	0	0	804
Haemulidae	Haemulon macrostomum	6372 bp	8	0	0	0	0	0	0	804

Table A6a. C	Continued			_						
Family	Taxon	Total length	No. of charsets	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2	PLAGL2
Haemulidae	Haemulon maculicauda	1866 bp	3	0	0	0	0	0	0	0
Haemulidae	Haemulon melanurum	5931 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulon parra	2002 bp	3	0	0	0	0	0	0	0
Haemulidae	Haemulon plumierii	14496 bp	19	810	720	870	774	702	0	672
Haemulidae	Haemulon sciurus	14196 bp	19	657	720	870	918	720	0	804
Haemulidae	Haemulon scudderii	5798 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulon sexfasciatum	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon steindachneri	5928 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulon vittatum	14232 bp	19	657	0	852	918	717	0	804
Haemulidae	Haemulopsis axillaris	5444 bp	7	0	0	0	0	0	0	804
Haemulidae	Haemulopsis elongatus	2448 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulopsis leuciscus	5958 bp	8	0	0	0	0	0	0	789
Haemulidae	Haemulopsis nitidus	5214 bp	7	0	0	0	0	0	0	801
Haemulidae	Isacia conceptionis	5922 bp	7	0	0	0	0	0	0	804
Haemulidae	Microlepidotus brevipinnis	5859 bp	7	0	0	0	0	0	0	804
Haemulidae	Orthopristis chalceus	5217 bp	6	0	0	0	0	0	0	798
Haemulidae	Orthopristis chrysoptera	14625 bp	19	810	690	870	807	693	702	804
Haemulidae	Orthopristis reddingi	2448 bp	4	0	0	0	0	0	0	0
Haemulidae	Orthopristis ruber	2465 bp	4	0	0	0	0	0	0	0
Haemulidae	Parakuhlia macrophthalmus	4662 bp	5	0	0	0	0	0	0	747
Haemulidae	Parapristipoma humile	2835 bp	3	0	0	0	0	0	0	756
Haemulidae	Parapristipoma octolineatum	4692 bp	5	0	0	0	0	0	0	804
Haemulidae	Parapristipoma trilineatum	5740 bp	7	0	0	0	0	0	0	792
Haemulidae	Plectorhinchus chaetodonoides	10650 bp	14	0	630	0	729	0	0	804
Haemulidae	Plectorhinchus chubbi	1707 bp	3	0	0	0	0	0	0	0
Haemulidae	Plectorhinchus cinctus	5668 bp	7	0	0	0	0	0	0	804
Haemulidae	Plectorhinchus diagrammus	5038 bp	7	0	0	0	0	0	0	804
Haemulidae	Plectorhinchus gaterinus	5706 bp	7	0	0	0	0	0	0	756
Haemulidae	Plectorhinchus gibbosus	5666 bp	7	0	0	0	0	0	0	783
Haemulidae	Plectorhinchus lessonii	5868 bp	7	0	0	0	0	0	0	804

,	Tubic Ada. C		• •								
	Family	Taxon	Total length	No. of charsets	ENC1	FICD	GLYT	KIAA1239	MYH6	PANX2	PLAGL2
,	Haemulidae	Plectorhinchus macrolepis	4023 bp	4	0	0	0	0	0	0	804
	Haemulidae	Plectorhinchus orientalis	4647 bp	6	0	0	0	0	0	0	804
	Haemulidae	Plectorhinchus picus	2850 bp	4	0	0	0	0	0	0	0
	Haemulidae	Plectorhinchus playfairi	1710 bp	3	0	0	0	0	0	0	0
	Haemulidae	Plectorhinchus schotaf	5661 bp	7	0	0	0	0	0	0	804
	Haemulidae	Plectorhinchus sordidus	5775 bp	7	0	0	0	0	0	0	801
	Haemulidae	Plectorhinchus vittatus	9273 bp	13	0	630	0	729	0	705	765
	Haemulidae	Pomadasys argenteus	2823 bp	5	0	0	0	0	0	0	0
	Haemulidae	Pomadasys argyreus	4710 bp	5	0	0	0	0	0	0	804
	Haemulidae	Pomadasys branickii	5923 bp	7	0	0	0	0	0	0	804
	Haemulidae	Pomadasys corvinaeformis	10182 bp	15	651	630	0	759	0	0	699
	Haemulidae	Pomadasys crocro	2448 bp	4	0	0	0	0	0	0	0
	Haemulidae	Pomadasys furcatus	1710 bp	3	0	0	0	0	0	0	0
	Haemulidae	Pomadasys hasta	1225 bp	2	0	0	0	0	0	0	0
	Haemulidae	Pomadasys incisus	5297 bp	6	0	0	0	0	0	0	804
	Haemulidae	Pomadasys kaakan	5035 bp	7	0	0	0	0	0	0	804
	Haemulidae	Pomadasys macracanthus	3036 bp	5	0	0	0	0	0	0	0
	Haemulidae	Pomadasys maculatus	5752 bp	7	0	0	0	0	0	0	804
	Haemulidae	Pomadasys olivaceus	5730 bp	7	0	0	0	0	0	0	780
	Haemulidae	Pomadasys panamensis	5919 bp	7	0	0	0	0	0	0	789
	Haemulidae	Pomadasys perotaei	5567 bp	7	0	0	0	0	0	0	804
	Haemulidae	Pomadasys rogerii	1383 bp	2	0	0	0	0	0	0	732
	Haemulidae	Pomadasys striatus	5052 bp	7	0	0	0	0	0	0	786
	Haemulidae	Pomadasys stridens	6300 bp	8	0	0	0	0	0	0	780
	Haemulidae	Xenichthys xanti	5190 bp	7	0	0	0	0	0	0	792
	Haemulidae	Xenistius californiensis	11730 bp	16	0	720	0	918	687	0	795
	Lutjanidae	Aphareus furca	10257 bp	13	0	690	0	807	708	711	792
	Lutjanidae	Lutjanus fulviflamma	3219 bp	3	0	0	0	0	0	0	0
	Lutjanidae	Lutjanus mahogoni	4332 bp	6	657	0	870	0	729	0	0
•	Sparidae	Sarpa salpa	10941 bp	14	0	630	0	681	699	714	804
•											

Table A6a. Continued

TABLE A6b. Taxon sampling for the 22-gene dataset, including 82 unique haemulid taxa and four outgroups. Sequences were obtained from previous studies, public databases, or generated new in the lab. The matrix is presented in three parts to show presence of sequence data for the 22 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, PANX2, and PLAGL2; (b.) PTCHD1, RAG1, RAG2, RH, RIPK4, SH3PX3, and SIDKEY; (C.) TBR, VCPIP, ZIC1, TMO-4C4, COI, CYT *B*, S7, and 16S.

Family	Taxon	Total length	No. of charsets	PTCHD1	RAG1	RAG2	RH	RIPK4	SH3PX3	SIDKEY
Haemulidae	Anisotremus caesius	2418 bp	4	0	0	0	0	0	0	0
Haemulidae	Anisotremus davidsonii	5415 bp	7	0	1428	0	0	0	705	0
Haemulidae	Anisotremus interruptus	5883 bp	7	0	1428	0	0	0	705	0
Haemulidae	Anisotremus moricandi	2504 bp	4	0	0	0	0	0	0	0
Haemulidae	Anisotremus scapularis	5874 bp	7	0	1428	0	0	0	705	0
Haemulidae	Anisotremus surinamensis	10416 bp	14	705	1428	0	0	0	702	0
Haemulidae	Anisotremus taeniatus	6023 bp	7	0	1428	0	0	0	705	0
Haemulidae	Anisotremus virginicus	9977 bp	13	0	1428	660	0	633	705	1041
Haemulidae	Boridia grossidens	4419 bp	5	0	1428	0	0	0	678	0
Haemulidae	Brachydeuterus auritus	4596 bp	5	0	1428	0	0	0	705	0
Haemulidae	Conodon nobilis	12303 bp	16	0	1428	660	0	642	705	1041
Haemulidae	Conodon serrifer	5910 bp	7	0	1428	0	0	0	705	0
Haemulidae	Diagramma centurio	1710 bp	3	0	0	0	0	0	0	0
Haemulidae	Diagramma picta	5684 bp	7	0	1428	0	0	0	705	0
Haemulidae	Emmelichthyops atlanticus	4596 bp	5	0	1428	0	0	0	705	0
Haemulidae	Genyatremus cavifrons	5901 bp	7	0	1428	0	0	0	705	0
Haemulidae	Genyatremus dovii	5580 bp	7	0	1428	0	0	0	705	0
Haemulidae	Genyatremus pacifici	6002 bp	7	0	1428	0	0	0	696	0
Haemulidae	Haemulon album	2603 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon aurolineatum	16494 bp	22	741	1428	660	756	630	696	1023
Haemulidae	Haemulon bonariense	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon carbonarium	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon chrysargyreum	6309 bp	8	0	1428	0	0	0	705	0
Haemulidae	Haemulon flaviguttatum	5817 bp	7	0	1428	0	0	0	705	0
Haemulidae	Haemulon flavolineatum	5991 bp	8	0	1428	0	0	0	696	0
Family	Taxon	Total length	No. of charsets	PTCHD1	RAG1	RAG2	RH	RIPK4	SH3PX3	SIDKEY
------------	-------------------------------	--------------	-----------------	--------	------	------	-----	-------	--------	--------
Haemulidae	Haemulon macrostomum	6372 bp	8	0	1428	0	0	0	702	0
Haemulidae	Haemulon maculicauda	1866 bp	3	0	0	0	0	0	0	0
Haemulidae	Haemulon melanurum	5931 bp	7	0	1428	0	0	0	705	0
Haemulidae	Haemulon parra	2002 bp	3	0	0	0	0	0	0	0
Haemulidae	Haemulon plumierii	14496 bp	19	741	1389	660	0	630	705	1035
Haemulidae	Haemulon sciurus	14196 bp	19	705	1371	0	0	645	705	1038
Haemulidae	Haemulon scudderii	5798 bp	7	0	1428	0	0	0	705	0
Haemulidae	Haemulon sexfasciatum	2613 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulon steindachneri	5928 bp	7	0	1428	0	0	0	705	0
Haemulidae	Haemulon vittatum	14232 bp	19	705	1428	660	702	606	705	1059
Haemulidae	Haemulopsis axillaris	5444 bp	7	0	1428	0	0	0	705	0
Haemulidae	Haemulopsis elongatus	2448 bp	4	0	0	0	0	0	0	0
Haemulidae	Haemulopsis leuciscus	5958 bp	8	0	1428	0	0	0	705	0
Haemulidae	Haemulopsis nitidus	5214 bp	7	0	1428	0	0	0	696	0
Haemulidae	Isacia conceptionis	5922 bp	7	0	1428	0	0	0	705	0
Haemulidae	Microlepidotus brevipinnis	5859 bp	7	0	1428	0	0	0	705	0
Haemulidae	Orthopristis chalceus	5217 bp	6	0	1428	0	0	0	0	0
Haemulidae	Orthopristis chrysoptera	14625 bp	19	741	1428	660	0	630	0	1041
Haemulidae	Orthopristis reddingi	2448 bp	4	0	0	0	0	0	0	0
Haemulidae	Orthopristis ruber	2465 bp	4	0	0	0	0	0	0	0
Haemulidae	Parakuhlia macrophthalmus	4662 bp	5	0	1425	0	0	0	705	0
Haemulidae	Parapristipoma humile	2835 bp	3	0	1428	0	0	0	0	0
Haemulidae	Parapristipoma octolineatum	4692 bp	5	0	1428	0	0	0	705	0
Haemulidae	Parapristipoma trilineatum	5740 bp	7	0	1428	0	0	0	705	0
Haemulidae	Plectorhinchus chaetodonoides	10650 bp	14	0	1428	660	0	645	693	1023
Haemulidae	Plectorhinchus chubbi	1707 bp	3	0	0	0	0	0	0	0
Haemulidae	Plectorhinchus cinctus	5668 bp	7	0	1428	0	0	0	705	0
Haemulidae	Plectorhinchus diagrammus	5038 bp	7	0	1428	0	0	0	705	0
Haemulidae	Plectorhinchus gaterinus	5706 bp	7	0	1428	0	0	0	705	0
Haemulidae	Plectorhinchus gibbosus	5666 bp	7	0	1428	0	0	0	705	0

Table A6b. Continued

Table A6b. (Table A6b. Continued											
Family	Taxon	Total length	No. of charsets	PTCHD1	RAG1	RAG2	RH	RIPK4	SH3PX3	SIDKEY		
Haemulidae	Plectorhinchus lessonii	5868 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Plectorhinchus macrolepis	4023 bp	4	0	1428	0	0	0	705	0		
Haemulidae	Plectorhinchus orientalis	4647 bp	6	0	1428	0	0	0	705	0		
Haemulidae	Plectorhinchus picus	2850 bp	4	0	0	0	0	0	0	0		
Haemulidae	Plectorhinchus playfairi	1710 bp	3	0	0	0	0	0	0	0		
Haemulidae	Plectorhinchus schotaf	5661 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Plectorhinchus sordidus	5775 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Plectorhinchus vittatus	9273 bp	13	0	0	660	0	615	693	1023		
Haemulidae	Pomadasys argenteus	2823 bp	5	0	0	0	0	0	0	0		
Haemulidae	Pomadasys argyreus	4710 bp	5	0	1428	0	0	0	702	0		
Haemulidae	Pomadasys branickii	5923 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys corvinaeformis	10182 bp	15	0	0	660	690	645	696	1038		
Haemulidae	Pomadasys crocro	2448 bp	4	0	0	0	0	0	0	0		
Haemulidae	Pomadasys furcatus	1710 bp	3	0	0	0	0	0	0	0		
Haemulidae	Pomadasys hasta	1225 bp	2	0	0	0	0	0	0	0		
Haemulidae	Pomadasys incisus	5297 bp	6	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys kaakan	5035 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys macracanthus	3036 bp	5	0	0	0	0	0	0	0		
Haemulidae	Pomadasys maculatus	5752 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys olivaceus	5730 bp	7	0	1428	0	0	0	702	0		
Haemulidae	Pomadasys panamensis	5919 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys perotaei	5567 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys rogerii	1383 bp	2	0	0	0	0	0	0	0		
Haemulidae	Pomadasys striatus	5052 bp	7	0	1428	0	0	0	705	0		
Haemulidae	Pomadasys stridens	6300 bp	8	0	1428	0	0	0	705	0		
Haemulidae	Xenichthys xanti	5190 bp	7	0	1428	0	0	0	681	0		
Haemulidae	Xenistius californiensis	11730 bp	16	0	1428	660	0	645	666	1023		
Lutjanidae	Aphareus furca	10257 bp	13	741	1428	0	0	645	0	1023		
Lutjanidae	Lutjanus fulviflamma	3219 bp	3	0	1428	0	0	0	0	0		
Lutjanidae	Lutjanus mahogoni	4332 bp	6	705	0	0	0	0	0	0		
	the second se											

Table A6b. Continued											
Family	Taxon	Total length	No. of charsets	PTCHD1	RAG1	RAG2	RH	RIPK4	SH3PX3	SIDKEY	
Sparidae	Sarpa salpa	10941 bp	14	0	1428	0	459	645	705	1068	

TABLE AGC. Taxon sampling for the 22-gene dataset, including 82 unique haemulid taxa and four outgroups. Sequences were obtained from previous studies, public databases, or generated new in the lab. The matrix is presented in three parts to show presence of sequence data for the 22 genes. (a.) ENC1, FICD, GLYT, KIAA1239, MYH6, PANX2, and PLAGL2; (b.) PTCHD1, RAG1, RAG2, RH, RIPK4, SH3PX3, and SIDKEY; (C.) TBR, VCPIP, ZIC1, TMO-4C4, COI, CYT *B*, S7, and 16S.

Family	Taxon	Total length	No. of charsets	TBR	VCPIP	ZIC1	TMO-4c4	COI	CYT b	S7	165
Haemulidae	Anisotremus caesius	2418 bp	4	0	0	0	0	513	690	604	611
Haemulidae	Anisotremus davidsonii	5415 bp	7	0	0	0	0	567	738	562	611
Haemulidae	Anisotremus interruptus	5883 bp	7	0	0	0	0	651	1122	562	611
Haemulidae	Anisotremus moricandi	2504 bp	4	0	0	0	0	513	690	690	611
Haemulidae	Anisotremus scapularis	5874 bp	7	0	0	0	0	645	1119	562	611
Haemulidae	Anisotremus surinamensis	10416 bp	14	642	0	729	450	651	747	604	611
Haemulidae	Anisotremus taeniatus	6023 bp	7	0	0	0	0	651	1134	690	611
Haemulidae	Anisotremus virginicus	9977 bp	13	0	0	0	450	651	690	690	611
Haemulidae	Boridia grossidens	4419 bp	5	0	0	0	0	651	1110	0	0
Haemulidae	Brachydeuterus auritus	4596 bp	5	0	0	0	0	651	1122	0	0
Haemulidae	Conodon nobilis	12303 bp	16	0	0	687	450	651	1140	604	611
Haemulidae	Conodon serrifer	5910 bp	7	0	0	0	0	651	1107	604	611
Haemulidae	Diagramma centurio	1710 bp	3	0	0	0	450	651	0	0	609
Haemulidae	Diagramma picta	5684 bp	7	0	0	0	450	651	1035	0	611
Haemulidae	Emmelichthyops atlanticus	4596 bp	5	0	0	0	0	651	1095	0	0
Haemulidae	Genyatremus cavifrons	5901 bp	7	0	0	0	0	642	1119	604	611
Haemulidae	Genyatremus dovii	5580 bp	7	0	0	0	0	651	690	691	611
Haemulidae	Genyatremus pacifici	6002 bp	7	0	0	0	0	651	1122	690	611 _
Haemulidae	Haemulon album	2603 bp	4	0	0	0	0	651	747	594	611
Haemulidae	Haemulon aurolineatum	16494 bp	22	642	720	687	450	651	1026	55 9	611
Haemulidae	Haemulon bonariense	2613 bp	4	0	0	0	0	651	747	604	611
Haemulidae	Haemulon carbonarium	2613 bp	4	0	0	0	0	651	747	604	611
Haemulidae	Haemulon chrysargyreum	6309 bp	8	0	0	0	450	651	1074	604	611
Haemulidae	Haemulon flaviguttatum	5817 bp	7	0	0	0	0	651	1014	604	611
Haemulidae	Haemulon flavolineatum	5991 bp	8	0	0	0	450	651	747	604	611

Family	Taxon	Total length	No. of charsets	TBR	VCPIP	ZIC1	TMO-4c4	COI	СҮТ Ь	S 7	165
Haemulidae	Haemulon macrostomum	6372 bp	8	0	0	0	450	651	1122	604	611
Haemulidae	Haemulon maculicauda	1866 bp	3	0	0	0	0	651	0	604	611
Haemulidae	Haemulon melanurum	5931 bp	7	0	0	0	0	651	1128	604	611
Haemulidae	Haemulon parra	2002 bp	3	0	0	0	0	651	747	604	0
Haemulidae	Haemulon plumierii	14496 bp	19	642	0	720	450	651	1110	604	611
Haemulidae	Haemulon sciurus	14196 bp	19	639	684	729	450	651	690	589	611
Haemulidae	Haemulon scudderii	5798 bp	7	0	0	0	0	651	909	690	611
Haemulidae	Haemulon sexfasciatum	2613 bp	4	0	0	0	0	651	747	604	611
Haemulidae	Haemulon steindachneri	5928 bp	7	0	0	0	0	651	1125	604	611
Haemulidae	Haemulon vittatum	14232 bp	19	642	0	714	450	651	747	604	611
Haemulidae	Haemulopsis axillaris	5444 bp	7	0	0	0	0	651	720	525	611
Haemulidae	Haemulopsis elongatus	2448 bp	4	0	0	0	0	513	720	604	611
Haemulidae	Haemulopsis leuciscus	5958 bp	8	0	0	0	450	651	720	604	611
Haemulidae	Haemulopsis nitidus	5214 bp	7	0	0	0	0	651	423	604	611
Haemulidae	Isacia conceptionis	5922 bp	7	0	0	0	0	651	1119	604	611
Haemulidae	Microlepidotus brevipinnis	5859 bp	7	0	0	0	0	597	1110	604	611
Haemulidae	Orthopristis chalceus	5217 bp	6	0	0	0	0	651	1125	604	611
Haemulidae	Orthopristis chrysoptera	14625 bp	19	642	0	678	450	642	1122	604	611
Haemulidae	Orthopristis reddingi	2448 bp	4	0	0	0	0	513	720	604	611
Haemulidae	Orthopristis ruber	2465 bp	4	0	0	0	0	651	720	483	611
Haemulidae	Parakuhlia macrophthalmus	4662 bp	5	0	0	0	0	651	1134	0	0
Haemulidae	Parapristipoma humile	2835 bp	3	0	0	0	0	651	0	0	0
Haemulidae	Parapristipoma octolineatum	4692 bp	5	0	0	0	0	642	1113	0	0
Haemulidae	Parapristipoma trilineatum	5740 bp	7	0	0	0	450	651	1140	0	574
Haemulidae	Plectorhinchus chaetodonoides	10650 bp	14	642	0	0	450	651	1047	639	609
Haemulidae	Plectorhinchus chubbi	1707 bp	3	0	0	0	450	648	0	0	609
Haemulidae	Plectorhinchus cinctus	5668 bp	7	0	0	0	450	651	1056	0	574
Haemulidae	Plectorhinchus diagrammus	5038 bp	7	0	0	0	450	651	426	0	574
Haemulidae	Plectorhinchus gaterinus	5706 bp	7	0	0	0	450	651	1107	0	609
Haemulidae	Plectorhinchus gibbosus	5666 bp	7	0	0	0	450	651	1038	0	611

Table A6c. Continued

280

Table Abc. (
Family	Taxon	Total length	No. of charsets	TBR	VCPIP	ZIC1	TMO-4c4	COI	СҮТЬ	S7	165	
Haemulidae	Plectorhinchus lessonii	5868 bp	7	0	0	0	0	513	1068	739	611	
Haemulidae	Plectorhinchus macrolepis	4023 bp	4	0	0	0	0	0	1086	0	0	
Haemulidae	Plectorhinchus orientalis	4647 bp	6	0	0	0	450	651	0	0	609	
Haemulidae	Plectorhinchus picus	2850 bp	4	0	0	0	450	651	1140	0	609	
Haemulidae	Plectorhinchus playfairi	1710 bp	3	0	0	0	450	651	0	0	609	
Haemulidae	Plectorhinchus schotaf	5661 bp	7	0	0	0	450	648	1017	0	609	
Haemulidae	Plectorhinchus sordidus	5775 bp	7	0	0	_0	450	651	1131	0	609	
Haemulidae	Plectorhinchus vittatus	9273 bp	13	0	0	0	450	513	1140	739	611	
Haemulidae	Pomadasys argenteus	2823 bp	5	0	0	0	450	513	645	604	611	
Haemulidae	Pomadasys argyreus	4710 bp	5	0	0	0	0	651	1125	0	0	
Haemulidae	Pomadasys branickii	5923 bp	7	0	0	0	0	651	1119	605	611	
Haemulidae	Pomadasys corvinaeformis	10182 bp	15	0	0	678	450	651	720	604	611	
Haemulidae	Pomadasys crocro	2448 bp	4	0	0	0	0	513	720	604	611	
Haemulidae	Pomadasys furcatus	1710 bp	3	0	0	0	450	651	0	0	609	
Haemulidae	Pomadasys hasta	1225 bp	2	0	0	0	0	651	0	0	574	
Haemulidae	Pomadasys incisus	5297 bp	6	0	0	0	0	609	1140	0	611	
Haemulidae	Pomadasys kaakan	5035 bp	7	0	0	0	450	651	423	0	574	
Haemulidae	Pomadasys macracanthus	3036 bp	5	0	0	0	450	651	720	604	611	
Haemulidae	Pomadasys maculatus	5752 bp	7	0	0	0	450	651	1140	0	574	
Haemulidae	Pomadasys olivaceus	5730 bp	7	0	0	0	450	651	1110	0	609	
Haemulidae	Pomadasys panamensis	5919 bp	7	0	0	0	0	651	1131	604	611	
Haemulidae	Pomadasys perotaei	5567 bp	7	0	0	0	450	651	1083	0	446	
Haemulidae	Pomadasys rogerii	1383 bp	2	0	0	0	0	651	0	0	0	
Haemulidae	Pomadasys striatus	5052 bp	7	0	0	0	450	651	423	0	609	
Haemulidae	Pomadasys stridens	6300 bp	8	0	0	0	450	651	1071	604	611	
Haemulidae	Xenichthys xanti	5190 bp	7	0	0	0	0	651	423	604	611	
Haemulidae	Xenistius californiensis	11730 bp	16	0	609	711	450	651	597	591	579	
Lutjanidae	Aphareus furca	10257 bp	13	642	747	672	0	651	0	0	0	
Lutjanidae	Lutjanus fulviflamma	3219 bp	3	0	0	0	0	651	1140	0	0	
Lutjanidae	Lutjanus mahogoni	4332 bp	6	642	0	729	0	0	0	0	0	

Table A6c. Continued

Table	A6c.	Continued	

Family	Taxon	Total length	No. of charsets	TBR	VCPIP	ZIC1	TMO-4c4	COI	CYT b	S7	165
Sparidae	Sarpa salpa	10941 bp	14	642	0	684	0	642	1140	0	0

VITA

MILLICENT D. SANCIANGCO

EDUCATION

- PhD in Ecological Sciences, Candidate, Old Dominion University. Department of Biological Sciences, Norfolk, Virginia, USA. Faculty Mentor: Dr. Kent Carpenter. 2014
- Master of Science in Biology. Old Dominion University. Department of Biological Sciences, Norfolk, Virginia, USA. Faculty Mentor: Dr. Kent Carpenter. 2007
- Bachelor of Science in Zoology. University of the Philippines Los Baños, College, Laguna, Philippines. 2002

PROFESSIONAL EXPERIENCE

- Research Assistant. Old Dominion University, Department of Biological Sciences. Fall 2005 to December 2006 and January 2008 to August 2013
- Assistant Scientist. International Rice Research Institute, Genetic Resources Center, International Rice Research Institute, Los Baños, Laguna. July 2007 to December 2007
- Researcher. WorldFish Center Philippine Office, Khush Hall, IRRI, Los Baños, Laguna, Philippines. June 2002 to December 2004
- **Research Assistant.** Animal Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna, Philippines. AY 2001-2002

AWARDS/SCHOLARSHIPS

- Collection Study Grant Program, Richard Gilder Graduate School, American Museum of Natural History (proposal accepted, but declined award due to conflict of schedule)
- College of Sciences University Fellowship, Fall 2011-Spring 2012
- Outstanding Leadership Award, AY 2010-2011, Office of Student Activities & Leadership, Old Dominion University
- Deepfin Student Exchange Awardee. June 21–July 3, 2010
- BGSO (Biology Graduate Student Organization) Spring Symposium 1st place, PhD Category Paper presentation, March 20, 2010
- BGSO Travel Award, Old Dominion University, March, 2009
- Fulbright Award, Fulbright-Philippine Agriculture Scholarship Program, (Granted August 2004) January 2005- December 2006

PUBLICATIONS

- Betancur-R, R., Broughton, R.E., Wiley, E.O., Carpenter, K., Lopez, J.A., Li, C., Holcroft, N.I., Arcila, D., Sanciangco, M., Cureton, J.C., II., Zhang, F., Buser, T., Campbell, M.A., Ballesteros, J.A., Roa-Varon, A., Willis, S., Borden, W.C., Rowley, T., Reneau, P.C., Hough, D.J., Lu, G., Grande, T., Arratia, G. & Orti, G. (2013) The tree of life and a new classification of bony fishes. *PLOS Currents*, 5.
- Sanciangco, M.D., Rocha, L.A. & Carpenter, K.E. (2011) A molecular phylogeny of the Grunts (Perciformes: Haemulidae) inferred using mitochondrial and nuclear genes. *Zootaxa*, 2966, 37–50.