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Accuracy of Unmanned Aerial System (Drone) Height Measurements

Abstract
Vertical height estimates of earth surface features using an Unmanned Aerial System (UAS) are important in
natural resource management quantitative assessments. An important research question concerns both the
accuracy and precision of vertical height estimates acquired with a UAS and to determine if it is necessary to
land a UAS between individual height measurements or if GPS derived height versus barometric pressure
derived height while using a DJI Phantom 3 would affect height accuracy and precision. To examine this
question, height along a telescopic height pole on the campus of Stephen F. Austin State University (SFASU)
were estimated at 2, 5, 10 and 15 meters above ground using a DJI Phantom 3 UAS. The DJI Phantom 3 UAS
(i.e., drone) was flown up and down the telescopic height pole to estimate height at the 2, 5, 10 and 15 meter
locations using four different user controlled flight modes with a total of 30 observations per flight mode.
Flight mode configurations consisted of having GPS estimate height while landing the drone between flights,
non-GPS mode to estimate height via barometric pressure while landing the drone between flights, flying
continuously up and down the height pole while estimating height with GPS on, and flying continuously up
and down the height pole in non-GPS mode to estimate height via barometric pressure. A total of 480 height
measurements were recorded (30 measurements per height interval per all four flight mode combinations).
Standard deviation results indicated that height measurements taken with the drone were less precise when
landing was not reset between measurements. Root mean square error (RMSE) analysis indicated that having
the landing reset without GPS on achieved the highest accuracy of all measurements taken. An ANOVA
conducted on the absolute errors reconfirmed that having the landing reset before each height measurement
using the drone achieved higher accuracy compared to flying the drone continuously. This indicates the
practical application of height measurement of the DJI Phantom 3 UAS and the importance of resetting the
UAS before each height measurement.
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1    INTRODUCTION 
 

Estimating the height of vertical features (trees, buildings, light poles) on the earth’s 

surface is a critical component of in situ assessments and remote sensing applications. 

The traditional method of estimating height in situ for a vertical feature has been carried 

out with a clinometer (Kovats 1997; Williams et al. 1994). Coefficient of determinations 

between actual tree height and estimated tree height using a clinometer has ranged from 

0.9462 to 0.9501 (Williams et al. 1994). In situ height can also be estimated with a laser 

range finder with estimated tree height using a laser ranging from 0.9250 to 0.9293 

(Williams et al. 1994). 

The general field of remote sensing, including aerial photography and LiDAR 

(Light Detection and Ranging), has also been used to estimate height. Aerial 

photography has been used to estimate height since the dawn of aerial photography 

using image displacement within overlapping areas of a stereoscopic pair of aerial 

photos (Avery 1977) while LiDAR data uses laser-scanning of the earth’s surface to 

convert reflected energy into a height estimate (Anderson et al. 2006; Gatziolis et al. 

2010; Kulhavy et al. 2015; Maltamo et al. 2006).   

Pictometry® data, which are a relatively new form of digital imagery acquired via 

an airplane based platform, mimic data obtained from commercial grade satellites like 

IKONOS, QuickBird and GeoEye (Sawaya et al. 2003). Pictometry® data are acquired 

along a predetermined flight path similar to traditional aerial photography but include 

imagery obtained from multiple perspectives including nadir and oblique angles up to 

40 degrees that are used to create a composite image that a user can use to accurately 

measure earth surface feature height using the Pictometry® patented web based interface 

(Kulhavy et al. 2015; Unger et al. 2014; Unger et al. 2016a; Wang et al. 2008).  

Unmanned aerial systems (UASs), also known as drones, can also be used to 

estimate height of earth’s surface features. By flying a drone up and down the vertical 

profile of an earth’s surface feature a drone can estimate height interactively along the 

vertical profile based on its GPS trilateration or via an internal barometer which is user 

controlled (Khanna et al. 2015; Themistocleous 2014; Unger et al. 2016b). With the 

advent of this new technology it is important to determine if drone height estimates will 

be equal to or better than the traditional methods of estimating height with a clinometer, 

laser range finder, aerial photographs, LiDAR or Pictometry® data.  

An important research question addressed by this study concerns the accuracy 

and precision of vertical height measurements acquired with a UAS (drone). In 

particular, this study determined if it is necessary to land a UAS between individual 

height measurements or if GPS derived height versus barometric pressure derived 

height while using a DJI Phantom 3 drone would affect drone estimated height accuracy 

and precision. Little research has addressed the concern of assessing height accuracy 

between drone flight mode options for a specific drone with the DJI Phantom 3 chosen 

for this study based on its ease of use, popularity, affordability and continued use in the 

spatial science community. This study gives an insight on the optimum setting for 

accuracy when one is using a commercially available drone to measure height on a few 

objects and attain the height value immediately without any further data processing.  
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2    METHODOLOGY 
 

This study evaluated the use of a drone to estimate height along a telescopic height pole 

on the campus of Stephen F. Austin State University (SFASU) in Nacogdoches, Texas. 

The objective was to compare the actual height at four intervals of 2, 5, 10 and 15 meters 

above ground along the vertical profile of a telescopic height pole with their estimated 

height derived via a DJI Phantom 3 drone. To determine if drone flight mode (GPS on 

or off and flying continuously or landing and resetting the drone between flights) affects 

height accuracy the DJI Phantom 3 was used to estimate height 30 times at each height 

interval of 2, 5, 10 and 15 meters by altering the DJI Phantom 3 drone flight modes of 

flying continuously with GPS on, flying continuously with GPS off, landing and 

resetting the drone with GPS on, and landing and resetting the drone with GPS off for 

all 30 height estimations per four height locations. 

A telescopic height pole was setup vertically on the SFASU campus away from 

student walkways and trees to provide a clear vertical flying path for the DJI Phantom 

3 (Figure 1). To facilitate drone vertical height measurements remotely, a telescopic 

height pole with clear markings was used to aid the identification of each height interval 

at 2, 5, 10, and 15 meters along the pole (Figure 2). For each vertical height identified 

(2, 5, 10, and 15 meters) the drone, when the GPS was turned on, was flown 

continuously up and down the telescopic height pole 30 times without landing while 

recording height at each of the four height intervals resulting in 120 observations 

(Figure 3). While in flight, the estimated height of the drone, when observed on-screen 

to be at each identified vertical location, was recorded (Figure 4). This process was 

repeated 3 more times while using only the internal barometer to calculate height 

without the GPS when flown continuously up and down the telescopic height pole 30 

times without landing per height interval (120 observations); with the GPS on when 

flown up and down the telescopic height pole 30 times per height interval while landing 

the UAS each time (120 observations); and using only the internal barometer without 

the GPS to calculate height when flown up and down the telescopic height pole 30 times 

per height interval while landing the UAS each time (120 observations). 

To assess the accuracy between DJI Phantom 3 estimated height and actual height 

per height interval stratified by user-controlled drone flight mode and height estimation, 

the average, standard deviation, and RMSE (Equation 1) of drone estimated height per 

combination was calculated for each set of 30 observations. 
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Figure 1. Location of telescopic height pole on the campus of Stephen F. Austin State University. 

 

Figure 2. Measurement unit increments on the telescopic height pole on the campus of Stephen 

F. Austin State University. 
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Figure 3. Flying a drone up and down the telescopic height pole to visually record height. 

 

 

Figure 4. Height of drone recorded on-screen during a flight. 

4

International Journal of Geospatial and Environmental Research, Vol. 5, No. 1 [2018], Art. 6

https://dc.uwm.edu/ijger/vol5/iss1/6



 

 

In order to test for accuracy differences between DJI Phantom 3 estimated height 

and actual height per height interval stratified by user controlled drone flight mode, a 

series of two-factor (landing and GPS) analysis of variance (ANOVA) was conducted 

on the absolute errors  (replication n = 30) for each set of 30 observations. 

 

 

3    RESULTS AND DISCUSSION 
 

A total of 480 height measurements were recorded using a DJI Phantom 3 drone. At 

each of the four height locations (2, 5, 10, and 15 m) along the telescopic height pole, 

the height was recorded with the drone 30 times. This process was repeated at each 

telescopic height pole point four times, with the four combinations of GPS On/Off and 

landing Reset/Continuous. The average of drone estimated height (n = 30) of each 

combination at different height points can be found in Table 1 while Figure 5 shows the 

visual height comparison. It is obvious that the drone estimated heights are closer to the 

actual height when the drone landing was reset for each measurement, while the 

continuous mode without landing tended to overestimate the actual height at all 

measured height intervals. When comparing between having GPS on and off, GPS on 

consistently measured the height greater than with GPS off. However, this difference is 

not as obvious as that of the landing setting. 

In order to see the variation of data observed, the standard deviation of the drone 

measured height values of each setting is displayed in Figure 6. Height measurement 

taken with the drone was less precise when landing was not reset for each measurement. 

This higher variation of drone measured height without landing reset held the same 

trend across all of the four measured height intervals. When comparing data precision 

between having GPS on and off, it appeared that the GPS was introducing noise in 

height measurement that resulted in higher data variation, although its effect is not as 

obvious as that of landing setting. 

The RMSE was calculated for assessing the accuracy of height measurement by 

using the drone.  Figure 7 echoed what was observed in average height (Table 1 and 

Figure 5), where having the landing reset with GPS off achieved the highest accuracy 

(RMSE = 0.17 m), while having no landing reset with GPS on was the least accurate 

(RMSE = 2.48 m).   

 
Table 1. Average of drone estimated height values at different height intervals by landing and 

GPS settings. (n = 30) 

GPS Mode Average Measured Height per Height Interval (m) 

  2-meter 5-meter 10-meter 15-meter 

Continuous-GPS 4.05 6.98 11.88 16.81 

Continuous-No GPS 3.73 6.71 11.61 16.50 

Landing-GPS 2.26 5.20 10.28 15.39 

Landing-No GPS 1.91 4.88 9.99 14.96 
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Figure 5. Average of drone estimated height values at different height intervals by landing and 

GPS settings. (n = 30, 1: 2m, 2: 5m, 3: 10m, and 4: 15m above the ground) 

 

 

Figure 6. Standard deviation of drone estimated height values at different height intervals by 

landing and GPS settings. (n = 30) 
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Figure 7. Root mean square error (RMSE) of drone estimated height values at different height 

intervals by landing and GPS settings. (n = 30) 

While having no landing reset was much less accurate than having reset, it seems 

the accuracy increased while measuring at higher measuring intervals. The opposite 

trend was found for the groups of having the landing reset, where higher errors were 

found at higher measuring intervals. The same pattern was also found when plotting 

average again standard deviation of height measurements. Figure 8 shows that the 

precision of the continuous methods increased when measuring higher point intervals, 

while the precision of the reset methods decreased. 

In order to test if accuracy between the different drone settings on estimated 

height was statistically significant, a series of two-factor (landing and GPS) ANOVA 

was conducted on the absolute errors  (replication n = 30), each on a measured height 

interval. Table 2 summarizes the mean absolute error of each combination, with lower 

values representing higher accuracy. It was reconfirmed that having the landing reset 

before each height measurement using the drone achieved higher accuracy compared to 

having no reset. 

 
Table 2. Mean absolute error of drone estimated height values at different height intervals by 

landing and GPS settings. (n = 30) 

GPS Mode Mean Absolute Error per Height Interval (m) 

  2-meter 5-meter 10-meter 15-meter 

Continuous-GPS 2.05 1.99 1.90 1.82 

Continuous-No GPS 1.73 1.71 1.62 1.52 

Landing-GPS 0.26 0.24 0.31 0.45 

Landing-No GPS 0.15 0.18 0.21 0.19 
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Figure 8. Average vs. standard deviation of estimated height values of at different height 

intervals by landing and GPS settings. (n = 30) 

The interaction between the two factors, landing and GPS, was observed 

graphically in Figures 9-12. It was found that there was no interaction between the two 

factors at all of the four measured height intervals.  Having landing reset always resulted 

in higher accuracy regardless the GPS setting. This is confirmed statistically in the 

ANOVA (Tables 3-6) where none of the interaction is significant (p-values range from 

0.5209 to 0.9163). Also found not significant is the factor of GPS at all measured height 

intervals (p-values range from 0.2020 to 0.2501), except the 15-m measured height 

interval (p-value = 0.0887). Having the GPS on did not make a difference when 

estimating height with the drone, except that having GPS on reduced the accuracy 

significantly when measuring at the height interval of 15 m. 

What made a significant difference in height estimated with the drone is the 

landing setting. Compared to flying the drone to different height points continuously, 

landing the drone on the ground before taking each height measurement resulted in 

much higher accuracy at all measured height intervals (mean absolute errors range from 

0.15 to 0.21 m) where all of the p-values are less than 0.0001. 

For the drone tested in this study, the main device used for measuring height is 

the on-board barometer chip. It sets the ground level as zero and measures height above 

ground after takeoff by detecting the atmospheric pressure change. The barometer 

height accuracy degrades overtime due to the local change of air temperature and wind 

speed which explains why resetting the drone for each height measurement achieved 

the highest accuracy. When the GPS was turned on, it introduced uncertainty in height 

measurement due to the low precision for GPS measuring elevation, which was also 

found in this study. 
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Figure 9. Mean absolute error of drone estimated height values at 2-m height interval by landing 

and GPS settings. (n = 30) 

 

 

Figure 10. Mean absolute error of drone estimated height values at 5-m height interval by landing 

and GPS settings. (n = 30) 
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Figure 11. Mean absolute error of drone estimated height values at 10-m height interval by 

landing and GPS settings. (n = 30) 

 

 

Figure 12. Mean absolute error of drone estimated height values at 15-m height interval by 

landing and GPS settings. (n = 30) 
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Table 3. ANOVA on absolute error of drone estimated height values at 2-m height by landing 

and GPS settings. (n = 30) 

2-m ANOVA             

Source of Variation SS df MS F P-value F crit 

Landing 84.9833 1 84.9833 97.2244 5.02E-17 3.92288 

GPS 1.4392 1 1.4392 1.6465 0.2020 3.92288 

Interaction 0.3346 1 0.3346 0.3828 0.5373 3.92288 

Within 101.3949 116 0.8741    

Total 188.1521 119         

 

Table 4. ANOVA on absolute error of drone estimated height values at 5-m height by landing 

and GPS settings. (n = 30) 

5-m ANOVA             

Source of Variation SS df MS F P-value F crit 

Landing 80.6405 1 80.6405 93.1916 1.54E-16 3.9228 

GPS 0.858 1 0.858 0.9916 0.3214 3.9228 

Interaction 0.3587 1 0.3587 0.4146 0.5209 3.9228 

Within 100.377 116 0.8653    

Total 182.2343 119         

 

Table 5. ANOVA on absolute error of drone estimated height values at 10-m height by landing 

and GPS settings. (n = 30) 

10-m ANOVA             

Source of Variation SS df MS F P-value F crit 

Landing 67.9299 1 67.9299 81.2547 4.82E-15 3.9229 

GPS 1.1169 1 1.1169 1.336 0.2501 3.9229 

Interaction 0.2467 1 0.2467 0.2951 0.5880 3.9229 

Within 96.9774 116 0.836    

Total 166.2709 119         

 

Table 6. ANOVA on absolute error of drone estimated height values at 15-m height by landing 

and GPS settings. (n = 30) 

15-m ANOVA             

Source of Variation SS df MS F P-value F crit 

Landing 55.1068 1 55.1068 68.1297 2.75E-13 3.9229 

GPS 2.3845 1 2.3845 2.948 0.0887 3.9229 

Interaction 0.009 1 0.009 0.0111 0.9163 3.9229 

Within 93.8267 116 0.8089    

Total 151.327 119         
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4    CONCLUSION 

 
Remote sensing via drone technology with its ability to collect data systematically, and 

in inaccessible areas, has the potential to aid field-based height estimation. The 

integration of drone technology was effective at estimating height and proved to be as 

accurate as traditional height estimates using a clinometer, laser range finder and 

LiDAR data. Airborne LiDAR has been used for measuring object height in large area, 

particularly in forestry. In forest management, tree height is an indicator of site 

productivity and is hard to measure from the ground. Kaartinen et al. (2012) conducted 

a comprehensive research applying algorithms developed by international researchers 

for individual tree detection and extraction using airborne laser scanning. They found 

that the best models achieved a RMSE of 0.60-0.80 m in accuracy for tree height, which 

is no better than our highest accuracy (RMSE = 0.17 m) when having the landing reset 

with GPS off on the drone. While LiDAR usually covers a much larger area, it comes 

with a higher price point with more preparation and post processing. If the task is to 

have a quick height measurement on a few objects, a consumer grade drone is a good 

option.   

Repeated height measurements at four different intervals along a telescopic 

height pole indicate the utility of using a drone to estimate height in the field. However, 

the study showed that to achieve the highest level of accuracy possible that the drone 

should land and be turned off before each flight to reset the height measurement 

algorithm before each flight.   

The results from our study indicate the practical application of height 

measurements when using the DJI Phantom 3 UAS. A drone operator, after being 

introduced to basic drone operation procedures lasting an hour or less, can effectively 

use a drone to quantify height after mastering basic flight controls. If height is the only 

field measurement required this study demonstrated that estimating height can be 

obtained fast and efficiently with a drone as opposed to the more timely process of 

creating 3D representations of the landscape with drone acquired imagery which must 

be acquired remotely then processed in a computer environment using software similar 

to Drone2Map.  

In particular, the results emphasis that it is imperative to reset the UAS before 

each height measurement to obtain the most accurate results rather than fly the UAS 

and continuously record measurements. However, it must be pointed out that our 

results represent height estimates using the DJI Phantom 3 drone which may not 

transfer to other drones and further research should be undertaken to validate the 

robustness of our research. In conclusion, a UAS when flown properly with the 

correct settings could be used to supplement or replace time consuming field-based 

height estimation and has the potential to revolutionize remotely sensed height 

measurements. 
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