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ABSTRACT 

Researcher: Arun Paul Saini 

Title: EVALUATION OF AIRLINE EFFICIENCY AND ENVIRONMENTAL 

IMPACTS USING DATA ENVELOPMENT ANALYSIS 

Institution: Embry-Riddle Aeronautical University 

Degree: Doctor of Philosophy in Aviation 

Year:  2018 

Airline efficiency has been a focus of research since the birth of the airline industry.  

Data envelopment analysis has become a highly accepted methodology for performing 

efficiency analysis and assessing relative differences between comparable business 

entities; over the last decade, airline efficiency research has proliferated into this linear 

programming domain.  While early airline efficiency research focused primarily on 

revenue generation and profitability, growing commercial social responsibility is driving 

greater investment into understanding and improving the environmental impact of airline 

operations.  This study is intended to partially fill a gap in exigent literature.  While 

limited data envelopment analysis including environmental impacts has been conducted, 

the models treat environmental impacts as an output, never as an input or intermediate 

variable in the decision-making models. 

 This study constructed a linear programming model utilizing the data 

envelopment analysis methodology to assess the relative efficiencies of thirteen airlines.  

The model consumes operational and financial performance indicators of the airlines, as 

well as abatement success measured as a function of the carbon dioxide emissions 
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produced by the airline operations.  The study analyzed airline activities from 2013 to 

2015. 

 The results of the study indicated that the linear programming model was 

successful in measuring airline operational efficiency, inclusive of: (a) different capacity 

and cost components of airline operations, (b) carbon dioxide emissions abatement, (c) 

differing airline business models associated with service levels, and (d) the implications 

of different routes and networks.  Airline-specific recommendations are presented, based 

on analysis of their 2013-2015 operational performance reviewed in conjunction with 

airline strategy disclosures included in annual reports. 

 The study provides theoretical and practical contributions to airline efficiency 

research.  The study is the first to include environmental impact abatement expense as an 

input into airline decision-making for an overall airline efficiency model, as opposed to 

an output which is calculated as part of an optimization strategy focused on capacity or 

revenue generation. 
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CHAPTER I 

INTRODUCTION 

The perpetual evolution of the operating environment for aviation has produced a 

steady progression of aircraft development.  In commercial aviation, an increase in fuel 

prices and the introduction of legislation restricting greenhouse gas emissions have 

driven a need for finding sources of improved operational and environmental efficiency 

and implementing changes to harness these efficiencies (Beck et al., 2011).  The 

improvements to reduce aircraft operating costs have been implemented, for example, 

through aircraft design strategies, use of lightweight materials, and incorporation of more 

efficient and lighter power plant designs.  Some of the aforementioned improvement foci 

may help reduce emissions through reduced fuel consumption.  As airlines strive to 

achieve maximum effectiveness, airline management must understand the specific 

environmental footprint of each individual airline’s business operations.  The efficiency 

of an airline is influenced by all the inputs and outputs of its operations, employee and 

capital management, and resource consumption.  By developing a better understanding of 

airline efficiency and its relationships to an airline’s environmental footprint, the 

organizational leadership of airlines can better leverage strategies tailored to reduce its 

environmental impact. 

The terms efficiency or productivity are used to describe the ability of an entity to 

maximize output while minimizing input.  Similarly, airline efficiency describes the 

relative ability of individual airlines to maximize their performance while minimizing 

their resource consumption (Forsyth et al., 1986).  Since the 1980s, significant research 

has been conducted to define and measure airline efficiencies.  Caves et al. (1984) 
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utilized the translog cost function to compare and contrast legacy carriers employing hub-

and-spoke operating models versus local service carriers.  Early airline performance 

studies typically focused solely on firm size; Caves et al.’s (1984) research was one of the 

first airline performance studies to instead consider the impact of differing internal cost 

between hub-and-spoke and local service models in the post-deregulation environment.  

The study concluded that local service carriers did bear significantly higher variable 

costs.  However, the study demonstrated that the sample local service carriers were 

operating with economies of scale; the only opportunities for the local service carriers to 

reduce costs was by increasing traffic density or stage length – industry and business 

model factors, not airline operational variables. 

As research into the industry evolved, so too did the areas of focus and the 

research methods used.  The original air carrier performance analysis focused on revenue 

maximization and asset utilization; in the air carrier world, performance is demonstrated 

by aircraft load factors and revenue-per-seat-miles (Mallikarjun, 2015).  Greer’s (2009) 

research explores factors influencing airline efficiencies by examining the impact of 

unionization.  Greer found that there was no statistical evidence (at a ten percent level of 

significance) that unions negatively impacted efficiencies.  At the time of this study, 

research had begun to recognize the environmental aspect of airline operations, 

identifying the environment impacts as an output of airline operation.  In a special 

investigation conducted by the Intergovernmental Panel on Climate Change (IPCC), 

researchers deduced that aviation accounted for 3.5% of CO2 emissions in the world 

(IPCC, 1999).  The continued growth of the aviation industry, coupled with few barriers 

to emissions growth, suggests that aviation could represent 15%-40% of the world’s CO2 



3 

 

emissions by 2050 (Gössling & Peeters, 2007).  In recent research, Baumeister and 

Onkila (2017) have suggested that an eco-label (a public disclosure summarizing the 

environmental impact of that good or service available to prospective consumers before 

purchase) should be developed to provide aviation consumers greater transparency on 

their airline selection.  Embracing the impact of airline operations on the environment, 

Cui and Li’s energy efficiency study (2016) builds on previous research to perform an 

analysis on airline efficiencies by assessing the comparative effectiveness to transform 

human and material capital into revenue capability as well as carbon dioxides. 

Data envelopment analysis (DEA) was first introduced to airline efficiency 

analysis in the mid-1990s (Mallikarjun, 2015).  DEA is a nonparametric analysis method 

used to assess the efficiencies of decision-making units (DMUs) that have multiple inputs 

and outputs (Sengupta, 1999).  This methodology allows the comparison of relative DMU 

efficiencies and enables researchers to establish a benchmark and/or best practice to 

define the optimal efficiency frontier for that industry environment.  A key facet of DEA 

is that it does not require input and output values to be converted into a financial 

equivalent or common unit of measure to evaluate the efficiency of the DMU.  The 

analysis method evaluates the consumption of inputs and production of outputs compared 

to hypothetical optimum performance levels.  Sengupta (1999) notes that the ability to 

perform efficiency analysis without cost information makes DEA a popular choice with 

public sector enterprises and nonprofit organizations.  Merket and Hensher (2011) 

highlight that this feature of DEA also makes it a popular efficiency tool for research in 

aviation – an industry that is particularly data sensitive.  The current body of knowledge 

demonstrates that DEA has become useful for modeling and comparing the operations of 
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major airlines for efficiency evaluation; several researchers have chosen this method to 

analyze airline operations for many different facets (Mallikarjun, 2015). 

The early airline efficiency analysis using DEA focused on traditional business 

operations – i.e., translating capital, material, and labor inputs into revenue generation 

capability.  Sengupta (1999) performed a study on 14 international airlines in which he 

assessed the efficiency of their consumption of aircraft capacity, total operating cost, and 

total nonflight assets to produce passenger and non-passenger revenue.  As the airline 

industry has embraced environmental impacts, the research applications of DEA have 

also been extended to the topic of environmental impacts associated with aviation.  Cui 

and Li (2016) leveraged a multi-stage DEA model to evaluate airline efficiencies with 

respect to carbon dioxide abatement.  This research study is one of many examples in 

recent years of exploring airline efficiencies and their relationship to the environmental 

impacts of aviation.  However, the existing airline operations research focused on 

environmental implications considers environmental impacts as an output of business 

operations.   

The existing related research does not structure the decision-making units 

(airlines) to consider environmental impact or abatement expenses in the same total 

efficiency calculation that includes revenue generation from operations.  The focus of this 

research study builds upon the current body of knowledge to explore airline operations 

and the effectiveness of airlines to abate their emissions impacts as part of their total 

business model. 
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Statement of the Problem 

Limited but concentrated research has been conducted in analyzing environmental 

costs associated with airline efficiencies.  The current body of knowledge includes 

several concentrated evaluations of characteristics which can positively or adversely 

impact aircraft operating costs.  However, the extant literature presents environmental 

impacts as an output of airline operations.  Since the environmental impact – typically 

defined by pollutant emissions – is an analysis output, the conclusions highlight 

improvements which can be made by decreasing the aircraft emissions output (newer 

aircraft) and / or the average emissions per distance traveled (which directly correlates to 

flying longer legs).  Opportunities exist within the current body of knowledge to integrate 

more organizational and operational factors to comprehensively assess airline 

efficiencies, inclusive of environmental considerations.  Analytical models used to 

supplement airline operations decision-making should consider environmental impacts 

earlier in the decision process, which may introduce less capital-intrusive 

recommendations compared to costly aircraft purchases or upgrades. 

The airline industry will benefit from increased awareness in operational 

decision-making inclusive of environmental concerns – i.e., decision-making models that 

present environmental impacts as a decision characteristic while also recognizing 

operational cost and revenue generation.  The airline participants within the industry will 

gain the ability to measure their environmental efficiency relative to their peers.  The 

literature review explores the study of corporate social responsibility in Scandinavian 

airlines by Lynes and Andrachuk (2008) which highlights how airline management can 

find value in greater environmental efficiencies.  The results of this study can also be 
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used by industry regulators to promote social responsibility by airlines who may choose 

to conduct operations counter to industry expectations. 

Purpose Statement 

The purpose of this study was to: (a) develop a measure of airline efficiency that 

recognizes emissions abatement capability; and (b) evaluate and differentiate the 

efficiency of current U.S. airlines, exploring their environmental impacts over time, as 

well as their potential for future emissions abatement.  To facilitate a high-fidelity 

representation of airline business operations (and the decision-making activities 

required), a two-phase multiplicative two-stage DEA strategy will be utilized to 

effectively model the different decision-making units of the airline.  The stages will 

incorporate: (a) operations – airline activities transforming capital, material, and labor 

resources into passenger capacity; (b) services – the choices of consumption by the 

market of the capacity, influenced by the operating environment of the airline; and (c) 

revenue realization – the actual sales of the passenger choices realized as revenue, 

accounting for carbon abatement.  The modeling and analysis will use airline operations 

data available from the Bureau of Transportation Statistics (Bureau of Transportation 

Statistics, 2017) and public disclosures by the airlines. 

Significance of the Study 

Investigative studies into airline efficiency have continued since the inception of 

commercial aviation.  Research utilizing DEA techniques to examine airline efficiency 

was first published in the 1990s (Mallikarjun, 2015).  Several of the early studies focused 

on the operational efficiency of airlines and their consumption of assets to produce 

revenue – e.g. the previously mentioned research by Sengupta (1999).  Similarly, 
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Scheraga (2004) studied the impact of airline spending on passenger services (e.g. 

in-flight meals and entertainment) and marketing on airline efficiency.  In both cases, the 

focus of efficiency research was on the traditional business practice of maximizing 

revenue.  In recent years, the awareness of the environmental ramifications of airline 

operations has increased substantially.  A few airline efficiency models have begun to 

incorporate environmental impacts (Cui & Li, 2016); however, the current body of 

knowledge lacks a focused assessment that models the primary airline operating DMUs 

in conjunction with the costs of limiting environmental impacts. 

The focus of this research study has both theoretical and practical contributions to 

the current body of knowledge.  From a theoretical perspective, this study is the first to 

model airline efficiency with environmental considerations utilized for both input and 

output variables.  Utilizing environmental variables for both consumption and as a 

product from the DMUs has the potential to identify new facets of airline efficiency for 

future research.  From a practical perspective, this study should provide a basis for an 

effective assessment of the environmental efficiency of an airline’s operations.  The 

results of this research study can be applied by academic or regulatory institutions to 

drive future improvements in aviation carbon particulate emissions abatement.  

Additionally, commercial entities could use the model or results from this study to 

analyze efficiencies and identify opportunities to improve profitability. 

The research study is original for published scholarly work.  The goal of this 

study is to provide an understanding of the industry as air carriers are further incentivized 

to improve their fleet emissions.  The aircraft-specific data sources utilized in this 
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research study are publicly available through the Bureau of Transportation Statistics and 

the public disclosures of the included airlines.  

Research Questions 

Three research questions (RQs) were explored in the interest of better 

understanding the relationship between the abatement of detrimental impacts to the 

environment and the business operations of an airline. 

RQ1: Can airline efficiency be modeled to incorporate the cost and responsibility for 

abating environmental impacts in addition to traditional operating and revenue generating 

effectiveness? 

RQ2: To what extent does the cost of environmental abatement affect the efficiency of 

airline operations in the United States? 

RQ3: What are the relative differences among airlines compared to an optimal efficiency 

benchmark when considering all facets of airline efficiency – i.e., inclusive of operational 

constraints, environmental impacts, and revenue generating effectiveness? 

Delimitations 

This research study focuses on the fleet operations of U.S. and foreign carriers 

operating through the United States.  The source of air carrier operational and revenue 

data was obtained from the U.S. Bureau of Transportation Statistics (2017).  The data 

sample includes all commercial revenue-generating air carrier operations in the United 

States – inclusive of international operations that are arriving or departing from U.S. 

airports.  From this dataset, the large carrier segment was chosen for the focus of the 

analysis because the air carriers in this business segment possess more similar business 

characteristics (almost all the carriers conduct operations across the country, serving large 
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and small airports in domestic and international destinations).  However, while the 

sample includes large air carriers, it still includes differing business models – e.g., 

full-service carriers (FSCs), low-cost carriers (LCCs), and even non-LCC point-to-point 

carriers (e.g. JetBlue Airways). 

The sample also includes both U.S.-owned and non-U.S.-owned carriers.  This 

facet of the sample definition also creates a domestic market dichotomy between the 

airlines included in the study.  Some of the air carriers within the study population are 

U.S. airlines whose domestic markets are included in the study (and represent a 

significant portion of their operations).  Other members of the population are foreign 

carriers with significant capacity inside and outside of the United States.  Although the 

flight data for international carriers operating within the sample will mostly represent 

international flight legs, short international routes by these carriers are equivalent to 

regional or transcontinental domestic operations for the U.S carriers.  Inclusion of these 

carriers: (a) strengthens the external validity of the data collection; and (b) provides the 

ability to compare U.S. and non-U.S. carriers with respect to air carrier efficiency. 

In order to mitigate the influence of changing airline composition due to merger 

and acquisition (M&A) activity, the data collection for this proposed study focuses on 

airline operations no earlier than the first quarter of 2013.  Analysis of mergers and 

acquisitions in the commercial aviation industry show that several airline mergers or 

buyouts occurred through 2012 (including the United Airlines acquisition of Continental 

Airlines in 2012).  By restricting the study period to begin with first quarter of 2013, only 

one airline merger will have to be addressed in the study period:  American Airlines 
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merged with U.S. Airways (incorporating under the American Airlines name) in 2013; 

however, the two airlines continued to report separate earnings through 2015. 

The airlines included in the study have different reporting timing for their annual 

corporate sustainability reports.  Due to the differences in reporting cycles, the study 

bounds the analysis for airline operations through the fourth quarter of 2015.  The 2015 

limit ensures every airline has published its operating information for every year 

reviewed in the study. 

The DEA technique was used to assess the efficiency of airlines in managing their 

business requirements while successfully implementing emissions abatement.  The 

emissions abatement characteristics are defined by public disclosures made by the 

individual airlines.  Therefore, this analysis does not consider emissions abatement 

activities that airlines are not disclosing (for proprietary reasons) or tertiary emissions 

abatement from other activities. 

Limitations and Assumptions 

All airline operating and aircraft-specific data is obtained from the Bureau of 

Transportation Statistics (2017) or publicly disclosed annual airline reports.  After the 

data population was collected, a data reduction effort was executed to eliminate 

incomplete data points.  The sample representativeness was then confirmed via 

qualitative demographical analysis as part of the data examination phase. 

As defined in the Delimitations section, the study encompasses all large carriers 

operating within or through the U.S. national air system that disclose their carbon dioxide 

emission due to operations.  While excluding smaller carriers excludes a segment of the 

commercial air transportation population from study, the strategy is in support of the 
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research objectives.  Smaller carriers (e.g. regional airlines) are utilized – and sometimes 

owned – by legacy air carriers to help feed traffic into the larger hubs.  The regional 

carrier business model may not always constitute an equivalent profit-focused model 

operated by a full airline – i.e. the carrier may operate at worse margins than normally 

acceptable and mitigate these lower margins by: (a) lowering direct operating costs (e.g. 

through lower pilot and crew wages); (b) obtaining subsidies afforded to regional carriers 

under the Essential Air Service program created to ensure air service to small 

communities after the Airline Deregulation Act of 1978; and (c) improving economies of 

scale by avoiding competition with legacy carriers by feeding the legacy carrier hubs on 

routes to small communities and markets. 

The Methodology section discusses the inclusion of additional models to observe 

the impacts of time to carrier efficiency performance; specifically, in addition to 

aggregate analysis models, efficiency models are created to analyze the sample annually.  

It is assumed that all airlines are working to operate as efficiently as possible in each 

individual year, and any investments or efforts to improve efficiencies do not have a 

detrimental effect in the year of implementation (i.e. decreasing efficiency in the 

short-term with the interest of improving efficiency in the long-term).  As corporate 

entities have a fiduciary and ethical responsibility to their stakeholders to promote 

consistency and stability in their business operations (which includes cost and revenue 

management), this assumption is considered justified. 

The nature of DEA methodology allows the evaluation of efficiencies within 

decision-making units without requiring the inputs and outputs to be quantified via 

financial measures or in the same units.  However, DEA is susceptible to bias depending 
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on the data sampling versus the efficiency measurement imposed.  When modeling a 

DMU operating with variable returns to scale, the production frontier is modeled as a 

convex boundary of the observation sets in the input / output space (Simar & Wilson, 

1998).  This frontier model is therefore an estimate of the true production frontier, 

dependent on the finite sampling methods used to define the convex boundary.  Any 

efficiency measurements relative to this frontier are therefore susceptible to validity 

threats if an inappropriate – i.e., inconsistent or too low frequency – sampling strategy is 

deployed. 

Some research in the DEA domain has employed bootstrapping as a strategy to 

prevent the validity risks associated with data sampling.  Bootstrapping effectively uses 

an algorithm to create a new sample and then reprocess the data based on the model 

equations and the original estimator.  Depending on the bootstrapping algorithm used, the 

data generation process can be repeated several times with new samples.  Unfortunately, 

bootstrapping possesses its own limitations and validity risks.  In more complex models 

(e.g. non-parametric frontiers or multi-stage DEA), the bootstrapping algorithm may or 

may not output a distribution reflective of the original sample.  When the distribution is 

not reflective of the original sample, the bootstrapping algorithm is actually degrading the 

fidelity of the original results, as opposed to augmenting the fidelity of those results 

(Simar & Wilson, 1998). 

To mitigate validity threats due to this limitation of DEA, the sample size utilized 

in this research study has been defined to avoid any sampling-based bias or need for a 

bootstrapping algorithm.  As previously mentioned, the sample selection includes all 

large carriers operating within the commercial air market that the sample reviews.  By 
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maximizing inclusion of market participants, any concern about sampling bias should be 

mitigated. 

Definitions of Terms 

Airline Energy Efficiency Measure of airline’s effectiveness in consuming 

energy resources (e.g. fuel) to produce revenue-generating 

outputs (e.g. passenger capacity) relative to 

environmentally-harmful emissions (Cui & Li, 2016). 

Bias-corrected A dataset or data point that has already had a 

transformation or cleaning step applied to address 

bias-related concerns.  Bootstrapping is suggested as a 

possible method to apply bias-correction. 

Bootstrapping Bootstrapping is a method of repeating the data generation 

cycle by utilizing additional data points from the sample 

(replacing those in the original dataset). 

Efficiency A measure of the ability of an entity to maximize its output 

while minimizing its input. 

Efficient Production Frontier The collective set of operating parameters which 

defines efficient production for a specific DEA model.  

Also referred to as “Efficient Frontier”, “Benchmark 

Production Frontier”, and “Benchmark Frontier”. 

Full-service Carriers Airlines operating a traditional business model with full 

offering of meal service, entertainment, and amenities. 
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Green An adjective describing practices or policies that have 

reduced negative impacts to the environment. 

Large Air Carriers For the purpose of this study, this term refers to airlines 

serving at least 5,000,000 passengers annually. 

Low-cost Carriers Airlines operating a business model with fewer free 

amenities (sometimes available at an additional fee) but 

lower fares than full-service carriers. 

Point-to-Point Airline operating strategy where routes are operated with 

direct flights, as opposed to routing passengers through hub 

airports. 

Productivity A measure of the ability of an entity to maximize its output 

while minimizing input. 

Service Effectiveness Ability of an airline to transform operating capacity (e.g. 

ASMs) into customer consumable products – e.g. RPMs – 

based on its routes and schedules (Mallikarjun, 2015). 

Slacks-based Measure  Slacks-based measures (SBMs) are methods of 

reviewing DEA results, specifically the excesses in input 

consumption and shortfalls in output production. 

Super SBM SBM methodology that removes the target DMU from the 

calculation of the sample DMU average performance. 

Technical Efficiency Similar to airline energy efficiency, this term refers to the 

airline’s ability to create consumable services through 

consumption of inputs, realizing the detrimental creation of 
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environmentally-impacting emissions (Arjomandi & 

Seufert, 2014). 

List of Acronyms 

ASK  Available Seat Kilometer 

ASM  Available Seat Miles 

CRS  Constant Returns-to-Scale 

DEA  Data Envelopment Analysis 

DMU  Decision-Making Unit 

FSC  Full Service Carrier 

GRI  Global Reporting Initiative 

IPCC  Intergovernmental Panel on Climate Change 

LCC  Low Cost Carrier 

M&A  Merger and Acquisition 

OE  Operating Expenses 

P2P  Point-to-Point Carrier 

RPM  Revenue Passenger Mile 

RQ  Research Question 

SBM  Slacks-Based Method 

VRS  Variable Returns-to-Scale  
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CHAPTER II 

REVIEW OF THE RELEVANT LITERATURE 

Review of Research in Airline Efficiency 

The study of airline efficiency has been a focus of the airline industry since its 

inception in the early 1900s, specifically by its participants.  However, as a highly 

regulated industry with rapid evolution of technology, the focus on efficiency and its 

measures was not fully embraced until decades later (Marti et al., 2015).  As the aviation 

industry has evolved, the efficiency measures have increased in complexity to consider 

not only revenue generation versus fixed and variable costs, but also other tertiary effects 

such as socioeconomic impacts. 

Most literature in the airline efficiency domain highlight publications by Caves et 

al. (1981) as the origins of academic research into airline efficiency analysis.  Caves had 

previously published works focusing on transportation efficiencies in the railroad 

industry.  The 1981 research study compared 11 U.S. airlines based on their inputs 

(resources, capital, etc.), outputs (revenues, passengers served) and total factor 

productivity (TFP) over a period from 1972-1977.   

Airline efficiency utilizing total factor productivity (TFP).  TFP is a measure 

of productive efficiency calculated as the aggregate output produced by a unit of 

aggregate input (Oum et al., 2005).  After the initial usage by Caves et al. (1981), the TFP 

methodology continued to be a primary focus for evaluating airline efficiency.  Caves and 

his fellow researchers extended their original analysis to include both U.S. and non-U.S. 

airlines over a period from 1970-1983.  In a related work, Caves collaborated with other 
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researchers (Caves et al., 1984) to focus on the cost structures associated with large 

traditional air carriers versus the operations of smaller regional businesses.   

Traditional carriers were capable of a more efficient cost per passenger-mile than 

the smaller operations; from an economic perspective, this would make it seem highly 

unlikely that regional carriers could compete, but historical data demonstrated that they 

were able to secure market share for the major carriers (Caves et al., 1984).  In this study, 

the authors reviewed all U.S. carrier data (major and regional) between 1970 and 1981.  

The research study analyzed the different cost components of both the major and regional 

operations as well as the destinations served and average load factor of the aircraft.  The 

results of the study were surprising in that the variable cost benefits of the large 

certificated carriers were greater than realized: the major carriers enjoyed over a 40% 

cost advantage.  However, regional carriers did have some advantages; certain unit costs 

(e.g. wages) were lower.  Caves et al. (1984) also recognized that the data substantiated 

the perspective that there are fixed costs associated with the airline network size, i.e. even 

if there are economies of scale associated with larger volumes of service, the size of the 

service network will influence the fixed costs. 

Gillen et al. (1985) utilized TFP to evaluate seven Canadian air carriers.  The data 

generated by their research would become a recurring analysis sponsored by the 

Canadian government to help substantiate policy decisions.  Oum et al. (2005) 

contributed to the proliferation of TFP as a measure of airline efficiency.  In their analysis 

of a period from 1990-2001, the authors reviewed 10 major airlines in North America for 

operational performance and efficiency.  The authors identified a limitation in comparing 
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airlines only on TFP.  In developing their research strategy, the authors focused on 

extending the analysis of airline operations beyond productive efficiency.   

Oum et al. (2005) did not want to limit their analysis to productive efficiency 

(which evaluates how efficiently inputs are converted to outputs), but also intended to 

include the cost competitiveness of the airlines and effectiveness of the airlines to market 

their services to maximize yields.  Due to the analytical strategy deployed, the input and 

output variables were each combined into indices which were then used to evaluate 

efficiency.  For example, multiple inputs – including labor, fuel, materials, aircraft / flight 

equipment, and group equipment – were consolidated into a single input index.  The 

productive efficiency for each airline was calculated by analyzing the consumption of the 

input index relative to the output index – consisting of airline consumables such as 

passenger and freight revenue-tonne-kilometers (RTKs), mail, and incidental services 

(e.g. catering, ground handling, billable support services for other airlines). 

The input versus output analysis described above defines the productive 

efficiency of the airlines – i.e., the analysis yielded a TFP index.  The authors (Oum et 

al., 2005) extended the analysis to cost efficiency by evaluating the airlines’ attention to 

the prices of inputs.  A unit cost index artifact was created by subtracting the total input 

price index from the residual TFP index values.  This unit cost index was then used to 

evaluate the cost competitiveness between the sample airlines.   

The final facet of the extension to airline efficiency by Oum et al. (2005) was to 

focus on the yield performance (i.e. actual profitability) of airlines.  The authors 

presented that while an airline could be efficient in their production and price competitive 

by managing inputs, neither of the previous two analysis steps evaluated the ability to 
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successfully market the airline services for revenue.  Oum et al. (2005) evaluated the 

average yields per airline demand (i.e. the RTKs) consumed.  Reviewing airline 

performance in the 1990s showed that the majority of airlines had falling yields when 

reviewed by the relationship above.  This trend matched expectations as a number of 

airlines were combined through merger and acquisition activity during the period of time 

in analysis (and was captured in the authors’ data).  The authors also confirmed the 

impacts of stage length, recognizing that it was inappropriate to generally compare the 

airlines based on the average yield data, as longer flight stages would enjoy economies of 

scale for costs and therefore show higher yields.  The authors successfully extracted the 

stage length effects from the yield data, which then presented airlines known to be 

profitable as having positive average yields. 

The research study by Oum et al. (2005) provides a good philosophical 

framework for examining airline efficiency as they looked at multiple aspects of airline 

business operations: (a) internal operational efficiency; (b) input cost management; and 

(c) effectiveness of sales and revenue generation.  However, the analytical method 

employed by the study demonstrated deficiencies in enabling high fidelity understanding 

of the operations of each of the firms.  The reduction and consolidation of all variables to 

indices forced the analysis to provide general comparison of the different entities 

involved.  From an operations management perspective, the need for greater 

understanding of every input and output helps promote the consideration of DEA as an 

analytical tool to be leveraged for airline efficiency analysis. 

Application of DEA in measuring airline efficiencies.  Good et al. (1995) 

utilized both a stochastic frontier model (utilizing regression analysis) and DEA to 
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examine European and U.S. air carriers operating between 1976 - 1986.  The study was 

performed to evaluate U.S. air carrier performance post-deregulation, compare the 

operations between air carriers from the different regions, and then to hypothesize the 

effects to European carrier efficiencies if they were to similarly deregulate.  This study 

presents a dichotomy in analytical methodology as the authors utilized a more traditional 

analysis and DEA in parallel.  The stochastic frontier approach imposes assumptions on 

the data distribution but frames the analysis and results so that the results may be 

generalized for conclusions against the population.  The DEA method allowed a more 

open evaluation of the efficiencies of each decision-making unit, but as previously 

reviewed in Zhu (2011), DEA allows an effective evaluation of a DMU against a 

benchmark; it is limited in its capacity to be used to compare the efficiency of several 

DMUs against each other. 

Supplementing the productive efficiency measure.  As the research study by 

Oum et al. (2005) demonstrated, the evaluation of airline efficiencies beyond productive 

efficiency enables better modeling of firm decision making.  The DEA methodology has 

enabled research in air carrier operational efficiency to include tertiary variables to 

complete a more secular perspective. 

Scheraga (2004) employed a DEA model to explore air carrier management 

responsibilities to balance investment between productive efficiency goals and 

customer-focused improvements.  The literature review compiled by Scheraga highlights 

key foci for airline operations that have become choices in airline offerings.  In-flight 

passenger services (e.g. meals, beverages, and airline memorabilia) in certain markets 

and operating models have transitioned from being inclusive in the base fare to becoming 
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an extra charge.  In a separate facet of customer-focus, the ticketing, sales, and promotion 

aspects of the airline model has evolved to embrace greater value-based segmentation.  

Specifically, the airlines have started to implement mediums (e.g. online ticketing), 

choices (e.g. fare-structures, code sharing) and customer-focused initiatives (e.g. 

improved delay communication, baggage delivery time commitments) to help maximize 

their attraction to customers who are most desired by the airline along the dimensions of 

monetary value and travel frequency. 

In this study, Scheraga (2004) utilizes an input-oriented DEA model to compute 

relative efficiency scores for each of 38 global airlines under study.  Model orientation 

describes how a DEA model will seek determination of the optimal production frontier 

for the DMUs presented in the model.  An input-oriented model will focus on minimizing 

input consumption by a DMU to achieve the same output level.  An output-oriented 

model will seek to maximize outputs while maintaining the same levels of input 

consumption.  A base-oriented (sometimes called unoriented) DEA model equally 

optimizes both inputs and outputs – or can have weighting applied to establish a relative 

priority in optimization between the input consumption and output production. 

After efficiency scores were established for each airline, the scores were regressed 

against several variables (both operational and environmental in nature) to promote the 

ability to compare efficiencies.  In line with the aforementioned research study by Oum et 

al. (2005), the efficiencies were regressed against flight stage length in order to eliminate 

influences from the cost economies of scale associated with longer flights.  Another 

operational variable that was utilized for the regression was the average load factor.  As 

presented by Caves et al. (1984), comparing airline efficiencies for operations with very 
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different load factors will not result in actionable data.  Two of the other variables 

utilized in the regression activities helped to normalize the revenue structure of the 

airline: passenger revenues as a percentage of total revenues and scheduled service 

revenues as a percentage of total revenues.  To consider other environmental influences, 

the efficiencies were also regressed against the percentage state-ownership of the airline – 

i.e. the extent to which an airline’s flag country was supporting the airline’s business. 

Augmenting DEA with regression analysis.  As previously discussed, DEA 

possesses positive characteristics which enables the evaluation of productive efficiency 

without requiring assumptions associated with the cost frontier, or pricing information.  

However, the nature of these benefits results in an evaluation that compares a DMU 

against a benchmark – i.e. a comparison between DMUs may possess threats to validity.  

A strategy to provide a more comprehensive evaluation of DMU efficiency relative to the 

peer group is to augment the DEA with a successive analysis technique. 

Merkert and Hensher (2011) employ this strategy via a two-stage DEA analysis to 

compare 58 airlines from 2007-2009.  The goal was to not only evaluate technical 

efficiency – the efficiency focus of prior DEA research and the evaluation originally 

constructed by Charnes et al. (1978) – but also explore the allocative and cost efficiencies 

of the airlines.  In the first stage, a traditional DEA analysis is conducted to evaluate 

airline efficiency.  The DEA model is structured as input-oriented, and the authors pursue 

both constant returns to scale (CRS) and variable returns to scale (VRS) estimations.  

After the initial analysis stage, the authors then perform a regression analysis of the 

first-stage DEA efficiency scores.  In this follow-on analysis stage, the first-stage 
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efficiency scores are the dependent variable, which are regressed against exploratory 

(independent) variables.   

In this research study, Merkert and Hensher (2011) present that a bootstrapping 

(bias-correction) treatment of the data is required to prevent unintended inflation of the 

efficiency scores when utilized in a serial correlation model.  Review of the data after the 

analysis confirmed expectations that uncorrected efficiency scores would be inflated – 

i.e. overestimate the efficiency of the DMUs (airlines) relative to the corrected scores.  

However, after reviewing some of the results of the second-stage analysis, the authors 

conclude that bootstrapping did not have a significant effect on the results and 

hypothesize that for the given sample (commercial aviation industry), bootstrapping may 

not be as important. 

The study by Merkert and Hensher (2011) demonstrates how DEA can be an 

effective method to consume operating data to make market- or industry-level 

deductions.  Their research analyzes efficiencies of different airlines which can be 

affected by fleet size, age of aircraft, aircraft capacity, and specific flight distances for the 

data points.  Through the evaluation of decision-making efficiency, the authors were able 

to confirm some expected trends, while showing numerical statistically significant results 

that contradict the current knowledge base.  For example, the analysis did show that as 

airlines increased in business size – i.e. increased total market exposure through 

additional aircraft, larger aircraft, etc. – they enjoyed marginally improved efficiencies.  

However, the data contradicted expectations that longer stage lengths induce greater cost 

efficiencies.  The lack of significant relationship suggests that while the aircraft may 

enjoy a cost savings in fuel burn, longer flying aircraft have greater crew and/or 
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maintenance requirements (e.g. needing to have maintenance capabilities at non-hub 

destinations) which counter any fuel savings. 

Multi-staged DEA applications in airline efficiency.  The previously reviewed 

Merkert and Hensher (2011) study presented a research approach where the results of the 

DEA analysis are interim values which are processed in a consecutive research phase.  In 

the last several years, DEA models have been expanded to facilitate multiple analysis 

stages.  The outputs of the first stage are interim values; the following analysis is also a 

DEA optimization which consumes these interim values as inputs.  Each analysis phase 

can be defined by its own equations and optimization focus – e.g. they can be 

input-oriented, output-oriented, CRS, VRS, etc.).  The results of the combined 

multi-stage model represent the combined choices made by a DMU.   

The multi-stage approach has been used with success in airline efficiency 

research.  The different stages allow focus on different facets of firm performance.  Zhu 

(2011) utilized a two-stage DEA analysis to review 21 airlines operating in the United 

States.  The first stage evaluated an airline’s operational efficiency – i.e. it measured an 

airline’s ability to convert material and labor resources into capacity to serve passengers.  

Specifically, the inputs of this stage included fuel costs, the cost of benefits to passengers 

or employees, operating cost per seat mile, as well as salaries and wages.  In this phase, 

the DEA analysis was used to determine the optimal load factor and fleet size that could 

be generated with these inputs.  While the first stage yielded awareness to the optimal 

capacity that the airline can offer, it does not reflect the market share or revenue actually 

gained.   
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The second stage of Zhu’s analysis was utilized to evaluate how well the airline 

was developing revenue.  This is a measure of how attractive the airline’s product is to 

the consumer and how effective the airline is at making this product available to its 

consumer base.  The load factor and fleet size generated in the first-stage serve as the 

inputs, and the outputs of this phase are passenger revenue and revenue passenger miles.  

Zhu (2011) depicts his two-stage model and variables in Figure 1. 

 

 

Figure 1.  Representation of two-stage airline efficiency model from Zhu (2011).   
 
 
 
Examining the effectiveness of revenue generation provides greater understanding 

of the total performance of an airline.  For one of the years of study, while seven of the 

airlines had achieved optimal fleet utilization (load factor and fleet size) given their 

available resources, only three of the airlines were operating optimally for revenue 

generation.  It should be noted that there were no airlines that operated at optimal 

efficiency for both stages. 

The number of stages in a multi-stage DEA analysis can be tailored to match the 

researchers’ desires in modeling the choices for a DMU.  Mallikarjun (2015) expands on 

two-stage models – like the Zhu (2011) airline analysis – by adding a stage, segregating 

the generation of revenue passenger miles from the recognition of pure revenue.  This 

model’s first-stage also evaluates the airline’s ability to consume labor and material 
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resources to generate product capacity – available seat miles.  The inputs include crew 

and employee wages, fuel and maintenance supplies, and other costs directly related to 

airline operations (e.g. insurance expenses).  Mallikarjun (2015) describes the airline’s 

performance in this phase to be cost efficiency. 

The analysis then utilizes a second stage to evaluate an airline’s ability to 

transform these available seat miles into revenue passenger miles.  In this second stage – 

which Mallikarjun (2015) labels service effectiveness – the airlines ability to transform 

ASMs to RPMs is evaluated, framed within the environmental influences of the airline’s 

fleet size and destinations offered.  Mallikarjun highlights that the combined evaluation 

of the cost efficiency (first stage) and service effectiveness (second stage) yields an 

airline’s cost effectiveness.  The third stage of the Mallikarjun (2015) model measures the 

airline’s ability to market its revenue passenger miles and recognize revenue.  Labeled 

the “Sales” stage, this segment of the analysis is said to evaluate the “revenue generation” 

capabilities of the airline.  The comparison and optimization of the inputs and final 

outputs of the three-stage model define the overall operating efficiency of the airline.  

This model is presented in Figure 2. 

 
 

 

Figure 2.  Representation of U.S. domestic airline operating efficiency measurement 
model from Mallikarjun (2015). 
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Philosophically, Mallikarjun’s model design is more representative of real-world 

airline operations than the previously reviewed Zhu (2011) two-stage model.  The 

expenses consumed in both models translate to products and services (available seat 

miles) that can be utilized by passengers.  However, the airline must allocate this capacity 

via aircraft and routes for them to be consumed by customers.  A portion of the ASMs are 

also not revenue generating; the airline may use them to reposition flight crews to operate 

aircraft starting in a different location.  These ASMs could also be utilized as award 

travel for passengers in airline loyalty programs.  The third stage measures an aspect of 

airline performance that Zhu’s model does not.  The previously reviewed two-stage 

model by Zhu (2011) converts the cost inputs directly to revenue.  Conversely, the 

Mallikarjun (2015) three-stage model specifically reviews airline decision making to 

understand if the revenue generated reflects the maximum possible. 

The three-stage model developed by Mallikarjun (2015) has served as a strong 

example for DEA-based measurement of airline efficiency.  Li, Wang, and Cui (2015) 

used this model as their basis to evaluate 22 international airlines over a period from 

2008 to 2012.  The researchers argue that while the original model is sound, the 

application of a slacks-based measure (SBM) methodology in the three-stage model will 

help differentiate between DMUs that are considered efficient – i.e. help provide a 

greater understanding of which of several efficient airlines is more or less efficient.  In 

the 2015 study, Li et al. review different SBM approaches available in exigent literature.  

Super SBM, a common SBM technique, supports the comparison of different efficient 

DMUs by extracting the evaluated DMU from the reference DMUs utilized for 
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comparison.  The validity threat of this method, however, is that every DMU under 

evaluation is being compared to a different reference set. 

Li et al. (2015) choose to promote the Virtual Frontier Network SBM model.  In 

this approach, the reference DMU set is independent of the evaluation DMU set – i.e. all 

the DMUs are evaluated against the same reference set, but none of the evaluated DMUs 

are in that reference set.  The research study utilizes a traditional network SBM method, 

as well as the Virtual Frontier Network SBM model to assess the same airline.  The 

authors highlight that the traditional network denotes a number of airlines as efficient for 

performance in the first phase (cost efficient operations).  However, when the Virtual 

Frontier Network SBM model is applied, the first-stage bias is removed. 

The reviewed literature highlights DEA’s recent applications to the measurement 

of efficiency in airline operations.  Multi-stage models allow effective operations 

research to be conducted as the different aspects of firm decision-making can be 

combined in a large analytical model. 

Environmental Impacts in Aviation 

In line with the growing societal focus of protecting the environment, increased 

efforts are being leveraged to understand and mitigate the impacts of aviation to our 

surroundings.  As the volume of air transportation demand and capacity grows, a strategy 

for sustainable development of the aviation industry is critical (Lu & Morrell, 2006).  

Therefore, resources are being committed to address expectations to reduce and abate the 

pollutants associated with aircraft operations. 

Environmental motivations in aviation.  The focus of airlines on their 

environmental footprint can be attributed to philosophies of business ethics and corporate 
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responsibility.  Lynes and Andrachuk (2008) review the goal of corporate and social 

environmental responsibility (CSER) as an artifact defined by influences of the social 

acceptance, the culture of the firm’s constituents, and at times by industry-specific 

expectations.  The authors review several reasons for investment in CSER goals 

identified in exigent literature, including long-term cost management (investing in 

technology that is more efficient), realizing savings through waste reduction, improving 

branding, acquiescing to stakeholder pressure, and avoiding / delaying regulatory action.  

Through their research, SAS (Sweden’s flag carrier airline) is reviewed; a case study is 

performed to evaluate SAS’s reasons for adopting CSER practices. 

In line with current research focused on CSER, influencing forces on SAS were 

reviewed.  The political and social systems of Sweden (and Scandinavia as a whole) point 

to more democratic, consensus-based societies where a greater importance is placed on 

efficiency (in all processes) and specifically on environment and conservation.  Though 

this is specific to that geographic and cultural sample, the review of the market system 

highlighted that CO2 trading permits for emissions quota tracking and airport landing 

charges targeted at high-polluting aircraft were both market-based influences for SAS 

firm decisions to embrace CSER objectives (Lynes & Andrachuk, 2008).  Interviews with 

senior management of SAS revealed that the financial benefits of CSER goals were not 

only tied to regulatory or national expectations. 

In addition to embracing the cost-savings associated with more efficient 

consumption, SAS believed that its corporate earnings would be improved by gaining and 

maintaining corporate customers who expected corporate responsibility.  A specific 

example was the customer expecting their suppliers or partners to maintain standard 
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certification demonstrating environmental responsibility, such as ISO 14000.  A quote by 

SAS’s CEO established that investing in CSER goals added value to the company – not 

only in cost-reduction translated to increased revenues, but that a better environmental 

footprint translated to a better and stronger company image that could be transformed 

into financial value through a superior negotiating position, especially with the 

government and industry regulatory agencies (Lynes & Andrachuk, 2008). 

Environmental studies on aircraft operations.  The primary environmental 

impacts of aircraft operations lie in particulate and acoustic emissions.  Both sources of 

pollution are primarily created by the combustion process of aircraft engines.  In the 

interests of promoting understand of the influence of aviation operations on our world, Lu 

and Morrell (2006) developed methods to calculate these impacts utilizing a social cost 

estimation method. 

Quantifying environmental impacts of aviation.  The noise-specific impacts of 

aviation have the largest impact on the communities surrounding airports (Lu & Morrell, 

2006).  These impacts can be a nuisance, but also can have detrimental health effects via 

disruptions to daily life – e.g. by causing sleep deprivation.  Due to the negative impact 

aircraft operations can have on communities, governments have imposed additional rules 

and penalties to promote reasonable noise management.  Most airports near communities 

are driven to restrict night flights through restrictions, curfews, or quotas.  In some cases, 

charges are levied for violation of requirements or just for operations after a certain time 

at night.  As the negative impacts are experienced by the inhabitants of communities 

surrounding airports, Lu and Morrell (2006) present a method for calculating the noise 

social cost based on population density of these communities.  The formula utilizes the 
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hedonic price method to relate noise depreciation index (NDI) and the annual average 

house rent near the airport to the difference in noise the aircraft noise contours create 

over the ambient noise.  The density of the community is incorporated into the 

calculation by recognition of the number of residences impacted by the noise contour. 

Lu and Morrell (2006) also worked to quantify the particulate pollutant impacts of 

engine operations.  From a noise perspective, the aircraft provides the majority of its 

impact during taxi, take-off, and landing (TT&L) segments of a flight.  During taxi, the 

aircraft is operating with running engines and in close proximity to nearby communities.  

During take-off and landing, the engines are operated at their greatest thrust settings, 

generating the acoustic and particulate emissions relative to all phases of flight.  

However, this phase is also one of the shortest, with respect to the other segments of a 

flight; it would be unfair to consider emissions during TT&L as representative of the 

average flight engine performance.  To recognize the different modes of operation, Lu 

and Morrell (2006) developed a summation equation which combined the particulate 

generation for each phase of flight – recognizing both the time in that mode of flight and 

the particulates created at that power setting (information which is collected as part of the 

certification activities of any aircraft propulsion system). 

Pollution abatement via fleet planning.  Reducing the impacts of aircraft on the 

environment has become a focus for many airlines.  Rosskopf et al. (2014) identify three 

primary motivations for airlines to invest in environmental goals: (a) to avoid penalties 

and / or restrictions associated with emission-intensive aircraft; (b) to demonstrate 

environmental commitment and invest to avoid further regulatory action; and (c) to 
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develop a brand that is environmentally-conscious, with the interest of attracting or 

retaining customers.   

An obvious strategy for reducing the emissions impact is to leverage aircraft with 

efficient engines that yield fewer and less concentrated emissions.  In the research study 

by Rosskopf et al. (2014), the researchers leverage a fleet planning optimization model 

originally designed to help an airline minimize costs while building an aircraft fleet.  The 

model utilizes cost data, airline network requirements (e.g. destinations served, flight 

schedules), and business financial capabilities (preferences and abilities to buy vs. lease) 

to determine the optimal fleet composition over a multi-year period.  The authors 

augmented this previously developed optimization model with an additional variable that 

characterized an aircraft’s nitrogen oxide emissions (NOx) per unit distance traveled.  

Similar to the previously discussed research by Lu and Morrell (2006), these authors also 

focused on the fidelity of differentiating the particulate emission of every flight phase.  

The authors identified a typical airline flight profile from exigent research and developed 

an effective expression to obtain a total emissions per kilometer of distance flown, while 

preserving the relationship between the climb and cruise portions of a flight leg to other 

engine operating conditions (e.g. taxi, take-off, or landing).  Utilizing engine operating 

data retained by regulatory agencies, the researchers calculated an appropriate particulate 

emission relationship to flight segment length specific to each aircraft type. 

The augmented model was utilized to maximize fleet asset value at the end of the 

multi-year period, while minimizing a cumulative of the NOx emissions over that period 

of time (Rosskopf et al., 2014).  Utilizing a baseline optimal fleet strategy, the researchers 

set NOx reduction goals of 5%, 10%, and 15% to evaluate effects on net assets.  As part 
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of the exploratory study, the researchers varied fuel prices to gauge the effect on the fleet 

optimization model.  The authors concluded that increasing fuel costs and more stringent 

environmental goals were complimenting requirements; both goals necessitated earlier 

retirement of aging, less-efficient aircraft (whose older technology also made them more 

emissions-intensive) by newer and more efficient aircraft.  Even though the optimization 

model rewarded staying within common aircraft types, the optimal solutions drove 

airlines to incur the reduced commonality penalties (e.g. increased maintenance costs due 

to lower component commonality and increased training for technicians) due to the far 

greater operating efficiency of new families of aircraft – i.e. the Airbus A350, Boeing 

B787, and Boeing B737 MAX aircraft. 

The aircraft fleet optimization research by Rosskopf et al. (2014) provides 

substantiated literature demonstrating effective and viable means by which airlines can 

reduce their environmental impacts while supporting increased volumes of customer 

demand.  However, this research study establishes that this improved environmental 

performance comes at a cost, e.g. the investment in aircraft associated with achieving a 

6% improvement in the emissions reduction goal had a net impact of a 3% reduction in 

economic performance. 

Environmental impact abatement today.  Though investing in new aircraft to 

reduce particulate emissions and improve fuel efficiency are an obvious target for airlines 

to demonstrate CSER-focused philosophy, the financial investment in fleet composition 

changes are significant.  Lynes and Andrachuk (2008) highlight that airlines now record 

their actions in support of CSER goals through publicly distributed corporate 
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responsibility reports.  The content of these reports presents several different paths by 

which airlines are trying to improve their environmental footprint. 

Spills and waste management.  Delta’s (2017) Corporate Responsibility Report 

highlights that they measure their environmental impact not only through aircraft 

operations (air quality compliance), but it includes the entirety of the company’s 

operations, including material disposal and spills and waste handling.  Delta tracks spills 

for several different industrial fluids including diesel / gasoline (ground equipment), 

glycol, hydraulic fluid, aviation fuel (Jet A), and aircraft lavatory fluids and waste.  In 

their 2015 report, the company recognized a slight increase in spills relative to 2014 but 

recognized that over the period, Delta had started including “Delta Connection Carriers” 

(affiliated regional airline operations supporting small destination traffic to Delta hubs) in 

their sphere of responsibility.  In their sustainability report, Lufthansa (2017) publicly 

reported on the quantity of fuel dumped as well.  It should be noted that the maximum 

take-off weight for aircraft exceeds the maximum landing weight – in case of an in-flight 

emergency or immediate need to land, the aircraft must burn excess fuel or release it 

through fuel ejection ports.  Lufthansa’s report not only disclosed the volumes of fuel and 

the reasoning for fuel dumping (e.g. medical need, technical need, etc.), but also tracked 

the change versus the previous year as a commitment to improving their environmental 

impact. 

Reducing waste via recycling.  Airlines have recognized that their operations 

produce significant waste, and as part of their CSER goals, have implemented changes to 

increase recycling and reduce the total waste that cannot be recovered.  In work 

environments, KLM and Air France (Air France-KLM, 2017) have implemented 
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computer printer restrictions – known as Follow Print – which require an employee to 

confirm a print job at the physical printer.  This measure led to an 8% reduction of paper 

printing at Air France in 2015 (compared to 2014 requirements). 

Air France-KLM (2017) suggest that in-flight catering produces 70% of all 

non-hazardous waste generated by aircraft operations.  Today, a significant number of 

airlines are instituting measures to recover the waste through recycling.  In 2007, Delta 

instituted an in-flight “single stream” recycling program (Delta, 2017).  This program 

enabled flight attendants to quickly collect plastic, aluminum, and paper materials, 

maintaining the efficiency of cabin operations.  Upon arrival, the recyclable waste was 

processed by a single-stream service contracted by Delta to segregate the different 

materials for their individual recycling streams.  KLM improved recycling operations by 

investing in design improvements in catering trolleys.  Modifications to the trolley 

designs included facilities to stack plastic cups (keeping them segregated for recycling) as 

well as different container sections to segregate glass, cans, and PET bottles from regular 

waste (Air France-KLM, 2017). 

Minimizing fuel burn in ground operations.  Fossil fuel combustion during 

ground operations poses an opportunity for reducing particulate emissions.  Ground 

support equipment (GSE) is typically comprised of commercial-grade, gasoline- or 

diesel-powered machines.  Some vehicles are used for on-ramp operations, transporting 

fuel, cargo / luggage, flight supplies (e.g. food); other vehicles are used to provide 

electrical power or pre-conditioned air supply to parked aircraft (Air France-KLM, 2017).  

In the latter example, GSE vehicles are preferable to running aircraft auxiliary power 

units (APUs) but still contribute to particulate emissions.  In 2015, Air France recognized 
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an 11% reduction in annual GSE fuel consumption through reduced reliance on aircraft 

APUs versus alternative GSE.  At the end of 2015, over 70% of KLM’s pre-conditioned 

air supply carts were electric – not fossil fuel-based.  Air France and KLM state that per 

their long-term strategic goals, their GSE vehicles at Paris’s Charles De Gaulle and 

Amsterdam’s Schipol airports are almost 50% and should increase in the future.  All 

airlines track the fuel expenditures and general utilization of GSE vehicles in the interests 

of CSER goals.  By the end of 2015, Delta (2017) noted a transformation of over 

one-third of the off-road diesel vehicle fleet into electrical vehicles in support of their 

California operating locations to help reduce particulate emissions, over and above the 

2016 emissions mandate. 

A significant contribution of particulate emissions during airline ground 

operations is the aircraft taxi phase (Ganev et al., 2016).  An aircraft can spend up to an 

hour on the ground with an engine running.  Typically, the aircraft is spending the 

majority of its time sitting, or rolling with no power; when it does require acceleration, it 

uses a fractional power setting (and typically only one engine).  However, to ensure the 

power is available for the aircraft to move in queue, it has to leave the engine running up 

until it starts the remaining engines for preparation to take-off. 

A number of companies have performed significant research into opportunities to 

reduce the fuel consumption and emissions generated by this wasteful phase of airline 

operations.  Honeywell Aerospace and Safran developed an electric taxiing system, eTaxi 

(Ganev et al., 2016).  This system relies on electrically driven motors to be connected to 

wheels on the aircraft main landing gear, allowing the aircraft to perform ground 

operations without the thrust of the engines.  The electrical requirements of the eTaxi 
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system are low enough that it can be run by the aircraft’s APU.  On a different path, 

Lufthansa Technik (an engineering and technology subsidiary of the Lufthansa aviation 

group) has developed and certified TaxiBot, a robotic, diesel-electric aircraft tug 

(Lufthansa, 2017).  TaxiBot looks like a regular aircraft tug, but it can be controlled 

remotely by the pilot inside the aircraft cockpit.  Utilizing TaxiBot, the aircraft can be 

relocated to a position close to take-off without running engines, at which point the tug 

can disengage and return to the airport ramp while the crew starts the engines in 

preparation for departure.  Now certified by the European Aviation Safety Agency 

(EASA), multiple TaxiBot vehicles are in operation at airports in Europe. 

Minimizing fuel burn in air.  It is widely accepted that any investment to reduce 

fuel consumption will translate to reduced emissions generation.  Delta (2017) claimed an 

emissions reduction of 115,000 metric tons through fuel-savings initiatives that resulted 

in 12 million fewer gallons of fuel consumed in 2015.  The fuel savings measures 

deployed by the airlines can be both flight- or passenger-related.  While fleet 

modernization and aircraft replacements can provide a step-change in fuel efficiency and 

emissions output, airlines have recognized significant savings through weight reduction 

of the aircraft.   

Lufthansa (2017) performed studies recognizing that they could reduce magazines 

and newspapers carried onboard by tailoring their offerings to the flight regions.  

Similarly, a study of waste accumulation and volume available on the larger A380 

aircraft demonstrated that it was more efficient to have two lightweight waste trolleys in 

lieu of a compacting machine that was used for plastic waste.  KLM focused time to 

study the packaging utilized for their inflight catering.  A redesign of the packaging for 
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sandwiches led to a 50,000 kg reduction in the annual usage of cardboard (Air 

France-KLM, 2017).  After evaluating how their passengers utilized their time airborne 

and shopping services, Delta eliminated their Skymall magazine (located at every seat), 

as well as any Duty Free service. 

More extensive vehicle-related weight-savings initiatives have been employed by 

both airlines and aircraft manufacturers while aircraft are in-service.  Significant 

modifications can include lighter weight brake materials, addition / augmentation of 

aerodynamic devices such as winglets, or replacement of large systems (even engines).  

Major aircraft changes require substantial non-recurring cost due to the design and 

certification requirements associated with ensuring the aircraft’s airworthiness after 

changing flight-critical components.  Airlines are more likely to pursue strategies that do 

not affect the flight-critical systems of the aircraft to avoid cost and achieve a quicker 

implementation.  An example of pursuing a reduction in weight without impacting the 

aircraft was demonstrated by Air France (Air France-KLM, 2017) and Delta (Delta, 

2017) who both identified weight savings opportunities by replacing mandatory pilot 

manuals with electronic flight bags (tablet computers certified as pilot aids in lieu of a 

printed manual). 

Environmental offsets.  A final aspect of investments which airlines are making 

to minimize their environmental impact includes investing directly in conservation 

organizations which are working to improve the environment (Delta, 2017).  SAS (2017) 

allows passengers to donate directly to Carbon Neutral, a certification agency run by 

Nature Capital Partners.  While the organization helps evaluate and designate 

corporations as having neutral greenhouse gas emissions, it also directs corporations to 
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environmental projects that can benefit from funding and support (About: CarbonNeutral, 

2017).  These projects can include development of renewable energy sources, 

reforestation initiatives, or special projects which may reduce the consumption of water – 

e.g. the Sustainable Sugarcane Initiative in India (Nature Capital Partners, 2017).   

Delta (2017) provides an additional path for customers to contribute to carbon 

offset programs.  Delta has partnered with The Nature Conservancy, a non-profit 

organization focused on reforestation and forest management.  In addition to directing 

their customers to The Nature Conservancy, Delta allows its loyalty program members to 

donate “Skymiles” – Delta’s currency unit for rewards tickets – to charities of their 

choice, including environmental organizations such as The Nature Conservancy. 

Current research and industry data present that airlines are trying to fulfill CSER 

goals utilizing a number of strategies.  While capital investment into new aircraft can 

provide the greatest impact, the financial requirements of such investments require less 

cost-intensive solutions.  The literature highlights that airlines are focusing heavily on the 

variable costs associated with airline operations as an area of opportunity for reducing 

environmental impacts.  Airlines are also enabling direct funding of environment-focused 

improvement initiatives to counter adverse impacts of their operations for a net green 

footprint. 

Research of airline efficiency inclusive of environmental impacts.  The review 

of previous literature on analytical methods supports DEA as an appropriate choice for 

the decision-management aspect of operations research, as well as assessing airline 

efficiency.  In very recent literature, researchers have begun to apply the DEA 

methodology to evaluate airline performance with respect to the environment. 
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Arjomandi and Seufert (2014) work to extend the body of knowledge through 

airline performance analysis utilizing COx as an undesirable output of a DEA model.  The 

analysis models focus on airline decisions to pursue technical efficiency – i.e. effective 

consumption of inputs to generate ASMs and revenue – and the reduction of 

fuel-consumption and emissions.  The research models were structured as single-stage 

DEA, utilizing a VRS frontier.  Similar to Mallikarjun (2015), VRS was deemed 

appropriate for modeling airlines as the industry is such that airlines often operate at 

non-optimal scales due to internal inefficiencies, imperfect competition, and financial 

constraints.  The authors sampled a large group of air carriers, wanting to observe trends 

in carriers supporting different regions of the world, as well as encompassing both 

full-service carriers (FSCs) and airlines executing a low-cost carrier (LCC) business 

model.  In total, 35 FSCs and 13 LCCs comprised the analysis dataset.  The geographic 

breakdown of the airlines were: 13 were from Europe (and Russia); 13 from North Asia 

and China; 11 from North America & Canada; 6 from the Asia Pacific; 4 from Africa and 

the Middle East; and 1 from Latin America. 

The review of literature on DEA has presented that the analysis technique 

precludes the need for finding variables with common units; the nature of DEA allows 

measures on dissimilar scales to be recognized in the efficiency measurement.  However, 

Arjomandi and Seufert (2014) wished to remove any bias related to the business aspects 

of the airline operation, focusing specifically on the efficiency of the airline’s flight 

activities.  Therefore, the inputs and outputs are all non-monetary measures.  The inputs 

reflect the labor and capital resources of the airline.  Labor is defined by the flight crews 

only – pilots and flight attendants – preventing maintenance overhead from impacting the 
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efficiency measurement of flight activities.  The capital resources are defined by aircraft 

flying capacity; this is calculated by taking the product of the maximum available 

take-off weights of all aircraft and operating days in the year – operating days were 

defined as the total flight hours divided by average daily revenue hours.  Similarly, the 

outputs of the airline DMUs in this model were the available ton kilometers (a 

non-passenger specific capacity measure similar to ASMs) and CO2 emissions. 

Arjomandi and Seufert (2014) also employ a bootstrapping method to help 

resolve validity threats due to results biasing caused by the sampling variation.  As 

previously reviewed, bootstrapping can resolve the sensitivity of efficiency scores to bias 

by leveraging a progressive resampling stage within the analysis – i.e. repeating the data 

generation process.  The authors review of the non-bootstrapped (biased) and 

bootstrapped (bias-corrected) results highlight the importance of comparing the two 

results as the bias-corrected results can confirm the original results or highlight a concern 

if the results possess different efficiency behaviors.  As part of the results interpretation, 

the authors presented whether the efficiency score for a particular airline suggested it was 

experiencing increasing or decreasing returns to scale. 

The results of the study highlight that airlines executing the FSC business model 

typically have greater technical efficiencies.  However, the top environmental efficiency 

airlines include both FSC and LCC airlines.  A prevalent dichotomy is that airlines 

typically excel at one of the two efficiencies but rarely both.  It was noted that over the 

period of study, the environmental efficiencies of the FSC airlines had an increasing trend 

that suggested investment toward fuel-burn reduction, resulting in lower net emissions 

(Arjomandi & Seufert, 2014). 
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A recent extension of DEA research in airline environmental efficiency was 

published by Cui and Li (2016) last year.  In their study, the authors developed a 

two-stage DEA model to evaluate 22 international airlines to assess an airline energy 

efficiency measure, from 2008 to 2012.  The first stage of the DEA model is very similar 

to the first stage of other multi-stage DEA models reviewed: the first stage inputs include 

wages and benefits for the employees and the operating expenses associated with fuel and 

aircraft assets.  The outputs of this first stage are the airline marketable capacity – 

revenue passenger kilometers (RPKs) and revenue tonne kilometers (RTKs) – but also 

include an estimated carbon dioxide emissions quantity associated with that flying 

capacity.  In the following “abatement stage”, the only carry-through variable is the 

estimated CO2; in addition, the airline consumes an abatement expense (funds invested to 

reduce energy consumption or produce carbon emissions).  The overall efficiency 

accounts for how much capacity is produced in the first stages as well as the net CO2 

emissions generated in the second stage of the analysis. 

This recent study by Cui and Li (2016) highlights a current and future trend of 

airlines as they invest to promote CSER goals, as previously discussed by Lynes and 

Andrachuk (2008).  In their airline energy efficiency measure, the researchers are 

assessing the airline’s efficiency in executing CSER goals with respect to their 

investments.  The results of the research highlighted that between the two stages, airlines 

were much stronger in operational efficiency than environmental efficiency, reinforcing 

the more recent focus on CSER goals.  Similar to previous literature reviewed, all of the 

airlines in this sample improved in environmental efficiency over the period of study. 
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Data Envelopment Analysis (DEA) 

Origins of DEA.  Data envelopment analysis (DEA) was developed and first 

applied in scholarly literature by Charnes et al. (1978).  DEA is a nonparametric analysis 

technique that assesses multiple decision-making units (DMUs), each with multiple 

inputs and outputs.  One of the key attributes of DEA is that the technique does not 

require valuation of the inputs and outputs under study.  The units of measure of the 

inputs and outputs can be determined by the researcher, irrespective of an actual market 

value.  The analysis technique then leverages linear programming models to estimate 

relationships based on these inputs and outputs.  In actuality, this technique develops an 

optimal DMU, based on the DMUs under analysis, and then assesses and presents 

relative efficiencies of the decision-making units to this optimal DMU and each other.   

DEA is considered to be a new data-oriented approach for evaluating peer 

entities.  DEA can be applied to a variety of applications due to its ability to define the 

individual DMUs in a generic and flexible fashion – the analysis technique can easily 

process decision-making relationships with multiple input and outputs that have different 

scales or units.  In academic and professional studies, it has become a focused tool in the 

operations research arena to evaluate business performance in applications including 

hospitals, military organizations, municipalities, and courts (Zhu, 2014).   

Charnes et al.’s DEA formulations – an input-oriented model.  The original 

developers applied this technique to study public programs (Charnes et al., 1978).  The 

method begins with a measure of efficiency through a ratio of weighted outputs of a 

DMU to the weighted inputs.  Charnes et al.’s original efficiency expression is presented 

in Equation 1. 
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where: 

• yrj is the known output of the jth DMU 

• xij is the known input of the jth DMU 

• ur and vi are the variable weights which the linear programming will solve for 

 

Charnes et al. (1978) proceeded to transform the efficiency expression into a 

linear programming set of equations for further use.  The authors start with the reciprocal 

of Equation 1, in order to present an inefficiency measure, presented in Equation 2. 
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Charnes et al. (1978) proceed to convert this inefficiency measure, which is in 

nonconvex, nonlinear form to an ordinary linear programming system.  The first step lays 
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out the desired linear programming system and maximization goal, as presented in 

Equation 3. 

 

!"#	D&      (3) 

subject to: 

− F;G	HG 	+	F;&	D&

J

GKL

	≤ 0	; 															@ = 1,… , A 

#=G	HG	
J

GKL

	≤ #=&	; 																																		B = 1,… ,! 

 HG 	≥ 0	;    6 = 1,… , 9, 

 

Every ordinary linear programming problem can be rewritten with a dual 

problem.  The solution of a dual problem presents an upper bound of the original problem 

(referred to as the primal problem in duality scenarios).  Charnes et al. (1978) use the 

duality theory to present the corresponding dual problem of Equation 3, presented in 

Equation 4.	
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Charnes et al. (1978) utilize the theory of linear fractional programming and the 

transformation defined in Equation 5 to create Equation 6 – the linear fractional 

programming equivalent of Equation 4. 
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Charnes et al. (1978) note that Equation 6 is in fact the same as Equation 2.  

Therefore, using substitutions and mathematical manipulation, Equations 1 and 2 can be 

solved utilizing the Equation 4 form.  Equation 7 reduces Equation 4 when the most 

efficient weights, T=∗, :;∗ , are utilized.  This in turn establishes Equation 8 to calculate 

efficiency, which equates to 1 only for the optimal DMU values. 
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C&∗ = 	M&∗ = 	 D&∗      (7) 
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Charnes et al. (1978) introduced the basis for DEA with the formulations derived 

above.  As DEA has been applied to different systems and entities, different techniques 

and strategies have presented themselves, providing researchers with various manners by 

which to employ the analytical method.  This model may be referred to as the “CCR 

model”, in reference to the original authors, Charnes, Cooper, and Rhodes (1978). 

Constant returns to scale (CRS) versus variable returns to scale (VRS).  An 

important facet of DEA to understand when developing an analytical model is the 

expectations surrounding the relationships between input and output.  Defining the 

relationship of the inputs to outputs framed as a linear frontier was first proposed by 

Farrell (1957).  Farrell’s approach separated the total relationship of input to output into 

pieces, allowing linear mathematical  expressions to define the input-output relationship.  

Charnes et al. (1978) took this approach in their original paper, coining the term data 

envelopment analysis. 

When creating a DEA model, the DMUs are driven to make the most efficient 

decisions based on rules the formulations are based on.  Economic theory presents 

alternate scenarios where the output varies with the variable cost – i.e. increasing and 

diminishing returns.  Similarly, when the variation of inputs will result in a corresponding 

proportional variance in the outputs, the inputs and outputs have a constant relationship.  

Framed in a functional or operational sense, the outputs reflect a constant rate of return 
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for the function based on the input (Coelli et al., 2005), described as constant returns to 

scale (CRS).  Conversely, if the proportion of output to input is not always the same, the 

DMU operates with variable returns to scale (VRS).  Zhu (2014) presents the difference 

in CRS and VRS utilizing a single depiction similar to the chart presented in Figure 3. 

 

 

Figure 3.  Example DEA production frontier demonstrating VRS.  
 

The figure presents a graphical depiction of the relationship between the output 

(y) and the input (x).  Segment AB exhibits increasing returns-to-scale (IRS), segment 

BC exhibits constant returns-to-scale (CRS), and segment CD exhibits decreasing 

returns-to-scale (Zhu, 2014).  If any of those segments represented the entirety of the 

frontier, then the output would be constants proportional to the input, suggesting a CRS 

frontier.  As the frontier in Figure 1 has varying relationships between the input and 

output, it is a VRS frontier. 
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The DEA model developer must choose how the DMU will operate; a CRS or 

VRS operational characteristic defines the formulations that are used to simulate DMU 

behaviors.  Applying CRS behavior to a DMU models a scenario when the DMUs are 

operating at an optimal scale.  This model design may be useful to help explore optimal 

decision-making and productivity ceilings.  However, real firms are influenced by factors 

which prevent operating at their optimum scale – e.g. regulatory constraints, economic 

limitations, or industry characteristics that prevent perfect competition (such as high 

capital / resource requirements for market entry).  If the goal is to effectively model and 

compare efficiencies for real-world applications, the VRS frontier is more appropriate 

(Coelli et al., 2005).  

Banker et al.’s DEA formulations – an output-oriented model.  Banker, 

Charnes, and Cooper (1984) extended the original CCR model to incorporate the 

aforementioned concept of returns-to-scale.  The model laid out below also incorporates 

the concept of output orientation.  In the input-oriented model previously reviewed 

(CCR), an inefficient DMU is recognized as improving efficiency by proportionally 

consuming fewer inputs to realize the same output.  Output-oriented DEA recognizes 

efficiency improvement when an inefficient DMU has a proportional increase in output 

without any change to the inputs.   

Banker et al. (1984) started their output-oriented model development considering 

three different DMUs related to the production frontier presented in Figure 4. 
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Figure 4.  Example production function denoting three different DMU operating points.  
 

 
 
In this scenario, the authors present three different DMUs, Pi, operating relative to 

the production frontier.  P1 and P2 are operating on the boundary of the production 

frontier, while P3 is operating within the production scope.  The DMUs operating 

positions are defined by the following parameters – where xi and yi represent the DMU’s 

input and output coordinates, respectively – presented in Equation 9. 
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The formulation of the output-oriented model commences with the CCR ratio 

definition of efficiency presented in Equation 10. 
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The original ratio expression is then rewritten to ratio a single output to a single 

input, for the DMU, Pi, as presented in Equation 11.  In this formulation,  
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Reviewing the different DMU positions in Figure 3 presents that P1 operates at a point 

where the tangential to the production function is aligned with a ray from the origin.  P2, 

while on the production function, is operating below the ray from the origin to P1.  

Similarly, P3 operates below the ray from the origin to P1 and also is not on the boundary 
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of the production function.  The relative positioning presents that P1 is relatively efficient 

while P2 and P3 are not.  As P2 and P3 lie on the same ray from the origin, they are 

deemed to possess equal levels of efficiency (or in this case, equally inefficient). 

Similar to the development of the CCR model, Banker et al. (1984) proceed 

through a mathematical analysis to develop a model which relates inputs to outputs for a 

decision-making unit, creating an assessment or measure of efficiency.  The authors 

apply four property postulates to a normal production set: (1) Convexity; (2) Inefficiency 

– i.e. inefficiency is always possible through greater input consumption, lower output 

production, or both; (3) Ray Unboundedness – any constant greater than zero can be 

applied to both input and output coordinates on the production function and identify a 

real operating possibility; and (4) Minimum Extrapolation.  The last postulate surmises 

that the subject production possibility set in the mathematical theory satisfies the previous 

three postulates. 

Having defined the production possibility set of focus, the authors apply 

Shepard’s distance function to relate the set to the CCR efficiency model.  Shepard 

(1970) defines the “distance function”, g(X, Y) for an input set L(Y) in Equation 12. 
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Substituting the production possibility set into Equation 11 allows the authors to 

construct a linear programming problem which resolves itself into the CCR efficiency 
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model with one exception: rather than the components having to be positive, they now 

only require non-negative values (zero is within the bounds of the model).  The authors 

use this derivation to assert validation by demonstrating an equivalent result to the 

original CCR model (utilizing the same sample simple production frontier). 

 Having validated the model, the authors move to constrain their expression to 

only identify the efficient production surface.  This segregation within the expression is 

accomplished by removing the third postulate (“Ray Unboundedness”).  The revised 

definition of the production possibility set coordinates are expressed in Equation 13. 
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The authors now substitute this revised production possibility set definition in Shepard’s 

distance function to yield Equation 14.  Equation 14 is translated into a linear 

programming optimization function, presented in Equation 15. 
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The linear programming problem presented in Equation 15 is considered for all 

nonnegative values of Xj and Yj and reformatted as a fractional programming problem, 

presented in Equation 16. 
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The relationships in Equation 16 reflect efficiency assessed from input possibility sets.  

When the distance function for output possibility sets are utilized, the fractional 

programming resolves to Equation 17. 

 

Max      (17) 
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≤ 1	, 6 = 1,… , 9	, :;, T= ≥ 0 

 

 Banker, Charnes, and Cooper continued their research exploring the impacts of 

differing returns-to-scale (increasing, constant, and decreasing).  The incorporation of 

changing returns-to-scale and the manipulation of their programming model to focus on 

output possibility sets promoted a significant opportunity to the application of DEA – i.e. 

efficiency assessment recognizing relative efficiency with respect to output maximization 

(freezing input consumption), as opposed to reducing inputs.  This model may be referred 

to as the “BCC model”, in reference to the original authors, Banker, Charnes, and Cooper 

(1984). 

Number of DMUs and influencing variables.  Two key facets of a DMU analysis 

include the number of inputs and outputs, and the total number of DMUs.  Zhu (2014) 

reviews previous literature where researchers presented that the number of DMUs should 

be two to three times that of the combined number of inputs and outputs, in order to avoid 

diminishment of the model’s discrimination between the DMUs.  While not an 



56 

 

imperative requirement of DEA, it is suggested to maintain this relationship to avoid 

concern of diminishing effects. 

Zhu (2014) also reflects on previous literature focused on DEA sample size and 

number of variables.  Previous works reflect that adequate sample size is required to 

avoid a DEA model that does not sufficiently discriminate to a discrete few “efficient” 

DMUs.  Zhu concludes that the purpose of the DEA method is to benchmark a group of 

DMUs, in order to assess and explore the individual efficiencies; the purpose is not meant 

to serve as a regression analysis.  Zhu recommends that a DEA analysis that is pursuing 

higher levels of discrimination should consider the weighting utilized to help narrow the 

requirements associated with the optimal operating frontier. 

Multi-stage DEA.  The literature review has referenced exigent research utilizing 

DEA in successive stages.  DEA models possessing more than one stage represent tiered 

decision-making efforts by the firm.  A multi-stage DEA model will leverage formulas to 

simultaneously optimize all stages of the model by using the outputs of an upstream stage 

as the inputs of the successive stage.  The model will then converge to a combined set of 

decisions (i.e. variable values) which represents the best aggregate firm decision-making 

for the combined model. 

VRS two-stage model.  Chen & Zhu (2004) present a VRS two-stage model 

developed to help assess the impact of the information technology division and associated 

investment on a firm business performance.  The model is defined in Equation 18. 

 

!B9NLl − Nmn     (18) 

subject to: 
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{Stage 1}  

HG#=G

J

GKL

≤ l#=G&																				B = 1,… ,m 

HGDoG

J

GKL

≥ žoG&																				q = 1,… , D 

HG

J

GKL

= 1 

HG ≥ 0																				6 = 1,… , 9 

α ≤ 0																																							 

{Stage 2}  

tGD=G

J

GKL

≤ žoG&																				q = 1,… , D 

tGF;G

J

GKL

≥ nF;G&																				@ = 1,… , s 

tG

J

GKL

= 1 

tG ≥ 0																				6 = 1,… , 9 

β ≥ 0																																							 

where: 

xi : First stage inputs 

zd	: First stage intermediate outputs / second stage intermediate inputs 

yr	: Second stage outputs 

w1/w2	:	User-defined	weights	of	the	two	stages 
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This model reaches optimal efficiency when α* = β* = 1, signifying optimal performance 

in both stages.  If the optimum α* or β* is equal to one while the other is a value other 

than unity, the optimal production frontier can only exist for a single stage and only if the 

intermediate measures reach an optimal measure (Zhu, 2014). 

Variants of two-stage DEA relationships.  Halkos et al (2015) present four 

categories of two-stage DEA models, including: (a) independent two-stage, (b) connected 

two-stage (where both stages must be efficient), (c) relational two-stage models, and (d) 

two-stage models based on game theory.  The previous example by Zhu (2014) was 

constructed for usage as a connected two-stage model.  Relational two-stage models 

execute a structure where the overall efficiency of a firm is a function of the operations of 

internal stages – be it additive, multiplicative, or derived by another relationship.   

Kao and Hwang (2008) establish a multiplicative relational two-stage model for a 

production system with related sub-processes to assess efficiencies in the Taiwanese 

non-life insurance industry.  The authors present a production process where two 

sub-processes constitute the overall process, as presented in Figure 5. 

 

 

Figure 5.  Representation of a tandem system with inputs X, outputs Y, and intermediate 
products Z from Kao and Hwang (2008). 
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The authors start with a system of equations that are used to independently measure 

efficiency in each of two sub-systems, presented in Equation 19. 
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In order to present a total efficiency co-dependent of both sub-processes, the authors 

modify the system of equations to the formulas presented in Equation 20. 

 

ìî@	DMU	ñ	        (20) 



60 

 

    

àâ = :;∗\;â

Q

;KL

<=
∗[=â

O

=KL

≤ 1 

àâ
L = ãå∗çåâ

é

åKL

<=
∗[=â

O

=KL

≤ 1 

àâ
m = :;∗\;â

Q

;KL

ãå∗çåâ

é

åKL

≤ 1 

  where 

   :;∗	, <=
∗	, ãå∗ 				≡ multipliers the DMU has selected 

àâ	, àâ
L	, àâ

m 				≡ total and sub-process efficiencies 

 

These equations reduce to demonstrate that the total efficiency is the cross product of the 

two sub-process efficiencies, presented in Equation 21. 

 

àâ = àâ
L×àâ

m     (21) 

 

The multiplicative relationship simply combines two efficiencies to define a total 

efficiency.  However, the production process in Figure 5 presents a pair of sub-processes 

in series sharing intermediate variables.  Kao and Hwang (2008) incorporate the ratio 

constraints of the two sub-processes to account for the series relationship, yielding the 

system of equations presented in Equation 22. 

 

àâ = max	        (22) 
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Converting the previous system of equations to a linear program results in Equation 23. 
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 Kao and Hwang (2008) further evolve their model to define systems of equations 

which specifically seek maximization of either of the two sub-process efficiencies.  The 

models constructed were then applied to the revenue generation pursuits of firms offering 

non-life insurance products in Taiwan.  A key result of this research is usage of 

multiplicative relational two-stage DEA, where the overall efficiency will be the product 

of the individual stage efficiencies of the two sub-processes. 

 

Gaps in Exigent Literature 

The previous sections reveal that research into airline efficiency has evolved to 

utilize several different methodologies and has focused on varying parts of the airline 

operations.  Post airline deregulation research focused on the airlines ability to maximize 

load factors on their routes.  As competition increased, focus began to concentrate on 

specific facets of the business operations within industry.  Since airlines could fill seats 

with pilot / crew repositioning or delayed passengers, the effective revenue generation of 

flights gained focus.  Airline fleets and routes grew, leading to focus in fleet aging, 

maintenance cost management, and aircraft availability.  Fuel efficiency was initially a 

research focus as it composes a significant percentage of direct operating costs; however, 

as awareness to social responsibility and environmental impacts has increased, fuel 

efficiency and particulate emissions have become the most recent focus of airline 

efficiency research. 
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The review of the DEA analytical method reveals that it is well suited to perform 

assessments of the efficiency of a business entity.  As usage of the method has evolved, 

researchers have found ways to replicate complex sequences of business decisions by 

creating optimization models that manage decisions surrounding intermediate outputs 

(created within the DMU’s internal functions) by creating stages in the decision-making 

process.  In multiple examples, this method has been successfully used to add fidelity to 

the decision-making simulation. 

However, exigent literature does not contain a complex DEA model that includes 

high-fidelity representations of decisions concerning both fiduciary and environmental 

responsibilities.  A gap in the body of knowledge exists here, where airline efficiency 

modeling can be extended to create high-fidelity models that incorporate the concepts of 

operational efficiency (load factor maximization), revenue-generation effectiveness, and 

environmental impact abatement. 

Summary 

The review of exigent literature presents a progressive history of study in airline 

efficiency, presenting the DEA analytical method.  The theory and application of several 

extensions of DEA were presented, including multi-stage models that can model tiered 

decision-making required in complex business units.  While several analysis methods 

have been pursued over the last several decades, DEA has developed an established 

purpose for academic research in efficiency measures, not limited only to the aviation 

industry.  Several applications of DEA to evaluate different facets of airline operations 

were presented. 
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This literature review also introduces recent trends promoting social 

environmental responsibiilty in commercial aviation.  Studies and industry data sources 

highlight that the participants of the commercial aviation industry are recognizing value 

and deploying strategies with respect to environmental responsibility and mitigating their 

operational impact.  Different areas of study regarding environmental considerations in 

aviation were revealed, including the evaluation of airlines around an environmental 

performance index.  The literature search revealed that the focus in CSER goals has only 

now culminated in DEA applications to understand airline efficiencies with respect to 

environmental impacts and pollutant / emissions abatement. 

  



65 

 

CHAPTER III 

METHODOLOGY 

Research Approach 

This research study defines a study of existing data submitted by commercial air 

carriers to the Department of Transportation as part of their quarterly operating 

requriements.  The study utilizes a two-phase, two-stage DEA model to assess and 

compare the efficiencies of the subject airlines with respect to cost efficiency, carbon 

abatement effectiveness, and operating efficiency.   

The following sub-sections explain the derivation of the analytical model utilized 

for the study.  The theoretical model was originally conceived as a variant to a three-stage 

airline efficiency model defined by Mallikarjun (2015).  This model was modified to 

incorpoate measures to evaluate efficiencies related to carbon dioxide emissions 

abatement.  As further evolution to the model, the three-stage architecture was converted 

to a two-phase, two-stage model utilizing princples established by Kao and Hwang 

(2008).  This multiplicative two-stage relational DEA model architecture was then 

utilized to deploy several analysis models on the study sample. 

First conceptual model – theoretical three-stage model design.  The first 

version of the DEA model conceived for this study possesses a three-stage structure 

similar to those utilized by Mallikarjun (2015) and Li et al. (2015) in the reviewed 

literature.  In these studies, the three stages separate the activities of the DMUs to better 

model the transformation of varying inputs into operating revenues.  In Mallikarjun 

(2015), the first stage transforms operating expenses (fixed and variable costs) into the 

airline’s total capacity – i.e. available seat miles (ASMs).  The subsequent stage focuses 
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on the airlines’ services offered and transforms the ASMs into revenue passenger miles 

(RPMs), utilizing additional inputs for the number of flights and destinations available.  

In the final stage, the operating efficiency of the airline is assessed as the RPMs are 

transformed into operating revenue.  For this study, the three-stage airline efficiency 

model has been tailored to incorporate an evaluation for environmental efficiency, 

depicted in Figure 6. 

 

 

Figure 6.  Proposed Three-stage environmental operating efficiency measurement model. 
 
 
 
Stage 1: operations.  The first stage evaluates the airline DMU with respect to 

cost efficiency (Mallikarjun, 2015).  In this stage, the operating expenses – i.e. the costs 

the airline incurs in relation to the business operations – are consumed to generate an 

intermediate output: ASMs.  The operating expenses consumed include the wages / 
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salaries for all operational employees (pilots, flight attendants, maintenance staff, etc.), 

the operating material costs (e.g. fuel), and other miscellaneous operating expenses.  

From a philosophical perspective, the first stage consumes labor and material resources 

(specifically excluding capital) to generate a supply of product; the ASMs represent the 

capacity that the business can choose to price and distribute.  A detailed depiction of the 

nodes in this stage is presented in Figure 7. 

 
 

 

Figure 7.  Environmental operating efficiency measurement model – Stage 1: operations. 
 
 
 
Stage 2: services & carbon abatement.  The second stage is similar to the 

“Service” stage from Mallikarjun’s (2015) three-stage model, but also adopts input and 

output variables to incorporate decision-making aspects associated with reducing net 

environmental impact.  With respect to the service effectiveness aspect of airline 

operations, this stage consumes as an input the ASMs that were generated by the first 

stage and transforms them into an intermediate output, RPMs, which depicts the service 

demand of the airline (Mallikarjun, 2015).  RPMs specifically help us understand what 

number of revenue-generating passengers were on a trip between two destinations, as a 

function of the ASMs available.  Mallikarjun (2015) defines this phase as indicating the 
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service effectiveness of the airline.  However, when combined with the first stage, he 

notes that it helps demonstrate the cost effectiveness. 

The environmental-impact related variables in the second stage facilitates an 

environmental efficiency measure into the analysis model.  Following the application by 

Cui and Li (2016) of a two-stage DEA which includes carbon abatement in the evaluation 

of a production process, the abatement process is incorporated in the second stage 

following the operations phase.  The intermediate output of the preceding operations 

stage – which feeds this segment as an input – is the estimated carbon dioxide emissions 

(ECO2) associated with aircraft fuel consumption.  The ECO2 is defined by 

Carbonfund.org, utilizing data standards established by the Environmental Protection 

Agency (EPA).  This calculation is presented in Equation 18, where ASM represents the 

available seat mile capacity for that specific airline, and λ is the emissions coefficient 

defined by the EPA (Carbonfund.org, 2017).  In the latest publication of the EPA’s 

emissions factors for greenhouse gas inventories, the coefficient is equal to 0.143 kg CO2 

emissions per available seat mile (Environmental Protection Agency, 2015). 

 

àôöm = õúù ∗ H    (18) 

 

In addition to the estimated carbon dioxide emissions, this stage also consumes 

abatement expense, the financial expenditures of the airline to alleviate the environmental 

impacts of business operations.  As discussed in the literature review, airlines invest 

resources to reduce and abate the environmental impacts of their flight and ground 

operations.  These contributions include recurring abatement activities, as well as 
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non-recurring investment into emissions reduction technology or capabilities.  Recurring 

costs for environmental impact abatement include expenses associated with activities 

such as recycling program operations or alternative energy sources.  Non-recurring 

investment is typically reflected in the design and development costs to deploy 

capabilities such as the electrical aircraft taxi systems and lighter onboard galley carts.   

The abatement-related intermediate output of this stage is actual CO2 emissions.  

The actual CO2 emissions reflect the net carbon impact to the environment; this value 

recognizes the avoidance in environmental impact (the value of abatement) subtracted 

from the estimated total carbon emissions. 

A detailed depiction of the nodes in this stage is presented in Figure 8. 

 
 

 
Figure 8.  Environmental operating efficiency measurement model – Stage 2: services 
and carbon abatement 

 
 
 
Stage 3: sales.  The third and final stage of this efficiency measurement model 

incorporates the intermediate outputs of Stage 2 to produce total recognized revenue.  In 



70 

 

this stage, the DMU markets the RPMs and transforms this intermediate service into 

revenue.  However, the operating revenue is impacted by the efforts the airline makes to 

abate operating impact to the environment.  Therefore, this stage also consumes the CO2 

output from the abatement segment of Stage 2.   

The values for the final outputs of this stage (operating revenues) are obtained 

from data extracted from air carrier filings, made available through the Bureau of 

Transportation Statistics online databases (BTS, 2017).  A detailed depiction of the nodes 

in this stage is presented in Figure 9. 

 
 

 

Figure 9.  Environmental operating efficiency measurement model – Stage 3: sales. 
 
 
 
First conceptual model – three-stage DEA model formulation.  The previous 

section describes the theory behind the development of a proposed three-stage model.  

The following paragraphs layout the DEA model formulas specific to each stage.  The 

DMU orientation strategy follows the base-oriented DEA principle; it is structured to 

maximize efficiency by both reducing input consumption and increasing output 

production.  This study is focused on reducing the environmental impacts of air carrier 
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operations and also incorporating an environmental abatement intermediate input into the 

model – it is therefore important to simultaneously improve both aspects of the DMU 

operations. 

With respect to the airline industry as a whole, the base-oriented approach 

accurately reflects an airline’s business model.  While every for-profit business attempts 

to minimize costs and input consumption, the capital costs of aircraft are very high and 

not easily liquidated – the cost requirements therefore drive a long-term investment and 

procurement strategy.  With high financial requirements associated with the aircraft 

capital, air carrier operations must focus on direct operating efficiency.  From an 

operational standpoint, the DMUs focus on both minimizing all the other (non-aircraft) 

variable costs (inputs), while also maximizing the outputs.  This base-oriented theoretical 

model would require an iterative algorithm that alternates between an input-oriented step 

and an output-oriented step (Mallikarjun, 2015).  

Stage 1: operations.  The first stage utilizes a VRS model to simultaneously 

decrease input levels while increasing the intermediate outputs.  In this stage, the 

objective function drives to either minimize the efficiency of the first stage for airline k or 

maximize its approximate inverse efficiency.  The first two constraints are used to ensure 

the optimal production frontier airline is increasing in efficiency through the iterations.  

The first constraint ensures there are no increases in consumption of operating expense 

inputs for successive iterations (it can only decrease).  In parallel, the second constraint 

ensures that an optimal airline is increasing airline capacity generation for each 

successive iteration.  The final constraint is utilized to ensure variable returns-to-scale is 

modeled.  The first stage formulas are presented in Equation 24. 
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where: 

E1kt : Efficiency of 1st stage for airline k during iteration t 

üLâû : Approximate inverse efficiency of 1st stage for airline k (iteration t) 

n : Total number of airlines 

OEj0 : Total operating expenses consumed by airline j 

ASMj0 : Available seat miles of airline j 

λjt : Weight placed on airline j by airline k when solving  Stage 1 (iteration t) 

ECO2kt : Estimated CO2 generated by airline k (iteration t) 
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Stage 2: services & carbon abatement.  The second stage defines the services and 

carbon abatement stage of the airline operations.  In the first (forward) pass through this 

stage, the objective function minimizes the efficiency of airline k during iteration t or 

maximizes the approximate inverse efficiency.  Similar to the first stage, the first 

constraint drives improvement in operations through the iterations: the first constraint 

prevents increased consumption of ASM input in consecutive iterations, and the second 

constraint does not allow reduction of RPM output in consecutive iterations.  The 

formulas defining this stage are defined in Equation 25. 
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where: 

E2ktf  / E2ktb : Efficiencies of airline k when solving the 2nd stage during forward 

and reverse iterations (iterations t) 
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ü2ktf  / ü2ktb : Approximate inverse efficiencies of airline k when solving the 2nd 

stage during forward and reverse iterations (iterations t) 

NGû° / NGû† : Weight placed on airline j by airline k when solving the 2nd stage 

during forward and reverse iterations (iterations t) 

(¢£ù)G& : Revenue passenger miles of airline j 

 

As previously stated, this DEA model is base-oriented, and so employs input- and 

output-oriented steps in the model defining the second stage DMU.  To generate this 

phenomenon, the model algorithms deploy “forward” and “backward” passes through the 

second stage DMU.  The objective function for the backward pass of Stage 2 minimizes 

the relative efficiency of the second stage of airline k during iteration t or maximizes its 

approximate inverse efficiency by the equivalent amount.  The primary constraints 

ensure: (a) the optimal production frontier airline consumes no more intermediate input 

(ASM) as from the forward pass and (b) produces at least as much intermediate output 

(RPM) as during the forward pass.  The formulas defining the backward pass of Stage 2a 

are defined in Equation 26. 
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In parallel, this stage models the airline activities to offset a portion of carbon 

emissions produced through investment and expenditures to particulate emission 

generation.  The objective function for this stage minimizes the relative abatement 

efficiency associated with airline k during iteration t or maximizes the approximate 

inverse abatement efficiency by the same quantity.  The first constraint of this stage 

ensures that in consecutive iterations, the abatement expense pursued by the frontier 

airline does not increase.  The second constraint ensures that the CO2 reduction – defined 

by the difference between estimated CO2 generated due to fuel consumption in operations 

and the total net emission impacts after abatement adjustment – does not reduce in 

quantity over consecutive iterations.  The remaining constraints define a variable 

returns-to-scale system and prevent the model from driving to inefficient behavior.  The 

formulas defining abatement are defined in Equation 27. 
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where: 

E2ENV : Environmental efficiency of airline k when solving the 2nd stage for 

iteration t 

ü2ENV : Approximate inverse environmental efficiency  

àôömGû: Estimated carbon dioxide emissions of airline j when solving the 2nd 

stage for iteration t 

(©ì)Gû: Total fuel consumed by airline j in iteration t 

™´¨: CO2 emissions per gallon coefficient for aviation kerosene 

AEk : Abatement expense of airline k 

CO2k : Net carbon dioxide emissions of airline k 

 

Stage 3: sales.  The third and final stage of this multi-stage DEA model also 

utilizes a VRS model to decrease input levels while simultaneously increasing the 
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intermediate outputs.  The objective function minimizes the relative efficiency of the 

third stage for airline k during iteration t or maximizes the approximate inverse efficiency 

for the same value.  The constraints of this stage are used to ensure the optimal airline is 

not consuming more intermediate input (RPM) and not generating less output (OR) for 

each iteration t.  The third stage formulas are presented in Equation 28. 
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where: 

E3kt : Efficiency of airline k when solving the 3rd stage during iteration t) 

ü3kt : Approximate inverse efficiency of airline k when solving the 3rd stage during 

iteration t 

tjt : Weight placed on airline j by airline k when solving the 3rd stage during 

iteration t 
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ORj0	:	Actual total operating revenue generated by airline j 

 

Final model – theoretical multiplicative relational two-stage model design.  

The three-stage structure similar to those utilized by Mallikarjun (2015) and Li et al. 

(2015) in the reviewed literature requires a forward-backward recursive iteration to 

facilitate the second stage.  The review of exigent literature establishes an appropriate 

application of the multiplicative relational two-stage model presented by Kao and Hwang 

(2008).  Leveraging two-stage analysis while retaining the better representation of the 

airline business through the three stages – conceived by Mallikarjun – is desirable for an 

airline analysis model; these characteristics would provide a model that is easily 

deployable and scalable for larger datasets. 

The proposed analysis model architecture leverages (a) the multiplicative 

two-stage relationship – where the total efficiency is the cross product of two sub-process 

efficiencies, and (b) the relationship two-stage efficiency model developed by Kao and 

Hwang (2008) for two sub-processes conducted in series.  The two-phase, two-stage 

model is presented in Figure 10, where each of two phases is a two-stage DEA model, 

and the efficiency of each phase is combined to produce the total environmental 

operating efficiency measurement model. 
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Figure 10.  Environmental operating efficiency measurement model. 
 

 

Upon immediate review, it is evident that the second stage of Phase 1 duplicates 

the first stage of the Phase 2.  The purpose of this model construction limits the model to 

only two-stage DEA while simultaneously ensuring the fidelity of the Mallikarjun (2015) 

philosophical construct of the airline business model is preserved.  The evaluation of 

capacity considers both (a) the transformation of material and labor resources to produce 

ASMs and (b) the scheduling and route optimization required to effectively transform 

that basic aircraft capacity to RPMs – marketable capacity.  Similarly, the revenue 

recognition phase does not only account for RPM conversation to revenue, but includes 

the optimization analysis for DMUs to convert ASMs to RPMs.  In both phases, the 

impact of environmental abatement is included to influence the efficiency evaluation of 

the airline through that phase. 

Phase 1: capacity generation.  In Phase 1, the two stages combine to define an 

efficiency that reflects capacity generation from material and labor resources.  As in the 

previously derived three-stage model, the first stage consumes the operating expenses – 
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i.e. the costs the airline incurs in relation to the business operations – to generate an 

intermediate output of capacity: i.e. ASMs. 

The second stage parallels the second stage from the previously developed 

three-stage model which combines both the service effectiveness evaluation from 

Mallikarjun’s (2015) airline efficiency model and an evaluation of environmental 

efficiency with respect to the abatement of carbon dioxide emissions.  For the service 

effectiveness aspect of airline operations, this stage consumes as an input the ASMs that 

were generated by the first stage and transforms them into an intermediate output, RPMs, 

to depict the service demand of the airline.  As in the three-stage model, the combination 

of this evaluation with the operations evaluation in the first stage helps analyze the cost 

effectiveness of the airline. 

The environmental-impact related variables in the second stage also parallels the 

three-stage model by applying Cui and Li (2016) two-stage DEA carbon abatement 

evaluation.  The ECO2 variable is defined by Carbonfund.org, utilizing data standards 

established by the Environmental Protection Agency (EPA).  This calculation is 

previously presented in Equation 18.  In addition to the estimated carbon dioxide 

emissions, this stage also consumes abatement expense, the financial expenditures of the 

airline to alleviate the environmental impacts of business operations.   

The abatement-related intermediate output of this stage is actual CO2 emissions.  

The actual CO2 emissions reflect the net carbon impact to the environment; this value 

recognizes the avoidance in environmental impact (the value of abatement) subtracted 

from the estimated total carbon emissions.   
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The abatement expense and actual CO2 emissions data are obtained from the 

sustainability, environment, and corporate social responsibility reports of the airlines 

included in this study.  All other inputs and the intermediate outputs are defined by data 

extracted from air carrier public filings, either those made available through the Bureau 

of Transportation Statistics online databases (BTS, 2017), or those publicly disclosed by 

the airlines through their websites or other media vehicles. 

A detailed depiction of the nodes in this stage is presented in Figure 11. 

 

 

Figure 11.  Environmental operating efficiency measurement model – Phase 1. 
 

Phase 2: revenue generation.  In the second phase, the two stages of the DEA 

model combine to define an efficiency measure of revenue generation.  The first stage 

replicates the second stage of Phase 1 in evaluating both (1) RPM generation from 

ASMs, and (2) the effectiveness of the airline’s carbon dioxide emissions abatement.  

The second stage of this phase incorporates the intermediate outputs of the first stage to 

produce total recognized revenue.  In this stage, the DMU markets the RPMs and 

transforms this intermediate service into revenue.  However, the operating revenue is 

impacted by the efforts the airline makes to abate operating impact to the environment.  

Therefore, this stage also consumes the CO2 output from the abatement segment of the 

first stage. 
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A detailed depiction of the nodes in this stage is presented in Figure 12. 

 

 

Figure 12.  Environmental operating efficiency measurement model – Phase 2. 
 

Final model – multiplicative relational two-stage model formulation.  The 

previous section describes the theory behind the development of a proposed two-phase 

research model that incorporates two different two-stage DEA models.  The following 

paragraphs lay out the DEA model formulas specific to each stage.  The two-stage DEA 

models both follow the multiplicative two-stage relational model structure similar to that 

developed by Kao and Hwang (2008). 

Phase 1: capacity generation.  The first phase utilizes a two-stage VRS DEA 

model to decrease input levels while simultaneously increasing the outputs.  In this phase, 

the objective function drives to either maximize the efficiency of the first stage for airline 

k, or minimize the approximate inverse efficiency of the second stage.  The first two 

constraints are used to ensure the optimal production frontier airline is increasing in 

efficiency through the iterations.  The first constraint ensures there are no increases in 

consumption of operating expense inputs for successive iterations (it can only decrease).  

In parallel, the second constraint ensures that an optimal airline is increasing airline 

capacity generation for each successive iteration.  Kao and Hwang’s original two-stage 
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multiplicative VRS model equations (first presented in Chapter II) are presented in 

Equation 29. 
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Substituting the specific variables of our airline operating model construct – 

including both revenue generation and carbon emissions abatement – yields the Phase 1 

equations of the environmental operating efficiency measurement model, presented in 

Equation 30. 
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where: 

E1j : Phase 1 efficiency of airline j 

XiOE : Operating expenses input for every iteration i for airline j 

YrRPM : Revenue passenger mile output for every iteration r for airline j 

YrCO2 : Actual CO2 output for every iteration r for airline j 

ZpASM: Available seat mile intermediate output for every iteration p for airline j 

ZpECO2: Estimated CO2 intermediate output for every iteration p for airline j 

ur, vi, wp : All equal 0.5 for equivalence in weighting across input and output 

variables for both stages of the phase 

 

Phase 2: revenue generation.  The second phase also utilizes a two-stage VRS 

DEA model to decrease input levels while simultaneously increasing the outputs.  Just 
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like the first phase, Phase 2 leverages Kao and Hwang’s original two-stage multiplicative 

VRS model.  Applying the revenue generation constructs of the theoretical environmental 

operating efficiency measurement model yields the formulas for Phase 2, presented in 

Equation 31. 
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where: 

E2j : Phase 2 efficiency of airline j 

XiASM : Available seat miles input for every iteration i for airline j 

XiECO2 : Estimated CO2 input for every iteration i for airline j 

YrOR : Operating revenue output for every iteration r for airline j 
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ZpRPM: Revenue passenger mile intermediate output for iteration p, for airline j 

ZpCO2: Actual CO2 intermediate output for iteration p, for airline j 

ur, vi, wp : All equal 0.5 for equivalence in weighting across input and output 

variables for both stages of the phase 

 

To determine the total efficiency of each airline, the multiplicative efficiency 

property is applied, and the cross product of the two-phase efficiencies yields the total 

model efficiency, presented in Equation 32. 

 

àâ = àâ
L×àâ

m     (32) 

 

Apparatus and materials.  This proposed study obtains all input data from a 

publicly available database maintained by the Department of Transportation (BTS, 2017) 

or from airline public disclosures (various sources); no survey instrument is required.  

The study utilizes the DEA methodology; computational analysis is performed via 

Frontier Analyst.  This software is utilized for data preparation as well as the DEA 

calculations.   

Population/Sample 

The sample selected for this study includes operations by specific air carriers 

operating through the United States from 2013 through 2015, with their operations 

reported to the U.S. Department of Transportation.  The air carrier population is defined 

based upon public availability of data, specifically the availability of corporate 

sustainability / responsibility reports that present airline expenditures in the pursuit of 
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satisfying CSER goals.  In addition, the airlines in the study will have served a minimum 

of 5,000,000 passengers (in 2015).  

The study sample size includes 15 total carriers, which includes both U.S. carriers 

as well as international flag carriers.  These carriers will be employing both the FSC and 

LCC airline business models, operating on both domestic and international segments.  As 

discussed in the literature review, Zhu (2011) recommends that the number of DMUs in 

the sample is at least twice the number of variables.  For the proposed study, the number 

of airlines included was limited by the requirements of having a mixed passenger 

transportation profile (domestic and international), and having publicly distrusted 

sustainability data for the study period.  With eight variables utilized in the three-stage 

analysis, the sample size of 15 carriers is deemed to be close to the recommendation by 

Zhu (2011). 

Airline performance data is collected (reported) quarterly, while the 

airline-specific emissions data is collected annually.  Inputs for the analysis will reflect 

summary data used to trend and assess performance in each year, as well as over the 

period of study. 

The airlines comprising the study population include: 

• Air Canada 

• Alaska Airlines 

• Air France – KLM 

• All Nippon Airways 

• American Airlines 

• British Airways 
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• Delta Air Lines 

• Emirates 

• Etihad Airways 

• Japan Airlines 

• JetBlue Airways 

• Lufthansa German Airlines 

• Southwest Airlines 

• United Air Lines 

• Virgin America 

Sources of the Data 

Airline data to be used for investigating operating costs and aircraft usage trends 

was obtained from TranStats – airline operating data collected by the Bureau of 

Transportation Statistics (BTS) (BTS, 2017) – or from airline public disclosures that are 

stored on the internet.   

Financial data.  For U.S. air carriers, the analysis consumes quarterly air carrier 

financial reports collected under Title 14 Part 41 requirements and made available 

through TranStats (BTS, 2017).  The data collected consists of airline-specific datasets 

including (but not limited to):  

Air carrier financials: schedule P-5.2 expenses 

• Total aircraft operating expense (direct operating expense) 

• Aircraft configuration, group, and type 

• Carrier identification 

• Year 
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• Quarter 

For international carriers, all financial data were extracted from public disclosures made 

available through the airline websites. 

Air carrier operational data.  The air carrier operations data for both U.S. and 

international carriers were obtained through TranStats (BTS, 2017).  The following 

variables were extracted from the T100 segment table: 

T100 segment – all carriers 

• Payload 

• Available seats 

• Passengers transported 

• Freight transported 

• Mail transported 

• *Load factor 

• Carrier identification 

• Aircraft group 

• Aircraft configuration 

• Aircraft type 

• Year 

• Quarter 

 

Emissions data.  In addition to the aforementioned data tabulated from BTS 

(2017), the carbon oxide (COx) particulate generation from aircraft operations were 
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obtained from the individual airline corporate sustainability reports or annual reports 

(depending on the airline’s reporting format). 

Ethical issues.  The proposed study does not contain any ethical issues or 

concerns.  The data used in this study does not require collection from human subjects, 

therefore approval by the Institutional Review Board is not required.  Additionally, all 

data used in the study is publicly available data.  Operational data for all airlines in the 

study is obtained from BTS’s online database.  Financial data for U.S. airlines is also 

obtained from BTS.  Financial data for non-U.S. airlines, and all emissions data is 

obtained from airline public disclosures.  In all cases, private and sensitive information 

has been removed by the data provider to facilitate public consumption and availability. 

Treatment of the Data 

Data preparation.  Prior to data analysis, the data was acquired from public 

databases and then cleaned.  The model variables for each analysis stage are calculated 

from the collected data and then segregated into groups for each analysis model.  After 

the data is prepared, the analysis model was executed. 

Data acquisition.  The airline operational data was downloaded from the BTS 

website.  From the data tables referenced in the “Sources of Data” section, the specific 

variables were extracted and recorded in a database for further processing.  The data is 

available in a comma-delimited (.csv) format and were imported into Microsoft Excel for 

cleaning. 

The airline-specific emissions data was collected from the annual corporate 

sustainability reports – depending on the airline, these are sometimes referred to as social 
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responsibility or environmental responsibility reports.  The emissions-specific data was 

extracted from each report and input into the Excel database.  

Data cleaning.  The acquired data was parsed to identify sets within the sample 

that are missing data points; these sets were extracted from the data.  With the sample 

containing only full sets, any data sets not applicable to large air carriers (carriers 

serving a minimum of 5,000,000 passengers within a year – for the study period) were 

removed.  The remaining datasets should contain sample data representative of the 

population under study and contain characteristics allowing segregation by airline, 

quarter, and year. 

Variable preparation.  Utilizing the collected data, the input and output variables 

of each stage are prepared by: (a) direct extraction from the data source, or (b) calculation 

of the variable from data points within the collected data.  The definition of each variable 

is outlined in the following subsections and tabulated in Table 1. 

Stage 1: operations.  The input for the first stage – total operating expenses – is 

defined by the “Total Operating Expense” variable from the “Air Carrier Financial: 

Schedule P-1.2” database (BTS, 2017). 

The two intermediate outputs for the first stage are: (a) Available Seat Miles 

(ASMs) and (b) Estimated Carbon Dioxide emissions (ECO2).  ASMs are defined by the 

“Available Seats” variable from the “T100 Segment – All Carriers” database (BTS, 2017) 

for U.S. airlines and by company annual reports for the international airlines. 

ECO2 for an airline is the previously reviewed calculation defined by 

Carbonfund.org, utilizing data standards established by the Environmental Protection 

Agency (EPA).  This calculation is presented in Equation 18, where ASM represents the 
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available seat mile capacity for that specific airline, and λ is the emissions coefficient 

defined by the EPA (Carbonfund.org, 2017).  In the latest publication of the EPA’s 

emissions factors for greenhouse gas inventories, the coefficient is equal to 0.143 kg CO2 

emissions per available seat mile (Environmental Protection Agency, 2015). 

 

àôöm = õúù ∗ H    (18) 

 

Stage 2: services and carbon abatement.  The two intermediate inputs for the 

second stage – ASM and ECO2 – were previously defined.  An additional input to this 

phase is abatement expense (AE).  AE is defined as the expenditures by airlines to 

mitigate their carbon emissions as a result of airline operations.  This variable is defined 

by data presented in the airline social and corporate responsibility reports. 

The two intermediate outputs for the second stage are: (a) Revenue Passenger 

Miles (RPMs) and (b) Actual CO2 Emissions Cost (CO2).  RPMs are defined by the 

“Revenue Passenger Miles” variable from the “T100 Segment – All Carriers” database 

(BTS, 2017) for U.S. carriers and is obtained from corporate annual reports for the 

international carriers. 

CO2 for an airline is a reported quantity that is available in every airline’s annual 

social responsibility report or another reporting vehicle to meet the requirements of the 

Global Reporting Initiative (GRI).  The reported CO2 value in the public reports is an 

annual value and therefore requires no further transformation, except for units 

standardization (if any airlines within the sample report a different value to metric tonnes 

of CO2). 
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Stage 3: sales.  The two intermediate inputs for the third stage – RPM and CO2 – 

were previously defined.  The two outputs of the third stage are: (a) the Net Income 

realized by the airline in the time period under analysis and (b) Total Operating 

Revenues.  The data for both of these variables are defined by variables from the “Air 

Carrier Financial: Schedule P-1.2” database (BTS, 2017) for the U.S. airlines and in 

corporate annual reports for the international carriers. 

 
 
Table 1 

Summary of DMU Input & Output Variables 

Variable Stage  Type Definition 
OE 1 Input Total Operating Costs 

ASM 1/2 Output/Input Available Seat Miles 
ECO2 1/2 Output/Input Estimated CO2 Emissions 

AE 2 Input Abatement Expense 
RPM 2/3 Output/Input Revenue Passenger Miles 
CO2 2/3 Output/Input Actual CO2 Emissions 

NINC 3 Output Net Income, Profit, or Loss 
OR 3 Output Total Operating Revenues 

  
 

Demographics.  The demographics of the sample data were qualitatively 

reviewed.  This analysis includes airline operating characteristics including (but not 

limited to): 

• Carrier flag status – U.S. or non-U.S. carrier 

• Carrier business model – FSC, LCC, or point-to-point (P2P) 

Review of the sample demographics allows discovery of unexpected trends or 

variances in the data that would suggest a validity threat due to data collection / sampling.  
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In addition, the sample demographics were compared to the population demographics to 

help ensure the sample is representative. 

Descriptive statistics.  Descriptive statistics are presented for the analysis 

constituents.  This presentation includes: count, mean, standard deviation, and variance of 

the input and output variables. 

DEA model execution.  The analysis phase executed several DEA models to 

review the airline DMU efficiency from several different perspectives.  The models were 

defined by the same mathematical formulas as presented earlier in this section; however, 

the DMU data processed in each model varied to allow the model to focus on specific 

categories within the sample. 

Efficiency differences over time.  From a temporal perspective, models were 

created to examine the airline efficiency for each year of the study individually, as well as 

for the duration of the study period.  Reviewing the total airline performance annually (in 

addition to the study aggregate) enables understanding of trending in each airline’s 

efficiency performance – e.g., in a specific year the airline may not perform well relative 

to the benchmark, while it still is one of the top performing airlines in the study period.  

To ensure the study facilitates a better understanding of the variation of performance 

during the data collection periods, four models were required: three annual models, and 

one aggregate model. 

U.S. versus non-U.S. airlines.  As described in the Delimitations section of 

Chapter I, this study includes both U.S. and non-U.S. airlines.  As all airlines execute 

network and fleet deployment for flight legs representing regional / transcontinental and 

intercontinental distances, the aggregate models should provide direct comparison 
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capability.  To account for potential results bias due to the network differences, two DEA 

models were executed to compare more similar network types: (1) the first model 

includes only U.S. carrier operations for the entire study period, and (2) the second model 

includes only non-U.S. carrier operations for the entire study period.  

Airline business model differentiation.  This analysis includes airlines deploying 

different business models, including both the FSC and LCC business models.  To best 

account for the differences in airline business models on airline efficiency (specifically 

related to flight operations), the analysis reviewed the efficiencies of the FSC and LCC 

airlines separately.  Two DEA models were executed for the study period data in 

aggregate (all years of study).  One model specifically only contained data entries for 

FSC carriers.  The second model only contained LCC carriers or data sets from air 

carriers operating point-to-point networks. 

Validity testing.  External validity was addressed by a demographics review of 

the sample, as described in the prior Demographics sub-section.  The sample 

demographics were reviewed and assessed in comparison to the population.  Any 

abnormal characteristics were assessed for impacts to the study. 

As the study employs linear programming models, reliability testing of the model 

is not required.  However, the reliability of the data is ensured by the BTS through their 

data collection methods.  As defined in their Statistical Standards Manual (BTS, 2005), 

the BTS deploys several different strategies for data collection repeatability and data 

quality assurance.  These strategies were developed to conform to requirements and 

guidance established by the U.S. Office of Management and Budget to ensure objectivity 

and integrity of information generated by U.S. federal agencies.   
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With respect to data collection, the BTS statistical methods utilize recurrent 

training for participants and defined collection methods to standardize the incoming data.  

In addition, reports and key performance indicators measure trends in the data allowing 

automatic notification of potential issues with the data collection.  From a quality 

assurance perspective, the BTS also deploys protocols for quality verification, which 

includes an analysis of response rates and initiates a nonresponse bias evaluation if 

response rates fall below 70%. 

In addition to the aforementioned strategies to ensure data reliability, the proposed 

study utilized qualitative review between the different models to demonstrate general 

repeatability of the models.  The repeatability was assessed by comparing the results of a 

specific model to airline’s business execution in the timeframe included in that model – 

e.g., reflect on 2013 events for the airlines versus their performance in the 2013 

single-year analysis model.  Qualitatively reviewing the top and bottom performers in the 

individual models to that year’s business performance and noteworthy events helped 

establish the repeatability of the model. 

Presentation of Results 

The results described in this section are presented from the data processing phase 

of this study.  These results include substantiation for conclusions related to the research 

questions as well as data reviewed to support validity confirmation. 

Sample review.  As described above, demographics of the sample are presented 

to help substantiate the representativeness of the sample for use in the study.  The 

demographics include (but are not limited to) airline passenger traffic, operating costs, 

revenue, emissions, and environmental abatement.  In addition, descriptive statistics for 
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the inputs, intermediate outputs, and final stage outputs are presented.  The descriptive 

statistics include annual and aggregate models, as well as the differentiated models for 

operating flag (U.S. versus international carriers) and operating business model (i.e. FSC 

versus non-FSC). 

Airline efficiency.  The results of the efficiency analysis are presented for all of 

the airlines in the study.  Presentation of the analysis results include the input-output 

correlations and the efficiency ratios for the three stages (inputs, intermediate outputs, 

and final outputs). 

Efficient versus inefficient carriers.  After the DEA results are presented for all 

airlines, a comparison of the airlines is presented, highlighting those that demonstrate 

statistical efficiency or inefficiency.  The presentation of efficient and inefficient carriers 

are presented for the annual and aggregate models, as well as the differentiated models 

for operating flag (U.S. versus international carriers) and operating business model (i.e. 

FSC versus non-FSC). 

Recommendations for inefficient carriers.  The conclusion of this proposed 

study includes recommendations for the airlines deemed by the analysis to be inefficient.  

Potential improvement strategies are conceived and presented based on the efficiency 

scores of the input and output variables. 

 The proposed methodology and procedures for this research study are outlined in 

the preceding chapter.  The next chapter captures the results of the analysis. 
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CHAPTER IV 

RESULTS 

This study utilized airline operating data to assess and compare the operating 

efficiencies of each airline.  A multi-stage data envelopment analysis (DEA) model was 

constructed to incorporate the constructs of revenue generation and carbon dioxide 

emissions abatement in the evaluation of efficiency.  Annual data from 15 airlines were 

collected for the three-year period of study – 2013-2015.  The multi-stage DEA was 

conducted for individual years as well as the entire study period to evaluate the air carrier 

business efficiency with respect to revenue generation and environmental impacts.  

Additional DEA models were constructed and deployed to segregate and compare 

airlines utilizing carrier flag affiliation (i.e. U.S.-owned airlines as opposed to 

international carriers) and the airline business model.   

This section presents the demographics and descriptive statistics of the sample, as 

well as efficiency results from the different DEA models conducted.  As DEA is a linear 

programming method of analytics, the results in this chapter are presented and discussed 

within the context of the specific models – i.e. whether or a not an airline was efficient, 

and what airlines defined the optimal production execution for a specific model.  The 

Discussion and Recommendations sections in Chapter V reflect upon the results in 

context of the airlines’ business philosophy, and then make airline-specific assessments. 

Demographics 

The 15 airlines in the study sample operate different business models and conduct 

their activities utilizing operational and administrative headquarters in different parts of 
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the world.  Both characteristics of the airlines included in the study ensure the study 

explores different airline business philosophies. 

The multinational facet of the airline industry was the reason for selection of an 

intentionally diverse sample of the industry.  Airlines in the United States have a 

significant focus on domestic operations.  The size and frequency demand of the U.S. 

domestic air travel industry drive significant size and revenue generation focus in the 

regional and transcontinental markets.  Some U.S. carriers also deploy international 

routes, which require significant investment in larger long-range aircraft and overseas 

hubs.  European-based airlines may similarly have a mix of short and long-range 

operations.  Due to the relatively closer proximity of different countries, even 

international legs may be shorter.  This has led to a significant dichotomy between LCCs 

and the FSCs.  As most of the LCCs reviewed do not report greenhouse gas emissions, 

the European carriers in this study are all FSCs.  Emirates – the sole Middle East carrier 

in the study – operates predominantly long-range operations.  Finally, Air Canada and the 

two Japanese carriers (All Nippon Airways and Japan Air Lines) both operate both 

domestic and international routes.  However, the competition and smaller domestic 

markets reduces the size and overall revenues of these airlines. 

In addition to the operating location, the airlines in the sample operate different 

business models with respect to the level of service.  The FSC model is characterized by 

(1) traditional levels of amenities which are included as part of the fare cost, and (2) a 

route and scheduling strategy which leverages a large network of destinations supported 

by major hubs (the hub-and-spoke network strategy).  Some of the other airlines in the 

sample operate the LCC business model where the airlines eliminate amenities and frills 
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from their fares to provide an absolute low-cost option.  Traditionally, these airlines 

operate point-to-point networks to avoid the costs of a large hub presence.  Jet Blue and 

Alaska Airlines are two unique carriers who present the pure point-to-point operating 

model.  The airlines focus their business strategy on particular routes and regions; 

however, they provide full-service offerings, as opposed to minimum-frills.  As their 

operating network philosophy matches that of an LCC, these two airlines are reviewed as 

part of the LCC/P2P group. 

The different operating bases and business models are further explored through 

the model results presented in this section.  A table of the airlines, their location group, 

and business operating philosophy is presented in Table 2. 

 

Table 2 

Airline Operational Characteristics 

Airline Location Group Operating Model 
Air Canada Non-U.S. FSC 
Air France – KLM Non-U.S. FSC 
Alaska Airlines U.S. Point-to-Point 
All Nippon Airways Non-U.S. FSC 
American Airlines U.S. FSC 
British Airways Non-U.S. FSC 
Delta Air Lines U.S. FSC 
Emirates Non-U.S. FSC 
Japan Airlines Non-U.S. FSC 
JetBlue Airways U.S. Point-to-Point 
Lufthansa Airlines Non-U.S. FSC 
Southwest Airlines U.S. LCC 
United Airlines U.S. FSC 
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Descriptive Statistics 

Descriptive statistics for each variable are presented in Table 3.  From the original 

study sample, two airlines have been eliminated from the study (Etihad Airways and 

Virgin America); the exclusions are addressed in the following Missing Data & Outliers 

section.  With those airlines eliminated, most variables have 100% of the data set values 

present for the study period.  The specific omissions are for British Airways in 2015 

when the airline did not publicly report in accordance with the expectations of the Global 

Report Initiative (GRI). 

 

Table 3 

Descriptive Statistics – All Airlines 

Variable (units) N  Minimum Maximum Mean  SD 
OpExpenses ($1000s) 39 4,293,788 42,751,965 19,758,671 11,056,135 
ASM (1000000s seat-mi.) 39 16,033 220,437 119,237 69,531 
ECO2 (metrics tons CO2) 39 2,292,719 31,522,487 17,050,836 9,942,884 
AE ($) 38 0 21,324,498 1,464,402 4,795,230 
RPM (1000000s pax–mi.) 39 12,883 188,375 97,201 58,682 
CO2 (metrics tons CO2) 38 4,337,568 42,300,000 20,656,127 12,204,412 
NetIncome ($1000s) 39 (2,637,620) 10,549,234 1,158,784 2,180,254 
OpRevenues ($1000s) 39 5,150,814 43,349,652 22,343,522 12,037,311 
Note.  N = Available data points; SD = Standard Deviation; OpExpenses = Total 
Operating Expenses; ASM = Available Seat Miles; ECO2 = Estimated CO2 Emissions; 
AE = Abatement Expenses; RPM = Revenue Passenger Miles; CO2 = Net CO2 
Emissions; NetIncome = Net Income; OpRevenues = Passenger-based Operating 
Revenues. 
 

 

The data gathered demonstrates that the airlines in the study represent a variety of 

operating models and states of success with respect to their business operations.  The 

wide variation between the minimum and maximum operating expenses, available seat 

miles, revenue passenger miles, and revenues highlight the presence of both large FSCs 
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as well as smaller carriers operating LCC or P2P business models.  The data also shows a 

negative value for the lowest annual net income – both Air France and American Airlines 

reported negative net income in 2013; this breadth of income generation highlights that 

the study has captured airlines operating profitably as well as those struggling with 

profitability. 

Missing Data 

Due to missing data or data inconsistencies, three airlines had data removed from 

the study: British Airways, Etihad Airlines, and Virgin America.  The quantity of missing 

data points for each variable is identified in Table 3 – only two data points are missing 

(one each for AE and CO2) which constitutes 2.6% missing data for those variables.  

Both missing values are part of the 2015 British Airways dataset detailed below.  All 

other airlines in the study had complete data sets of observations for the three-year 

period.  As the sample effectively is the population under study – airlines meeting the 

criteria of domestic or international traffic inclusive of the U.S. national air system, 

which also publicly report on environmental programs – the missing data does not impact 

the results of the study; instead the impacts are as noted below. 

British Airways.  As previously mentioned, British Airways did not report 

environmental data in 2015.  As such, it was omitted from the 2015-specific analysis for 

all airlines.  The flight and revenue data were included in the three-year cumulative 

studies, so the business operations (seat capacity and revenue generation) are included in 

all multi-year analyses that included international or full-service carriers.  The expected 

effect is that British Airways performs relatively worse with regards to environmental 

efficiency (and therefore total efficiency) for the three-year studies.  In a report by the 
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International Council on Clean Transportation (ICCT), it was identified that through a 

study period ending in 2014, British Airways had the worst fuel efficiency for any airline 

facilitating transatlantic flights (ICCT, 2015).  As such, it is expected that a different 

airline would have been identified as the benchmark by the DEA analysis, even if British 

Airways’ 2015 environmental numbers had been included.  

Etihad Airlines.  During the data gathering process, an international claim against 

Etihad Airlines was identified for part of the study period (Mouawad, 2015).  The claim 

highlighted that Etihad intentionally does not disclose all the normal financial data that 

most U.S. and international carriers report – the allegations state that the omission is 

intentional to prevent discovery of excessive and unpublished financial benefits provided 

to the airline by the United Arab Emirates government.  The claim goes on to highlight in 

specific business quarters, the airline might be operating with negative revenue 

generation (which is not identified in the public data made available).  In light of the 

public discussions on the accuracy of Etihad Airlines published commercial data, Etihad 

was completely removed from this study. 

Virgin America.  In April 2016 (during the development of this dissertation’s 

proposal and its subsequent approval), Virgin America was bought by the Alaska Air 

Group.  Subsequent integration plans led to legal merger in January 2018 with 

discontinuation of the Virgin America brand (i.e. rebranding all aircraft, employees, and 

assets as Alaska Air) by April 2018.  While the revenue generation and aircraft 

operations data is still available through the Bureau of Transportation Statistics’ online 

archives, any environmental data found in corporate responsibility reports was to be 

merged with Alaska Airline moving forward.  During the data collection phase, the 
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Virgin America corporate responsibility website was closed (with links to Alaska Air) 

and previous annual reports were no longer available.  Therefore, Virgin America was 

omitted completely from this study. 

To maintain the same number of total DMUs, Virgin Atlantic was considered as a 

replacement airline for utilization in this study.  After review, Delta Air Line’s 49% 

ownership of Virgin Atlantic suggested that a significant share of its business may be 

sustained through Delta code-sharing.  To preclude any validity threats, Virgin Atlantic 

was not included in the sample data. 

Reliability and Validity of Data 

Reliability.  As the study employs linear programming models, reliability testing 

of the model is not required.  However, the reliability of the data is ensured by the Bureau 

of Transportation Statistics (BTS) through their data collection methods.  As defined in 

their Statistical Standards Manual (BTS, 2005), the BTS deploys several different 

strategies for data collection repeatability and data quality assurance.  These strategies 

were developed to conform to requirements and guidance established by the U.S. Office 

of Management and Budget to ensure objectivity and integrity of information generated 

by U.S. federal agencies. 

The first component of strategies employed by BTS focuses on its rules and 

practices for data collection.  The BTS statistical methods utilize recurrent training for 

participants and collection methods which are documented, reviewed, and internally 

approved to standardize the incoming data.  These methods also prescribe specific 

requirements to the design of the different instruments used for data collection – which 

includes electronic instruments such as algorithms which may download data from an 
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available database.  Prior to deployment, any instrument must be verified through a pilot 

deployment in a representative environment of the population with known data to ensure 

the data points are collected accurately.  In addition to the scrutiny around the data 

collection instruments and participants, reports and key performance indicators measure 

trends in the data allowing automatic notification of potential issues with the data 

collection once the methods are implemented.   

A second component of the BTS strategy to ensure data reliability is the quality 

assurance component of BTS’s data collection, cleaning, and preparation procedures.  

BTS’s methods require vehicles by which the data is reviewed for omissions, duplicates, 

or contradicting data points within a dataset.  Across the sample, BTS also identifies and 

removes data that may be biased due to response quantity.  For this quality verification 

method, BTS conducts an analysis of response rates and initiates a nonresponse bias 

evaluation if unit response rates fall below 80%, or if specific item response rates fall 

below 70%.  In addition to addressing whether or not the missing data is significantly 

changing the sample demographics, BTS also verifies that the unit or item nonresponses 

are random and are not induced by a failure in the data collection protocols. 

Validity.  The validity of the analysis is conducted by review of the sample 

demographics.  The standard deviations and variation between minimum and maximum 

values presented in Table 3 signify very different values among the different airlines.  For 

these variables, more variation is expected, as these variables denote the effectiveness of 

the business operation execution: abatement expense, actual emissions, and net profit.  A 

greater level of variation signifies differences between the airlines in their business 

operations and results.  The results are corroborated by the study sample definition and 
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airline annual reports which present varying levels of operating success for airlines 

executing the hub-and-spoke, point-to-point, and LCC business models. 

For the other variables, similar competitors in an established market should 

present similar operating performance indicators.  The variety of operating networks and 

business models deployed by the airlines in the sample explains large standard of 

deviation values for the different variables.   

To verify the validity of the sample, descriptive statistics were calculated for 

subsets of the sample to ensure there was less deviation between airlines operating 

similar models in similar regions as opposed to the statistical differences between 

philosophically different airlines.  The first subset explored is the U.S.-based FSCs: 

American Airlines, Delta Air Lines, and United Airlines.  Table 4 presents the descriptive 

statistics for datasets only associated with these airlines. 

 

Table 4 

Descriptive Statistics – U.S. Full-Service Carriers 

Variable (units) N  Minimum Maximum Mean  SD 
OpExpenses ($1000s) 9 24,271,912 37,928,055 32,136,307 4,881,970 
ASM (1000000s seat-mi.) 9 154,497 220,437 199,594 24,075 
ECO2 (metrics tons CO2) 9 22,093,023 31,522,487 28,541,919 3,442,766 
AE ($) 9 0 21,324,498 3,746,128 7,278,304 
RPM (1000000s pax–mi.) 9 128,410 188,375 167,610 178,561 
CO2 (metrics tons CO2) 9 31,548,428 42,300,000 37,566,660 4,389,108 
NetIncome ($1000s) 9 (1,525,707) 10,549,234 2,736,953 1,113,817 
OpRevenues ($1000s) 9 25,760,245 40,815,767 35,621,520 37,864,132 
Note.  OpExpenses = N = Available data points; SD = Standard Deviation; Total 
Operating Expenses; ASM = Available Seat Miles; ECO2 = Estimated CO2 Emissions; 
AE = Abatement Expenses; RPM = Revenue Passenger Miles; CO2 = Net CO2 
Emissions; NetIncome = Net Income; OpRevenues = Passenger-based Operating 
Revenues. 
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Review of the descriptive statistics from the total sample (presented in Table 3) 

shows that the standard deviation is typically 51%-60% the value of the mean for all 

variables except Abatement Expense and Net Income.  Reviewing the descriptive 

statistics of the same variables in Table 4 establishes that the data points for U.S-airlines 

operating FSC business models correlate very well – the standard deviations for the same 

variables are 10-15% of the mean. 

Table 5 presents descriptive statistics for a subset of the sample only including 

non-U.S. airlines deploying the FSC business model.  Table 6 presents descriptive 

statistics for the two U.S. airlines deploying a P2P business strategy – Alaska Airlines 

and JetBlue. 

 

Table 5 

Descriptive Statistics – Non-U.S. Full-Service Carriers 

Variable (units) N  Minimum Maximum Mean  SD 
OpExpenses ($1000s) 21 9,355,684 42,751,965 19,252,405 9,202,855 
ASM (1000000s seat-mi.) 21 16,033 207,244 109,242 61,703 
ECO2 (metrics tons CO2) 21 2,292,719 29,635,870 15,510,040 3,442,766 
AE ($) 21 0 18,710,148 1,129,525 7,278,304 
RPM (1000000s pax–mi.) 21 12,883 158,464 86,567 51,308 
CO2 (metrics tons CO2) 19 8,200,000 32,245,141 17,897,039 4,389,108 
NetIncome ($1000s) 21 -2,637,620 3,897,931 600,546 1,173,023 
OpRevenues ($1000s) 21 10,486,956 43,349,652 21,947,426 9,978,473 
Note.  OpExpenses = Total Operating Expenses; N = Available data points; SD = 
Standard Deviation; ASM = Available Seat Miles; ECO2 = Estimated CO2 Emissions; 
AE = Abatement Expenses; RPM = Revenue Passenger Miles; CO2 = Net CO2 
Emissions; NetIncome = Net Income; OpRevenues = Passenger-based Operating 
Revenues. 
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Table 6 

Descriptive Statistics – U.S. P2P Carriers 

Variable (units) N  Minimum Maximum Mean  SD 
OpExpenses ($1000s) 21 4,293,788 5,308,982 4,759,378 434,802 
ASM (1000000s seat-mi.) 21 30,417 49,347 39,333 6,878 
ECO2 (metrics tons CO2) 21 2,292,719 29,635,870 15,510,040 3,442,766 
AE ($) 21 0 18,710,148 1,129,525 7,278,304 
RPM (1000000s pax–mi.) 21 26,176 41,751 33,291 5,604 
CO2 (metrics tons CO2) 19 8,200,000 32,245,141 17,897,039 4,389,108 
NetIncome ($1000s) 21 167,967 1,309,738 646,046 362,430 
OpRevenues ($1000s) 21 5,150,814 6,416,127 5,630,514 406,271 
Note.  OpExpenses = Total Operating Expenses; N = Available data points; SD = 
Standard Deviation; ASM = Available Seat Miles; ECO2 = Estimated CO2 Emissions; 
AE = Abatement Expenses; RPM = Revenue Passenger Miles; CO2 = Net CO2 
Emissions; NetIncome = Net Income; OpRevenues = Passenger-based Operating 
Revenues. 

 

Reviewing the descriptive statistics of the non-U.S. FSC airlines also 

demonstrates a statistically closer grouping than the total sample.  Using a similar method 

of comparison as before, the standard deviation as a fraction of the mean for all variables 

except Abatement Expense and Net Income is 22%-25%.  While this is greater than the 

U.S.-carrier measure, the non-U.S. FSC airlines have greater variance in airline size.  Air 

France-KLM and Lufthansa generate more than $35B in operating revenue in a single 

year.  Air Canada, All Nippon Airways, and Japan Air Lines did not generate over $16B 

in the same period of study. 

The descriptive statistics of Alaska Airlines and JetBlue also substantiate the 

validity assessment through strong correlation of key performance indicators.  The ratio 

of standard deviation to mean for the previously mentioned variables (all except 

Abatement Expense and Net Income) ranged from 7%-17%.  Specifically, this ratio was 

7%-9% for the operating revenue and total operating expenses.  When examining the 
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capacity variables (ASMs and RPMs), the ratio of standard deviation to mean was 

approximately 17%.  The net profit standard deviation is significantly higher, suggesting 

that while the two airlines are operating similar sized operations, one airline is far more 

successful at profit realization. 

The quantitative review of the descriptive statistics of the sample and specific 

subsets establish that the sample data for airlines with similar business models and route 

networks presents similar key performance indicators for business operations, with 

exception to variables that would suggest greater efficiency or profitability: actual CO2 

emissions or net profits.  This review validates the sample is representative of the 

population intended for study. 

 

Data Envelopment Analysis 

The following section presents DEA results utilizing the methodology described 

in Chapter III.  DEA was conducted utilizing a multi-stage model.  The model was 

bifurcated into two parts, each run as a two-stage analysis.  The efficiencies of each 

analysis were combined to define the overall operating efficiency of the airline for the 

time period in analysis. 

Interpretation of results.  Review of DEA methodology in Chapter II establishes 

that a DMU can only be confirmed as operating on the efficient production frontier when 

its efficiency score is unity.  Although an efficiency score below unity may still represent 

an efficient DMU, the analysis model is not corroborating the state of efficiency of that 

DMU.  In addition to the results values, the VRS methodology used in this analysis 

follows the DEA principle of creating an efficient (i.e. benchmark) production frontier.  
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As presented in Chapter II, the frontier is a set with different combinations of variable 

values.  As previously mentioned, the total operational efficiency score calculated in this 

study uses the multiplicative property (i.e. cross product) applied to the efficiency scores 

from two different multi-stage DEA calculations.  The aforementioned aspects of the 

model construction and DEA methodology yield three key aspects for reviewing the 

results of this analysis: the different levels of efficient performance, the multiple 

definitions (i.e. values) of the efficient production frontier, and the interpretation of 

non-unity efficiency scores. 

First, the airline DMUs in this study can demonstrate efficiency at three distinct 

levels.  In each individual stage, a unity score will demonstrate that the firm is efficient 

for that specific stage.  However, if the airline is not efficient in the other stage of that 

phase, it is not demonstrating efficient performance in the phase.  Within the construct of 

the methodology established in the study, the airline can be described as demonstrating 

partially efficient behavior compared to the sample.  If an airline possesses a unity score 

in both stages of a phase, the airline was operating efficiently.  The total efficiency score 

for the airline may not have a total operating efficiency of unity through the model due to 

the cross-product with the efficiency of the other phase (where it was not efficient 

through that phase).  For the methodology of this study, efficiency in a single phase does 

demonstrate a level of efficient performance, but only for specific aspects of the airline 

operating model.  Finally, a firm may operate with a unity efficiency score in both phases 

(all four stages).  A unity efficiency score would show efficient performance for the 

entire model. 
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Another aspect of the results requiring comprehension relates to the nature of a 

production frontier having multiple sets of values.  Due to the number of variables and 

stages included in the model, different sets of values can demonstrate efficient production 

– i.e. there are multiple efficient frontier possibilities.  From a model results perspective, 

the different contents of the production frontier provide different “closest benchmark” 

points for each of the different airlines in this study.  This variety of available 

benchmarks will manifest in different benchmark references provided in the results for 

each stage for each inefficient airline. 

The last aspect of interpreting the results of this study is the treatment of the 

scalar stage and total efficiency values (excluding the unity values demonstrating 

efficiency).  When comparing the airline DMUs, the differences in non-unity efficiency 

scores within a stage are used to assess that an airline is closer to efficient production 

based upon its efficiency score.  However, at the phase or full-model level, a comparison 

of non-unity scores requires careful review of each stage within the phase or model.  As 

the phase and total scores are products of stage scores, a poor performance in one stage 

may mask the strong performance in other phases.  Without understanding the individual 

stage scores, the wrong conclusion of relative distance to the efficient frontier is possible.  

This phenomenon is explored further with discussion on Alaska Airlines’ results.   

The results of this study show strong performance by Alaska Airlines in three of 

four stages; however, in some models, Alaska Airlines shows poor performance 

compared to the model-specific sample with respect to revenue generation.  The results 

discussion and analysis presents that it may not be appropriate to conclude Alaska 
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Airlines underperformed another airline based on the operating efficiency score for the 

entire model. 

Efficiency differences over time.  An analysis of total operational efficiency 

inclusive of environmental abatement was conducted for all airlines for each individual 

year of the study period – 2013 through 2015.  The airline efficiency scores for these 

models are presented in Table 7 (2013 results), Table 8 (2014 results), and Table 9 (2015 

results).  The stage-specific scores and benchmarks are tabulated in Tables A1-A12. 

 

Table 7 

2013 Operating Efficiency Results 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.37664 1.00000 1.00000 0.37664 
Air France – KLM 0.96758 1.00000 0.90797 0.84990 0.74666 
Alaska Airlines 1.00000 1.00000 1.00000 0.33143 0.33143 
All Nippon Airways 1.00000 0.42117 0.52991 1.00000 0.22318 
American Airlines 0.84710 1.00000 0.99421 0.59424 0.50046 
British Airways 1.00000 0.68627 1.00000 0.62725 0.43046 
Delta Air Lines 1.00000 1.00000 0.75218 0.87240 0.65620 
Emirates 1.00000 0.93740 0.91227 0.53433 0.45694 
Japan Airlines 1.00000 0.47938 0.39998 1.00000 0.19174 
JetBlue Airways 1.00000 0.97762 1.00000 0.29617 0.28954 
Lufthansa Airlines 0.52609 0.91257 0.94162 1.00000 0.45206 
Southwest Airlines 1.00000 0.85297 1.00000 0.51761 0.44151 
United Airlines 1.00000 1.00000 0.72121 0.88321 0.63699 
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Table 8 

2014 Operating Efficiency Results 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.38800 1.00000 1.00000 0.38800 
Air France – KLM 1.00000 0.99190 0.72334 1.00000 0.71748 
Alaska Airlines 1.00000 1.00000 1.00000 0.36244 0.36244 
All Nippon Airways 1.00000 0.45880 0.48085 1.00000 0.22061 
American Airlines 0.76157 1.00000 0.99045 0.70825 0.53423 
British Airways 1.00000 0.69287 1.00000 0.65765 0.45566 
Delta Air Lines 0.95294 1.00000 1.00000 1.00000 0.95294 
Emirates 0.88910 1.00000 0.84993 0.63898 0.48285 
Japan Airlines 1.00000 0.51641 0.33361 0.97822 0.16853 
JetBlue Airways 1.00000 0.98210 1.00000 0.33803 0.33198 
Lufthansa Airlines 0.61330 0.85003 0.93753 1.00000 0.48875 
Southwest Airlines 1.00000 0.47410 0.87228 1.00000 0.41355 
United Airlines 0.94792 1.00000 0.80145 1.00000 0.75971 
 
 

Table 9 

2015 Operating Efficiency Results 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.49755 1.00000 1.00000 0.49756 
Air France – KLM 1.00000 0.99678 0.93221 0.81323 0.75566 
Alaska Airlines 1.00000 1.00000 1.00000 0.41158 0.41158 
All Nippon Airways 1.00000 0.42168 0.63568 1.00000 0.26805 
American Airlines 0.73109 1.00000 0.79999 0.92818 0.54286 
Delta Air Lines 1.00000 1.00000 1.00000 1.00000 1.00000 
Emirates 1.00000 0.89504 0.79046 0.65101 0.46059 
Japan Airlines 1.00000 0.49273 0.45512 1.00000 0.22425 
JetBlue Airways 1.00000 1.00000 1.00000 0.40008 0.40008 
Lufthansa Airlines 0.60252 0.77293 0.94216 1.00000 0.43877 
Southwest Airlines 1.00000 0.96481 1.00000 0.57415 0.55395 
United Airlines 1.00000 0.97621 0.82812 1.00000 0.80842 
Note.  British Airways is omitted from analysis due to lack of environmental data. 
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2013 results.  In 2013, no airline’s performance signifies obvious efficient 

operation in all stages of the model.  Every airline shows efficient second stage 

performance in both phases.  Air Canada and Alaska Airlines both demonstrate efficient 

performance in three of the four model stages; however, Air France-KLM holds the 

highest total efficiency score.  Delta Air Lines and United Airlines are the only two 

airlines besides Air France-KLM with total efficiency scores significantly over 50%. 

Review of the stage-specific scores and benchmarks in Tables A1-A4 present an 

additional layer of information in the results.  While all but three of the airlines scored 

unity efficiency in the first stage of Phase 1, all of the FSCs utilized Emirates as a 

benchmark – suggesting that it was a better performing airline – with the exceptions of 

Delta Air Lines and United Airlines (the analysis presented that these airlines were 

defining their own efficient frontier values).  Both Alaska Airlines and JetBlue also 

define their efficient frontier operating points.  With the exception of the aforementioned 

airlines defining their own efficient frontiers, all of the remaining airlines used JetBlue’s 

performance (in conjunction with Emirates) to define the efficient production frontier.   

The first stage benchmarks specifically highlight that several airlines were 

operating at the efficient production frontier defined by the two-stage model.  However, 

certain airlines performed so strongly in the first stage that their performance partially 

defined the efficient frontier for another efficient airline – i.e., an airline could execute 

the first stage more similarly to another airline and would remain on the efficient 

production frontier while increasing one of the intermediate outputs for the phase.  It is 

noteworthy that Emirates served as a benchmark for all of the airlines – with the 

exception of the individual airlines that defined their own efficient frontiers.  With a 
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business strategy focusing on long-haul international routes, it makes sense that Emirates 

excels at maximizing seat generation per input costs (the key intermediate output of the 

phase). 

Review of the second stage benchmarks in Table A2 shows a number of airlines 

obtaining a unity efficiency score within the stage.  Each of these airlines defines its own 

production frontier, with the exception of Air France-KLM (who uses Alaska Airlines 

and Delta Air Lines to define its benchmark).  Looking across the stage results, all of the 

remaining airlines either used a combination of Air Canada, Alaska Airlines, and Delta 

Air Lines to define the closest point on the efficient frontier.  The use of multiple airlines 

for the efficient frontier is reasonable for the analysis model utilized in this study.  All of 

the stages have either multiple inputs or outputs through the stage.  The second stage of 

Phase 1 specifically evaluates efficiency in ASM conversion to RPMs, as well as carbon 

dioxide abatement.  As the two processes are significantly different and independent, an 

improved performance level – i.e. performance on the efficient production frontier – will 

require performance improvements in multiple directions (or multiple variables) in order 

to approach benchmark-setting performance. 

As previously discussed, the first stage of Phase 2 mimics the focus area (ASM 

conversion to RPMs and carbon dioxide abatement) of the previously discussed stage.  

Inclusion of this stage in a separate two-stage DEA model with the revenue realization 

stage helps differentiate which airlines are presenting high efficiency scores due to ASM 

conversion.  The 2013 results presented in Table A3 show that the airlines with 

multi-airline benchmarks for every airline in the stage had the largest proportion 
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(weighting) of the improvement defined by the performance of Air Canada or Alaska 

Airlines; Delta Air Lines supplied the other defining benchmark. 

Reviewing the efficiency and efficient frontier definition data tabulated in Table 

A4 helps explain the benchmarks and efficiency scores in both the first and second stages 

of Phase 2.  While four airlines obtain a unity efficiency score, only Air Canada defines 

its own point on the efficient production frontier.  All Nippon Airways and Japan Airlines 

show Air Canada and Alaska Airlines as potential for efficient production improvements; 

Lufthansa shows Alaska Airlines and Delta Air Lines as potential improvements to 

efficient production.  The results present that the Japanese airlines are optimized in their 

emissions abatement but need greater revenue generation.  Lufthansa presents an 

optimized execution in revenue generation but has opportunities to further improve 

carbon dioxide emissions abatement. 

2014 results.  In 2014, no airline demonstrated efficient performance through the 

entire model (all four phases).  Delta Air Lines obtained the highest score in total 

efficiency and demonstrated efficient performance in three of the four stages.  However, 

Delta is one of five airlines not to post a perfect efficiency score in the first stage of Phase 

1.  The only two other airlines to demonstrate efficient performance in three of the stages 

are Alaska Airlines and Lufthansa Airlines.  However, neither of those airlines 

demonstrated one of the top three total efficiency scores for this year; United Airlines and 

Air France-KLM possessed the second and third highest total efficiencies, respectively. 

The first stage results and benchmarks presented in Table A5 show that most 

airlines demonstrated efficient performance through the first stage of Phase 1.  The four 

airlines not demonstrating efficient performance were American Airlines, Delta Air 
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Lines, Emirates, and Lufthansa Airlines.  These results depict that in 2014, these four 

carriers – all full-service carriers – struggled with conversion of input resources to ASMs 

compared to the other sample constituents.  While full-service carriers typically lag 

behind low-cost carriers and point-to-point operators due to investment in more 

passenger services, the results of the first stage presents four full-service carriers 

operating efficiently in the model: Air Canada, Air France-KLM, All Nippon Airways, 

and Japan Airlines. 

Air France-KLM and JetBlue defined the efficient frontier for most of the airlines 

in this phase.  A notable observation in this model is that Emirates serves as a benchmark 

for both Delta Air Lines and United Airlines.  This result is interesting as none of the 

three airlines presented efficient operations in this phase; however, Emirates 

underperformed the two airlines (of which it set a benchmark).  Review of the analytical 

model design reveals that the operating expense inputs consumed in the first stage 

generate two intermediate outputs: available seat miles (ASMs) and estimated carbon 

dioxide emissions (ECO2).  Review of business information of each of these three 

airlines presents that Delta Air Lines and United Airlines operate similar large FSC 

operations combining regional, transcontinental, and international routes, while Emirates 

operates a focused long-haul international FSC operation.  Considering the seemingly 

anomalous results in context of the airlines’ operating philosophies presents a possibility 

that Delta Air Lines and United Airlines may have been efficient in creating one of the 

two intermediate outputs but underperformed in creation of the other – in this case, to 

such a large extent that it shows the airline as not performing efficiently. 
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Review of the results for the second stage of Phase 1 (presented in Table A6) 

shows that only four of the airlines demonstrate efficient performance – Alaska Airlines, 

American Airlines, Delta Air Lines, and Emirates.  Three of these four airlines define 

their own efficient frontier, while Emirates utilizes Alaska Airlines and Delta Air Lines 

as benchmarks.  For the remaining airlines, three distinctive sets of efficient frontiers are 

defined as performance opportunities for a group of airlines.  The first pair, Air Canada 

and Southwest Airlines, is benchmarked by the performance of Air Canada and American 

Airlines – with the benchmark weightings more heavily focused on American Airlines’ 

performance.  Combining these results with review of American Airline’s annual reports 

(which highlight strong ASM to RPM conversion) suggests that Air Canada and 

Southwest Airlines both operated with relatively strong emissions abatement while they 

had opportunities to maximize RPM creation from their supply of ASMs. 

The second group of inefficient airlines includes All Nippon Airways, British 

Airways, and Japan Airlines.  Air Canada, Alaska Airlines, and Delta Airlines define the 

efficient frontier for these airlines’ performance.  With the efficient frontier definition 

coming from three efficiently-performing airlines, the results present that the rest of the 

sample has outperformed the inefficient airlines in this second group.  The deficiencies in 

performance are for both RPM creation from ASMs and carbon dioxide emission 

abatement – i.e. there are multiple facets on which these airlines can improve 

performance to move toward the efficient production frontier. 

The third group of inefficient airlines includes Air France-KLM, JetBlue, 

Lufthansa Airlines, Southwest Airlines, and United Airlines.  The performance of each 

airline in this last group is benchmarked by Alaska Airlines and Delta Air Lines.  In most 
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cases, the closest points on the efficient frontier are defined by a much higher weighting 

toward Delta Air Lines, signifying that the airlines are operating closer to Delta Air 

Lines’ position on the benchmark frontier, as opposed to Alaska Airlines.  Reviewing 

these results suggests that each of the airlines with a strong Delta Air Lines benchmark 

factor is operating at or close to efficient operations with respect to RPM creation from 

ASMs (and has greater improvements to make with respect to carbon dioxide emissions 

abatement).  JetBlue has the opposite ratio, with the closest point on the efficient frontier 

defined by an Alaska Airlines factor of 0.930.  The interpretation of this result is 

inconclusive as JetBlue executes a similar business philosophy to Alaska Airlines – it is 

possible that Delta Air Lines serving as the other benchmark indicates that JetBlue would 

need more efficient creation of RPMs in order to reach the efficient frontier.  Air 

Canada’s almost equal weighting between the Alaska Airlines and Delta Air Lines 

benchmarks suggests that Air Canada is equidistant from the efficient production frontier, 

whether it pursues greater emissions abatement or improved RPM creation. 

The efficiency scores and benchmarks for the first stage of Phase 2 tabulated in 

Table A7 present five airlines with efficient performance: Air Canada, Alaska Airlines, 

British Airways, Delta Air Lines, and JetBlue.  Air Canada and Delta Air Lines are the 

only DMUs to define their optimal efficient frontier operations using their own individual 

performance.  British Airways’ efficient stage score uses Alaska Airlines and Delta Air 

Lines as benchmarks.  Alaska Airlines and all of the inefficiently performing airlines had 

benchmark opportunities set through a combination of Air Canada, Alaska Airlines, and 

Delta Air Lines. 



120 

 

The efficiency scores and benchmarks for the second stage of Phase 2 tabulated in 

Table A8 present that half of the model sample demonstrates efficient performance.  Air 

Canada, Delta Air Lines, and Lufthansa each individually define their own efficient 

frontier positions.  Four of the remaining efficient airlines (Air France-KLM, All Nippon 

Airways, Southwest Airlines, and United Airlines) have efficient frontier improvement 

opportunities defined by Air Canada and Lufthansa Airlines.  The last efficient airline, 

United Airlines, has improvement opportunities defined by Delta Air Lines and 

Lufthansa Airlines.   

Though no single airline demonstrates efficiency throughout the 2014 single-year 

model, Alaska Airlines and Delta Air Lines both stood out as performers who defined the 

closest efficient frontier positions for other airlines in most stages, as well as most often 

individually defining their own efficient frontier position. 

2015 results.  In the 2015 single-year model, Delta Air Lines again scores the 

highest overall total efficiency ranking.  Different from the 2014 single-year model, Delta 

demonstrates efficient production performance in all stages of the model.  Alaska 

Airlines and JetBlue are the only other airlines to demonstrate efficiency in at least three 

out of the four model stages.  United Airlines and Air France-KLM demonstrate the 

second and third highest total efficiency scores, respectively. 

The efficiency scores and benchmarks for the first stage of Phase 1 tabulated in 

Table A9 present that all but two airlines demonstrate efficient performance relative to 

the model (American Airlines and Lufthansa are the only two inefficient airlines).  Air 

France-KLM, Alaska Airlines, Delta Air Lines, Emirates, and JetBlue each individually 

define their positions on the efficient production frontier.  Air Canada, All Nippon 
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Airways, Japan Airlines, and Southwest Airlines all present efficient performance, 

though the model results identify improvement opportunities for these four airlines 

defined by the performance of Air France-KLM and JetBlue.  The final efficient airline, 

United Airlines, uniquely has a performance improvement opportunity defined using the 

performance of Delta Air Lines and Emirates. 

The efficiency scores and benchmarks for the second stage of Phase 1 identify 

four airlines operating efficiently: Alaska Airlines, American Airlines, Delta Air Lines, 

and JetBlue.  Each of the efficient airlines individually defines its own position on the 

efficient production frontier.  The remaining airlines have mostly dissimilar benchmarks, 

which are tabulated along with the individual efficiency scores in Table A10.  An 

interesting note from the results is that Air Canada’s performance (in conjunction with 

the performance of a few other airlines) is used to define performance improvement 

opportunities for itself and four other airlines, even though Air Canada alone does not 

demonstrate efficient performance.  As discussed for this stage in previous models, the 

different objectives of the ASM to RPM conversion and carbon dioxide abatement allow 

the airlines to use different strategies to pursue operating improvement toward the 

efficient production frontier.  The presence of Air Canada in defining production 

opportunities suggests that those airlines may approach the efficient frontier from their 

current operational location by improving their carbon emissions abatement. 

The results from the first stage of Phase 2 provide some corroboration to 

observations made in the previous stage.  The results in Table A11 present efficient 

performance from Air Canada, Alaska Airlines, Delta Air Lines, JetBlue, and Southwest 

Airlines.  Air Canada and Delta Air Lines individually define their own positions on the 
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efficient frontier.  Air France-KLM and Southwest Airlines have performance 

improvement opportunities defined by Alaska Airlines and Delta Air Lines.  Finally, 

Alaska Airlines has opportunities defined by Air Canada, Delta Air Lines, and itself.  The 

inefficient airlines all have reference benchmarks defined by the aforementioned Alaska 

Airlines / Delta Air Lines or Air Canada / Alaska Airlines / Delta Air Lines 

combinations. 

The 2015 single-year model results tabulated in Table A12 present six efficiently 

performing airlines in the second stage of Phase 2.  Air Canada, Delta Air Lines, and 

Lufthansa Airlines each individually define their own positions on the efficient frontier.  

All Nippon Airways and Japan Airlines demonstrate efficient performance, while 

possessing performance improvement opportunities defined by Air Canada and Lufthansa 

Airlines.  Finally, United Airlines demonstrates efficient performance while having 

improvement opportunities defined by Delta Air Lines and Lufthansa Airlines.  Three of 

the inefficient airlines (Alaska Airlines, JetBlue, and Southwest Airlines) have reference 

efficient frontier positions defined by Air Canada and Lufthansa Airlines.  Alaska 

Airlines and JetBlue both have high weights associated with the Air Canada benchmark 

factor, suggesting that they have strong revenue generation relative to the emissions 

abatement input (signifying strong emissions abatement).  Conversely, Southwest 

Airlines presents a 0.935 weight to the Lufthansa Airlines efficient frontier factor, 

suggesting its revenue generation as related to RPMs is at or close to efficient 

performance.  The remaining three airlines (Air France-KLM, American Airlines, and 

Emirates) have their closest efficient frontier position completely defined by Lufthansa’s 

2015 performance. 
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The 2015 single-year model presented the first model of this study with an airline 

demonstrating efficient production throughout all stages of the model.  As with the 2014 

single-year model results, Alaska Airlines presents itself as the primary airline defining 

the efficient production frontier with respect to carbon dioxide abatement. 

2013-2015 combined three-year study.  The analysis for the combined study 

period was conducted separately – not calculated as a combination of individual year 

efficiencies.  The efficiency results for each stage of this analysis are presented in Table 

10. 

 

Table 10 

Total Efficiency Results – 3 Year Study Period (2013-2015) 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.42263 1.00000 1.00000 0.42264 
Air France – KLM 0.99233 1.00000 0.92276 0.83220 0.76203 
Alaska Airlines 1.00000 1.00000 1.00000 0.36631 0.36631 
All Nippon Airways 1.00000 0.43871 0.54746 1.00000 0.24018 
American Airlines 0.79069 1.00000 0.91702 0.73383 0.53209 
British Airways 1.00000 0.69325 1.00000 0.64631 0.44805 
Delta Air Lines 0.98210 1.00000 1.00000 1.00000 0.98210 
Emirates 0.91302 1.00000 0.84028 0.60418 0.46352 
Japan Airlines 1.00000 0.49746 0.38924 1.00000 0.19363 
JetBlue Airways 1.00000 0.98628 1.00000 0.34205 0.33736 
Lufthansa Airlines 0.57807 0.84035 0.94035 1.00000 0.45681 
Southwest Airlines 1.00000 0.76289 0.95937 1.00000 0.73190 
United Airlines 0.95086 1.00000 0.72635 0.97626 0.67426 
Note.  British Airways data includes flight capacity (seat miles) and revenue generation 
from 2015, but no environmental data. 

 

Similar to the 2014 single-year study results, no airline demonstrates efficient 

performance through every stage of this analysis model.  Delta Air Lines obtains the 
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highest total efficiency score (over 98%).  Air France-KLM and Southwest Airlines are 

the only other airlines with total efficiency scores over 70%.  Air Canada and Alaska 

Airlines are the only carriers besides the benchmark (i.e. Delta Air Lines) to demonstrate 

efficient operations in three of four of the stages. 

Table A13 presents the first stage efficiency scores and performance benchmarks 

of each airline in the combined three-year model, identifying five efficient airlines 

(British Airways’ efficient performance is not recognized due to the unavailability of 

environmental data).  Alaska Airlines and JetBlue are the only two efficient airlines who 

each individually define their own positions on the efficient frontier.  The remaining 

efficient airlines had performance improvement opportunities defined by Air 

France-KLM and JetBlue. 

The results for the second stage of Phase 1 are presented in Table A14, 

identifying six airlines demonstrating efficient performance.  Alaska Airlines, American 

Airlines, and Delta Air Lines each individually define their own positions on the efficient 

production frontier.  The remaining efficient airlines use Alaska Airlines and Delta Air 

Lines to define performance improvement opportunities.  The two Japanese carriers 

perform inefficiently and have performance benchmarks defined by Air Canada, Alaska 

Airlines, and Delta Air Lines.  The remaining inefficient airlines identified in this stage 

have the closest operating positions defined by Alaska Airlines and Delta Air Lines, with 

the exception of Air Canada.  Air Canada’s improvement opportunity is defined by 

American Airlines and itself – though it demonstrates inefficient performance in the 

stage.  When the Air Canada performance is framed against all the other inefficient 

airlines utilizing Alaska Airlines and Delta as benchmarks, the comparison suggests that 
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Alaska Airlines and Delta Air Lines defined the greatest extremes in frontier boundaries 

for emissions abatement and ASM conversion to RPMs, respectively.  Air Canada did not 

perform on the efficient frontier, but its own benchmark definition suggests that it 

executed strong emissions abatement (relative to the other DMUs in the model), and its 

path to the efficient frontier requires improvements in ASM to RPM conversion.  

American Airlines’ identification as Air Canada’s other benchmark suggests that 

American Airlines position on the efficient frontier has greater ASM to RPM conversion 

efficiency than Delta Air Lines, but a lower emissions abatement efficiency. 

Table A15 presents the three-year combined model efficiency scores and 

benchmarks for the first stage of Phase 2.  The stage results identify four efficient airlines 

(British Airways is not considered as previously noted):  Air Canada, Alaska Airlines, 

Delta Air Lines, and JetBlue.  Only Air Canada and Delta Air Lines individually define 

their optimal positions on the efficient frontier – a shift from previous model results 

where typically only Alaska Airlines set its own benchmark in this stage.  This change 

from previous results may be an artifact of using three years of data to define 

performance.  In individual-year models, Alaska Airlines serves as its own benchmark 

because it defines the emissions abatement extreme of the efficient frontier; in a 

three-year sample, Air Canada and Delta Air Lines demonstrate comparable emissions 

abatement while also surpassing Alaska Airlines with respect to ASM conversion to 

RPMs.  

The results of the second stage of Phase 2 are presented in Table A16, identifying 

six airlines performing efficiently.  Air Canada, Delta Air Lines, Lufthansa Airlines, and 

Southwest Airlines all individually define their optimal positions on the efficient frontier.  
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All Nippon Airways and Japan Airlines, while performing efficient within the model, 

have performance opportunities defined by Air Canada and Lufthansa Airlines.  All 

inefficient airlines have their benchmarks defined by Lufthansa alone, or a combination 

of Air Canada and Lufthansa Airlines’ performance. 

Summary of individual and three-year model results.  A summary of the total 

efficiencies for each analysis year, the combined total efficiencies, and an efficiency 

average are presented in Table 11. 

 

Table 11 

Total Efficiency Summary 

Airline 2013 2014 2015 3-Year 
Analysis 

3-Year 
Average 

Air Canada 0.37664 0.388 0.49756 0.42264 0.42073 
Air France – KLM 0.74666 0.71748 0.75566 0.76203 0.73993 
Alaska Airlines 0.33143 0.36244 0.41158 0.36631 0.36848 
All Nippon Airways 0.22318 0.22061 0.26805 0.24018 0.23728 
American Airlines 0.50046 0.53423 0.54286 0.53209 0.52585 
British Airways 0.43046 0.45566 N/A 0.44805 0.44306 
Delta Air Lines 0.65620 0.95294 1.00000 0.98210 0.86971 
Emirates 0.45694 0.48285 0.46059 0.46352 0.46679 
Japan Airlines 0.19174 0.16853 0.22425 0.19363 0.19484 
JetBlue Airways 0.28954 0.33198 0.40008 0.33736 0.34053 
Lufthansa Airlines 0.45206 0.48875 0.43877 0.45681 0.45986 
Southwest Airlines 0.44151 0.41355 0.55395 0.73190 0.46967 
United Airlines 0.63699 0.75971 0.80842 0.67426 0.73504 
Note.  British Airways data includes flight capacity (seat miles) and revenue generation 
from 2015, but no environmental data. 
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Figure 13.  Airline annual efficiency performance.  

 

Figure 13 graphically presents the annual total efficiency scores for each airline 

over the three years of the study period.  From 2013 to 2014, Delta Air Lines and United 

Air Lines show discernible improvements in annual efficiency, while Air France-KLM 

and Southwest Airlines show reductions in total efficiency relative to the sample.  From 

2014 to 2015, Delta Air Lines and United Airlines continue to improve, though with less 

improvement relative to the 2013-to-2014 change.  Southwest Airlines makes a 

significant improvement, surpassing its 2013 efficiency score.  Both Emirates and 

Lufthansa Airlines demonstrate reductions in total efficiency from 2014 to 2015, after 

making marginal improvements from 2013 to 2014. 
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U.S. versus non-U.S. airlines.  The study sample airlines were separated into a 

U.S.-based sample and a non-U.S.-based sample.  The DEA methodology was applied to 

these two samples for the entire three-year study period.   

U.S. carriers model.  The overall efficiency scores are presented in Table 13.  No 

airline presents efficient performance throughout all stages of the model; Alaska Airlines 

and Delta Air Lines both demonstrate efficient performance in three of four stages. 

 
 
Table 12 

Total Efficiency Results – U.S.-based Carriers (2013-2015) 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Alaska Airlines 1.00000 1.00000 1.00000 0.37194 0.84299 
American Airlines 0.74644 0.86405 0.88940 0.85779 0.83942 
Delta Air Lines 0.81072 1.00000 1.00000 1.00000 0.95268 
JetBlue Airways 1.00000 0.72353 0.96313 0.34852 0.75880 
Southwest Airlines 1.00000 0.53671 0.92038 1.00000 0.86427 
United Airlines 0.79160 0.92979 0.85647 0.95622 0.88352 
 
 

The efficiency scores and benchmarks for the first stage of Phase 1 tabulated in 

Table A17 present that Alaska Airlines, JetBlue, and Southwest Airlines demonstrated 

efficient performance relative to the model.  Alaska Airlines and JetBlue each 

individually define their efficient frontier positions.  The three FSCs – American Airlines, 

Delta Air Lines, and United Airlines – all demonstrate inefficient performance.  The 

results are corroborated by business practices identified in the literature review regarding 

FSC versus LCC cost structures.  As part of their operating philosophy, the FSCs are 

operating short flights from smaller airports to bring passengers in to their hub airports.  

In the same domestic market environment, the LCC or regional airlines are operating 
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point-to-point operations.  The relative lower seat capacity of these shorter FSC flights 

feeding the hubs brings down their efficiency in creating ASMs from the input resources. 

Table A18 presents the individual efficiency scores and benchmarks of the second 

stage of Phase 1.  Alaska Airlines and Delta Air Lines are the only airlines identified as 

producing efficiently, and each individually defines its efficient frontier position.  The 

remaining airlines have production opportunities defined by Alaska Airlines and Delta 

Air Lines’ performance.  Combining these results with review of the airline business 

philosophies and airline annual reports suggests that Delta Air Lines’ performance is 

establishing the maximum performance boundary of the efficient production frontier with 

respect to ASM conversion to RPMs.  Conversely, Alaska Airlines’ performance is 

defining the emissions abatement performance boundary of the efficient production 

frontier. 

The efficiency scores and benchmarks for the first stage of Phase 2 tabulated in 

Table A19 again define that Alaska Airlines and Delta Air Lines perform efficiently 

through the stage, while each individually defining its own efficient frontier position.  By 

executing efficient performance in both the second stage of Phase 1 as well as the first 

stage of the second stage, the two airlines establish confidence that they are both 

executing efficiently to the model with respect to ASM to RPM conversion and carbon 

dioxide emissions abatement. 

Table A20 presents the efficiency score and benchmark results for the second 

stage of Phase 2, identifying Delta Air Lines and Southwest Airlines as demonstrating 

efficient performance; both airlines each individual define their own performance 

benchmarks.  The inefficient airlines each utilize Delta Air Lines or Southwest Airlines to 
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define the closest position on the efficient frontier.  The results of this stage align with the 

results observed in the other models.  Alaska Airlines and JetBlue generate far less 

revenue due to the limited size of their operations compared with the other airlines in this 

model.  Southwest Airlines’ efficient production highlights the potential of the LCC 

business philosophy. 

Alaska Airlines and Delta Air Lines both demonstrate efficient operations in three 

stages; however, Delta Air Lines presents the highest total efficiency for the U.S.-carrier 

group.  Detailed review of the individual stage results highlight that Alaska Airlines 

defines the optimal performance for this model with respect to carbon dioxide emissions 

abatement. 

 Non-U.S.-carriers model.  The overall efficiency scores for each stage are 

presented in Table 13.  No airline demonstrates efficient performance throughout every 

stage of the model; Air Canada is the only airline to demonstrate efficient performance in 

three of four stages. 

 

Table 13 

Total Efficiency Results – Non-U.S.-based Carriers (2013-2015) 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.72414 1.00000 1.00000 0.72415 
Air France – KLM 1.00000 1.00000 0.93014 0.83220 0.77406 
All Nippon Airways 1.00000 0.53671 0.55155 1.00000 0.29602 
British Airways 1.00000 0.76049 1.00000 0.65139 0.49537 
Emirates 1.00000 1.00000 0.84700 0.60418 0.51174 
Japan Airlines 1.00000 0.86406 0.39001 1.00000 0.33699 
Lufthansa Airlines 0.52171 0.92978 0.94787 1.00000 0.45979 
Note.  British Airways data includes flight capacity (seat miles) and revenue generation 
from 2015, but no environmental data. 
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The efficiency scores and benchmarks for the first stage of Phase 1 tabulated in 

Table A21 present that every airline except Lufthansa Airlines demonstrated efficient 

performance relative to the model.  Air France-KLM, Emirates, and Japan Airlines each 

individually define their position on the efficient frontier.  Air Canada and All Nippon 

Airways present efficient performance, though the model results identify improvement 

opportunities for these three airlines defined by Air France-KLM and Japan Airlines.  

Lufthansa Airlines inefficient performance has the closest opportunities to move to the 

efficient frontier defined by Air France-KLM’s performance. 

Table A22 presents the individual efficiency scores and benchmarks of the second 

stage of Phase 1.  Air France-KLM and Emirates are the only airlines identified as 

producing efficiently, and each individually defines its position on the efficient 

production frontier.  Lufthansa Airline’s inefficient performance is again benchmarked 

solely by Air France-KLM’s performance.  The remaining airlines have the closest 

improvement opportunities to move to the efficient frontier defined by Air Canada and 

Air France-KLM.  The benchmark reference to Air Canada’s production (which does not 

demonstrate efficient performance) is an interesting result previously observed in another 

model.  The three benchmark combinations established in this model stage were: 

Emirates (alone); Air France-KLM (alone); and a combination of Air Canada and Air 

France-KLM.  Combining these results with review of the airline business philosophies 

and airline annual reports suggests that Emirates’ performance is establishing the 

maximum performance boundary of the benchmark frontier with respect to ASM 

conversion to RPMs.  Conversely, Air Canada’s performance demonstrated the greatest 

level of emissions abatement, but its performance in converting ASMs to RPMs was not 
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strong enough for its total stage performance to sit on the efficient production frontier.  

Air France-KLM defines a production point on the frontier with greater environmental 

abatement than Emirates, though with lower emissions abatement performance than Air 

Canada. 

The efficiency scores and benchmarks for the first stage of Phase 2 tabulated in 

Table A23 present that only Air Canada performs efficiently through the stage, while 

individually defining its own position on the efficient production frontier.  Air Canada’s 

efficient performance here (while being identified as inefficient in the previous similar 

stage) highlights a scenario – established as an artifact caused by the model design – 

identified at the beginning of the section.  Air Canada is the only efficient airline in this 

parallel stage, while it presented inefficient performance in the previous stage.  The 

model design utilizes the same stage construction for the second stage of Phase 1, as well 

as the first stage of Phase 2.  The model design evaluates the airline’s performance for the 

same measures while paired in two different optimization partnerships – i.e. Phase 1 pairs 

the stage with ASM creation efficiency, while Phase 2 pairs this same stage with revenue 

realization from RPMs.  Reviewing the results of these two stages together, Air Canada 

does seem to define the stage-specific efficient frontier with respect to emissions 

abatement.  The inefficient score defined by the second stage of Phase 1 highlights that 

Air Canada’s performance with respect to ASM and RPM generation lagged the 

execution of other airlines in the sample. 

Table A24 presents the efficiency score and benchmark results for the second 

stage of Phase 2, identifying four airlines demonstrating efficient performance.  Air 

Canada and Lufthansa Airlines each individually define their positions on the efficient 
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frontier.  All Nippon Airways and Japan Airlines present efficient performance; however, 

an opportunity to improve variable output on the efficient production frontier is identified 

using Air Canada and Lufthansa Airlines performance.  Emirates inefficient performance 

shows that the closest opportunity to the efficient frontier is defined by Lufthansa 

Airlines; this result suggests that Emirates emissions abatement performance is inefficient 

(relative to the stage participants) enough that its best strategy to improve to the efficient 

frontier is through revenue generation and RPM maximization. 

Air Canada is the only carrier to demonstrate efficient operations in three stages; 

however, Air France-KLM presents the highest total efficiency for the non-U.S.-carrier 

group.  Detailed review of the individual stage results and benchmarks highlight that Air 

Canada defines optimal performance for this model with respect to carbon dioxide 

emissions abatement. 

Airline business model differentiation.  The study sample airlines were 

separated into two groups based upon their business models.  The first group contains all 

carriers that operate the full-service carrier (FSC) model.  The second group includes 

airlines operating the low-cost carrier (LCC) model and/or point-to-point (P2P) 

operations with flying amenities in line with the FSC offering.   

Full-service carriers.  The efficiency results for the FSC airlines are presented in 

Table 14.  No airline demonstrates efficient performance through all four stages of the 

model; Air Canada and Delta Air Lines achieve efficient production in three of the four 

stages. 
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Table 14 

Total Efficiency Results – FSC Airlines (2013-2015) 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Air Canada 1.00000 0.58662 1.00000 1.00000 0.58662 
Air France – KLM 1.00000 0.99371 0.92437 0.83220 0.76443 
All Nippon Airways 1.00000 0.53358 0.54951 1.00000 0.29321 
American Airlines 0.79069 1.00000 0.91863 0.73383 0.53302 
British Airways 1.00000 0.76049 1.00000 0.64866 0.49330 
Delta Air Lines 0.98210 1.00000 1.00000 1.00000 0.98210 
Emirates 1.00000 0.92094 0.84175 0.60418 0.46836 
Japan Airlines 1.00000 0.85998 0.38963 1.00000 0.33507 
Lufthansa Airlines 0.57807 0.84093 0.94200 1.00000 0.45792 
United Airlines 0.95089 1.00000 0.72762 0.97626 0.67547 
Note.  British Airways data includes flight capacity (seat miles) and revenue generation 
from 2015, but no environmental data. 
 
 

The efficiency scores and benchmarks for the first stage of Phase 1 tabulated in 

Table A25 present five airlines producing efficiently relative to the model.  Air 

France-KLM, Emirates, and Japan Airlines each individually define their own positions 

on the efficient frontier.  Air Canada and All Nippon Airways present efficient 

performance, though the model results identify improvement opportunities for these three 

airlines with Air France-KLM and Japan Airlines’ performance – it should be noted that 

this stage results are similar to those from the first stage of the non-U.S. carrier model.  

American Airlines, Delta Air Lines, and United Airlines all demonstrate inefficient 

performance; American Airlines has improvement opportunities defined by Air 

France-KLM and Emirates, while Delta Air Lines and United Airlines have opportunities 

defined by Emirates and United Airlines.  The model presents that the closest position on 

the efficient frontier relative to Lufthansa Airlines inefficient performance is defined by 

Emirates’ performance. 
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Table A26 presents the individual efficiency scores and benchmarks of the second 

stage of Phase 1.  Opposite of the results of the first stage, American Airlines, Delta Air 

Lines, and United Airlines are the only carriers to demonstrate efficient production.  

American Airlines and Delta Air Lines each individually define their own positions on 

the efficient frontier; United Airlines presents efficient production but has performance 

improvement opportunities defined by Air Canada and Delta Air Lines.  Air Canada’s 

inefficient performance has the opportunity for the closest point on the efficiency frontier 

defined by its own performance and American Airlines.  As discussed in previous 

models, this result suggests that Air Canada’s emissions abatement performance has 

helped define the benchmark frontier; however, the airline’s ASM to RPM conversion 

performance is low enough that it overall performs inefficiently to the model’s efficient 

frontier definition.  Air Canada and Delta Air Lines benchmark the remaining inefficient 

airlines. 

The efficiency scores and benchmarks for the first stage of Phase 2 tabulated in 

Table A27 present that only Air Canada and Delta Air Lines perform efficiently through 

the stage, while each individually defines its position on the efficient frontier.  Air 

Canada and Delta Air Lines benchmark the remaining inefficient airlines.  This model 

presents the strongest confirmation between the results from the second stage of Phase 1 

and the corresponding results of the first stage of Phase 2.  The high level of 

corroboration clearly establishes efficient performance; the relative relationships of 

different airlines to each of these benchmarks propose that Air Canada defines the 

emissions abatement component of the efficient frontier, while Delta Air Lines 

demonstrates best-in-class ASM conversion to RPMs. 
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Table A28 presents the efficiency score and benchmark results for the second 

stage of Phase 2, identifying five airlines demonstrating efficient performance.  Air 

Canada, Delta Air Lines, and Lufthansa Airlines each individually define their own 

positions on the efficient frontier.  All Nippon Airways and Japan Airlines present 

efficient performance; however, an opportunity to improve variable output on the 

efficient production frontier is identified using Air Canada and Lufthansa Airlines’ 

performance.  It should be noted that the same efficient performance (with improvement 

opportunities defined by Air Canada and Lufthansa) was presented as the corresponding 

stage results in the non-U.S. carriers model.  The model presents that the closest point to 

the efficient frontier from Emirates inefficient performance is defined by Lufthansa 

Airlines.  Similar to the non-U.S. carrier model, this final stage result suggests that 

Emirates’ emissions abatement performance is inefficient (relative to the stage 

participants) and its best strategy to improve to the efficient frontier is through revenue 

generation and RPM maximization. 

For the full-service carrier group, Air Canada and Delta Air Lines both 

demonstrate efficient operations in three out of the four stages.  Review of the individual 

stage scores and benchmarks suggests that Air Canada defines the efficient production 

frontier relative to emission abatement.  However, Delta Air Lines’ may demonstrate the 

most efficient performance by a full-service carrier over the three-year study period.  The 

airline presents its only inefficient performance in the first stage of the model.  The 

previous discussion that rationalized FSCs will have relatively lower ASM production 

relative to input costs – due to their higher service level – is irrelevant as this is an 

FSC-only model.  However, Delta Air Lines’ performance paralleled the other three large 
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U.S. FSCs, suggesting there may be a higher cost structure associated with those carriers 

competing in both large domestic and international markets.  If the first stage inefficiency 

(performing at 98%) is due to a factor specific to the U.S.-market, then Delta Air Lines 

could be considered the most efficiently producing FSC relative to the model. 

Low-cost and point-to-point carriers.  The second model created to analyze 

airline efficiency based on business operation philosophy focused on the operational 

production of the LCC and P2P carriers.  The efficiency results for the LCC/P2P airlines, 

presented in Table 15, establish Alaska Airlines as an efficient airline throughout the 

model. 

 

Table 15 

Total Efficiency Results – LCC/P2P Airlines (2013-2015) 

Airline 1st Phase 
1st Stage 

1st Phase 
2nd Stage 

2nd Phase 
1st Stage 

2nd Phase 
2nd Stage 

Total  
Efficiency 

Alaska Airlines 1.00000 1.00000 1.00000 1.00000 1.00000 
JetBlue Airways 0.83594 1.00000 0.71975 1.00000 0.60166 
Southwest Airlines 0.26806 1.00000 0.30502 1.00000 0.08177 
 

The efficiency scores and benchmarks for the first stage of Phase 1 tabulated in 

Table A29 presents Alaska Airlines producing efficiently relative to the model.  Alaska 

Airlines individually defines its own position on the efficient frontier, while also serving 

as the benchmark for the two inefficient airlines in the model. 

Table A30 presents the individual efficiency scores and benchmarks of the second 

stage of Phase 1.  The results of this phase present that each airline is producing 

efficiently.  The unity efficiency scores appear to be driven by the small number of 

DMUs, but review of the airline annual reports corroborates the observed results of this 
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stage.  Each of the three airlines deploys a niche business strategy specifically tailored for 

their own success.  Due to the service levels and locations of their services, all three 

airlines will compete often with regional airlines.  Due to the lack of public published 

emissions data, the regional airlines are not part of this study.  However, the literature 

review supports the conclusion that these three airlines are efficient versus their 

competitors, a lot of whom are not part of this study.  This situation yields a stage where 

all three airlines demonstrate efficiency. 

The efficiency scores and benchmarks for the first stage of Phase 2 tabulated in 

Table A31 presents that only Alaska Airlines performs efficiently through the stage, 

while serving as the benchmark for all airlines in the model.  As discussed in review of 

the previous model results, the results of this stage are best reviewed while comparing to 

the results of the previous stage.  The previous stage’s results suggest that all three 

airlines performed efficiently with respect to emissions abatement and ASM to RPM 

conversion when considering their relative efficiency in producing ASMs from input 

resources.  The results of this stage present that Alaska Airlines demonstrates the greatest 

efficiency in emissions abatement and ASM to RPM conversion in the context of revenue 

generation.   

Table A32 presents the efficiency score and benchmark results for the second 

stage of Phase 2, identifying five airlines demonstrating efficient performance.  The 

results of this stage present that each airline is producing efficiently, and therefore defines 

its own position on the efficient frontier.  In alignment with the results discussion for the 

second stage of Phase 1, the efficient performance by all model participants may be due 

to the fact that each of this models’ participants are successful airlines operating a niche 
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business model, and their primary competitors are not included in the model due to data 

availability – or are FSCs. 

The results of this model raise questions regarding Southwest Airlines’ 

performance.  Review of exigent literature suggests that Southwest Airlines’ business 

model would show it to have greater ASM creation – and perhaps greater ASM to RPM 

conversion efficiency – than the other model participants.  The results of previous models 

have established that ASM creation efficiency, ASM to RPM conversion efficiency, and 

revenue generation are all recognized in the generic model’s architecture – and will 

significantly influence the total efficiency score.  The results of this model suggest that 

the LCC business model may be less efficient in context of this model. 

For the airlines deploying focused business models, Alaska Airlines clearly 

defined the efficient production frontier with respect to emissions abatement and revenue 

generation.  Every airline in this group demonstrated efficient business operations in the 

second stages of both phases.   

 

Summary 

A multi-stage data envelopment analysis model was executed on the study 

sample’s operating, revenue, and environmental impact data.  The sample was examined 

using this analysis model while varying several factors, including the time period of 

study, the airline’s domestic operations home, and the airline business model. 

The methodology from Chapter III was followed, and results from the DEA are 

included in the present chapter.  The following chapter will further discuss the results and 

assess the model’s effectiveness in representing the airline business operations.  The 
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model’s effectiveness and potential applicability of further theoretical or practical 

applications will also be discussed. 
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CHAPTER V 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

This section discusses the results of Chapter IV, answers the research questions 

posed in Chapter I, and makes final conclusions and recommendations.  This chapter 

describes the results produced by the data envelopment analysis (DEA) models 

developed for this study and discusses the airline efficiency results.  This section also 

includes the conclusions of the study, reflecting on practical and theoretical implications.  

Finally, recommendations are given to airlines for further research in the area of air 

carrier restructuring. 

The purpose of the study was to construct and validate a DEA model that would 

assess and compare the total operating efficiency of airlines.  This study focused on 

environmental impact abatement, by including the estimated and actual carbon dioxide 

emissions produced by the airlines as part of the efficiency measure. 

This study constructed a two-phase, two-stage DEA model to assess and compare 

a sample of different airlines that included both U.S. and international carriers, as well as 

different business operating models – i.e. FSCs, LCCs, and non-LCC point-to-point 

carriers.  The study combines and extends principles established by the three-stage DEA 

airline operating efficiency concept from Mallikarjun (2015) and the two-stage DEA 

airline energy efficiency measures developed by Cui and Li (2016).  In addition, this 

study leverages multiplicative DEA relationships established by Kao and Hwang (2008) 

to create a model that can utilize two-stage DEA while retaining the accurate 

representation of the airline business model represented in Mallikarjun (2015).  The DEA 

analysis enabled an assessment of the airlines along a variety of measures, without 
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requiring equivalent units between the variables.  This linear programming methodology 

utilizes all airline variable values within the model to establish a production frontier of 

optimum operating parameters and then compares the airlines performance to that 

benchmark to provide an efficiency score. 

Discussion 

A DEA model was constructed to comprehensively evaluate relative airline 

efficiencies inclusive of resource consumption, environmental impacts, and revenue 

generation.  The study used data available through the U.S. Bureau of Transportation 

Statistics, airline public disclosures in airline operating reports, corporate and social 

responsibility reports, and reports made for the Global Reporting Index (GRI).  

Reviewing the structure of the model facilitates comprehension of the relative efficiency 

scores between the airlines. 

As presented in Chapter III, this study utilized an analytical model composed of 

two different multiplicative two-stage DEA models: (1) the capacity generation phase 

(also referred to as “Phase 1”); and (2) the revenue generation phase (also referred to as 

“Phase 2”).  Each of these two phases executes a two-stage DEA model.   

The first stage of Phase 1 evaluates the “Operations” facet of the business model – 

i.e. the efficiency of an airline to be able to generate ASMs from the input resources 

(labor, materials, fuel, etc.).  The second stage of Phase 1, titled “Services and 

Abatement”, evaluates the efficiency of both: (1) the production of RPMs from ASMs 

(the maximization of creation profit-generating seats via the airline’s route planning and 

flight scheduling activities); and (2) abatement (reduction) of carbon dioxide emissions.   
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The focus of the first stage of Phase 2 parallels the second stage focus of Phase 1 

(the Services and Abatement stage).  These stages both measure the “Carbon Abatement” 

facet of the business model (relative effectiveness of carbon abatement by an airline), as 

well as the “Services” facet of the airline business model (the effectiveness of creating 

profit-generating seats via the airline’s route planning and flight scheduling activities).  

However, by integrating this efficiency measurement as a different stage – paired 

uniquely with the “Operations” and “Sales” facets of the business model – the relative 

differences in efficiencies are less likely to be dominated by efficiency issues in their 

paired stage.  The second stage of Phase 2 measures the relative efficiency of the “Sales” 

stage – i.e. the successful marketing and sales of seats, transforming RPMs into revenue. 

Identical models were executed along three differentiating philosophies to 

identify and assess business model factors which may greatest influence efficiency.  

Based on the model validation and the results of the different DEA models, the 

conclusions for each of the three research questions are presented below.  Following the 

review of the research questions, several sub-sections discuss the results of each group of 

models analyzed. 

Research Question 1:  Can airline efficiency be modeled to incorporate the cost 

and responsibility for abating environmental impacts in addition to traditional operating 

and revenue generating effectiveness? 

Airline efficiency can be modeled to incorporate the cost and responsibility for 

environmental abatement in addition to capacity and revenue generation.  The model 

designed in this study maintained a high-fidelity evaluation capability for business 

operations by ensuring the ASM creation (consumption of inputs for seat capacity), RPM 
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creation (consumption of ASMs for route capacity), and revenue generation and 

recognition – i.e. effective sales of RPMs – were evaluated as separate performance 

functions within the operating efficiency model.  In parallel, the model recognized the 

carbon dioxide emissions generated by flying activities, as well as the net carbon dioxide 

impact to the environment – a net result due to partial offsets by abatement activities. 

Redefining the theoretical three-stage DEA model into the two-phase, two-stage 

model helped provide greater means for comparison of the airlines after the efficiencies 

were established.  A single overall efficiency score in a three-stage model, while allowing 

for variable optimization across all three of the stage motifs (e.g. ASM generation, RPM 

generation, revenue generation) involves significant complexity in defining equations to 

evaluate the efficiency in a single-stage, specific to a single motif.  If the equations for a 

single stage are assessing performance across multiple motifs, uncertainty is introduced 

when comparing the single-stage results of two airlines. 

To avoid the aforementioned confusion in the final model design, the second 

stage of Phase 1 was replicated in the first stage of Phase 2.  In the results of several of 

the models, an airline would yield an efficient score in either of these two stages (second 

stage of Phase 1 or first stage of Phase 2), but not demonstrate efficient production of 

both.  Every instance of this result establishes that while such a score was efficient for 

one part of the analysis, a disparate efficiency value in the opposite phase signified the 

efficient position on the production frontier was not sustainable for business operations.  

Two separate two-stage models leveraging the multiplicative relational construct (Kao 

and Hwang, 2008) provide a means to evaluate and compare airline efficiencies utilizing 

a simpler model while retaining the fidelity of the three-stage model. 
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Research Question 2: To what extent does the cost of environmental abatement 

affect the efficiency of airline operations in the United States? 

The implications of environmental abatement can impact the overall efficiency of 

airline performance in both the United States and throughout the world when emissions 

and carbon dioxide reduction efforts are properly accounted for.  For the U.S.-based 

airlines in the study, only Alaska Airlines could demonstrate efficient performance in the 

environmental abatement component of each phase of the analytical model.  When this 

research question is expanded to all airlines in the study, Alaska Airlines is the only 

airline to demonstrate efficient performance with respect to emissions abatement and 

RPM generation in both phases of the study for 2013 and 2014.  In 2015, Alaska Airlines, 

Delta Air Lines, and JetBlue all show efficient performance in this regard; Alaska 

Airlines and Delta Air Lines also demonstrate efficient performance for emissions 

abatement in both phases for the three-year cumulative model.  The lack of an efficient 

non-U.S. carrier is a topic for further research, as highlighted in the Recommendations 

section. 

Research Question 3: What are the relative differences among airlines compared 

to an optimal efficiency benchmark when considering all facets of airline efficiency – i.e., 

inclusive of operational constraints, environmental impacts, and revenue generating 

effectiveness? 

The response to this final research question is presented in the results discussion 

in the following section.  These results are then used to compose airline-specific 

recommendations that are presented later in this chapter. 
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Principles of reviewing DEA output.  As will be demonstrated in the following 

model-specific results discussion, the model’s construction leveraging the multiplicative 

efficiency philosophy (Kao & Hwang, 2008) using two separate two-stage DEA models 

provides opportunities to assess efficiency, while also being able to compare multiple 

airlines.  When reviewing DEA results, a unity efficiency rating establishes that a DMU 

is executing on the production frontier – one of the sets of variable values which 

demonstrates the theoretical benchmark for that system of equations.  Non-unity scores 

suggest that the DMU may not be operating efficiently; however, these scores still allow 

relative comparison of performance as the rating establishes how far the DMU is from the 

efficient frontier.  Applying this logic to the product of the two stage scores yields the 

conclusion that the total efficiency can be used to compare two airlines in relative 

efficiency, even if one or both stages does not demonstrate efficient operations.  

However, this conclusion cannot assume that the total efficiency is supplying evidence 

that one airline is more efficient than the other at all aspects of performance; all related 

deductions from the results should include a review of the individual stage scores, as well 

as review of which benchmarks each airline is optimizing to in each stage. 

Efficiency differences over time.  Execution of models for individual years 

presents shifts in which airlines are operating efficiently relative to each other.  The 

differences in results between years suggest a changing environment or external 

influences on some of the variables utilized in the models. 

2013 results discussion.  In 2013, no airline presents efficient operations relative 

to the sample in both phases.  In the first stage of Phase 1, all but three airlines 

demonstrate efficient performance.  Lufthansa appears to have significant difficulty with 
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efficient production of ASMs from its input resources.  A review of Lufthansa’s public 

operating data shows that their total operating expenses reduced by almost 11% between 

2013 and 2014 and over 6% between 2014 and 2015, corroborating the results of the first 

stage.  The second stage of Phase 1 has four airlines operating with a unity efficiency 

value, while three other airlines are demonstrating operations close to those production 

frontier positions.  Air Canada, All Nippon Airways, British Airways, and Japan Airlines 

appear to be operating inefficiently relative to the efficient frontier.  As previously 

discovered in the review of literature, British Airways was recognized during the study 

period for less-than-desirable operating efficiencies (which would correlate to the poor 

abatement facet of this stage’s evaluation).  Similar review of the airlines’ public reports 

identifies 2013 and 2014 as years of focus on profitability for both Japanese airlines.  The 

poor execution of the “Services” facet of the airline operating model is corroborated by 

the documented performance opportunities and subsequent improvement into 2015. 

As previously discussed, the focus of the first stage of Phase 2 parallels the focus 

of the second stage of Phase 1.  With the exception of Alaska Airlines, every airline that 

demonstrated efficient performance in the second stage of Phase 1 did not demonstrate 

benchmark efficiency in the first stage of Phase 2.  This suggests that in one of the two 

stages, the relative efficiency of the phase is overshadowed by the ineffectiveness of the 

paired stage – e.g. some airlines are experiencing greater struggles to efficiently generate 

ASMs from input resources.  Both Delta Air Lines and United Airlines demonstrated less 

efficient performance when evaluated as part of the second phase. 

In the second stage of Phase 2, Alaska Airlines and JetBlue both show very low 

performance relative to the sample.  As both airlines prescribe to the point-to-point 
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business model, the low scores suggest that the airlines underperform their peers in 

revenue generation relative to RPMs.  Reviewing Southwest Airline’s performance, 

Southwest’s revenue generation underperforms the FSC carriers while significantly 

outperforming Alaska Airlines and JetBlue. 

Looking back at the total results, Alaska Airlines, Delta Air Lines, and United 

Airlines all demonstrate efficient performance through Phase 1 of the model.  This is an 

interesting result as Delta Air Lines and United Airlines both are FSCs; similarly, while 

Alaska Airlines is placed in the LCC/point-to-point carrier group, it operates a service 

more similar to an FSC, albeit over a geographically limited network.  Exigent research 

would suggest that Southwest Airlines should excel in Phase 1 compared to any FSC; the 

LCC business philosophy is based around maximizing load factor, and Southwest 

Airlines operates only one type of aircraft (the Boeing 737) to minimize both recurring 

and overhead costs.   

Air Canada demonstrated efficient performance in Phase 2 of the model.  The 

recurring efficient performance in Phase 2 (observed in Chapter IV) suggests that Air 

Canada is the airline closest to Alaska Airlines at effective carbon dioxide abatement, 

while still generating the higher levels of revenue that a larger airline can achieve.  Using 

the multiplicative two-stage relationship with the phase scores yields Air France-KLM as 

the highest efficiency performer; albeit only with a 75% efficiency rating.  However, as 

Air France-KLM did not demonstrate efficient production in either phase, it cannot be 

labeled as efficient through the model. 

2014 results discussion.  In 2014, a clearer segregation between efficient and 

inefficient carriers is presented.  In the first stage of Phase 1, eight airlines demonstrate 
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efficient operations, while five airlines demonstrate efficient operations in the second 

stage.  Looking at the two-stage VRS model, only Alaska Airlines demonstrates efficient 

performance in Phase 1.  Air France-KLM, Delta Air Lines, and Jet Blue all present 

efficient performance in one of the two stages, while otherwise scoring 95% or higher.  

Review of the collected data shows that the four carriers all had strong passenger traffic 

relative to their 2013 operations, as well as recurring strong performance with respect to 

carbon emissions abatement.  The scoring for these airlines compared to the sample 

would corroborate that strong ASM generation coupled with carbon emissions abatement 

is required to demonstrate efficient performance in Phase 1.   

In Phase 2, Air Canada and Delta Air Lines demonstrate performance on the 

efficient production frontier.  Similar to 2013, while Alaska Airlines demonstrates 

excellent performance in Phase 1, it falls sharply in Phase 2 (specifically in the second 

stage).  JetBlue similarly shows extremely low performance in the second stage of Phase 

2, reinforcing the observation that in a combined model with large and smaller carriers, 

carriers with lower total revenues (irrespective of profitability) cannot demonstrate 

benchmark performance. 

2015 results discussion.  The 2015 results substantiate observations from the 

previous two years with respect to the methodology and results.  In the first stage of 

Phase 1, all but two airlines (American Airlines and Lufthansa) demonstrate efficient 

performance.  Lufthansa has more employees than any other airline in the world (which 

would translate to higher costs).  Additionally, a number of aging aircraft in the 

Lufthansa fleet would increase maintenance costs and decrease aircraft availability due to 

downtime for scheduled maintenance, so the ratio of ASMs produced relative to input 
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costs is not as high as the other airlines.  American Airlines was the world’s largest 

airline by revenue in 2015 but also had the largest fleet – which would suggest higher 

overhead costs.  From examination of 2015 operating statistics, American Airlines had 

10% more aircraft and 48% more employees (approximately 38,500 more) while only 

carrying 5% more passengers. 

Three year combined results discussion.  Analysis of the DEA model results 

suggests that this combined model accentuates where each airline struggled in efficient 

performance relative to the sample and the theoretical efficient production frontier.  Delta 

Air Lines stands out with the highest total efficiency score, demonstrating efficient 

performance in Phase 2.  The airline’s efficiency in the first stage of Phase 1 is slightly 

off the benchmark frontier; this lack of efficiency is understandable considering that no 

other large carrier (except for Southwest Airlines) achieved efficient performance with 

respect to ASM generation.  The results suggest that for the aggregate study period, the 

efficiency baseline for generating ASMs is defined by Southwest Airlines – the large 

LCC whose business model is focused on this efficiency. 

In the second stage of Phase 1, the airlines further differentiate their performance 

with respect to RPM generation and carbon dioxide emissions abatement.  One notable 

result is that Emirates demonstrated efficient performance – a performance level achieved 

in 2014, but not in 2013 or 2015.  The Emirates business model executes a high quality 

product on long international routes with a comparatively modest domestic operating 

network – in reality, Emirates’ “domestic market” is short-haul flying within the Middle 

East.  This business model lends itself to fuel and emissions generation efficiency relative 

to each passenger-mile; the primary threat to efficiency would be the cost of the product, 
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which would be evaluated in the first stage of Phase 1.  It is possible that small 

differences in ASM to RPM generation negatively impacted Emirates’ performance in 

ASM to RPM generation for 2013 and 2015; in the three-year aggregate, Emirates 

demonstrates efficient performance relative to the sample.  

For Phase 2, British Airways’ efficient performance in the first stage is voided, as 

no environmental data was available in 2015.  Therefore, for the three-year period, 

British Airways would artificially show higher environmental abatement performance.  

Alaska Airlines, Delta Air Lines, and JetBlue demonstrate efficient performance in the 

first stage, but in the second stage neither of the LCC/P2P carriers generate enough 

revenue to demonstrate efficient performance.   

In addition to Delta Air Lines, Air Canada demonstrates efficient performance in 

Phase 2.  Further examination of all four models’ results shows that Air Canada 

demonstrated efficient performance in the first stage of Phase 1 and through Phase 2 in 

every one of the four analysis models reviewed; however, the airline always performs 

poorly in the second stage of Phase 1. 

U.S. versus non-U.S. airlines.  As previously described in the demographics 

section, the hubs and route networks of an airline have significant implications for the 

manner in which the airline is operating and where it generates revenue.  Execution of 

models for the U.S. carriers alone, and then the international carriers alone, provides an 

efficiency comparison more focused on the business model of those airlines. 

U.S. carriers.  Analysis of the results for the U.S. carriers model shows some 

distinct differences from the annual or aggregate models with all carriers included.  In the 

first stage of Phase 1, the three non-FSC carriers (Alaska Airlines, JetBlue, and 
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Southwest Airlines) demonstrate efficient performance.  This is interesting because in the 

annual all carrier models, some of the U.S. FSC airlines also perform efficiently for a 

single year (e.g. Delta Air Lines in 2015 and United Airlines in 2013).  In the second 

stage of Phase 1, Alaska Airlines and Delta Air Lines demonstrate efficient performance.  

These results present that Alaska Airlines operated efficiently through the first phase of 

the analysis model. 

In Phase 2, Delta Air Lines performs efficiently throughout the phase.  Alaska 

Airlines is the only other airline to present efficient performance in one of the stages (in 

the second stage of this model).  These results corroborate some of the previous results 

discussion focused on the all carrier models.  In both the 2015 and the three-year 

aggregate results, Alaska Airlines performed efficiently in the first stage of Phase 2, but 

then performed far below benchmark in the second stage, while Delta Air Lines was at 

benchmark efficiency through Phase 2 in both models.  This situation is best explained 

through review of the DEA formulation that the models are based on.  With multiple 

input variables, two DMUs can operate at the same performance level with different 

variable values.  In the case of the aggregate models, Air Canada had both relatively 

higher revenue generation than Alaska Airlines, as well as higher environmental 

abatement and RPM generation relative to Delta Air Lines.  As such, Air Canada and 

Delta Air Lines, with different performing values, both were operating on the efficient 

production frontier.   

In this model, Alaska Airlines demonstrates that it is the top U.S. carrier with 

respect to emissions abatement.  However, Alaska Airlines’ production efficiency in 

revenue generation (the second stage of Phase 2) reinforces the previous observation that 
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smaller LCC and point-to-point carriers are incapable of competing with larger airlines in 

the last stage of the model.  The results indicate that with respect to emissions abatement, 

RPM generation from ASMs, and revenue generation, Delta Air Lines outperforms 

Alaska Airlines.  

Non-U.S. carriers.  Similar to the U.S. carriers model, analysis of the results for 

the non-U.S. carrier model shows that a more segregated sample population allows 

certain airlines’ performances to stand out among their peer group.  In the first phase, 

both Air France-KLM and Emirates demonstrate efficient performance.  For this model 

sample, the strong performance is corroborated by the literature review and analysis of 

these airlines’ fleets.   

Both carriers conduct some regional operations, but also operate extensive 

long-haul operations on large aircraft.  Due to the overhead cost of long-range capable 

aircraft, airlines focus on scheduling and marketing techniques to ensure these aircraft are 

filled to capacity.  In addition, Air France-KLM (who has the more significant domestic 

and regional operations) has launched LCC airlines (e.g. HOP!) internally owned by the 

company to fulfill the typically underperforming short routes that feed their larger hub 

airports.  The strategic investment in regional airlines feeding their hubs helps improve 

the RPM generation efficiency by ensuring the large, long-range aircraft are filled.  For 

the regional routes, the airline can tailor their aircraft selection to match the passenger 

demand on those routes.  Comparably, Emirates specifically focuses on supporting 

long-range international routes between major hub airports.  By concentrating its business 

operations only on routes it can be competitive on, Emirates is helping ensure its RPM 

generation efficiency remains high. 
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With the results corroborated by review of the aircraft business philosophies and 

annual reports, the Phase 1 efficient performance in ASM and RPM generation is 

appropriate.  The literature review also presents that both airlines were relatively early to 

invest in fuel-burn and emissions reduction initiatives.  The early adoption of 

emissions-reducing practices as well as high seat density for long-haul operations will 

translate to a greater emissions abatement capability, reinforcing a strong production 

efficiency in the second stage of Phase 1. 

In Phase 2, Air Canada demonstrates efficient performance for the sample.  All 

Nippon Airways, Japan Airlines, and Lufthansa each present efficient performance for 

the second stage of Phase 2.  As noted in previous discussion for the aggregate model 

results, the larger FSC airlines (who generate more total revenue) can demonstrate high 

performance in the second stage due to total revenue production.  In this model, these 

airlines can generate sufficient revenue to be on the production frontier for that stage, but 

only Air Canada demonstrates efficient performance through a combination of revenue 

generation and emission abatement. 

Efficiency difference between FSCs and LCCs.  As described in the 

demographics section, the business strategy and deployment philosophy of an airline is 

just as important as its geographical location and network.  Execution of models that 

segregate the FSCs (executing a hub-and-spoke strategy), LCCs, and point-to-point 

airlines help reveal additional factors that may influence efficiency.   

Full-service carriers.  In the FSC model, no airline demonstrates efficient 

performance in Phase 1.  Six airlines demonstrate efficient performance in the first stage, 

while American Airlines, Delta Air Lines, and United Airlines perform efficiently in the 
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second stage.  Analysis of the results from the previous models has presented that some 

FSCs have typically stood out in the total study sample with respect to ASM and RPM 

generation.  Examination of the Phase 1 results reveal that the non-U.S. FSCs are 

comparatively stronger at ASM generation, while the three large U.S. FSCs are stronger 

at RPM generation from the ASM supply and/or emissions abatement.   

Review of each airlines’ operations help explain the aforementioned phenomenon 

(non-U.S. FSCs efficiently produce ASMs from input resources while U.S. FSCs are 

relatively more efficient at RPM generation from the ASM supply) as the difference in 

domestic operations as a function of total operations.  Robust and effective domestic 

operations leverage regional and single-aisle aircraft to support high-demand routes.  The 

three U.S. carriers all produce significant revenue through their domestic operations.  

While the other FSCs have domestic / regional operations (in Europe, short international 

routes utilize the same aircraft and business strategy as U.S. domestic operations), these 

operations are not as extensive as a function of total operations.  While Emirates 

predominantly supports international, long-haul routes, All Nippon Airways and Japan 

Airlines – the market leaders in Japan – are limited by Japan’s total domestic market 

demand.  Air Canada has a similarly limited home market to Japan; an additional 

complication is a greater percentage of Air Canada’s domestic operations require 

propeller aircraft or smaller regional jets based on individual city flight demand and 

operating constraints of some cold weather locations.  Therefore, the total airline 

operation efficiency of the non-U.S. FSCs is more reflective of its long-haul operation, 

while the U.S. FSCs’ operational efficiency reflects a more even split between 

international long-haul, domestic transcontinental, and regional/short-haul operations.  



156 

 

In Phase 2, Air Canada and Delta Air Lines demonstrate efficient performance 

throughout the phase.  As previously discussed with the single year and aggregate models 

for the total study sample, these two airlines are both operating on the production frontier, 

with Air Canada leading in emissions abatement and Delta Air Lines producing more 

revenue.  All Nippon Airways and Japan Airlines, while relatively smaller FSCs 

compared to other airlines in this sample, both demonstrate effective revenue generation 

from their RPMs.  Lufthansa stands out in this model for its second stage performance; 

with the exception of Air Canada and Delta Air Lines, every other FSC benchmarked 

against Lufthansa for revenue generation in this phase. 

 Low-cost and point-to-point carriers.  The LCC model yielded Alaska Airlines as 

demonstrating efficient performance through the model.  The results are well 

substantiated as Alaska Airlines demonstrated efficient performance versus the sample 

with respect to emissions abatement in the other models which included FSC carriers.  

However, Southwest Airlines’ relatively low ASM generation performance, suggests that 

the model would have benefited from additional DMUs. 

 

Conclusions 

This study explored airline efficiency with respect to both capacity / profit 

generation and emissions abatement.  A two-phase, two-stage DEA model was designed 

to simultaneously evaluate an airline’s operations for ASM generation, RPM generation, 

carbon dioxide emissions abatement, and revenue generation.  Quarterly and annual data 

was collected from thirteen airlines for a three-year period.  Several variants of the DEA 

model were executed to assess and compare the airline efficiencies over different time 
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periods, as well as in smaller samples segregated by airline network location or business 

operating strategy. 

Analysis of the DEA model results in conjunction with publicly disclosed airline 

performance data for the period of study corroborated the model’s effectiveness in 

comparing airlines for both business operations and environmental abatement.  The 

network and business strategy-focused models demonstrated that having analytical 

models including only similar airlines can help highlight the specific strengths and 

opportunities of those airlines.  The value of the business philosophy-specific or 

geographical/network-specific models are demonstrated when the same airlines present 

average performance as part of the aggregate sample but may set a performance 

benchmark against more closely performing peers.  Future research may consider 

extended models with more focused examination of airlines with similar business 

strategies or networks.  Additionally, further studies into the model’s variable weighting 

are recommended to more effectively deploy practical applications of the model. 

Theoretical implications.  This study establishes a new path of focus for airline 

operations, specifically in the DEA domain.  The study connects previously conducted 

airline efficiency research that focused on: (a) different capacity and cost components of 

airline operations, (b) carbon dioxide emissions abatement, (c) differing airline business 

models associated with service levels, and (d) the implications of different routes and 

networks. 

The study demonstrates the ability to execute a multiplicative relational DEA 

model (utilizing a two-phase two-stage architecture) and incorporates the construct of 

emissions abatement while maintaining a business operations analysis structure that 
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allows for separate capacity and revenue generation stages.  The limited existing research 

structures the environmental impacts or emissions abatement as an output of the total 

airline operations.  The model construct established in this study specifically makes 

emissions abatement part of the firm decision-making in a phase prior to the final outputs 

and revenue generation.  The model philosophy and design therefore make emissions 

abatement a decision-making variable, not a result of revenue optimization. 

The DEA model in this analysis philosophically presents a combination of the 

three-stage philosophy for airline operating efficiency defined by Mallikarjun (2015) with 

the environmental operating efficiency construct developed by Cui and Li (2016).  

Leveraging the multiplicative two-stage property deployed by Kao and Hwang (2008), 

the two-phase two-stage DEA analysis model developed for this study allows the 

successful evaluation and comparison of relative efficiencies between the airlines 

included in the study.  Applying a phased two-stage DEA model approach reduces the 

complexities associated with the forward/backward recursion required in a three-stage 

DEA analysis, while capturing the fidelity of the Mallikarjun approach to airline 

operating efficiency (2015).  Although the same RPM generation and emissions 

abatement stage are utilized in both phases (the second stage of Phase 1 and the first stage 

of Phase 2), the results of the study and subsequent conclusions corroborate data found in 

airline public reports.  This analysis model allows dissimilar decision-making units (i.e. 

business firms) to be compared, a useful tool considering every airline is different. 

This study also provides insight into the impact of airline business model and 

route/network on airline efficiency comparison.  As discussed earlier in this chapter, 

including airlines of different business models can help better understand the aspects of 
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airline operations that a specific business model may excel – e.g. LCCs are strong at 

ASM generation from inputs.  However, the study reinforces the perspective that DEA 

results are more reliable with a greater number of DMUs included in the study.  By 

extension, the study shows that the model becomes more capable of presenting the 

opportunities associated with a specific business model (e.g. FSC or LCC) when a greater 

number of sample participants are used to represent each business model. 

Practical implications.  This study has contributed practical, data-driven 

knowledge to efforts focusing on deploying high-fidelity analytical methods to assess 

airline operating efficiencies.  This is the first study to develop a measurement model that 

incorporates carbon dioxide emissions abatement as well as a high-fidelity assessment of 

efficiency where ASM creation, RPM generation, and revenue realization are all 

separately assessed as part of an airline’s business operations.  While DEA has been 

deployed to great extent as a methodology for assessing airline efficiency, any models 

that include carbon emissions abatement treat the environmental impact abatement as a 

separate stage after the operations analysis.  The results of this study (as well as the 

model developed) provide airline industry participants, both the airlines and decision 

makers associated with regulatory activities, additional means by which to evaluate and 

compare airline efficiency. 

The study reviewed the performance of thirteen airlines over a three-year period, 

identifying strengths and opportunities for each airline specific to ASM creation, 

conversion of ASMs to RPMs, carbon dioxide emissions abatement, and revenue 

generation.  As the data used in this study is obtained from the public domain, individual 

airlines could utilize this analytical model construct to assess the efficiencies of their 
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current operations, as well as prioritize strategies for future investments.  As efforts are 

made to address specific components of operating efficiency (e.g. improving ASM 

creation from inputs or improving conversion of ASMs into RPMs), this model could be 

used by an airline to evaluate how those investments are changing the airline’s total 

efficiency relative to its peers. 

The results and related opportunities identified in this study could be used by an 

airline to recognize that improvements specific to their airline may be of greatest benefit 

if focused toward international or domestic operations.  Similarly, an airline operating the 

FSC, LCC, or point-to-point business models could use the model to assess their own 

efficiency, and then determine a business improvement strategy based on the relative 

efficiencies of their competitors in the same marketplace – leveraging knowledge of the 

business model-specific operational requirements as part of their competitive strategy. 

From a regulatory perspective, this model, or similar models derived from the 

same construct, could be leveraged by public or government entities to review the 

evolution of environmental abatement performance in airlines.  Based upon current and 

expected capabilities in carbon dioxide abatement technology and processes, policy 

makers can use the results of these models to substantiate a strategy outlining future 

emissions abatement objectives and drive specific industry goals.   

Methodology & data.  The DEA methodology in this study provides a linear 

programming approach to compare different airlines among a number of different 

variables without requiring transformation of the variables to common units.  Like most 

research studies, this analysis identifies several opportunities exist to further refine and 

evolve the model.   
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The two-stage DEA model requires a defined weighting between the stages; these 

weighting values are parameters utilized by the linear programming to define the 

optimization goals.  In this study, a one-to-one ratio is used for all stages; however, this 

may not be true from an airline perspective – specific business strategies could drive a 

specific facet of the operating efficiency model, and therefore the corresponding DEA 

stage, to be weighted more.  Additionally, different airlines may have different 

considerations of the importance of carbon dioxide abatement beyond industry 

requirements. 

The model may be augmented by separating the emissions abatement component 

of the model construct from a ‘RPM creation’ or ‘revenue generation’ phase of the 

model.  Separating this component will add additional complexity to the model, either by 

requiring three stages, or parallel stages in the same phase of the model. 

Validity.  The validity of the analysis was verified through review of the sample 

demographics.  Descriptive statistics were calculated for the total sample, as well as 

subsets aligned with business operating model (e.g. only FSC carriers) and the network 

headquarters/location.  The review of the sample participants within the framework of 

their operating models demonstrated high similarities with the airlines.  This review 

validated the sample and the data collected from each airline. 

The results from the models used were found to be consistent with expectations 

set from review of other airline models as well as airline published operating data during 

the period of study.  Cui & Li (2016) utilized a two-stage DEA analysis to compare 

several different airlines while including emissions abatement in their operating 

efficiency model.  Though the analytical models, period of study, and sample airlines 
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were different, the analysis results for some airlines are quite similar.  Specifically, in 

their study, Delta Air Lines and Air Canada performed efficiently when compared to 

other FSCs. 

The generally consistent alignment of this study’s results to results from other 

studies suggests that the model is valid.  The analytical model leverages linear 

programming, so therefore does not require reliability testing.  To protect the reliability 

of the model data, the study utilized data collected and managed by the BTS. 

Limitations.  The analysis model developed in this study utilized multiple 

two-stage DEA constructs.  Two-stage DEA requires a weighting of the two stages for 

the programming to use for defining boundaries of the optimization calculations.  The 

two-stage VRS models leveraged formulas established by Zhu (2011).  In this study, the 

weighting between the two stages of each of the phases was one-to-one.  This weighting 

strategy was to signify that efficiency in: (1) ASM creation from input resources, (2) 

carbon dioxide emissions abatement, (3) ASM conversion to RPMs, and (4) effective 

sales of RPMs for revenue, are all of equal importance to an airline. 

This study only included Scope 1 and Scope 2 carbon dioxide emissions, as 

defined by the Global Reporting Initiative (GRI).  Scope 1 emissions are created from 

direct operating activities: aircraft fuel consumption, ground support equipment fuel, 

HVAC refrigerants, etc.  Scope 2 emissions are associated with purchased goods or 

utilities that the airline pays for.  The Scope 2 category includes emissions from electrical 

power facilities supporting the airline or those associated with a leased space (e.g. airport 

facilities).  Focusing the model to analyze the aforementioned aspects of carbon dioxide 

emissions ensures that the emissions identified in each year are pertinent to the business 
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activities for that specific year (i.e. active operations) and do not reflect long-term 

investment projects (e.g. facilities improvements or overhaul).  

A general limitation to highlight is that corporate and social responsibility, 

specifically the environmental focus, is still an evolving facet of airline business 

operations.  The reporting standards for greenhouse gases changed during the period of 

focus in this study.  While reporting per the GRI was at first voluntary, the requirements 

now have become more robust with ISO and GRI G4 reporting standards.  As an 

example, American Airlines’ 2013 Corporate Responsibility Report was not GRI G4 

compliant, but the 2014 report was.  It should be understood that the airlines in this study 

are in varying stages of maturity with formally reporting greenhouse gas emissions. 

Recommendations 

The results of this study demonstrate that the two-phase two-stage model is 

capable of comparing airlines with respect to operational efficiency, including the 

efficiency of its emissions abatement strategies.  This model construct can be deployed 

by airlines or regulators to compare multiple airlines for ASM generation, ASM 

conversion to RPMs, carbon dioxide emissions abatement, or revenue generation.  When 

required, this model should be deployed with a number of DMUs that exceeds the 

number of variables being assessed for efficiency.   

Additionaly, the results of this study have shown that the results provide greater 

value when the sample DMUs are similar with respect to business model and operating 

environment.  While FSCs should be directly comparable, the U.S.-based FSCs 

(American Airlines, Delta Air Lines, and United Airlines) are best compared due to the 

similarity in the design and deployment of both their domestic and international 
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operations.  All Nippon Airways and Japan Airlines presented a similar scenario; while 

being comparable to non-U.S. FSCs, these two airlines have constraints to the size of 

their domestic and regional markets.  Therefore, they are best compared to major Gulf 

carriers or another non-U.S. FSC with limited domestic operations (e.g. Air Canada, 

Emirates), as opposed to large European FSCs such as Air France-KLM or Lufthansa 

Airlines. 

Lynes and Andrachuk (2008) highlight the importance of environmental 

emissions abatement within the framework of corporate and social repsonsibility.  Their 

research yielded perspectives from the airline industry that improving the environmental 

footprint of an airline would provide fiduciary benefit to airlines.  This benefit could be 

manifested in improved brand image and sales from customers who appreciate social 

investment.  Alternatively, the benefits could be directly extracted from improved 

business operating principles with environmental benefits – e.g. recycling or digitization 

of assets for weight optimization.  This research study did not discern a relationship 

where the airlines with the least environmental abatement generated the most profit.  

Rather, the results suggest that airlines investing more in emissions abatement are 

demonstrating improvements in efficiencies in other aspects of their business operations. 

Recommendations to airlines.  The review of the results (also captured in 

Appendix A) describes the specific performance of the different airlines through the 

different stages.  The following sub-sections present specific recommendations for each 

airline, based on the results of the study. 

Air Canada.  Air Canada consistently demonstrated efficient performance in 

Phase 2 in all models, signifying efficient revenue generation from RPMs and effective 
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RPM generation and emissions abatement.  However, in all models (including the 

non-U.S. carrier model and the FSC-focused models) Air Canada demonstrates 

inefficient performance relative to its sample, and the inefficiencies are always in the 

second stage of Phase 1.  Detailed review of Air Canada’s benchmarks in each model 

shows that in every case, the benchmark for that stage is a large airline with superior 

RPM generation.  For example, Air Canada’s ratio of RPMs to ASMs in 2013 was 0.75, 

while the American Airlines performance benchmark would yield the same ratio of 0.83. 

Air Canada consistently demonstrates strong revenue generation from the RPMs it 

creates, as well as high emissions abatement.  Based on the results of this study, the 

recommendation to improve Air Canada’s total operational efficiency would be to 

address the comparatively lower RPM generation from ASMs.  This may be difficult due 

to Air Canada’s responsibility as the national flag carrier to serve a number of small, low 

volume locations. 

Air France-KLM.  Air France-KLM typically demonstrated strong Phase 1 

performance, always demonstrating efficient performance in one of the two Phase 1 

stages.  In the non-U.S. carrier model, Air France-KLM was one of two carriers to 

demonstrate efficient performance in Phase 1.  However, in every model, Air 

France-KLM did not demonstrate efficient performance in Phase 2.  As the merger 

between two large national flag carriers, the literature review establishes that this airline 

is working to retire aging and less-efficient aircraft, while optimizing the company 

structure between the two companies. 

The results of this study and corroborating literature highlight opportunities for 

improving emissions abatement and revenue generation.  Air France-KLM should 
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execute its fleet modernization strategy that will retire Boeing 747 and 777 aircraft that 

may be overcapacity for certain long-haul routes, as well as continue to invest in its 

emissions and weight reduction initiatives.  The replacement aircraft coupled with the 

operational savings initiatives will manifest in increased efficiency. 

Alaska Airlines.  The results of this study produce rationale to label Alaska 

Airlines as the most efficient airline in this study.  In the single-year and aggregate 

models including all airlines, Alaska Airlines always performed efficiently through Phase 

1 and efficiently in the first stage of Phase 2.  In the U.S. carriers model, Alaska Airlines 

was efficient in all stages except the last.  Finally, in the LCC/Point-to-Point dataset, 

Alaska Airlines set the benchmark for the entire model. 

The results of this study cannot add further recommendation over Alaska 

Airlines’ current deployment.  The lower revenue generation efficiency scores are 

directly related to Alaska Airlines’ focused market, which is largely regional (there are 

some limited transcontinental products).  Even though the product compares with the 

domestic products offered by the large American FSCs, there is limited supplemental 

revenue in the premium cabin space which international products of the larger FSCs can 

obtain (e.g., lay-flat seats, individual living pods, or suites).  On the domestic front, 

Alaska Airlines operates solely single-aisle aircraft (e.g. Boeing 737 and Airbus A320 

models), supplemented by smaller, regional aircraft for small and remote airports.  This 

means the airline will also struggle to match revenue generation that U.S FSCs may enjoy 

with Boeing 757 or similar aircraft that have additional seat density for transcontinental 

routes. 
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Based on the results of this study, Alaska Airlines is executing within the market 

space it has defined its business strategy around, and is effectively deploying that 

strategy. 

All Nippon Airways.  Review of the results from the DEA model and literature 

review of this study show that All Nippon Airways produces at the performance 

benchmark for ASM generation and total revenue generation.  However, in both phases 

the airline struggles with execution of ASM conversion into RPMs and environmental 

abatement.  This production performance was duplicated in all models in which All 

Nippon Airways was evaluated (single year, three-year aggregate, non-U.S. carriers, and 

FSCs).  Examination of the aircraft company reports highlights that during the period of 

this study, both Japanese carriers recognized challenges in optimizing their operations 

due to aging aircraft as well as the limitations of their network routes into the U.S. 

(Pacific intercontinental flights).  As such, they began investing in more efficient aircraft 

(All Nippon Airways was the launch customer for the Boeing 787-8).  Opportunities still 

exist to deploy a network of routes and schedules that will maximize the utilization of 

their inputs. 

Based on the results of this study, the recommendations for All Nippon Airways 

to improve its operational efficiency would be to continue to review its network and route 

deployment of its fleet.  The airline is already investing in more efficient aircraft, but the 

fleet composition should also be reviewed against the offered routes to ensure 

maximization utilization of these aircraft for revenue generation. 

American Airlines.  Review of the results from the DEA model and literature 

review of this study show that American Airlines would consistently produce in the 
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second stage of Phase 1 but in no other part of the model.  As highlighted in the results 

discussion, performance in ASM generation from inputs and revenue generation from 

RPMs were lagging behind the performance of peer airlines.  American Airlines is 

recognized as the largest airline in the world by a variety of statistics – including revenue 

generation.  However, it has substantially more employees compared to its competitors, 

and a larger fleet. 

Based on the results of this study, a recommendation to American Airlines for 

improving operational efficiency would be to focus on examining the key components of 

the airline’s operating costs.  Generation of more ASMs from the production inputs 

should also influence the last stage efficiency (total revenue generation as a function of 

RPMs). 

British Airways.  Due to the unavailability of emissions or abatement data for the 

year 2015, British Airways could not be included in the single-year 2015, three-year 

aggregate, or focused models.  As the conclusions of this study have relied upon 

interpretation of performance in multiple models – leveraging the focused models to 

corroborate production performance in the single-year or three-year aggregate models 

with all airlines – no conclusions are presented for British Airways. 

Delta Air Lines.  Review of the results from the DEA model and literature review 

of this study suggest that Delta Air Lines is the most efficient FSC.  In the 2015 

single-year analysis model with all airlines, Delta Air Lines was the only airline to 

demonstrate efficient performance in all stages.  In both the three-year aggregate analysis 

model and U.S. carriers model, Delta Air Lines scored the highest total efficiency rating, 

was efficient in the 2nd phase of the model, and one of the few airlines that was efficient 
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in three of the four stages.  In the FSC analysis model, Delta Air Lines effectively 

demonstrated the same performance as in the three-year aggregate model: highest overall 

efficiency rating with efficient performance in the 2nd phase. 

In the U.S.-carriers analysis model, Delta Air Lines presents the highest efficiency 

score.  Further review of the results highlights the complexities of utilizing this 

multi-stage DEA model to compare airline DMUs with different business models.  The 

six airlines included three FSCs, one true LCC (Southwest) and two point-to-point 

carriers.  The results show that the FSCs struggled in efficiently creating ASMs from 

inputs and in producing RPMs from ASMs.  FSCs would inherently have less efficient 

ASM production from input costs by operating long-haul international routes (whose 

airplanes may generate more revenue, but also have fewer seats for the input costs).  

Additionally, the hub-and-spoke network theory (utilized by all FSCs) typically incurs 

lower load-factor flights as part of the business strategy.  The airline allows flight 

scheduling with partially-filled flights from smaller airports into the hub, in the interest of 

high margins and economies of scale in the hub-to-hub leg of the route.  

Based on the results of this study, a recommendation to Delta Air Lines for 

improving operational efficiency would be to review its aircraft fleet and look for 

opportunities to maximize ASM generation.  Delta has demonstrated that it is already 

successfully executing carbon dioxide abatement strategies.  The only area where the 

airline is not fully efficient is with ASM creation from inputs.  Review of company 

publications highlights that Delta Air Lines is pursuing fleet restructuring with respect to 

the smaller aircraft it utilizes to bring passengers into its hub airports – i.e. Delta is 

investing in newer regional aircraft to improve their efficiencies and load factor in this 
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aspect of their operations.  In 2017, the airline announced the purchase of more than 100 

Bombardier “C Series” regional aircraft to replace its aging McDonnel-Douglas 80/88/90 

fleet.  The Boeing 717s acquired through the Northwest merger earlier this decade have 

already been retired.  Pursuing new aircraft in the regional segment shows that Delta is 

not just using fleet renewals to obtain larger aircraft but is targeting specific aircraft to 

optimize the short routes between outside airports and the hub.  These aircraft will help 

improve ASM generation while improving the environmental footprint of the airline’s 

fleet. 

Emirates.  Review of the results from the DEA model and literature review of this 

study show that Emirates struggled to consistently produce efficiently in both phases.  In 

the single-year and three-year aggregate models, efficient production would only occur in 

a single stage of Phase 1.  In the non-U.S carrier analysis model, Emirates achieved 

efficient production through Phase 1 but again demonstrated inefficient production in 

Phase 2. 

Reflection of the model results allows a conclusion that Emirates generally is less 

competitive at emissions abatement, ASM conversion to RPMs, and revenue generation.  

The conclusions regarding inefficient emissions abatement and ASM conversion to 

RPMs are derived from the consistent inefficient production in the first stage of the 

second phase.  Emirates typically operates very large aircraft on long-haul routes, a 

strategy which helps profitability with economies of scale; their ASM creation from 

inputs is strong, as presented by the analysis model results.  However, unfilled seats 

(lower load factor) for these large aircraft will result in lower conversion of ASMs to 

RPMs.  Additionally, Emirates prides itself on a high service quality standard.  While this 
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may allow a company to demand higher prices, Emirates must ensure that the costs 

associated with their service offering do not jeopardize their revenue generation. 

Based on the results of this study, it is recommended that Emirates evaluate their 

emissions abatement programs, cost structure, and fleet / route scheduling strategy.  

Emirates leverages an operational strategy focusing on economies of scale on long-haul 

international routes, as well as providing a high-level of service.  The results of this study 

suggest that their execution of this business strategy is resulting is less profitable (and 

less environmentally friendly) operations compared to the other airlines in the study. 

Japan Airlines.  Review of the results from the DEA model and literature review 

of this study present performance that is very similar to that of All Nippon Airways.  

Japan Airlines produces at the performance benchmark for ASM generation and total 

revenue generation.  Similar to All Nippon Airways, it struggles in both phases with 

execution of ASM conversion into RPMs and environmental abatement.  This production 

performance was witnessed in all models in which Japan Airlines was evaluated (single 

year, three-year aggregate, non-U.S. carriers, and FSCs) with the exception of the 2014 

single-year analysis model where Japan Airlines did not demonstrate efficient production 

in the second stage of Phase 2 (revenue generation).  Examination of the airline’s 

company reports highlights that during the period of this study, both Japanese carriers 

recognized challenges in optimizing their operations due to aging aircraft as well as the 

limitations of their network routes into the U.S. (Pacific intercontinental flights).  

Although not the launch customer of a Boeing 787 model, Japan Airlines still 

demonstrates its appetite for fielding an efficient fleet by being the second largest Boeing 

787 operator in the world.  The investment in more efficient aircraft will help improve 
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emissions abatement.  Opportunities still exist to deploy a network of routes and 

schedules that will maximize the utilization of their inputs.   

Based on the results of this study, the recommendations for Japan Airlines to 

improve its operational efficiency would be to continue to review its network and route 

deployment of its fleet.  The airline is already investing in more efficient aircraft, but the 

fleet composition should also be reviewed against the offered routes to ensure 

maximization utilization of these aircraft for revenue generation. 

JetBlue Airways.  Review of the results from the DEA model and literature 

review of this study establish that JetBlue is consistently strong in ASM generation from 

input resources, emissions abatement, and conversion of ASMs into RPMs.  In the 

analysis models containing all airlines from the study (single-year and the three-year 

aggregate model), JetBlue consistently produces at benchmark levels in the first stage of 

both the first and second phases.  In the 2015 single-year model, JetBlue demonstrates 

efficient production through Phase 1. 

The results of the U.S.-carriers model and LCC/P2P model highlight the key 

differences between JetBlue and Alaska Airlines’ operations.  JetBlue started its 

existence as a true LCC.  Over time, the airline has evolved its business model to provide 

a number of amenities, while trying to maintain its low prices.  Review of company 

reports shows that the airline is trying to achieve this balance by leveraging commonality 

in its aircraft fleet (i.e. operating very similar derivatives of the Airbus A320 family).  In 

the U.S.-carriers model, JetBlue establishes the benchmark for the first stage of Phase 1, 

the only stage in which Alaska Airlines does not set one of the benchmark frontier 

boundaries for other airlines.  As JetBlue is more of an LCC executing on point-to-point 
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routes than a regional / fixed market business model (such as Alaska Airlines), it makes 

sense that it is succeeding at maximizing ASMs produced.  The results from the other 

three stages present that JetBlue is not as efficient as Alaska Airlines at emissions 

abatement, ASM conversion to RPMs, or revenue generation.   

In the LCC/P2P model, the results partially contradict those established by the 

other models.  In this model, Jet Blue performs at benchmark for the second stage of each 

phase (along with Alaska Airlines).  As there are only three DMUs in this model, these 

results are considered at risk due to too few DMUs existing in the multi-stage DEA 

model. 

Analysis of the study results supports a conclusion that JetBlue’s deployment of 

the LCC business model – and the limited number of LCC carriers in this study – is 

confounding the results for JetBlue in some of the models.  JetBlue’s performance in the 

all-carriers and U.S.-carriers analysis models is corroborated by the literature review.  

However, the LCC/point-to-point carrier analysis presents results that contradict the 

previous models.  Based upon the usable results, the recommendation to JetBlue is to 

maintain their current business strategy with additional focus given to the operational 

steps required to improve ASM conversion to RPMs and emissions abatement.  The 

strategy which best improves both fronts will look at network route/scheduling to 

optimize the aircraft deployed (and deploy newer aircraft where possible).  Opportunities 

for deployment of additional emissions abatement programs will also improve relative 

efficiency. 

Lufthansa Airlines.  Review of the results from the DEA model and literature 

review of this study show Lufthansa Airlines produces consistently at benchmark levels 
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of performance in the second stage of Phase 2 (revenue generation) but does not ever 

demonstrate efficient performance utilizing the construct of this analysis model.  This 

production performance was witnessed in all models in which Lufthansa Airlines was 

evaluated (single year, three-year aggregate, non-U.S. carriers, and FSCs).  The 

consistent model results drive the conclusion that Lufthansa is able to show efficient 

revenue generation from its RPMs when compared to its peers.  However, it lags its peers 

in ASM creation from input resources, emissions abatement, and ASM conversion to 

RPMs. 

Reviewing airline company reports shows that Lufthansa is extensively investing 

in emissions reduction and means of reducing its cost structure.  As an FSC, Lufthansa 

does not want to reduce its service levels.  However, some facets of its fleet strategy are 

driving costs that require evaluation and adjustment.  Lufthansa deployed Boeing 747 

aircraft for decades and supported the development of the updated 747-8.  Demand for 

the 747-8 has waned, as airlines want more flexibility with scheduling (driving demand 

for long-range aircraft that correspond to the size of the Boeing 787, Boeing 777, Airbus 

A330, and Airbus A350 models).  The timing of Lufthansa’s fleet replacement activities 

suggests that there are a number of aging aircraft requiring replacement.  While the 

literature review captured that Lufthansa had some of the most extensive emissions 

reduction initiatives in the sample group of airlines, aging aircraft and operational 

inefficiencies that decrease the efficiency scoring establish that Lufthansa is producing 

inefficiently relative to its peer group. 

Based on the results of this study, the recommendation for Lufthansa Airlines to 

improve its operational efficiency is to continue to review and deploy its fleet renewal 
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strategy to better align efficient and optimally loaded aircraft with the route network.  Per 

the aforementioned results analysis, Lufthansa has been investing heavily in programs 

that reduce waste and help reduce carbon dioxide emissions; those programs should 

continue to be pursued in earnest. 

Southwest Airlines.  Review of the results from the DEA models in this study 

present inconclusive data regarding Southwest Airlines’ operational efficiency.  In the 

analysis models containing all airlines from the study (single-year and the three-year 

aggregate model), Southwest Airlines consistently produces at benchmark levels in the 

first stage of Phase 1.  However, the benchmark performance in Phase 2 switches 

between stages depending on the year of study.  Similar to JetBlue, the U.S.-carrier and 

LCC/P2P models have too few DMUs operating with the LCC business model.  As such, 

the DEA analysis models are not able to appropriately compare efficiency between the 

few similar airlines. 

Analysis of the study results supports a conclusion that Southwest Airline’s 

deployment of the LCC business model – and the limited number of LCC carriers in this 

study – is confounding the results in some of the models.  The study results support 

Southwest Airlines’ deployment of the LCC model through its fleet strategy and 

route/scheduling network, illustrated by the benchmark execution of ASM creation from 

input resources.  Further conclusions or recommendations related to total operating 

efficiency or emissions abatement are not possible based on the results of this study. 

United Airlines.  Review of the results from the DEA model and literature review 

of this study present consistently inefficient performance.  United Airlines demonstrated 

efficient performance in Phase 1 of the 2013 single-year all-carrier model.  In the 
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subsequent years – and in the three-year aggregate model – United Airlines consistently 

underperformed benchmarks set by Emirates and Delta Air Lines.  In the 2014 and 2015 

single-year analysis models, United Airlines presents benchmark performance in the 

second stage of Phase 2; suggesting effective revenue generation. 

In the U.S.-carriers analysis model, United Airlines presents the second highest 

total efficiency score.  However, these results cannot be interpreted to present effective 

performance, as the airline does not execute efficient performance in either phase and is 

one of only two airlines to not deliver benchmark performance in any stage. 

Analysis of the study results suggests that United Airlines’ execution of its FSC 

business model and environmental abatement strategies are lagging in performance 

compared to the other airlines in this study, particularly those also executing as FSCs.  

The results show that in varying stages, Air Canada, Delta Air Lines, and Emirates all 

serve as defining benchmarks for United Airlines. 

Based on the results of this study, the recommendation to United Airlines is to 

review all aspects of its operations for opportunities in greater ASM creation from input 

resources, more effective conversion of ASMs to RPMs, and increased emissions 

abatement activities.  The literature review of airline reports highlights that United 

Airlines has been investing in a fleet renewal strategy.  The efforts to deploy more 

efficient aircraft effectively into the route network will help realize the aforementioned 

opportunities in United Airlines’ operational efficiency. 

Recommendations to regulatory bodies.  The model developed in this study 

provides the ability to compare the relative operational efficiency of multiple airlines for 

a predefined period, inclusive of environmental efficiency.  Governing and law-making 
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entities could use this model to analyze and trend airline efficiencies in the interest of 

defining future emissions goals or requirements.  As the DEA method determines a 

relative efficiency, the specific efficiency results cannot be used to assess airline 

performance against an absolute numerical goal over time.  However, deployment of the 

DEA model can generate relative efficiency results to establish an efficient production 

frontier.  As the analysis results will identify the top performing airlines relative to the 

benchmark frontier, a regulatory agency could review the operational efficiency and 

environmental abatement performance of these efficient airlines to determine the 

operational parameters which define efficient performance (e.g. operating revenues, 

passenger miles flown, tons of carbon dioxide emissions expelled, etc.).  By trending 

efficient operational parameters over consecutive years, a researcher may be able to 

establish trends in environmental abatement performance by the industry or target sector.  

This information could be used by regulatory bodies to enact requirements or incentives 

which foster future improvements in the industry’s efficiency evolution.  

The regulatory application of this model would supplement and evolve current 

industry measures to enhance the transparency of emissions generation, and require 

recognition of emissions through mandatory offsetting programs.  Since the inception of 

this study, the ICAO approved the deployment of the Carbon Offsetting and Reduction 

Scheme for International Aviation (CORSIA) in a 2016 annex release (Sheelhaase et al, 

2018).  The approval of a deployment strategy by ICAO represents action toward the first 

global emissions offsetting requirements (unlike the EU Emissions Trading System 

which is specifically targeted within the EU).  In order to define requirements within a 

trading system, internationally accepted standards for emissions reporting have been 
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established by the Global Reporting Index leveraging – e.g. ISO 14064 and ISO 14069.  

The opportunity exists for the programs that are launched to effect CORSIA to leverage 

operational data gathered within the program to deploy the DEA model from this study 

and define future program goals. 

Future research opportunities.  Chapter I of this dissertation identifies a number 

of limitations and delimitations for this study.  This section of Chapter V describes future 

research opportunities to explore and evolve the capabilities of the analytical model 

construct developed in this research study. 

First, the VRS two-stage DEA components of the analytical model can implement 

a disproportionate weighting between the two stages as part of the optimization routine.  

In this study, an equivalency was established for all weighting requirements.  This 

strategy directed the optimization routine to consider the following aspects of business 

operations equally: (1) the creation of ASMs from labor and material resources, (2) the 

conversion of ASMs into RPMs through network routes and scheduling, (3) the 

abatement of carbon dioxide emissions, and (4) the sales of RPMs to realize true revenue.  

From a holistic perspective, the strategy employed is appropriate for a large sample 

composed of many different airlines executing different models.  However, a more 

focused research study could be conducted with airlines all operating the same business 

philosophy (e.g. FSC, LCC, or point-to-point).  By narrowing the study to similar 

business philosophies, the research study could explore whether tailoring the stage 

weighting to reflect the business priorities of that specific operating model is an 

appropriate extension of the analysis model. 
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Irrespective of weighting, the results of this study highlighted the importance of 

comparing similar DMUs to maximize the efficacy of the comparison analysis.  Different 

operational philosophies prioritize different efficiencies for business requirements: LCCs 

and point-to-point operators want to maximize ASM conversion to RPMs.  Conversely, 

while FSCs still consider ASM conversion to RPMs an important measure of business 

efficiency, their operational philosophy inherently creates lower ASM conversion to 

RPMs from lower load factor flights carrying passengers from smaller spoke airports to 

the hubs (and vice versa).  The FSCs are prioritizing the efficiency of their hub-to-hub 

operations, as that is where their ASM conversion and profit generation should be 

greatest.  A similar dichotomy occurs with airlines operating the same business 

philosophy but on networks operating in different parts of the world (as discussed 

previously in this chapter).  In order to best utilize this tool to assess and compare 

operating efficiencies between airlines, the selection of carriers to be included in the 

model sample should identify carriers with comparable operating models and networks. 

A second opportunity for future research explores the variable selection used to 

reflect operational success.  This study specifically utilized an operating revenue variable 

in the final stage of the multi-stage model.  Following the Mallikarjun (2015) three-stage 

airline operating model construct, operating revenue was deemed an appropriate method 

of measuring revenue generation from RPM consumption through successful sales 

activity.  Additionally, the profit realization of the airline was accounted for in the model 

as operating costs were an input variable for the overall model.  Future research and 

variations of this model could leverage a net profit variable as the output of the final 

stage, as opposed to total revenue.  This variation of the model may be challenging, as net 
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profits are not publicly disclosed by all airlines; however, if a focused study is able to 

obtain this information, a final output goal of profitability as opposed to revenue 

generation may further contribute to the body of knowledge with regards to the impacts 

of emissions abatement activities on overall airline operating efficiency. 

An extension of the aforementioned research opportunity could focus on the 

desired business output of non-traditional business models.  Low-cost carriers and other 

niche operating models do not necessarily focus on maximizing revenue generation.  

Therefore, the output of the final stage (and overall model) could utilize a success factor 

that better aligns with the operating – e.g. revenue generating load factor. 

A third opportunity for future research exists regarding the selection of carbon 

dioxide as the environmental impact included in this study.  The literature review 

presented several different environmental impacts – and different foci of abatement 

initiatives – which the airline industry currently recognizes.  Aircraft operations generate 

many sources of particulate emissions, including carbon oxides and nitrous oxides.  As 

presented in the literature review, exigent research has also discovered that the acoustic 

emissions of aircraft operations have an impact on people living near areas with airline 

activity (airport).  It is recommended that future research extend this model to other 

forms of emissions as well.   

Data regarding other particulate emissions may be easier to collect as ICAO and 

GRI mandate reporting requirements for these other emissions in the future.  As 

presented in the literature review, the International Organization for Standardization 

(ISO) has now created industry specifications for the quantification and reporting of 

greenhouse gas emissions.  As regulatory bodies implement formal requirements for 
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airlines to report emissions of carbon dioxide and other greenhouse gases according to an 

industry standard, these other emissions will become easier to study.  Additionally, this 

current study could be repeated (for future years when the reporting standard is deployed) 

to evaluate if there is improved data quality due to standard global reporting 

requirements. 

The final recommendation of this study is to explore variations of the model 

construct to better isolate the emissions abatement aspects of airline operating efficiency, 

while retaining the high fidelity of the Mallikarjun (2015) proposed three-stage airline 

operating model.  Ebrahimnejad (2014) proposed a multi-stage DEA construct with 

parallel stages in a single phase.  These stages possessed intermediate outputs which fed a 

final stage.  A variation of the model developed in this study could invoke a three-stage 

DEA architecture while inserting two parallel stages in the second (of three) phase; one 

stage would be specific to ASM conversion to RPMs, the other stage would be specific to 

emissions abatement activity.  Development of such a model would require significant 

scope in formula development and programming.  Similar to the Mallikarjun (2015) 

model, this model would require a forward-backward recursion algorithm between the 

first-to-second and second-to-third phases.  In addition, it would require the recursive 

programming to separately interact with each of the two parallel stages in the second 

phase. 
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APPENDIX A 

Tables 

A1 2013 Single Year VRS Model – Phase 1, Stage 1 Results 

A2 2013 Single Year VRS Model – Phase 1, Stage 2 Results 

A3 2013 Single Year VRS Model – Phase 2, Stage 1 Results 

A4 2013 Single Year VRS Model – Phase 2, Stage 2 Results 

A5 2014 Single Year VRS Model – Phase 1, Stage 1 Results 

A6 2014 Single Year VRS Model – Phase 1, Stage 2 Results 

A7 2014 Single Year VRS Model – Phase 2, Stage 1 Results 

A8 2014 Single Year VRS Model – Phase 2, Stage 2 Results 

A9 2015 Single Year VRS Model – Phase 1, Stage 1 Results 

A10 2015 Single Year VRS Model – Phase 1, Stage 2 Results 

A11 2015 Single Year VRS Model – Phase 2, Stage 1 Results 

A12 2015 Single Year VRS Model – Phase 2, Stage 2 Results 

A13 3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A14 3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A15 3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A16 3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A17 U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A18 U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 2 Results 

A19 U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 1 Results 

A20 U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 2 Results 

A21 Non-U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 1 Results 
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A22 Non-U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 2 Results 

A23 Non-U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 1 Results 

A24 Non-U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 2 Results 

A25 Full-Service Carriers (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A26 Full-Service Carriers (2013-2015) VRS Model – Phase 1, Stage 2 Results 

A27 Full-Service Carriers (2013-2015) VRS Model – Phase 2, Stage 1 Results 

A28 Full-Service Carriers (2013-2015) VRS Model – Phase 2, Stage 2 Results 

A29 P2P / LCC Carriers (2013-2015) VRS Model – Phase 1, Stage 1 Results 

A30 P2P / LCC Carriers (2013-2015) VRS Model – Phase 1, Stage 2 Results 

A31 P2P / LCC Carriers (2013-2015) VRS Model – Phase 2, Stage 1 Results 

A32 P2P / LCC Carriers (2013-2015) VRS Model – Phase 2, Stage 2 Results 
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Table A1 

2013 Single Year VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.379 Emirates 0.621 JetBlue 
Air France – KLM 0.96758 0.992 Emirates 0.008 JetBlue 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

All Nippon Airways 1.00000 0.607 Emirates 0.393 JetBlue 
American Airlines 0.84710 0.889 Emirates 0.111 JetBlue 
British Airways 1.00000 0.776 Emirates 0.224 JetBlue 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 1.00000 1.000 Emirates   
Japan Airlines 1.00000 0.378 Emirates 0.622 JetBlue 
JetBlue Airways 1.00000 1.000 JetBlue   
Lufthansa Airlines 0.52609 1.000 Emirates   
Southwest Airlines 1.00000 0.652 Emirates 0.348 JetBlue 

United Airlines 1.00000 1.000 United Air 
Lines   
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Table A2 

2013 Single Year VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 0.37664 0.462 Air Canada 0.538 American 
Airlines   

Air France – KLM 1.00000 0.212 Alaska 
Airlines 0.788 Delta Air 

Lines   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines     

All Nippon Airways 0.42117 0.024 Air Canada 0.464 Alaska 
Airlines 0.512 Delta Air 

Lines 

American Airlines 1.00000 1.000 American 
Airlines     

British Airways 0.68627 0.080 Air Canada 0.281 Alaska 
Airlines 0.639 Delta Air 

Lines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 0.93740 0.206 Alaska 
Airlines 0.794 Delta Air 

Lines   

Japan Airlines 0.47938 0.122 Air Canada 0.523 Alaska 
Airlines 0.355 Delta Air 

Lines 

JetBlue Airways 0.97762 0.928 Alaska 
Airlines 0.072 Delta Air 

Lines   

Lufthansa Airlines 0.91257 0.206 Alaska 
Airlines 0.794 Delta Air 

Lines   

Southwest Airlines 0.85297 0.457 Alaska 
Airlines 0.543 Delta Air 

Lines   

United Airlines 1.00000 1.000 United Air 
Lines     

 



 

 

198	
Table A3 

2013 Single Year VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada     

Air France – KLM 0.90797 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   

Alaska Airlines 1.00000 0.809 Air Canada 0.124 Alaska 
Airlines 0.067 Delta Air 

Lines 

All Nippon Airways 0.52991 0.765 Air Canada 0.152 Alaska 
Airlines 0.082 Delta Air 

Lines 

American Airlines 0.99421 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   

British Airways 1.00000 0.598 Alaska 
Airlines 0.402 Delta Air 

Lines   

Delta Air Lines 0.75218 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   

Emirates 0.91227 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   

Japan Airlines 0.39998 0.938 Air Canada 0.040 Alaska 
Airlines 0.022 Delta Air 

Lines 

JetBlue Airways 1.00000 0.645 Air Canada 0.231 Alaska 
Airlines 0.125 Delta Air 

Lines 

Lufthansa Airlines 0.94162 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   

Southwest Airlines 1.00000 0.527 Alaska 
Airlines 0.473 Delta Air 

Lines   

United Airlines 0.72121 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines   
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Table A4 

2013 Single Year VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.84990 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 

Alaska Airlines 0.33143 0.809 Air Canada 0.124 Alaska 
Airlines 

All Nippon Airways 1.00000 0.765 Air Canada 0.152 Alaska 
Airlines 

American Airlines 0.59424 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 

British Airways 0.62725 0.598 Alaska 
Airlines 0.402 Delta Air 

Lines 

Delta Air Lines 0.87240 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 

Emirates 0.53433 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 

Japan Airlines 1.00000 0.938 Air Canada 0.040 Alaska 
Airlines 

JetBlue Airways 0.29617 0.645 Air Canada 0.231 Alaska 
Airlines 

Lufthansa Airlines 1.00000 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 

Southwest Airlines 0.51761 0.527 Alaska 
Airlines 0.473 Delta Air 

Lines 

United Airlines 0.88322 0.291 Alaska 
Airlines 0.709 Delta Air 

Lines 
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Table A5 

2014 Single Year VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.396 Air France 
- KLM 0.604 JetBlue 

Air France – KLM 1.00000 1.000 Air France 
- KLM   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

All Nippon Airways 1.00000 0.590 Air France 
- KLM 0.410 JetBlue 

American Airlines 0.76157 0.914 Air France 
- KLM 0.086 JetBlue 

British Airways 1.00000 0.815 Air France 
- KLM 0.185 JetBlue 

Delta Air Lines 0.95294 0.060 Emirates 0.940 United Air 
Lines 

Emirates 0.88910 0.799 Air France 
- KLM 0.201 Emirates 

Japan Airlines 1.00000 0.323 Air France 
- KLM 0.677 JetBlue 

JetBlue Airways 1.00000 1.000 JetBlue   
Lufthansa Airlines 0.61330 1.000 Emirates   

Southwest Airlines 1.00000 0.745 Air France 
- KLM 0.255 JetBlue 

United Airlines 0.94792 0.145 Emirates 0.855 United Air 
Lines 
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Table A6 

2014 Single Year VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 0.38800 0.455 Air Canada 0.545 American 
Airlines   

Air France – KLM 0.99190 0.245 Alaska 
Airlines 0.755 Delta Air 

Lines   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines     

All Nippon Airways 0.45880 0.003 Air Canada 0.523 Alaska 
Airlines 0.474 Delta Air 

Lines 

American Airlines 1.00000 1.000 American 
Airlines     

British Airways 0.69286 0.078 Air Canada 0.287 Alaska 
Airlines 0.635 Delta Air 

Lines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 1.00000 0.228 Alaska 
Airlines 0.772 Delta Air 

Lines   

Japan Airlines 0.51641 0.190 Air Canada 0.503 Alaska 
Airlines 0.307 Delta Air 

Lines 

JetBlue Airways 0.98210 0.930 Alaska 
Airlines 0.070 Delta Air 

Lines   

Lufthansa Airlines 0.85003 0.159 Alaska 
Airlines 0.841 Delta Air 

Lines   

Southwest Airlines 0.47410 0.148 Air Canada 0.852 American 
Airlines   

United Airlines 1.00000 0.014 Alaska 
Airlines 0.986 Delta Air 

Lines   
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Table A7 

2014 Single Year VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada     

Air France – KLM 0.72334 0.504 Alaska 
Airlines 0.496 Delta Air 

Lines   

Alaska Airlines 1.00000 0.811 Air Canada 0.121 Alaska 
Airlines 0.068 Delta Air 

Lines 

All Nippon Airways 0.48085 0.807 Air Canada 0.124 Alaska 
Airlines 0.069 Delta Air 

Lines 

American Airlines 0.99045 0.312 Alaska 
Airlines 0.688 Delta Air 

Lines   

British Airways 1.00000 0.590 Alaska 
Airlines 0.410 Delta Air 

Lines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 0.84993 0.312 Alaska 
Airlines 0.688 Delta Air 

Lines   

Japan Airlines 0.33361 1.000 Air Canada     

JetBlue Airways 1.00000 0.653 Air Canada 0.222 Alaska 
Airlines 0.125 Delta Air 

Lines 

Lufthansa Airlines 0.93753 0.312 Alaska 
Airlines 0.688 Delta Air 

Lines   

Southwest Airlines 0.87228 0.561 Air Canada 0.281 Alaska 
Airlines 0.158 Delta Air 

Lines 

United Airlines 0.80145 0.226 Alaska 
Airlines 0.774 Delta Air 

Lines   
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Table A8 

2014 Single Year VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   
Air France – KLM 1.00000 0.247 Air Canada 0.753 Lufthansa 

Airlines 
Alaska Airlines 0.36244 0.891 Air Canada 0.109 Lufthansa 

Airlines 
All Nippon Airways 1.00000 0.889 Air Canada 0.111 Lufthansa 

Airlines 
American Airlines 0.70825 1.000 Lufthansa 

Airlines 
  

British Airways 0.65765 0.358 Air Canada 0.642 Lufthansa 
Airlines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines 

  

Emirates 0.63898 1.000 Lufthansa 
Airlines 

  

Japan Airlines 0.97823 1.000 Air Canada   
JetBlue Airways 0.33803 0.800 Air Canada 0.200 Lufthansa 

Airlines 
Lufthansa Airlines 1.00000 1.000 Lufthansa 

Airlines 
  

Southwest Airlines 1.00000 0.747 Air Canada 0.253 Lufthansa 
Airlines 

United Airlines 1.00000 0.275 Delta Air 
Lines 

0.725 Lufthansa 
Airlines 
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Table A9 

2015 Single Year VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.332 Air France 
- KLM 0.668 JetBlue 

Air France – KLM 1.00000 1.000 Air France 
- KLM   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

All Nippon Airways 1.00000 0.711 Air France 
- KLM 0.289 JetBlue 

American Airlines 0.73109 0.195 Air France 
- KLM 0.805 Emirates 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 1.00000 1.000 Emirates   

Japan Airlines 1.00000 0.351 Air France 
- KLM 0.649 JetBlue 

JetBlue Airways 1.00000 1.000 JetBlue   
Lufthansa Airlines 0.60252 1.000 Emirates   

Southwest Airlines 1.00000 0.840 Air France 
- KLM 0.160 JetBlue 

United Airlines 1.00000 0.976 Delta Air 
Lines 0.024 Emirates 

Note.  British Airways is excluded from the 2015 model as they did not have publicly available environmental data. 
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Table A10 

2015 Single Year VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 0.49755 0.608 Air Canada 0.392 American 
Airlines   

Air France – KLM 0.99678 0.263 Alaska 
Airlines 0.737 Delta Air 

Lines   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines     

All Nippon Airways 0.42168 0.042 Air Canada 0.409 Alaska 
Airlines 0.549 Delta Air 

Lines 

American Airlines 1.00000 1.000 American 
Airlines     

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 0.89504 0.065 Air Canada 0.935 Delta Air 
Lines   

Japan Airlines 0.49273 0.178 Air Canada 0.499 Alaska 
Airlines 0.323 Delta Air 

Lines 
JetBlue Airways 1.00000 1.000 JetBlue     

Lufthansa Airlines 0.77294 0.071 Alaska 
Airlines 0.929 Delta Air 

Lines   

Southwest Airlines 0.96482 0.369 Alaska 
Airlines 0.631 Delta Air 

Lines   

United Airlines 0.97621 0.002 Air Canada 0.998 Delta Air 
Lines   

Note.  British Airways is excluded from the 2015 model as they did not have publicly available environmental data. 
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Table A11 

2015 Single Year VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada     

Air France – KLM 0.93221 0.326 Alaska 
Airlines 0.674 Delta Air 

Lines   

Alaska Airlines 1.00000 0.799 Air Canada 0.127 Alaska 
Airlines 0.074 Delta Air 

Lines 

All Nippon Airways 0.63568 0.691 Air Canada 0.196 Alaska 
Airlines 0.113 Delta Air 

Lines 

American Airlines 0.79999 0.326 Alaska 
Airlines 0.674 Delta Air 

Lines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 0.79046 0.305 Alaska 
Airlines 0.695 United Air 

Lines   

Japan Airlines 0.45512 0.942 Air Canada 0.037 Alaska 
Airlines 0.021 Delta Air 

Lines 

JetBlue Airways 1.00000 0.640 Air Canada 0.228 Alaska 
Airlines 0.132 Delta Air 

Lines 

Lufthansa Airlines 0.94216 0.326 Alaska 
Airlines 0.674 Delta Air 

Lines   

Southwest Airlines 1.00000 0.376 Alaska 
Airlines 0.624 Delta Air 

Lines   

United Airlines 0.82812 0.207 Alaska 
Airlines 0.793 Delta Air 

Lines   

Note.  British Airways is excluded from the 2015 model as they did not have publicly available environmental data. 
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Table A12 

2015 Single Year VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.81323 1.000 Lufthansa 
Airlines   

Alaska Airlines 0.41158 0.879 Air Canada 0.121 Lufthansa 
Airlines 

All Nippon Airways 1.00000 0.814 Air Canada 0.186 Lufthansa 
Airlines 

American Airlines 0.92818 1.000 Lufthansa 
Airlines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 0.65101 1.000 Lufthansa 
Airlines   

Japan Airlines 1.00000 0.965 Air Canada 0.035 Lufthansa 
Airlines 

JetBlue Airways 0.40008 0.784 Air Canada 0.216 Lufthansa 
Airlines 

Lufthansa Airlines 1.00000 1.000 Lufthansa 
Airlines   

Southwest Airlines 0.57415 0.065 Air Canada 0.935 Lufthansa 
Airlines 

United Airlines 1.00000 0.363 Delta Air 
Lines 0.637 Lufthansa 

Airlines 
Note.  British Airways is excluded from the 2015 model as they did not have publicly available environmental data. 
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Table A13 

3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.367 Air France 
- KLM 0.633 JetBlue 

Air France – KLM 0.99233 0.990 Air France 
- KLM 0.010 JetBlue 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

All Nippon Airways 1.00000 0.622 Air France 
- KLM 0.378 JetBlue 

American Airlines 0.79069 0.936 Air France 
- KLM 0.064 Emirates 

British Airways 1.00000 0.795 Air France 
- KLM 0.205 JetBlue 

Delta Air Lines 0.98210 0.115 Emirates 0.885 United Air 
Lines 

Emirates 0.91302 0.892 Air France 
- KLM 0.108 Emirates 

Japan Airlines 1.00000 0.348 Air France 
- KLM 0.652 JetBlue 

JetBlue Airways 1.00000 1.000 JetBlue   
Lufthansa Airlines 0.57807 1.000 Emirates   

Southwest Airlines 1.00000 0.726 Air France 
- KLM 0.274 JetBlue 

United Airlines 0.95086 0.133 Emirates 0.867 United Air 
Lines 

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A14 

3 Year Combined (2013-2015) VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 0.42264 0.519 Air Canada 0.481 American 
Airlines   

Air France – KLM 1.00000 0.244 Alaska 
Airlines 0.756 Delta Air 

Lines   

Alaska Airlines 1.00000 1.000 Alaska 
Airlines     

All Nippon Airways 0.43871 0.024 Air Canada 0.473 Alaska 
Airlines 0.503 Delta Air 

Lines 

American Airlines 1.00000 1.000 American 
Airlines     

British Airways 0.69325 0.379 Alaska 
Airlines 0.621 Delta Air 

Lines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 1.00000 0.227 Alaska 
Airlines 0.773 Delta Air 

Lines   

Japan Airlines 0.49746 0.166 Air Canada 0.508 Alaska 
Airlines 0.326 Delta Air 

Lines 

JetBlue Airways 0.98628 0.929 Alaska 
Airlines 0.071 Delta Air 

Lines   

Lufthansa Airlines 0.84035 0.144 Alaska 
Airlines 0.856 Delta Air 

Lines   

Southwest Airlines 0.76289 0.427 Alaska 
Airlines 0.573 Delta Air 

Lines   

United Airlines 1.00000 0.003 Alaska 
Airlines 0.997 Delta Air 

Lines   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A15 

3 Year Combined (2013-2015) VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

3rd 
Benchmark 

3rd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada     

Air France – KLM 0.92276 0.310 Alaska 
Airlines 0.690 Delta Air 

Lines   

Alaska Airlines 1.00000 0.806 Air Canada 0.124 Alaska 
Airlines 0.070 Delta Air 

Lines 

All Nippon Airways 0.54746 0.756 Air Canada 0.157 Alaska 
Airlines 0.088 Delta Air 

Lines 

American Airlines 0.91702 0.310 Alaska 
Airlines 0.690 Delta Air 

Lines   

British Airways 1.00000 0.599 Alaska 
Airlines 0.401 Delta Air 

Lines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines     

Emirates 0.84028 0.310 Alaska 
Airlines 0.690 Delta Air 

Lines   

Japan Airlines 0.38924 0.965 Air Canada 0.023 Alaska 
Airlines 0.013 Delta Air 

Lines 

JetBlue Airways 1.00000 0.646 Air Canada 0.227 Alaska 
Airlines 0.127 Delta Air 

Lines 

Lufthansa Airlines 0.94035 0.310 Alaska 
Airlines 0.690 Delta Air 

Lines   

Southwest Airlines 0.95937 0.010 Air Canada 0.596 Alaska 
Airlines 0.395 Delta Air 

Lines 

United Airlines 0.72635 0.310 Alaska 
Airlines 0.690 Delta Air 

Lines   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A16 

3 Year Combined (2013-2015) VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.83220 1.000 Lufthansa 
Airlines   

Alaska Airlines 0.36631 0.888 Air Canada 0.112 Lufthansa 
Airlines 

All Nippon Airways 1.00000 0.859 Air Canada 0.141 Lufthansa 
Airlines 

American Airlines 0.73383 1.000 Lufthansa 
Airlines   

British Airways 0.64631 0.369 Air Canada 0.631 Lufthansa 
Airlines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 0.60418 1.000 Lufthansa 
Airlines   

Japan Airlines 1.00000 0.980 Air Canada 0.020 Lufthansa 
Airlines 

JetBlue Airways 0.34205 0.796 Air Canada 0.204 Lufthansa 
Airlines 

Lufthansa Airlines 1.00000 1.000 Lufthansa 
Airlines 

  

Southwest Airlines 1.00000 1.000 Southwest 
Airlines 

  

United Airlines 0.97626 1.000 Lufthansa 
Airlines 

  

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A17 

U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

American Airlines 0.74644 0.807 Delta Air 
Lines 0.293 JetBlue 

Delta Air Lines 0.81072 0.856 Delta Air 
Lines 0.144 JetBlue 

JetBlue Airways 1.00000 1.000 JetBlue   

Southwest Airlines 1.00000 0.743 Delta Air 
Lines 0.257 JetBlue 

United Airlines 0.79160 0.823 Delta Air 
Lines 0.177 JetBlue 
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Table A18 

U.S. Airlines (2013-2015) VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

American Airlines 0.86405 0.143 Alaska 
Airlines 0.857 Delta Air 

Lines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

JetBlue Airways 0.72353 0.775 Alaska 
Airlines 0.225 Delta Air 

Lines 

Southwest Airlines 0.53671 0.448 Alaska 
Airlines 0.552 Delta Air 

Lines 

United Airlines 0.92979 0.102 Alaska 
Airlines 0.898 Delta Air 

Lines 
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Table A19 

U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

American Airlines 0.88940 0.276 Alaska 
Airlines 0.724 Delta Air 

Lines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

JetBlue Airways 0.96313 0.998 Alaska 
Airlines 0.002 Delta Air 

Lines 

Southwest Airlines 0.92038 0.619 Alaska 
Airlines 0.381 Delta Air 

Lines 

United Airlines 0.85647 0.276 Alaska 
Airlines 0.724 Delta Air 

Lines 
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Table A20 

U.S. Airlines (2013-2015) VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 0.37194 1.000 Southwest 
Airlines   

American Airlines 0.85779 1.000 Delta Air 
Lines   

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

JetBlue Airways 0.34852 1.000 Southwest 
Airlines   

Southwest Airlines 1.00000 1.000 Southwest 
Airlines   

United Airlines 0.95622 1.000 Delta Air 
Lines   
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Table A21 

Non U.S. Airlines (2013-2015) VRS Model Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.029 Air France 
- KLM 0.971 Japan 

Airlines 

Air France – KLM 1.00000 1.000 Air France 
- KLM   

All Nippon Airways 1.00000 0.420 Air France 
- KLM 0.580 Japan 

Airlines 

British Airways 1.00000 0.686 Air France 
- KLM 0.314 Japan 

Airlines 
Emirates 1.00000 1.000 Emirates   

Japan Airlines 1.00000 1.000 Japan 
Airlines   

Lufthansa Airlines 0.52171 1.000 Air France 
- KLM   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data.  
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Table A22 

Non U.S. Airlines (2013-2015) VRS Model Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 0.72415 0.750 Air Canada 0.250 Air France 
- KLM 

Air France – KLM 1.00000 1.000 Air France 
- KLM   

All Nippon Airways 0.53671 0.448 Air Canada 0.552 Air France 
- KLM 

British Airways 0.76049 0.243 Air Canada 0.757 Air France 
- KLM 

Emirates 1.00000 1.000 Emirates   

Japan Airlines 0.86405 0.773 Air Canada 0.227 Air France 
- KLM 

Lufthansa Airlines 0.92979 1.000 Air France 
- KLM   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data.  
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Table A23 

Non U.S. Airlines (2013-2015) VRS Model Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.93014 0.078 Air Canada 0.922 Air France 
- KLM 

All Nippon Airways 0.55155 0.870 Air Canada 0.130 Air France 
- KLM 

British Airways 1.00000 0.426 Air Canada 0.574 Air France 
- KLM 

Emirates 0.84700 0.078 Air Canada 0.922 Air France 
- KLM 

Japan Airlines 0.39001 0.981 Air Canada 0.019 Air France 
- KLM 

Lufthansa Airlines 0.94787 0.078 Air Canada 0.922 Air France 
- KLM 

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data.  
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Table A24 

Non U.S. Airlines (2013-2015) VRS Model Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.83220 1.000 Lufthansa 
Airlines   

All Nippon Airways 1.00000 0.859 Air Canada 0.141 Lufthansa 
Airlines 

British Airways 0.65138 0.378 Air Canada 0.622 Lufthansa 
Airlines 

Emirates 0.60418 1.000 Lufthansa 
Airlines   

Japan Airlines 1.00000 0.980 Air Canada 0.020 Lufthansa 
Airlines 

Lufthansa Airlines 1.00000 1.000 Lufthansa 
Airlines   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data.  
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Table A25 

Full Service Carriers (2013-2015) VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 0.029 Air France 
- KLM 0.971 Japan 

Airlines 

Air France – KLM 1.00000 1.000 Air France 
- KLM   

All Nippon Airways 1.00000 0.420 Air France 
- KLM 0.580 Japan 

Airlines 

American Airlines 0.79069 0.936 Air France 
- KLM 0.064 Emirates 

British Airways 1.00000 0.686 Air France 
- KLM 0.314 Japan 

Airlines 

Delta Air Lines 0.98210 0.115 Emirates 0.885 United Air 
Lines 

Emirates 1.00000 1.000 Emirates   

Japan Airlines 1.00000 1.000 Japan 
Airlines   

Lufthansa Airlines 0.57807 1.000 Emirates   

United Airlines 0.95089 0.133 Emirates 0.867 United Air 
Lines 

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A26 

Full Service Carriers (2013-2015) VRS Model – Phase 1, Stage 2 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 0.58662 0.752 Air Canada 0.248 American 
Airlines 

Air France – KLM 0.99371 0.218 Air Canada 0.782 Delta Air 
Lines 

All Nippon Airways 0.53358 0.568 Air Canada 0.432 Delta Air 
Lines 

American Airlines 1.00000 1.000 American 
Airlines   

British Airways 0.76049 0.243 Air Canada 0.757 Air France 
- KLM 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 0.92094 0.133 Air Canada 0.867 Delta Air 
Lines 

Japan Airlines 0.85998 0.822 Air Canada 0.178 Delta Air 
Lines 

Lufthansa Airlines 0.84093 0.133 Air Canada 0.867 Delta Air 
Lines 

United Airlines 1.00000 0.003 Air Canada 0.997 Delta Air 
Lines 

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A27 

Full Service Carriers (2013-2015) VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.92437 0.284 Air Canada 0.716 Delta Air 
Lines 

All Nippon Airways 0.54951 0.899 Air Canada 0.101 Delta Air 
Lines 

American Airlines 0.91863 0.284 Air Canada 0.716 Delta Air 
Lines 

British Airways 1.00000 0.551 Air Canada 0.449 Delta Air 
Lines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 0.84175 0.284 Air Canada 0.716 Delta Air 
Lines 

Japan Airlines 0.38963 0.985 Air Canada 0.015 Delta Air 
Lines 

Lufthansa Airlines 0.94200 0.284 Air Canada 0.716 Delta Air 
Lines 

United Airlines 0.72762 0.284 Air Canada 0.716 Delta Air 
Lines 

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A28 

Full Service Carriers (2013-2015) VRS Model – Phase 2, Stage 2 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Air Canada 1.00000 1.000 Air Canada   

Air France – KLM 0.83220 1.000 Lufthansa 
Airlines   

All Nippon Airways 1.00000 0.859 Air Canada 0.141 Lufthansa 
Airlines 

American Airlines 0.73383 1.000 Lufthansa 
Airlines   

British Airways 0.64866 0.373 Air Canada 0.627 Lufthansa 
Airlines 

Delta Air Lines 1.00000 1.000 Delta Air 
Lines   

Emirates 0.60418 1.000 Lufthansa 
Airlines   

Japan Airlines 1.00000 0.980 Air Canada 0.020 Lufthansa 
Airlines 

Lufthansa Airlines 1.00000 1.000 Lufthansa 
Airlines   

United Airlines 0.97626 1.000 Lufthansa 
Airlines   

Note.  British Airways data includes flight capacity (seat miles) and revenue generation from 2015, but no environmental data. 
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Table A29 

P2P / LCC Carriers (2013-2015) VRS Model – Phase 1, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

JetBlue Airways 0.83594 1.000 Alaska 
Airlines   

Southwest Airlines 0.26806 1.000 Alaska 
Airlines   
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Table A30 

P2P / LCC Carriers (2013-2015) VRS Model – Phase 1, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000     
JetBlue Airways 1.00000     
Southwest Airlines 1.00000     
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Table A31 

P2P / LCC Carriers (2013-2015) VRS Model – Phase 2, Stage 1 Results 

Airline Stage 1 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000 1.000 Alaska 
Airlines   

JetBlue Airways 0.71975 1.000 Alaska 
Airlines   

Southwest Airlines 0.30502 1.000 Alaska 
Airlines   
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Table A32 

P2P / LCC Carriers (2013-2015) VRS Model – Phase 2, Stage 2 Results 

Airline Stage 2 
Efficiency 

1st 
Benchmark 

1st Airline 
Benchmark 

2nd 
Benchmark 

2nd Airline 
Benchmark 

Alaska Airlines 1.00000     
JetBlue Airways 1.00000     
Southwest Airlines 1.00000     
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