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Abstract 

Although nitrogen fertilizers have certain benefits, the over application of such compounds often 

results in damages to the ecosystem. In this project, we focus our study on Sinorhizobiom 

meliloti, a species that lives in symbiosis with alfalfa plants, and through its nitrogen fixation 

capabilities, restores nitrogen levels in the soil. In our study we aim to gain a better 

understanding of the carbon metabolism in S. meliloti, mainly by looking at growth patterns in 

the presence of different carbon sources. Our research picked up on Erik Arvey’s discoveries 

which pointed out that sucrose inhibits growth of certain glucose minus mutants of S. meliloti on 

a lactate and aspartate medium.[13] Due to this rather odd mutant behavior, we began our 

experimentation by growing mutant strains on other similar disaccharides such as cellobiose and 

trehalose, the breakdown products of sucrose, fructose and glucose, and increasing fructose 

concentrations. We even generated new mutant strains via TN5 mutagenesis to investigate their 

behavior as well. Overall we found out that other disaccharides don’t inhibit growth and fructose 

which caused the highest degree of inhibition managed to slow down the growth over a longer 

period of time. Sucrose, also appeared to inhibit growth on succinate and aspartate medium, and 

nitrogen and lactate medium, suggesting that this growth delayed in the mutants could be due to 

a metabolite accumulating in the cell, or that the cells waste energy in breaking down sucrose 

which cannot be further metabolized. We also grew S. meliloti mutant and wildtype strains on 

gluconolactone, which helped us pin-point our library of mutations  in the Entner-Doudoroff 

pathway. 
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Introduction 

 Fertilizers are used to enrich the soil with nutrients that can enhance the growth of plants 

and play a crucial role in agriculture today. Worldwide in 2011 an estimate of 105.3 million tons 

of nitrogen have been used [1]. While there are some advantages of using fertilizers such as 

accessible price and high nutrient content, the over-application usually results in negative 

outcomes [2]. Oversupply of nitrogen leads to softening of plant tissue, which can lead to a plant 

that is susceptible to diseases and pests. Yet, the most devastating effect of excess fertilizer is the 

negative impact it has on the environment. This situation can lead to pollution of water 

resources, disturbances in soil pH, eradication of micro-organisms and friendly insects and 

increase in populations of harmful bacteria [2]. Fortunately, naturally occurring micro-organisms 

such as rhizobia can optimize the growth of many leguminous plants important in our diet and 

the diet of farm animals due to their nitrogen fixing properties. It is reported that rhizobia can fix 

50-300 kg N/ha which can replace up to 80 - 90 million tons of N fertilizers [3]. Furthermore, 

nitrogen fixing bacteria have also proved to be far less expensive than fertilizers [3]. 

 In the atmosphere, nitrogen is plentiful. However, plants cannot assimilate nitrogen in the 

form present in the atmosphere. As a way to cope with this dilemma, leguminous plants and the 

rhizobia bacteria form a symbiotic relationship. The symbiosis consists in the plant providing 

numerous carbon sources that the bacteria can grow on, and in return the bacteria converting 

nitrogen from the atmosphere into ammonia, a form of nitrogen that can be consumed by plants 

[3]. The rhizobia bacteria usually live in the soil where carbon resources are scarce. When 

encountering a plant that can form nodules, the bacteria and the plant exchange molecular signals 

with each other, resulting in changes in gene expression [3]. The rhizobia attach to the plant’s 

root-hair causing the hair to curl. This mechanism entraps the rhizobia in the root hair, which 
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leads to the formation of the infection thread [3]. Around the infection thread plant cells start to 

divide and the new cells are then invaded by the bacteria. Within the cellular environment the 

bacteria start to fix nitrogen in exchange for access to an abundance of dicarboxylic acids 

produced by the plant. This ultimately results in a mutualistic symbiotic relationship between 

bacteria and the plant [3].  

 In the process of nodulation, the rhizobia encounter a variety of environments, each more 

or less plentiful in carbon sources. In the soil, the rhizobia have access to little carbon sources 

which can be used for energy needs. This nutrient-depleted environment is beneficial for the 

plant’s ability to attract the nitrogen fixing bacteria. Leguminous plants attract nitrogen fixing 

bacteria by simply releasing a variety of sugars and peptides surrounding the roots that facilitate 

the growth of microorganisms. This area is known as the rhizosphere. After the bacteria enter the 

rhizosphere it is only a matter of time until they infect the plant and start the nodulation process. 

Overall, as compared to the soil, the rhizosphere and environment within the plant, offer the 

bacteria a more optimal place to grow due to the availability of various dicarboxylic acids, 

monosaccharaides and polysaccharides. [3] 

  

Figure 1 [5]. The Entner-
Doudoroff Pathway and possible 
mutant strain locations. 
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 In bacteria, the break-down of glucose occurs via the Entner-Doudoroff (ED) pathway. [12] 

This pathway represented in Figure 2 is a series of enzymatic reactions that convert glucose to 

pyruvate which enters the citric acid cycle in order to produce energy in form of ATP. Other 

monosaccharides such as fructose and galactose are also metabolized by the rhizobia. These 

sugars enter the ED-pathway at different steps as metabolites. Disaccharides, or polysaccharides 

are usually broken down into their monomers, which then also enter the ED-pathway. Therefore, 

the ED-pathway is highly significant in the metabolism of carbon compounds. 

 Since bacteria are constantly facing different environments with a variety of carbon sources 

available, catabolite repression (CR) evolved to be the mechanism which allowed bacteria to 

make the most efficient use of available resources. CR is a process that evolved on the principle 

that utilizing the best available carbon source first until it is consumed from the environment will 

account for the fastest growth of the colony.[10] Only when the best available sugar is expended 

will the next best carbon compound be considered for consumption. Sugars that would gain 

priority would be sugars located at lower entry points in the ED-pathway (Figure 1) mainly 

because those sugars are closest to the end-point and require the least amount of energy to be 

metabolized. For example, succinate which is a metabolite found in the citric acid cycle will 

induce CR on glucose in S. meliloti. [15] The process of CR varies from organism to organism, 
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and the exact mechanism of CR in S. meliloti is unknown.  

Figure 2. A. Mechanism of glucose induced CR in E. coli. B. Proposed mechanism for succinate 

induced CR in S. meliloti. [4]   

 A study conducted by Pinedo and Gage (2009) investigated possible mechanisms of CR in 

S. meliloti, a representation of their proposed mechanism is shown in figure 3. [4] In E. coli, 

glucose induced CR occurs as follows: glucose is taken into the cell and phosphorylated by the 

transporter protein (Figure 3A). When glucose gains a phosphate group, protein IIA becomes 

dephosphorylated, and loses a phosphate group. Dephosphorylating the IIA protein blocks 

lactose uptake via LacY transporter, a process known as inducer exclusion. However, when there 

is no glucose, IIA-protein is phosphorylated. This state of the protein activates adenylate cyclase, 

which in turn catalyzes the reaction that turns ATP into cAMP. Increasing concentrations of 

cAMP activate the lac operon which leads to a series of events that lead to the expression of 

enzymes able to metabolize lactose. In figure 3B, we can see that the mechanism proposed for 

succinate induced CR in S. meliloti is less clear and more complicated. Not only is succinate not 

phosphorylated, but it is also not sure how it affects the HPR kinase enzyme which seems to 

have a function in inducer exclusion CR on lactose. [4]  

B 
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 Velazquez et al (2004) on Pseudomonas putida looked at glucose induced CR. P. putida is 

a strain that contains the TOL plasmid in its genome which offers it the ability to grow on 

toluene, m-xylene or p-xylene6. In this organism, glucose induces CR by preventing the 

transcription of genes located on the TOL plasmid. Also, because P. putida lacks certain 

enzymes, glucose and gluconate are exclusively metabolized via the ED-pathway. In this study, 

the mutants were grown on a minimum growth medium (M9), with casamino acids in the 

presence and absence of glucose under various conditions: genetic modification that forced 

fructose to be exclusively metabolized via the ED-pathway, a mutation that stimulated the 

expression of ED-enzymes, and a mutation interrupting the ED-pathway. Their results indicated 

that when fructose was exclusively metabolized via the ED-pathway, fructose induced CR and 

hindered the growth of the bacteria. Furthermore, when the ED-enzymes were stimulated a 

decrease in glucose induced CR was observed, and when the ED-pathway was hindered, glucose 

induced CR was increased6.   

Figure 3. Catabolite repression in 

Sinorhizobium meliloti growing on 

succinate and lactose.[7] 

 

 

 

 

 

 The experiment regarding CR in S. meliloti done by Ucker and Singer (1978) is depicted 

in figure 3. Here it is observed that from 0 to about 20 hours the cells grow relatively fast but the 
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activity of β-galactosidase is at minimum. This indicates that the cells mainly consume succinate 

during this growth period. Soon after 20 hours, the growth halts and at the same time a drastic 

increase in β-galactosidase is observed. Soon after this increase, cells resume growth but at a 

slower rate. Due to the high activity of β-galactosidase it can be concluded that cells during this 

phase grow on lactose.[7] This phenomenon is an example of CR, mainly, the decrease in β-

galactosidase activity such that cells can utilize succinate first.  

  Because in the presence of glucose, a decrease in β-galactosidase activity occurred, β-

galactosidase assays are a useful tool to measure CR.[14] β-galactosidase is an enzyme that breaks 

down lactose by disrupting the glycosidic bond linking together the two monomers that form 

lactose, glucose and galactose. In the β-galactosidase assay, o-nitrophenyl-β-D-galactoside 

(ONPG) and the enzyme are added to a cuvette and time is allowed to pass. As the enzyme 

breaks down the glycosidic bond, O-nitrophenol is released which has a yellow color. A 

spectrometer will measure the absorbance of the solution at 420 nm. Knowing the absorbance 

and the time it took for the reaction to take place, using Miller’s equation (1) we can calculate 

the β-galactosidase enzyme activity8.  

    (1) 

 

Where Abs420 is the absorbance of the yellow ONPG at 420 nm, Abs550 is the scatter from cell 

debris at 550 nm, Abs600 is the cell density at 600 nm, t is the reaction time in minutes, and v is 

the volume of cells in millimeters. Since the 420 nm accounts for the absorbance of both ONPG 

and the cells, in order to get a more accurate picture of the concentration of ONPG alone, we 

subtract the absorbance at 550 which accounts for cell debris.  

= 1 Miller Unit 
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 Some carbon containing compounds are not only useful for generating energy but they 

also protect the bacteria against osmotic pressure. Osmotic pressure occurs when the 

environment of a cell contains a high concentration of certain electrolytes impenetrable to the 

cell membrane. Since water has a tendency to go from a lower chemical potential to a greater 

potential, water crosses the cell membrane to leave the cell and enter the environment. In order to 

prevent the water from leaving the cell, bacteria have evolved the mechanism of osmoprotection 

in which certain disaccharides accumulate in the cytoplasm creating a chemical potential within 

the cell equal to the chemical potential outside the cell9. This process is highly beneficial at 

counteracting osmosis. 

 Initially our research was focused on why sucrose, which is an osmoprotectant and a 

source of energy, inhibits growth of certain Sinorhizobium meliloti glucose minus mutants on a 

lactate and aspartate medium, as Erik Arvey’s has observed.[13] The main question asked was 

whether the inhibition is due to CR, or due to a metabolite accumulating when the mutants used 

were unable to break down certain sucrose byproducts, or simply due to a waste of energy. To 

understand this phenomenon, we tried to see if other disaccharides also induce a growth 

inhibition on the mutants. We have also replaced the lactate and aspartate in the media with a 

other of carbon and nitrogen sources discussed later.  Growth of the mutants was also analyzed 

when increasing concentrations of fructose.  

 Finally, we focused our research on the study of glucose CR on Sinorhizobium meliloti. 

Studying CR served as a means to understanding sucrose growth inhibition but also gave us a 

better picture of the unknown process by which CR occurs in S. meliloti, which is a model 

organism that belongs to the Rhizobiaceaea family. Specifically, we focused on the means by 

which glucose induces CR on other sugars such as lactose. Glucose is important because it is the 
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primary source of energy and the byproduct of many disaccharides and polysaccharides 

breakdown.  Overall, understanding steps involved in glucose mediated CR would provide us 

with a better with a better understanding of glucose metabolism in S. meliloti as well as other 

rhizobium bacteria. 

 One key step in studying CR, was to generate mutants that are deficient in certain 

locations in the ED-pathway. We believed that we already had mutants located downstream from 

gluconate (Figure 2), our goal was now to add new mutants upstream from gluconate to our 

library. Research has shown that in Escherichia coli glucose induces CR by blocking the 

expression of lac operon as certain metabolites during the pathway act as lac operon gene 

suppressors [10]. Based on P. putida  findings we tested and looked for metabolites that could 

cause glucose catabolite repression in S. meliloti. Since different metabolites are produced at 

different points in the ED pathway, we generated more mutants deficient at various locations in 

the ED pathway. Our aim was to generate mutations that would prevent the formation of 

metabolites upstream from 6-P-gluconate. These mutants were created using Tn5 mutagenesis. 

In Tn5 mutagenesis, E. coli carry a genetically engineered transposon attached to the plasmid 

found within the cell. A transposon is a gene that cause mutations due to its ability to randomly 

insert itself into different places in a genome. E. coli were then incubated with S. meliloti. During 

the incubation, E. coli plasmid was transferred to S. meliloti in a natural process known as 

conjugation. Since S. meliloti received a new plasmid which also contained a transposon, which 

after the incubation period, new mutations were generated in the S. meliloti genome 11.  
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Figure 4. Mutagenesis summary. 

Experimental 

Bacterial strains, media, and growth conditions.  

 The bacterial strains used in this study were E. coli MM294 with the plasmid PRK602, and  

S. meliloti wildtype stain 1021 and SB112, and the mutants 20749, CT2141, 307620, 30924 and 

30944. Strain SB112, unlike 1021, grows on gluconate. The bacterial growth was monitored with 

a Spectrophotometer 20 which measures optical densities of cells growing in liquid media at 

wavelength of 600 nm (OD600).  

Media 

 The LA9 liquid media was made using 6 g Na2HPO4, 3 g KH2PO4, and 0.5 g NaCl, all 

dissolved in 500 mL of deionized water, and autoclaved. After autoclaving, 1mL of 1.0 M 

MgSO4·7H2O (to give 1 mM), 0.25 mL of 1.0 M CaCl2 (to give 0.25 mM), 1 mL of 5 µg/mL 

CoCl2 (to give 5 ng/mL), 1 mL of 2.5% tryptone (autoclaved), and 10 mL of 0.1 mg/mL biotin 

(to give 1 µg/mL biotin) was added to the media. Biotin and tryptone were supplements added in 

order to help cells reach exponential phase faster. Unless otherwise specified, the carbon source 

we used was lactate and the nitrogen source we used was aspartate, both at 10 mM final 

concentration.  
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 In LA9 media containing various disaccharides and monosaccharides, such as glucose, 

fructose, trehalose and cellobiose, were added to the media at a final concentration of 1 mM, 

unless otherwise indicated. The new volume addition for the sugar solution was subtracted from 

the total volume of sterile deionized water. In SA9 media, the lactate component was replaced 

with 10 mM succinate. In AA9 media, the lactate was removed and aspartate was used as the 

sole carbon and nitrogen source. To compensate for the missing carbon from the lactate, 

aspartate was used at 20 mM final concentration. In LN9 media, the aspartate was replaced with 

ammonium chloride, at 10 mM final concentration and lactate was used at 20 mM, to 

compensate for the loss of carbon from the aspartate molecule.  

 The M9T media had the same components as the LA9 media, except that it had no lactate 

or aspartate and instead only one carbon source at a final concentration of 0.2% and ammonium 

chloride as the nitrogen source. The agar M9 media contained 0.4 % of any single carbon source 

and no tryptone. Tryptone is known for accelerating bacterial growth, and was thus removed in 

order to observe a greater growth inhibition. The LB liquid media was made by dissolving 10 g 

of Bacto tryptone, 5 g of Bacto yeast extract, and 10 g of NaCl in 1 liter of deionized water and 

then autoclaved. The LB solid media was obtained by adding 15 g of agar to the LB liquid media 

prior to the autoclave step. 

Mutagenesis 

 The mutagenesis was conducted in order to generate new mutant strains more upstream 

than 307620, 30924 and 30944. SB112 was inoculated in liquid LB media and E. coli MM294 

PRK602 was inoculated in LB media containing neomycin 50 ug/ml, to make sure the plasmid 

PRK602 was maintained in the culture. Three LB plates, each containing a sterile filter were 

prepared. 1 mL of E. coli was placed in two different centrifuge tubes, 1 mL of S. meliloti was 
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also placed in two different centrifuge tubes. The four tubes were then centrifuged for 30 

seconds, and the supernatant from each tube was removed.  The tubes containing E. coli cells 

were then washed in 0.5 ml LB liquid media for two more times to remove any excess neomycin 

from the solution. To allow the mutagenesis to occur, the S. meliloti in one of the tubes was 

combined with E. coli cells and mixed well. The mixture was placed on a filter paper on the LB 

plates. For control, the contents in the tube containing S. meliloti were placed on a filter paper on 

the LB plates. The same procedure was repeated for the tube containing E. coli cells. The cells 

were then incubated at 30oC overnight.  

 The screen for our mutants consisted of diluting the mutant cells in deionized water to 

obtain about 50 cells per plate, and then spreading the cells on M9 plates containing 0.4% 

glucose, .04% gluconate, 200 µg/ml neomycin, and 400 µg/ml streptomycin. When the colonies 

grew, the colonies that were significantly smaller were picked and patched onto LB plates 

containing 400 µg/ml streptomycin and 200 µg/ml neomycin.  

Results and Discussion 

 

 
Figure 5. Growth on LA9 with and without sucrose. 
 
 Figure 5 shows the growth of each mutant and the wild-type strain on LA9 medium in the 

presence and absence of sucrose. Looking at the exponential growth we can see that when 
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sucrose is absent in the media, the mutants grow just the same as the wild-type. However, when 

sucrose is added, glucose-minus mutants (307620, 30924, and 30944) reach the stationary phase 

later as compared to the wild-type.  

 

 
 
Figure 6. Growth on LA9 and other disaccharides.  
 
 Next, we checked the growth of the mutants on LA9 in the presence of other disaccharides. 

Cellobiose and trehalose are structurally different from sucrose because they are composed of 

two glucose monomers, as opposed to a glucose and a fructose monomer. Again, similar 

behavior was observed, on LA9 alone all mutants behaved the same. However, in the presence of 

other disaccharides, mutants 307620, 30924, and 30944 do not grow significantly slower. This 

phenomenon is seen especially on LA9 with sucrose. Due to an experimental issue, 20749 served 

as the wild-type in this experiment.  
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Figure 7. Structure of sucrose, maltose, trehalose, and cellobiose 
 

 
 
 
 

 

 

Figure 8. The wildtype strain and each mutant growing on LA9, and LA9 with sucrose, fructose 

or glucose. 
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 Sucrose was broken down into its components, fructose and glucose, and the wild-type and 

each of the mutants was inoculated in LA9 media and LA9 media with the monosaccharides 

(Figure 8). The wild-type strain and 20749 had the same growth curve regardless of the carbon 

source, however, the other mutants grew significantly slower when glucose or fructose were 

present in their media.  

 

 
Figure 9. Growth on LA9 medium in which lactate was replaced with succinate, in the presence 

or absence of sucrose.  

 After conducting the experiments on the monosaccharides we suspected that the growth 

inhibition was due to CR. In order to check if CR occurs when mutants are growing on LA9 and 

sucrose, we replaced lactate which might be subject to CR by glucose with succinate (Figure 9). 

Since succinate is an intermediate in the citric acid cycle, we did not expect the mutants to show 

growth inhibition even if sucrose was present. Figure 9 shows that although the growth was not 

as delayed as previous experiments have shown, the growth curve of the mutants and the wild-

type or 20749 were not similar when sucrose was added to the SA9 media. This hinted towards 

the idea that metabolites could be accumulating with the mutant cells, preventing them from 

utilizing energy in a most efficient manner.  
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Figure 10. Growth on 20 mM aspartate and LA9 salts, in the presence or absence of sucrose. 

 We wanted to check that the reason we were seeing delayed growth on sucrose was not 

because glucose induced CR on lactate. Therefore, we made a new media in which lactate was 

completely removed and the bacteria was growing only on aspartate. In case of CR, sucrose 

should not have been able to inhibit growth on aspartate because aspartate is processed via a 

different pathway than ED-pathway, it may enter the citric acid cycle as oxaloacetate. Therefore, 

because growth inhibition was still present in bacteria growing on AA9 and sucrose (Figure 10), 

we hypothesized that this was not because CR but rather that this was further evidence that 

accumulation of metabolites produced while trying to break down sucrose in the mutant cells 

could be what is slowing down their growth.   
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Figure 11. Growth on LA9 medium with aspartate replaced with ammonia, in the presence or 

absence of sucrose.  

 To make sure that there is no possibility for the carbon generated from metabolizing 

aspartate to interfere with the growth on the media in the presence of sucrose, we completely 

replaced aspartate with ammonia as the only nitrogen source. Growth inhibition still occurred in 

the mutants. 20749 was not able to grow at all due to its mutation after the ED-pathway and the 

fact that it can’t use lactate as a carbon source.  
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Figure 12. Growth on LA9 medium and LA9 medium with 1 mM fructose, and 10 mM fructose. 

 Since fructose was able to to induce the highest degree of growth inhibition as seen in 

figure 6, we decided to check and see what would happen if the mutants are grown on increasing 

concentrations of fructose. It can be seen from figure 12 that in the LA9 medium with no 

fructose present all mutants and wild-type grew at the same time. However, increasing fructose 

concentration also increased the amount of time it took for the mutants  307620, 30924, and 

30944 to grow, or reach an absorbance as high as in the absence of fructose. 

.  

Figure 13. SB112 and mutant RA115101 growing on M9T medium in the presence of either 

glucose or gluconate.  
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 A next step in our experiment was conducting mutagenesis, where we aimed to obtain 

mutants located upstream from gluconolactone. After we obtained the selection plates, one 

mutant that looked promising was RA115101. This mutant was inoculated in M9T with glucose 

or gluconate and it was observed that the mutant grew fine on both glucose and gluconate as 

compared to the wild-type SB112. Because the mutant was able to grow on gluconate, we could 

not conclude that the mutation was upstream from gluconate. 

 Furthermore, we were also interested in growing the bacteria on gluconolactone which is 

the metabolite just upstream from gluconate. This technique of growing mutants on 

gluconolactone would help us find mutants that are located upstream from gluconate.  

 

Figure 14. Growth on M9 medium and gluconolactone. The white colonies must be ignored as 

they represent contamination. 

 Figure 14 shows the growth of mutants and wild-type on gluconolactone. This 

experiment was conducted mainly to check and see if bacteria can grow a media containing 

30924                         SB112                         307620                      30944 
 
 
 
 
 
1021                         20749     
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gluconolactone as the sole carbon source. We are able to see that indeed, the wild type SB112 

and the mutants were able to grow on gluconolactone. This indicated that the mutant location 

could be anywhere upstream from gluconolactone and downstream from glucose-6-phosphate. 

However, one possible issue with gluconolactoe could be that it might spontaneously react to 

become gluconate. In figure 14, 20749 showed no growth because 20749 can only grow on 

pyruvate and other intermediates that are not processed down the ED-pathway. 

 

Figure 15. Mutant strains and wild type growth on M9T medium and glucose or gluconate. 

 In figure 15 we grew the mutants and the wild-type strains on M9T with glucose or 

gluconate. However, we did not have enough growth to be able to harvest cells to conduct an 

enzyme assay on the cells. 

 As future work, we would like to conduct more literature search on gluconolactone to see 

how stable it is and be able to trust that it does not react to become gluconate. We would also 

like to search the literature about ways in which gluconolactone is taken up in the cells and 

locations at which it enters the ED-pathway. Knowing more about this compound could help us 

develop our screening technique for mutants, and would allow for an easier process to find 
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mutants upstream from gluconate. It would also be helpful if we can repeat the growth on M9T 

with glucose or gluconate and obtain a substantial amount of cells that could allow us to conduct 

the B-galactosidase enzyme assay. 

Summary of Results 

 After growing the mutant and wildtype strains on other disaccharides (cellobiose and 

trehalose) it was interesting to see that these sugars don’t inhibit the growth of mutants. With 

sucrose remaining our main disaccharide inhibitor, we considered looking at how the mutants 

behave in the presence of sucrose break down products, fructose and glucose. Since fructose 

appeared to have a greater impact on growth, we further increased the fructose concentration to 

notice that the higher the fructose concentration, the slower mutants grew. Sucrose, also 

appeared to inhibit growth on succinate and aspartate medium, and nitrogen and lactate medium. 

This suggested that beside catabolite repression the growth delayed could also have been due to 

stress in the cell caused by metabolite accumulating, or possible wasted energy in breaking down 

sucrose which cannot be further metabolized. Furthermore, we were interested in pin-pointing 

the mutations that caused the deficiency in enzymes of the Entner–Doudoroff pathway. In order 

to do so we grew them on gluconolactone. After this experiment we noticed that except for the 

wildtype, 1021, the mutants and SB112 were able to thrive, while 20749 was unable to form 

significant colonies. This indicated that the mutant location in these strains could be anywhere 

upstream from gluconolactone and downstream from glucose-6-phosphate. 
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