Cornell University School of Hotel Administration The Scholarly Commons

Articles and Chapters

School of Hotel Administration Collection

4-30-2015

Effect of Market Channel, Farm Scale, and Years in Production on Mid-Atlantic Vegetable Producers' Knowledge and Implementation of Good Agricultural Practices

Sasha C. Marine University of Maryland

David A. Martin University of Maryland - Baltimore County

Aaron Adalja Cornell University School of Hotel Administration, aaa362@cornell.edu

Sudeep Mathew University of Maryland

Kathryne L. Everts University of Delaware Follow this and additional works at: https://scholarship.sha.cornell.edu/articles

🔮 Part of the Agriculture Commons, and the Food Science Commons

Recommended Citation

Marine, S. C., Martin, D. A., Adalja, A., Mathew, S., & Everts, K. L. (2016). *Effect of market channel, farm scale, and years in production on mid-Atlantic vegetable producers' knowledge and implementation of good agricultural practices* (Electronic version). Retrieved [insert date], from Cornell University, SHA School site: https://scholarship.sha.cornell.edu/articles/1108

This Article or Chapter is brought to you for free and open access by the School of Hotel Administration Collection at The Scholarly Commons. It has been accepted for inclusion in Articles and Chapters by an authorized administrator of The Scholarly Commons. For more information, please contact hotellibrary@cornell.edu.

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.

Effect of Market Channel, Farm Scale, and Years in Production on Mid-Atlantic Vegetable Producers' Knowledge and Implementation of Good Agricultural Practices

Abstract

Foodborne illnesses associated with fresh produce have dramatically increased within the last decade. Good Agricultural Practices (GAP) were developed to address potential sources of pre-harvest microbial contamination, but certification remains low. The majority of mid-Atlantic vegetable farms are fresh market, but limited information is available about what on-farm production practices are being utilized to mitigate food safety risks. Our goal was to assess Maryland and Delaware vegetable producers' understanding and implementation of GAP. An electronic survey on pre-harvest production practices was administered at commercial grower meetings in 2010 and 2013. A total of 313 surveys were analyzed, and Probit regression was used to estimate the average marginal effects of farm scale, years in production and market channel on the probability of using different on-farm food safety practices. Generally, food safety practices did not differ across farm scale or years in production. However, market channel did influence a grower's decision to implement some food safety practices. Growers who marketed their produce primarily through wholesale channels were more likely to: have written policies for how they grew and handled their produce, test their irrigation water at least once a year for microbial contamination, or be GAP-certified. Economic constraints were not reported as the primary obstacle for GAP implementation in either survey. While more research is needed to better understand how market channel influences decision-making activities including on-farm food safety practices, this study highlights the complexity of the issue and the need for GAP educational programs to expand beyond a one-size-fits-all approach.

Keywords

good agricultural practices, mid-Atlantic vegetable producers

Disciplines Agriculture | Food Science

Comments

Required Publisher Statement

© Elsevier. Final version published as: Marine, S. C., Martin, D. A., Adalja, A., Mathew, S., & Everts, K. L. (2016). Effect of market channel, farm scale, and years in production on mid-Atlantic vegetable producers' knowledge and implementation of good agricultural practices. *Food Control, 59*, 128-138. doi: 10.1016/j.foodcont.2015.05.024

Reprinted with permission. All rights reserved.

EFFECT OF MARKET CHANNEL, FARM SCALE, AND YEARS IN PRODUCTION ON MID-ATLANTIC VEGETABLE PRODUCERS' KNOWLEDGE AND IMPLEMENTATION OF GOOD AGRICULTURAL PRACTICES

Sasha C. Marine*

Department of Plant Science and Landscape Architecture University of Maryland Lower Eastern Shore Research and Education Center Salisbury, MD *Corresponding author. E-mail address: scmarine@umd.edu

David A. Martin

University of Maryland Extension Baltimore County Cockeysville, MD,

Aaron Adalja Department of Agricultural and Resource Economics University of Maryland College Park, MD

Sudeep Mathew

University of Maryland Extension Dorchester County Cambridge, MD

Kathryne L. Everts

Carvel Research and Education Center University of Delaware Georgetown, DE

April 30, 2015

1

Abstract

2

3 Foodborne illnesses associated with fresh produce have dramatically increased within the last decade. 4 Good Agricultural Practices (GAP) were developed to address potential sources of pre-harvest microbial 5 contamination, but certification remains low. The majority of mid-Atlantic vegetable farms are fresh 6 market, but limited information is available about what on-farm production practices are being utilized to 7 mitigate food safety risks. Our goal was to assess Maryland and Delaware vegetable producers' 8 understanding and implementation of GAP. An electronic survey on pre-harvest production practices was 9 administered at commercial grower meetings in 2010 and 2013. A total of 313 surveys were analyzed, 10 and Probit regression was used to estimate the average marginal effects of farm scale, years in production 11 and market channel on the probability of using different on-farm food safety practices. Generally, food 12 safety practices did not differ across farm scale or years in production. However, market channel did 13 influence a grower's decision to implement some food safety practices. Growers who marketed their 14 produce primarily through wholesale channels were more likely to: have written policies for how they 15 grew and handled their produce, test their irrigation water at least once a year for microbial 16 contamination, or be GAP-certified. Economic constraints were not reported as the primary obstacle for 17 GAP implementation in either survey. While more research is needed to better understand how market 18 channel influences decision-making activities including on-farm food safety practices, this study 19 highlights the complexity of the issue and the need for GAP educational programs to expand beyond a 20 one- size-fits-all approach. 21

Keywords: Good Agricultural Practices Mid-Atlantic Vegetable producers

23

22

24

25

knowledge and implementation of Good Agricultural Practices

Effect of market channel, farm scale, and years in production on mid-Atlantic vegetable producers'

26

27 1. Introduction

28 In 1998, the Food and Drug Administration (FDA) published The Guide to Minimize Microbial 29 Food Safety Hazards for Fresh Fruits and Vegetables, which outlined production practices and 30 intervention strategies that could be implemented on farms for use in the production of unprocessed or minimally processed fresh fruits and vegetables (U.S. FDA, 1998). The 1998 guide also sought to 31 32 increase awareness of potential food safety hazards among growers, packers, and shippers of fresh 33 produce. Growers were advised to focus on risk reduction strategies, not risk elimination, as elimination 34 of all potential food safety hazards associated with fresh produce that would be eaten raw is not 35 technologically or economically feasible (Gravani, 2009).

36 However, in the years following release of the *Guide*, outbreaks associated with enteric pathogens (such as Escherichia coli O157:H7 and Salmonella enterica) and on-farm contamination events have been 37 steadily increasing (DeWaal, Tian, & Bhuiya, 2008). Between 1998 and 2008, the consumption of fresh 38 39 fruits and vegetables was implicated in 46% of foodborne illnesses and resulted in an estimated 21,000 40 hospitalizations and 334 deaths (Painter et al., 2013). Although research has identified several microbial risk factors (reviewed in Mandrell, 2009; Olaimat & Holley, 2012), eliminating enteric pathogens from 41 42 fresh produce remains difficult due to microbial adhesion (reviewed in Berger et al., 2010) and their 43 ability to persist as epiphytes or endophytes within the plant microbiota (reviewed in Critzer & Doyle, 2010). In 2002, the United States Department of Agriculture (USDA) developed a voluntary audit/ 44 45 certification program known as "Good Agricultural Practices" (GAP) to verify conformance to the 1998 guide. This program seeks to minimize fresh produce contamination by recommending science- based 46 47 "best practices" in areas such as irrigation water quality, manure management, wildlife management, 48 worker health and hygiene, and post-harvest handling (USDA, 2014b). University of Maryland Extension 49 programming has traditionally relied on the knowledge-deficit approach for GAP education, which

emphasizes a one-way model of communication and attributes noncompliance to lack of information
(Parker, Wilson, LeJeune, Rivers, & Doohan, 2012). Full-day trainings include presentations on the four
W's (water, waste, wildlife and workers), sanitation, auditing programs, and writing a food safety plan (D.
Pahl, personal communication). Following training, the GAP audit is conducted by a public or private
third-party certifier, and a grower must score 80% or better on each of the seven sections to become
certified. Growers are also responsible for bearing the costs of the training and audit.

56 In 2011, the Food Safety Modernization Act (FSMA) was signed into law. FSMA directs the 57 FDA to establish a uniform set of produce safety standards and aims to ensure a safe U.S. food supply 58 through prevention of microbial contamination (U.S. FDA, 2013). The proposed produce safety standards 59 have received substantial input from scientists, industry stakeholders and consumers, and tens of 60 thousands of comments have been submitted during the public comment periods. As a consequence of 61 this widespread media attention, most growers and packers are now aware of their obligation to reduce 62 the microbial hazards and risks associated with the production of fresh produce. Although FSMA represents the minimum requirements, compliance is mandated by law, and implementation is expected to 63 64 begin in 2016. In contrast, GAP certification remains voluntary, so rates remain low and implementation 65 remains inconsistent (Gravani, 2009). In a recent survey of diversified fruit and vegetable growers in 66 Oregon, more than half indicated GAP certification resulted in competitive market benefits, but only 25% (4 of 16) of surveyed growers had active GAP certification (Prenguber & Gilroy, 2013). A study in 67 68 Vermont also found 22% of surveyed produce farms had active GAP certification, but that GAP 69 compliant farms were generally larger in terms of acreage than non-certified farms (Becot, Nickerson, 70 Conner, & Kolodinsky, 2012). In a Minnesota survey, more than 65% of vegetable growers — the 71 majority (230 of 237) of whom were small-scale — reported compliance with GAPs (Hultberg, 72 Schermann, & Tong, 2012). However, the authors did not provide data on the number of respondents with 73 active GAP certification. And in the Midwest, the majority of surveyed vegetable growers agreed GAP 74 could reduce the risk of fresh produce contamination, but only 40% implemented GAP at a level of 75 consistency to do so (Ivey, LeJeune, & Miller, 2012).

76 Since GAP certification is not codified regulation, growers reported buyer expectations and 77 maintaining sales and customer accounts as the primary incentives for GAP certification (Becot et al., 78 2012; Bihn & Gravani, 2006; Prenguber & Gilroy, 2013). Wholesale buyers, such as supermarket chains, 79 have used their purchasing power to exert pressure on growers to adopt more stringent food safety 80 standards (Fulponi, 2006) even designating which third-party certifier should be used in some cases 81 (Hatanaka, Bain, & Busch, 2005). Although small-scale growers (defined as those less than 4 ha in size 82 (Newton, 2014) or with gross cash farm income less than \$349,999 (Hoppe & MacDonald, 2013)) rarely 83 reported barriers to GAP implementation when asked directly about economic feasibility (Ivey et al., 84 2012), they were less supportive of the program than large-scale growers and indicated they would side 85 step GAP certification by avoiding wholesale market channels or retailers that required certification 86 (Prenguber & Gilroy, 2013). Small-scale growers also tend to rely on direct-to- consumer marketing 87 channels (Low & Vogel, 2011; Martinez et al., 2010), such as selling produce through Community 88 Supported Agriculture programs (CSAs), which allow them to establish a direct relationship with their 89 customers. Within the local food system, direct-to-consumer produce farms generate almost half of all 90 local food sales (Low et al., 2015). Farmers markets in the mid-Atlantic are also some of the most 91 profitable in the U.S., as 15.4% of vendors have annual sales of \$25,000 or more (USDA, 2009). 92 However, these direct-to-consumer channels may also differ substantially in terms of fresh produce food safety standards. For example, less than 12% of farmers market managers surveyed in Georgia, Virginia 93 94 and South Carolina asked participating vendors about on-farm food safety practices, such as manure use 95 or worker hygiene (Harrison et al., 2013). Taken together, the data suggest a grower's primary market 96 channel may be an important factor in on-farm food safety decision-making. 97 Previous research also indicates that grower response to food safety risks is influenced by the extent they perceive the risks to be within their control (Parker, Wilson, LeJeune, & Doohan, 2012). The 98 99 role of irrigation water quality in produce food safety has been well documented in recent reviews 100 (Beuchat et al., 2006; Suslow et al., 2003), but agricultural water testing remains low. Growers often

indicate that preventing aerial wildlife from accessing (and potentially contaminating) irrigation water

101

102 sources is not feasible (Ivey et al., 2012; Parker, Wilson, LeJeune, Rivers, et al., 2012), but growers may 103 lack access to municipal or groundwater irrigation sources. In a 1998 survey of fruit and vegetable 104 growers in New York, 72% (118 of 163) reported using surface water (including streams, ponds, lakes, or 105 open canals) as an irrigation source, but only 15% reported testing the water in any way (Rangarajan, 106 Pritts, Reiners, & Pedersen, 2002). In a more recent survey, more than half (48 of 84) of New York fruit 107 and vegetable growers reported using surface water to irrigate their crops, but less than 19% of those who 108 applied surface water overhead reported testing the water for any indicators of fecal contamination (such 109 as generic E. coli) (Bihn, Smart, Hoepting, & Worobo, 2013). For growers who do have access to 110 groundwater irrigation sources, the percentage that routinely test for fecal contamination is also low. In a 111 survey of fruit and vegetable growers in six New England states, 73% (217 of 297) used wells as a 112 primary source for irrigation water but only 18% reported testing the water annually (Cohen, 113 Hollingsworth, Brennan Olson, Laus, & Coli, 2005). The discrepancy between knowledge and behavior 114 may be further explained by the low percentage of producers (19%) who believe contamination is likely to occur on the farm (Ivey et al., 2012). 115 116 In Maryland, there are 789 vegetable farms, which produce a wide range of crops including: 117 cantaloupe, cucumbers, potatoes, pumpkins, snap beans, sweet corn, tomatoes and watermelons (USDA, 2014a). The majority of vegetable farms (708 of 789) are fresh market, and more than half of those (391 118 119 of 708) are less than 2 ha in size. Surprisingly, only 8 vegetable farms currently have completed a USDA 120 GAP or Produce GAPs Harmonized audit (USDA AMS, 2013). The Maryland Department of Agriculture 121 (MDA) has also offered a state GAP certification program for direct marketers since 2011 (also referred to as "Maryland GAP") (D. Baldwin, personal communication), and 11 vegetable farms currently have 122 123 MD GAP certification (MDA, 2013). In Delaware, the situation is similar, as the majority of vegetable 124 farms (163 of 222) are fresh market, more than a third are small-scale (72 of 163) (USDA, 2014a), and 125 very few (4 farms) currently have USDA or Produce GAP certification (USDA AMS, 2013). Since the 126 cost of implementing food safety programs is often farm scale-dependent, the smaller operations may lack 127 the capital resources required and elect to forgo GAP certification. However, for mid-Atlantic vegetable

farms not involved in GAP, there is limited information available about what on-farm productionpractices, if any, are being utilized to mitigate food safety risks for their fresh market crop(s).

130 Our goal was to assess Maryland and Delaware vegetable producers' understanding and 131 implementation of GAP. To do so, we designed a survey to assess pre-harvest production practices 132 (including manure and compost application and irrigation water source management) as well as food 133 safety training. The objectives of our survey were to: 1) establish growers' baseline GAP knowledge and 134 utilization, and 2) assess changes in growers' implementation of GAP following targeted workshops and 135 distribution of GAP-related training materials. We hypothesized that production practices and food safety 136 perspectives would differ across market channel, farm scale and years in production. Survey results were 137 used to guide GAP training and continue to be incorporated into University of Maryland Extension 138 educational programs for growers.

139

140 **2.** Materials and methods

141 2.1. Questionnaire development

142 In 2010, we developed a survey on farm demographics and fresh produce food safety. Growers 143 were asked about fruit and vegetable acreage, years in operation, and produce marketing channels. 144 Growers were also asked about GAP certification, pre-harvest production practices including: GAP 145 training, irrigation and pesticide spray water management, manure use and livestock management, and 146 wildlife management; and harvest production practices including: harvest container and produce 147 sanitation (Supplemental Table 1). The 2010 survey also included questions on nutrition grant programs and U-pick operations, which are not discussed in this manuscript. In 2013, the survey was revised: 148 149 questions that did not pertain to food safety were removed, and questions related FSMA were added. The 150 revised survey addressed the same topics as before and had a similar survey completion time. Despite 151 these changes, the questions related to farm demographics and on-farm food safety practices that 152 comprise the data for the analysis remained consistent between survey years. Based on the intended 153 audience, units of measurement within the survey were presented in the U.S. customary, non-metric

system. All survey questions were non-weighted and discrete (yes or no, "select one response" or "select
up to 3 responses"). Both surveys were pretested by Extension specialists and researchers, and reviewed
by the University of Maryland Institutional Review Board and deemed exempt (project #413818-1).

157

158 2.2. Questionnaire delivery

The survey was administered at six commercial fruit and vegetable grower meetings in Maryland between January and April in 2010, and at seven commercial fruit and vegetable grower meetings in Maryland and Delaware between January and February in 2013. Responses were recorded anonymously using Response- Card RF electronic clickers (Turning Technologies, Youngstown, OH). Participation in the survey was completely voluntary; no compensation was provided. Meeting registration lists were used to determine the percentage of attendees present at both the 2010 and 2013 meetings, among the total number of attendees present.

166

167 2.3. Data analysis

168 Probit regression was used to estimate the average marginal effects of farm scale, years in 169 production and market channel on the probability of using different on-farm food safety practices. Some levels of each aforementioned independent variable were aggregated to reduce the frequency of errors due 170 171 to collinearity (which occurs when one or more independent variables in the model is a perfect linear 172 combination of the others), but levels were chosen that maintained distinctions meaningful to the data. 173 Probit regression is commonly applied to survey data, as the model analyzes qualitative binomial response variables based on the cumulative normal probability distribution (Finney, 1971). Descriptive 174 175 statistics were also calculated for the demographic data. Chi-square tests were used to compare the 176 frequency of a particular response across the two surveys. All cross-tabs, probit regressions and other 177 statistical tests were conducted using Stata v. 13.1 for Windows 7 (StataCorp, College Station, TX). Data 178 were considered to be statistically significant at a 95% confidence level (a = 0.05) unless otherwise noted.

179

180 **3. Results**

181 3.1. Survey response and grower demographics

182 A total of 415 surveys were completed, and 313 surveys were analyzed (130 surveys from 2010, 183 to 183 surveys from 2013). A total of 102 surveys were excluded from analysis because respondents 184 either lacked vegetable acreage (65 surveys) or had vegetable acreage but failed to answer at least 60% of 185 questions discussed in this manuscript (37 surveys). Overall, the greatest percentage of respondents 186 produced vegetables on less than 2 ha of land (52.9%) and had been in production 20 years or more 187 (53.6%) (Table 1). When asked about market strategy, 7.2% of all growers sold their produce primarily 188 through wholesale channels (such as supermarkets), while 40.9% of all growers sold their produce 189 primarily through direct channels (such as farmer's markets). Interestingly, more than a third (38.8%) of 190 all growers reported using a combination of wholesale and direct market channels. Although only 13.5% 191 of attendees were present at both the 2010 and 2013 Maryland meetings, no statistically significant 192 differences exist in grower demographics between the 2010 and 2013 samples (vegetable acreage, p =193 0.164; years in production, p = 0.416; market channel: wholesale, p = 0.746; market channel: direct, p = 0.746; mar 194 (0.436). In the 2013 survey, growers were also asked to classify their farm system. The majority (66.7%)195 reported use of conventional farming practices, with only 1.6% of growers being certified organic. The remaining growers reported use of "other" farming practices, including 24.0% who employed primarily 196 197 organic or sustainable farming practices (such as excluding use of synthetic pesticides and intentionally 198 improving soil quality) but were not certified.

199

200 3.2. GAP preparation and implementation

Specific survey questions were included to determine growers' compliance with GAP. The majority of all growers (72.2%) surveyed reported they did not have written policies for how they grew and handled their produce. However, there was a significant increase (χ^2 (1) = 13.28, *p* < 0.001) in the percentage of growers who reported having written policies, from 16.4% in 2010 to 35.6% in 2013. Interestingly, growers who marketed their produce primarily through wholesale channels were 26.7% more likely to have written policies for how they grew and handled their produce (p < 0.001), as

207 compared to growers who marketed their produce primarily through other channels in the 2013 survey
 208 (Table 2).²

209 Growers were also asked if they had obtained third-party GAP certification. Although the majority of all respondents (90.6%) were not GAP-certified, there was a significant increase (χ^2 (1) = 210 12.04, p < 0.001) in the percentage of growers who reported having successfully completed a third-party 211 212 audit, from 2.4% in 2010 to 14.3% in 2013. Growers who produced vegetables on 2-20 ha or who marketed their produce primarily through direct channels were less likely to be GAP-certified (p = 0.014213 214 for both) than those with larger acreage or growers who marketed wholesale or through other channels in 215 the 2013 survey (Table 3). When asked if buyers (such as retailers, processors, customers, etc.) had asked 216 for GAP certification, significantly more growers answered in the affirmative in 2013 as compared to 2010 (χ^2 (1) = 15.60, p < 0.001). Growers who marketed their produce primarily through wholesale 217 218 channels were 23.4% more likely to have been asked by their buyers to obtain GAP certification (p =219 (0.003), as compared to growers who marketed their produce through other channels in the 2013 survey 220 (Table 4). Larger vegetable operations (i.e. more than 20 ha) were also more likely to have pressure from buyers, but the effect was only marginally significant (p = 0.076). 221 222 Growers were also asked about the primary obstacle hindering them from developing written 223 policies for how they grew and handled their produce. About a quarter of all growers did not believe GAP 224 applied to their size farm operation (25.6%) or did not believe they had enough knowledge about GAP to 225 develop a food safety plan (24.3%) (Table 5). Concerns about economic feasibility appeared to be 226 relatively minor, as only 8.6% of all growers reported cost as their primarily obstacle. In the 2010 survey, 227 the greatest percentage of growers reported lack of knowledge as their primary obstacle (43.1%); however, in the 2013 survey, significantly less growers reported this as their primary obstacle (10.9%: γ^2 228

 $^{^2}$ For ease of exposition, average marginal effects are presented within the text and tables for the probit models for each of the food safety practices. The average marginal effect of a regressor is the amount by which the conditional probability of the outcome variable changes due to a one-unit increase in the regressor. The underlying probit regression coefficients are available upon request.

(1) = 42.73, p < 0.001). Surprisingly, in the 2013 survey, not being required to have written policies was the major reason (27.3%) growers selected for why they had not developed a food safety plan.

231

232 3.3. Pre-harvest production practices: irrigation and pesticide spray water management

233 When asked about their source of irrigation water, 48.5% of 2010 growers and 23.4% of 2013 234 growers indicated they used surface water (including ponds, rivers and streams) at least some of the time. 235 Groundwater (including shallow and deep wells and municipal) was used for irrigation at least some of 236 the time by the majority of all growers. More than 76% of all growers did not test their irrigation water at least once a year for indicators of fecal contamination. However, there was a significant increase (χ^2 (1) 237 238 = 16.48, p < 0.001) in the percentage of growers who reported testing their irrigation water at least once 239 per year, from 11.5% in 2010 to 31.9% in 2013. Growers who marketed their produce primarily through 240 wholesale channels were 23.5% more likely to test their irrigation water at least once a year (p = 0.001) 241 relative to growers marketing through other channels in the 2013 survey (Table 6). Growers were also 242 asked about their source of pesticide spray water. More than 91% of all growers used groundwater for 243 pesticide applications — the majority of which originated from deep wells - with only 6.4% of growers 244 indicating they used surface water.

When asked how their vegetable acreage is irrigated, the majority (70.6%) of all growers reported using trickle (drip) irrigation at least some of the time. Interestingly, there was a significant decrease (χ^2 (1) = 4.73, *p* = 0.030) in the percentage of growers who reported using trickle (drip) irrigation for more than half of their vegetable acreage, from 52.3% in 2010 to 39.9% in 2013. Growers were also asked what other types of irrigation they use on their fresh produce. Overhead or sprinkler irrigation was used by 23.5% of growers in the 2013 survey, followed by furrow and flood irrigation (1.1% each).

251

252 3.4. Pre-harvest production practices: manure use, livestock on farm and access to crop fields

The majority of all growers (60.4%) reported applying manure, compost or bio-solids to their vegetable acreage. However, not all growers had on-farm sources of manure or compost. In the 2013 survey, more than half of growers (56.8%) indicated they did not have livestock or poultry on their farm.
Of those with domestic animals, poultry (free range and confined; 21.3%) and cattle (beef and dairy;
18.0%) were most frequently reported. Some growers did report raising small ruminants (sheep and goats;
8.2%) and swine (4.4%) on their farm. When asked if their livestock or poultry had access to their crop
fields during the year, the majority of growers (70.3%) answered "no". More than 14% of growers
allowed domestic animals to enter crop fields after harvest, and two growers allowed domestic animals to
enter crop fields during the growing season.

262

263 3.5. Pre-harvest production practices: wildlife access to crop fields

264 The majority of all growers (80.9%) reported that wildlife accessed their production fields daily 265 during the growing season. However, a significantly lower percentage of growers answered in the 266 affirmative in the 2013 survey (76.6%), as compared to the 2010 survey (86.7%) (χ^2 (1) = 4.85, p = 267 0.028). Growers who marketed their produce primarily through wholesale channels were more likely report daily wildlife access in their fields (p = 0.013) as compared to growers who marketed their produce 268 primarily through other channels in the 2010 survey (Table 7), while growers who produced vegetables 269 270 on more than 2 ha were more likely to report daily wildlife access in their fields in the 2013 survey (Table 271 7). Growers were also asked what preventative measures they use to control wildlife access. In the 2013 272 survey, the greatest percentage of growers reported using crop damage permits or hunting (50.8%), 273 followed by fencing (36.1%), chemical repellents (16.4%), domestic guard dogs (15.9%) and netting 274 (12.6%). Interestingly, 18.0% of growers reported not employing any preventative measures to control 275 wildlife access to their production fields. 276

277 3.6. Pre-harvest production practices: GAP training for self and workers

In the 2010 survey, more than half of growers (59.3%) indicated they had not received any food safety or GAP training in the last 3 years. However, growers who had been in operation more than 20 years were more likely to report having attended a training session within the last three years (p < 0.001), 281 as compared to those who had been in operation less than five years (Table 8A). Of those who reported 282 attending a food safety or GAP training in the 2010 survey, the largest percentage had done so within the 283 last year (21.5%). In the 2013 survey, the percentage of growers without recent food safety or GAP 284 training was significantly less (27.6%; χ^2 (1) = 29.66, p < 0.001), and almost half of all growers reported 285 attending a training session within the last year (45.4%). Growers were also asked if their hired workers 286 had received any food safety or GAP training in the last three years. Half of all growers reported that their 287 employees had not attended a recent training session. However, the percentage of hired workers without any recent food safety or GAP training was significantly less (χ^2 (1) = 4.04, p = 0.045) in the 2013 288 289 survey (43.2%) as compared to the 2010 survey (60.0%). Again, growers who had been in operation more 290 than 20 years were more likely report that their employees attended a training session within the last 3 291 years (p < 0.001) in the 2013 survey (Table 8B). Although growers who produced vegetables on 2-20 ha 292 were 21.5% less likely to report any recent food safety or GAP training for their hired workers, this effect 293 was only marginally significant (p = 0.106).

294

295 3.7. Harvest production practices: field packing activities

Growers were also asked about field harvest production practices related to sanitization of 296 297 containers and cleaning of vegetables. The majority of all growers (84.2%) surveyed reported they did sanitize their harvest containers at least once during the season. There was also a significant increase (χ^2 298 299 (1) = 10.85, p < 0.001) in the percentage of growers who reported sanitizing their harvest containers, 300 from 75.4% in 2010 to 90.0% in 2013. No independent variable (i.e. farm scale, years in production or 301 market channel) significantly impacted the likelihood of this on-farm production practice (Table 9). 302 Growers were also asked what cleaning method(s) and sanitizer(s) they used on their crop prior to sale or 303 storage. In the 2010 survey, the largest percentage of growers reported washing their produce by hand 304 (39.2%), followed by use of spray washers (6.9%) and flumes (5.4%). In the 2013 survey - which 305 included additional response options - the largest percentage of growers reported washing their produce 306 with plain water (47.0%), followed by wiping with a cloth (29.5%), and cleaning with chlorinated water

307 (18.6%) or water containing another disinfectant (such as soap) (3.8%). About one quarter (24.9%) of all
308 growers reported not cleaning their crop prior to sale or storage.

309

310 3.8. Modifications to production practices since 2010

311 In the 2013 survey, growers were asked what on-farm production practices they had modified or 312 implemented in the last three years in response to concerns about food safety. About a quarter of growers 313 reported improving their record keeping (24.6%), improving the food safety or GAP training their hired workers received (24.0%), or implementing preventative measures to restrict wildlife access to their 314 production fields (26.8%). More than one-third of growers reported increasing their use of trickle (drip) 315 316 irrigation (38.8%) or increasing how often they cleaned their harvest containers (39.3%). Additionally, 317 29.5% of growers indicated they had started testing their irrigation water source(s) for indicators of fecal 318 contamination.

319

320 4. Discussion

321 This report on vegetable growers' knowledge and on-farm implementation of GAP is, to our 322 knowledge, the most extensive survey of its kind carried out in the mid-Atlantic region to date. For the 323 most part, production practices and food safety perspectives did not differ across farm scale or years in 324 production. This finding is similar to previous GAP research in Pennsylvania that found no significant 325 relationship between farm scale and a grower's likelihood to write a food safety plan or apply for third-326 party certification (Tobin, Thomson, LaBorde, & Radhakrishna, 2013). However, we found market channel did influence a grower's decision to implement some food safety practices. Less than 10% of all 327 328 surveyed growers reported marketing their produce primarily through wholesale channels, but in our 2013 329 survey, this group was significantly more likely to: have written policies for how they grew and handled 330 their produce, test their irrigation water at least once a year, or be GAP-certified. In contrast, the largest 331 proportion of all surveyed growers reported marketing their produce primarily through direct channels, 332 and this group was significantly less likely to be GAP-certified. Although direct-to-consumer sales in the

333 U.S. currently account for less than 2% of total fresh produce sales (Cook, 2011), they are a fast-growing 334 segment of agricultural sales (Low et al., 2015) and a focus of current U.S. policy (Johnson, Aussenberg, 335 & Cowan, 2013), due in part to consumer demand for locally produced foods (reviewed in Martinez et al., 336 2010). With its densely populated urban areas, the mid-Atlantic region has some of the most successful 337 farmers markets, in terms of sales and number of customers per week (USDA, 2009). Previous studies 338 have found consumers' willingness to pay is greater for local versus non-local fresh produce (Adams & 339 Adams, 2011) but similar for organic versus locally grown tomatoes (Yue & Tong, 2009). There is also 340 evidence that local food systems support regional economic growth, as Brown, Goetz, Ahearn, and Liang 341 (2014) found a positive financial association between the level of direct sales in community-focused agriculture and growth in total farm sales in certain regions including Maryland. 342

343 Unfortunately, few publications have investigated the impact of market channel on growers' 344 certification decisions and implementation of produce safety practices. When asked about potential 345 solutions to marketing challenges, organic produce growers in California ranked "food safety regulations 346 accounting for marketing methods" as one of the top recommendations (Cantor & Strochlic, 2009), yet 347 surprisingly, research has shown that fruit and vegetable growers who reported direct marketing as the 348 most economically important channel had significantly less certified organic acreage (Monson, Mainville, 349 & Kuminoff, 2008; Veldstra, Alexander, & Marshall, 2014). Market channel was correlated with produce 350 safety measures in a recent survey by Lichtenberg and Tselepidakis (unpublished data), who found the 351 share of fresh vegetables sold to retail or foodservice establishments was positively, albeit marginally, 352 associated with the probability of testing water, soil amendments or crop samples for indicators of fecal contamination. In our survey, very few growers who sold their produce exclusively through direct 353 354 channels had been asked by their buyers (such as farm market managers or CSA members) to obtain GAP 355 certification. In contrast, growers who sell their produce through wholesale supermarket chains are 356 increasingly required to provide evidence of compliance with food safety standards through third-party 357 certification (Hatanaka et al., 2005) or GAP (Tobin, Thomson, LaBorde, & Bagdonis, 2011) in order to 358 maintain the business relationship. This de facto mandatory practice is appealing to wholesale operations,

which account for an estimated 57% of total fresh produce sales (Cook, 2011), as it shifts the
responsibility and liability for produce safety from wholesale operations onto third-party certifiers and
suppliers (Hatanaka et al., 2005). Further data is needed to assess the impact of direct-to-consumer
marketing on on-farm food safety practices, as a production decision to implement GAP and a marketing
decision to certify are likely interrelated, but separate, business decisions.

364 In this survey, only a quarter of all growers tested their irrigation water at least once a year for generic E. coli, an indicator of fecal contamination. Previous surveys in other regions have reported 365 366 similarly low routine testing of irrigation water, both from groundwater sources (18% in Cohen et al., 367 2005) and surface water sources (19% in Bihn et al., 2013). Growers may decide not to test an irrigation 368 water source for a myriad of reasons including concerns about cost and limited control over the water 369 source. Adjacent land use (such as grazing cattle or applying animal manure) and runoff from nearby 370 livestock or poultry operations have been shown to impact the prevalence and concentration of bacteria in 371 the aquatic environment (Chen & Jiang, 2014; Harmel, Karthikeyan, Gentry, & Srinivasan, 2010; 372 Thurston-Enriquez, Gilley, & Eghball, 2005). Growers may also lack alternative water sources. In the 373 mid-Atlantic region, vegetable growers primarily reported irrigating their crops with groundwater, but 374 about 30% reported irrigating with surface water some of the time. Surface water has been identified as a 375 predominant Salmonella reservoir in the eastern U.S. (Micallefet al., 2012; Strawn et al., 2013), and in 376 2005, a Salmonella Newport strain isolated from a pond used to irrigate tomatoes on the eastern shore of 377 Virginia was matched to the outbreak strain (Greene et al., 2008). This is of particular concern for 378 growers who use overhead or sprinkler irrigation systems, as non-pathogenic E. coli strains have been 379 consistently recovered from field-grown leafy greens following overhead irrigation with contaminated 380 water (Wood, Bezanson, Gordon, & Jamieson, 2010; Fonesca, Fallon, Sanchez, & Nolte, 2011). 381 However, the absence of generic E. coli does not mean the water is free of foodborne pathogens, and the 382 lack of the predictive correlation between this indicator and pathogenic E. coli (and other human 383 pathogens) in fresh produce has been well documented (reviewed in Busta et al., 2003). Since agricultural 384 water is an important potential source of pre-harvest microbial contamination, the proposed produce

safety standards within FSMA do include requirements related to routine water testing. However, the
Tester-Hagen Amendment exempts small- scale and local food growers, and other growers may be
exempt from the regulation due to their water source, irrigation system used or the crop(s) grown (U.S.
FDA, 2013). Since fresh market vegetable production within Maryland and Delaware is predominantly
small-scale and qualifies for the statutory exemption, routine testing of irrigation water in the midAtlantic is likely to remain low.

391 The potential role of wildlife in pre-harvest contamination of fresh produce also remains unclear. 392 Although migratory birds (such as geese, ducks and gulls) are thought to be involved in the dispersal of 393 human pathogens (reviewed in Hubalek, 2004), several studies examining the prevalence of E. coli 394 O157:H7 in Canadian geese failed to identify the pathogen (reviewed in Langholz & Jay-Russell, 2013). 395 This is fortuitous for the mid-Atlantic, which lies within a major bird migration route known as the 396 Atlantic Flyway (U.S. Fish and Wildlife Service, 2012). In the rare case where a direct link between 397 wildlife and a foodborne illness outbreak could be established, E. coli O157:H7 isolated from feral pigs 398 was matched to the outbreak strain associated with spinach in 2006 (Jay et al., 2007), Campylobacter 399 *jejuni* isolated from Sandhill cranes was matched to the outbreak strain associated with peas in 2008 400 (Gardner et al., 2011), and E. coli O157:H7 isolated from deer was matched to the outbreak strain 401 associated with strawberries in 2011 (Laidler et al., 2013). In this survey, the majority of our surveyed 402 growers reported daily intrusion of wildlife into production fields during the growing season, but 403 approximately one-fifth of growers did not employ any preventative measures to minimize or prevent 404 access. Previous studies have documented growers' concerns that the food safety risk(s) posed by wildlife 405 are beyond their control (Parker et al., 2012b), or that preventative strategies are not economically 406 feasible (Ivey et al., 2012) or contradict environmental regulation designed to protect wildlife and 407 growers' desire to be responsible "stewards of the land" (Beretti & Stuart, 2008; Lowell, Langholz, & 408 Stuart, 2010). Concerns about the impact of food safety practices on land-use are supported by a recent 409 study in California, which documented the degradation and/or elimination of more than 13% of riparian 410 habitat in a major produce-growing region in the 5-year period following the 2006 E. coli O157:H7

411 outbreak associated with spinach (Gennet et al., 2013). The FDA has also responded to public concern 412 that the produce safety standards may promote practices that adversely affect wildlife and animal habitat 413 by proposing a new provision that clarifies FSMA's compliance with the Endangered Species Act and 414 encouragement of environmental stewardship (U.S. FDA, 2014). However, growers may also have a more 415 *laissez-faire* attitude regarding wildlife as they believe most fresh produce contamination occurs within 416 the home (Ivey et al., 2012; Parker et al., 2012a), and the consumer has greater responsibility for ensuring 417 raw meat food safety than they do (Erdem, Rigby, & Wossink, 2012). A national survey of U.S. consumers found only 53% of respondents always wash their hands before they handle produce and only 418 419 28% of respondents separated fresh produce from raw meat within a shopping bag (Li-Cohen & Bruhn, 420 2002), which helps explain why growers across all farm scales expressed concerns about consumer 421 behavior and in-home food preparation (Parker et al., 2012b).

422 In this survey, less than 10% of all growers indicated that financial constraints were the primary 423 obstacle for GAP implementation. This finding is similar to what Ivey et al. (2012) reported for 424 Midwestern vegetable growers, who agreed on-farm food safety practices were generally economically 425 feasible. However, the cost of implementing these preventative measures is often scale- dependent, and 426 growers may underestimate the total expenditures required for GAP certification. Larger operations also 427 tend to have lower production costs per pound, whereas smaller operations may be capital and/or labor poor. A study looking at fresh market strawberry production and the adoption of five food safety practices 428 429 (including routine irrigation water testing) across different farm scales estimated that the additional cost 430 per hectare for smaller growers would be four times more than that for larger ones (\$720 per hectare 431 versus \$165 per hectare; Woods & Thornsbury, 2005). More recently, Becot et al. (2012) used data 432 obtained from online surveys and in-depth interviews to analyze the costs of GAP certification (i.e. 433 infrastructure, equipment and labor) for diversified, small- and medium-scaled farms in Vermont. They 434 estimated the average cost for GAP certification per farm ranged between \$2599 and \$3983, but found no 435 significant difference in spending based on primary market strategy (<50% of produce sold through 436 wholesale channels versus >50%; Becot et al., 2012). Produce food safety costs also occupy a greater

437 percentage of gross farm cash income for growers with lower sales. Among GAP-certified fruit and 438 vegetable growers in Oregon, for example, those with gross farm cash incomes of \$2758 per hectare spent 439 about 12% on food safety, whereas those with gross farm cash incomes of \$23,718 per hectare spent less 440 than 2% (Prenguber & Gilroy, 2013). Interestingly, a recent survey on the cost of on-farm produce safety 441 measures in the mid-Atlantic found only a handful of practices (such as employee training and sanitizing 442 harvest containers) were likely to be financially burdensome for smaller operations (Lichtenberg and 443 Tselepidakis, unpublished data). One possible explanation for the low rate of GAP implementation, despite the perceived low economic burden, is the lack of evidence that the financial investment for GAP 444 445 results in sustained profits, access to new markets or other benefits (Parker et al., 2012a; Tobin, Thomson, 446 & LaBorde, 2012). Furthermore, economic incentives (such as higher prices or reduced storage costs) are 447 dependent on the ability of the marketing system to segregate GAP-certified from non-certified produce 448 (Hobbs, 2003). Hardesty and Kusunose (2009) found that California leafy greens growers did not receive 449 a price premium for implementing the compliance requirements of the Leafy Greens Marketing 450 Agreement (LGMA), but LGMA does differ from other food safety programs as it has nearly 100% 451 grower adoption. And although Ribera, Palma, Paggi, Knutson, and Masabn (2012) found that the 452 compliance costs incurred by growers to demonstrate food safety assurance are much lower than the costs 453 incurred during a produce-associated outbreak (i.e. declining sales and unsaleable product), it is unlikely 454 that the growers with GAP certification are buffered from the volatile market during an outbreak.

455

456 **5.** Conclusions

457 Overall, mid-Atlantic vegetable growers' knowledge and on- farm implementation of GAP 458 appears to be improving, as evident by the increased percentage of growers who reported microbial 459 testing of irrigation water, attending a GAP training, having hired workers attend a GAP training, and 460 sanitizing harvest containers. Between 2010 and 2013, University of Maryland Extension offered eleven 461 educational workshops on food safety that were attended by more than 250 produce growers. It is 462 probable the increase we observed for some on-farm GAP activities is connected to the extension 463 programming. However, the effectiveness of the knowledge-deficit model (which attributes non-464 compliance to lack of information) in the context of food safety remains uncertain (Webster, Jardine, 465 Cash, & McMullen, 2010; Parker et al., 2012a). For example, while pre- and post-evaluations from 466 growers who attended GAP trainings offered by Penn State Extension did indicate an overall increase in 467 technical knowledge, changes in on-farm food safety practices were largely absent, as only a minority of growers had written policies, conducted a self-audit, or applied for third-party certification six months 468 469 later (Tobin et al., 2013). Additionally, food safety training has not generally been targeted at the farm 470 level, but a previous study on hand hygiene among hired produce workers did show that perceived 471 behavioral control (i.e. fewer barriers) was a significant predictor of handwashing intention (Soon & 472 Baines, 2012). Consequently, field days focused on food safety and held at agricultural experiment 473 stations or volunteer farms could be a valuable educational tool, facilitating discussion and peer-learning 474 through demonstrations, mock GAP inspections and hands-on activities. In this study, we did not find a 475 significant influence of farm scale or years in production on food safety practices, and economic 476 feasibility does not appear to be the primary driver for growers who forgo GAP certification. However, 477 market channel did impact a grower's likelihood to have written policies, test irrigation water, and obtain 478 GAP certification, and strong differences were observed between wholesale and direct-to- consumer 479 growers. While extension programming should continue to focus on supporting the needs of growers who 480 elect to implement GAP, food safety outreach may benefit from expanding to involve farm market 481 managers and personnel in intermediate market channels such as local food hubs. More research is needed 482 to better understand how market channel works with other grower characteristics to influence decisionmaking activities including on-farm food safety practices. However, this new information further 483 484 highlights the complexity of the issue at hand and the need for GAP educational programs to expand beyond a one-size-fits-all approach. 485

6. Study limitations

As in similar survey-based research, the main limitations included: coverage errors, non-response
and measurement errors, and selection bias. The failure to track individual responses across the surveys
was also a major limitation.

490 Acknowledgments

- 491 The 2010 survey was funded by University of Maryland Extension. The 2013 survey was funded
- from USDA-NIFA Specialty Crop Research Initiative grant number: 2011-51181-30767. The sponsor
- 493 played no role in the study design and implementation. Any opinions, findings and conclusions expressed
- in this material are those of the authors and do not necessarily reflect the views of the USDA-NIFA.

495 Appendix A. Supplementary data

Торіс	Question
Farm demographics	How long have you been growing vegetables and fruit?
	How many acres of vegetables do you produce?
	How is your produce marketed?
	How would you classify your farming operation? *
GAP implementation	Do you have written procedures and policies for how you grow and handle your
	produce?
	Have you completed a GAP third party certification?
	Have your buyers asked you to have a third party GAP certification?
	What obstacles are keeping you from developing a GAP plan for your operation?
	When was the last time you attended a GAP training?
	If you have hired workers, when was the last time your workers attended a GAP
	training?
Irrigation and spray water	If you use irrigation, what is/are the source(s) of the water?
	How often do you have all of your water sources tested for bacterial contamination?
	What is the source of water for pesticide spray applications?
	If you use irrigation, what percentage of your acreage is trickle or drip irrigated?
	If you irrigate your fruit or vegetables, what type(s) of irrigation do you use? *
Livestock and manure	What percentage of your fruit or vegetable acreage is fertilized with compost or manure?
	If you have livestock on your farm, what is/are the main animal type(s)? $*$
	Do you allow livestock animals to have access to your produce fields at any time
	during the year? *
Wildlife access and control	How frequently do domestic animals and wildlife access your crop fields during the
	growing season?
	If you use preventative measures to control wildlife access or damage to your produce
	crops, what
	types of measures do you use? *
Harvest practices	How often are harvest containers washed or sanitized?
	If you clean your vegetables prior to sale, what is the main cleaning method?
Other	Since 2010, what production practices have you changed or started? *

496 Supplemental Table 1. Analyzed questions from 2010 and 2013 surveys.

⁴⁹⁷ ^{*} Indicates question was only asked in 2013 survey.

Distribution of responses (%) Variable Level 2010 2013 Total Census data for MD and DE^c <2 ha 54.5 51.8 52.9 46.5 Vegetable acreagea 34.1 28.8 31.1 32.9 2-20 ha >20 ha 11.4 19.4 16.0 20.6 <5 years 16.8 11.4 13.7 11.4 Years in production 5-20 years 32.0 33.1 32.6 55.4 >20 years 51.2 53.6 Wholesale 7.1 7.3 7.2 42.5 39.9 40.9 Direct Marketing channel^b Combination 39.8 38.2 38.8

498 Table 1. Descriptive summary of mid-Atlantic vegetable grower demographics.

a. Acreage in hectares.

b. Respondents allowed to select "primarily wholesale", "primarily direct", "combination or
wholesale and direct" or "processing".

14.6

10.6

502 c. Combined USDA-NASS Census of Agriculture acreage data and principal operator tenure data

13.5

for vegetable farms in Maryland (N = 789) and Delaware (N = 222) presented for farm scale and

504 years in production comparisons. Due to differences in response scale between this survey and

the USDA-NASS census, only <5 years is included in the table. Data not available for primary

506 market channel of vegetable farms by individual state.

Processing

507 Table 2. Marginal effects of farm scale, years in production and market channel on the probability

508 of having written policies for the growing and handling of produce by survey year.

Variabla	2010 probit result	s 2013 probit results
v ariable=	Average marginal effect ^b Sign	ificance level ^c Average marginal effect Significance level
	Vegetable	e acreage (<2 ha)
2–20 ha	0.043	-0.015
>20 ha	0.127	0.114
	Production	n years (<5 years)
5-20 years	0.078	0.050
>20 years	0.123	0.005
	Market	channel (other)
Wholesale market	0.045	0.267 ****
Direct market	0.109	-0.075

a. Reference categories are in boldface and shown in parentheses. Responses were significantly

510 different (p < 0.001) by survey year.

b. Average marginal effects calculated from the probit regression coefficients.

512 c. $*P \le 0.10; **P \le 0.05; ***P \le 0.01; ****P \le 0.001.$

513 Table 3. Marginal effects of farm scale, years in production and market channel on the probability

of having completed a GAP third party certification by survey year.

T 7 --1-1 -9	2010 probit results ^d	2013 probit results	
variable"	Average marginal effect ^b Significance level ^c	Average marginal effec	t Significance level
	Vegetable acreage (<2 ha	a)	
2–20 ha		-0.154	***
>20 ha		-0.023	
	Production years (<5 year	rs)	
5-20 years		(not estimable) ^{<u>e</u>}	
>20 years		(not estimable)	
	Market channel (other)		
Wholesale market	t .	0.286	****
Direct market		-0.150	***
a. Reference	e categories are in boldface and shown in par	rentheses. Responses v	vere significantly

515	a.	Reference categories are in boldface and shown in parentheses. Responses were significantly
516		different ($p < 0.001$) by survey year.

b. Average marginal effects calculated from the probit regression coefficients.

518 c.
$$*P \le 0.10; **P \le 0.05; ***P \le 0.01; ****P \le 0.001.$$

- d. Probit model for 2010 survey data not estimable due to collinearity.
- e. Production years omitted from the model due to collinearity.

521 Table 4. Marginal effects of farm scale, years in production and market channel on the probability

522	of having been asked by buyers for GAP certification by survey year.
-----	--

X 7 --1-1 -9	2010 probit results <u>d</u>	2013 probit	results
v ariable "	Average marginal effect ^b Significance level ^c Av	erage marginal effect	Significance level
	Vegetable acreage (<2 ha)		
2–20 ha		-0.065	
>20 ha		0.195	*
	Production years (<5 years)		
5-20 years		(not estimable) ^{<u>e</u>}	
>20 years		(not estimable)	
	Market channel (other)		
Wholesale market	t .	0.234	***
Direct market		-0.087	
a. Reference	ce categories are in boldface and shown in	parentheses. Respo	onses were
significa	antly different ($p < 0.001$) by survey year.		
b. Average	marginal effects calculated from the probi	t regression coeffic	cients.
c. $*P \le 0.1$	$0; **P \le 0.05; ***P \le 0.01; ****P \le 0.00$	1.	

d. Probit model for 2010 survey data not estimable due to collinearity.

e. Production years omitted from the model due to collinearity.

530 Table 5. Primary obstacles hindering growers from developing a food safety plan for their farm.

Deersonee	Distribution (%) and number of responses			
Response	2010	2013	Total	
Lack of knowledge	43.1 (56)	10.9 (20)	24.3	
Lack of assistance/personnel	16.9 (22)	8.7 (16)	12.1	
Lack GAP training	22.3 (29)	_	22.3	
Doesn't apply to my size operation	a 33.1 (43)	20.2 (37)	25.6	
Requires too much time	16.2 (21)	7.1 (13)	10.9	
Costs too much	10.8 (14)	7.1 (13)	8.6	
I'm not required to do so	_	27.3 (50)	27.3	

531 Data analyzed from 130 growers in 2010 survey and 183 growers in 2013 survey. Growers were allowed

to select up to 3 answers. All responses except "costs too much" (p = 0.255) were significantly different

between survey years (p < 0.05). – indicates response was not an option for that survey year.

534 Table 6. Marginal effects of farm scale, years in production and market channel on the probability

535	f testing irrigation water annually for indicators of fecal contamination by survey year.

Vanabla	2010 probit results	2013 probit resul	ts
v ariable=	Average marginal effect ^b Significa	nce level ^c Average marginal effect Sign	nificance level
	Vegetable acr	reage (<2 ha)	
2–20 ha	-0.038	-0.107	
>20 ha	-0.015	0.033	
	Production year	ars (<5 years)	
5-20 years	0.077	0.072	
>20 years	0.079	0.184	
	Market char	nnel (other)	
Wholesale market	0.035	0.235	****
Direct market	-0.049	-0.402	
a. Referenc	e categories are in boldface and sh	nown in parentheses. Responses were	significantly
different	(p < 0.001) by survey year.		

b. Average marginal effects calculated from the probit regression coefficients.

539 c. $*P \le 0.10; **P \le 0.05; ***P \le 0.01; ****P \le 0.001.$

536

537

540 Table 7. Marginal effects of farm scale, years in production and market channel on the probability

		1 /*	0 11 1 ·	•	1
541	of daily wildlife access to	production	fields during	growing se	ason by survey year
0.1	of during which deceess to	production	noras aaring	Stowing be	aboli by but toy your.

	2010 probit	results	2013 probit	results
v ariable=	Average marginal effect	^b Significance level ^g	Average marginal effect	t Significance level
	Ve	egetable acreage (<2	ha)	
2–20 ha	0.056		0.178	**
>20 ha	0.047		0.306	****
	Pro	duction years (<5 ye	ars)	
5-20 years	0.094		0.086	
>20 years	0.021		0.119	
	Ν	Aarket channel (othe	r)	
Wholesale market	0.197	***	-0.019	
Direct market	-0.028		0.022	

542 a. Reference categories are in boldface and shown in parentheses. Responses were 543 significantly different (p < 0.001) by survey year.

b. Average marginal effects calculated from the probit regression coefficients.

545 c. $*P \le 0.10; **P \le 0.05; ***P \le 0.01; ***P \le 0.001.$

	2010 probit results		2013 probit results	
A) Variableª	Average marginal effect <u>^b</u>	Significance level ^c	Average marginal effect	Significance level
Vegetable acrea	ge (<2 ha)			
2–20 ha	-0.132		-0.087	
>20 ha	-0.097		-0.081	
Production year	s (<5 years)			
5-20 years	0.142		0.048	
>20 years	0.274	**	0.049	
Market channel	(other)			
Wholesale market	-0.107		0.094	
Direct market	0.127		0.107	
	2010 probit results		2013 probit results	
B) Variableª	Average marginal effect	Significance level ^{<u>b</u>}	Average marginal effect	Significance level
Vegetable acrea	ge (<2 ha)			
2–20 ha	0.109		-0.215	*
>20 ha	0.159		-0.109	
Production year	s (<5 years)			
5-20 years	0.038		0.289	*
>20 years	0.113		0.524	****
Market channel	(other)			
Wholesale market	0.095		-0.035	
Direct market	0.240		-0.039	

547 of food safety or GAP training of self (A) and workers (B) by survey year.

a. Reference categories are in boldface and shown in parentheses. Responses were significantly different (*p* < 0.05) by survey year.
b. Average marginal effects calculated from the probit regression coefficients.
c. **P* ≤ 0.10; ***P* ≤ 0.05; ****P* ≤ 0.01; *****P* ≤ 0.001.

552 Table 9. Marginal effects of farm scale, years in production and market channel on the probability

	Voriabla	2010 probit results	2013 probit results
	v ariable "	Average marginal effect ^b Signifi	cance level ^{<u>c</u>} Average marginal effect Significance level
		Vegetable	acreage (<2 ha)
	2–20 ha	-0.029	-0.013
	>20 ha	-0.234	-0.038
		Production	years (<5 years)
	5–20 years	0.018	0.138
	>20 years	-0.056	0.121
		Market ch	annel (other)
	Wholesale market	0.011	-0.009
	Direct market	0.001	-0.063
554	a. Reference	e categories are in boldface and	shown in parentheses. Responses were significantly
555	different ((p = 0.001) by survey year.	

553 of yearly sanitization of harvest containers by survey year.

- b. Average marginal effects calculated from the probit regression coefficients.
- 557 c. $*P \le 0.10; **P \le 0.05; ***P \le 0.01; ****P \le 0.001.$

558

References

559	Adams, D. C., & Adams, A. E. (2011). De-placing local at the farmers' market: consumer conceptions of
560	local foods. Journal of Rural Social Sciences, 26, 74-100.

- Becot, F. A., Nickerson, V., Conner, D. S., & Kolodinsky, J. M. (2012). Costs of food safety certification
 on fresh produce farms in Vermont. *HortTechnology*, 22, 705-714.
- Beretti, M., & Stuart, D. (2008). Food safety and environmental quality impose conflicting demands on
 Central Coast growers. *California Agriculture*, 62, 68-73
- 565 Berger, C. N., Sodha, S. V., Shaw, R. K., Griffin, P. M., Pink, D., Hand, P., et al. (2010). Fresh fruit and
- vegetables as vehicles for the transmission of human pathogens. *Environmental Microbiology*, *12*,
 2385-2397.
- Beuchat, L. R. (2006). Vectors and conditions for preharvest contamination of fruits and vegetables with
 pathogens capable of causing enteric diseases. *British Food Journal*, *108*, 38-53.
- 570 Bihn, E. A., & Gravani, R. B. (2006). Role of Good Agricultural Practices in fruit and vegetable safety. In
- 571 K. R. Matthews (Ed.), *Microbiology of fresh produce* (pp. 21-53). Washington D.C: ASM Press.
- 572 Bihn, E. A., Smart, C. D., Hoepting, C. A., & Worobo, R. W. (2013). Use of surface water in the
- production of fresh fruits and vegetables: a survey of fresh produce growers and their water
 management practices. *Food Protection Trends*, *33*, 307-314.
- Brown, J. P., Goetz, S. J., Ahearn, M. C., & Liang, C. (2014). Linkages between community- focused
 agriculture, farm sales, and regional growth. *Economic Development Quarterly*, 28, 5-16.
- 577 Busta, F. F., Suslow, T. V., Parish, M. E., Beuchat, L. R., Farber, J. N., Garrett, E. H., et al. (2003). The
- use of indicators and surrogate microorganisms for the evaluation of pathogens in fresh and freshcut produce. *Comprehensive Reviews in Food Science and Food Safety*, 2,179-185.
- 580 Cantor, A., & Strochlic, R. (2009). *Breaking down market barriers for small- and midsized organic*
- 581 *growers*. California Institute for Rural Studies. Available at http://
- 582 www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5081306.

- 583 Chen, Z., & Jiang, X. (2014). Microbiological safety of chicken litter or chicken litter- based organic
 584 fertilizer: a review. *Agriculture*, *4*, 1-29.
- Cohen, N., Hollingsworth, C. S., Brennan Olson, R., Laus, M. J., & Coli, W. M. (2005). Farm food safety
 practices: a survey of New England growers. *Food Protection Trends*, 25, 363-370.
- 587 Cook, R. L. (2011). Fundamental forces affecting U.S. fresh produce growers and marketers. *Choices*, 26.
- Available at http://www.choicesmagazine.org/choices- magazine/submitted-articles/fundamental forces-affecting-us-fresh-produce- growers-and-marketers.
- 590 Critzer, F. J., & Doyle, M. P. (2010). Microbial ecology of foodborne pathogens associated with produce.
 591 *Current Opinion in Biotechnology*, *21*,125-130.
- 592 DeWaal, C. S., Tian, X. A., & Bhuiya, F. (2008). Outbreak alert! 2008: Closing the gaps in our federal
- 593 *food-safety net*. Final Report. Center for Science in the Public Interest. Available at

594 http://cspinet.org/new/pdf/outbreak_alert_2008_report_final.pdf.

- Erdem, S., Rigby, D., & Wossink, A. (2012). Using best-worst scaling to explore perceptions of relative
 responsibility for ensuring food safety. *Food Policy*, *37*, 661-670.
- 597 Finney, D.J. (1971). *Probit analysis* (3rd ed.). Cambridge: Cambridge University Press.
- 598 Fonesca, J. M., Fallon, S. D., Sanchez, C. A., & Nolte, K. D. (2011). Escherichia coli survival in lettuce
- 599 fields following its introduction through different irrigation systems. *Journal of Applied*600 *Microbiology*, *110*, 893-902.
- Fulponi, L. (2006). Private voluntary standards in the food system: the perspective of major food retailers
 in OECD countries. *Food Policy*, *31*, 1-13.
- Gardner, T. J., Fitzgerald, C., Xavier, C., Klein, R., Pruckler, J., Stroika, S., et al. (2011). Outbreak of
- 604 Campylobacteriosis associated with consumption of raw peas. *Clinical Infectious Diseases*, 53,
 605 26-32.
- 606 Gennet, S., Howard, J., Langholz, J., Andrews, K., Reynolds, M. D., & Morrison, S. A. (2013). Farm
- 607 practices for food safety: an emerging threat to floodplain and riparian ecosystems. *Frontiers in*
- *Ecology and the Environment, 11, 236-242.*

- 609 Gravani, R. B. (2009). The role of Good Agricultural Practices in produce safety. In F. Xuetong, B. A.
- 610 Niemira, C. J. Doona, F. E. Feeherry, & R. B. Gravani (Eds.), *Microbial safety of fresh produce*611 (pp. 101-118). Ames, Iowa: Wiley-Blackwell.
- Greene, S. K., Daly, E. R., Talbot, E. A., Demma, L. J., Holzbauer, S., Patel, N. J., et al. (2008).
- Recurrent multistate outbreak of *Salmonella* Newport associated with tomatoes from
 contaminated fields, 2005. *Epidemiology & Infection*, *136*, 157-165.
- Hardesty, S. D., & Kusunose, Y. (2009). Grower compliance costs for the leafy greens marketing
 agreement and other food safety programs. *UC Small Farm Program Research Brief*. Available at
 http://sfp.ucdavis.edu/files/143911.pdf.
- Harmel, R. D., Karthikeyan, R., Gentry, T., & Srinivasan, S. (2010). Effects of agricultural management,
- 619 land use, and watershed scale on *E. coli* concentrations in runoff and streamflow. *Transactions of*620 *the ASABE*, *53*, 1833-1841.
- Harrison, J. A., Gaskin, J. W., Harrison, M. A., Cannon, J. L., Boyer, R. R., & Zehnder, G. W. (2013).
- 622 Survey of food safety practices on small to medium-sized farms and in farmers markets. *Journal*623 *of Food Protection*, *76*, 1989-1993.
- Hatanaka, M., Bain, C., & Busch, L. (2005). Third-party certification in the global agrifood system. *Food Policy*, *30*, 354-369.
- Hobbs, J. E. (2003). Incentives for the adoption of Good Agricultural Practices (GAPs). Working Paper
- 627 Series. Rome, Italy: United Nations FAO Expert Consultation on Good Agricultural Practices.
- 628 Committee in Agriculture. Available at: http:// www.fao.org/prods/gap/DOCS/PDF/3-
- 629 IncentiveAdoptionGoodAgrEXTERNAL.pdf.
- Hoppe, R. A., & MacDonald, J. M. (2013). *Updating the ERS farm typology*. USDA ERS. Available at
 http://www.ers.usda.gov/media/1070858/eib110.pdf. Report EIB- 110.
- Hubalek, Z. (2004). An annotated checklist of pathogenic microorganisms associated with migratory
- birds. *Journal of Wildlife Diseases*, 40, 639-659.

- Hultberg, A., Schermann, M., & Tong, C. (2012). Results from a mail survey to assess Minnesota
 vegetable growers' adherence to Good Agricultural Practices. *HortTechnology*, *22*, 83-88.
- Ivey, M. L., LeJeune, J. T., & Miller, S. A. (2012). Vegetable producers' perceptions of food safety
 hazard in the Midwestern USA. *Food Control*, *26*, 453-465.
- Jay, M. T., Cooley, M., Carychao, D., Wiscomb, G. W., Sweitzer, R. A., Crawford-Miksza, L., et al.
- 639 (2007). *Escherichia coli* O157:H7 in feral swine near spinach fields and cattle, Central California
 640 Coast. *Emerging Infectious Diseases, 13*, 1908-1911.
- Johnson, R., Aussenberg, R. A., & Cowan, T. (2013). *The role of local food systems in U.S. farm policy*.
- 642 Congressional Research Service. Available at https://www.fas.org/sgp/crs/misc/R42155.pdf.
 643 Report R42155.
- Laidler, M. R., Tourdjman, M., Buser, G. L., Hostetler, T., Repp, K. K., Leman, R., et al. (2013).
- *Escherichia coli* O157:H7 infections associated with consumption of locally grown strawberries
 contaminated by deer. *Clinical Infectious Diseases*, *57*, 1129-1134.
- Langholz, J. A., & Jay-Russell, M. T. (2013). Potential role of wildlife in pathogenic contamination of
 fresh produce. *Human-Wildlife Interactions*, *7*,140-157.
- Li-Cohen, A. E., & Bruhn, C. M. (2002). Safety of consumer handling of fresh produce from the time of
 purchase to the plate: a comprehensive consumer survey. *Journal of Food Protection*, 65, 12871296.
- Low, S. A., Adalja, A., Beaulieu, E., Key, N., Martinez, S., Melton, A., et al. (2015). *Trends in U.S. local and regional food systems*. USDA ERS. Available at http:// www.ers.usda.gov/publications/apadministrative-publication/ap-068. Report AP-068.
- Low, S. A., & Vogel, S. (2011). Direct and intermediated marketing of local foods in the United States.
- 656 USDA ERS. Available at
- 657 http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5097250. Report ERR-128.
- Lowell, K., Langholz, J., & Stuart, D. (2010). Safe and sustainable: Co-managing for food safety and
- 659 *ecological health in California's Central Coast Region*. San Francisco, CA, and Washington D.C:

- 660 The Nature Conservancy of California and the Georgetown University Produce Safety Project. 661 Available at http://www.pewtrusts.org/ ~/media/Assets/2009/PSPwildlifepdf.pdf. 662 Mandrell, R. E. (2009). Enteric human pathogens associated with fresh produce: sources, transport, and 663 ecology. In F. Xuetong, B. A. Niemira, C. J. Doona, F. E. Feeherry, & R. B. Gravani (Eds.), 664 Microbial safety of fresh produce (pp. 5-42). Ames, Iowa: Wiley-Blackwell. 665 Martinez, S., Hand, M., Da Pra, M., Pollack, S., Ralston, K., Smith, T., et al. (2010). Local food systems: 666 Concepts, impacts, and issues. USDA ERS. Available at http://www. ers.usda.gov/media/122868/err97_1_.pdf. Report ERR-97. 667 668 Maryland Department of Agriculture. (2013). Food and feed quality: MDA GAP certified producers. 669 Available at http://mda.maryland.gov/foodfeedquality/ 670 Documents/mdagapcertifiedproducer.12.29.13.pdf. 671 Micallef, S. A., Rosenberg Goldstein, R. E., George, A., Kleinfelter, L., Boyer, M. S., McLaughlin, C. R., 672 et al. (2012). Occurrence and antibiotic resistance of multiple Salmonella serotypes recovered from water, sediment and soil on mid-Atlantic tomato farms. Environmental Research, 114, 31-673 39. 674 675 Monson, J., Mainville, D., & Kuminoff, N. (2008). The decision to direct market: an analysis of small 676 fruit and specialty-product markets in Virginia. Journal of Food Distribution Research, 39, 1-11. 677 Newton, D. J. (2014). Working with land with 10 acres: Small acreage farming in the United States. 678 USDA ERS. Available at http://www.ers.usda.gov/media/1391688/ eib123.pdf. Report EIB-123. 679 Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: a 680 review. Food Microbiology, 32, 1-19. 681 Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., et al. (2013). 682 Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using
- outbreak data, United States, 1998-2008. *Emerging Infectious Diseases*, 19, 407-415.
- Parker, J. S., Wilson, R. S., LeJeune, J. T., & Doohan, D. (2012). Including growers in the "food safety"
- 685 conversation: enhancing the design and implementation of food safety programming based on

- farm and marketing needs of fresh fruit and vegetable producers. *Agriculture and Human Values*,
 29, 303-319.
- 688 Parker, J. S., Wilson, R. S., LeJeune, J. T., Rivers, L., III, & Doohan, D. (2012). An expert guide to
- 689 understanding grower decisions related to fresh fruit and vegetable contamination prevention and
 690 control. *Food Control*, 26,107-116.
- 691 Prenguber, B., & Gilroy, A. (2013). A first look at produce safety costs on Oregon's small and medium
 692 *fresh fruit and vegetable farms*. Portland: Oregon Public Health Institute.
- Rangarajan, A., Pritts, M. P., Reiners, S., & Pedersen, L. H. (2002). Focusing food safety training based
 on current grower practices and farm scale. *HortTechnology*, *12*, 126-131.
- Ribera, L. A., Palma, M. A., Paggi, M., Knutson, R., & Masabn, J. G. (2012). Economic analysis of food
 safety compliance costs and foodborne illness outbreaks in the United States. *HortTechnology*,
 22,150-156.
- Soon, J. M., & Baines, R. N. (2012). Food safety training and evaluation of handwashing intention among
 fresh produce farm workers. *Food Control, 23*, 437-448.
- 700 Strawn, L. K., Fortes, E. D., Bihn, E. A., Nightingale, K. K., Grohn, Y. T., Worobo, R. W., et al. (2013).
- Landscape and meterological factors affecting prevalence of three food-borne pathogens in fruit
 and vegetable farms. *Applied and Environmental Microbiology*, *79*, 588-600.
- Suslow, T. V., Oria, M. P., Beuchat, L. R., Garrett, E. H., Parish, M. E., Harris, L. J., et al. (2003).
- Production practices as risk factors in microbial food safety of fresh and fresh-cut produce. *Comprehensive Reviews in Food Science and Food Safety*, 2(Suppl.), 38-77.
- Thurston-Enriquez, J. A., Gilley, J. E., & Eghball, B. (2005). Microbial quality of runoff following land
 application of cattle manure and swine slurry. *Journal of Water Health*, *3*, 151-171.
- Tobin, D., Thomson, J., & LaBorde, L. (2012). Consumer perceptions of produce safety: a study of
 Pennsylvania. *Food Control*, *26*, 305-312.

710	Tobin, D., Thomson, J., LaBorde, L., & Bagdonis, J. (2011). Developing GAP training for growers:
711	perspectives from Pennsylvania supermarkets. Journal of Extension, 49. Available at
712	http://www.joe.org/joe/2011october/pdf/JOE_v49_5rb7.pdf. Article 5RIB7.
713	Tobin, D., Thomson, J., LaBorde, L., & Radhakrishna, R. (2013). Factors affecting growers' on- farm
714	food safety practices: evaluation findings from Penn State Extension programming. Food
715	Control, 33, 73-80.
716	U.S. Department of Agriculture. (2009). National farmers market manager survey, 2006. USDA-AMS.
717	Available at http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5077203.
718	U.S. Department of Agriculture. (2014a). Census of agriculture, 2012: Summary and state data. USDA-
719	NASS. Available at http://www.agcensus.usda.gov/Publications/2012/#full_report. Report AC-
720	12-A-51.
721	U.S. Department of Agriculture. (2014b). USDA Good Agricultural Practices and Good Handling
722	Practices audit verification checklist. Version 1.2. USDA. Available at
723	http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5091326.
724	U.S. Department of Agriculture Agricultural Marketing Service. (2013). List of participating companies
725	with acceptable audits: Maryland and Delaware. USDA- AMS. Available at
726	http://www.ams.usda.gov/AMSv1.0/gapghp.
727	U.S. Fish and Wildlife Service. (2012). Migratory bird flyways. US-FWS. Available at
728	http://www.fws.gov/migratorybirds/Flyways.html.
729	U.S. Food and Drug Administration. (1998). Guidance for industry: Guide to minimize microbial food
730	safety hazards for fresh fruits and vegetables. USDA. Available at
731	http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/Produ
732	cePlantProducts/ ucm064574.htm.
733	U.S. Food and Drug Administration. (2013). Food Safety Modernization Act (FSMA): Standards for the
734	growing, harvesting, and holding of produce for human consumption. Proposed rule. USDA.

- Available at http://www.fda.gov/downloads/Food/GuidanceRegulation/FSMA/UCM360734.pdf.
 Docket #FDA-2011-N-0921.
- U.S. Food and Drug Administration. (2014). *Food Safety Modernization Act (FSMA): Standards for the growing, harvesting, and holding of produce for human consumption.* Proposed rule:
- 739 Supplemental notice of proposed rulemaking. USDA. Available at
- 740 http://www.regulations.gov/#!documentDetail;D=FDA-2011-N- 0921-0973. Docket #FDA-2011 741 N-0921-0973.
- Veldstra, M. D., Alexander, C. E., & Marshall, M. I. (2014). To certify or not to certify? Separating the
 organic production and certification decisions. *Food Policy*, *49*, 429-436.
- Webster, K., Jardine, C., Cash, S. B., & McMullen, L. M. (2010). Risk ranking: Investigating expert and
 public differences in evaluating food safety hazards. *Journal of Food Protection*, *73*, 1875-1885.
- Wood, J. D., Bezanson, G. S., Gordon, R. J., & Jamieson, R. (2010). Population dynamics of *Escherichia coli* inoculated by irrigation into the phyllosphere of spinach grown under commercial production
- 748 conditions. *International Journal of Food Microbiology*, *143*, 198-204.
- 749 Woods, M., & Thornsbury, S. (2005). Costs of adopting Good Agricultural Practices (GAPs) to ensure
- *food safety in fresh strawberries*. Michigan State University: Department of Agricultural
- 751 Economics. Available at http://www.gaps.cornell.edu/fsi/lessons/6-Module2/Lesson2-
- 752 3/GAPsfreshstrawberries.pdf. Report AER- 624.
- Yue, C., & Tong, C. (2009). Organic or local? Investigating consumer preference for fresh produce using
- a choice experiment with real economic incentives. *HortScience*, *44*, 366-371.