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This thesis presents a novel combined experimental and numerical mechanics approach for 

characterizing 3D printed thermoplastic materials by the fused deposition modeling process for 

thermoforming thermoplastic composites. The implications of this work are: 

a. a methodology for model-based performance evaluation of 3D printed structural parts, 

and 

b. an improved design of 3D printed molds for composites manufacturing, which has 

potential for material innovations and scaled-up applications in additive manufacturing. 

The thesis formulates basic criteria for selection of thermoplastic polymer used for the 3D 

printed mold based on forming temperatures. The thesis creates a lattice and shell finite element 

model of the 3D printed part to characterize its linear elastic mechanical properties and validates 

this model by mechanical experiments on 3D printed coupons. The thesis studies the 



 

 

thermomechanical and creep properties of a 3D printed polymer and implications of these 

behaviors on mold making. The thesis creates an idealized orthotropic solid finite element model 

for the lattice internal structure of 3D printed parts. The mechanical properties of this orthotropic 

solid are obtained from the virtual experiments carried out on the lattice and shell finite element 

model. This orthotropic solid finite element model is validated through mechanical experiment 

on 3D printed molds subjected to forming pressures. Finally, an optimization technique is 

outlined to create and optimal internal structure for the 3D printed polymer part. 
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 1  CHAPTER 1 

 INTRODUCTION 

Various forming techniques exist to create parts using reinforced polymer composite materials, 

both thermoplastic and thermosets [1]. These methods include stamp forming, vacuum forming, 

vacuum assisted resin infusion molding (VARIM), and vacuum assisted resin transfer molding 

(VARTM) among others. Some methods like stamp forming and vacuum forming are more 

useful for thermoplastic composites whereas others like VARTM are useful for thermosets. In all 

these methods, molds are of central importance.  Molds provide the framework for creating the 

part with the desired shape and size [2]. 

Molds have conventionally been made of metals using subtractive manufacturing methods. In 

these methods, suitable metal is cast into a block of approximate shape and size. Portions of such 

blocks are removed using computer numerically controlled (CNC) drill bits and/or sanders. The 

final product is the mold of required geometry [3, 4] . 

The initial cost of using metallic mold for manufacturing process is high. Metallic molds also 

require a long time to manufacture [5].   

Table 1.1 shows the costs and time of making metallic molds compared to that of molds made by 

fused deposition modeling (FDM). Compared to molds manufactured by using CNC machining, 

which is common with metallic molds, FDM offers faster and lower cost solutions. This high 

cost and time required for manufacturing metallic molds directs us to search for alternative 

molds. In stamp forming where new parts with different geometries need to be manufactured 

frequently thermoplastic molds created by additive manufacturing, also known as 3D printing, 
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offer a viable alternative to metallic molds. There are 3D printer systems that can create parts 

with high temperature thermoplastic materials like polyetherimide (PEI) and 

polyetheretherketone (PEEK).  Molds can be made using these systems in very short times at low 

costs [6]. Such molds are already being used in injection molding processes [7, 8]. Furthermore, 

attributable to the cellular structure that these parts use, these molds are lightweight and require 

less material. In addition, the mold is recyclable because it is made from thermoplastics [9]. The 

study of the feasibility of using a 3D printed thermoplastic mold for stamp forming of 

thermoplastic composites is thus warranted. 

1.1 RESEARCH OBJECTIVES 

The primary objective of this research is to explore the feasibility of using 3D printed 

thermoplastic molds using FDM to form thermoplastic composite materials.   

1. The first objective of this investigation is to formulate basic criteria for selection of 

thermoplastic polymer used for the 3D printed mold based on forming temperatures.  

2. The second objective is to create a lattice and shell finite element model of the 3D printed 

part to characterize its linear elastic mechanical properties and validate these properties 

experimentally. A linear elastic lattice and shell model represents the basic structure of 3D 

printed part. This model would serve as a good starting point and can later be extended to 

model the behavior of more complex geometries and nonlinear behavior of the 3D printed 

material, if necessary. Once validated, this lattice and shell model can also be used to 

determine the properties of 3D printed material with different lattice configurations via 

virtual experiments. 
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3.  The third objective is to study the mechanical behavior of the 3D printed material under 

elevated temperatures and sustained loads. During thermoforming, the elevated temperatures 

and sustained loads increase the strain on the material. It is necessary to understand how 

these strains evolve over time and could affect the overall thermoforming process. 

4.  The fourth objective is to use this use this lattice and shell finite element model to define an 

orthotropic solid finite element model that would be used in thermoforming simulations and 

to validate this orthotropic solid finite element model. A lattice and shell model is useful to 

generate the coupon level properties. However, as the mold size gets larger, a lattice and shell 

need more computational resources. A computationally inexpensive orthotropic solid model 

is necessary to model the larger molds, especially when the finite element model needs to be 

solved repeatedly during optimization procedures. 

5. The final objective of this research work is to formulate a process to optimize the internal 

structure of a 3D printed mold for given mold geometry and loading conditions. 

1.2  A DISCUSSION ON TERMINOLOGY USED 

As a growing and rapidly changing field of technology, many new terms are introduced to 

describe techniques and processes used in additive manufacturing. Some terms are used in 

academia, while others are used in magazines and newspapers, and manufacturers of these 

machines for promotion use some of the terms. A brief discussion is considered necessary to 

define the terminologies used in this thesis. 
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1.2.1 3D Printing 

The term additive manufacturing is used in academia to define the process whereby layers of 

materials are added one over another to create a part of required geometry. However, the term 

“3D-printing” has been found to be commonly used to describe additive manufacturing process. 

Although Wendel et. al [10], use the term “3D  printing” to describe a process commonly 

described as binder jetting, in general, the term 3D printing is exchangeable with additive 

manufacturing. Ladd et. al. [11], in their paper, mention how many 3D printers extrude molten 

polymer that quickly cools and solidifies. Ladd et. al.[11] also describe their process of creating 

liquid metal microstructures as 3D printing. Lipson and Kurman[12] in their book Fabricated: 

The New World of 3D Printing, use the term “3D-printing” to describe all technologies ranging 

from binder jetting and polymer extrusion to biological additive manufacturing of a living tissue. 

Kenny et al [13] use 3D printing synonymously with 3D printing. Appleton [14] prefers the use 

of the term 3D printing and discusses that these terms are usually used interchangeably but 

acknowledges that there are some authorities who try to separate them, sometimes reserving 3D 

for the home printers and A/M for industrial uses. Appleton [14] also mentions that  even though 

ASTM standard directs the term Additive Manufacturing, there is no mutual agreement and most 

practitioners use whichever term seems most convenient at the moment. In this thesis, the term 

3D printing and additive manufacturing are used interchangeably. 

1.2.2 Fused Deposition Modeling 

Manufacturing companies, including Stratasys, RepRap and Makerbot, attribute the term 3D 

printing to what is described as Fused Deposition Modeling (FDM) of thermoplastic polymers by 
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Wendel et al [10] and categorized as material extrusion by ASTM. Fused deposition modeling 

(FDM) particular 3D printing technique used for the research work.  

1.3 TIME AND COST REQUIRED FOR MANUFACTURE OF DIFFERENT 

MOLDS 

As mentioned in Section 5, Table 1.1 compares the cost and the time required to manufacture 

metallic molds, which is compared with those required to manufacture an ULTEM 9085 polymer 

mold using the additive manufacturing technique. In Table 1.1, “manufacturer 1”  is Xometry, 

7951 Avenue, Gaithersburg, MD 20879, “manufacturer 2” is University of Maine Advanced 

Manufacturing Center and Advanced Structures and Composites Center, Orono, ME 04469, and 

“manufactuer 3” is Partsbadger LLC, 10555 N. Port Washington Rd. #204, Mequon, WI 53092.  

Similarly, part 1 is a male mold of size 279.4mm x 98.4mm x 34.9 mm, and part 2 is a female 

mold of size 279.4mm x 98.4mm x 38.1 mm. From Table 1.1, it can be seen that the cost of 

manufacturing thermoplastic molds is generally lower than that compared to the cost of 

manufacturing metallic molds. Aluminium molds are comparatively lower in pricing compared 

to stainless steel molds because aluminium metal itself is cheaper and aluminum is softer and 

easier to work with. Aluminium molds are generally used in prototyping for research and 

development purposes while stainless steel molds are used for production of large number of 

parts. The ULTEM 9085 mold with lattice internal structure is seen to be comparatively cheaper 

and faster to manufacture using additive manufacturing technology. The advantages of using 

additive manufacturing is more pronounced when the parts made are more complex features like 

radiator fins and release pins; as the complexity of the mold increases, the cost and time 

difference gap is widened between metallic molds and 3D printed thermoplastic molds. 
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Table 1.1: Time and cost of creating two different mold parts using different materials and 

different manufacturing techniques. 

Manufacturer Part Material Process Cost ($) Time  

Manufacturer 1 Part 1 Aluminium 6061 CNC machining 508.53 9 days 

 Part 1 Stainless Steel 304 CNC machining 1841.16 14 days 

 Part 2 Aluminium 6061 CNC machining 418.99 9 days 

 Part 2 Stainless Steel 304 CNC machining 1645.06 14 days 

 Part 1 ULTEM 9085 FDM 384.47 4 days 

 Part 2 ULTEM 9085 FDM 305.20 4 days 

Manufacturer 2 Part 1 Aluminium 6061 EDM wire 705.90 18 hours 

 Part 1 Stainless Steel 304 EDM wire 1018.80 27 hours 

 Part 2 Aluminium 6061 CNC machining 1647.10 42 hours 

 Part 2 Stainless Steel 304 CNC machining 2377.20 63 hours 

 Part 1 ULTEM 9085 FDM 186.52 6 hours 

 Part 2 ULTEM 9085 FDM 200.32 6 hours 
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Manufacturer 3 Part 1 Aluminium 6061 CNC machining 189.94  14 days 

 Part 1 Stainless Steel 304 CNC machining 520.99 14 days 

 Part 2 Aluminium 6061 CNC machining 239.96 14 days 

 Part 2 Stainless Steel 304 CNC machining 833.82 14 days 

 

The Advanced Manufacturing Center at University of Maine provided an estimate of $ 2354 for 

the aluminium 6061 mold assembly with $121.90 for materials, $800.00 for manufacturing costs, 

and $1432.00 for labor. The Advanced Manufacturing Center also provided an estimate of 

$351.90 for materials, $1200.00 for manufacturing costs, and $1844.00 for labor. It can be seen 

that the difference in costs for the molds made from these two materials comes mainly from the 

manufacturing and labor costs.  

Even though the quotations from different manufacturers vary, it is observed that in general the 

3D printed thermoplastic molds cost less to produce. These 3D printed molds were also 

comparatively faster to manufacture. 3D printed molds would be suitable for prototyping 

purposes for creating parts with lower production cycles compared to aluminium molds. 

1.4 3D PRINTING METHODS 

Additive manufacturing presents a paradigm shift in manufacturing. Compared to subtractive 

manufacturing, whereby a CNC machine is used to remove layers of material to get the part of 

desired shape and size, additive manufacturing adds layers of material one over other create 
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parts. Depending upon the method used to add materials, ASTM has categorized additive 

manufacturing into the following  [15]: 

1. In binder jetting method, liquid bonding agent is selectively deposited to join powder 

materials 

2. Directed energy deposition uses focused thermal energy to fuse materials by melting as they 

are deposited 

3. Material extrusion whereby material is selectively dispensed through a nozzle or orifice. 

4. Material jetting selectively deposits droplets of build materials. 

5. Powder bed fusion uses thermal energy to selectively fuse regions of a powder bed. 

6. Sheet lamination, as the name suggests, bonds sheets of material to form an object 

7. Vat photopolymerization, whereby, liquid photopolymer in a vat is selectively cured by light-

activated polymerization. 

The most common method for producing thermoplastic parts is material extrusion. Fused 

Deposition Modeling is the proprietary method employed by Stratasys in 3D printing of 

thermoplastic materials.  

The FDM process is similar to other additive manufacturing processes in that a computer 3D 

model is made for the part to be manufactured. The model is then converted to an STL format 

and further processed by using another software program. This STL software slices the model 

into many layers of fixed heights. The outer boundaries, or contours, define the envelope of the 

part to be manufactured. The volume inside this boundary can be filled as necessary with sparse 

(with air gaps) or dense (without air gaps) internal structure. A toolpath is created by the 

software, which defines the movements that needs to be made by the CNC (Computer Numerical 
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Control) gantry in the 3D printer. The CNC gantry moves the extruder at the specified location 

for each these layers. The extruder places layer upon layer of molten filament according to the 

toolpath defined to create the required part [16, 17]. 

 

 

Figure 1.1: Different Additive Manufacturing Methods [10]. 

1.5 OPEN SYSTEMS VERSUS CLOSED SYSTEMS 

Open systems are those systems that allow for the observation and modification of the internal 

processes in the 3D printer. The 3D printers manufactured by the RepRap and the earlier models 

of Makerbot systems serve as examples of open system 3D printers. In these systems, the user 

has the liberty to use custom material. The system lets the user modify the printing parameters 

like temperature, print speed and extrusion rate with ease. These systems are useful for research 

oriented towards printing new materials and optimizing the printing process for newer materials 

[18, 19]. 



10 

 

Closed systems are those systems that allow very limited, if any, observation and modification of 

the internal processes in the 3D printer. The Fortus systems from Stratasys are examples of this 

type of system. The materials that can be used are fixed and the process parameters for these 

materials are pre-defined. The system allows for minor modifications in process parameters but 

the major parameters like extrusion temperature and printing speed are fixed. However, these 

systems provide higher reliability and reduced production times. These systems are useful for 

research that focus more on structures produced by 3D printing process rather than on the 

printing process itself. These systems are also useful for manufacturing production grade parts. 

1.6 THERMOPLASTIC COMPOSITES MANUFACTURING 

Thermoplastic composites have several documented advantages over thermosets. It is possible to 

melt and solidify thermoplastic materials without significantly changing their mechanical and 

chemical properties. This creates various opportunities for processing these materials. 

Thermoplastic composite parts can be joined together just by heating and cooling without 

application of chemical adhesives [20]. These composites can be easily recycled and repaired. 

Thermoplastic composites are also tougher compared to thermosets [21]. 

There are two major problems related to thermoplastic composites, which limit their use in 

industry. The first problem is that the raw materials for thermoplastic composites are more 

expensive compared to their thermoset counterparts. The price difference for the raw materials is 

expected to decrease with time and wider use. More efficient manufacturing techniques and 

economies of scale would result in the decrease of price for thermoplastic  materials [22]. 
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The second major problem related with thermoplastic composites is related to manufacturing. 

Thermoplastic materials are inherently more viscous compared to thermoset resins. The viscosity 

of thermoplastic composites is in the range of 500-1000 times that of thermoset resins. This 

renders use of certain manufacturing techniques like resin infusion and resin transfer infeasible. 

These techniques depend on flow of the polymer resin and polymers with high viscosity do not 

flow very well [23, 24].  

Thermoplastic composites parts are manufactured using melt processing techniques. In melt 

processing, the thermoplastic polymer in the matrix is heated up to its melting point. This molten 

part is given required shape by the use of the molds. The part is cooled down until it solidifies 

and it is demolded. Application of pressure on the molten part during melt processing can be 

done either by using a press by using the “stamp forming” method or by using vacuum using 

“vacuum forming” method  [25, 26]. 

The amount of pressure that can be applied using vacuum is theoretically limited to 0.1013 MPa 

(1 atm). In practice, the maximum vacuum pressure that can be applied is lower than this 

theoretical value. This limits the maximum thickness of the parts that can be formed by vacuum 

forming. The advantage of this technique is that it is relatively easy and fast compared to stamp 

forming. It also does not require press or other heavy and expensive equipment. Vacuum forming 

requires only one mold as opposed to stamp forming which requires matched male and female 

molds [27]. 

New techniques have been developed for manufacturing thermoplastic composites whereby 

different monomer components of low viscosity are mixed and the reinforcement material laid 
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out in required shape is infused with this mixture [28]. The resulting material is then cured so 

that the polymerization of the component monomers can take place. This process closely follows 

the manufacturing techniques of thermoset composite materials [29]. This process has been 

developed for only a few thermoplastics namely anionic polyamide (APA) and cyclic butylene 

terepthalete (CBT). The process requires higher processing temperature (150˚ C – 200 ˚C) 

compared to similar process for thermosets. The part also needs to be rapidly cooled down once 

the processing is complete to avoid voids and cracks running through resin rich areas [30]. 

Commercial thermoplastics with proprietary technology that can be processed at room 

temperature are also available [31]. Advances in this technology are expected to enable 

manufacturing of even thicker parts than those can be manufactured by stamp forming at lower 

costs [32, 33].  

Molds made using 3D Printing offer advantages to all these forming processes. Some of the 

advantages are: 

1. The manufacturing is fast and precise. Using additive manufacturing, prototypes can be 

manufactured faster and time to create the final product for the market can be reduced [34]. 

2. The manufacturing process produces little waste and thus saves material and production costs 

[35-37]. 

3. The process allows for mass customization of products without increasing the cost of each 

different item.  

4. Additive manufacturing can be useful for ‘one-off’ or short run productions thus saving 

additional tooling and setup.  
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5. It allows complex parts to be produced with relative ease. 

6. The part produced can be optimized to a greater degree. This can be used to create stronger 

and lighter parts [14]. 

7. Cooling or heating channels can be incorporated into the molds relatively easily [38]. 

8. For vacuum forming, pores can be incorporated inside the molds during manufacturing 

unlike in conventional metallic molds in which pores are drilled later. 

Table 1.2: Prices of some common thermoset polymers compared with some common 

thermoplastic polymers [39, 40]. 

Polymer Type Price($/lb) 

Epoxies Thermoset 1.00 - 1.12 

Polyesters Thermoset 1.74 - 1.95 

Vinyl esters Thermoset 2.04 - 2.37 

Phenolics Thermoset 0.75 - 0.85 

Polyethylene (HDPE) Thermoplastic 1.04 - 1.15 

Polypropylene Thermoplastic 1.11 – 1.18 

Polystyrene Thermoplastic 1.26 – 1.50 

Nylon Thermoplastic 1.80 – 1.99 
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Additive manufacturing, however, has some limitations as well [41]. 

1. The maximum size of the parts produced is limited by the build envelope of the machine 

(printer). 

2. Capital costs are high as modern 3D printers capable of manufacturing quality parts are 

expensive. 

3. The price for mass manufacturing is comparatively higher as economy of scale has only 

small effects on additive manufacturing at its current state. 

 

Figure 1.2: Forming methods for thermoplastic composites. 
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1.7 ORGANIZATION OF THE THESIS CHAPTERS 

The thesis chapters are organized as follows: 

1. The first chapter provides an introduction to the thesis, overviews the progress that has been 

made so far in this field and discusses what this research work covers. 

2. The second chapter gives an overview of 3D printing process, with focus on fused deposition 

modeling. It goes through the preliminary test carried out to determine the decision-making 

criteria for testing the suitability of the molds for forming glass fiber reinforced 

polypropylene parts. It also presents a general method to determine the suitability of 

particular 3D printed material as mold for thermoforming another thermoplastic material. 

3. The third chapter presents different quasi-static tests carried out on the 3D printed samples 

with lattice internal structures as well as the quasi-static tests carried out on the filament 

material. It discusses the observations that could be significant for the use of 3D printed 

structure as mold. 

4. The fourth chapter presents the results from creep tests on the 3D printed lattice structure and 

the dynamic mechanical thermal analysis carried out on the filament material. The chapter 

discusses how these properties could be used in the process of mold design. 

5. The fifth chapter offers a finite element model to predict the elastic response of the material. 

It discusses how this model could be used to speed up the mold design process. 

6. The sixth chapter documents the optimization of a part to be formed by thermoforming. It 

also shows how a 3D printed mold was created for forming this part. 

7. The seventh chapter outlines the conclusions drawn from the thesis work and 

recommendations for future work.  
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 2  CHAPTER 2 

3D PRINTING AND MOLD MATERIAL SELECTION 

2.1 INTRODUCTION 

The first step to determining the feasibility of using 3D printed thermoplastic materials is to 

understand the 3D printing process itself for thermoplastic materials. The most widely used 

method for 3D printing of thermoplastic materials is fused deposition modeling (FDM), whereby 

a molten filament of thermoplastic material is deposited one layer upon another to create a part 

of desired geometry.  This chapter explores various steps in the FDM process and highlights the 

important steps that might have significant effects in the mechanical properties of the part 

created. This chapter also highlights the various parameters that define the geometry of the 

internal lattice structure of the 3D printed material. The parameters that can be controlled in the 

Stratasys Fortus 900mc 3D printer system have been focused because Stratasys Fortus 900 mc 3d 

printer system has been used for the study. 

The preliminary tests carried out to determine the feasibility criteria to use the material as a mold 

are discussed in this chapter. The tests were carried out to determine the feasibility criteria for 

forming parts with polypropylene reinforced with glass fiber. The temperature and pressure 

withstood by the mold to form a good quality part is taken as the feasibility criteria. 

A general method that can be used as a rule of thumb to determine the suitability of mold 

material based on glass transition temperature and melting temperature of the mold material and 

part material respectively is discussed in this chapter.  
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2.2 3D PRINTING PROCESS 

3D printing, also known as additive manufacturing, is one of the newer manufacturing processes. 

It employs computer numerically controlled (CNC) mechanism to deposit layers of material in a 

series of steps to form a part of defined geometry. A variety of materials has been used for 

additive manufacturing, including metals, mortar and plastics [42].  

 

 

Figure 2.1: The Stratasys Fortus 900 mc 3D printer used for the study. 

2.3 COMPONENTS OF A 3D PRINTER 

All FDM based 3D printers have a common set of parts that enable them to carry out the printing 

process. Some of the most significant parts are discussed in this section.  
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a. Computer numerically controlled (CNC) extruder head: 

The CNC extruder head has two degrees of freedom. It can move in global X and Y directions in 

the horizontal plane. The extruder head has a heated tip to melt the thermoplastic material. The 

computer controlling the system moves the head to correct positon, heats up the material loaded 

at the tip and extrudes necessary amount of material to deposit the required height and width. 

The tip attached to the head and the flow rate of the extrudate controls the width of the deposit 

partially. 

 

 

Figure 2.2: Extruder Head in the Stratasys Fortus 900 mc. 

Extruder Head 
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b. Motion table:  

The motion table is free to move in Z direction and thus has one degree of freedom. The 

computer moves the table to the required height for deposition during manufacturing. A build 

sheet, which is a thin sheet (2 mm) of plastic (proprietary material sold by Stratasys) over 

which the first layers of deposits are made, is secured by the vacuum being applied through 

the holes on the table.  

 

Figure 2.3: Motion table and extruder head as reference for Stratasys Fortus 900 mc. 

c. Thermoplastic material spools (Canisters): 

The polymer material to be loaded are loaded in canisters. The material is in the form of 

filaments of 1.70 mm diameter is rolled into a canister. These filaments are pulled to the 

extruder head as required.  

Extruder Head 

Motion Table 
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d. Vacuum Pump: 

The function of the vacuum pump is to create a vacuum inside the printer for stable operating 

environment. It also helps to secure the build sheet on the table. 

e. Oven: 

The oven raises the temperature inside the manufacturing area of the printer. This creates the 

thermal stability, which helps in manufacturing the parts with high precision. All FDM based 

3D printers do not have an oven for controlling temperature, but the one used in this study 

was equipped with an oven.  

f. Human Computer Interface: 

The human computer interface enables interaction with the machine on a hardware level. It 

allows the user to calibrate the machine, get data from sensors pertaining to temperature, 

material available, or any problem encountered in printing, and carry out various other utility 

related functions. 

2.4 STEPS INVOLVED IN 3D PRINTING 

The process of 3D printing (additive manufacturing) involves two steps: 

1. Software based steps, and 

2. Hardware based steps 

 Software based steps 

These software-based steps constitute the definition the part geometry to be 3D printed and 

the print parameters that define the sequence and dimension of deposition of the material that 

form the 3D printed part. 
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Figure 2.4: Thermoplastic material spools in canister for Stratasys Fortus 900 mc. 

The geometry is modelled using 3D modelling software like Solidworks, NX, and CATIA. The 

geometry model is exported as a STL (sterolitography) file. The STL file uses triangles to 

approximate the surface of the solid model. The file contains a list of the three vertices. The 

surface is defined by triangle formed by the three vertices and a unit normal. The scaling is not 

included in this file so the dimensions are arbitrary. The consistency of modelling and 

manufacturing dimensions needs to be maintained when using the STL file. 

The printing parameters constitute the sequence of deposition, the path to be followed during 

deposition, the dimensions of the deposited material, and some properties of the material that is 

being deposited. Based on these parameters, the proprietary software for the 3D printer 

determines the movement path for the extruder head and the motion table, as well as the height 

of deposition and the correction for shrinkage of the material.  

Model Material 

 

Support Material 
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Some of the important printing parameters that have significant effect on the mechanical 

properties of the part to be printed are listed. 

i. Slice Height: 

It is the height of each layer of the deposited material. Increasing the slice height decreases the 

number of deposition layers, and hence decreases the number of layers that need to be fused 

together. The plane of fusion is a plane of weakness where the material is likely to fail. So, a part 

with greater slice height would be expected to exhibit better mechanical performance compared 

to a part with smaller slice height. On the other hand, the if the slice height is too high, the 

molten deposition layer deforms under its own weight and does not confirm with the required 

geometry, creating improper bonding between the layers. As a result, the slice height needs to be 

within a specified range to get optimum mechanical performance from the 3D printed material  

[43]. 

Also, increasing the slice height decreases the time required for 3D printing the part. However, 

increasing the slice height lowers the precision of 3D printed part if the part has a geometry that 

is curved along the Z-axis of the printer.  

ii. Toolpath parameters: 

These parameters are used by the proprietary software to calculate the actual path moved by 

the extrusion head for deposition of thermoplastic material during manufacturing.  The 

toolpath parameters used for 3D printing are listed shown in Figure 2.5. Some of the 

important toolpath parameters are: 

 Contours:  

Contours are closed curves that define the boundaries of the parts to be manufactured. These 
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are curves created by intersection of plane at specified height with the surfaces defined by the 

STL file.   

 

Figure 2.5: Toolpath parameters that can be varied in the Stratasys Fortus 900 mc.  

 Internal fill (Fill Style):  

These parameters define the fill inside the perimeter defined by the contours. The inside area 

can be completely filled with the thermoplastic material, which is called solid fill. 

Alternatively, it can be partially filled with air gaps, which is called sparse fill by Stratasys.  

This essentially creates a material with lattice internal structure. 
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A completely filled part is stronger and has higher elastic modulus compared to a part 

partially filled with air. However, a part partially filled with air is faster to 3D print and 

offers opportunities to minimize material use while optimizing the mechanical properties. 

The internal fill is further defined by fill type, raster angle and air gap. 

There are various ways to fill the area bounded by the perimeter of the contour. Rectangular 

sparse fills, rectangular double sparse fills, hexagonal fills, porous hexagonal fills, and 

sawtooth fills are some of the fills that can be used in the 3D printer system used for this 

study. Open systems allow for direct control of toolpath which allows for infinite number of 

ways to fill the area bounded by the perimeter of the contour.  

The raster angle is the angle at which the internal fill is oriented with respect to the X-axis of 

the printer. The air gap defines the distance between the two internal fill rasters. For this 

study, rectangular sparse fills were chosen because it results in faster 3D printing. In this fill 

style, the extruder head moves across the area defined by the contour in a straight line at an 

angle defined by the raster angle. The extruder head then shifts a distance along X-axis 

defined by the air gap and deposits the material along another straight line. These processes 

are repeated until the area in the given level is covered. For the next layer, the same 

processes are repeated but an angle of 90 degrees is added to the previous raster angle. This 

fill style is faster than other fill styles because the transitions in movement of extruder head 

are minimized.  

It has to be noted that these are the terminologies used by Stratasys. The internal structure is 

referred to as lattice structure throughout the thesis from hereafter. 
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 Shrink Factors: 

These are material properties that depend upon the material being used and other process 

parameters. These parameters determine the correction in the measurements so that the part 

has correct dimensions when cooled down. The toolpath parameters that can be modified in 

Fortus 900mc 3D printer used for this study are shown in Figure 2.5. 

 

 Hardware based steps (physical steps): 

After the 3D model is created, the model is passed to the proprietary software as a STL file, the 

printing parameters are defined, and the part is ready to be printed. 

The first layer to be printed is a layer of support material. This is done so that the part can be 

removed easily after it has finished printing. After the layer of support material is deposited, the 

first layer of the part is deposited over the support material layer. A new layer is deposited one 

after another until the final part is ready. The molten new layer easily sticks with the previous 

layer because the material being used is thermoplastic material and the application of adhesive 

between the layers is not necessary. There are regions of overhang that require support. 

Overhang regions can be visualized as the regions that have cantilevered out of the part. The 

molten material does not have necessary strength to support those parts. These parts are 

supported by making a supporting structure out of support material. After the part is completely 

manufactured and cooled down, the support structure can be broken down or dissolved 

chemically, depending upon the thermoplastic material used.  
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Figure 2.6: An example of overhanging region that requires support during printing. 

 

2.5 THE CALIBRATION PROCESS FOR 3D PRINTER TABLE AND 

EXTRUDER HEAD 

Calibration is an essential process in 3D printing. This ensures high degree of accuracy during 

printing. This is done by printing a test square. Each edge of the test square has two guiding lines 

with numbers marked on side. A thin thread is printed such that it is in between the two guiding 

lines. The test square is then examined under a magnifying glass. The number in the area where 

the thread is exactly in the middle of the two guiding lines is the correction necessary.  If the 

thread is exactly in the middle of the two guiding lines for the whole length, no further correction 

is necessary. This is observed if the test square is printed again after the calibration is complete. 

Overhanging region 
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Figure 2.7: Calibration Squares printed during calibration of Stratasys Fortus 900 mc. 

 

2.6 EXPERIMENTATION FOR PROOF OF CONCEPT 

Preliminary tests were carried out to prove the concept of using 3D printed mold for forming 

thermoplastic composites. The suitable temperature and pressures for forming a thermoplastic 

composite part were determined. Polypropylene reinforced with E-glass fiber tape was used to 

make parts for the study because of its low melting point temperature requirements.  

2.6.1 The Mold 

The mold was manufactured by Stratasys as a demonstration for the capabilities of the Fortus 

900 mc 3D printer system. The mold was 3D printed using ULTEM 1010 material. 
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The mold was designed to create a part with the geometry for the sole of a shoe using 

compression molding process. The mold was part of a matched mold system. The male part of 

the matched mold system was used as the mold for this experimentation for the proof of concept. 

The shoe part mold had a planar dimension of 305 mm x 152 mm (10in x 5 in). The internal core 

of the mold had a cellular structure with slice height of 0.25 mm (0.01 in), contour width of 0.51 

mm (0.02 in), raster angle of 45 degrees, and internal air gap of 2.54 mm (0.1 in). 

 

Figure 2.8: An image for CAD 3D model of the shoe part mold. 

2.6.2 Material and Laminate Preparation 

Among the various thermoplastic materials considered for this proof of concept tests with their 

respective melting point temperatures are listed in Table 2.1. 

The selection of the thermoplastic material for thermoforming was limited mostly by the fact that 

the glass transition temperature of ULTEM 1010 was 217 ˚C. The thermoplastic material needed 

to have melting point that is significantly below this temperature. The melting point of 

polypropylene ranges between (130 ˚C - 170 ˚C) depending upon the molecular weight and 
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crystallinity of the propylene used.  Polypropylene with even the highest degree of crystallinity 

had a melting point significantly below the glass transition temperature of ULTEM 1010. 

The selection of the thermoplastic material for thermoforming was limited mostly by the fact that 

the glass transition temperature of ULTEM 1010 was 217 ˚C. The thermoplastic material needed 

to have melting point that is significantly below this temperature. The melting point of 

polypropylene ranges between (130 ˚C - 170 ˚C) depending upon the crystallinity of the 

propylene used.  Polypropylene with even the highest degree of crystallinity had a melting point 

significantly below the glass transition temperature of ULTEM 1010. 

As a result of this polypropylene was chosen as the material to be thermoformed. Unidirectional 

prepreg PP/GF tapes were laid up in following sequence: 

a) [+-45]6 (12 layers) 

b) [0/90]6 (12 layers) 

c) [(0/90)12/0] (25 layers) 

d) [(0/90)25] (50 layers)  
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Table 2.1: Materials considered for thermoforming with their melting temperature. 

Thermoplastic Material Melting Point (˚C) 

Polyetherethereetone (PEEK) 382 

Polyetherimide (PEI) 371 

Polysulfone 371 

Polycarbonate (PC) 288 

Polyethyleneeerepthalate (PET) 282 

Polybutyleneterepthlate (PBT) 260 

Polyethylene 204 - 163 

Polyvinylchloride(PVC) 177 

Polypropylene(PP) 130-170 

The planar dimensions of the layup were 305 mm x 152 mm (12 in x6 in).  The thickness of 

prepreg tape was 0.25 mm (0.01 in).  The layup was covered by Teflon sheet of thickness 0.005 

mm (0.02 in). The Teflon sheet acted as a mold release layer. 

The layup with maximum number of layers (50 layers) was chosen so that sum of the thickness 

of the tapes would be 13 mm (0.5 inches) which is common for plates. This would provide a 

good idea about the quality of part made after stamping just by observation because any 
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malformation or wrinkling would be easy to notice. The other thinner layups were used to verify 

if the high pressure used for thick part would negatively affect the thin parts. A [+-45] 6 layup 

was made to see if alternative layup would cause any unanticipated problems in stamp forming 

process. 

2.6.3 Heating Apparatus  

A heated platen developed for forming of consolidated PET plates [44] was used.  The platen 

was made up of 1020 mild steel with following dimensions were used: 0.61 m (24 in) wide, 

0.864 m (34 in) long, and 0.076 m (3 in) thick. The heating of the plate was carried out using 

twelve 0.61 m (24 in) long, 3500 watts, 480 volt, swaged cartridge heaters, totaling 42kW of 

available input energy. The heaters were evenly spaced. The cartridge heaters were arranged in 

three zones of four cartridge heaters. The inner four heaters were placed on zone 1, the outer two 

on either side on zone 2, and the remaining four heaters on zone 3. A Watlow EZ-Zone Express 

PID controller with a 3-phase 480V input power source controlled each heating zone. The plate 

is capable of heating at a rate of 16°C/min (30°F/min). The maximum working temperature of 

the heated plate is 400°C (750°F).  

The heated plate in the laboratory is shown in Figure 2.9. A piece of fiberglass insulation board 

was spaced 2.54 cm (1 in) from the bottom of the plate under the plate to help insulate the base 

of the heated plate, as seen in Figure 2.9. The 2.54 cm (1 in) gap was filled with high 

temperature fiberglass insulation.  
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Figure 2.9: The heating platen used for heating the prepreg tapes. 

2.6.4 Press 

A 50-ton hydraulic press was used to apply pressure on the specimen. The upper platen of the 

press was mobile while the lower platen was fixed. The pressure on the mold specimen of size 

12”x6” was calibrated using the calibration table of the press. A 25.9 MPa (3750 psi) gauge on 

press corresponded to a pressure of 3.45 MPa (500 psi) on the mold. The height of lower platen 

of the press was adjusted so that the mold would be in contact with the specimen when upper 

platen comes down. The male mold was attached to the top of the press using a double-sided 

tape. A wooden deckle-box frame confirming to the size of the mold was made. The frame was 

fitted with four layers of silicon foam of thickness 1 inch each. The mold was aligned with the 

wooden frame such that the mold fit within the wooden frame when pressed. The press used is 

shown in Figure 2.10. 

Heating Platen 

Controllers to adjust 

temperature 
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Figure 2.10: The press with wooden box frame, mold and silicone foam rubber. 

2.6.5 Procedure for forming the part 

The sample of stacked prepreg tapes was placed above the platens for heating. The sample was 

covered with glass wool to reduce heat losses through conduction and convection. The 

temperature was monitored using the electrical thermometer. The thermometer was placed at the 

top of the PP/GF layup specimen.  

A fixed temperature of 130 ˚C was chosen because it is the known melting temperature of the 

polypropylene used.  Trials at temperatures higher than 130 ˚C (140 ˚C and 150 ˚C) were done 

but no significant difference in the formed part was found. Trials at temperature lower than 130 

˚C (120 ˚C) resulted in improper bonding between the layers.  A pressure of 3.45 MPa was 

determined to provide proper part consolidation after few trials at  pressures ranging from 2.07 
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MPa (300 psi) to 3.45 MPa(500 MPa)  did not give satisfactory results for the thickest layup. 

After the temperature reached 130˚C (266˚F), the sample was placed in the press and pressure 

was applied at 3.45 MPa (500 psi). Pressure was maintained for 1 minute so that the specimen 

could confirm to the shape of the mold and cool down. The pressure was released and the upper 

platen was retracted to obtain the formed composite part. 

2.6.6 Thermoforming Results 

The composite specimen appeared to confirm closely with the contours of the mold for all 

specimens except the 50 layer thick specimen.  The consolidation of the part with 50 layers of 

tape was satisfactory in the areas where the part was flat.  The individual prepreg tape layers had 

a thickness of 0.25 mm. For 50 layers of tape, the thickness was expected to be less than the sum 

of thicknesses of the individual tapes, i.e., less than 12.5 mm. The final part thickness was found 

to be 11.9 mm. The tapes were brought down to 95.2% of the sum of their original thicknesses. 

As the tapes used were pre-consolidated tapes, the final part thickness was expected to be very 

close to the sum of the thicknesses of tape layers. 

 

Figure 2.11: The mold, wooden frame and the silicon foam rubber. 

Silicone Foam 

 

Wooden Frame 

3D printed ULTEM 
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Hence, the part was considered to have satisfactory consolidation. Similarly, for parts with 25 

layer tapes, the expected final thickness was 6.25 mm. The final thickness obtained was 6.08 

mm. The tapes were brought down to 97.3% of the sum of their original thicknesses. The final 

consolidated parts for the 25-layer layup are shown in Figure 2.12, Figure 2.13, Figure 2.14, and 

Figure 2.15.  

However, in the region with curvatures, the part did not confirm readily to the geometry of the 

mold and showed visible signs of wrinkling. The thinner parts formed more easily and 

conformed to the mold shape more readily compared to the thicker parts. This could be 

attributable to the non-uniform heating of the thicker parts. The fact that the difference in 

curvature of the surface in contact with the mold compared to the curvature of the surface 

farthest from the mold would have created high stress through the thickness, causing the material 

to wrinkle.

 

Figure 2.12: Bottom side of formed part 

with 25 layers of prepreg tapes. 

 

Figure 2.13: Top side of formed part with 25 

layers of prepreg tapes. 
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Figure 2.14: Cross-section of the formed 

part along straight section. 

 

Figure 2.15: Cross-section of the formed 

part along curved section. 

2.6.7 Conclusions 

From the preliminary experimentation, it was concluded that a forming pressure of 3.45 MPa 

(500 psi) and a temperature of 130 ˚C was suitable for thermoforming E-glass fiber reinforced 

polypropylene parts.  This pressure and the temperature were determined as the process variables 

required to be used for thermoforming glass fiber reinforced polypropylene parts. In areas of 

high curvature, wrinkling was observed in thick samples (with 50 layers). For thin samples (with 

25 layers and 12 layers), the areas of higher curvature had smaller thickness compared to the 

areas of lower curvature. The flat areas had uniform thickness and no wrinkling for both thin and 

thick samples. 



37 

 

2.7 MOLD MATERIAL SELECTION 

The choice of several thermoplastic materials is available for printing with the Fortus 900 mc 3D 

printer. The stiffness, strength and temperature requirements limit the choice of material to be 

thermoformed. A simple method based on a few basic assumptions can be employed to calculate 

the range of thermoplastics that can be formed with a mold made of a given thermoplastic 

material. 

Equation (1) needs to be satisfied by the mold and the part for the thermoforming process to be 

viable. Equation (1) looks similar to the equation used in operational temperature range of hot 

melt adhesives. Pocius [45] uses a similar equation to define the active range of hot melt 

adhesives. However, the equation used by Poicius [45] considers melting temperature and glass 

transition temperature of the hot melt adhesive, whereas in Equation (1), the glass transition 

temperature of mold polymer is compared with the melting temperature of the part polymer. 

 𝑇𝑔,𝑚𝑚𝑚𝑚 = 𝑇𝑚,𝑝𝑝𝑝𝑝 + ∆𝑇 (1) 

𝑇𝑔,𝑚𝑚𝑚𝑚 = Glass transition temperature of mold material 

𝑇𝑚,𝑝𝑝𝑝𝑝 = Melting temperature of material to be thermoformed 

t = time of contact 

teq = time required for the layer of unit depth to reach thermal 

equilibrium with part 

κ = thermal conductivity of the interface 
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A = area of the interface between mold and part 

Cm = specific heat capacity of the mold material 

Ti,mold = initial temperature of the mold material 

∆d = unit depth 

ρm = density of the mold material 

∆𝑇 = minimum temperature differential 

Figure 2.16 shows the curve for storage modulus (E) vs the temperature for two amorphous 

materials. The solid blue curve shows the behavior of the mold material and the dotted black 

curve shows the behavior of material to be thermoformed. Both materials show significant loss 

in storage modulus (and hence the stiffness) after reaching the glass transition temperature [46]. 

The graph shows the difference between the glass transition temperature of the mold material 

and the melting temperature of thermoplastic part material as ∆T. If the part material was semi-

crystalline, or crystalline, the curve would be different but the melting temperature of the part 

polymer would be considered for equations in this method. This method considers amorphous 

polymers only for the mold.  
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Figure 2.16: The method used for determining the thermal working range of the mold material 

for the thermoforming process. 

 

Assuming the following: 

1. The temperature is uniform throughout the contact area. 

2. The temperature across unit depth (∆d) region is equal. ∆d is considered small. 

3. Time of contact is less than time required for the unit depth region considered to reach 

thermal equilibrium with the molten part to be thermoformed. 

 4.  The temperature of mold material rises linearly with time when in contact with molten 

part material. 

5.  Heat transfer is linear across the contact area.  
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Considering the initial temperature of the mold as Ti,mold  and a unit depth of mold material, for 

the final temperature of the mold to be the glass transition temperature of the mold material, 

 
𝑇𝑔,𝑚𝑚𝑚𝑚 > 𝑇𝑖,𝑚𝑚𝑚𝑚 +

𝑄
𝐶𝑚𝜌𝑚𝐴∆𝑑

  
(2) 

     

 

where,  

the heat that raises the temperature of the mold is the heat that is transferred from the molten 

thermoplastic through the interface 

 𝑄 =
𝑡
𝑡𝑒𝑒

𝐶𝑚𝜌𝑚𝐴∆𝑑(𝑇𝑚,𝑝𝑝𝑝𝑝 − 𝑇𝑖,𝑚𝑚𝑚𝑚) (3) 

    

Where, 

 
𝑡𝑒𝑒 =

𝐶𝑚∆𝑑2𝜌𝑚
κ

 
(4) 

Hence,  

 

𝑇𝑚,𝑝𝑝𝑝𝑝 + ∆𝑇 > 𝑇𝑖,𝑚𝑚𝑚𝑚 +
𝑡
𝑡𝑒𝑒

(𝑇𝑚,𝑝𝑝𝑝𝑝 − 𝑇𝑖,𝑚𝑚𝑚𝑚) 

  ∆𝑇 > 𝑇𝑖,𝑚𝑚𝑚𝑚 +
𝑡
𝑡𝑒𝑒

(𝑇𝑚,𝑝𝑝𝑝𝑝 − 𝑇𝑖,𝑚𝑚𝑚𝑚) −  𝑇𝑚,𝑝𝑝𝑝𝑝        (5) 
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From equation (5), we can see that ∆T depends upon the contact time and the heat conductivity 

of the interface. This ∆T  value can be reduced by using a thin insulation between the material 

and the mold such that it does not affect the geometry or integrity of the mold significantly. In 

addition, for the thermoforming processes the contact time necessary for the stamp-forming 

process is usually 3 to 5 seconds. 

By using a material with suitable heat conductivity and contact time, the ∆T value could 

effectively be reduced to zero or even made negative. This means that a higher temperature 

thermoplastic can potentially be stamp-formed using a lower temperature thermoplastic. Further 

investigation is necessary to study such possibilities. 

The following numerical example shows the use of the above equation for determining the 

suitability of a material as a mold. Considering a mold of polyetherimide(PEI) and a part of 

polypropylene, with mold initially at room temperature of 23 ˚C and polypropylene at its melting 

point of 130 ˚C, the following values are assigned: 

• Glass transition temperature of the mold material, Tg,mold  = 217 ˚C 

• Melting temperature of part material, Tm,part  = 130 ˚C 

• Time of contact (assumed), t = 5 seconds  

• Time required to reach thermal equilibrium for unit depth, teq = 11.5 sec 

• Initial temperature of the mold, Ti,mold  = 23 ˚C 

• Unit Depth, ∆d = 1 mm = 0.001m 

• Specific heat capacity of the mold material (assuming solid fill),  

Cm = 2000 J ˚C -1 kg-1 
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• Thermal conductivity of the interface (assuming solid fill for PEI),  

κ  = 0.22 W m-1 ˚C -1 

We have, 

𝑇𝑖,𝑚𝑚𝑚𝑚 + 𝑝
𝑝𝑒𝑒

(𝑇𝑚,𝑝𝑝𝑝𝑝 − 𝑇𝑖,𝑚𝑚𝑚𝑚) −  𝑇𝑚,𝑝𝑝𝑝𝑝       = -60.61 ˚C 

Also, 

∆𝑇 = 𝑇𝑔,𝑚𝑚𝑚𝑚 −  𝑇𝑚,𝑝𝑝𝑝𝑝 = 87 ˚C 

So, the condition for Equation 5, 

       ∆𝑇 > 𝑇𝑖,𝑚𝑚𝑚𝑚 + 𝑝
𝑝𝑒𝑒

(𝑇𝑚,𝑝𝑝𝑝𝑝 − 𝑇𝑖,𝑚𝑚𝑚𝑚) −  𝑇𝑚,𝑝𝑝𝑝𝑝            is satisfied. 

Hence, ULTEM 1010 can be used as mold material for forming polypropylene parts. 

2.7.1 Available materials and their properties 

The materials that are available that can be printed with the Fortus 900mc 3D printer and their 

properties are listed in Table 2.1. From Table 2.1,  it is observed that all the materials satisfy the 

strength required to withstand the thermoforming pressure of 3.45 MPa. However, the materials 

with high enough glass transition temperature required for thermoforming. Nylon is not 

thermally stable and hence is not considered suitable for thermoforming. After these 

eliminations, the remaining thermoplastic materials that can be considered suitable for usage as a 

mold in thermoforming operations are PPSF/U, ULTEM 9085 and ULTEM 1010. ULTEM 9085 

was chosen for further study because it has acceptable strength values, and elastic modulus 

values, and the glass transition temperature is comfortably higher than the thermoforming 

temperature of 130 ˚C. 
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Table 2.2: Materials available in Stratasys Fortus 900mc for 3D printing. 

Material ABS ASA Nylon PC PPSF/U ULTEM 

9085 

ULTEM 

1010 

Tensile Strength 

(MPa) 
34.8 30 48 52 55 71.6 110 

Tensile Modulus 

(MPa) 
1827 1950 1700 2000 2068 2200 3580 

Flexure Strength 

(MPa) 
50 48  97 110 115 165 

Flexure Modulus 

(MPa) 
1863 1630 1500 2137 2206 2500 3510 

Heat Deflection 

Temperature (°C) 96 91 177 127 189 153 213 

Pressure for given 

HDT (MPa) 
1.82 1.82 1.82 1.82 1.82 1.82 1.82 

Glass Transition 

Temperature Tg (°C) 
112 108 181 161 230 186 215 
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Assuming a contact time of 10 seconds and initial mold temperature of 23 ˚C, a list of 

thermoplastic parts that can be formed by using the polymer for the mold can be obtained. No 

insulation is used for these analyses. The physical and thermal properties of polymers are taken 

from www.matweb.com website. For properties that have a range, the lower value of the range is 

taken. For example, the melting temperature of PET is given as 200 ˚C -260 ˚C and 200 ˚C is 

taken for this analysis.  

Table 2.3: Compatibility of available mold polymers for Fortus 900 mc with the parts that can be 

thermoformed. 

 

The results of these analyses are shown in Table 2.1. The cells marked “OK” with green fill 

color satisfy Equation (5) with wide margin, the cells marked “OK” with yellow green fill color 

satisfy the equation with narrow margin, and the cells marked “NG” with red fill do not satisfy 

the equation. 

 

Mold Polymer ABS ASA Nylon 12 PC PPSF/U ULTEM 9085 ULTEM 1010
Part Polymer
HDPE NG NG OK OK OK OK OK
PP NG NG OK OK OK OK OK
PMMA NG NG OK NG OK OK OK
POM NG NG OK NG OK OK OK
PA12 NG NG OK NG OK OK OK
PETG NG NG OK NG OK OK OK
PET NG NG NG NG OK OK OK
PA6 NG NG NG NG OK NG OK 
PBT NG NG NG NG OK NG OK 
PET-SC NG NG NG NG OK NG NG
PET-P NG NG NG NG OK NG NG
PPS NG NG NG NG NG NG NG
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2.8 CONCLUSIONS 

The following conclusions have been drawn from the research work carried out in this chapter: 

1. Several printing parameters affect the mechanical properties of the part created by using 

FDM 3D printing technique. Care should be taken while selecting these parameters to get 

optimum mechanical performance from the parts created. 

2. A simple formula can be used to ascertain the initial suitability of a thermoplastic material as 

a mold for thermoforming another thermoplastic material based on the melting point of the 

part and glass transition temperature of mold material. 

3. A temperature of 130˚C and a pressure of 3.45 MPa is necessary to thermoform 

polypropylene reinforced with E-glass fibers up to 13 mm (1/2 inch) thick parts with very 

small or no curvatures or for parts with 8mm (0.25 inch) thick parts with significant 

curvatures. The parts formed have continuously varying thickness around the curved areas. 

4. The mold formed must be able to withstand a pressure of 3.45 MPa without significant 

deformation at the thermoforming temperatures to effectively be used as the mold. 
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 3  CHAPTER 3 

MOLD INTERNAL STRUCTURE AND QUASI-STATIC PROPERTIES 

One of the opportunities presented by 3D printing is that it allows for modifications of the 

internal structure of the part to be printed.  This creates possibilities to vary the strength and 

elastic modulus of the part so that an optimal balance can be reached between required 

mechanical properties, material usage, and time to manufacture the part.  

3.1 INTERNAL STRUCTURE OF THE MOLD 

The internal structure of the mold was treated as a different material by defining a unit cell as 

shown in Figure 3.1.  

For the purposes of this study, the following parameters were used: 

• Width of each layer: 0.51 mm 

• Slice height: 0.25 mm 

• Number of transition layers from outside cover layer to inner cellular structure: 2 

• Raster angle: 45 degrees 

• Air gap: 2.03 mm 

• Shrink Factors: 

o X-direction: 1.01 

o Y-direction:1.01 

o Z-direction: 1.01 
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Figure 3.1: The internal structure of the printed material in XY plane (two stacked layers). 

These the printing parameters were based on the preliminary tests carried out to determine the 

forming pressure and temperature that needs to be withstood by the mold. The mold for the 

preliminary tests was made up of ULTEM 1010 and was 3D printed by Stratasys (the 

manufacturer of Fortus 900mc systems used for this study).  ULTEM 1010 is a commercial name 

for polyetherimide (PEI). ULTEM 9085 is a proprietary blend of PEI and other additives that 

make it more suitable for use in 3D printing. The additive reduces the shrinkage for ULTEM 

9085 and lowers the melting point. A temperature of 325 ˚C is maintained at the nozzle of the 

extruder to liquefy ULTEM 9085. A temperature of 195 ˚C, which is higher than the glass 

transition temperature of 186 ˚C, is maintained in the oven so that the layer deposited earlier 

bonds better with the newly deposited layer. A better bond between the layers is obtained if they 
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are kept at a temperature above glass transition temperature but below melting temperature. This 

concept is explained by Pocius [45] as used in hot melt of adhesives. 

 Slight changes were made to those parameters to accommodate the fact that the material used 

for printing had been changed from ULTEM 1010 to ULTEM 9085. 

The internal structure of two printed layers stacked one above another in XY plane is shown by 

Figure 3.2. This structure repeats itself in Z direction for a specified number of layers to create 

the final part. 

 

Figure 3.2: Internal structure in XY plane. 

 

Figure 3.3: Internal structure in XZ plane. 

Because the internal rasters were printed at an angle of 45 degrees, the YZ plane and the XZ 

plane internal structure were identical. Figure 3.3 shows the section of internal structure in XZ 

plane.  

3.2 QUASI STATIC TESTS 

Quasi-static tests were carried out to determine the properties of the 3D printed materials. 

Filaments of ULTEM 9085 were tested in tension to determine the elastic modulus and strength 

Y 

X 
X 

Z 
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of the material. Several 3D printed specimens with lattice internal structure was tested in tension, 

compression and shear.  The specimens were printed with different orientation to determine the 

mechanical properties (strength and elastic modulus) in different directions. For tension tests, six 

samples were printed with their Z-direction aligned with the direction of loading. Six additional 

samples were 3D printed with their X-direction aligned with the direction of loading.  These 

samples were made per ASTM D638 specifications with printing parameters as mentioned in 

Section 3.1. The samples printed along the X-direction aligned with the direction of loading 

failed in the transition region between the grips and the middle gauge segment. Therefore, new 

specimens with modified geometry were printed to ensure that the failure was contained in the 

gauge region. 

Similarly, for compression tests, six samples were printed with their Z-direction aligned with the 

direction of loading and another six samples were printed with X-direction aligned with the 

direction of loading. These samples were made per ASTM D6641 specifications. 

To determine the properties of the printed structure in shear, eighteen different specimens were 

printed, six of each with X, Y, Z directions respectively aligned with the loading direction. 

ASTM D7078 specifications were used for the geometry of the specimens. 

3.2.1 Tension tests of the filament 

There are two reasons for carrying out these tests. These tests would allow us to characterize the 

variability in the elastic modulus of the material used for the test coupons. These tests would also 

establish a Young’s modulus to define the mechanical property of the material itself. 
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ULTEM 9085 filaments used for printing were drawn out of the canisters and tested in tension 

for strength and elastic modulus. Six samples, each of 100 mm length, were prepared. The 

middle 50.8 mm was marked as the gauge section where extensometer would be attached. Three 

different measurements were taken within the gauge section to measure the diameter of filament 

using digital calipers.  

 

Figure 3.4: Test setup for tension tests of ULTEM 9085 filaments used for printing. 

Gage region of 

filament sample 

  

Extensometer 
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The mean of these measurements was taken as the diameter of the filament. Servo-hydraulic 

testing frame was used for the tests. An 8.9kN (2 kip) load cell was used to measure the loads. 

The extension of the filament was measured using an extensometer with gauge length of 50.8 

mm (2 in).  

Fixtures with clamping jaws were used to clamp the filaments during the test. Shear tabs were 

used to minimize the deformation of the filaments during clamping. This helped in delaying the 

initiation of yielding of the filament at the grips. This allowed nonlinear deformation to occur in 

the gauge region where extension was being recorded. 

The rate of loading under displacement control was 0.1 mm per minute.  The temperature of the 

room was 21.1˚C during the testing.  BlueHill 3 Testing software was used to record the data 

from the test. 

3.2.2 Tension Tests of the printed material 

For the tension tests, two different rounds of testing were done. In the first round, coupons of 

15mm thickness were produced using 3D printing. The density of the fill in the grip section as 

well as that in the gauge section was equal for these specimens. The specimens printed with 

orientation towards Z- direction failed in the gauge section but the specimens printed with 

orientation towards X- direction failed in the transition region between gauge area and grip area. 

To ensure failure in gauge area, a second set of specimens was created for evaluating mechanical 

properties in X-direction. These specimens had a thickness of 5 mm and were printed with 

orientation along X direction. The fill was twice as dense in the grip region compared to the 

gauge region to ensure that the failure occurs in the gauge region. The linear cross-sectional 
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dimensions were measured using digital calipers to ensure that they match with the geometric 

computer model used for 3D printing. 

 

Figure 3.5: Tension test specimen for ASTM D638[47].  

The rate of loading with displacement control was 0.1 mm per minute.  The temperature of the 

room was 20.6 ˚C. 

 

Figure 3.6: Tension test setup for coupons with lattice internal structure printed using ULTEM 

9085. 

Gage region 
with stochastic 
pattern for DIC 
system 
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3.2.3 Compression tests of the 3D printed test coupons 

The compression tests were carried out in single round of testing. Two sets of samples were 

created with six specimens in each set. The first set had the Z-direction of the unit cell oriented 

in parallel with the direction of loading. The second set had X-direction of the unit cell oriented 

in parallel with the direction of loading. The cross-section of the samples was 12 mm x 12 mm. 

The gauge length was 13mm. A fixture in accordance with ASTM D6641 was used to ensure 

that the samples do not fail in buckling. 

 

 

Figure 3.7: Compression test specimen for ASTM D6641 [48].  

The rate of loading with displacement control was 0.1 mm per minute.  The temperature of the 

room was 20.8 ˚C. 

3.2.4 Shear tests of 3D printed specimens 

The shear tests were also done in a single round of testing. Three sets of samples were made with 

six specimens in each set. The first set had X-direction of the unit cell oriented in parallel with 

the direction of loading. The second set had Y-direction of the unit cell oriented in parallel with 

the direction of loading. Similarly, the third set of specimens had Z-direction of the unit cell 

oriented parallel to the direction of loading.  The rate of loading was 0.1 mm per minute. The 

temperature of the room was 21.1 ˚C. 
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3.2.5 Compression Tests of solid specimens 

The solid specimens were tested in compression for two reasons. The first reason was to 

characterize the variability in the printed coupons due to the printing process of the machine 

without the effect of printing lattice structure. The second reason was to determine the Poison’s 

ratio of the ULTEM 9085 material. 

 

Figure 3.8: Shear Test Specimen for ASTM D7078[49] shear test.  

Figure 3.8 shows the dimensions of the coupon specimens used for shear tests. The dimensions 

in the figure are in millimeters. Figure 3.9 shows the setup for ASTM D7078 rail shear test. The 

gage region is marked with stochastic pattern of black and white speckles. The changes in this 

stochastic pattern are analyzed by ARAMIS DIC system to calculate the strains. 

A first set of samples were prepared. Two filament canisters were loaded such that when 

filament ran out of one canister, the machine would draw filament from another canister. The 

switching of canisters, drawing of filament and heating up of the filament tip took considerable 

amount of time. 
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Figure 3.9: Shear Test setup of the specimen with lattice internal structures printed using 

ULTEM 9085. 

During this time, the last deposited layer of filament and the new layer of molten filament would 

have significant temperature and viscosity differences.  This would create inadequate weld 

between the filaments. There would also be certain amount of shrinkage due to the cooling down 

of the layers already deposited. This combined with the vibration of the machine when changing 

materials, would have caused a slight shift in the new layer of material deposited. This shift can 

be observed clearly in Figure 3.11. These specimens were discarded and new specimens were 

printed for the compression tests.    

Gage region 

with stochastic 

pattern for DIC 

t  
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Figure 3.10: Samples showing shift and filament misplacedbecause of the to sudden shifting of 

layers as seen through the glass window of the 3D printer oven. 

It was also observed that such shifting happened two times during the printing. In two of the 

samples, the top few layers were not connected with each other properly. Hence, the incorrectly 

deposited layers made the samples unusable. 

Another set of specimen were 3D printed. This time, it was ensured that filament from only one 

canister would be used for deposition. The wiping of tip with the metallic brushes after each 

layer of material deposition was confirmed. The specimens that were made this time were 

uniform, without any shift in layers of material deposited. 
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The specimens were tested using ASTM D6641, with a loading rate of 0.762 mm/min (0.03 

inches/min). This value is slower than value prescribed by ASTM D6641. The strain rate was 

reduced to get more data points in the linear elastic region (between 1000 microstrains and 3000 

microstrains) for calculation of elastic modulus. The strains were calculated using Aramis DIC 

system and load was applied using servo-hydraulic test frame with load being measured with a 

100 kN (22 kip) load cell. 

 

Figure 3.11: Coupons printed for compression tests showing shifting of alignment at certain 

layers. 

Shifting of layers 

presumably because 

of instability 
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3.3 EXPERIMENTAL RESULTS 

3.3.1 Quasi Static Tests of samples with lattice internal structure 

The results from the quasi-static tests on specimen with lattice internal structure are shown in 

Table 3.1. 

 

 

Figure 3.12: Set-up for compression test of solid-fill sample. 

3.3.2 Quasi-static compression test of specimen with solid internal structure 

An elastic modulus of 2250 MPa with a COV of 4.03% was measured from quasi-static 

compression test of specimens with solid (no air gaps) internal structure. The offset strength in 

compression at 2% offset was measured to be 90.4 MPa with a COV of 3.88%.  The Poisson’s 

ratio was measured to be 0.285 with a COV of 9.04%. 

Fixture for 
compression test 

Cameras for the 
DIC system 

Sample for 
compression 
test 
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Table 3.1: Mechanical properties from quasi-static coupon tests with COV in parenthesis. 

 Ultimate 
Strength 
(MPa) 

Offset 
Strength 
 (MPa) 

Elastic 
Modulus 
(MPa) 

Elastic 
Modulus 
Range 
(MPa)  

Poisson’s 
Ratio 

Poisson’s 
Ratio 
Range 

ASTM D638 
Tension X 
(or Y) 

14.6 
(4.51%) 

- 1140 
(4.92%) 

1060 -1220 0.376 
(2.15%) 

0.3682 -
0.3864 

ASTM D638 
Tension Z 

13.3 
(2.27%) 

- 920 
(2.89%) 

888 - 962 0.242 
(12.2%) 

 0.1856 - 
0.2567  

ASTM 
D6641 
Compression 
X (or Y) 

23.6 
(2.41%) 

22.5 
(3.10%) 

925 
(8.75%) 

835 - 1030 0.286 
(10.8%) 

 0.2403 - 
0.3413  

ASTM 
D6641 
Compression 
Z 

38.0 
(1.97%) 

31.97 
(5.79%) 

1090 
(12.55%) 

 990 -1370 0.246 
(18.9%) 

0.1920 - 
0.3077 

ASTM 
D7078 Shear 
XY 

12.5 
(5.12%) 

- 789 
(6.97%) 

693 - 838 - - 

ASTM 
D7078 Shear 
YZ 

12.6 
(4.03%) 

- 814 
(6.52%) 

738 - 872 - - 

ASTM 
D7078 Shear 
XZ 

13.6 
(2.45%) 

- 796 
(4.66%) 

766 - 864 -  

 

An ultimate compressive strength value could not be obtained because the specimens underwent 

deformation that equaled the gauge length that resulted in the fixtures being exposed to each 

other.  

3.3.3 Tension test of filaments 

The tension test of filaments showed elastic modulus to be 2860 MPa. The COV for this 

measurement was 3.18%. The offset strength of the filaments at 1% offset was determined to be 
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62.3 MPa with a COV of 4.84%. The ultimate tensile strength for the filaments could not be 

determined because the specimens slipped at the grips at about 3% strain. 

3.4 DISCUSSION OF RESULTS  

It was observed for the tension tests, that the elastic modulus in X-direction is higher than elastic 

modulus in Z-direction. This is a result of sample cross section being different in these two cases. 

For the samples tested in tension in the X-direction, the ratio of cross section area contributed by 

the core material to the cross-section area contributed by the wall material is higher compared to 

that for samples tested in Z- direction. After discounting the effect of wall mathematically, the 

calculated moduli of elasticity of core for both X and Z directions in tension are similar. 

Similar observation is made for elastic modulus in compression. However, the sample sizes are 

the same. The cause of this observation can be explained by the fact that in compression, the 

contact area is increased as the voids are expelled, increasing the actual cross section area of the 

material. This increase in cross sectional area causes a corresponding increase in stiffness. This 

behavior is consistent with the behavior of cellular solids as mentioned by Gibson and Ashby 

[50]. 

From the test results, it was found that there was high variability in elastic modulus of the 3D 

printed material with lattice internal structure from sample to sample. The ultimate strength 

values were more consistent than the elastic modulus values.  
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Figure 3.13: Stress Strain curves for samples with lattice internal structure under tension loading 

in the X-axis. 

The samples exhibited brittle nature in tension which is consistent with the behavior of cellular 

solids as shown by Gibson and Ashby [50]. The stresses reached a peak value and the sample 

broke into two pieces. There was a clear separation between the two broken pieces and the plane 

of failure was normal to the plane of loading. 

 

The stress-strain curves for samples with material Z- axis perpendicular to the direction of 

loading have lower variability compared to the samples with material Z-axis aligned with the 

direction of loading. The set of samples with low variability had a larger base area on the build 

sheet upon which the molten filament was deposited compared to that for the set of samples with 

higher variability. 
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Figure 3.14: Stress-Strain curves for samples with lattice internal structure under tension loading 

in the Z-axis. 

 

Figure 3.15: Stress-Strain Curves for samples with lattice internal structure under compression 

loading in the X-axis. 
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Figure 3.16: Stress-Strain Curves for samples with lattice internal structure under compression 

loading in the Z-axis. 

The samples showed somewhat ductile behavior in compression. The stress-strain curves have an 

elastic region at low loading. On increasing the strain, the curves flatten out and show non-linear 

behavior. On further increasing the strain, load increases very slowly. The curves show three 

distinct regions of progression of failure in the material. This is because of the lattice internal 

structure. At first, the internal lattice structures undergo progressive failure, closing the air gap in 

between the material. The outer walls of the specimen start failing as the portion of load taken by 

the wall is increased. The outer walls buckle and fail, resulting in the failure of the specimen. 

This behavior is very characteristic of cellular materials as shown by Gibson and Ashby [50]. 

Another interesting observation was that the variability of elastic modulus among samples was 

high for set of samples with smaller base area in contact with the build sheet and the variability 

was smaller for the set of samples with larger base area in contact with the build sheet. 
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Figure 3.17: Failure of a sample loaded in compression with  walls failed in buckling after 

crushing internal lattice structure. 

The shear failures were all brittle failures. For samples of set S3 where the material XY plane 

aligned with the shear load plane, the failure plane was at the v-notch. For other two sets, where 

material XY plane was normal to the shear load plane, the failure plane started at the V notch, 

but it deviated at an angle. It was observed that variability in strength from sample to sample for 

each set of samples was low. However, the variability in shear modulus from sample to sample, 

for each set of samples was high and direct correlation was observed with base area in contact 

with the build sheet. 

Buckled 
walls 
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Figure 3.18: Stress-Strain curves for samples with lattice internal structure under shear loading in 

the the YZ plane. 

 

Figure 3.19: Stress-Strain curves for samples with lattice internal structure under shear loading in 

the XZ plane. 
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Figure 3.20: Stress-Strain curves for samples with lattice internal structure loaded in shear in the 

XY plane. 

The variability in the elastic modulus of samples appeared to be influenced by two main factors, 

namely, the base area in contact with the build sheet, and the height of the specimen. Lower 

variability in elastic modulus of samples was observed when larger area was in contact with the 

build sheet and vice-versa. Taller samples, with height being measured from the build sheet to 

the top of the specimen in along the line of action of gravity, experienced higher variability from 

sample to sample. Assuming the variability is observed attributable to slight misalignment of 
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Strains (mm/mm)

0

2

4

6

8

10

12

14

S
tre

ss
 (M

P
a)



67 

 

taller samples will have more layers and the chances of misalignment increases with increasing 

the number of layers. Thus, taller samples would have higher variability. 

 

 

Figure 3.21: Samples showing failure planes on shear loading for different specimen printed with 

internal structures with different orientation. 

To ensure that this variability is a result of the lattice internal structure and that it is not a result 

of the variability in the material, specimen with solid internal structure were prepared and tested. 

The configuration was made like samples loaded in compression in the Z-direction because those 

samples had highest variability in elastic moduli of the specimen. It can be seen from the stress-

strain curve in Figure 3.22 that the stress-strain response of the samples has small variability for 

samples with solid internal fill compared to samples with lattice internal fill. Very low COV in 

elastic modulus was determined for the sample set with solid internal structure. The COV was 

Planes of failure 
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also low in tension tests of the filaments. The major sources of defects and hence variability are 

man, machine, method, material, measurement, environment. 

 

Figure 3.22: Stress-Strain curve for samples with solid internal structure loaded in compression 

in the Z-direction. 

The man (operator) was the same. The machine used was the same Stratasys Fortus 900 mc. The 

material was shown to have a low COV. The measurement techniques used were the same. The 

environment is unchanged during manufacturing and testing. Hence, the only source of defect 

and hence variability was the method that printed the internal lattice structure. This indicates that 

printing specimens with lattice internal structure results in variability from sample to sample. 
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MPa was lower compared to the compression strength (at unspecified strain) of 104 MPa 

provided by the manufacturer. 

The material showed nonlinear, ductile stress-strain behavior that is typical of thermoplastic 

materials. At high strains, the stress-strain curve flattened out showing very little increase in 

stress with increasing strain. The material was relatively more ductile compared to thermoplastic 

composite parts with reinforcements that would be made from thermoforming process of the 

mold. The coupon specimens underwent deformation that equaled the whole gage length of 13 

mm (0.5 inch) without reaching ultimate failure state. 

 

Figure 3.23: Stress-Strain curve for tension tests of filament. 

The tension test of the filaments resulted in an elastic modulus of material as 2860 MPa which is 

significantly higher compared to the elastic modulus of 2220 MPa provided by the manufacturer. 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

strain (mm/mm)

0

10

20

30

40

50

60

70

st
re

ss
 (M

P
a)



70 

 

Ultimate tensile strength could not be determined using the testing procedure used because the 

samples yielded at grips at higher loads. However, comparing the 1% offset strength of 62.3 MPa 

to the tensile strength of 71.6 MPa, the values are considerably close. The material showed 

relatively ductile behavior during tensile testing compared to the coupons with lattice internal 

structure in tensile tests. The curve flattened out with increasing strain. However, the filaments 

could not be tested to failure and the filaments yielded at grips before they yielded at gage. 

Hence, a comparison of ductility with compression tests could not be made. 

3.5 CONCLUSIONS 

The following conclusions were reached from the quasi-static tests: 

1. The strength and modulus of elasticity of the material with cellular structure with parameters 

used for the study are sufficient to carry out thermoforming operations. However, the change 

in these properties with increase in temperature needs to be studied. 

2. Parts printed with lattice internal structures exhibit a high degree of variability in elastic 

modulus but are in strength. The variability is likely to be the result of misalignment of the 

molten filament. The variability increases with increase in height and decreases with increase 

in base area in contact with build sheet. Parts printed with solid internal structures have 

comparatively very small variability suggesting that void ratio has a role to play in variability 

in mechanical properties of 3D printed structures. 

3. The mechanical property values provided by material supplier differ from the results 

obtained from the experiments. The elastic moduli obtained from experiments are higher. 

The value obtained from experiments was 23.1% higher than the values obtained from the 

value provided by the material supplier. The 1% offset values for strength is close to the 
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strength values reported by the manufacturer. It would be better to carry out experiments to 

determine mechanical properties for modelling and other purposes rather than to rely on 

manufacturer-provided data. 
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 4  CHAPTER 4 

CREEP AND THERMAL PROPERTIES 

Thermoforming operations require use of material at elevated temperatures. The mold needs to 

be able to maintain structural integrity at these elevated temperatures and pressure conditions. 

Since the thermoplastic material used for molds is a polymer, it exhibits viscoelastic response to 

external loading. The quasi-static tests only capture the elastic response portion of the material 

behavior. Characterizing a creep response should enable us to understand the behavior of the 

material under sustained loading and evaluate its potential use as a mold in the thermoforming 

process. 

4.1 THEORY 

4.1.1 Mechanical Behavior of polymers with respect to temperature 

Figure 4.1 shows the temperature dependent behavior of the polymers. The crystalline and semi-

crystalline polymers become less stiff gradually with increase in temperature. When the melting 

temperature is attained, the material starts to flow. For amorphous polymers, the glass transition 

temperature is important as there is a rapid decline in the storage modulus and hence the stiffness 

of the material.  

Dynamical mechanical thermal analysis (DMTA) is one of the methods to determine the glass 

transition temperature of the polymers. The glass transition temperature is marked by sharp peak 

in tan δ, by sharp decrease in storage modulus or by sharp increase in loss modulus. If Tg,s, Tg,l, 

and Tg,t  are glass transition temperatures determined form storage modulus curve, loss modulus 

curve, and tan δ curve respectively, the relationship between these temperatures can be expressed 
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as Tg,s < Tg,l < Tg,t.  The storage modulus curve is used to determine the glass transition 

temperature as per ASTM standard [51]. Herzog et al [52]  also suggest using the storage 

modulus for calculation of glass transition temperature so that the temperature at which 

mechanical properties begin to be compromised can be studied. 

 

Figure 4.1: Temperature dependent behavior of polymers [46]. 

4.1.2 Mechanical Behavior of polymers with respect to sustained loading 

The response of polymers is time dependent and viscoelastic. This time dependence is inherent 

to polymers because of their molecular structure. Two tests are commonly used to characterize 

the viscoelastic nature of the polymeric materials, namely, relaxation test and creep test. 
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In relaxation test, the polymer sample is given a strain and the stress in the material is measured 

over time.  

 

Figure 4.2: Relaxation test [46]. 

A creep test is another fundamental characterization test for viscoelastic materials. In this test, 

the sample is loaded at constant stress at zero time. The load is applied quasi-statically so as to 

avoid inertia effects. The material is considered to have no pervious loading history. 

Creep compliance is defined by equation (6). 

 
𝐷(𝑡) =  

𝜖(𝑡)
𝜎0

 
(6) 

For thermoplastic materials, strain increases without bound with time for constant stress level.  

The viscoelastic behavior of polymer materials can be modelled by using standard linear solid 

(SLS) model, also known as Zener model. SLS is the simplest model that predicts both creep and 

stress relaxation. The spring in parallel with the Maxwell unit has stiffness E0. It provides the 

rubbery stiffness that remains after the stress in Maxwell arm relaxes away as the dashpot 
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extends. The Maxwell arm and the parallel spring undergo equal strain. The total stress is the 

sum of stresses in each arm. 

 

 

Figure 4.3: Creep Test [46]. 

 

 

Figure 4.4: Maxwell form of Standard Linear Solid (SLS) model [46]. 
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𝜖(𝑡) =  𝜎0 �

1
𝐸0

+
1
𝐸1

(1 − 𝑒−𝑝/𝜏)� 
(7) 

 

This three-parameter solid model models the response of thermosets. For thermoplastic 

materials, however, the strain does not approach a fixed value asymptotically [46]. The strain 

keeps on increasing. To model this behavior, a flow parameter is added to the model, which is 

modelled by a viscous damper in series to the three-parameter solid model as shown in Figure 

4.5. 

 

Figure 4.5: Four parameter fluid model [46]. 

The solution to four parameter fluid model is given by Equation (8). 

 

 
𝜖(𝑡) =  𝜎0 �

1
𝐸0

+
1
𝐸1
�1 − 𝑒−

𝑝
𝜏� +

𝑡
𝜇0
�   

(8) 

This represents a more general type of linear behavior for viscoelastic materials that is suitable 

for modeling the viscoelasticity of thermoplastic polymers. It includes instantaneous elasticity, 

delayed elasticity, and flow.                                    
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4.2 EXPERIMENTAL PROCEDURE 

4.2.1 Dynamic Mechanical Thermal Analysis (DMTA) of filaments to determine 

glass transition temperature 

 

Figure 4.6: DMTA equipment with filament positioned between fixtures. 

Five samples of filament were prepared and DMTA was carried out to determine the glass 

transition temperature of ULTEM 9085 filament materials. The test was carried out using TA 

Q800 equipment using a tension film fixture. The glass transition temperature provided by the 

material supplier was 186 ˚C. The temperature range for testing was from 150 ˚C to 210 ˚C. A 

frequency of 1 Hz was used for testing. The temperature of the oven was raised to 150 ˚C and 

was kept isothermal for 5 minutes. Temperature was ramped at the rate of 1 ˚C per minute and 

one reading per three cycles of dynamic loading was taken. Amplitude of 10 microstrains was 

chosen to ensure that the samples were in viscoelastic region of stress-strain response. The 

Filament Sample 
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storage modulus curve was used to determine the glass transition temperature. Tangents were 

drawn to two parts of storage modulus curves where sharp decrease is observed. The point of 

intersection of these two tangents is taken as the glass transition temperature. The testing 

procedure suggested by ASTM E1640-13 was followed.  Figure 4.6 shows the setup for the tests 

carried out. 

The setup for DMTA tests for filament is shown in Figure 4.6. 

4.2.2 Creep tests of samples with lattice internal structure 

Nine test samples were prepared with cross sectional dimensions identical to the samples used 

for compression test. The direction of compression loading was aligned with the Z-direction of 

the unit cell of the specimen.  The compressive testing was conducted in accordance with ASTM 

D2990-09.  

It was ensured that the correct load cell is installed and the correct fixtures were placed. A self-

aligning head was prepared by mounting a ball bearing assembly above the platen that applied 

load to the test sample. The sample was placed at the center of the fixture so that any eccentricity 

related effects were eliminated. The strain gauges were bonded with the specimen by using 

epoxy adhesive. Special strain gauges, HBM 1-LD20-6/350 that could measure high strains up to 

100,000 μm/m (10%) were used. The strain at ultimate stress of the material was around 8%.   

Using strain gauge that could measure up to 10%, strain would ensure that the measurements 

obtained would be reliable. A Data Acquisition (DAQ) system was set up using LabView that 

recorded the load data from the servo hydraulic testing frame with 10kN (2.2 kip) load cell. The 

voltage output from the strain gauges was used to calculate the strain. 
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The specimens were marked with numbers and the dimensions of the specimens were measured 

accurately up to nearest 0.05mm. The dimensions were taken as the mean of three different 

readings at different locations and were recorded to three significant digits. Three stress levels 

were used – 0.3, 0.5, and 0.7 times the ultimate compressive strength of the sample, and three 

specimens were tested at each stress level. 

 

Figure 4.7: Creep test setup for samples with lattice internal structure loaded in compression in 

Z-direction. 
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The sample was loaded using a ramp loading function until it reached the required stress level. A 

strain rate of 0.127 mm/min (0.005 in/min) was used for loading. The loading was switched to 

load control after that event and a constant load level was maintained for the following 24 hours. 

The samples were monitored for de-bonding of strain gauge during the ramp loading stage and 

for the first few minutes of constant loading stage. The samples were also monitored for de-

bonding of strain gauge at the end of the test before dismounting the sample from the fixture.  

The setup for creep test is shown in  Figure 4.7. 

4.3 DISCUSSION OF RESULTS  

 Figure 4.9 shows the results of DMTA carried out on ULTEM 9085 filaments. It can be 

observed that the storage modulus has been reduced to around 1400 MPa at 150 ˚C. The elastic 

modulus of filament was calculated to be 2860 MPa at room temperature. This decrease in elastic 

modulus to half of its value at room temperature is very significant. This reduction in the elastic 

modulus should be considered while designing the mold for thermoforming operations. 

Three different glass transition temperatures were calculated using storage modulus, loss 

modulus and tan δ curves. The glass transition temperature using storage modulus, loss modulus 

and tan δ were noted as 179.6 ˚C, 187.6 ˚C, and 198.7 ˚C respectively.  Even though the glass 

transition temperature is at 179.6 ˚C, significant loss in elastic modulus already takes place at 

this temperature. Based on the glass transition temperature values, it seems prudent to limit the 

temperature of the mold material to 160 ˚C to limit the deformation of the sample under 

sustained loading.  This is so that a comfortable gap between the glass transition temperature of 

the mold and the working temperature of the mold could be ensured. The effect of creep would 
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also be amplified at these elevated temperatures. This should be taken into consideration when 

designing the mold. Even though the sustained loads exist for short time (from a few seconds to a 

few minutes) during thermoforming operations, the elevated temperatures accelerate the creep 

deformation. 

 

Figure 4.8: Creep response at different stress level for samples with lattice internal structure.  

The creep tests carried out showed high variability from sample to sample. The fact that the 

samples showed high degree of variability in the quasi-static compression test (with a COV of 

about 19%) indicates some of the variability observed in these creep test is a result of the 

variability in the material itself.  The slight misalignment of the deposited molten filament is 
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assumed to have caused this variability. It is observed that these misalignments have even 

morepronounced effects under sustained loads and affect the way the material with lattice 

internal structure deforms with time.  

 

Figure 4.9: DMTA of ULTEM 9085 filaments. 

Figure 4.10 shows the strain versus time curve for each of the samples at different stress levels. 

Figure 4.8 in the results section is created by calculating the average of the three curves at each 

stress level.  

The initial strain at the sustained load value is increasing with increasing sustained load, i.e, 
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for all the samples at respective stress levels. The initial strain for samples at each stress levels 

vary by a wide range. In Figure 4.10, it can also be seen that this range of variability is higher at 

higher stress levels – the range of initial strain at 0.3 σu is smaller compared to the range of initial 

strain at 0.7 σu. 

 

Figure 4.10: Creep Test results from each of individual nine tests. 

Another notable feature in Figure 4.10 is that there is slight curvature in the first few thousand 

seconds during which the creep strain rises and essentially flattens out. This is in the primary 

creep region. Hence, the primary creep response of the material lasts for the first few thousand 

seconds. Figure 4.11 shows the creep curve for polymers. Tertiary fracture is not observed in the 

tests carried out as the tests were stopped at 24 hours of start. 
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Figure 4.11: Typical creep curve for polymers [47]. 

 This is more notable in samples loaded at 0.7 σu. After the few thousand seconds, the rate of 

increase in creep strain is low. However, even at this slow rate, the creep strain keeps on 

increasing, which is a typical behavior for thermoplastic polymers. 

4.4 DETERMINATION OF CREEP PARAMETERS 

Two models were used for the determination of creep parameters. The first model is the three-

parameter solid model, which is widely used for plastics, mostly thermosets.  Equation (7) is the 

governing equation for the three-parameter solid model. The second model is the four-parameter 

fluid model, which is recommended model for thermoplastics. Equation (8)  is the governing 

equation for four parameter fluid model.  

The E0 value used in these models is from the quasi-static compression tests. E1 and 𝜏 for the 

Equation (7) were calculated using a least-square fitting method. E1 was calculated to be 10600 

MPa and 𝜏 calculated to be 1910 seconds. The residual error was 860 mm/mm. 
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Figure 4.12: Curve fitting for three parameter solid model. 

 

Figure 4.13: Curve fitting for four parameter fluid model. 
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E1, 𝜏, and μ for Equation (8)  were also calculated using a least-square fitting method. E1 was 

calculated to be 12400 MPa, 𝜏 calculated to be 1280 seconds, and μ was calculated to be 

2.6x1015Ns/m2. The residual error was 604 mm/mm. 

4.5 CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions have been drawn and recommendations made from the DMTA and 

creep tests carried out: 

1. There is significant decrease in the modulus of elasticity of the material at elevated 

temperatures. The elastic modulus was almost halved at 150 ˚C compared to the elastic 

modulus at room temperature. The strength of the material is also expected to be affected 

similarly by elevated temperatures. These facts must be considered while designing the mold. 

One way to minimize the effect of decrease in modulus of elasticity is to design the internal 

lattice structure to have increased modulus of elasticity at room temperature. For example, if 

the thermoforming operations are expected to raise the temperature of the mold made by 

using ULTEM 9085 material to 150 ˚C, the internal structure should be changed (the air gap 

parameter could be reduced) such that the elastic modulus of the generated structure is twice 

the required value. Because of this increase, the deformation of the mold at thermoforming 

temperatures would be within required limits. 

2. The creep strains are small compared to the elastic strains. Even at the 0.7 σu stress level, the 

difference in the initial strain and the strain at 24 hours is small. The greatest increase in 

creep strain takes place during the first few thousand seconds. It can be asserted that at room 

temperatures, creep strains do not have greatly significant effect on mold behavior. At higher 

temperatures, however, the creep strains might be significant. But the molds need to carry the 
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sustained loads for a relatively short amount of time, in the range of a few seconds to a few 

minutes. Time – temperature superposition principle can be used to predict the effect of 

elevated temperatures for a few minutes by using the 24-hour creep test data.  

3. The material with lattice internal structure is inherently variable and care should be taken 

while designing molds using these materials. A low value for strength reduction factor phi 

(ϕ) or a high value for factor of safety needs to be used depending upon the design 

philosophy used. 

4. The four-parameter fluid model better suits the material compared to the three-parameter 

solid model. The viscous flow, although small, is significant. With a fitted value of 

2.6x1015Ns/m2, the material is significantly less viscous than glass but highly viscous 

compared to common fluids.
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 5  CHAPTER 5 

FINITE ELEMENT MODELING FOR ELASTIC RESPONSE OF 3D 

PRINTED PART WITH LATTICE INTERNAL STRUCTURE 

The process of obtaining the required mechanical properties for a mold by varying the geometry 

of the lattice internal structure can be time consuming. First, the suitable parameters for air gap, 

contour width, raster angle, and slice height need to be guessed based on experience. Samples 

need to be made using these parameters and experiments need to be performed to determine the 

mechanical properties. Based on the mechanical properties determined from the experiments and 

the target mechanical properties required for adequate mold performance, further modifications 

to parameters defining internal structure should be carried out. Further testing needs to be carried 

out until required mechanical properties are achieved. This process is time consuming and 

negates the speed advantage of using 3D printing to manufacture the mold. A finite element 

model that is fast and reasonably reliable would help to speed up the process to determine an 

initial guess value for the required parameters. A balance between the accuracy of the model and 

the time taken by the model to compute has to be achieved for this purpose.  

5.1 FINITE ELEMENT MODEL 

The purpose of this numerical modeling is to create a simplistic model that can be analyzed with 

minimal computational effort in short time. The results from this model would help to define 

toolpath parameters like air gap, raster angle, deposition width, and slice height that determine 

the achieved strength and stiffness for the mold. An optimal lattice internal structure of the mold 

would result in less material use and manufacturing time. 
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A numerical model designed to represent the gauge section of the compression test specimen was 

developed. The model was a 3D space frame model with outer walls made up of shells. Tie 

constraints, with no relative displacement and rotation at common nodes, were placed between 

the outer shells and the internal lattice structure. Lattice models have been used to model the 

mechanical response of anisotropic materials. Davids et al [53] used a lattice model to predict the 

load-induced failure and damage in wood. Landis et al [54]  used a lattice model to simulate 

microstructural damage in wood. The internal structure here has a physical lattice structure and 

not just modeled as one. Ashby [55] presents theoretical analyses of cellular structures that are 

actually lattices. In this chapter, a lattice structure surrounded by a shell is used to calculate the 

effective elastic modulus and Poisson’s ratio for the test coupons. 

 

Figure 5.1: Schematic of 3D space frame on the left and shells surrounding the space frame on 

the right.  
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5.1.1 Symmetry and Boundary Conditions 

The specimen was considered symmetrical and the bottom plane was assumed to have no 

displacement or rotation.  

5.1.2 Materials 

The 3D printing filament material was assumed isotropic for the amorphous mold material. The 

molecules of the polymer will align in the direction of extrusion of the filaments. However, the 

effect of alignment of molecules of polymer is not considered in this model. The modulus of 

elasticity from the quasi-static compression tests of the material with solid internal fill was 2860 

MPa and the Poisson’s ratio from the same test was 0.285. These values were used as input in the 

finite element model to calculate the deformation for fixed load in the linear-elastic region of the 

material response to loading. 

FDM 3D printing works by depositing one layer of molten filament after another. The interface 

between these deposited filaments creates anisotropy in the material. The mechanical properties 

are different in different directions. The degree of this anisotropy depends on the area of the 

filaments that is in this interfacial area. For the model used here, the contact area between the 

layers of depositions is limited to the contact region between the deposited layers, which are 

modeled as columns. For the shells, two layers of filaments are deposited. This would create 

some anisotropy in the 3D printed parts. However, this was not taken into consideration and an 

assumption of isotropy for the material was made. This assumption is one of the sources of the 

discrepancies between the experimental values and the values obtained from finite element 

modeling. 



91 

 

5.1.3 Geometry and Sections 

The internal structure of the specimen was made of stacks of filament, one over another, oriented 

at +45 and -45 degrees alternatively with respect to the X-axis. This internal structure was 

modeled using beam-column elements. The elements that were printed as filaments had a width 

of 0.51 mm (0.02 inch) and a height of 0.25 mm (0.01 inch). The connection points between two 

layers were modeled as column with a width of 0.51 mm and a height of 0.25 mm. For the 

external structure, shell elements were used. 

 

Figure 5.2: Sketch of the unit cell of internal structure and its representation in finite element 

model. 

5.1.4 Compression in X direction 

For compression in the X direction, shell elements with two different sections were used. The top 

nodes at X = 13 mm were kinematically coupled such that the displacement in Z-direction would 

be equal for all these nodes. A unit point load was applied at one of these nodes located near 
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Y=6.5mm and Z=6.5mm. The side plates on one side were given a thickness of 1.02 mm. The 

side plates on other side were given a thickness of 0.75 mm. This is because the test samples 

were printed in X-direction layer by layer. Because of this, the shell elements on the ZX and ZY 

planes had three layers of material each of width 0.51 mm. The shell elements on XY plane had 

only one layer of material that was 0.25 mm thick. 

5.1.5 Compression in the Z direction 

For compression in the Z direction shell elements with same thickness were used. The top nodes 

at Z = 13 mm were kinematically coupled such that the displacement in the Z direction would be 

equal for all these nodes. A unit point load was applied at one of these nodes located 

near=6.5mm and Y=6.5mm. The side plates were all given a thickness of 1.02mm. This is 

because the test samples were printed in Z-direction layer by layer.  

5.1.6 Tension in the X direction 

The model for tension in the X direction was similar to the model for compression in the Z 

direction. The difference was in geometry, which represented the actual tension tests carried. The 

second difference was in the loading. The unit point load was applied in positive X direction. 

5.1.7 Tension in the Z direction 

The model for tension in the Z direction was similar to the model for tension in the X direction. 

The difference was in geometry, which represented the actual geometry of the samples, and in 

loading, whereby unit load was applied in the positive Z-direction. 
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5.1.8 Shear in the XY plane 

For shear in the XY plane, shell elements with two different sections were used. The side shells 

on one side were given a thickness of 1.02 mm, while the side shells on the smaller side were 

given a thickness of 0.75 mm. The top nodes in the model were kinematically coupled to have 

equal displacement in the Y direction. The boundary conditions of zero displacement in the Y 

and Z directions were enforced for nodes at X = 0 and Y = 0.  

5.1.9 Shear in the XZ plane 

For shear in the XZ plane, shell elements of same thickness were used. All the shell elements had 

a thickness of 1.02 mm. The top nodes were kinematically coupled to have equal displacement in 

the Z direction.  The boundary conditions of zero displacement in the X and Y directions were 

enforced for nodes at X = 0 and Z = 0. 

5.1.10 Assembly, elements, and meshing 

The frame structure and the plates were assembled using tied translational and rotational 

constraints.  The structure was meshed with maximum element size of 0.25 mm.  

The beam elements were modeled as shear-flexible 2-noded linear beam elements. The shell 

elements were modeled as quadrilateral elements with finite strains.  The drilling hourglass 

scaling factor value was set to zero. Enhanced hourglass control was used. Simpson integration 

was used as thickness integration rule. Five integration points were used.  For the shear test 

models, triangular elements were used for meshing. This is because of the sharp angle at the V-

notch in the geometry which could not be effectively meshed with quadrilateral elements. 
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A Finite Element model was used to predict the displacement under a uniform load. Then, the 

elastic modulus of the 3D printed structure was calculated using equation (9). 

 

Figure 5.3: FEM element mesh for compression test coupon gage section (Loaded in Z-

direction). 

 

 𝐸 =
𝑃𝑃
𝐴𝑒

 
(9) 

        

where,     

 E = Elastic modulus of the material  (N/mm2) 
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 p = Force per unit area  (N) 

 L = Length of specimen  (mm) 

 e = Displacement of the top face  (mm) 

 A = Area of the top face where load is applied  (mm2) 

 

For the finite element of shear tests, the average of shear strains on all the nodes located on the 

front face were averaged.  

 𝐺𝑥𝑥 =
𝜏𝑥𝑥
𝛾𝑥𝑥

=
𝑃

𝐴𝑥𝑥𝛾𝑥𝑥_𝑝𝑎𝑔
 

(10) 

 

Average shear strains were calculated by exporting the shear strain of all nodes in the front face 

of the model and using Matlab to calculate the mean of the shear strain values.  

5.2 RESULTS 

The elastic moduli obtained from FEM and the elastic moduli obtained from the experiments are 

listed and compared in Table 5.1. 

 

where,     

 𝐺𝑥𝑥 = Shear modulus of the material in XY plane (MPa) 

 𝜏𝑥𝑥 = Shear Stress (MPa) 

 𝛾𝑥𝑥 = Shear Strain  (mm/mm) 

 P = Shear load applied  (N) 

 𝐴𝑥𝑥 = Area of the top face where load is applied  (mm2) 

 𝛾𝑥𝑥_𝑝𝑎𝑔 = Average shear strain in XY plane (mm/mm) 
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Table 5.1: Comparison of Elastic Modulus from FEM and Elastic Modulus from Experiments. 

 Elastic Modulus 

from Modeling 

(MPa) 

Elastic Modulus 

from Experiments 

with range in 

parenthesis (MPa)  

% difference 

Compression in Z-

direction 

1160 1090 

(990 -1370) 

+5.2 

Compression in X-

direction 

909 925 

(835 - 1030) 

-1.8 

Tension in X -

direction 

1200 1140 

(1060 -1220) 

+5.5 

Tension in Z-

direction 

903 921 

(888– 962) 

-2.0 

Shear in XY Plane 726 789 

(693 – 838) 

-8.0 

Shear in XZ plane 785 796 

(738 – 872) 

-1.4 
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Alternatively, the elastic modulus for compression in Z-direction can be calculated by using 

simple mechanics. The value can be obtained by calculating the cross-sectional area of the solid 

material that is normal to the force applied. 

From Table 5.2, the total cross sectional area for the sample in compression in Z-direction is 67.0 

mm2. The total cross-sectional area for the specimen, including the air-gaps is 169 mm2.  

We have, 

 𝐸𝑠
𝐸𝑚

=
𝑃𝑃
𝐴𝑠𝑒

∗
𝐴𝑚𝑒
𝑃𝑃

=
𝐴𝑚
𝐴𝑠

 

 

(11) 

 
𝐸𝑠 =

𝐴𝑚
𝐴𝑠

∗ 𝐸𝑚  
(12) 

 

Using Equation (12), the value for elastic modulus of the sample can be calculated. 

𝐸𝑠 =
67.0
169

∗ 2860 = 1130 𝑀𝑃𝑀 
Where, 

The value of 1130 MPa obtained by using simple mechanics is very close to the value obtained 

from the finite element analysis with a difference of -2.58% compared to the value from finite 

element model. However, this simple analysis cannot be used to calculate the elastic modulus in 

𝐸𝑠 = Elastic modulus of the specimen 

𝐸𝑚 = Elastic modulus of the material 

𝑃 = Load applied on the specimen 

𝑃 = Length of the specimen along the direction of load 

𝐴𝑠 = Cross-sectional area of the specimen including the voids 

𝐴𝑚 = Cross-sectional area of the material only 

𝑒 = Extension (or compression) of the material along the length 
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X-direction or Y-direction because the elements of the internal lattice structures are not aligned 

along the direction of the loading. 

 Table 5.2: Total cross-sectional area for compression in Z-direction. 

Items Area (mm2) Number Total (mm2) 

Walls 13*1.02=13.3 4 53.2 

Columns 0.51*0.51=0.260 53 13.8 

 

Figure 5.4 shows the displacement in the direction of applied load for sample loaded in 

compression in Z-direction. The figure shows gradual variation in displacement with maximum 

displacement on the top face where the load was applied.  Figure 5.5 shows the displacement in 

the direction of load for the sample loaded in compression X-direction. The displacement is 

comparable qualitatively in both compression test finite element models. The difference is that 

the deformation was higher when the coupons were loaded in X-direction than when they were 

loaded in Z-direction. 

Figure 5.6 and Figure 5.7 show the displacements for the finite elements models of coupons 

loaded in Z-direction and X-direction respectively. The displacements are comparable 

qualitatively for the models but the displacement in Z-direction was found to be lower compared 

to displacement in X-direction. The mesh in X-direction has some triangular elements because 

the thickness of the coupon loaded in X-direction was thinner compared to the coupon loaded in 

Z-direction. 
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Figure 5.4: Displacements with compression loading in Z direction. 

 

Figure 5.5: Displacements with compression loading in the X direction. 
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Figure 5.6: Displacement in the Z direction for the Finite Element Model loaded in tension. 

 

Figure 5.7: Displacement in the X direction for the Finite element model loaded in tension. 
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Figure 5.8: Shear Strains in the XY plane for the Finite Element model loaded in shear. 

 

Figure 5.9: Shear Strain in the XZ plane for the Finite Element model loaded in shear. 

Figure 5.8 and  

Figure 5.9 show the coupons loaded in shear in XY and XZ planes respectively. It was observed 

that the stresses are concentrated around the V-notch corners. The mesh is significantly finer 
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around the V-notch to capture the stress concentration around the corners. For shear in XY plane, 

it was observed that the shear strains are higher at the area of application of the shear load and 

they gradually go down towards the V-notch.  

The Poisson’s ratios obtained from experiments is compared with those obtained from the finite 

element model are compared in Table 5.3. 

Table 5.3: Poisson's ratio from FEM compared to Poisson's ratio from experimental results. 

 Poisson’s 

Ratio from 

Modeling 

Poisson’s Ratio 

from Experiments 

% difference 

υXY (compression test) 0.248 0.246 +0.80 

υXZ (compression test) 0.235 0.286 -17.8 

υXZ (tension test) 0.350 0.376 -6.9 

υXY (tension test) 0.189 0.235 -19.6 

 

5.3 DISCUSSION OF RESULTS  

The values obtained from finite element modeling are considered reasonably close to the actual 

elastic modulus values determined from the experiment. The model is solved in a very short time 

(less than 4 minutes) on a decently powered laptop computer.  The laptop computer had an Intel 

core i7 2860QM processor with four physical cores and 12 gigabytes of RAM. 
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When increasing the number of nodes, the change in the calculated values was insignificant. The 

model used here is a linear elastic model with a fixed value for elastic modulus and Poisson’s 

ratio. A typical graph for convergence of the model is shown in Figure 5.10. 

 

Figure 5.10: Convergence  plot for Ez in compression. 

5.4 CONCLUSIONS AND RECOMENDATIONS 

1. A finite element model that is very basic and economical in terms of usage of computational 

resources can be used to characterize the linear elastic response of a 3D lattice printed 

coupon with reasonable accuracy.  The finite element model can be used to determine the 

initial estimate of processing parameters of the 3D print. A more refined finite element model 

needs to be created if a more accurate response needs to be predicted or if the non-linear 

behavior of the material is expected because the loading is high.  
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2. The finite element model also does not consider the temperature and creep effects. The 

thermoforming operations are expected to be at temperatures higher than room temperatures. 

Effective modification to elastic modulus and Poisson’s ratio in the input of the model should 

be made at temperatures below the glass transition where viscoelastic behavior of the 

material is less significant. 

3. The model does not account for the anisotropy caused by the interfacial regions created when 

one filament deposition merges with the other. However, such interfacial regions are minimal 

in the lattice internal region and mostly present in the outer shell. This effect is also less 

significant in the 3D printer used because the diameter of the filament is very small and gaps 

between layers are insignificant. Hence, an assumption of anisotropy for the material itself is 

made and such assumption results in small errors. However, for solid fills and for parts 

printed with larger printers that extrude filaments with larger diameters, the assumption of 

anisotropy could result in greater errors and must be accounted for in modeling. 

4. The elastic modulus obtained from tension test of the filament and the Poisson’s ratio 

obtained from the compression test of solid samples are used in the Finite Element Model 

developed to predict the elastic response of the sample with lattice internal structure. The 

results from compression tests of the samples with lattice internal structure were compared 

with the results obtained from the finite element model and were found to be comparable. 
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 6  CHAPTER 6 

MOLD DESIGN AND MANUFACTURE 

A part was created to highlight the advantage of using 3D printing for manufacturing molds. The 

web of a beam with sine wave web was chosen for this purpose. This is because it allows 

highlighting the features that can be implemented by using 3D printing to create a mold. The 

mold was designed to be a stamp-forming mold. Several dry runs were made to assess the 

problems that might arise during thermoforming and design features were added as a result. A 

finite element model of the mold was made with the cellular mold material modeled as an 

orthotropic material with an outer skin. The strains in the finite element model are compared 

with the strains observed during the experiments. 

6.1 MOLD DESIGN 

The part was designed to be a web of a sine wave web beam. Sine wave web beams are known to 

have high impact resistance [56] that is comparable to tubular sections. In a study performed by 

Hanagud et al [56], the sine wave beams gave similar energy absorption values compared to the 

tubular beams under bending. They are also shown to be more resistant to buckling of web and 

the buckling of the flange. They are used in wingspan spar for aircraft to eliminate the need for 

vertical stiffeners and hence reduce weight [57]. This part also has a complicated geometry that 

cannot be manufactured by well-established methods of thermoplastic composites manufacture. 

As a result, this part allows to showcase the advantages of using 3D-printing to design and 

manufacture molds for stamp forming of thermoplastic composites. A beam with sine wave web 

is shown in Figure 6.1. This beam was printed in the lab using Stratasys Fortus 900 mc printer 
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using ASA as the polymer. The part was printed as a demonstration for the final part that can be 

made using stamp forming. 

The mold was designed using Siemens NX CAD software. A basic matched mold with male and 

female parts with the sine wave shape was first made. Several dry-run tests were carried out to 

determine the problems that might be encountered during thermoforming. Design features were 

added to counter the anticipated problem.  

 

Figure 6.1: A beam with sine wave web printed using Stratasys Fortus 900 mc printer. 

Several dry run tests were carried out to anticipate the problems that might be encountered while 

forming. A stack of pre-preg tapes were pressed without heating in a acrylonitrile styrene 

acrylate (ASA) mold. In this case, as shown in Figure 6.3, the central part was bending. In the 

next design iteration, bending was minimized by creating solid circular section at the center 

during the 3D printing process. 
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Figure 6.2: Typical setup for dry-run experiments. 

 

Figure 6.3: Bending at center during stamping of unheated prepreg tape stack. 

Many other design features were added as a result of insight gained from these trial dry-runs. 

The edge walls were converted to a parabolic section to avoid pinching of prepreg tapes. Release 

pin holes were added to enable removal of formed parts that stick to the female mold. A slot was 

made to fit a transparent polycarbonate sheet to allow viewing the deformation of the mold 

during thermoforming.  

PP/GF 

 

 

Male mold 

Female mold 

Gap due to bending 
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Figure 6.4: Female mold with design features. 

 

Figure 6.5: Male mold with design features. 

 

Solid reinforcement to minimize 
bending at the center 

Release pin holes 

Edge walls blended with parabolic profile to reduce friction  

Slot for transparent Polycarbonate sheet 

Blended edges to reduce 
friction with forming tapes 
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However, a polycarbonate sheet was not used during the actual thermoforming experiments 

because the light reflected by the polycarbonate sheet interfered with the image taken by the 

ARAMIS cameras. This resulted in poor quality images being recorded for strain computation. 

Hence, the polycarbonate sheet was removed in the final experiment. 

The edges of male mold were also blended to a circular profile to prevent any pinching with the 

sidewalls. Solid reinforcements were added through the male mold to reduce bending of the 

mold. As a result, the bending of the mold was reduced during the dry run experiments. Figure 

6.2 shows a typical set-up for the dry run experiments. The amount of bending in Figure 6.3 can 

be compared with that in Figure 6.6 and the reduction in bending can be noticed. There gap at the 

center is still larger than that at the ends, but comparing the gaps at the center after modifications 

to the ones after the modifications, the gap was considerably smaller.  

 

Figure 6.6: Bending reduced due to reinforcements in male mold. 
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6.2 FINITE ELEMENT MODEL 

A finite element model was created using the internal structure of the material created in Chapter 

5. The mold was modeled as an orthotropic solid with a skin of ULTEM 9085 material. The 

mechanical properties for the orthotropic solid were generated from the finite element model 

created in Chapter 5.  

6.2.1 Determination of material properties for the orthotropic solid 

Five finite element models were created to determine the material properties for the orthotropic 

solid. Ez, Ex, νxy, νyz, Gxy, Gxz, and Gyz were the engineering constants determined from the space 

frame model.   

 

Figure 6.7: Finite element model to determine Ez and νzy. 
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Figure 6.7 shows the space frame model used to calculate Ez and νzy. Unit loading was applied in 

the Z direction. The nodes at Z = 0 have the boundary condition of displacement in the Z 

direction equals zero. A node at Z = 0, X = 6.5 and Y = 6.5 had additional boundary condition of 

displacements in the X and Y direction that equal zero for the stability of the structure. 

Kinematic coupling of all the nodes at Z = 13 enforces equal displacement of these nodes in the 

Z direction. Ez was calculated using equation (13). 

 

 

For calculation of νzy, εy and εz were calculated by taking an average of ratio of total 

displacement to original length in the Y and the Z direction respectively. The lines that 

corresponded to the nodes were considered. Average of such values was taken. The average of εy 

and εz were calculated. νzy was calculated per equation (14). 

 𝜈𝑧𝑥 = −
𝜀𝑥
𝜀𝑧

 (14) 

   

 𝐸𝑧 =
𝑃𝑃

𝐴𝑥𝑥 𝑈𝑧
 (13) 

where, 

 Ez = Elastic modulus in the Z direction (MPa) 

 P = Loading (N) 

 Axy = Area of the model in XY plane (mm2) 

 Uz = Displacement in z direction (mm) 

 L = Height of the model in Z direction (mm) 
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Figure 6.8 shows the process adopted for calculation of Poisson’s ratio.  Lateral deformation 

between two nodes, with equal X-coordinates but at the opposite faces with different Y-

coordinate, was calculated. An average value for the deformation was calculated by taking such 

deformations at nodes on the face shown at different X-coordinates. 

 

Figure 6.8: Calculation of poissions ratio of internal structure using the lattice structure finite 

element model for νxy. 

Similarly, for the model to calculate Ex and νxy, unit loading was applied in the X direction. The 

nodes at X=0 have boundary condition of displacement in X direction equal zero. A single node 

in X=0 was given an additional boundary condition of Y=0 and Z=0 for stability of the model. A 

kinematic coupling with all nodes at X = 13 was used to enforce equal displacement in the X 

direction. Ez was calculated using equation (15). 

 

  
𝐸𝑥 =

𝑃𝑃
𝐴𝑧𝑥 𝑈𝑥

 
(15)  
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where,     

 Ex = Elastic modulus in the X direction (MPa) 

 P = Loading (N) 

 Azy = Area of the model in the ZY plane (mm2) 

 Ux = Displacement in the X direction (mm) 

 L = Height of the model in the X direction (mm) 

 

νxy, εy and εx were were calculated. The average of εy and εx were calculated. νxy was calculated 

per equation (16). 

 𝜈𝑥𝑥 = −
𝜀𝑥
𝜀𝑥

 (16) 

 

Figure 6.9 shows the finite element model used for the calculation of Gxy. Unit loading was 

applied at the corner nodes at X=13, Y= 13, and Z = 13, and X=13, Y = 13, Z = 0. The loading 

was in the Y direction. All nodes at X = 0 were enforced a boundary condition of no 

displacement in the Y direction. One node at X = 0 was given an additional boundary condition 

of Y = 0 and Z = 0 for stability conditions. The nodes at Z = 13 were enforced with a kinematic 

coupling of equal displacement in the Y direction. Figure 6.9 shows the finite element model 

used for the calculation of Gxy. Unit loading was applied at the corner nodes at X=13, Y= 13, and 

Z = 13, and X=13, Y = 13, Z = 0. The loading was in the Y direction. All nodes at X = 0 were 

enforced a boundary condition of no displacement in the Y direction. One node at X = 0 was 
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given an additional boundary condition of Y = 0 and Z = 0 for stability conditions. The nodes at 

Z = 13 are enforced with a kinematic coupling of equal displacement in the Y direction.  

 

Figure 6.9: Finite element model for calculation of Gxy. 

Shear modulus Gxy was calculated according to Equation (17). 

 
𝐺𝑋𝑋 =

𝜏𝑋𝑋
𝛾𝑋𝑋

=
2𝑃𝑃
𝐴𝑍𝑋𝑥

 
(17) 

 

where,     

 GXY = Shear modulus in XY plane (MPa) 

 P = Loading (N) 

 AXZ = Area of the model in the XZ plane (mm2) 

 x = Displacement in the X direction (mm) 
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 L = Height of the model in the Z direction (mm) 

 𝛾𝑋𝑋  = Shear strain (rad) 

 𝜏𝑋𝑋  = Shear stress (MPa) 

 

The model variables are shown clearly in Figure 6.10. 

Gyz and Gxz were calculated similarly. The model used in calculation of Gyz and Gxz differed in 

loading, boundary condition, and the kinematic constraint applied. These loadings, boundary 

conditions, and the kinematic constraints are applied appropriately such that Gyz and Gxz can be 

calculated from the results. 

 

Figure 6.10: Figure showing variables for shear modulus calculation. 

The values obtained for the properties are listed in Table 6.1. 
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Table 6.1: Table showing the mechanical properties of the orthotropic solid used to replace the 

internal cellular structure for the printing parameters used 

Mechanical Property Value 

Ex 132 MPa 

Ey 132 MPa 

Ez 186 MPa 

νxy 0.824 

νxz 0 

νyz 0 

Gxy 5.27 MPa 

Gxz 34.3 MPa 

Gyz 34.3 MPa 

 

6.2.2 Properties of the part skin 

The material properties for the skin were same as the one for the ULTEM 9085 material. The 

material was isotropic with elastic modulus of 2860 MPa and Poisson’s ratio of 0.285. The skin 

had a thickness of 1.02 mm. 

6.2.3 Finite element model of the mold assembly 

The finite element model for the matched mold system is shown in Figure 6.11. 
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Figure 6.11: Finite Element Model of the mold assembly. 

6.2.3.1 Parts 

The finite element model consisted of three main parts, viz, the male mold, the female mold, and 

the reinforcement bars. The geometry for these models was created in Siemens NX CAD 

software and is exported to iges format. This model was imported in Abaqus. Material 

orientation was defined for the internal structure. An outer skin was applied to the male and 

female molds. The reinforcement bars were modelled as isotropic solids.  

6.2.3.2 Assembly 

The assembly consists of the male mold, the female mold and the five solid circular internal 

reinforcement sections. A uniform load of 3.5 MPa was applied on top of the male mold. The 

bottom of the female mold allowed no movement in the Y direction as a boundary condition. 

One node at the bottom of the female mold was restrained against movement in the X and Z 

direction for stability. The nodes at the interface were merged for all the components.  
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6.2.3.3 Meshing 

Ten-noded quadratic tetrahedral elements were used for meshing with elements having 

maximum edge length of 4 millimeters.  

6.2.3.4 Model Constraints 

Three model constraints were defined for the assembly. The first one is a tie constraint with 

shared nodes between the solid reinforcement and the cellular structure in the male mold. 

Another tie constraint was defined at the interface of male mold and female mold. A kinematic 

coupling with equal displacement in the Y direction was defined for the top surface of the male 

mold to enforce the equal displacement created by the movement of the press.  

6.2.3.5 Results 

 

Figure 6.12: Major in-plane strain for sinusoidal part of the male mold.  



119 

 

Figure 6.12 shows the displacement computed using the finite element model. The maximum 

displacement observed was at the tip of the mold. The displacements gradually decrease and are 

zero at the top.  Figure 6.13 shows the strains on the molds in the Y direction. The maximum 

strains observed were at the tips of the sine wave at the tips of the mold where the deformations 

are also highest. The strains were lowered when moving away from the tips. The strains in the 

sine wave curve where the parts are formed are still in the linear elastic range when compared 

with values from Figure 3.16. This ensures that the model is still valid since the material is in the 

linear elastic region.  

   

Figure 6.13: Strain of the  finite element model in the Y direction. 

A single node, as mentioned in Figure 6.13, of the central protrusion of the male mold was 

studied for major in-plane strains in models with four different sizes of the edge of element. The 

The node where major in-plane strains are 

computed for convergence study 
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values for the maximum size of the edge of element were taken as 10 mm, 8 mm, 6 mm, 4 mm, 3 

mm, and 2 mm. Figure 6.14 shows the convergence of the model with decreasing the mesh size. 

The model converges smoothly with decreasing mesh size. The value for major in-plane strain at 

the node was found to be 1.413 x 10-3 mm/mm for the mesh with maximum size of edge of the 

element of 2 mm. 

 

Figure 6.14: Convergence plot the finite element model of the mold. 
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6.2.4 Experimental verification of the strains 

Testing was carried out for the experimental verification of the strains in the mold. Figure 6.15 

shows the experimental setup used for the experimental verification of the finite element model 

used in Section 6.2.3. 

6.2.4.1 The verification process 

The mold was placed in the platen so that it would be aligned properly. The position of the mold 

was secured by using a narrow double-sided tape. The mold was sprayed with Dupont Teflon 

penetrating lubricant as a mold release agent. The front face of the mold was painted with a 

stochastic pattern of black and white speckles. ARAMIS DIC system was set up by focusing the 

cameras on the black and white speckles and carrying out the calibration procedure.  

 

Figure 6.15: Setup for experimental verification of the finite element model. 
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PP/GF unidirectional tapes were used for the thermoforming process. The tapes used were 

TENCATE CETEX TC960 PP/GF tapes. The resin content by weight was marked as 40% by the 

manufacturer.  The composite density was provided by the manufacturer as 1.49 g/cm3.  The tape 

had a width of 164 mm (6.5 inches) and a thickness of 0.27 mm (0.011 inches). Five different 

stacks of prepreg tapes were made with following stacking sequences: 

a. [+45/-45] 

b. [+45/-45]2 

c. [+45/-45]3 

d. [+45/-45]4 

e. [+45/-45]5 

The tapes were cut to size using a pair of scissors so that they fit entirely within the mold.  These 

stacks were heated in the heating platen. A layer of parchment paper was used to separate the 

tape stacks from the heating platen. This made it easier to quickly pick up the tape stack and 

place it on the mold. Silicone rubber foam was used as an insulator. The probe for the digital 

thermometer was placed above the topmost tape and below the silicone rubber foam. The stacks 

were heated until a temperature of 160 ˚C was attained. The tapes were quickly removed from 

the platen and put on the press. The press was set to apply a maximum pressure of 3.45 MPa 

(500 psi) on the mold. The tape stack was pressed and the pressure was held for 2 minutes. 

Images were taken at the rate of two images per second using the ARAMIS DIC system so that 

strains could be computed. The press was opened after two minutes and the formed part was 
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removed. The part formation for a six-layer tape stack after removing pressure is shown in 

Figure 6.16. 

The thickness of the part made a difference in how the parts were formed. The part with only two 

layers did not form properly. The clearance between the male mold and the female mold was 

higher than the combined thickness of the two layers. As a result, complete transfer of pressure 

to the part did not occur. There is also observable lowering in the width of the part with smaller 

thickness. This effect is reduced and almost negligible in part with ten layers of tape. Figure 6.17 

shows the parts formed during the thermoforming experiments. 

 

Figure 6.16: The formed part stuck to the male mold after pulling the mold to the top. 
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Figure 6.17: Parts formed with increasing thickness from right to left. 

6.2.5 Comparison of results experiments and the finite element model 

The strains computed form the finite element model are compared with the strains from the 

experiment. From Figure 6.18 and Figure 6.20, it is observed that the strains are comparable. The 

negative strains are highest at the tip of the mold for both finite element model and the 

experimental results. The positive strains are present towards the center of the mold. The 

maximum strains are at the regions shown in Figure 6.20. 

The experimental strains deviate from the strains from the FE model in that there is a region 

where positive strains peak on the left side. Also, the maximum negative strains recorded in the 

experiment are lower than that in the finite element model. The strains at the tip of the mold 

could not be captured effectively during forming because parts of the tape came out and 

interfered with the field of vision of the DIC cameras. 



125 

 

 

Figure 6.18: Max In-Plane Principal Strains on the central part of the mold. 

 

Figure 6.19: Comparison of the Major in-plane strain from the FE model to those observed 

experimentally. 
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Figure 6.19 shows the comparison of the major in-plane strain along the section shown in Figure 

6.20. The experimental values were taken from the first stage after the pressure is applied for the 

8-layer layup of tapes. The strain at the tip of the mold could not be determined because the 

layup interfered with the tip. There are many reasons for the deviation of the values obtained 

from the finite element model to the values obtained from the experiment. The model does not 

incorporate the stiffness of the part to be formed. The model also does not take into the account 

the effects of heating of the ply. 

 

 

Figure 6.20: Maximum In-Plane Principal Strains on the central part of the mold from 

experiments. 
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6.3 CONCLUSIONS AND RECOMMENDATIONS 

1. 3D printing can be used for iterative mold design to determine the problems that might arise 

during thermoforming and to help refine design and manufacture of molds. The speed of 3D 

printing for prototyping helps to carry out the iterative process more rapidly than it would 

have been using conventional subtractive manufacturing techniques. 

2. A finite element model can be used to predict the strains in the mold while thermoforming, 

during the initial stages of forming when the mold just encounters the prepreg tapes. The 

constraint here is that the strains are within the linear elastic response of the material. With 

time and heating of the mold, however, the strains change as the elastic modulus and other 

engineering properties change with increase in temperature of the material. A model that 

takes the change in properties of the material with increase in temperature is needed to 

predict the mold deformations at the end of forming cycle. 
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 7  CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS  

7.1 MATERIAL SELECTION FOR 3D PRINTED MOLD 

Material selection for 3D printed mold was discussed in Chapter 2. The mold material depends 

upon the part material being thermoformed. The melting temperature of the part material and the 

pressures that need to be maintained during thermoforming limit the range of materials that can 

be used as mold material. The temperature experienced by the mold needs to be lower than the 

glass transition temperature of the mold material. In addition, at the temperature experienced by 

the mold, the material should have an elastic modulus at the operational temperature that would 

prevent excessive deformation of the mold. Preliminary tests can be carried out to determine 

these forming temperatures and pressures. For polypropylene reinforced with glass fibers used 

for this study, a forming pressure of 3.45 MPa and a forming temperature of 130 ˚C was 

necessary. The forming temperature can be used to determine the suitability of a thermoplastic as 

a mold material using the suggested approach developed in Chapter 2. 

7.2 MECHANICAL PROPERTIES OF 3D PRINTED LATTICE STRUCTURE 

The printing time and material usage can be reduced by using the lattice internal structure. The 

mechanical properties of the 3D printed specimen can be altered by the use of cellular internal 

structure. The general idea is that more hollow the inside of the material is, the weaker the part 

is. The cellular internal structure is associated with considerably high variability in elastic 

modulus compared to the solid (completely filled) internal structure. The strength values, 

however, are consistent from sample to sample. The variability in elastic modulus was found to 

be affected by two parameters, namely, height of the specimen and the base area of the 
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specimen.  Because of the high variability observed, a high factor of safety needs to be 

considered when designing molds. 

The creep tests carried out showed that at low stress levels and short times of sustained pressure 

for thermoforming, creep deformations are small. Their effects on the thermoforming process 

can thus be neglected, at least for the material used ULTEM 9085, the specified internal lattice 

structure, and the specified thermoforming process parameters. 

The effect of temperature on the storage modulus of the material was found to be significant, 

which is expected for thermoplastic polymers. This should be considered during the design of the 

mold. For ULTEM 9085, the storage modulus was almost halved at 150 ˚C compared to that at 

the room temperature. As a result, the internal cellular structure could be made denser so that the 

storage modulus at room temperature is twice the required value so that at forming temperature, 

the required storage modulus value is maintained. 

7.3 FINITE ELEMENT MODELING FOR INTERNAL STRUCTURE 

A fairly accurate and computationally economical finite element model was developed using 3D 

space frames and plates to represent the internal structure of the 3D printed material. This model 

can be used to determine the printing parameters that would result in the required elastic 

modulus of the material. As a result, several rounds of testing can be avoided and the overall 

mold design process can be sped up. 

7.4 SUGGESTED MOLD DESIGN PROCESS 

The suggested mold design process is in the flowchart from Figure 7.1 and Figure 7.2 
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Figure 7.1: Flowchart describing the mold design process - part 1. 



131 

 

 

Figure 7.2: Flowchart describing the mold design process - part 2. 
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7.5 EXAMPLE OF MOLD DESIGN OPTIMIZATION PROCESS 

The internal structure of the mold can be optimized for the stamp forming process using the 

developed finite element model.  An example is explained below. Considering a male mold for 

rubber stamp forming of the web of a sine wave web beam, where the maximum deformations 

need to be limited to 1.5mm.  The optimization problem is stated as the minimization of 

objective function defined by Equation (18). 

 𝑓(𝑥) = 𝑀𝑎𝑎(max(𝑢(𝑥)) − 1.5𝑚𝑚) (18) 

Where, u = magnitude of displacement  

 the domain is the bounding volume of the mold  

 x is the air gap between the beam elements in the lattice  

 

A finite element model is made whereby the internal cellular structure is represented as a 

anisotropic solid. The outer shell was applied as a skin to the solid. Uniform pressure was 

applied on the surface in contact with the part. Boundary conditions are set to be zero 

displacement in the Y-direction for the top of male mold. The model was run and the 

displacements are found to be excessive as shown in Figure 7.3. 

A new finite element model for the internal structure was created with reduced air gap. The air 

gap was reduced from 2.0mm edge to edge to 1 mm edge to edge. Virtual experiments were run 

on this model to determine the material properties to use for the anisotropic solid. 

The properties of the new equivalent anisotropic solid are shown in Table 7.1. 

 



133 

 

 

Figure 7.3: Deformations predicted in rubber stamp forming of the mold. 

 

Figure 7.4: Finite Element model Ez and υzx for internal structure with reduced air gap. 
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Table 7.1: Properties of the equivalent anistropic solid when air gap is changed from 2.0 mm to 

1.0 mm. 

Property Value 

Ex 518 MPa 

Ey 518 MPa 

Ez 935 MPa 

νxy 0.851 

νxz 0 

νyz 0 

Gxy 66.5 MPa 

Gxz 18.4 MPa 

Gyz 66.5 MPa 

 

These values were applied to the anisotropic solid in the previous model and the model is run 

again. The deformation values are checked and they were found to be within required limits, i.e. 

the magnitude of maximum deformation was less than 1.5 mm, as shown in Figure 7.5. If the 

maximum magnitude of the deformation was more than 1.5 mm, a new iteration would have 

been carried out with a reduced value for air gap. 
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7.6 RECOMMENDATIONS FOR FUTURE WORK 

7.6.1 Study of factors affecting the variability in 3D printing of parts with lattice 

internal structure 

Significant variability was observed in the parts created by 3D printing when the parts had lattice 

internal structure. This variability was attributed to the misalignment of the deposited filament. 

The height of the part and the base area of the part seemed to have significant effect in the COV 

of the parts created. Other factors that affect the variability, and ways to reduce this variability in 

parts produced by 3D printing need to be further researched. 

 

 

Figure 7.5: Deformations predicted with the new internal structure. 
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7.6.2 Creating a more versatile Finite Element Model 

A more versatile finite element model that can predict the non-linear behavior of the lattice 

internal structure needs to be investigated. Gibson and Ashby [50] have an analytical model to 

predict this behavior for cellular solids. However, a finite element model would be more useful 

for thermoforming simulations. This model would be useful to make the strength predictions for 

the parts with lattice internal structure. It is also necessary to keep the computational costs low 

while extending the current model, to obtain useful results in short time. 

7.6.3 Automation of the mold optimization process 

The mold optimization process described in Section 7.5 can be automated so that optimum 

values for the printing parameters of internal structures could be determined. Such automation 

routine would consist of two optimization steps. The first step would be to determine the material 

properties of the equivalent anisotropic material that would satisfy the design criteria of 

deformation. The second optimization step would give the printing parameters that result in the 

internal structure with material properties calculated form the first optimization step. 

7.7 FINAL CONCLUSIONS 

The following conclusions have been arrived to from the study carried out during thesis work: 

1. An equation has been developed based on the thermal properties of the 3D printed mold 

polymer and the thermal properties of the part polymer to decide whether the 3D printed 

mold polymer could be used for thermoforming the part polymer. 

2. A finite element model consisting of space frame and shell has been developed to predict the 

elastic properties of a 3D printed mold with lattice internal structure. This model has been 
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verified through material characterization experiments. This finite element model also has 

been used in virtual experiments to determine the mechanical properties of an orthotropic 

solid representing the 3D printed material in another computationally inexpensive finite 

element model. 

3. It was verified that the properties of an extruded filament can be used for the material 

properties in the finite element model when considering 3D printed parts made from 

amorphous polymers. 

4. For structures with lattice internal structure the interactions in the planes of deposition can be 

neglected because the region where interaction occurs is very small compared to the overall 

area in the lattice region. 

5. This finite element model can be used to optimize the internal structure of the mold to get the 

required mechanical properties of the mold. This optimization can be utilized, not just in 

mold making, but also in other applications of 3D printing. As 3D printing becomes faster 

and gets used more widely, this optimization technique will be available in designing parts. 
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APPENDIX : 

MATLAB PROGRAM FILES USED FOR ANALYSIS 

All the files used for this study can be found in the server at Advanced Structures and 

Composites Center, University of Maine. The codes written in Matlab along with the tasks they 

perform are written below. 

1. CompressionC1.m 

This matlab script reads the output generated by ARAMIS DIC system for compression test 

carried out in C1 direction (material Z-axis perpendicular perpendicular to the direction of 

loading) and calculates the strength, elastic modulus, and the COVs for these values. This 

script also plots the stress vs strain curves C1 direction samples. 

2. CompressionC3.m 

This matlab script reads the output generated by ARAMIS DIC system for compression test 

carried out in C3 direction (material z-axis parallel to the direction of loading) and calculates 

the strength, elastic modulus, and the COVs for these values. This script also plots the stress 

vs strain curves C3 direction samples. 

3. TensionT1.m 

This matlab script reads the output generated by ARAMIS DIC system for tension test 

carried out in T1 direction (material z-axis perpendicular to the direction of loading) and 

calculates the strength, elastic modulus, and the COVs for these values. This script also plots 

the stress vs strain curves T1 direction samples. 
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4. TensionT3.m 

This matlab script reads the output generated by ARAMIS DIC system for tension test 

carried out in T3 direction (material z-axis parallel to the direction of loading and calculates 

the strength, elastic modulus, and the COVs for these values. This script also plots the stress 

vs strain curves T3 direction samples. 

5. ShearS1.m 

This matlab script reads the output generated by ARAMIS DIC system for shear test carried 

out in S1 direction (material unit cell x-axis parallel to loading) and calculates the strength, 

elastic modulus, and the COVs for these values. This script also plots the stress vs strain 

curves S1 direction samples. 

6. ShearS2.m 

This matlab script reads the output generated by ARAMIS DIC system for shear test carried 

out in S2 direction (material unit cell y-axis parallel to the loading) and calculates the 

strength, elastic modulus, and the COVs for these values. This script also plots the stress vs 

strain curves S2 direction samples. 

7. ShearS3.m 

This matlab script reads the output generated by ARAMIS DIC system for shear test carried 

out in S3 direction (material unit cell z-axis parallel to the loading) and calculates the 

strength, elastic modulus, and the COVs for these values. This script also plots the stress vs 

strain curves S3 direction samples. 
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8. CompressionC3Solid.m 

This matlab script reads the output generated from ARAMIS DIC system for compression 

test carried out on samples with solid fill. It calculates the strength, elastic modulus, and the 

COVs for these values. This script also plots the stress vs strain curves for these samples. 

9. DMTAslow.m 

This matlab script reads the output from the TA800 DMTA equipment for DMTA tests 

carried out on the filaments. It also calculates the glass transition temperatures based on 

storage modulus, loss modulus, and tan delta for each sample. An average of these values for 

the samples and a COV is also calculated. This script also plots the storage modulus, loss 

modulus, and tan delta values vs temperature for all of the samples. 

10. filament_tension_tests.m 

This matlab script reads the output from tension tests carried out on filaments of ULTEM 

9085 material. It calculates offset strength, and elastic modulus for the samples. It computes 

the mean of these values and the COVs for each of the value. It plots the stress vs strain 

curves for each of the samples. 

11. creepCompression.m 

This matlab script reads the output from the setup created for the creep tests. It reads the 

files, calculates the time when loading is switched to load control and uses the data after that 

time to plot the strain vs time plot for creep. 

12. Abaqus_calcute_poissions_C_x.m 

This script reads the strain outputs in X and Z direction from the file generated from abaqus 

and uses these strains to calculate the Poisson’s ratio in X direction. 
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13. Abaqus_shear_X.m 

This matlab script reads the output file from abaqus with shear strain values YZ plane and 

calculates the average shear strain from these values. 

14. Abaqus_shear_Z.m 

This matlab script reads the output file form abaqus with shear strain values in XZ plane and 

calculates the average shear strain from these values. 
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