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Abstract 

Organic aerosol affects human health and climate. These effects are largely determined 

by the composition of the organic aerosol, which is a complex mixture of species. 

Understanding the complexity of organic aerosol is critical to determining its effect on 

human health and climate. In this study, long range transported organic aerosol collected 

at the Pico Mountain Observatory was analyzed using ultrahigh resolution mass 

spectrometry. Organic aerosol transported in the free troposphere had an overall lower 

extent of oxidation than aerosol transported in the boundary layer. It was hypothesized 

that the lower oxidation was related to a more viscous phase state of the aerosol during 

transport. The results suggest that biomass burning organic aerosol injected into the free 

troposphere are more persistent than organic aerosol in the boundary layer. A sample was 

also analyzed using tandem FT-ICR MS/MS fragmentation, providing information about 

the functional group composition in the aerosol sample. This was done using a segmented 

scan approach, which revealed an unprecedented molecular complexity of unfragmented 

precursor ions. In addition to the expected CO2 and H2O neutral losses, neutral losses 

corresponding to carbonyl functional groups (C2H4O, CO) were observed. The abundance 

of carbonyl functional groups suggests a slower rate of aging in the atmosphere. Analysis 

of nitrogen and sulfur containing neutral losses highlighted a surprising abundance of 

reduced nitrogen and sulfur loss (NH3 and SH2). This further supports the hypothesis of 

slower aging in the free troposphere. Additional research was done to develop an R 

software package (MFAssignR) to perform molecular formula assignment with improved 

decision-making transparency, noise estimation, isotope identification, and mass 



xi 

recalibration. MFAssignR was found to assign the same molecular formula as other 

molecular formula assignment methods for the majority (97-99%) of mass peaks that 

were assigned a molecular formula by the compared methods. Additionally, MFAssignR 

was more effective at assigning molecular formulas to low intensity peaks relative to the 

other methods tested, leading to more overall molecular formula assignments. 

MFAssignR is available via GitHub and is the first open source package to contain a full 

pipeline of functions for data preparation and analysis for ultrahigh resolution mass 

spectrometry. 
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1 Introduction 

1.1 Overview of Aerosol 

Atmospheric aerosol are condensed particles suspended in a gas (Poschl, 2005). These 

particles range from liquid to solid, meaning that anything from inorganic dust to a cloud 

droplet can technically be considered an aerosol particle, although traditionally cloud 

droplets are not considered to be aerosol particles (Poschl, 2005). The diameter of aerosol 

particles is typically in the range of 10-9 m to 10-4 m (Poschl, 2005). In many cases, 

aerosol is categorized by its aerodynamic diameter as PM1, PM2.5, or PM10 (Shiraiwa et 

al., 2017b). PM1 has an aerodynamic diameter of ≤ 1 µm and is classified as ultrafine 

aerosol, PM2.5 is classified as fine aerosol with an aerodynamic diameter ≤ 2.5 µm, while 

PM10 includes particles with an aerodynamic diameter ≤ 10 µm and is considered to be 

coarse aerosol (Shiraiwa et al., 2017b).  

Atmospheric aerosol are complex mixtures with inorganic or organic contributions. 

Typical sources of inorganic aerosol are both natural and anthropogenic, such as wind-

blown crustal materials (sand and soil) (D’Almeida and Schutz, 1983;Wetzel et al., 2003; 

Englebrecht et al., 2016), ash emissions from volcanic eruption (Schumann et al., 2013), 

sea spray (O’Dowd et al., 2004; Prather et al., 2013), road dust from roadways and 

vehicle wear (Chiou et al., 2007; Cote et al., 2018), concrete production (Chiou et al., 

2007), and gas emissions from industrial and volcanic sources such as SO2 (Schumann et 

al., 2011). Organic aerosol can come from biological sources (pollen, spores) (Burge, 

2002; Taylor et al., 2002), biomass burning (wildfire) (Capes et al., 2008; Bougiatioti et 

al., 2014), biogenic emissions (Virtanen et al., 2010), sea spray (O’Dowd et al., 2004; 
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Prather et al., 2013), and anthropogenic sources such as fossil fuel combustion, cooking, 

heating, and crop burning (Fine et al., 2004; Volkamer et al., 2006; Buonanno et al., 

2009; Lin et al., 2010). A schematic of the selected emission sources that most relevant 

for the production of organic aerosol is shown in Figure 1.1. We will focus on organic 

aerosol for the remainder of this introduction because it is the focus of the studies 

presented in this dissertation.  

 

 

Figure 1.1. Schematic of selected emission sources of organic aerosol. The green and red 
dots represent fresh (green), and aged (red) aerosol particles. The yellow dots represent 
pollen or fungal spores. The black dots represent soot particles. The molecular structures 
represent potential gas phase pollutants being emitted from the various sources. 

1.2 Gas Phase SOA Production 

Organic aerosol is a complex mixture made up of thousands of different molecules and 

isomers (Walser et al., 2007; Mazzoleni et al., 2012; O’Brien et al., 2013; Wozniak et al., 

2014; Džepina et al., 2015). There are two major types of organic aerosol, primary and 

secondary. Primary organic aerosol (POA) is condensed material directly emitted to the 

atmosphere as a condensed particle (Poschl, 2005). Examples include fungal spores or 

smoke from wildfires. Secondary organic aerosol (SOA) is formed through chemical 

reactions in the atmosphere that produce condensed species (Poschl, 2005; Volkamer et 
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al., 2006). SOA production can occur in the gas phase through processes referred to as 

auto-oxidation (Kundu et al., 2012; Ehn et al., 2012; Jokinen et al., 2014; Mutzel et al., 

2015), via condensed phase pathways within aerosol water or droplets (Ervens et al., 

2008; Lim et al., 2010; Ervens et al., 2011), or through heterogeneous pathways (Jang et 

al., 2002). Biogenic SOA is often formed from trace gases released from trees such as 

terpenes (Ferman et al., 1981; Griffin et al., 1999). Precursors of SOA from 

anthropogenic sources are typically aromatic or aliphatic hydrocarbons such as toluene, 

benzene, heptanal, and 1-decene (Gelenscer et al., 2004). Once emitted, these gases can 

be oxidized in the atmosphere by oxidants such as OH radicals, O3, and NOx (Kanakidou 

et al., 2005). Oxidation of the trace gases eventually leads to gas-to-particle partitioning 

into a liquid or solid state as the volatility of the compound decreases and other 

molecules bind and coagulate together (Kroll and Seinfeld, 2008). This oxidation can 

proceed very rapidly leading to highly oxidized molecular species within a few hours 

downwind of their emission source (Jimenez et al., 2009; Vakkari et al., 2014). Oxidation 

of biogenic terpene precursor molecules can also result in new particle formation as 

observed in forested environments such as Hyytiala (Virtanen et al., 2010). Emissions 

from biogenic SOA can contribute 12-70 Tg/yr of organic aerosol to the atmosphere 

(Hallquist et al., 2009). In contrast, the production of SOA from anthropogenic precursors 

is on the order of 2-12 Tg/yr (Hallquist et al., 2009).  

1.3 Aqueous Phase SOA Production 

SOA can also be produced by aqueous phase processes within cloud or fog droplets 

(Blando and Turpin, 2000; Lim et al. 2010; Ervens et al., 2011). Oxidized species are 
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produced in the aqueous phase become aerosol particles when the water evaporates 

(Carlton et al., 2007). Aqueous phase processing has been shown to lead to an overall 

higher extent of oxidation than is typically observed from in gas phase experiments (Lim 

et al., 2010; Ervens et al., 2011). Although, some recent studies have suggested that the 

oxidation from both methods can be comparable (Ehn et al., 2012; Jokinen et al., 2014). 

Laboratory studies have shown rapid processing of glyoxal in aqueous solutions produces 

organic material that is similar to organic aerosol present in the atmosphere (McNeil, 

2015; Hawkins et al., 2016). Predicted pathways for the production of SOA from aqueous 

processing include Maillard reactions (Hawkins et al., 2016), Fenton reactions 

(Moonshine et al., 2008), radical reactions, non-radical reactions and oligomerization 

reactions (McNeil, 2015). Common species that undergo these reactions are water soluble 

aldehydes, epoxides, glyoxal, organic acids, amines, and phenols (McNeil, 2015). Some 

studies have shown that aqueous processing of glyoxal and pinene SOA together closely 

match observations of aged aerosol in the atmosphere, especially with respect to the 

production of low volatility oxygenated organic aerosol (LV-OOA) (Lee et al., 2012). 

Aqueous processing of methylglyoxal has been found to lead to the production of brown 

carbon (BrC), which has an uncertain effect on radiative forcing (De Haan et al., 2017). 

The primary source of BrC is biomass burning, which is discussed in Section 1.4. The 

heterogeneous pathway for SOA production occurs as an interaction between typically 

gas phase compounds and solid phase particles, where the solid phase particles provide a 

surface for the reaction to take place (Jang et al., 2002), or directly reacting with the 

gases. Heterogeneous reactions are often acid-catalyzed (Jang et al., 2002) and have been 

shown to increase organic aerosol formation by a factor of 5 (Jang et al., 2002). The 
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HNO3 and H2SO4 produced from anthropogenic emissions of SO2 and NOx are 

significant contributors to the acid-catalyzed reactions common in heterogeneous 

pathways. 

1.4 Biomass Burning Aerosol 

Biomass burning contributes to both POA and SOA (Simoneit, 2002). Biomass burning 

emissions undergoes atmospheric processing according to all of the pathways described 

above. Biomass burning aerosol is generally less oxidized than aerosol from biogenic or 

anthropogenic sources (Aiken et al., 2008; Bougiatioti et al., 2014). Biomass burning 

produces black and brown carbon which contributes to its ability to directly absorb light, 

and affect the Earth’s radiative balance (Desyaterik et al., 2013; Lin et al., 2015). The 

production of light absorbing aerosol from biomass burning depends on the intensity of 

the fire. Fires that burn vigorously lead to more complete combustion which typically 

produce more black carbon (Hopkins et al., 2007), while a smoldering fire tends to 

produce a larger amount of light-absorbing brown carbon (BrC) and tar balls 

(Chakrabarty et al., 2010). The fuel type also plays a significant role in the composition 

and absorption of the biomass burning aerosol (Levin et al., 2010). Some of the aromatic 

compounds that are produced via incomplete combustion are polycyclic aromatic 

hydrocarbons (PAH), many of which are known to be carcinogenic and mutagenic 

(Perraudin et al., 2006; Bignal et al., 2008). Biomass burning aerosol contributes a large 

fraction of the total organic aerosol loading in the atmosphere (Pratt et al., 2010) and as 

the frequency and size of wildfires increases (Turetsky et al., 2011), the amount of 

aerosol due to biomass burning is expected to increase (Spracklen et al., 2009). Recently, 
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the absorbance of BrC aerosol produced from biomass burning has been gaining attention 

because it has less constrained absorbance characteristics relative to black carbon 

(Andrae and Gelencser, 2006; Chakrabarty et al., 2010; Desyaterik et al., 2013; Lin et al., 

2015).  

BrC is organic aerosol that absorbs light with a wavelength dependence. BrC does not 

absorb light at all wavelengths as efficiently as black carbon, but it does have increased 

absorption in the visible wavelengths relative to typical SOA (Andrae and Gelencser, 

2006; Chakrabarty et al., 2010). Thus, BrC has an influence on the radiative forcing of 

the planet, and this means that biomass burning aerosol has a more complicated effect 

than was previously considered (Andrae and Gelencser, 2006). Studies of BrC during 

transport have suggested that the light-absorbing BrC components are mostly removed 

within ~1 day in the boundary layer (Forrister et al., 2015; Laing et al., 2016), which 

would limit its long-range effects. However, based on studies of PAH transport in the free 

troposphere (Shrivastava et al., 2017), there is precedence for longer lifetime of aerosol 

species transported in the free troposphere, which may also be applicable to BrC. This 

could imply greater long-range effects of BrC if it can be transported to the free 

troposphere.  

1.5 Aerosol Lifetime and Transport 

The lifetime of aerosol in the atmosphere can extend from hours to weeks (Poschl, 2005) 

and is dependent on the composition of the aerosol and the meteorological conditions it 

encounters (Poschl, 2005; Schum et al., 2018). The typical removal mechanisms for 
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organic aerosol are wet deposition, dry deposition, and oxidative degradation in the 

atmosphere (Poschl, 2005). Wet deposition can occur when an aerosol particle acts as a 

cloud condensation nucleus (CCN), forming a cloud or rain droplet or when an aerosol 

particle is scavenged by a falling water droplet (Poschl, 2005). Dry deposition occurs 

either when a particle is too heavy and falls from the sky due to gravity or when it 

impacts a surface while aloft, such as a building. (Stefanis et al., 2009). Oxidation of 

aerosol through interactions with gas phase oxidants such as (OH, NOx, O3) and aqueous 

phase processing can also lead to the removal of aerosol from the atmosphere. Eventually 

as the aerosol components are oxidized, they become fragmented into lower molecular 

weight volatile compounds, which can evaporate from the aerosol particle or be dissolved 

in a water droplet (Kessler et al., 2010; Kroll et al., 2011) and are removed from the 

aerosol particle. The lifetime of aerosol in the atmosphere also impacts how far it can be 

transported from its source. Several studies have shown transport of several thousand km 

from the source region (Damoah et al., 2004; Dirksen et al., 2009). Biomass burning 

events are a common source of these long range transported aerosol. This is largely due 

to the pyro-convection that can occur over fires, causing aerosol to be injected directly 

into the free troposphere (Val Martin et al., 2008a, Kahn et al., 2008). Aerosol in the free 

troposphere typically have a longer lifetime than aerosol in the boundary layer due to 

fewer oxidants and the cool, dry conditions can cause the aerosol to be in a solid state, 

increasing its resistance to oxidative processes (Koop et al., 2011; Lignell et al., 2014; 

Hinks et al., 2016). This may also extend to the BrC species, which typically have 

lifetimes on the order of 1 day when in the boundary layer (Laing et al., 2015; Forrister et 

al. 2016). The transport of these aerosol particles can cause problems downwind of the 
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emission sources due to the effect aerosol has on climate and human health (Shiraiwa et 

al., 2017b). A schematic of aerosol production, pyro-convection and transport of aerosol 

can be seen in Figure 1.2. 

 

 

Figure 1.2. Schematic depicting wildfire pyro-convection of aerosol to the free 
troposphere. Green dots indicate fresh aerosol, while red dots indicate increased 
oxidation of the aerosol particles. This is done to suggest the difference in rate of 
oxidation in the free troposphere relative to the boundary layer. Fire image source: 
www.kisspng.com/png-cartoon-fire-flame-clip-art-bbq-fire-cliparts-183620/download-
png.html 

1.6 Climate and Health Effects of Aerosol 

Relative to atmospheric gases such as CO2 and CH4, the effect of aerosol on the climate 

is much less certain (IPCC 2013). Depending on its source and composition aerosol can 

have either a warming or cooling effect. This effect can be direct or indirect, which 

makes it more difficult to constrain than if aerosol could only affect the climate in one 

way. The direct effect of aerosol on the climate is through scattering or absorption of 

incoming radiation. Most SOA and sulfate aerosol are considered to be dominated by 
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scattering (Lin et al., 2014), which has a cooling effect on the atmosphere. In contrast, 

soot and BrC species that are emitted from biomass burning strongly absorb light and can 

contribute to warming (Lin et al., 2014). Since biomass burning is a significant 

contributor to the global aerosol loading (Spracklen et al., 2009; Pratt et al., 2010), its 

light absorbing components may have a significant impact on global radiative forcing. 

Aerosol also has an indirect effect on the climate through its ability to act as a cloud 

condensation nuclei (CCN). Clouds also have a scattering effect on incoming radiation, 

which leads to a cooling effect. If aerosol is not hygroscopic, it is less likely to act as a 

CCN (Massoli et al., 2010).  

The hygroscopicity and number of aerosol also have an effect on visibility in urban and 

rural environments (Cheng and Tsai, 2000). Visibility reduction from aerosol happens in 

several national parks, such as the Blue Ridge Mountains, where the decrease in visibility 

is due to biogenic emissions that readily form aerosol, which can directly or indirectly 

obscure views (Ferman et al., 1981). It can also happen in urban environments, where the 

aerosol fog can be more hazardous because it contains products from fossil fuel 

combustion, which may be toxic. 

More importantly urban aerosol and subsequent smog can contain toxic chemicals that 

are hazardous for human, animal, and plant health (Shiraiwa et al., 2017b). Urban aerosol 

has been shown to contain PAH and other toxic molecules (Ollivon et al., 2002) that are 

known to be carcinogenic. The size of aerosol allows them to be directly inhaled, where 

some are even small enough (≤ 0.1 µm) to enter the bloodstream, allowing them to be 

transported to other organs in the body (Shiraiwa et al., 2017b). In general aerosol have 
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been linked to an average decrease in life expectancy of 1.2 years across the globe, with 

certain regions, such as Eastern Europe (Russia) having a decrease of 2.5 years (Shiraiwa 

et al., 2017b). Pulmonary, cardiovascular, and asthma problems have been linked to 

aerosol exposure in several studies (Dockery et al., 1996; Taylor et al., 2002; Franck et 

al., 2011). Aerosol particles can have many detrimental health and climate effects and the 

major drivers of those impacts are the physical and chemical characteristics of the aerosol 

particles. 

1.7 Oxidation, Hygroscopicity, Volatility, and Viscosity of Aerosol 

1.7.1 Accretion and Oxidation of Aerosol 

The major methods of aerosol transformation in the atmosphere are accretion and 

oxidation. Accretion can lead to larger molecules as multiple smaller molecules bind 

together through hemiacetal formation, aldol condensation, ester formation, organosulfate 

formation, and Criegee reactions with alcohol, water, or acids (Kroll and Seinfeld, 2008). 

These accretion reactions occur in the particle phase and do not increase the oxidation of 

the aerosol species (Kroll and Seinfeld, 2008). The interaction with gaseous and particle 

phase species with reactive species such as O3 and OH radicals leads to oxidative 

transformations of the molecules (Rudich et al., 2007). The reaction pathways are similar 

to those that lead to the production of aerosol described previously (Rudich et al., 2007; 

Kroll and Seinfeld, 2008). Rapid atmospheric oxidation has been observed in the 

boundary layer for aerosol from anthropogenic (Jimenez et al., 2009), biogenic (Corrigan 

et al., 2013; Ehn et al., 2014; Jokinen et al., 2014), and biomass burning emission sources 

(Capes et al., 2008; Bougiatioti et al., 2014; Vakkari et al., 2015). In contrast, some 
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studies have reported lower relative oxidation for aerosol that was transported in the free 

troposphere (Džepina et al., 2015; Schum et al., 2018). Increased oxidation leads to 

increased water solubility and hygroscopicity (Rudich et al., 2007; Kroll and Seinfeld, 

2008; Massoli et al., 2010), and decreased volatility (Jimenez et al., 2009; Li et al., 2016) 

in condensed molecules. Continued oxidation can also lead to fragmentation and re-

volatilization of the small fragments (Kroll et al., 2011). 

1.7.2 Aerosol Hygroscopicity 

Hygroscopicity refers to the ability of aerosol to take up water from its surroundings. 

Some types of inorganic aerosol are very hygroscopic, such as sulfate and nitrate aerosol 

(Cruz and Pandis, 2000; Lightstone et al., 2000). For this reason, these types of inorganic 

aerosol have been included in models in order to predict the hygroscopicity of aerosol 

(Petters and Kreidenweis, 2007) and to predict the aerosol water content (Nenes et al., 

1998). Inorganic components of aerosol are a significant portion of the overall aerosol 

mass, so considering them is a good way to predict hygroscopicty and aerosol water 

content. However, organic material typically makes up 20-90 % of the total aerosol mass 

fraction (Jimenez et al., 2009), so understanding its contribution to the aerosol 

hygroscopicity is very important. Hygroscopicity of an aerosol particle relates to its 

ability to act as a cloud condensation or ice nuclei (CCN and IN respectively) (Massoli et 

al., 2010; China et al., 2017). As the hygroscopicity increases it becomes a better nucleus 

(Massoli et al., 2010). The formation of these cloud droplets leads to wet deposition or 

additional oxidation through aqueous oxidation pathways (McNeil et al., 2015).  
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1.7.3 Aerosol Volatility 

In addition to the hygroscopicity, the oxidation of organic species affects the volatility of 

the molecules in organic aerosol. Volatility determines the equilibrium of molecules 

between the gas and condensed phases. Five categories of volatility are defined for 

atmospherically relevant species; volatile organic compounds (VOC), semi-volatile 

organic compounds (SVOC), intermediate volatility organic compounds (IVOC), low 

volatility organic compounds (LVOC), and extremely low oxidation organic compounds 

(ELVOC). The volatility of a compound affects its ability to nucleate new aerosol 

particles (Kanakidou et al., 2005) and its transformation in the atmosphere. Several 

methods have been developed to predict the volatility of organic molecules in aerosol 

(Donahue et al., 2011; Li et al., 2016). These methods rely on the molecular composition 

of the species present in the organic aerosol to do these predictions. The method 

described in Donahue et al., (2011) was designed for compounds that contain carbon, 

hydrogen, and oxygen, while the method from Li et al. (2016) can be applied to 

molecular formulas with sulfur and nitrogen. These methods make assumptions about the 

functional groups that are present in the species because the functional groups have an 

impact on the volatility of the molecule (Kanakidou et al., 2005). For example, a carboxyl 

group causes a greater decrease in the volatility than a hydroxyl group (Kanakidou et al., 

2005; Rothfuss and Petters, 2016). In general, the more oxygen functional groups that are 

present on a molecule, the less volatile it is (Kanakidou et al., 2005). The volatility is also 

related to the viscosity and phase state of aerosol particles (Li et al., 2016; Rothfuss and 

Petters, 2016). 
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1.7.4 Aerosol Viscosity 

Viscosity is the measure of the flow rate of a substance. As viscosity increases aerosol 

particles are considered to become marble-like amorphous spheres. Until recently it was 

expected that the majority of organic aerosol was liquid or perhaps semi-solid, but in a 

study of newly formed particles over Hyytiala Finland (Virtanen et al., 2010) showed that 

some particles “bounced” when drawn into a multi-stage aerosol impactor designed to 

collect particles with different aerodynamic diameters. The “bouncing” suggested that the 

aerosol was in a solid state. This study provided field confirmation for some laboratory 

studies that had suggested aerosol could exist in a highly viscous solid-state (Zobrist et 

al., 2008; Koop et al., 2011). The viscosity of aerosol is very important because it can 

affect the degree of aerosol oxidation, potentially contributing to greater transport 

distances for molecular species than are predicted with the assumption of liquid aerosol 

(Shrivastava et al., 2017). Aerosol in the liquid state is more susceptible to chemical and 

photo oxidation because the oxidants can more easily mix with the organic species within 

an aerosol particle (Berkemeier et al., 2014; Lignell et al., 2014; Hinks et al., 2016). 

When aerosol is in the solid phase it can have a greater resistance to these environmental 

conditions, which may lead to lower oxidation than would be observed for a similar 

particle in the liquid state (Berkemeier et al., 2014; Lignell et al., 2014; Hinks et al., 

2016). Contributing factors to the phase state of organic aerosol can be its composition 

(Rothfuss and Petters, 2016; Zelenyuk et al., 2017) and its environmental conditions 

(Koop et al., 2011; Shiraiwa et al., 2017a; DeRieux et al., 2018). A recent study by 

Zelenyuk et al. (2017) has shown that the addition of PAH to pinene SOA can lead to the 

formation of a highly viscous “shell” that greatly decreases the diffusivity of oxidants 
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through the particle. Since PAH are a known product of incomplete combustion from 

both wildfires and anthropogenic sources, this may suggest a greater propensity for these 

aerosol to be viscous in the atmosphere. However, the biggest driver of viscosity, is the 

meteorological conditions around the aerosol, particularly the ambient temperature and 

relative humidity (Schum et al., 2018). In cold, dry conditions the aerosol are much more 

likely to be in a solid state than if it is warm and wet (Koop et al., 2011; Shiraiwa et al., 

2017a). The major reason for this is that water is an excellent plasticizer for typical 

aerosol species (Koop et al., 2011; Shiraiwa et al., 2017a). A plasticizer is a compound 

that can cause a compound to soften. A plasticizer works by lowering the overall glass 

transition temperature (Tg) of the mixture (Koop et al., 2011) and since the Tg of water is 

136 K compared to a typical aerosol compound with Tg of ~300 K (Schum et al., 2018), it 

is a very effective plasticizer. Tg is not the same as the melting temperature (Tm), but is 

related. The relationship between Tg and the melting temperature has been determined to 

be Tg ≈ 0.6 * Tm (Koop et al., 2011; Rothfuss and Petters, 2016). Tg is appropriate for 

determining the phase state of aerosol particles because it is an un-ordered mixture of 

many different organic and inorganic molecules, which makes it more glass-like than 

crystalline. The glass transition temperature can be related to viscosity by considering the 

ambient temperature and relative humidity. If the ambient temperature is higher than Tg, 

then the compound will be either liquid or semi-solid, and if Tg is greater than the 

ambient temperature, the compound will be solid (Shiraiwa et al., 2017a). The relative 

humidity plays a significant role because it can lower the Tg of a compound based on the 

plasticizing effect of water (Koop et al., 2011; Shiraiwa et al., 2017a). For example, if a 

compound has a dry Tg well above the ambient temperature, it can still be liquid or semi-
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solid after the relative humidity adjustment to a wet Tg value. This effect can be estimated 

using the Gordon-Taylor equation, which was developed for polymers, but works for 

organic aerosol as well (Gordon and Taylor, 1952; Koop et al., 2011; Shiraiwa et al., 

2017a). The potential importance of viscosity on aerosol lifetime and transport was 

highlighted in several recent studies (Shiraiwa et al., 2017a; Shrivastava et al., 2017), 

where it was suggested that the solid phase state of aerosol could lead to an increased 

lifetime and transport distance of aerosol species expected to have much shorter lifetimes. 

The study by Shrivastava et al. (2017) found that by considering phase state in their 

modeled transport of PAH they better reproduced field observations of PAH 

concentrations in regions far from their sources. The transport of carcinogenic PAH has a 

potential important impact on human health. Our recent study of organic aerosol 

collected at the Pico Mountain Observatory (PMO) observed a lower than expected 

oxidation of aerosol species after long range transport, which was attributed, in part, to 

the aerosol phase state during transport (Schum et al., 2018; see also Section 3.6).  

1.7.5 Predicting Aerosol Viscosity 

Recent studies by Shiraiwa et al. (2017a) and DeRieux et al. (2018) presented methods to 

estimate the Tg of molecular compounds with masses from 100 -1000 Da that contained 

carbon, hydrogen, and oxygen. In Shiraiwa et al. (2017a) the estimation covered masses 

from 100-400 Da and was used to model the phase state of SOA at different levels of the 

atmosphere, finding that at higher altitudes SOA was predicted to be more solid. This 

observation is consistent with the expectation of cold, dry conditions leading to solid 

aerosol particles. The equation from DeRieux et al. (2018) was optimized for masses 
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from 100-1000 Da and was used in a recent study by Schum et al. (2018; see also Section 

3.6) to predict the glass transition temperature of organic aerosol collected at PMO, more 

discussion about this is in Chapter 3. The viscosity, volatility, and hygroscopicity of 

aerosol are all affected by the functional groups that are present on the molecules 

(Rothfuss and Petters, 2016), a discussion of functional groups and their effect on these 

characteristics is provided in the following paragraph.  

1.8 Functional Groups 

1.8.1 Functional Group Overview 

The functional groups of organic aerosol species are important to their chemical, 

physical, and optical properties (Kanakidou et al., 2005; Rothfuss and Petters, 2016). 

This has motivated multiple studies to determine which functional groups are present in 

aerosol. Most studies focused on the bulk composition of functional groups by FT-IR or 

NMR analysis (Decesari et al., 2000; 2007; Hawkins and Russell, 2010; Takahama et al., 

2013). These studies have reported that oxidized functional groups such as carboxylic 

acids, alcohols, and ketones are common components of aerosol species, in addition to 

the carbon backbone functional groups such as alkanes, alkenes, and aromatics. The 

prevalence of certain functional groups has been shown to increase or decrease with 

atmospheric aging of the aerosol. For example, a study by Hawkins and Russell (2010) 

showed that fresh biomass burning aerosol had a large fraction of carbonyl groups, but as 

the sample aged, the fraction of carboxyl increased as carbonyl groups decreased. The 

increase in carboxyl functional groups with aging has been demonstrated in several 

studies (Hawkins and Russell, 2010; Takahama et al., 2013). Functional group analysis 
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has also shown the presence of sulfur and nitrogen containing functional groups such as 

sulfate, nitrate, and nitro groups (Clegg et al., 2008).  

1.8.2 Effects of Functional Groups 

The presence of the above-mentioned functional groups can affect the hygroscopicity, 

volatility, viscosity, and light absorption of the aerosol species in the atmosphere 

(Kanakidou et al., 2005; Rothfuss and Petters, 2016; Li et al., 2016). In recent studies the 

effect of multiple hydroxyl groups on viscosity was investigated (Rothfuss and Petters, 

2016). They found that with each additional hydroxyl group that was added, the viscosity 

of the particles increased by approximately 0.8 orders of magnitude. They observed a 

similar trend for the addition of carboxyl and nitrate groups (Rothfuss and Petters, 2016). 

Other functional groups such as carbonyls and esters did not have an impact as significant 

(Rothfuss and Petters, 2016). Similar studies have been performed with regard to the 

hygroscopicity of species with additional oxygenated functional groups which were 

found to lead to increased hygroscopicity (Massoli et al., 2010). It has also been reported 

in the literature that the addition of oxygen to a molecule can lead to a decrease in the 

volatility (Li et al., 2016). Functional groups on the molecular species have also been 

suggested to have some influence on the light absorbing ability of organic aerosol 

particles (Gelenscer et al., 2003; Kanakidou et al., 2005; Phillips and Smith, 2014; 2015). 

The studies by Phillips and Smith (2014; 2015) suggested that some of the absorbance 

observed for aerosol species, especially at higher wavelengths, was due to charge transfer 

between adjacent functional groups such as carboxylic acids and alcohols. Measured and 

predicted functional groups are often used in modeling studies in order to predict the 
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interactions of aerosol in the atmosphere (Kanakidou et al., 2005; Petters and 

Kreidenweis, 2007; Rothfuss and Petters, 2016; Clegg et al., 2019 in review) therefore 

more information is valuable to better constrain these models. Bulk functional groups do 

not provide mass information, or any specifics about molecular structure. A study of 

select species in atmospheric organic matter by LeClair et al. (2012), investigated 

functional groups using tandem ultrahigh resolution MS/MS analysis (LeClair et al., 

2012). Lower resolution tandem MS/MS has been used to investigate select species in 

dissolved organic matter (Leenheer et al., 2001). Such studies have seen limited use in 

analyzing complex mixtures. A major reason for this is the mass spectral complexity 

makes it difficult to perform comprehensive analysis due to the large number of peaks to 

be interpreted. Chapter 4 of this dissertation provides a discussion of the composition and 

functional groups identified through MS/MS for a long range transported organic aerosol 

sample. 

1.9 Instrumentation 

1.9.1 Example of Ultrahigh Resolution MS Applications 

Organic aerosol is analyzed using many offline analytical methods such as NMR, FT-IR, 

UV-Vis spectroscopy, fluorescence spectroscopy, ion chromatography, and mass 

spectrometry (Duarte et al., 2005; Decessari et al., 2007; Agarwal et al., 2010; Hawkins 

and Russell et al., 2010). Here we focus on ultrahigh resolution mass spectrometry. 

Ultrahigh resolution MS has been used to analyze a variety of natural organic matter such 

as rain water (Altieri et al., 2009), fog water (Mazzoleni et al., 2010), cloud water (Zhao 

et al., 2013; Cook et al., 2017), aerosol (Schmitt-Kopplin et al., 2010; Wozniak et al., 
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2014; Willoughby et al., 2016; Brege et al., 2018), dissolved organic matter (Hertkorn et 

al., 2008; Kujawinski et al., 2009; Hawkes et al., 2016), and even the organic matter in a 

meteorite (Schmitt-Kopplin et al., 2010). There are two instruments capable of ultrahigh 

resolving power, one is the Fourier transform ion cyclotron resonance mass spectrometer 

(FT-ICR MS), and the other is the compact high field Orbitrap Elite MS 

(ThermoScientific). The FT-ICR MS is the first instrument capable of ultrahigh 

resolution and was developed by Comissarow and Marshall (1974).  Certain versions of 

this instrument are capable of having a resolving power greater than 2,700,000 at mass to 

charge (m/z) of 400 (Smith et al., 2018), which is superior to the Orbitrap. The Orbitrap 

was developed by Makarov (2000). The compact high field Orbitrap can reach a 

resolving power of 240,000 at m/z 400, and with a developer add-on it can reach a 

resolving power of 480,000 at m/z 400. This resolution is sufficient to separate peaks that 

differ by mDa mass differences such as SH4 vs. C3, which has a mass difference of 3.4 

mDa. Separation of these peaks is necessary to identify sulfur containing compounds, 

which are an important component of many aerosol samples (Schmitt-Kopplin et al., 

2010). The ultrahigh resolution offered by these instruments is critical to obtaining the 

molecular level composition of complex mixtures such as organic aerosol (Schmitt-

Kopplin et al., 2010).  

1.9.2 Brief Theory of FT-ICR MS 

FT-ICR instruments use a super conducting magnet to obtain extreme mass resolving 

(Marshall and Hendrickson, 2008). Generated ions are transported through ion focusing 

and mass filtering components and then accumulated using an ion trap, before ICR 
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analysis. When the ions enter the ICR cell they encounter a magnetic field which bends 

the ions path into a circle by the Lorentz force. This path is the cyclotron resonance 

motion of the ion. The initial cyclotron radii are small and unable to be measured, so the 

ions are excited by an RF electric field pulse which excites the ions and causes their 

cyclotron radii to expand to move according to their cyclotron frequency while 

continuing their original circular orbit (Marshall and Hendrickson, 2008). Ions with the 

same mass form coherent packages, which induce an image current on the detector plates. 

This time-domain signal is then converted to frequency-domain spectrum via Fourier 

transformation which can be converted to mass measurements (Marshall and 

Hendrickson, 2008). A schematic of an ICR cell, the movement of ions within it, and the 

transformation of the signal to a mass spectra can be seen in Figure 1.3. 

 

Figure 1.3. Schematic of an ICR cell with an illustration of the ion movement. Image 
source: https://commons.wikimedia.org/wiki/File:FTICR_cell.png  
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1.9.3 Brief Theory of Orbitrap MS 

For the Orbitrap MS the initial stages are similar to the FT-ICR, but before the Orbitrap is 

a bent ion trap called a C-trap. The C-trap is used to compact the ion beam so that they 

can be injected simultaneously into the Orbitrap at the correct velocity and angle. The 

velocity and angle are very important to ensure that the ions properly orbit the inner 

spindle. The inner spindle is electrically charged to attract the ions, but when the ions are 

injected at the proper velocity and angle, they start to orbit the spindle instead of crashing 

into it (Makarov, 2000). The voltage on the inner spindle electrode creates an electric 

potential with the virtual ground outer electrode (Michalski et al., 2012). This potential 

increases at the end of the spindle and pushes the ions back toward the center of the trap. 

This back and forth movement, while orbiting the center spindle is the cause of the 

increased resolving power because it separates the ions by mass (Makarov, 2000). Then 

the ion image current is detected and Fourier transformed into mass measurements, like 

with the FT-ICR MS (Makarov, 2000). A schematic of an Orbitrap can be seen in Figure 

1.4. 
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Figure 1.4. Schematic of an Orbitrap analyzer demonstrating the spindle shape and ion 
injection from the C-trap. Image source: https://en.wikipedia.org/wiki/Orbitrap. 

1.10  Methods of Ionization 

Typically, ultrahigh resolution MS is coupled with a soft ionization technique, to allow 

for the detection and measurement of molecular ions. The most common method of soft 

ionization is electrospray ionization (ESI). ESI works by applying a high voltage to a 

stream of liquid coming from a small inner diameter capillary, this field causes excess 

charge accumulation leading to the formation of a Taylor cone (Cech and Enke, 2001). 

When the Rayleigh limit is reached, a spray of charged droplets are released (Cech and 

Enke, 2001). These charged droplets then travel towards the inlet of the instrument, 

during which time the solvent evaporates, causing the most surface-active ions to be 

enhanced (Cech and Enke, 2001; de Hoffman and Stroobant, 2007). This ionization 

process can be used to produce negative or positive ions depending on the voltage 
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polarity. Negative mode ESI ionizes polar, acidic molecules most efficiently (Cech and 

Enke, 2001) and so it is commonly used as the main ionization source for organic 

aerosol, since the species are expected to be relatively polar and acidic (Bougiatioti et al., 

2016). Positive ESI is more effective for relatively reduced and basic molecules (Cech 

and Enke, 2001). It has begun to be used more commonly in recent studies of natural 

organic matter as analysts attempt to get a more comprehensive view of the molecular 

composition of their samples (Hertkorn et al., 2008). Other ionization methods that are 

becoming more common are atmospheric pressure chemical ionization (APCI) and 

atmospheric pressure photoionization (APPI). Compared to ESI these methods are more 

efficient in ionizing less polar, and higher aromaticity compounds. APPI, in particular, is 

better for aromatic species (Hertkorn et al., 2008). APPI works by vaporizing a sample 

stream using a heated chamber to rapidly dry the droplets. Photons from a lamp (typically 

krypton) are used to ionize molecules, which then are transported into the instrument (de 

Hoffmann and Stroobant, 2007). Sometimes a dopant such as toluene is added to the 

solvent to facilitate ionization of the analyte through the transfer of a proton, or electron. 

(de Hoffmann and Stroobant, 2007). Similar to APPI, APCI occurs in the gas phase, so 

after vaporization molecules are ionized using a corona discharge needle (de Hoffmann 

and Stroobant, 2007), which causes proton transfer (positive mode), abstraction (negative 

mode), or adduct formation (both), causing the ionization of the molecules (de Hoffman 

and Stroobant, 2007). For the studies presented in this dissertation, negative ESI was 

primarily used. 
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1.11 Competitive Ionization and Segmented Scanning 

ESI is a competitive process, meaning that if a particular molecule is very easily ionized 

it will be detected more easily than other ions in the mixture. This means that the 

observed ion intensity is not directly related to the analytes concentration in the sample 

(Cech and Enke, 2001) thus the ion intensity is not quantitative. Additionally, most ion 

trap type instruments have a maximum limit on the number of ions. This is done to avoid 

space-charge effects, which can significantly impact the mass measurement accuracy of 

the measurements (Belov et al., 2003; Kozhinov et al., 2013). The combination of the ESI 

competitive process and the limited number of ions can lead to suppression of the lower 

abundance or lower ionization efficiency species in a sample. This happens because the 

species that are easily ionized/more abundant will fill up the ion trap quickly, making it 

much more difficult to detect the low efficiency/abundance ions. A schematic of this 

process is given in Figure 1.5. One way to increase the overall sensitivity to less 

efficient/abundant ions is to use a segmented scanning technique (Southam et al., 2007). 

Using shorter ion segments, there is a smaller mass range of ions attempting to enter the 

trap, so the detection of less abundant ions is improved. This method has been used 

previously for crude oil samples (Gaspar and Schrader, 2012), but has not been reported 

for organic aerosol prior to this dissertation (Chapter 4). 
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Figure 1.5. Schematic of full scan analysis vs. small window analysis. Red circles 
represent high concentration/ionization efficiency species, blue represent low 
concentration/ionization efficiency species. 

 

1.12  MS/MS Fragmentation 

1.12.1 Fragmentation Methods 

While the ability to detect unfragmented molecular ions is very helpful for determining 

the molecular mass and formula for molecules it provides very little information about 

the structure of the molecule that was detected. To get structural information requires the 

use of tandem MS/MS to fragment the ions and provide functional group and other 

structural information (Gross, 2017). There are a variety of fragmentation methods that 

are used in ultrahigh resolution MS instrumentation such as collision induced dissociation 

(CID), infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), 

and electron transfer dissociation (ETD). ECD and ETD are methods that are well suited 

for the fragmentation of large multiply charged ions such as proteins (Gross, 2017). They 
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work by sending a beam of low energy electrons at the ion (ECD) or transferring an 

electron from a singly charged anthracene or fluoranthene ion to the multiply charged ion 

(ETD) (de Hoffman and Stroobant, 2007). IRMPD fragments ions by directing IR laser 

pulses at the ions, this increases the energy in the bonds until they fragment (de Hoffman 

and Stroobant, 2007; Gross, 2017). The most commonly used fragmentation method is 

CID, which fragments ions by having them collide with non-reactive gas molecules such 

as He or N2 (de Hoffmann and Stroobant, 2007; Gross, 2017). This fragmentation takes 

place in the linear ion trap (Michalski et al., 2012).  

1.12.2 Fragmentation Mechanism Overview 

The following is a brief overview of some of the more common and well-described 

fragmentation mechanisms in MS/MS. Simple cleavages are either radical site initiated 

(α-cleavage) or charge site initiated (inductive cleavage) (McLafferty & Turecek, 1993; 

Gross, 2017; de Hoffman and Stroobant, 2007). Radical site-initiated fragmentation 

occurs in odd electron (OE) ions, where an electron is either removed (positive mode) or 

added (negative mode) to ionize the molecule. In an alpha cleavage, the odd electron is 

donated to form a new bond with an adjacent atom. This causes the cleavage of the other 

bond to this atom, leading to a neutral loss. Inductive cleavage happens at the site of the 

charge and can apply to even electron ions. Unlike the alpha cleavage, inductive cleavage 

attracts an electron pair from a bond to the charge site, leading to the cleavage of that 

bond. The ability of a charge site to do this is influenced by the electronegativity of the 

atom, halogens have the strongest tendency to do this, followed by oxygen and sulfur, 

with nitrogen and carbon being the least likely (McLafferty & Turecek, 1993). There are 
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also rearrangement fragmentation pathways such as the McLafferty rearrangement where 

an unpaired electron can be donated through space, forming a new bond on an adjacent 

atom. The McLafferty rearrangement is a radical site-initiated process, although there are 

similar processes for charge site-initiated rearrangements.  

Negative ions are often even electron ions and contain less energy than positive ions, 

causing them to produce fewer fragments. A review by Bowie et al. (1990) highlighted 

four major fragmentation pathways for even electron negative ions. One was a simple 

homolytic cleavage with the loss of a radical causing the formation of a stable radical 

anion. The second was the formation of an anion complex, which can undergo several 

reactions such as elimination processes and direct displacement of the anion. The third 

was a reaction where the initial deprotonated ion doesn’t really fragment, but after a 

proton transfer a new anion is formed that can fragment. There is also the possibility of 

rearrangement reactions. Other identified pathways for negative ions are charge site 

driven fragmentation and charge remote fragmentation (Stroobant et al., 1995). The 

charge site driven fragmentation is analogous to the charge site driven fragmentation of a 

positive ion and the charge remote fragmentation (CRF) occurs when the charge is unable 

to migrate to the point of fragmentation, which is more prevalent when an ion has 

increased unsaturation (Stroobant et al., 1995). CRF can also occur for positive ions (de 

Hoffman and Stroobant, 2007).  

1.12.3 Interpretation of MS/MS Fragmentation 

The fragments generated by these mechanisms can then be used to interpret the original 

structure. For complex mixtures such as organic aerosol, it is difficult to isolate peaks for 
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fragmentation. So, many peaks are fragmented simultaneously. To complicate matters 

even further, each measured precursor mass is likely a mixture of isomers (Zark et al., 

2017). So, the fragment ions may originate from many different structures. Nonetheless, 

analysis of the neutral losses can be useful because it can provide information about the 

functional groups. Some neutral losses, such as H2O, can be lost from either a hydroxyl 

or carboxyl group, which makes it harder to determine a particular structure (Kerwin et 

al., 1996; Leenheer et al., 2001). The water loss from a carboxylic acid can occur by 

removal of the hydroxyl group (Jensen et al., 1985; Bowie et al., 1990; Kerwin et al., 

1996) or by having two carboxyl groups interact with one another to form a five or six 

membered ring that leads to the elimination of H2O (Leenheer et al., 2001; Witt et al., 

2009). For both pathways, the loss of H2O from a carboxylic acid is expected to be 

favored for aliphatic molecules relative to more olefinic or aromatic molecules (Kerwin 

et al., 1996; Leenheer et al., 2001). The loss of CO2 is more specific to carboxylic acids 

(Leenheer et al., 2001; LeClair et al., 2012). Other commonly observed neutral losses are 

C2H4O, CO, CH4O, C2O4, and H4O2. The C2H4O neutral loss is likely related to a ketone 

carbonyl functional group, CH4O is likely a methoxy group, while C2O4 and H4O2 

represent double losses of CO2 and H2O respectively. While the CO loss is often related 

to carbonyl functional groups, it can also be produced from phenols via multistep 

rearrangements (Gross, 2017). The large number of ways that CO can be produced makes 

it difficult to use for structure identification (Gross, 2017). These functional groups can 

be used to improve model estimates of aerosol hygroscopicity (Clegg et al., 2019 in 

review).  
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1.13  Data Analysis, Preparation, and Molecular Formula Assignment 

1.13.1 Mass Calibration 

Before the raw data can be used to draw conclusions, it must be analyzed. The most 

powerful aspect of ultrahigh resolution MS is that it can obtain exact mass measurements 

that allow the analyst to determine molecular formulas. There are many considerations 

that must be taken before assigning a molecular formula to a mass. One of the key 

considerations is the mass accuracy of the measurement. While ultrahigh resolution MS 

instruments are capable of measuring exact masses, if they are not carefully calibrated the 

masses may not be within the error tolerance of the theoretical mass of the compounds. 

The first step of ensuring mass accuracy is performing an external calibration of the 

instrument measurements prior to analysis. This is typically done with a mix of 

compounds from the instrument manufacturer or a custom calibration solution, such as 

arginine clusters (Schmitt-Kopplin et al., 2010). The initial external calibration is critical 

to obtaining good mass accuracy in measurements, but it is not typically sufficient to get 

mass accuracy down to the parts-per-billion level, which is preferred for highly complex 

mixtures such as petroleum and aerosol. Mass error is typically reported in ppm for 

measurements with ultrahigh resolution MS and is calculated using Equation 1: 

𝑝𝑝𝑚 𝑒𝑟𝑟𝑜𝑟  _ _

_
∗ 10                                     Eq.1 

where ppm error is the mass error, Th_mass is the theoretical exact mass of the molecular 

formula, and Exp_mass is the experimentally measured mass of the peak assigned with 

the formula. In order to get the required mass accuracy additional internal recalibration 
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techniques must be applied. One method uses an added compound of a known mass and 

identity and then is used to correct the mass spectrum based on the mass shift observed 

for that peak. This method is not the best option for complex mixtures because the spiked 

compound may distort the abundances of the analyte peaks due to ionization competition 

(Zhang et al., 2011) and also because the mass shifts are not the same across the entire 

spectrum (Savory et al., 2011), which makes it unlikely that a range of masses will be 

recalibrated correctly. A common method of doing recalibration in complex mixtures is 

to choose a series of peaks that are commonly present in a sample and use those to 

recalibrate the spectrum (Savory et al., 2011). These recalibrant peaks can be 

contaminants in the sample or any other known series that can easily be identified. There 

are a variety of methods that have been developed to recalibrate mass spectral data from 

ultrahigh resolution MS instrumentation. Many of these methods were developed for FT-

ICR MS (Wong et al., 2006; Savory et al., 2011) largely because it has been around 

longer than the Orbitrap, but some more recent studies have developed recalibration 

methods that were specifically designed for Orbitrap (Gorshkov et al., 2010), while 

others are applicable to both Orbitrap and FT-ICR (Kozhinov et al., 2013).  

1.13.2 Noise Estimation 

Another key aspect of data preparation for analysis is to determine the noise level of the 

signal. If the noise is over or underestimated there is the potential for analyte peaks to be 

removed (over estimation) or for noise peaks to be included as analytes (underestimation) 

(Riedel and Dittmar, 2014). There have been many methods reported for evaluating the 

noise level of a sample (Riedel and Dittmar, 2014; Zhurov et al., 2014; Kilgour et al., 
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2017; Zielinski et al., 2018). Some simple methods to estimate the noise involve finding 

an extended range of the mass spectrum that does not show any analyte signal and then 

using that range to calculate the average noise (Kew et al., 2017). This method is easy to 

implement, but it can lead to incorrect assessments of the noise level because the noise is 

not necessarily the same across the entire spectrum (Hawkes et al., 2016), in fact a study 

has found that the region that is most often free of analytes also has the highest noise 

level for FT-ICR (Hawkes et al., 2016). Some other methods use histograms of the 

intensity values of the raw mass spectrum, which can show a clear separation between the 

low intensity “noise” peaks and the high intensity analyte peaks (Zhurov et al., 2014; 

Zielinski et al., 2017). Another reported method uses the average of the noise for multiple 

blank samples run under the same conditions as the test sample to estimate the noise level 

(Riedel and Dittmar, 2014). Another method for noise estimation uses isotopic patterns to 

identify the noise level in a segmented way across the entire mass spectrum (Kilgour et 

al., 2017). Still other methods use the mass defect of the masses in order to pull out the 

peaks that are most likely to be noise peaks and then averages them in order to provide an 

estimate of the noise (Riedel and Dittmar, 2014; see also Section 5.3). All of these 

methods have advantages and disadvantages in terms of implication and effectiveness, 

but one of them should be used to remove the noise in a mass spectrum before attempting 

to assign molecular formulas. More discussion of these noise estimation methods is in 

Chapter 5 of this dissertation. 
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1.13.3 Molecular Formula Assignment 

After the noise estimation and recalibration of the mass spectrum has been performed 

molecular formulas can be more confidently assigned to the measured masses. There are 

a multitude of commercial, open source, and other reported methods for molecular 

formula assignment (Kujawinski and Behn, 2006; Tolic et al., 2017; Leefmann et al., 

2019; Green and Perdue, 2015; Stranz, 2015; Kunenkov et al., 2009; Tziotis et al., 2011; 

PetroOrg, 2014; Schum et al., 2019). The most simple method of molecular formula 

assignment is to take the experimental mass and try every combination of atoms within 

limits set by the user to determine a molecular formula that matches the mass. This brute 

force method will eventually get the correct answer, but it will also generate a large 

number of molecular formulas that do not make any chemical sense.  

1.13.3.1 Quality Assurance Parameters 

The most egregious incorrect formulas can be removed by a variety of tests and rules 

such as the Senior valence rules (Senior, 1951; Kind and Fiehn, 2007; Green and Perdue, 

2015), the nitrogen rule (Kind and Fiehn, 2007), the DBE-oxygen rule (Herzsprung et al., 

2014), and atomic ratios (oxygen-to-carbon, hydrogen-to-carbon, etc.). Three Senior rules 

are used for determining chemical feasibility of a molecular formula, one is that the sum 

of valences or total number of odd valence atoms is even, the second is that the sum of 

valences must be greater than or equal to the maximum valence times two, and the third 

is that the sum of valences is greater than or equal to the number of atoms times 2 minus 

1 (Kind and Fiehn, 2007). The valences refer to the number of open holes in the 

outermost layer of electrons, so for example carbon typically has a valence value of 4. 
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Some atoms such as sulfur can often have valences anywhere from 2 to 6 depending on 

the oxidation of the sulfur atom, so previous studies have used the largest valence values 

to try to avoid removing formulas that are otherwise chemically feasible (Kind and Fiehn, 

2007). The nitrogen rule states that any molecule with an odd number of nitrogen atoms 

must have an odd neutral mass (Kind and Fiehn, 2007). The DBE minus oxygen rule 

(DBE-O) was used to separate formulas for data collected in the negative mode into 

possible, unlikely, and unthinkable molecular formulas (Herzsprung et al., 2014). The 

typical range of possible molecular formulas was from -10 ≤ DBE-O ≤ 13. Using these 

rules and others a large portion of the chemically non-feasible assignments can be 

removed. More description of these rules and others is provided in Chapter 5.  

1.13.3.2 Formula Extension 

Mathematical calculations are at the core of all the methods that are used to assignment 

molecular formulas, but many use formula extensions in order to lessen the 

computational burden and to lower the chances of incorrect assignments. A Formula 

extension uses a seed formula with a known molecular formula to assign other masses 

that are related to it through chemical series. These chemical series can be identified by 

using a Kendrick mass defect (KMD) analysis with a specific base unit. A common base 

unit is CH2, the exact mass of which can be used to renormalize the measured masses so 

that when masses vary only by the number of CH2 (14.01565 Da) they have the same 

KMD This is analogous to how masses are typically normalized to 12C having the exact 

mass of 12. To support the KMD value, a z* value can be calculated (Hsu et al., 1994; 

Stenson et al., 2003). This value is the nominal mass series value for the mass. If z* and 
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KMD are used in conjunction with each other, any masses that vary by CH2 must have 

the same value of both. This relationship means that if any mass within the series is 

assigned a molecular formula, the other masses can be assigned a molecular formula by 

adding or subtracting CH2 units from the assigned formula. Any repeating mass unit can 

be used as a formula extension, some that have been used in molecular formula 

assignment packages include O, CH2O, H2, H2O, and CO2 (Stranz, 2015; Tolic et al., 

2017; Schum et al., 2019) Typically, the masses at the low end of the series are directly 

assigned molecular formulas and then the assignment is extended to the rest of the masses 

in the series. The primary reason for assigning the low masses is that as the mass 

increases, the number of possible molecular formula assignments increases exponentially, 

even when chemical feasibility tests are applied (Kind and Fiehn, 2007, Koch et al., 

2007).  

1.13.3.3 Formula Assignment Methods 

While many formula assignment methods use a mathematical calculation to get 

preliminary assignments, some also use database matching as a method to assign 

molecular formulas (Kujawinski and Behn, 2006; Tolic et al., 2017; Leefmann et al., 

2018). Database matching means that the assignment method has a list of exact masses 

with their formulas and it will check the experimental masses against the masses within 

its database and if there is a match, it will assign that as the molecular formula for the 

mass. This can be useful for increasing the speed of assignment because it negates a large 

portion of the time-consuming calculation, but it is limited to molecular formulas in the 

database. Large databases can limit the impact of this, because as more atoms and larger 
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masses are put into a database, it can become unmanageably large and impractical to use 

(Leefmann et al., 2018). Instead of brute force methods, some studies have developed 

algorithms that perform calculations, but are able to avoid the majority of the loops 

required to try all the difference combinations of molecules by assigning the formulas 

using low mass moieties such as CH4O-1 and C4O-3 (Green and Perdue, 2015; Perdue and 

Green, 2015). A detailed discussion of this method is provided in Chapter 5. 

1.14  Organization of the Dissertation 

The first chapter of this dissertation is the introduction. The second chapter contains the 

instrumental methods, parameters, and equations used for Chapters 3 and 4. Chapters 3-5 

describes the results of three projects that comprised the majority of my doctoral work 

which was focused on the analyzing the molecular composition of aerosol samples 

collected at the Pico Mountain Observatory, and the development of software tools for 

data preparation and molecular formula assignment for ultrahigh resolution mass 

spectrometry data.  

The first project (described in Chapter 3) is the analysis of three organic aerosol samples 

(PMO-1, PMO-2, PMO-3) that were collected at the Pico Mountain Observatory, this 

study has already been published (Schum et al., 2018). The samples in this study were 

analyzed using FT-ICR MS, ion chromatography (IC), and an organic carbon/elemental 

carbon analyzer (OC/EC). FT-ICR MS was used to determine the molecular composition 

of the samples, while IC and OC/EC were used to determine bulk anion/cation and 

organic carbon concentrations respectively. The key observation obtained from FT-ICR 
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MS analysis was that the overall extent of oxidation of PMO-1 and PMO-3 aerosol was 

lower than expected based on their atmospheric transport time. The study hypothesized 

that the transport of the sample through the free troposphere, which is generally cool and 

dry, contributed to an increased viscosity of the organic aerosol and subsequently 

increased its resistance to oxidation, as has been suggested by other studies (Koop et al., 

2011; Lignell et al., 2014; Hinks et al., 2016). In contrast, PMO-2 was transported 

through the boundary layer and was evaluated to determine if aqueous processing was a 

contributing factor to its higher observed oxidation despite its shorter transport time. The 

ion concentrations obtained from ion chromatography were used as supplemental data for 

identifying the sources of the samples and markers of potential aqueous processing. 

Additionally, FLEXible PARTicle (FLEXPART) model analysis was performed by a 

collaborator for these samples. The model provided the transport times, possible emission 

sources, and the ambient temperature and RH, which was used to predict the glass 

transition temperature using the equations from DeRieux et al., (2018).  

The second project (described in Chapter 4) is a deeper analysis of PMO-1 using a 

segmented scanning approach with tandem MS/MS using an FT-ICR MS. The segmented 

scanning approach was used to improve the instrument sensitivity and provide functional 

group information molecular species present in organic aerosol. This study highlights an 

unprecedented mass spectral complexity resulting from the segmented scanning 

technique. Some implications about the composition of biomass burning organic aerosol 

are presented in this work, including the importance of non-oxygen heteroatoms and 

highly aromatic molecular species. The other major aspect of this chapter is the 
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identification of functional groups using MS/MS fragmentation. The type and number of 

functional groups is discussed, but the main focus is relating the observations of 

functional groups to the molecular aspects of the base molecule (e.g. aromaticity, 

oxidation, size). This analysis was largely done using principle components analysis 

(PCA) with the functional group loss types as the variables. The observations from this 

analysis were used to interpret relationships between certain types of neutral losses and 

also some potential environmental interactions.  

The third project (described in Chapter 5) is the development of a software package for 

ultrahigh resolution MS data preparation and molecular formula assignment. The package 

is called MFAssignR and is written in R and has been released on GitHub (Schum et al., 

2019). The package contains functions for noise estimation, isotope identification, 

recalibration, and molecular formula assignment. This package represents one of a few 

open source packages that contain all these functions necessary for the analysis of 

ultrahigh resolution MS data, typically this pipeline is only available in commercial 

software (Leefmann et al., 2018). Chapter 5 will discuss the theory behind the functions, 

how they work, and the literature that led to their development, along with 

demonstrations of the function outputs. Chapter 6 provides the main conclusions and 

implications for the studies aerosol and ultrahigh resolution MS data analysis. 
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2 Methods 

2.1 Pico Mountain Observatory 

The Pico Mountain Observatory (PMO) (also denoted as PICO-NARE, OMP, and PIC in 

various studies) is located on Pico Island in the Azores archipelago. The observatory 

itself is in the summit caldera of Pico Mountain 2225 m above sea level and was 

established by the late Dr. Richard Honrath and colleagues in 2001. The boundary layer 

height in this region is typically 500-2000m during the summer (Kleissl et al., 2007; 

Rémillard et al., 2012; Zhang et al., 2017) which places the observatory within the free 

troposphere for the majority of the summer (Zhang et al., 2017). The ability to do long 

term sampling within the free troposphere is nearly unique to this site, in fact a recent 

study suggested that PMO is one of the best free tropospheric sampling mountain sites in 

the world (Collaud Coen et al., 2018). The ability to collect aerosol in the free 

troposphere is important because the characteristics of the free troposphere are different 

than the boundary layer in terms of temperature, relative humidity, and oxidant 

concentrations, which all have an impact on aerosol aging and transport. The Azores-

Bermuda anticyclone causes persistent downward mixing from the upper free troposphere 

and stratosphere, which allows the collection of aerosol at those levels of the atmosphere 

on occasion (Zhang et al., 2017). A study using the FLEXible PARTicle dispersion 

model (FLEXPART) by Zhang et al., (2017) has shown that this site is most often 

influenced by North American outflow (30-40%). More specifically, in the summer 

months 15% of the air masses that intercept PMO are North American anthropogenic 

outflows, while 7.3% are influenced by wildfires (Zhang et al., 2017). The relative 
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prevalence of these types of outflows make PMO an excellent site to study the effects of 

long-range transport on North American gas and aerosol emissions (Val Martin et al., 

2008a). Several studies at PMO have investigate outflows of NOx, NOy, CH4, non-

methane hydrocarbons, and O3 gases (Val Martin et al., 2006; Pfister et al., 2006; Val 

Martin et al., 2008a; Val Martin et al., 2008b; Helmig et al., 2015). Fewer have 

investigated aerosol at the site (Fialho et al., 2005; China et al., 2015; Džepina et al., 

2015; China et al., 2017), with only one (Džepina et al., 2015) looking into the molecular 

and chemical composition of aerosol, prior to the study described here (Schum et al., 

2018). An image of the mountain and the station itself can be seen in Figure 2.1.  
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Figure 2.1. Photos of the research station on the summit caldera of Pico Mountain (a) 
and Pico Mountain from neighboring Faial Island with the mountain summit above the 
cloud layer (b). 

2.2 Sample Collection 

PM2.5 samples were collected at PMO on 8.5 x 10 in. quartz fiber filter using high volume 

air samplers (EcoTech HiVol 3000, Warren, RI, USA) operated at an average volumetric 

flow rate of 84 m3 hr-1 for 24 h. Prior to sampling, the filters were wrapped in clean, 
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heavy-duty aluminum foil and baked at 500 0C for ~ 8 hours to remove organic artifacts 

associated with the filters. Afterward, they were placed in antistatic sealable bags until 

deployment. We deployed four air samplers at the site, each was set up with a filter 

simultaneously and programmed to start one day after another, allowing for continuous 

sample collection for up to four consecutive days. This procedure was used to maximize 

the number of filters collected. Daily visits and maintenance were prohibited by the time 

consuming and strenuous hike necessary to reach the site. The sampled filters were 

removed and returned to the same aluminum wrapper and bag. The samples were then 

brought down the mountain and stored in a freezer until cold transport back to Michigan 

Tech where they were stored in a freezer until analysis. Three samples, collected in 

consecutive years at PMO, on 27-28 June 2013, 5-6 July 2014, and 20-21 June 2015 were 

analyzed in this study. The sampling time for all samples was 24 hours; on 27-28 June 

the sampling began at 19:00, on 5-6 July and on 20-21 June the sampling began at 15:00, 

all local times. 

2.3 Sample Preparation 

2.3.1 FT-ICR MS 

The samples for FT-ICR-MS analysis were selected based on the organic carbon 

concentration. Selected samples typically had more than 1000 μg of organic carbon per 

quartz filter. Sample preparation was described in detail in previous studies from our 

group (Mazzoleni et al., 2010, 2012; Zhao et al., 2013; Džepina et al., 2015). Briefly, one 

quarter of the quartz filter was cut into strips, placed in a pre-washed and baked 40 mL 

glass vial, and then extracted using ultrasonic agitation in Optima LC/MS grade 
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deionized water (Fisher Scientific, Waltham, MA, USA) for 30 minutes. The extract was 

then filtered using a pre-baked quartz filter syringe to remove undissolved material and 

quartz filter fragments. The sample filter was then sonicated again in 10 mL of Optima 

LC/MS grade deionized water for 30 minutes, filtered, and then added to the original 30 

mL of filtrate yielding a total of 40 mL. Ice packs were used during the sonication to 

ensure the water temperature stayed below 25 °C. The water-soluble organic carbon 

(WSOC) compounds were then isolated using Strata-X (Phenomenex, Torrance, CA, 

USA) reversed phase solid phase extraction (SPE) cartridges to remove inorganic salts 

that can adduct with organic compounds during electrospray ionization. During the 

reversed phase SPE, losses of highly water soluble, low molecular weight (MW) and 

hydrophobic, high MW organic compounds are expected. Thus, the resulting WSOC is 

the SPE-recovered fraction. The cartridges were pre-conditioned with acetonitrile and 

LC/MS grade water before the 40 mL filtrate was applied to the cartridges at a rate of ~ 1 

mL/min. The cartridges were eluted with 2 mL of an aqueous acetonitrile solution (90/10 

acetonitrile/water by volume) and stored in the freezer until analysis. The procedural loss 

of ionic low MW compounds such as oxalate can lead to an underprediction of the 

organic aerosol O/C and overprediction of the average glass transition temperatures (Tg). 

To investigate this, we used the concentrations of the prominent organic anions measured 

with ion chromatography to estimate the abundance of these compound relative to the 

compounds detected by FT-ICR MS. The low MW organic anion corrected average O/C 

values correlated with the trends of the original O/C values, however the significance of 

impacts varies with the measured analyte concentrations and the assumptions associated 

with the uncertain mass fraction of the molecular formula composition (Table SM4). 
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When low MW organic anions were included in the estimated average dry Tg values, they 

dropped by ≤ 2.5 %, which was deemed relatively insignificant. More discussion of this 

can be seen in section 2.7 

2.3.2 OC/EC 

Sample preparation consisted of taking 16 mm diameter circular punches from the sample 

filters and putting them in the OC/EC instrument. This was done at least three times for 

each sample. 

2.3.3 Ion Chromatography 

The samples were prepared using the California Air Resource Board method (California 

Environmental Protection Agency, 2011). Briefly, five square punches of 3.98 cm2 each 

were taken from each filter and placed into a pre-cleaned 15 mL disposable centrifuge 

tube, to which 100 µL of isopropanol was added to help dissolve the less soluble organic 

species. Finally, 12 mL of 18.2 MOhm deionized water from an Easy Pure water system 

(Barnstead, ThermoFisher Waltham, MA, USA) were added to each centrifuge tube. 

These samples were then sonicated for 60 minutes with blue ice added to the sonication 

bath to keep the temperature below 25 0C.  Once sonicated, the samples were stored in 

the refrigerator overnight and transferred with 0.45 µm nylon syringe filters (Fisher 

Brand, Waltham, MA, USA) and sterile 3 mL syringes (BD, Franklin Lakes, NJ, USA) to 

5 mL IC vials (Thermo Scientific, Waltham, MA, USA) the following day. The samples 

were then run on the IC system. 
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2.4 Instrument and Quality Assurance Parameters 

2.4.1 FT-ICR General Parameters and Quality Assurance 

Ultrahigh resolution mass spectrometric analysis was done using FT-ICR MS with ESI at 

the Woods Hole Oceanographic Institution (Thermo Scientific LTQ Ultra). The samples 

were analyzed using direct infusion ESI in the negative ion mode. Negative polarity is 

effective for the deprotonation of polar organic molecules (Mazzoleni et al., 2010), which 

are expected to dominate the organic aerosol mass fraction and were the focus of this 

study. The spray voltage ranged from 3.15 to 3.40 kV depending on the ionization 

stability with a sample flow rate of 4 to 5 µL/min. We used a scan range of m/z 100 – 

1000 with a mass resolving power of 400,000 (defined at m/z 400) for all samples. The 

samples were run in duplicate and 200 transient scans were collected. The transients were 

co-added for each replicate run using the Midas Co-Add tool and molecular formula 

assignments were made using Composer software (Stranz, 2015), as described in 

previous studies (Mazzoleni et al., 2012; Džepina et al., 2015).  

The resulting molecular formula assignments underwent additional quality assurance 

(QA) data filtering to remove chemically unreasonable formulas with respect to O/C, 

hydrogen to carbon ratio (H/C), double bond equivalent (DBE), and absolute PPM error 

as described in the Supplemental Information of Putman et al. (2012). Molecular 

formulas in common with the instrument blanks with signal intensity ratios < 3 were 

removed; meanwhile analytes in common with the field blanks with signal intensity ratios 

< 3 were flagged. Specifically, two formulas (C17H34O4 and C19H38O4) observed in PMO-

1 could not be classified as pertaining only to the field blank and so they were not 
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removed. The quality assurance (QA) was performed to eliminate improbable molecular 

formulas and possible contaminants for each of the ultrahigh resolution FT-ICR mass 

spectra consistent with previous studies from our group (Putman et al. 2012; Mazzoleni et 

al. 2012; Džepina et al. 2015). First, molecular formulas with extremely high or low O/C 

(>2, <0.1), H/C (>2.2, <0.3), and DBE (>20) are removed. All of the known solvent 

contaminant peaks and isolated assignments that are not associated with a CH2 

homologous series are removed. Blank subtraction was done by finding the ratio of 

intensities between a sample and a blank and then formulas with intensities < 3x larger 

than in the blank are removed or flagged. After this is done, replicate analyses of the 

samples are evaluated and only the formulas that are present in both replicates are 

retained. To produce the final data set for each sample, the replicates were aligned and 

only the molecular formulas found in both replicates after QA were retained.  

2.4.2 FT-ICR Tandem MS/MS 

Scan windows were set every 5 m/z from m/z 165 to 465, and m/z 520 with a width of 6 

m/z, allowing 0.5 m/z overlap between each scan to ensure complete coverage and 

address edge effect to some extent as describe in Kiddo-Soule et al. (2010). Overall, a 

total range of ~300 m/z was collected. Scan windows in different mass ranges were 

collected using different resolving powers, m/z 165 to 295 was collected in 100K (@ m/z 

400) resolving power, m/z 300 to 415 was collected in 200K, and m/z 420 to 465 (and 

520) was collected in 400K. This was done to increase the scan rate at the lower mass 

ranges where fewer masses were expected, and then to have higher resolving power at the 

higher mass ranges where the complexity of the unfragmented and fragmented scans was 
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expected to increase. The fragmentation method used was collision induced dissociation 

(CID) with fragmentation energies of 25-35 depending on how the scan range 

fragmented. For each mass window, 55 scans were collected and then co-added using the 

MIDAS Co-Add tool before being assigned formulas using Composer. The assignment 

parameters were 1-100 carbon, 4-200 hydrogen, 1-60 oxygen, 0-3 nitrogen, and 0-1 

sulfur. The abundance cut off was set at 10 times the signal to noise. After formula 

assignment quality assurance steps to remove the unlikely formulas were done according 

to the parameters previously used in other studies (Putman et al., 2012; Džepina et al., 

2015). Additionally, the DBE minus oxygen cut, described by Herzsprung et al. (2014) 

was employed to remove as many questionable formulas as possible. 

2.4.3 Organic and Elemental Carbon Analysis 

For each sample collected, a minimum of three circular 16 mm diameter filter punches 

were analyzed. If all three punches had consistent organic carbon concentrations (relative 

standard deviation, RSD < 15 %), the average value was used to determine the total 

loading of OC on the filter and in the air during the sampling period. If the replicates 

were inconsistent, more replicates were analyzed until at least three were consistent. 

Elemental carbon measurements were also obtained with this instrument, but in nearly all 

cases they were below the detection limit (~0.1 µgC/filter punch), so those values are not 

reported.  
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2.4.4 Ion Chromatography 

PMO samples were also analyzed for major anions and cations using ion chromatography 

(IC). Anion analysis was performed using a Dionex ICS-2100 instrument (Thermo 

Scientific) with an AS-17-C analytical and guard column set (Thermo Scientific) using a 

KOH generator for gradient elution.  The gradient elution had the following steps: -5 – 0 

min., Equilibrate, 1 mM KOH, 0 – 15 min., Isocratic, 1 mM KOH, 15 – 20 min., Ramp, 1 

– 10 mM KOH, 20 – 30 min., Isocratic, 10 mM KOH, 30 – 40 min., Ramp, 10 – 20 mM 

KOH, 40 – 45 min., Isocratic, 20 mM KOH, 45 – 55 min., and Ramp, 20 – 40 mM KOH. 

Cation analysis was performed using a Dionex ICS-1100 instrument with CS-12A 

analytical and guard column set (Thermo Scientific) and an isocratic 20 mM 

methanesulfonic acid eluent. The instruments were operated in parallel using split flow 

from autosampler. After the ion concentrations were determined, they were background 

subtracted using field blanks from PMO. 

2.5 Data Analysis 

All analysis of data was done using custom scripts written in the R programming 

language (R Core Team, 2017). Packages used to perform data analysis and visualization 

are dplyr, (Wickam et al., 2018), ggplot2 (Wickam, 2016), tidyr (Wickam and Henry, 

2018), colorRamps (Keitt, 2012), lemon (Edwards, 2018), cowplot (Wilke, 2017) 

ggbiplot (Vu, 2011), and base R functions. The PCA analysis described in Chapter 4 was 

done with the base R function prcomp() and the visualization was done with the ggbiplot 

and ggplot2 packages. 
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2.5.1 PCA Analysis 

A long-standing method for investigating the correlation between different data sets is 

principal components analysis (PCA), which has been used in the past for looking into 

the correlation between different samples (Zhao, 2014, Wozniak et al., 2014). PCA 

reduces the dimensions in a multivariate data using a linear combination of variables to 

create new variables, called principal components (PC). These PC each represent a 

certain amount of the variance in the sample with PC1 accounting for the most variance, 

PC2 for the second most, etc. There are the same number of PC as there are variables in 

the data set, but typically the first 2 or 3 PC are enough to account for the vast majority of 

the variance in the data set can be accounted for. The amount of variance each PC 

accounts for is related to their eigenvalue which is determined based on the sum of 

squared distance from the origin for each of the observations on the line of best fit for the 

data set. The eigenvalues for each of the PC (which are eigenvectors) are added up and 

the percentage of the total each eigenvalue makes up determines the percentage of 

variance each PC accounts for. A visualization of the variance from each PC is the Scree 

plot, which shows the amount of variance each PC makes up, an example Scree plot can 

be seen in Figure 2.2. Determining how many PC are important for representing the 

sample as accurately as possible is facilitated with this plot because the decrease in 

variance is observed visually. In general, “elbow” of the plot is where the number of 

important PC values can be determined. With the PC determined, the point can be plotted 

in a 2-D plot with PC1 and PC2 (PC3, PC4, etc.) on each axis and the correlations 

between the different data points can become apparent. The loadings of each variable can 

be added to this plot to make a so-called PCA biplot. The loadings represent the 
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importance of each variable in the variance accounted for by each PC, the greater the 

distance for the origin the greater the effect. An example biplot can be seen in Figure 2.3, 

for this plot the loadings are represented by arrows, so the longer the arrow, the more 

effect on variance. The angle between points is also important, if two arrows are in the 

same direction that means that they are correlated, if the arrows are at 90˚ from each 

other, they are not correlated, and if the arrows are at 180˚ they are negatively correlated. 

 

Figure 2.2. Example Scree plot for 10 PC values. The “elbow” of this plot can be 
observed at PC2. 
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Figure 2.3. Example PCA biplot using PC1 and PC2. 

2.6 FLEXPART Numerical Simulations 

Retroplume analysis was conducted using the Lagrangian particle dispersion model 

FLEXPART. (Seibert and Frank, 2004; Stohl et al., 2005; Owen and Honrath, 2009). In 

this study we report three specific events, one that took place on June 27 (19:00) -28 

(19:00), 2013 (PMO-1), one on July 05 (15:00) - 06 (15:00), 2014 (PMO-2), and one on 

June 20 (15:00) - 21 (15:00), 2015 (PMO-3). FLEXPART was used to determine the 

sources, ages, and transport pathways of the aerosol samples collected at PMO. 

FLEXPART backward simulations (also called retroplumes) were driven by meteorology 

fields from the Global Forecast System (GFS) and its Final Analysis with 3-hour 
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temporal resolution, 1° horizontal resolution, and 26 vertical levels. The output was saved 

in a grid with a horizontal resolution of 1° latitude by 1° longitude, and eleven vertical 

levels from the surface to 15,000 m a.s.l. For each simulation, 80 thousand air parcels 

were released from the receptor and transported backwards for 20 days to calculate a 

source-receptor relationship (in units of s kg-1, Seibert and Frank, 2004). FLEXPART 

retroplumes were then multiplied with CO emission inventories (kg s-1) from the 

Emissions Database for Global Atmospheric Research (EDGAR version 3.2 (Olivier and 

Berdowski, 2001)) and the Global Fire Assimilation System (Kaiser et al., 2012) to 

estimate the influence from anthropogenic and wildfire sources, respectively. The 

FLEXPART CO tracer calculated with this approach indicates the relative contributions 

from anthropogenic and biomass burning emissions. Since CO chemistry and dry 

deposition are not considered in the FLEXPART setup, the absolute FLEXPART CO 

value does not reproduce the actual CO concentrations at Pico. FLEXPART does not 

consider the background CO accumulated in the atmosphere. The difference between 

FLEXPART CO and the actual CO largely depends on these factors. In previous 

applications of this approach, FLEXPART CO was able to estimate the episodes of CO 

enhancement due to transport of emissions (e.g., Brown et al., 2009; Stohl et al., 2007; 

Warneke et al., 2009). This approach has been used in several PMO studies and 

successfully captured elevated CO periods (e.g., Džepina et al., 2015; Zhang et al., 2014; 

2017) and it is used here to assist in the interpretation of the chemical composition in this 

work. In addition to the typical FLEXPART simulations done for the site (e.g., 

retroplume, CO source apportionment), we extracted the ambient temperature and 

relative humidity (RH) from the GFS analysis data for model grids along the FLEXPART 
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simulated transport pathways. These parameters were then used to estimate the glass 

transition temperatures (Tg) of the organic aerosol components during transport, based on 

its molecular composition from ultrahigh resolution MS, using estimation methods 

recently developed by Shiraiwa et al. (2017a) and extended to higher masses by DeRieux 

et al. (2018). 

2.7 Error Sensitivity Tests 

2.7.1 Estimation of the SPE Sample Preparation Effect on the Total WSOC 
Properties  

As mentioned in the main paper, the solid phase extraction of WSOC results in the loss of 

some low molecular weight (MW) polar organic species and some high MW nonpolar 

species. Since the low molecular weight species are studied using ion chromatography, 

the major ions and their concentrations are known. Specifically, oxalate, formate, and 

acetate which are the most abundant can cause an underprediction of the average O/C 

value and an overprediction of average Tg values for a sample. In an effort to constrain 

the potential impact of this effect on our results, we used the concentrations of 5 organic 

acids detected by ion chromatography, along with their O/C values, and Boyer-Kauzmann 

rule (Tg = g*Tm, g = 0.7) (Shiraiwa et al., 2017a; DeRieux et al., 2018) estimated Tg 

values to estimate the weighted and unweighted average O/C and Tg values for the three 

samples if the organic acids were included. 

To estimate the contribution of each organic anion to the overall organic mass, the mass 

concentrations were normalized by the organic mass (OM) concentration. The organic 

mass concentration was estimated by multiplying the measured OC concentration by 2, 
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consistent with El-Zanan et al. (2005). The mass fractions were then multiplied by the 

sum of the total ion abundance in the mass spectrometry data (using assumption that they 

made up 50, 70, or 100% of organic mass) in order to roughly determine the potential ion 

abundances relative to those that were studied after SPE. While the results of the negative 

mode ESI do not likely represent the entirety of all organic species in the aerosol extracts, 

the polar compounds expected in water extracts are best ionized by this method and are 

expected to make up the majority of species (< 70%; Samburova et al., 2013). The 

estimated relative abundance of the low MW anions was used in conjunction with their 

O/C and Tg values to calculate a new weighted average for all of the compounds available 

for each sample. Using this approximation, we found that the addition of these small 

compounds had a very minor impact on the Tg values because they decreased by < 2.5 % 

at most. The percentage increase of the O/C values for the three samples varied from 20 

% for PMO-1 to 42% for PMO-2. The ion weighted O/C value for PMO-1 is 0.58, for 

PMO-2, 0.81, and for PMO-3 is 0.57. The results confirm our observation that PMO-2 

has much higher average O/C than PMO-1 or PMO-3, and that PMO-1 and PMO-3 have 

low O/C, considering their transport time in comparison to other studies (Bougiatioti et 

al., 2014). Based on these results, we conclude that although the loss of some low MW 

compounds using SPE can cause an under or an over prediction of some values, the effect 

in the case of the samples in this study is minimal and does not change the implications 

of our observations. Tables 2.1-2.5 contain the values described in this discussion. 
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Table 2.1. The concentrations of the ions used for the estimation and the organic mass 
(OM) concentration. The values are in µg/m3 air. 

 
Ion PMO-1 PMO-2 PMO-3 

Formate 0.0289 ± 0.0003 0.00438 ± 0.00007 0.0119± 0.0001  
Acetate 0.0519 ± 0.0001 0.004587 ± 0.000005 0.0071 ± 0.0002  
Oxalate 0.0938 ± 0.00070 0.0897 ± 0.00181 0.0522 ± 0.00002 
Malonate 0.00605 ± 0.0003 0.00548 ± 0.0007  0.0045± 0.0003  
Lactate 0.0292 ± 0.0004  0.0019 ± 0.0001 0.00467 ± 0.0001 
OM 4.14 ± 0.04 0.956 ± 0.052 1.74 ± 0.20 

 
 

Table 2.2. The percent mass fraction of each ion. 

 

Ion PMO-1 PMO-2 PMO-3 
Formate 0.698 0.458 0.684 
Acetate 1.25 0.479 0.409 
Oxalate 2.27 9.38 3.00 
Malonate 0.146 0.573 0.259 
Lactate 0.705 0.199 0.268 

 

Table 2.3. The estimated Tg values for the acid form of each ion as estimated using their 
melting points and the Boyer-Kauzmann rule with g =  0.7. 

 
Ion Tg  
Formate 197.1 
Acetate 202.83 
Oxalate 324.21 
Malonate 285.6 
Lactate 202.79 
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Table 2.4. Estimated average O/C values when the ions are considered. The table 
contains the results for 3 assumptions of the organic mass fraction represented by the FT-
ICR MS identified species (100%, 70%, 50%). The numbers in parentheses show the 
percent change in average O/C from the O/C without ions considered. 
 
 

Sample 

RA 
Weighted 
O/C without 
Ions (100%) 

Ions and RA 
Weighted 
O/C (100%) 

Ions and RA 
Weighted O/C 
(70%) 

Ions and RA 
Weighted 
O/C (50%) 

PMO-1 0.48 0.53 (10.42%) 0.55 (14.58%) 0.58 (20.83%) 

PMO-2 0.57 0.70 (22.81%) 0.75 (31.58%) 0.81 (42.11%) 

PMO-3 0.45 0.52 (15.56%) 0.54 (20.00%) 0.57 (26.67%) 
 

 

Table 2.5. Estimated average Tg values when the ions are considered. The table contains 
the results for 3 assumptions of the organic mass fraction represented by the FT-ICR MS 
identified species (100%, 70%, 50%). The numbers in parentheses show the percent 
change in average Tg from the Tg without ions considered. All Tg values are in K. 
 
 

Sample 

RA Weighted 
Tg without 
Ions (100%) 

Ions and RA 
Weighted Tg 
(100%) 

Ions and RA 
Weighted Tg 
(70%) 

Ions and RA 
Weighted Tg 
(50%) 

PMO-1 328.75 324.38 (1.33%) 322.67 (1.85%) 320.51 (2.51%) 

PMO-2 326.45 324.43 (0.619%) 323.71 (0.839%) 322.85 (1.10%) 

PMO-3 326.88 324.41 (0.756%) 323.44 (1.05%) 322.22 (1.43%) 
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2.8 Equations 

Equation 2. 1. The average oxidation state of carbon (OSC) from Kroll et al. (2011). 

Sulfur and nitrogen can change the oxidation of the molecular species, which varies 
based on their oxidation state.  In this case, sulfur and nitrogen are assumed to be fully 
oxidized. 

Eq. 2. 1                        

 

Equation 2. 2. The aromaticity index (AI) from Koch and Dittmar (2006; 2016). This is 
the most conservative method for calculating aromaticity as it assumes that all oxygen is 
in carbonyl groups. The threshold for olefinic species is 0 < AI ≤ 0.5, for aromatic it is 
0.5 < AI ≤ 0.67, and for condensed aromatic it is 0.67 < AI ≈ 1. All other species are 
defined as AI = 0 making them aliphatic. 
                                                                                                                                                             

Eq. 2. 2 

 

Equation 2.3. The modified aromaticity index (AImod) from Koch and Dittmar (2006; 
2016). Here it is assumed that half of the oxygen is in carbonyl groups. The threshold for 
olefinic species is 0 < AImod ≤ 0.5, for aromatic it is 0.5 < AImod ≤ 0.67, and for condensed 
aromatic it is 0.67 < AImod ≈ 1. All other species are defined as AImod = 0 making them 
aliphatic. 
                                                                                                                                                            

Eq. 2. 3 

Equation 2. 4. The number of double bond (and rings) equivalents (DBE). C represents 
carbon, H represents hydrogen, X represents halogens, and N represents nitrogen. 
Elements with 2 covalent bonds (oxygen and sulfur) are cancelled out in this equation. 
                                                                                                                                                              

Eq. 2.4 

 

𝐴𝐼  
1 𝐶 𝑂 𝑆 0.5 ∗ 𝐻 0.5 ∗ 𝑁

𝐶 𝑂 𝑆 𝑁

𝐴𝐼  
1 𝐶 0.5 ∗ 𝑂 𝑆 0.5 ∗ 𝐻 0.5 ∗ 𝑁

𝐶 0.5 ∗ 𝑂 𝑆 𝑁

𝐷𝐵𝐸 #𝐶 1  #   #  #
   

𝑂𝑆 2 ∗  
#𝑂
#𝐶

 
#𝐻
#𝐶

 5 ∗
#𝑁
#𝐶

6 ∗
#𝑆
#𝐶
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Equation 2. 5. Estimation of the glass transition temperature from DeRieux et al., 2018. 
𝑛  is the carbon reference number (12.13 ± 2.66), bC , bH, and bO are the contributions of 

each atom to Tg, and bCH and bCO represent the contribution of carbon-hydrogen and 

carbon-oxygen bonds respectively. For CHO molecular formulas the values for these 
terms are as follows: bC = 10.95 ± 13.60, bH = -41.82 ± 14.78, bCH = 21.61 ± 5.30, bO = 
118.96 ± 9.72, and bCO = -24.38 ± 4.21. This equation determines the dry glass transition 
temperature. The Gordon-Taylor Equation (Eq. 2-6) is required to convert the glass 
transition temperature for non-dry conditions.                                                                                               
 

Eq. 2. 5 
 

 

Equation 2. 6. Gordon-Taylor Equation from DeRieux et al. (2018). This is used to 
calculate the glass transition temperature in humid conditions. 𝑤  is the mass fraction 

of organics, 𝑇 ,  is the glass transition temperature for water (136 K), kGT is the Gordan-

Taylor constant (assumed to be 2.5, consistent with DeRieux et al., 2018 and Shiraiwa et 
al., 2017a), and 𝑇 ,  is the dry glass transition temperature calculated by Eq. S5. For 

more detail see DeRieux et al., 2018 and Shiraiwa et al., 2017a. 

Eq. 2. 6 

 

 

 

 

 

 

Tg = (𝑛  + ln(nC)) bC + ln(nH) bH + ln(nC) ln(nH) bCH+ ln(nO) bO + ln(nC) ln(nO) bCO 
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Equation 2.7. Adapted Gordon-Taylor equation with inputs for relative humidity (RH), 
dry glass transition temperature, and ambient temperature. This generates the phase state 
ratio (PSR), which predicts the phase the molecular species is likely in, PSR >= 1 is solid, 
PSR >= 0.8 & PSR < 1 is semi-solid, and PSR < 0.8 is liquid. This equation converts worg 

to a relative humidity dependent term as described in DeRieux et al. (2018) and Shiraiwa 
et al. (2017a), and converts 1/kGT to 0.4, which is its value using the assumption of kGT 

equals 2.5. Tamb is the ambient temperature. The relative humidity dependent Tg is 
calculated using the calculation in the numerator. 

 

Eq. 2.7 
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3 Physical and Molecular Composition of Long-Range 
Transported Free Tropospheric Organic Aerosol 

3.1 Brief Introduction to Study 

The first study to be described in this dissertation is the analysis and interpretation of 3 

long range transported organic aerosol samples that were collected at the Pico Mountain 

Observatory (PMO) in the summers of 2013, 2014, and 2015. This study was published 

as Schum et al., (2018) and this chapter borrows heavily from that paper. 

For a brief overview for the following chapter, three organic aerosol samples were 

collected at the Pico Mountain Observatory (PMO) in the summers of 2013, 2014, and 

2015. The samples were collected on quartz filter paper for 24 hours each on June 27-28, 

2013 (PMO-1), July 5-6, 2014 (PMO-2), and June 20-21, 2015 (PMO-3). The sampling 

time began at 19:00 for PMO-1, and 15:00 for PMO-2 and PMO-3, all times local. The 

samples were then stored in a freezer before being transported back to Michigan Tech, 

where they were again stored in a freezer until analysis. For this study the samples were 

analyzed with three different instruments, OC/EC analyzer (Model 4, Sunset Laboratory 

Inc. Tigard, OR, USA) for bulk organic carbon concentration, ion chromatography (IC) 

for bulk anion and cations concentration, and Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR MS) to investigate the molecular composition of the 

samples. The sample preparation and parameters used for these instruments can be seen 

in Chapter 2. To get back trajectory and source region information we used FLEXPART 

modeling, which was performed by our collaborator Dr. Bo Zhang. 
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3.2 FLEXPART Retroplume Simulation Results 

Representative FLEXPART retroplumes for the three samples are shown in Figures 3.1-

3.3. PMO-1 (Figure 1) was largely influenced by North American outflow transported 

relatively high (≥ 5 km) in the free troposphere. Based on the FLEXPART carbon 

monoxide (CO) modeling (Figure 3.4), PMO-1 was impacted by wildfire emissions from 

Canada. The transport time for PMO-1 air masses from North America to PMO was 

about 7 days. The free tropospheric transport is likely due to the high injection heights 

(Val Martin et al., 2008a; 2010) of organic aerosol from wildfire events in northwestern 

Quebec (See Figures 3.4, 3.5). Similar events at PMO have been identified previously by 

(Val Martin et al., 2006; 2008a). The air masses intercepted during PMO-3 were North 

American outflows that traveled in the lower free troposphere across the Northern 

Atlantic Ocean to Western Europe before circling back to PMO. The transport time for 

the PMO-3 air masses from North America to PMO was roughly 10 days (Figure 3.2). 

After a northward transport to Western Europe in the jet stream during the first 4-5 days, 

the simulated plume turned to the south and west, arriving at PMO from Europe in about 

2-4 days. This air mass was most likely influenced by wildfire emissions in western and 

central Canada (U.S. Air Quality, Smog Blog. alg.umbc.edu). Similar to PMO-1, 

FLEXPART CO source apportionment (Figure 3.4) suggests this sample was influenced 

by fire, although considering the OC concentration and transport time, it was much more 

diluted than what was observed in PMO-1. In contrast, the PMO-2 air masses traveled 

relatively low (≤ 2 km) over the “Rust Belt” (Illinois, Indiana, Michigan, Ohio, 

Pennsylvania, and New York) of the United States and stayed at approximately the same 

altitude until it reached the observatory 2-4 days later (Figure 3.3). This transport pattern 
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suggests that the aerosol was predominantly transported in the boundary layer on its way 

to the PMO and was primarily influenced by a mixture of continental U.S. anthropogenic 

and biogenic emissions. This was supported by the FLEXPART CO simulations as well 

(Figure 3.4). The height of the boundary layer over the continent generally ranges from 

500-2500 m and is strongly affected by diurnal cycles, seasonal effects, and topography 

(Liu and Liang, 2010); overall, the continental boundary layer height generally increasing 

during the day and during the summer months. This suggests that PMO-2 was within the 

boundary layer over the United States.  
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Figure 3.4. FLEXPART carbon monoxide source apportionment plot. PMO-1 (a), PMO-

2 (b), PMO-3 (c). The red rectangle highlights the sampling period for each sample. 
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Figure 3.5. Wildfire emissions from GFAS dataset for the week corresponding to the 

PMO-1 event (a) and the PMO-3 event (b). Note the strong fire in western Quebec, which 

spatially coincides with the most likely path in the PMO-1 retroplume. Multiple fires in 

central and western Canada may have impacted PMO-3, although they are not spatially 

proximate to the most likely path in the PMO-3 retroplume. 
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3.3 Overview of the Aerosol Chemistry: OC/EC and IC 

In this study, we present the detailed composition of three individual samples collected 

for 24 hours on 27-28 June 2013, 5-6 July 2014, and 20-21 June 2015 at the PMO. These 

samples, referred to as PMO-1, PMO-2 and PMO-3 hereafter, were selected after analysis 

of organic and elemental carbon (OC/EC) were performed for all 127 aerosol samples 

collected in this study. The three selected samples all had elevated organic carbon (OC) 

concentrations (Table 3.1) representing the capture of a pollution plume. After blank 

subtraction, the median OC of the samples collected over the summers of 2013-2015 was 

0.16 ± 0.018 µg/m3. The minimum OC level measured was lower than the average blank 

concentration and the maximum was 2.07 ± 0.017 µg/m3 (PMO-1). The most abundant 

anions and cations in these samples are also shown in Table 3.1. The presence of these 

ions is consistent with the results of other studies (Yu et al., 2005; Aggarwal and 

Kawamura, 2009).  

The concentrations of common anions and cations can offer important insight regarding 

cloud processing and emission sources (Table 3.1). Specifically, the elevated level of 

sulfate observed in the PMO-2 sample can be an indicator of anthropogenic influence, 

cloud processing, or marine influence (Yu et al., 2005). We also observed elevated 

oxalate concentrations in PMO-1 and PMO-2. Oxalate is known to co-vary with sulfate 

concentrations in the atmosphere when they are formed by aerosol-cloud processing (Yu 

et al., 2005; Sorooshian et al., 2007). Thus, the oxalate to sulfate ratio can be an 

indication of cloud processing (Sorooshian et al., 2007); in general, a higher ratio is the 

result of increased cloud processing. As described in Sorooshian et al. (2007), the oxalate 
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concentrations increase with cloud processing because there is more time for it to be 

produced, leading to an increased ratio. PMO-1 had the highest oxalate to sulfate ratio 

(0.278), followed by PMO-3 (0.124), and PMO-2 (0.084). The observed oxalate to sulfate 

ratios for these samples are all much higher than what was reported in Sorooshian et al. 

(2007) suggesting other factors may have impacted the ion concentrations. Specifically, 

an enrichment of oxalate from biomass combustion plumes (Cao et al., 2017) likely 

contributed to the observed concentrations of these ions in PMO-1 and PMO-3. The bulk 

concentration of oxalate in PMO-2 is similar to PMO-1, but the sulfate in PMO-2 is much 

higher, leading to a low oxalate to sulfate ratio. Based on FLEXPART simulations it is 

likely that PMO-2 underwent aqueous phase processing (see Sect. 3.5), but the high 

concentration of sulfate from possible anthropogenic and marine sources appears to have 

obscured the oxalate-sulfate relationship (Yu et al., 2005; Sorooshian et al., 2007).  

Despite inconsistencies in the replicate potassium measurements for PMO-1, elevated 

potassium levels were observed, indicating contributions from biomass combustion 

(Duan et al., 2004). PMO-3 had slightly elevated potassium relative to PMO-2, but not as 

high as PMO-1. Chloride was also present in PMO-1 and PMO-3, which has been shown 

in some studies to be a minor product of biomass burning, depending on the fuel burned 

(Levin et al., 2010; Liu et al., 2017).  

The nitrate levels in PMO-2 were significantly lower than what was observed in PMO-1 

and PMO-3, which is consistent with the observation that the marine boundary layer 

promotes the rapid removal of HNO3 (Val Martin et al., 2008b). This is also consistent 

with removal due to cloud scavenging (Dunlea et al., 2009). The elevated nitrate in PMO-
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1 and PMO-3 is consistent with the observation of elevated NOy and NOx in the plumes 

of wildfire emissions made in previous studies at PMO (Val Martin et al., 2008a) and a 

lack of recent cloud scavenging (Dunlea et al., 2009).  

Despite the low altitude transport, the major ion concentrations in PMO-2 do not strongly 

support a major influence from marine sources (Quinn et al., 2015; Kirpes et al., 2017). 

However, the increased concentration of methane sulfonic acid (MSA) in PMO-2 relative 

to PMO-1 and PMO-3 suggests some degree of marine influence. To estimate this, we 

used the non-background subtracted sodium concentration as an upper limit to estimate 

sea salt sulfate according the method described in Chow et al. (2015), this led to a 

maximum sea salt sulfate contribution of 25 %.  The equation for this estimation can be 

seen in Equation 1: 

𝑛𝑠𝑠𝑆𝑂 𝑆𝑂 0.252 ∗ 𝑁𝑎                Eq. 1 

where 𝑛𝑠𝑠𝑆𝑂  is the estimated non-sea salt sulfate, 𝑆𝑂  is the measured sulfate 

concentration, and Na+ is the measured sodium concentration. The influence of marine 

sources supports boundary layer transport. However, the results indicate that marine 

aerosol is not likely a major component of PMO-2, perhaps because the rate of PMO-2 

transport was very fast. 
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3.4 Molecular Formula Oxidation Metrics: O/C and OSC 

In this section, we describe the detailed molecular formula composition of the three 

individual samples PMO-1, PMO-2, and PMO-3. Overall, nearly 80% of the observed 

mass spectral peaks in the ultrahigh resolution mass spectra were assigned molecular 

formulas, which is comparable to previous studies (Zhao et al., 2013; Džepina et al., 

2015). After removing the duplicate molecular formulas containing 13C or 34S, a total of 

3168 (PMO-1), 2121 (PMO-2), and 1820 (PMO-3) monoisotopic molecular formulas 

remained. Groups of molecular formulas were assigned based on their elemental 

composition CcHhNnOoSs, including: carbon, hydrogen, and oxygen (CHO); carbon, 

hydrogen, nitrogen, and oxygen (CHNO); and carbon, hydrogen, oxygen, and sulfur 

(CHOS). The most frequently observed compositions were CHO and CHNO. The 

reconstructed negative ion mass spectra of the monoisotopic molecular formulas for each 

of the samples are provided in Figure 3.6. Visual comparisons of the mass spectra 

indicate that PMO-2, which was likely transported through the North American 

continental and North Atlantic marine boundary layer, has an increased prevalence of 

higher O/C ratio formulas compared to the two samples transported through the free 

troposphere. Considering the ion distribution and normalized relative abundances, PMO-

1 and PMO-3 mass spectra look quite similar with a high frequency of individual O/C 

values < 0.5. This may suggest similar emission sources or aerosol processing. In 

contrast, PMO-2 has a stronger relative influence of molecular compositions with higher 

O/C ratios. The O/C histogram plots in Figure 3.6 provide additional evidence for the 

O/C differences between the two types of samples (free troposphere and boundary layer) 
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due to the difference in the O/C distribution. A version of the mass spectrum with the full 

y axis can be seen in Figure 3.7. 

 

Figure 3.6. Reconstructed negative ion mass spectra (a-c) and O/C histograms (d-f) for 

the three PMO samples. The color in the mass spectra indicates the O/C value for the 

molecular formula it represents. The tallest peaks in the mass spectra exceed the range, 

this was done to improve the visibility of the lower abundance species (see also Figure 

3.7). 
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Figure 3.7. Reconstructed mass spectra showing the full abundance of all peaks. This is 
the same plot as Figure 3.6, just with fully expanded y axis.
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The North American boundary layer outflow of organic aerosol captured in PMO-2 was 

likely influenced by SOA (Zhang et al., 2007) and thus is expected to have a higher initial 

O/C value compared to pyro-convected wildfire emissions of organic aerosol (e.g., Aiken 

et al., 2008; Jimenez et al., 2009; Bougiatioti et al., 2014). Although the initial 

compositions are unknown, we anticipated that the samples with longer transport times (~ 

1 week for PMO-1 and PMO-3) would be at least similar or perhaps more oxidized than 

PMO-2 which had a much shorter transport time (~ 3 days). This expectation was based 

on literature describing secondary organic aerosol formation and aging (Volkamer et al., 

2006; Jimenez et al., 2009) and the reported molecular composition of continental 

boundary layer aerosol (Mazzoleni et al., 2012; Huang et al., 2014). The lower oxidation 

observed in the free tropospheric samples transported for 7-10 days is consistent with our 

previous study at this site reported in Džepina et al. (2015). In fact, when we compared 

the molecular formula composition of the free tropospheric aerosol sample “9/24” from 

Džepina et al. (2015) to the free tropospheric samples in this study (PMO-1 and PMO-3), 

we observed that 86% and 91% of the molecular formulas are in common. FLEXPART 

simulations from both studies indicated these samples were all affected by wildfire 

emissions, contributing to their similarity. In contrast, only 75% of the formulas found in 

the boundary layer sample (PMO-2) were common with those in Džepina et al. (2015). 

These comparisons are provided in Table 3.2. 
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Table 3.2. Number of common species between this study and previous studies at PMO 
(Džepina et al., 2015) and SPL (Mazzoleni et al., 2012). The percentages indicate the 
percent of common species for the sample indicated by the row names. 
 

  PMO-1 PMO-2 PMO-3 Džepina 2015 Mazzoleni 2012 

PMO-1 X 1697 (53.6%) 1633 (51.5%) 2730 (86.2%) 1951 (61.6%) 

PMO-2 1697 (80.0%) X 1253 (59.1%) 1585 (74.7%) 1661 (78.3%) 

PMO-3 1633 (89.7%) 1253 (68.8%) X 1704 (90.6%) 1429 (76.0%) 

 

As observed in the mass spectra and histograms presented in Figure 3.6, the samples have 

noticeable differences in the distribution of O/C values. This is also reflected in the 

abundance weighted mean O/C values for the samples: 0.48 ± 0.13 (PMO-1), 0.57 ± 0.17 

(PMO-2), and 0.45 ± 0.11 (PMO-3). Note that these O/C values are averages of 

thousands of individual measurements, as such the standard deviation represents the 

range of values and not uncertainties. A visual representation of the distribution of the 

O/C and OSc values is presented in Figures 3.8 and 3.9. These plots show the box plot 

distribution for each oxidation metric with a white box, the external “violin” component 

show the number density of formulas with those O/C or OSc values. The box plots show 

the median value with a horizontal black line within the “box” portion of the plot, the top 

of the box represents the 1st quartile, and the bottom of the box represents the 3rd quartile. 

The solid vertical line “whisker” represents Q3-1.5*interquartile range (IQR, Q3–Q1, 

maximum), and Q1-1.5*(IQR, minimum). We note that the relative abundance of 

compounds in ESI mass spectra is not directly proportional to their solution 

concentration, other factors including surface activity and polarity impact the ionization 

efficiency (Cech & Enke, 2001). Nonetheless, the abundance does differentiate trends 
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between the samples and the assigned molecular formulas represent a collection of 

multifunctional isomers (e.g., LeClair et al., 2012). For completeness, both the abundance 

weighted average values for various metrics of aerosol oxidation and saturation (Table 

3.3) and the unweighted average values (Table 3.4) are reported.  

 

 

Figure 3.8. Violin plots showing the number distribution of species according to their 
O/C values, separated by molecular groups. 

 

 

Figure 3.9. Violin plots showing the number distribution of species according to their 
OSC values, separated by molecular groups. 
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Another way to compare the oxidation differences between the samples is with a 

difference mass spectrum (Figure 3.10). A difference mass spectrum compares two 

samples by subtracting the abundance of a molecular formula in one sample from the 

abundance in another, if a particular formula is more abundant in one sample versus the 

other the peak will show up in that half of the plot. Figure 3.10 shows that even if some 

of the higher O/C molecular formulas are found in PMO-1 and PMO-3, they are all more 

abundant in PMO-2, supporting the conclusion that PMO-2 is likely more oxidized than 

the other samples. Additionally, the difference mass spectrum demonstrates that PMO-1 

and PMO-3 have a lot of similarity, with PMO-1 having slightly more of the high O/C 

species.   
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Figure 3.10. Difference mass spectra comparing the three PMO samples. The species 
more abundant in one sample or another are elevated in the correspondingly labeled half 
of the plot. PMO-1 vs. PMO-2 (a), PMO-1 vs. PMO-3 (b), and PMO-2 vs. PMO-3 (c). 
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Additional O/C distribution insight was derived from separating the species into CHO, 

CHNO, CHOS elemental groups. For example, the comparison of the species with CHO 

formulas in each sample indicates a smaller relative difference between PMO-2 aerosol 

compared to PMO-1 and PMO-3, with the PMO-2 aerosol having a higher average O/C 

value (0.55 ± 0.17 (PMO-2) compared to 0.47 ± 0.14 (PMO-1) and 0.44 ± 0.14 (PMO-

3)). Meanwhile 85 - 98% of the CHO species in each sample are present in at least one 

other sample, with 848 (42 - 78%) of the formulas being found in all three samples, as 

shown in Figure 3.11. Panel a shows the number of molecular formulas that are common 

and unique between the various samples and Panel b shows the same data, normalized to 

100% to make some of the groups more clear than they are in Panel a. These results 

suggest that the CHO composition may be fairly uniform throughout the atmosphere, 

without a significant abundance of clear marker species after long-range transport, 

regardless of the source region and transport time. This observation is consistent with 

other studies which have observed the decay of marker species after ~ 24 hours 

(Bougiatioti et al., 2014; Forrister et al., 2015). 
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Figure 3.11. Molecular formulas common to all three samples and those unique to each 
sample presented as the total number of formulas (a) and as a percent of total number of 
formulas (b).
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In contrast, the CHNO molecular formulas demonstrate stronger differences that correlate 

with the overall O/C ratio. The average O/C value for the CHNO formulas in PMO-2 was 

0.59 ± 0.14 compared to 0.49 ± 0.15 in PMO-1 and 0.49 ± 0.14 PMO-3 (Table 3.3). 

Differences in the elemental ratios are often visualized using the van Krevelen plot, 

which shows the correlation of H/C vs. O/C. The van Krevelen plots for the three samples 

with the unique CHNO formulas present in each sample are shown in Figure 3.12. Most 

of the unique CHNO species in PMO-2 (68%) fall in the more oxidized region of the plot 

(Tu et al., 2016) with high overall O/C values. This differs from the PMO-1 unique 

species that are predominantly on the less oxidized, low O/C side of the plot, or the 

oxidized aromatic region. Another observation from the CHNO species is more identified 

species in both PMO-1 (1120) and PMO-3 (608) than in PMO-2 (561), despite the higher 

total number of molecular species in PMO-2 compared to PMO-3. This is potentially due 

to the enrichment of NOx and NOy species as previously observed in wildfire pollution 

events (Val Martin et al., 2008a), which may in turn lead to an increased nitrogen content 

in the organic aerosol species. The nitrogen containing species show a distinct difference 

in terms of the total oxidation between the two sets of samples, more so than the CHO 

compounds. This implies that much of the distinction between aerosol sources may come 

from heteroatom containing species. 
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The difference in O/C is even more evident in the sulfur containing formulas (CHOS). 

The PMO-2 CHOS species have a much higher average O/C ratio (0.74 ± 0.34) than what 

is observed in PMO-1 (0.48 ± 0.14). Consistent with the CHNO formulas, the PMO-2 

unique CHOS formulas (55% of unique formulas) are present in the oxidized region of 

the plot, whereas those in PMO-1 are nearly completely in the less oxidized region of the 

van Krevelen plot (Figure 3.13). The Kendrick mass defect plot (Figure 3.13c) also 

demonstrates a clear difference between the two samples. Most of the unique CHOS 

compounds in PMO-2 are located on the lower mass, higher defect side of the plot, while 

the PMO-1 formulas are on the higher mass, lower defect side. This difference is due to 

the larger amount of oxygen present in the PMO-2 formulas, which would lead to a 

greater Kendrick mass defect (KMD) than the more reduced CHOS formulas present in 

PMO-1. The higher oxygen content of PMO-2 aerosol is supported by its higher O/C 

ratio when compared to PMO-1 as shown in box plots (Figure 3.13d). Very few CHOS 

molecular formulas (N = 29) were identified in PMO-3 and most of them (N = 26 of 29 

total) were also present in PMO-1. Due to the small number of identified CHOS formulas 

in PMO-3, we did not consider it in the comparison between CHOS formulas in the 

samples. The increased number of sulfur species observed in PMO-2 are likely associated 

with the anthropogenic emission sources in the North American boundary layer. Overall, 

the observed differences in the O/C ratios between the boundary layer transported aerosol 

(PMO-2) compared to the free troposphere transported aerosol (PMO-1 and PMO-3) 

highlight differences in the aging and lifetime of aerosol relative to its transport pathway 

and emission source.  
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Figure 3.13. A comparison of PMO-1 (a) and PMO-2 (b) CHOS molecular formulas 
using van Krevelen, Kendrick plots (c), and O/C box plots (d). Common CHOS 
molecular formulas (grey) and unique CHOS molecular formulas (colored) are indicated 
in a-c. 
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Another commonly used metric of aerosol oxidation is the average oxidation state of 

carbon (OSC) described by Kroll et al. (2011). The average OSC includes both hydrogen 

and oxygen for the average oxidation of carbon in each molecular formula. Additionally, 

we assumed all nitrogen and sulfur were present as nitrate and sulfate functional groups 

and calculated the OSC with the appropriate corrections (Chapter 2, Equation S1). The 

average OSC values (Table 3.3) for the three samples show again that PMO-2 is more 

oxidized than the other two samples. The average OSC values for the CHO formulas in 

PMO-1 and PMO-2 are very similar (Table 3.3), but as shown in the histograms in Figure 

3.14, their relative abundance distributions are quite different. The OSC vs. carbon 

number plots in Figure 3.14 show slight differences between PMO-1 and PMO-2, mostly 

in the distribution of the sulfur containing formulas. However, the similarity of the PMO-

1 and PMO-3 samples and their difference from the PMO-2 sample is quite clear in the 

visual comparisons of the histograms of the OSC values with their normalized relative 

abundances. The observation of an overall lower oxidation in PMO-1 and PMO-3 may 

support the findings of Aiken et al. (2008) and Bougiatioti et al. (2014) who reported that 

biomass burning aerosol are less oxidized than other types of aerosol, even after some 

aging. Conversely, the overall higher oxidation of PMO-2 implies that the sampled 

aerosol was likely more hygroscopic, included more efficient cloud condensation nuclei 

(Massoli et al., 2010), or had components of a less volatile nature (Ng et al., 2011) than 

PMO-1 and PMO-3.  
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Figure 3.14. Average OSC vs. carbon number plots for molecular formula identified in 
each of PMO samples (a-c). The size of the symbols is scaled to the analyte relative 
abundance and the color represents the elemental group: CHO (green), CHNO (blue), and 
CHOS (red). The right panel (d-f) contains average OSC histograms based on the sum of 
normalized abundance.
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3.5 Molecular Formula Aromaticity and Brown Carbon 

The aromaticity of the samples is also different between the two groups of aerosol 

samples. Based on the aromaticity index (AI, Eq. 2.2; AImod, Eq. 2.3; Koch and Dittmar, 

2006; 2016, Chapter 2), the free tropospheric aerosol samples (PMO-1 and PMO-3) are 

more aromatic than the convected boundary layer aerosol (PMO-2; Figure 3.15). The 

presence of more aromatic species in the long-range transported wildfire-influenced 

aerosol may lead to increased light absorption (Bao et al., 2017) and perhaps an increased 

resistance to oxidation (Perraudin et al., 2006). Aromatic species can also be associated 

with the presence of brown carbon (BrC; Desyaterik et al., 2013). Aromaticity is heavily 

dependent on the H/C ratio and the DBE (Chapter 2, Eq. 2.4), where low H/C and high 

DBE indicate aromatic structure.  

 

Figure 3.15. Normalized bar charts for the aromaticity of the three PMO samples, 
calculated using the Koch and Dittmar (2006; 2016) modified aromaticity index (AImod). 
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Histograms depicting the distribution of H/C and DBE values for the three samples are 

shown in Figure 3.16. As observed previously, PMO-1 and PMO-3 are more similar to 

each other than compared to PMO-2. Likewise, PMO-1 and PMO-3 exhibit an increase in 

the number frequency of higher DBE species, which is not observed in PMO-2, 

supporting the observation of an increased overall aromaticity for these free tropospheric 

aerosol samples. The difference is also demonstrated by the H/C histograms because 

PMO-1 has a higher proportion of its formulas below H/C = 1 relative to PMO-2, which 

indicates the potential for higher aromaticity. Many aromatic compounds, such as PAH 

are known to be carcinogens, and are a product of incomplete combustion biomass 

burning and anthropogenic emissions (Perraudin et al., 2006; Bignal et al., 2008).  
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Figure 3.16. Histograms of the molecular formula DBE (a-c) and H/C (d-f).
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Generally, BrC is considered to be aromatic or olefinic in nature (Bao et al., 2017). In our 

observations, the two samples influenced by wildfire show the greatest amount of olefinic 

and aromatic species, which is likely associated with the presence of BrC compounds. 

Additional evidence for the presence of BrC in PMO-1 comes from aethalometer 

measurements using the 7 wavelength aethalometer (Magee Scientific Company, 

Berkeley, California, USA) located at the site, which detected a wavelength-dependent 

peak with an Ångström exponent of 1.3 during the sampling period. Ångström exponents 

above 1 suggest the presence of BrC or iron oxides. Based on the retroplume analysis, 

Ångström exponent, wavelength dependent absorbance, and comparison to similar 

samples (Džepina et al., 2015), the detected peak is most likely the result of BrC. Figure 

3.17 contains the aethalometer observations for this event and for PMO-2. In contrast 

with PMO-1, the results for PMO-2 show very little increase in absorbance and no 

wavelength dependence during the sampling period. This means the aerosol in this period 

was not strongly absorbing, which is consistent with the hypothesis that it is 

anthropogenic SOA, which is not generally strongly absorbing in visible wavelengths. 

Difficulties with the instrument prevented similar data from being collected for PMO-3, 

although based on the retroplumes, ambient conditions, and molecular characteristics 

similar results seem likely. In addition to the aethalometer response, PMO-1 contained 

species that were related to BrC in studies by Iinuma et al. (2010) and Lin et al. (2016) 

(Table 3.5). This observation provides evidence for the persistence of BrC species, which 

is contrary to the observations by Forrister et al. (2015) who concluded that BrC is mostly 

removed within 24 hours. Additionally, the high concentration of OC for this sample 
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makes it seem unlikely that we observed just a minor residual fraction. Perhaps, the 

lifetime of BrC is dependent on additional ambient conditions that influence aerosol 

oxidation and phase state. 

Table 3.5. Molecular formulas identified in brown carbon by Iinuma et al. (2010) and 
Lin et al. (2016), where “Yes” means the formula was observed in our sample and, “No” 
means it was not. 

Formula Observed Citation 

C7H7NO4 Yes 
Iinuma et al. 2010;  

Lin et al. 2016 

C6H5NO3 Yes Lin et al. 2016 

C6H5NO4 Yes Lin et al. 2016 

C6H6N2O6 No Lin et al. 2016 

C6H4NO4 No Lin et al. 2016 

C10H9NO3 No Lin et al. 2016 

C8H7NO4 Yes Lin et al. 2016 

C8H7NO3 Yes Lin et al. 2016 

C9H7NO4 Yes Lin et al. 2016 

C10H7NO4 Yes Lin et al. 2016 

C8H8O3 Yes Lin et al. 2016 

C9H6O3 Yes Lin et al. 2016 

C10H8O4 Yes Lin et al. 2016 

C13H8O5 Yes Lin et al. 2016 

C13H8O6 Yes Lin et al. 2016 

C15H10O6 Yes Lin et al. 2016 

C16H12O6 Yes Lin et al. 2016 

C16H12O7 Yes Lin et al. 2016 

C17H14O8 Yes Lin et al. 2016 
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3.6 Phase State, Volatility, and Cloud Processing: Implications for the 
Observed Aerosol Oxidation 

Atmospheric aging processes are influenced by ambient conditions, such as temperature 

and water vapor, and the concentrations of reactive species. Recently, Shrivastava et al. 

(2017) reported observations of long-range transported PAH from Asia to North America 

and suggested an enhanced lifetime due to a probable glassy aerosol phase state during 

transport. Additionally, model simulations reported by Shiraiwa et al. (2017a) indicated 

that model SOA is predicted to be semi-solid or glassy at altitudes above 2000 m in the 

northern hemisphere. Since the PMO aerosol was sampled at 2225 m above sea level, we 

examined the estimated glass transition temperature (Tg) of the studied WSOC species in 

addition to the markers of aqueous phase processing for the three PMO samples. 

Increased aerosol viscosity has been shown to decrease the rate of photodegradation 

(Lignell et al., 2014; Hinks et al., 2016) and water diffusivity (Berkemeier et al., 2014). 

Both photodegradation and water diffusion are expected to strongly affect the oxidation 

and aging of aerosol species during transport.  

In general, lower volatility typically inversely correlates with Tg (Shiraiwa et al., 2017a) 

and viscosity. As such, a better understanding of the potential volatility can be important 

for evaluating the viscosity of the PMO aerosol. Using the parameters reported by 

Donahue et al. (2011) and Li et al. (2016), we estimated the volatility of the FT-ICR MS 

identified organic aerosol molecular compositions (Figs. 3.18 and 3.19, respectively). 

These parameters are based on the molecular formulae of the aerosol species present in 

the samples. The Donahue et al. method is only applicable to CH and CHO formulas, 
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while the Li et al. method is also applicable to CHNO, CHNOS, and CHOS molecular 

formulas. In both cases compounds with known volatilities were used to generate a plot 

that could be used to find a relationship between the volatility and the molecular 

composition. The volatilities calculated by these methods are not equivalent, in general, 

the volatility calculated with the Li method is equal to the Donahue volatility multiplied 

by ~2. Figure 3.20 demonstrates this comparison. As expected, based on the length of 

transport for the samples, the majority of formulas show extremely low volatility. 

Interestingly, PMO-2 has a larger number of higher abundance molecular formulas with 

extremely low volatility and elevated oxidation relative to PMO-1 and PMO-3 (Figure 

3.21). This highlights the relationship between O/C and volatility, where volatility is 

expected to decrease as O/C increases when the mass range is constant (Ng et al., 2011); 

the relationship between oxygen and carbon and its effect on volatility is used by both 

Donahue et al. (2011) and Li et al. (2016) to estimate volatility. Similarly, lower volatility 

is expected to lead to lower diffusivity in aerosol even at elevated RH as demonstrated by 

Ye et al. (2016).  

 

Figure 3.18. OSC vs. volatility plots for the three samples. Volatility estimates were made 
using the Donahue et al. (2011) method. Only volatility for CHO species can be 
estimated with this method. Color is the logarithm of the normalized relative abundance 
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multiplied by 1000. Of interest is the increased abundance of low volatility, higher 
oxidation species in PMO-2 relative to PMO-1 and PMO-3, indicating the importance of 
these species to this sample and highlighting a difference between these samples. 

 

 

Figure 3.19. Group separated OSC vs. volatility plots for the three samples. Volatility 
estimated using the Li et al. (2016) method. Color is the logarithm of the normalized RA 
multiplied by 1000. The same increase in abundance for low volatility, higher oxidation 
species is observed in this figure as in Figure 3.18. 
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Figure 3.20. Correlation plot of volatility calculated by the Li et al. (2016) method and 
the Donahue et al. (2011) method. The relation is linear although the slope of the line is 
nearly two, indicating that the Donahue method predicts values that are roughly two 
times what the Li method predicts, at least for the low and extremely low volatility 
species presented here. 
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Figure 3.21. OSC vs. volatility estimated using the Li et al. (2016) method for the CHO 
species in the three samples. The size is determined by the normalized relative abundance 
and the color is determined by the logarithm of the normalized relative abundance 
multiplied by 1000. 
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As predicted in earlier studies (Shrivastava et al., 2017; Shiraiwa et al., 2017a), particles 

transported in the free troposphere are likely semi-solid to solid, where the actual particle 

viscosity depends on the ambient conditions and the composition of the particles. Thus, 

to better understand the potential phase state associated with the PMO organic aerosol, 

we first estimated the dry Tg for the identified CHO molecular formulas in each of the 

PMO aerosol using the estimation method by DeRieux et al. (2018; Chapter 2, Eq. 2.5). 

We then converted the dry Tg to the RH dependent Tg (below). Currently Tg can only be 

estimated for CHO species, however the CHO species were the most frequently observed 

and constituted a major fraction of the total relative abundance in the PMO negative ion 

mass spectra. Assuming the identified CHO compositions are fairly representative of the 

total organic aerosol composition, a comparison of the Tg values to the ambient 

temperature (Tamb) provides an indication of the likely phase state of the organic aerosol 

particles. Generally, if Tg exceeds Tamb, a glassy solid state is predicted, likewise, if Tg is 

less than Tamb then either a semi-solid or liquid state is predicted depending on the ratio 

magnitude (Shiraiwa et al., 2017a; DeRieux et al., 2018). Although the exact composition 

of the total organic aerosol is yet unknown, the identified water-soluble organic 

compounds provide a reasonable upper limit for the estimated Tg values. Under this 

assumption, the CHO molecular formulas in PMO-1 and PMO-3 had higher average dry 

Tg values than PMO-2 (Table 3.6, Figure 3.22), which implies that they would be more 

viscous than PMO-2, given similar atmospheric conditions. 
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Table 3.6. Estimated average dry Tg for the three samples. All values are in K. 

 PMO-1 PMO-2 PMO-3 

Unweighted 333.76 328.94 333.56 

 

 

 

 

 

Figure 3.22.  Violin plots showing the distribution of dry Tg values for each sample.



 

102 

Water is known to be a strong plasticizer relative to typical aerosol species (Koop et al., 

2011; Shiraiwa et al., 2017a; Reid et al., 2018), thus it can decrease Tg and the overall 

aerosol viscosity. Therefore, it’s important to consider the ambient relative humidity 

when estimating the Tg. Using the extracted ambient temperature and RH from the GFS 

along the FLEXPART retroplumes and the Gordon-Taylor equation (Chapter 2, Eqs. 2.6 

– 2.7), the calculated dry Tg were modified to RH-dependent Tg for the CHO molecular 

species. The distributions of the Tg values for the three PMO samples based on one 

standard deviation of the ambient conditions are shown as boxplots in Figure 3.23. The 

range of ambient temperature and RH extracted from the GFS along the FLEXPART 

simulated path yields a wide range of Tg values (Figs. 3.23). The estimates were taken 

back only 5 days due to the increasing range of possible meteorological conditions 

associated with the spread in the air masses as shown in Figures 3.1-3.3. Overall, the 

distributions of Tg values in PMO-1 and PMO-3 generally exceed the ambient 

temperature (Figure 3.23), implying that particles mostly containing these compounds 

would likely be solid. To account for the low molecular weight organic anions not 

observed in the FT-ICR mass spectra, their mass concentrations and Tg values (estimated 

using the Boyer-Kauzmann rule (Koop et al., 2011; Shiraiwa et al., 2017a; DeRieux et 

al., 2018)) are also shown in Figure 3.23. The three most prevalent low molecular weight 

organic acids indicate the potential impact of those compounds on the overall Tg value of 

a particle that contains them. Oxalic acid was estimated to have a similar Tg value to a 

majority of the higher MW species identified in PMO-2, but it is slightly lower than the 
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majority of species in PMO-1 and PMO-3. However, the mass fraction of oxalate is 3 

times lower in PMO-1 and PMO-3 (2.3 and 3.0 %) compared to PMO-2 (9.4 %). 

The results suggest that aerosol in PMO-1 and PMO-3 was overall less susceptible to 

atmospheric oxidation due to the aerosol phase state during free tropospheric long-range 

transport than it may have been in the boundary layer with higher ambient RH and 

temperature. A more viscous phase state during transport may also explain the presence 

of persistent BrC species in PMO-1, where the BrC species are protected from oxidation 

similarly to the long-lived PAHs observed by Shrivastava et al. (2017). In contrast to the 

observations from PMO-1 and PMO-3, much of the PMO-2 Tg distribution falls below 

the ambient temperature implying a semi-solid or liquid state during the final 5 days of 

transport. This indicates an increased susceptibility to oxidation processes in the 

atmosphere (Shiraiwa et al., 2011), such as aqueous phase processing. The possibility of 

aqueous phase processing is also supported by the extracted GFS RH in Figure 3.23, 

which is above 50% for the last 5 days of PMO-2 transport. The potential for liquid/semi-

solid aerosol in the boundary layer is consistent with other studies (Shiraiwa et al., 2017a; 

Maclean et al., 2017) due to the increased RH in the boundary layer and the plasticizing 

effect of water. Although, we note the PMO-2 average dry Tg values were 4-5° lower 

than those of PMO-1 and PMO-3. Overall, the estimates of dry Tg and RH-dependent Tg 

provide an otherwise unattainable upper limit estimate of the aerosol phase state of the 

sampled free tropospheric aerosol in this study. 
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Figure 3.23. Panels a-c contain the ambient conditions extracted from the GFS analysis 
along the FLEXPART modeled path weighted by the residence time for PMO-1, PMO-2, 
and PMO-3, respectively. The line represents the mean value and the shading represents 
one standard deviation of values. Panels d-f contain the boxplot distributions of the 
relative humidity dependent Tg values for molecular formulas using the maximum, mean, 
and minimum RH for PMO-1, PMO-2, and PMO-3, respectively. The Tg values for the 
full composition of each sample were calculated using the maximum, mean, and 
minimum RH and then all three sets of data are combined and plotted as a single 
distribution for each time period. The open circles represent the abundance and Boyer-
Kauzmann estimated Tg for the acid forms of the three most abundant low MW organic 
ions, the bars around the circles represent the range of possible Tg values for those 
compounds when the range of RH is considered. The red line demonstrates the ambient 
temperature at each time point, as extracted from GFS. The centerline of the boxplot 
represents the median, the top and bottom of the “box” represent the third and first 
quartiles, respectively. The “whiskers” represent Q3 + 1.5* interquartile range (IQR, Q3-
Q1) (maximum), and Q1 – 1.5*(IQR) (minimum). 

 

 

 

 

 



 

106 

As described above, the most obvious difference in the molecular composition of PMO-2 

vs. PMO-1 and PMO-3 is the increased extent of oxidation. In fact, most of the unique 

species observed in PMO-2 are in the highly oxidized region of the van Krevelen plot 

(Figure 3.24). However, the exact oxidation pathways that led to the increased oxidation 

observed for PMO-2 and its initial composition are unclear. Both gas phase and aqueous 

phase reactions lead to SOA, where aqueous SOA components can have higher O/C 

values than gas phase SOA components (Lim et al., 2010; Ervens et al., 2011). The high 

numbers of CHNO and CHOS molecular formulas observed here are consistent with 

secondary components associated with an emission plume likely enriched in SO2, NOx, 

and O3 pertaining to its expected anthropogenic influence. All three of these reactive 

species have been shown to lead to production and oxidation of SOA in the atmosphere 

(Hoyle et al., 2016; Bertrand et al., 2018).  
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Figure 3.25. Van Krevelen plot showing the molecular formulas that are common to only 
one PMO sample and the cloud water samples from SPL (Zhao et al., 2013). PMO-2 
(red) molecular formulas located nearly exclusively in highly oxidized region of plot, 
may indicate cloud processing. Common molecular formulas from either PMO-1 (blue) 
and PMO-3 (gold) may be related to the biomass combustion that influenced the 
supercooled cloud water collected in the winter at SPL. Formulas that are common to two 
or more PMO samples and CW are in grey. 
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Table 3.7. Number of molecular formulas and their average O/C values (unweighted O/C 
and RA weighted O/C (O/Cw)) uniquely common between this study and ambient 
aqueous organic matter (Mazzoleni et al., 2010; Zhao et al., 2013; Cook et al., 2017). 
Uniquely common means that the formula is common between only one of the PMO 
samples and the aqueous organic matter sample. CW indicates cloud water, the numbers 
in parentheses are the percentage of total formulas. 

Sample # Common Formula O/C O/Cw 
PMO and Fog (Mazzoleni et al., 2010)    
PMO-1 202 (6.4%) 0.38 0.39 
PMO-2 48 (2.3%) 0.5 0.55 
PMO-3 11 (0.60%) 0.29 0.29 
PMO and CW (Cook et al., 2017)    
PMO-1 2 (0.063%) 0.82 0.82 
PMO-2 23 (1.1%) 0.8 0.81 
PMO-3 1 (0.055%) 0.36 0.36 
PMO and CW (Zhao et al., 2013)    
PMO-1 197 (6.2%) 0.42 0.42 
PMO-2 70 (3.3%) 0.76 0.8 
PMO-3 42 (2.3%) 0.38 0.38 
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Cloud and aqueous processing have also been shown to increase the oxidation of 

atmospheric organic matter (e.g., Ervens et al., 2008; Zhao et al., 2013; Cook et al., 2017; 

Brege et al., 2018). Comparisons of the detailed molecular composition of the PMO 

samples with studies of cloud (Zhao et al., 2013; Cook et al., 2017) and fog (Mazzoleni et 

al., 2010) organic matter indicate that the formulas uniquely common to only PMO-2 

have higher O/C, which supports aqueous phase processing during transport. These 

results are provided in Figure 3.25 and Table 3.7. Studies have shown that the reactive 

species emitted from anthropogenic plumes (SO2, NOx, O3) can play a role in the 

oxidation of the organic species that are dissolved in water (Blando and Turpin, 2000; 

Chen et al., 2008; Ervens et al., 2011); furthermore, studies have shown aerosol liquid 

water content contributes to aqueous production of SOA (Volkamer et al., 2006; Lim et 

al., 2010). The elevated RH extracted from the GFS for this plume (Figure 3.23) indicates 

the presence of aerosol liquid water and is consistent with its ubiquitous nature (Nguyen 

et al., 2016). Additionally, PMO-2 had a strongly elevated non-sea salt sulfate 

concentration relative to PMO-1 and PMO-3, which also indicates aqueous phase 

processing (Crahan et al., 2004; Yu et al., 2005; Sorooshian et al., 2007; Hoyle et al., 

2016). Oxalate, another well-known marker of potential aqueous phase processing 

(Warneck 2003; Crahan et al., 2004; Yu et al., 2005; Sorooshian et al., 2007; Carlton et 

al., 2007), was also elevated in PMO-2. The organic mass fraction of oxalate was 9.4 % 

in PMO-2 compared to 2.3 % and 3.0 % in PMO-1 and PMO-3. The nitrate concentration 

in PMO-2 was very low compared to PMO-1 or PMO-3 (Table 3.1), supporting aqueous 

phase processed aerosol in PMO-2. While clearly gas phase SOA cannot be excluded, 
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several lines of evidence suggest that aqueous phase oxidation likely influenced the 

chemical and physical characteristics of the PMO-2 aerosol to a larger extent than those 

of PMO-1 and PMO-3 based on the observed molecular characteristics, major ion 

concentrations (Figure 3.26), and the model simulated transport pathways and GFS 

meteorology.   

 

Figure 3.26. Organic mass concentrations (a) and sulfate, nitrate and oxalate 
concentrations (b). 
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4 Tandem MS/MS Fragmentation of PMO-1 

4.1 Precursor Molecular Complexity and Composition 

4.1.1 Sample Overview 

The sample described here is a long range transported biomass combustion aerosol 

sample from North America collected at the PMO on June 27, 2013. The air mass history 

was determined using the FLEXPART model as described in Schum et al. (2018). 

FLEXPART is a Lagrangian model that releases thousands of massless particles and 

follows their path back in time using information from the Global Forecast Service 

(GFS). This modeling provides information about the transport path, time, and emission 

sources, all of which are important when interpreting the results from an analysis of 

organic aerosol. More detailed discussion of FLEXPART can be seen in Chapter 2. 

4.1.2 Full Scan vs. Segmented Scanning 

When analyzed using full scan (m/z 100-1000), 3168 identified monoisotopic masses 

were identified (Schum et al. 2018). In this work a segmented scanning method was 

applied to the range of m/z 162-468 and m/z 518-523, using 6 m/z segments centered 

every 5 m/z units. Doing this over 9000 monoisotopic molecular formulas were assigned. 

In contrast, only 2051 monoisotopic molecular formulas were assigned in the same range 

for the full scan sample. Segmented scanning has been shown to increase the sensitivity 

of FT-ICR MS measurements (Southam et al., 2007), allowing better detection of low 

concentration or low ionization efficiency molecular species, though it has not been used 

previously for atmospheric aerosol samples. The reasons for this were discussed in 
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Chapter 2. This increase in the number of identified molecular formulas demonstrates and 

increased molecular complexity that has been overlooked in typical ultrahigh resolution 

MS analyses of organic aerosol.  

Over 90% of the molecular formulas from the full scan within the same mass range were 

also identified using the segmented scanning approach. An example of the increased 

mass spectral complexity is shown in Figure 4.1 using the reconstructed mass spectra for 

each sample at nominal m/z 445. Over 50 molecular formulas were assigned to the 

isobaric peaks at this nominal mass with the spectral stitching approach, while only 11 

CHO molecular formulas were assigned using the full scan approach. In addition to an 

increase in the absolute number of identified molecular formulas this figure highlights an 

increase in the detection of heteroatom containing molecular formulas. The heteroatom 

containing molecular formulas are a significant component of most environmental 

(Willoughby et al., 2016, Wozniak et al., 2014), but the frequently do not ionize 

efficiently. The lower intensity peaks can be overlooked in full scan analyses. 
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The elemental group analysis provides an interesting comparison of the two scan 

methods. In the full scan, CHO molecular formulas make up roughly 60% of the total 

number of molecular formulas, followed by 30% CHNO, and 10% CHOS. In contrast, 

the window scan, the CHNO molecular formulas make up 42 %, followed by 26%, then 

CHOS and CHNOS with 16% and 15.6% respectively. This shift in the elemental groups 

suggests that CHNO molecular formulas may be more prevalent in organic aerosols than 

previously reported a full scan of the sample. There is also an increase in the number of 

observed CHOS and CHNOS molecular formulas in the results from the spectral stitching 

approach compared to full scan analysis. Combined these sulfur containing classes make 

up roughly 30% of the identified molecular formulas. Similarly, the nitrogen containing 

formulas make up 57% of the total formulas. Overall the N or S containing molecular 

formulas represent a greater fraction than the CHO formulas.  

4.1.3 Heteroatoms 

The reason for the increase in the N and S containing molecular formulas is due to their 

low intensity, compared to CHO. Perhaps the CHO molecular formulas ionize more 

efficiently with negative ESI than the CHNO, CHNOS, and CHOS molecular formulas. 

Since the instrument limits the total number of ions, those with a higher efficiency may 

out compete those with a lower efficiency even if they have the same mass concentration. 

Many studies have shown the importance of nitrogen containing species in biomass 

combustion organic aerosol (Willoughby et al., 2016, Desyaterik et al., 2013; Lin et al., 

2015), so the presence of a large number of such species in this sample is consistent with 

those observations. In fact, when compared to the elemental group breakdown reported 
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by Willoughby et al. (2016) the results here closely match, despite the difference in the 

age of the ambient biomass combustion. Since the spectral stitching method was required 

to observe these nitrogen containing compounds, it may also suggest that they are less 

abundant. Many of the observed nitrogen species are defined as aromatic based on the 

modified aromaticity index (AImod) (Koch and Dittmar, 2006;2015). Multiple studies 

have suggested that aromatic nitrogen species are an important component of brown 

carbon (BrC) (Desyaterik et al., 2013; Lin et al., 2015). The presence of these compounds 

in long-range transported aerosol suggests a longer lifetime than previously estimated 

(Forrister et al., 2015). The presence of absorbing aerosol species further downwind than 

expected based on the typical degradation rates may be due to the aerosol phase state 

during transport (Shrivastava et al., 2017; Chapter 3). Viscous aerosol has an increased 

resistance to chemical degradation via oxidative processes (Koop et al., 2011; Hinks et 

al., 2016; Lignell et al., 2014; Shiraiwa et al., 2017a), and an aerosol solid phase is more 

likely in cold, dry atmospheres, such as that of the free troposphere. 

4.1.4 Aromaticity 

One of the most interesting differences between the two versions of this sample is the 

increase in the number of detected aromatic compounds. Combustion is known to have 

more aromatic compounds than other types of organic aerosol (Willoughby et al., 2016), 

in part due to the presence of lignin pyrolysis products (Simoneit et al., 1993), so the 

presence of aromatic species is not a surprise. In fact, in previous full scan analysis this 

sample was found to be the most aromatic of the three samples analyzed (Schum et al., 

2018). The increase of aromatic species can be seen in the van Krevelen plot in Figure 
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4.2 which shows the identified molecular species separated by elemental groups. The 

molecular formulas in the low H/C and low O/C region of the plot are considered to be 

aromatic and a large number of these aromatic species contain nitrogen. This suggests an 

importance of aromatic nitrogen in biomass combustion aerosol consistent with 

observations from other studies (Willoughby et al., 2016, Desyaterik et al., 2013; Lin et 

al., 2015). Using the:AImod calculation developed by Koch and Dittmar (2006; 2015) the 

extent of unsaturations can be estimated. The results are shown using a histogram 

containing the molecular formulas classified by AImod and by elemental group (Figure 

4.3). While overall the aromatic and condensed aromatic molecular formulas are still the 

least common groups, they represent a much larger fraction of the total than was 

previously reported in Schum et al. (2018). The improved observation of aromatic 

compounds is important because they may have absorbing characteristics, in turn leading 

to increased aerosol absorption (Chakrabarti et al., 2010; Desyaterik et al., 2013). 

Aromatic compounds are also a significant component of brown carbon (BrC), which is a 

topic of great interest (Chakrabarti et al., 2010; Desyaterik et al., 2013) due to its 

absorption. 
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Figure 4.2. VK and KMD plots for the Precursor data (Left) and the full scan data 
(Right). The increased number of species in the lower left-hand corner of the segmented 
scan VK indicates an increased number of aromatic compounds. Color is determined by 
the double bond equivalents (DBE). 
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Figure 4.3. Histogram for number of detected formulas separated by aromaticity and 
group. Aromaticity was calculated using the AImod calculation. Note the large number of 

condensed aromatic and aromatic species present.
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4.1.5 Oxidation 

Another interesting property of the aromatic species is their molecular average oxidation 

state of carbon as estimated by the OSc equation in Kroll et al. (2011) (Eq. 4.1).  

                                                                                                                Eq. 4.1 

When the OSc is plotted as shown in Figure 4.4, it is clear that on average the aromatic 

and condensed aromatic species in CHO and CHNO species are more oxidized than the 

olefinic or aliphatic species. This level of oxidation may be an example of water-soluble 

soot. Decessari et al. (2002) studied soot oxidation using ozone and found that it became 

water soluble with multiple acidic functional groups (carboxylic acids). The MS/MS 

analysis performed on this sample provides some additional insight into the applicability 

of this concept to this atmospheric aerosol sample. 
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Figure 4.4. Aromaticity separated Average Oxidation State of Carbon vs. Carbon 
Number plot. The top four plots correspond to the CHO molecular formula, while the 
bottom four correspond to CHNO molecular formulas. In both cases, the aromatic 
compounds are generally more oxidized than the species that are classified as olefinic or 
aliphatic. 
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4.2 MS/MS Fragmentation Results  

4.2.1 Background and Reasons for Functional Group Analysis 

MS/MS analysis provides functional group information for common neutral losses. 

Structural information is important for model predictions of organic aerosol chemistry 

and their physico-chemical properties, such as the hygroscopicity (Clegg et al., 2019 in 

review; Reid et al., 2018; Petters et al., 2017), viscosity (Rothfuss and Petters, 2016; Reid 

et al., 2018; Song et al., 2016; Grayson et al., 2017), and light absorbance (Phillips and 

Smith, 2014; 2015). Despite the value of this information, relatively few studies have 

done detailed MS/MS analysis of the functional groups present in atmospheric organic 

matter (LeClair et al., 2012). Most studies focused on functional group information use 

bulk analytical methods such as FT-IR or NMR spectroscopy (Takahama et al., 2013, 

Hawkins and Russell, 2010, Decesari et al., 2000; 2007). Analysis of these complex 

natural mixtures with MS/MS fragmentation is challenging because of the spectral 

complexity at each nominal mass. Thus, it is impossible to get a clean fragmentation 

pattern of any single ion of interest. Additionally, each ion likely represents a mixture of 

several different isomers (Zark et al., 2017). This means that each molecular formula can 

show the loss of more functional groups than are chemically feasible for a given 

structure, thus it is difficult to determine a structure for the exact masses. However, the 

predictive power associated with functional groups led us to analyze PMO-1 using 

collision induced dissociation (CID) for the same windows described in Section 4.1. To 

find matching precursor and fragment ions the precursor formulas were used to create the 

expected fragment ion formula and then this expected formula was checked against the 
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assigned fragment ion formulas. If there was a match, then the precursor formula was 

considered to have demonstrated that loss. 

4.2.2 Observed Neutral Losses and Corresponding Functional Groups 

There are many pathways that lead to neutral losses during ion fragmentation. Most of 

the described pathways are for positive ions (de Hoffman and Stroobant, 2007). While 

these paths may not be directly applicable to negative ions, the general principles are 

similar (Gross, 2017). 

Of the over 9000 molecular formulas identified for PMO-1 using this segmented scan 

method, 7181 distinct molecular formulas were identified with at least one detectable 

neutral loss. The majority of the formulas that did not have a neutral loss had low relative 

abundances. Therefore, the fragment ions were likely below the signal-to-noise threshold. 

For reference, the average intensity of a precursor mass with at least one neutral loss is 

158,660, while the average intensity for a precursor mass without any neutral losses is 

41,945. A histogram showing the studied neutral losses is shown in Figure 4.5. The color 

represents the elemental group (Panel a) and aromaticity (Panel b). The most common 

neutral losses were CO2, C2H4O, and H2O. The loss of CO2 and H2O is consistent with a 

previous study of atmospheric organic matter by LeClair et al. (2012), but the C2H4O is 

different. The identity and reason for the loss of C2H4O will be discussed in Section 

4.2.3. The loss of CO2 represents of a carboxyl group, and the loss of H2O represents 

either a hydroxyl (-OH) group, or a carboxyl group (-COOH) that loses its hydroxyl 

group. The water loss from a carboxylic acid can either occur by simple cleavage of the 

hydroxyl group on the carboxyl group (Jensen et al., 1985; Bowie et al., 1990; Kerwin et 
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al., 1996) or by rearrangement involving two carboxyl groups. In the formation of a five 

or six membered ring H2O is eliminated (Leenheer et al., 2001; Witt et al., 2009). In both 

cases, the neutral loss of H2O is expected to be favored for more aliphatic molecules 

(Kerwin et al., 1996; Leenheer et al., 2001). C2H4O is likely a neutral loss of -C(O)CH3. 

Other commonly observed neutral losses were CO, CH4O, C2O4, and H4O2. The CO 

neutral loss is often related to the carbonyl functional group (C=O), CH4O is likely a 

methoxy group (-OCH3), while C2O4 and H4O2 represent double losses of CO2 and H2O 

respectively. While CO loss is often related to carbonyl functional groups, it can also be 

eliminated from phenols via multistep rearrangements (Gross, 2017). The large number 

of ways that CO can be eliminated makes it difficult to interpret the molecular structure 

(Gross, 2017).
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Figure 4.5. Bar plot showing the observed neutral losses. Colored by elemental group 
(a), and aromaticity index(b) 
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4.2.3 Carbonyl Functional Groups and Relationship to Aging 

The carbonyl groups are of particular interest because they are known to be a major 

functional group in fresh biomass burning aerosol (Hawkins et al., 2010; Takahama et al., 

2013). The abundance of carbonyl neutral losses provides additional confidence in our 

assessment of PMO-1 as a biomass burning sample, and may relate to the lower than 

expected extent of oxidative aging that was the focal point of Chapter 3. As the aerosol 

ages, according to Hawkins and Russell (2010), the number of ketone groups decreases 

and the number of carboxyl groups increases. In their study of biomass burning aerosol 

the carboxylic acid to ketone ratio increased from 0.35 to 1.3 over 4 days of transport 

(Hawkins and Russell, 2010), Similarly, another study was unable to detect ketone 

groups after 5 days of transport (Shaw et al., 2010). In this study, a rough comparison 

based on the number of molecular formulas with a CO2 loss or a C2H4O loss yields a ratio 

of approximately 1. This falls within the reported range for 4 days of transport (Hawkins 

and Russell, 2010), but this sample was transported for approximately 7 days from its 

major emission source before collection at the PMO, potentially indicating decreased rate 

of aerosol aging.  This estimation may be limited because only carbonyls that are 

adjacent to the terminal carbon are considered and the CO2 losses may not represent all 

carboxyl groups present in the structures. However, the observed decreased extent of 

aerosol aging may support the hypothesis presented in Schum et al. (2018) and Chapter 3 

that the samples had lower oxidation which was attributed to a solid-state during 

transport in the free troposphere. 
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4.2.4 Functional Group Analysis 

4.2.4.1 Data Visualization with Principal Components Analysis 

Due to the extent of available data from the large range of precursor and fragment ions 

that were analyzed for this sample it became necessary to use different data visualization 

methods than typically used. A major goal of this analysis was to provide insight on the 

general molecular characteristics (oxidation and aromaticity) of the molecular formulas 

that have certain neutral losses. Also of interest are the relationships between different 

functional groups. A long-standing statistical method for investigating the correlations 

between different variables is principal components analysis (PCA). It has been used in 

the past to investigate the correlation between different ambient samples (Zhao, 2014; 

Wozniak et al., 2014). Due to the large number of data points available within this data 

set we chose to use PCA to find correlations between the different types of neutral losses 

observed for the molecular formulas.  

4.2.4.2 Carbon, Hydrogen, and Oxygen Containing Neutral Losses 

4.2.4.2.1 PC1 vs. PC2 

The first set of neutral losses investigated were the C, H, and O based neutral losses, 

including; CO2, C2O4, C3O6, H2O, H4O2, H6O3, CH2O3, CO, C2H4O, CH4O, C2H4O3, and 

CH6O2. These losses represent several of the most commonly observed neutral losses. 

The scree plot shows the amount of variance explained by each principal component (PC) 

and is shown in Figure 4.6. PC1 always accounts for the most variance, followed by PC2, 

etc. This plot indicates how many of the PCs are necessary to account for a majority of 

the variance in a sample. In this case, PC1 and PC2 would be enough to account for 
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49.7% of the variance, although the inclusion of PC3 and PC4 provides an additional 9.6 

and 8.7%, respectively.  

 

 

Figure 4.6. Scree plot demonstrating the variances accounted for by each PC for the PCA 
analysis of molecular species showing neutral losses of CO2, C2O4, C3O6, H2O, H4O2, 
H6O3, CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2. The x axis is the PC number (PC1, 
PC2, etc.). 
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First, we look at the PCA biplot for PC1 and PC2 (Figure 4.7). The points on the plot 

represent a scatter plot of the PC values for the different molecular formulas in the 

sample, some are darker than others because there are many overlapped data points in the 

exact same location of the plot. The arrows coming from the center of the plot show the 

specific loadings of the variables used for the PCA analysis, in this case they are the 

observations of neutral losses. In general, the longer an arrow is, the greater its 

contribution to the variance of the sample. The direction of the arrow indicates which PC 

the variable is most correlated with. The angle between points is also important, if two 

arrows are in the same direction that means that they are correlated, if the arrows are at 

90˚ from each other, they are not correlated, and if the arrows are at 180˚ they are 

negatively correlated. The arrows in Figure 4.7 indicate that CO, CO2, and H2O are 

correlated with each other, but they are not correlated with CH6O2 using PC1 and PC2. A 

general correlation also exists between C3O6, H4O2, C2H4O3, and H6O3. In general, most 

of the losses are somewhat correlated using these two PCs, with the exception of the 

CH6O2 loss and the losses 90˚ from that loss.  To interpret and provide molecular 

composition context to these results, the scatter plots of the PC values are shown with an 

indication of whether a molecular formula showed a particular neutral loss. In addition, 

some metrics of the chemical compositions, including: DBE, the number of oxygen 

atoms, and the number of carbon atoms are shown (Figure 4.8). The scatter plot points 

are jittered to avoid the over-plotting that was observed in Figure 4.7.  
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Figure 4.7. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of CO2, 
C2O4, C3O6, H2O, H4O2, H6O3, CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2. Most are 
correlated somewhat, except CH6O2 with the neutral losses of CO, CO2, H2O, and 
C2H4O. 
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Figure 4.8. Colored PC plots PC1 vs. PC2. Panels a-l show the molecular species with 
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the 
molecular species with a CO2 loss in red, while the species that did not have a CO2 loss, 
but did have one of the other losses are shown in gray. Panels m-o show the same plots, 
only colored with oxygen number (m), DBE (n), and carbon number (o). All of these 
plots use the same data as Figure 4.7, but to avoid the overlapping that occurred in that 
plot, the data points have been jittered, which allows the points that were overlapped to 
be seen. 
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Thus, the variation within a point can be observed. From the composition focused plots 

on the right side, a separation between the species with high and low oxygen, DBE, and 

carbon is observed. Matching these points to the regions where a specific type of loss is 

observed (red color on the plots) allows us to get a general idea of the characteristics 

associated with these neutral losses. The upper edge of the PC scatter plot contains the 

highest DBE values, only the molecular formulas with CO2, H2O, CO, and C2H4O losses 

are present on this lower edge, suggesting these functional groups are more prevalent on 

aromatic formulas. The loss of CO is particularly frequent in the low oxygen and high 

DBE region of the plot. This suggests that the carbonyl losses are more prevalent from 

more aromatic and less oxidized species. Additionally, the similarity in PCA distribution 

between the CO and C2H4O losses suggests that they are both representative of a similar 

functional group, likely containing a carbonyl. The distribution of CO losses differs from 

the CH4O (methoxy) based losses. The losses of CH4O are shifted to the lower DBE and 

higher oxygen regions of the plot. This is especially true when the CH4O loss happens in 

conjunction with a CO2 or H2O neutral loss (C2H4O3 and CH6O2 respectively). This 

suggests that the methoxy groups are more likely to occur from species that are more 

aliphatic and oxidized, relative to those showing a CO loss. This information is valuable 

because it provides a basis for assumptions about the most likely functional groups in an 

organic aerosol sample. For example, a highly oxidized and somewhat aliphatic sample, 

could be assumed to contain a higher number of methoxy functional groups rather than 

carbonyl functional groups. There are some additional observed differences for the CO2 
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and H2O based losses, but they are more clear in the plots with PC1 and PC3, which are 

described in the following paragraph. 

4.2.4.2.2 PC1 vs. PC3 

The PCA biplot with PC1 and PC3 is shown in Figure 4.9. It does not show much 

separation between the majority of the loss types, but the multiple CO2 and H2O losses do 

get separated to some extent. The multiple CO2 losses are on the top half of the plot space 

while the multiple H2O losses are on the bottom. As in the previous biplot, the molecular 

formula with single CO2 and single H2O losses are well correlated with each other, which 

indicates the molecular formulas with these losses are similar. This supports the idea that 

most of the H2O losses observed here are likely due to losses from carboxylic acids. This 

is consistent with the increased presences of carboxyl groups with increasing oxidation 

during transport (Hawkins and Russell et al., 2010). Even though this sample was not as 

strongly oxidized as may be expected based on its transport time (Schum et al., 2018; 

Chapter 3), it is likely that some aging took place. To get a better idea of the differences 

between the molecular formulas showing multiple CO2 vs. multiple H2O we can look at 

Figure 4.10, which applies the same concept as described for Figure 4.8 with PC1 and 

PC3. Here a much clearer distinction between molecular formulas with higher DBE and 

oxygen is shown. Additionally, some separation between molecular formulas with higher 

and lower carbon numbers are observed. The lower half of the plot contains the 

molecular formulas with the highest oxygen, DBE, and carbon (Panels m-o). This is the 

same region where the CO2 losses are most common, indicating that CO2 losses are 

favorable for molecular formulas with an increased aromaticity and extent of oxidation. 
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In contrast, most of the H2O losses are in the lower half of the plot, indicating the 

molecular formulas with lower DBE and oxidation. These observations are consistent 

with the two different ways that H2O can be eliminated from a carboxylic acid, and 

suggest that a more aliphatic molecule can more easily lose the hydroxyl from a 

carboxylic acid. The loss of CO2 is preferential as the molecule becomes more aromatic. 

The likely reason for this is that the bond from an aromatic ring to the carboxyl group is 

somewhat easy to break.  

 

Figure 4.9. PC1 vs. PC3 PCA biplot for molecular species with a neutral loss of CO2, 
C2O4, C3O6, H2O, H4O2, H6O3, CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2. 
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Figure 4.10. Colored PC plots PC1 vs. PC3. Panels a-l show the molecular species with 
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the 
molecular species with a CO2 loss in red, while the species that did not have a CO2 loss, 
but did have one of the other losses are shown in gray. Panels m-o show the same plots, 
only colored with oxygen number (m), DBE (n), and carbon number (o). All of these 
plots use the same data as Figure 4.9, but to avoid the overlapping that occurred in that 
plot, the data points have been jittered, which allows the points that were overlapped to 
be seen.
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4.2.4.2.3 Average Relative Abundance of Fragment Ion Comparison 

This trend is illustrated in Figure 4.11 with a comparison of the relative abundance (RA) 

of the fragment ions that are due to the H2O and CO2 losses. Only the precursor ions with 

both losses were considered in this comparison. It should be noted that the results from 

this figure are not quantitative as there are many aspects that govern the RA, such as the 

number of molecular formulas containing the functional group, the strength of the bond 

that was broken, and the stability of the fragment ion (McLafferty and Turecek, 1993). 

So, this comparison of RA is only intended to provide general themes about the 

conditions leading to a preference for a certain kind of loss. In the top panel, the average 

RA for the fragment ions for precursor molecular formulas within each of the aromaticity 

classification are shown. As described above, in aliphatic species the H2O loss fragment 

ion has a higher RA than the CO2 loss fragment ion, but as the aromaticity increase, the 

CO2 loss fragment ion become more abundant. This increasing importance of the CO2 

loss is shown more clearly using the ratio of the H2O loss fragment ion RA divided by the 

CO2 loss fragment ion RA (bottom panel). While it is likely that when multiple H2O 

losses were observed (H4O2, H3O6), some of them are from actual alcohols, the similarity 

between the precursor peaks showing single H2O and CO2 loss suggests that the majority 

of the H2O losses observed in this sample were due to a loss of a hydroxyl from a 

carboxyl group. 
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Figure 4.11. Comparing average RA trends for molecular species of different aromaticity 
with CO2 or H2O losses. The top panel shows the average RA of the CO2 or H2O loss 
fragment ion for precursor ions within each aromaticity classification. The bottom panel 
shows the ratio of the average RA shown in the top panel. The ratio is calculated by 
dividing the RA of the CO2 fragment by the RA of the H2O fragment. The tallest bar in 
the bottom panel demonstrates that the CO2 fragment ion is on average ~ 520% larger 
than the H2O fragment ion.
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4.2.5 Comparison to Storm Peak Lab Aerosol 

The results for PMO-1 were then compared to the MS/MS results for a sample collected 

at the Storm Peak Lab (SPL). In this case there was much less correlation between the 

molecular formulas that show CO2 and H2O losses (Figure 4.12). This suggests that the 

molecules with these losses were somewhat different from each other, which may be due 

to the SPL aerosol having more hydroxyl functional groups. The aerosol collected at SPL 

likely had very little aging and different sources, and transport conditions. The SPL 

aerosol represents a relatively typical boundary layer aerosol with an influence of 

biogenic SOA collected at a rural site (Mazzoleni et al., 2012) and thus it doesn’t have 

much influence from biomass burning. The observed differences between these two 

samples suggests that different ratios of functional groups may be present in different 

types of aerosol, highlighting the need for detailed molecular characterization of 

representative aerosol from many locations and transport paths.
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Figure 4.12. PC1 vs. PC2 PCA plots for molecular species showing the neutral losses of 
CO2, C2O4, C3O6, H2O, H4O2, H6O3, CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2 in an 
aerosol sample collected at the Storm Peak Laboratory. Panels a and b show the 
molecular species with a CO2 (a) or H2O (b) loss in red, while molecular species that 
don’t show that loss are in blue. Panel c shows the plot colored by DBE. Panel d shows 
the PCA biplot for the species showing the selected losses in the sample. Panels a-c are 
jittered to better demonstrate the complexity within each point in Panel d. 
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4.2.6 Analysis of Species with Multiple CO2 and H2O Neutral Losses 

4.2.6.1 PC1 vs. PC2 

To do some additional analysis of the CO2 and H2O losses, another PCA analysis was 

done with only the single, double, and triple CO2 and H2O losses. The PCA biplot with 

PC1 and PC2 is shown in Figure 4.13. All three of the CO2 losses are well correlated with 

each other, but the H2O losses are somewhat less correlated. The single H2O loss is 

correlated with the CO2 losses, while the H6O3 loss is well separated from the other losses 

and it is only somewhat correlated with the H4O2 loss. This suggests that the molecular 

formulas with multiple H2O losses are not very similar to the molecular formulas with 

CO2 losses. This may imply that the molecular formulas with multiple H2O losses are 

alcohols. The loss type PCA plots for these six loses are shown in Figure 4.14. As 

observed in Figure 4.13, the H6O3 losses are separated from the other observed losses, 

although there are a few molecular formulas that show other losses in addition to the 

triple water loss. For this PCA plot, the CO2 class losses are generally shifted towards the 

left side of the plot, while the H2O class losses tended to shift down, especially as more 

H2O losses are observed. The observed shift towards the left for the CO2 class losses 

correlates with an increase in the number of oxygen and DBE, which is consistent with 

the previous observations. Meanwhile, the H2O class losses correlate with a decreased 

DBE and number of oxygen atoms. 
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Figure 4.13. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of CO2, 
C2O4, C3O6, H2O, H4O2, or H6O3. 



 

 

142 

 
F

ig
u

re
 4

.1
4.

 C
ol

or
ed

 P
C

 p
lo

ts
 P

C
1 

vs
. P

C
2.

 P
an

el
s 

a-
f 

sh
ow

 th
e 

m
ol

ec
ul

ar
 s

pe
ci

es
 w

it
h 

th
e 

ne
ut

ra
l l

os
s 

(r
ed

) 
an

d 
w

it
ho

ut
 th

e 
ne

ut
ra

l l
os

s 
(g

ra
y)

. F
or

 e
xa

m
pl

e,
 P

an
el

 a
 s

ho
w

s 
th

e 
m

ol
ec

ul
ar

 s
pe

ci
es

 w
it

h 
a 

C
O

2 
lo

ss
 in

 r
ed

, w
hi

le
 th

e 
sp

ec
ie

s 
th

at
 d

id
 n

ot
 

ha
ve

 a
 C

O
2 

lo
ss

, b
ut

 d
id

 h
av

e 
on

e 
of

 th
e 

ot
he

r 
lo

ss
es

 a
re

 s
ho

w
n 

in
 g

ra
y.

 P
an

el
s 

g-
i s

ho
w

 th
e 

sa
m

e 
pl

ot
s,

 o
nl

y 
co

lo
re

d 
w

ith
 

ox
yg

en
 n

um
be

r 
(g

),
 D

B
E

 (
h)

, a
nd

 c
ar

bo
n 

nu
m

be
r 

(i
).

 A
ll

 o
f 

th
es

e 
pl

ot
s 

us
e 

th
e 

sa
m

e 
da

ta
 a

s 
Fi

gu
re

 4
.1

3,
 b

ut
 to

 a
vo

id
 th

e 
ov

er
la

pp
in

g 
th

at
 o

cc
ur

re
d 

in
 th

at
 p

lo
t, 

th
e 

da
ta

 p
oi

nt
s 

ha
ve

 b
ee

n 
ji

tt
er

ed
, w

hi
ch

 r
ev

ea
ls

 th
e 

co
m

pl
ex

it
y 

w
it

hi
n 

ea
ch

 p
oi

nt
 in

 
F

ig
ur

e 
4.

13
.



 

143 

One key point of interest in these plots is the properties of the molecular formulas with 

multiple CO2 losses and triple H2O loss. These losses from the same molecular formula 

provide evidence for an isomeric mixture as suggested by Zark et al. (2017). They may 

also highlight the ability of aliphatic molecular formulas to lose H2O via the cleavage of 

the hydroxyl group from a carboxyl group (Jensen et al., 1985; Bowie et al., 1990; 

Kerwin et al., 1996). These observations may suggest a direct bond cleavage (Jensen et 

al., 1985; Bowie et al., 1990; Kerwin et al., 1996) instead of the indirect ring forming 

bond cleavage (Leenheer et al., 2001; Witt et al., 2009). This is further supported by the 

fact that the amount of oxygen present on these molecular formulas is on average 

insufficient to contain the six carboxyl groups required for the ring forming pathway. To 

further investigate the compositional properties of those molecular formulas with both a 

triple H2O loss and one of the CO2 based losses, a van Krevelen (VK) plot showing was 

made to show the common molecular formulas (Figure 4.15a). The average O/C and H/C 

values are represented by triangles in the plot (Figure 4.15a). Interestingly, the shift in 

composition between molecular formulas with a single CO2 loss vs. those that showed 

three CO2 losses was almost entirely dependent on the H/C value, with little influence 

from the O/C value. For comparison, the same type of VK plot with the molecular 

formulas with CO2 losses without a loss of H6O3 is shown in Figure 4.15b. There a strong 

dependence on both H/C and O/C for the molecular formulas with multiple CO2 losses. 

The observations from these plots suggest that as the molecular formula composition 

shifts toward the more oxidized and aromatic species, the likelihood of observing 

multiple CO2 losses increases. 
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Figure 4.15. VK plots demonstrating formulas that exhibit H6O3 loss and one of the CO2 
based loses (a), and all other CO2 based losses (b). The large triangles represent the 
average H/C and O/C ratios for the molecular formulas demonstrating CO2 (cyan), C2O4 
(gold), or C3O6 (blue) neutral losses. 
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This is highlighted in Figure 4.16 which shows the comparison of CO2 and C3O6 loss 

fragment peak intensities analogous to Figure 4.11. The CO2 losses are always the more 

abundant fragment ion but the relative importance of the C3O6 loss begins to increase as 

the aromaticity increases. This supports the observations from the VK plots in Figure 

4.15. A similar plot, with CO2 and C2O4 is shown in Figure 4.17. Interestingly, the 

pattern of an increasing RA with increasing aromaticity is not observed, the reason for 

this is unclear at this time.  
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Figure 4.16. Comparing average RA trends for molecular species of different aromaticity 
with CO2 or C3O6 losses. The top panel shows the average RA of the CO2 (red) or C3O6 
(blue) loss fragment ion for precursor ions within each aromaticity classification. The 
bottom panel shows the ratio of the average RA shown in the top panel. The ratio is 
calculated by dividing the RA of the CO2 fragment by the RA of the C3O6 fragment. The 
taller the bar, the larger the RA of CO2 fragment ion is relative to the C3O6 fragment ion.
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Figure 4.17. Comparing average RA trends for molecular species of different aromaticity 
with CO2 or C2O4 losses. The top panel shows the average RA of the CO2 (red) or C2O4 
(blue) loss fragment ion for precursor ions within each aromaticity classification. The 
bottom panel shows the ratio of the average RA shown in the top panel. The ratio is 
calculated by dividing the RA of the CO2 fragment by the RA of the C2O4 fragment. The 
taller the bar, the larger the RA of CO2 fragment ion is relative to the C2O4 fragment ion.
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4.2.6.2 Van Krevelen Analysis of Species with CO2 and H2O Loss 

A VK plot for all of the molecular formulas with at least one of the six CO2 or H2O based 

losses are shown in Figure 4.18. Since the plots show all of the molecular formulas with 

each of the losses, many of the molecular formulas show up in several of the plots (e.g. 

H2O and CO2). The molecular formulas with the loss are in color (scaled by DBE) and 

the other molecular formulas with at least one of the other losses are in gray. Here a clear 

difference between the molecular formulas with multiple CO2 losses and those with 

multiple H2O losses is observed. As more CO2 losses are observed, the molecular 

formulas shift down and to the right, indicating an increased aromaticity and oxidation. In 

contrast, the H2O losses shift up and to the right, indicating a similar increase in 

oxidation, but a decrease in the aromaticity. These observations are consistent with what 

has been previously described in Section 4.2.4.2.3.
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4.2.7 Nitrogen Containing Neutral Losses 

In addition to the C, H, and O based losses, the neutral losses with nitrogen and sulfur 

were also investigated. Since the majority of the identified molecular formulas in this 

sample are nitrogen containing, it is expected that many of the observed nitrogen species 

contain oxygenated functional groups such as nitrate or nitro. Furthermore, oxygenated 

nitrogen groups are expected because negative ESI ionizes acidic compounds more 

efficiently (Cech and Enke, 2001). The nitrogen containing neutral losses investigated 

were: HNO2 (nitro functional group), HNO3 (nitrate functional group), CH2NO4 (nitro + 

H2O), CHNO5 (nitro + CO2), and NH3 (amine). Despite the expectation of low NH3, it 

was the second most common nitrogen-based loss (Figure 4.5), the reason for this is 

explored in the following paragraphs.  

4.2.7.1 PC1 vs. PC2 
To interpret the observations PCA was performed on the molecular formulas with one of 

the five nitrogen containing neutral losses (Figure 4.19). From this plot of PC1 and PC2 it 

is clear that the molecular formulas with an NH3 losses are not correlated with any of the 

nitrate losses and are almost negatively correlated with the loss of HNO2. The loss and 

composition colored plot of PC1 and PC2 (Figure 4.20) does not provide much additional 

information about the characteristics of the molecular formulas with the loss of NH3 

relative to the nitrate losses. No clear trend or difference in the number of oxygen, 

carbon, or DBE was observed between the molecular formulas with the different losses. 

Molecular formulas with amine groups should not ionize well in the negative ion mode, 

so it is expected that some other acidic functional group is also present for ionization.  
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Figure 4.19. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of HNO2, 
HNO3, CHNO5, H3NO4, or NH3. 
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Figure 4.20. Colored PC plots PC1 vs. PC2. Panels a-e show the molecular species with 
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the 
molecular species with a CO2 loss in red, while the species that did not have a CO2 loss, 
but did have one of the other losses are shown in gray. Panels f-h show the same plots, 
only colored with oxygen number (g), DBE (h), and carbon number (i). All of these plots 
use the same data as Figure 4.19, but to avoid the overlapping that occurred in that plot, 
the data points have been jittered, which reveals the complexity within each point in 
Figure 4.19.
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4.2.8 Nitrogen Containing Neutral Losses with C, H, O Neutral Losses 

4.2.8.1 PC1 vs. PC2: Amine Investigation 

To investigate this, another PCA with the nitrogen losses was performed including the 

losses described in Section 4.2.4.2. The analysis was restricted to the CHNO group of 

molecular formulas because if all groups are included, the major separation is due to the 

heteroatoms and not the neutral losses (Figure 4.21). This is also why CHNOS was not 

included in this portion of the analysis, because as shown in Figure 4.21, they correlate 

much more strongly with the CHOS group than with the CHNO group.  

 
Figure 4.21. Jittered PCA plot for PC1 vs. PC2 for molecular species with a neutral loss 
of HNO2, HNO3, CHNO5, H3NO4, NH3, CO2, C2O4, C3O6, H2O, H4O2, H6O3, CH2O3, 
CO, C2H4O, CH4O, C2H4O3, or CH6O2. Color is set by elemental group CHO (green), 
CHNO (blue), CHOS (red), and CHNOS (purple).
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The PCA biplot for the CHNO nitrogen-containing losses is given in Figure 4.22. The 

plot indicates that although the loss of NH3 is not tightly correlated with other nitrogen 

losses, it is somewhat correlated with H2O, CO2, CO, and C2H4O losses. This suggests 

that if a molecular formula has amine group, it likely also has a carboxyl, hydroxyl, or 

carbonyl group if it is detected as a negative ion. This likely counteracts the basicity of 

the amine group and allows the molecule to be ionized.  

 

 
Figure 4.22. PC1 vs. PC2 PCA biplot for only CHNO molecular species with a neutral 
loss of HNO2, HNO3, CHNO5, H3NO4, NH3, CO2, C2O4, C3O6, H2O, H4O2, H6O3, 
CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2. 
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Of the 2136 molecular formulas that show a loss of NH3, 1948 of them have at least one 

additional loss, with CO2, H2O, CO, and C2H4O making up 1805 of these. There are 187 

molecular formulas with only a loss of NH3, but they are all low intensity peaks, 

suggesting that the fragments for the other losses were likely below the detection limit. 

The favorability of fragmentation at a primary amine (Gross, 2017) may lead to the NH3 

fragment ion being above the detection limit. The common combination of NH3 and CO2 

losses suggests the presence of amino acids in the organic aerosol which is consistent 

with previous studies (Ge et al., 2011) including aerosol from biomass burning (Mace et 

al., 2003; Ge et al., 2011). This PCA does an improved job of showing the types of 

molecular formulas with the loss of NH3 relative to those with an oxygenated nitrogen 

loss (Figure 4.23). The molecular formulas with an NH3 loss are shifted toward the upper 

edge of the plot area, where the H2O, CO2, CO, and C2H4O losses are predominately 

observed. This provides more support for the correlations indicated in Figure 4.22. This 

upper edge tends to have lower oxygen and higher DBE than the regions below it, which 

suggests the molecular formulas that are characteristic of NH3 losses are more aromatic 

and less oxidized than molecular formulas with the loss of a nitro or nitrate group. 
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Figure 4.23. Colored PC plots PC1 vs. PC2. Panels a-q show the molecular species with 
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the 
molecular species with a CO2 loss in red, while the species that did not have a CO2 loss, 
but did have one of the other losses are shown in gray. Panels r-t show the same plots, 
only colored with oxygen number (r), DBE (s), and carbon number (t). All of these plots 
use the same data as Figure 4.22, but to avoid the overlapping that occurred in that plot, 
the data points have been jittered, which reveals the complexity within each point in 
Figure 4.22.
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4.2.8.2 PC1 vs. PC2 Oxygenated Nitrogen Losses 

The oxygenated nitrogen losses tended to shift towards the bottom left of the plot which 

generally contains molecular formulas with higher oxygen and lower DBE. When the RA 

of the NH3 fragment ions is compared to the RA of the HNO2 fragment ions (Figure 

4.24), the NH3 losses are more abundant in formulas that are more aliphatic. This 

suggests that for more aliphatic molecules the presence of an amine group is preferable to 

a nitro group, but as the aromaticity increases, the presence of a nitro group becomes 

more favorable. Nitro groups are known to be present in aromatic aerosol produced in the 

presence of NOx so this relationship is not unexpected (Grosjean, 1992). Furthermore, 

studies of the bond between aromatic ring and the nitro group have suggested it is 

relatively weak, making it a likely fragmentation point (Rice et al., 2002). 
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The PCA plots in Figure 4.23 do not show much of a difference between the molecular 

formulas with an HNO2 or HNO3 loss. However, the RA trends plot (Figure 4.25) 

indicates that the loss of HNO2 becomes more important as the aromaticity of the base 

molecule increases. The results suggest that either a nitro group is more common in more 

aromatic molecular formulas, or that a nitro group is preferentially cleaved relative to a 

nitrate group in more aromatic molecular formulas. The first option is more likely 

because nitroaromatic molecules are well known components of biomass burning (Iinuma 

et al., 2010; Kahnt et al., 2013). Additionally, nitrate groups are expected to be present in 

aliphatic compounds, while nitro groups are present in aromatic groups.
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The prevalence of the nitro groups supports a biomass burning influenced aerosol 

(Iinuma et al. 2010; Kahnt et al., 2013). The losses of H3NO4 (HNO3 + H2O) and CHNO5 

(HNO3 + CO2) highlight the previously observed difference between molecular formulas 

with a CO2 loss and an H2O loss. The VK plot with these two types of losses (Figure 

4.26) demonstrates that molecular formulas showing the loss of CHNO5 are distributed in 

the high O/C and lower H/C region of the plot, whereas the H3NO4 losses are 

concentrated in the high O/C and higher H/C region. The difference between these 

regions can be characterized as more aromatic for the CHNO5 losses and less aromatic 

for the H3NO4 losses, which is consistent with what was previously observed from 

comparing the multi-H2O losses to multi-CO2 losses. This suggests that muli-functional 

compounds showing concurrent functional group losses are more aromatic when CO2 is 

involved and more aliphatic when H2O is.
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Figure 4.26. VK plots showing the molecular formulas that demonstrate each type of 
neutral loss (color) specified by the plot facet title (HNO2, etc.)  and all formulas that 
show at least one of these loss types (gray), but not the one the plot is labeled for. The 
color is determined by the DBE value for the molecular formula. 
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4.2.8.3  Interpretation of Nitro Groups 

Overall, the nitro functional groups are the most abundant type of nitrogen containing 

loss. This is consistent with the composition of biomass burning aerosol (Iinuma et al., 

2010; Kahnt et al., 2013). Many of the nitro containing molecular formulas are aromatic, 

indicating that they are likely light absorbing (Desyaterik et al., 2013; Lin et al., 2015). 

Some of the possible structures of the selected set of molecular formulas with nitro losses 

are shown in Figure 4.27. The molecular formulas are C7H7NO4, C6H5NO5, and 

C7H6N2O4. The predicted structures are supported by the secondary losses observed in 

addition to the nitro loss. For example, C7H7NO4 has a methoxy group in its proposed 

structure and in addition a methoxy loss is observed for that molecular formula. In 

contrast, the proposed structure of C6H5NO5 does not contain a methoxy group, and no 

methoxy group is observed, supporting this hypothesized structure. Meanwhile, the 

proposed structure for C7H6N2O4 does not include any OH groups, which is consistent 

with the lack of an observed water loss for this molecular formula. All of these structures 

contain aromatic rings, making it likely that they are absorbing species (Desyaterik et al., 

2013; Lin et al., 2015). It is possible that the nitro groups are also contributing to the 

absorbance of these species as well. Recent studies have also suggested that charge 

transfer may be responsible for some of the absorbance observed in brown carbon aerosol 

(Philips and Smith, 2014; 2015), due to the ability of aldehyde, ketone, alcohol, and 

carboxylic acid groups to undergo charge transfer interactions, increasing the absorbance 

at higher wavelengths in particular. While those studies do not mention nitro groups, a 

study by Nagakura (1955) demonstrated intramural charge transfer in molecules with 
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nitro groups, and suggested that it may be possible for intermural molecular interactions 

as well. Other studies have highlighted that nitro-phenols in particular are important for 

the observed absorbance in brown carbon aerosol (Desyaterik et al., 2013; Lin et al., 

2015), but the impact of the nitro group itself was not discussed. While this idea is 

speculative at this point, an increased absorbance due to the nitro groups in organic 

aerosol components could be an important factor to consider when evaluating the 

absorption potential of brown carbon. The results from this MS/MS work indicate a high 

frequency of nitro groups which may contribute to an enhanced absorption which 

warrants further investigation, including theoretical studies focused on their specific 

impact. 

 

 

     
Figure 4.27. Proposed structures for some nitro aromatic formulas observed in PMO-1. 
Panel a shows C7H7NO4, Panel b shows C6H5NO5, and Panel c shows C7H6N2O4
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4.2.9 Sulfur Containing Neutral Losses 

Neutral losses of SO3, SO4, H2SO4, CSO5, and SH2 were also examined. The loss of SO3 

was the most commonly observed, followed by SO4 and SH2. Similar to the NH3 loss, the 

observation of a reduced sulfur functional group is somewhat surprising. When the 

molecular formulas with sulfur losses were compared using PCA, the sulfate neutral 

losses were all somewhat correlated, but the SH2 loss was not in the PC1 and PC2 biplot 

(Figure 4.28). The PCA plots provide some insight into the general characteristics of the 

specific molecular formulas with the loss of SH2 relative to the ones with sulfate losses. 

Specifically, the SH2 loses are all located in the lower half of the PCA plots, which is a 

region that contains relatively low numbers of oxygen and an increased DBE value 

(Figure 4.29), suggesting that thiol groups are more likely to be present on less 

oxygenated and aromatic molecules.  

 
 
Figure 4.28. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of SO3, 
SO4, H2SO4, CSO5, or SH2. 
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Figure 4.29. Colored PC plots PC1 vs. PC2. Panels a-e show the molecular species with 
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the 
molecular species with a CO2 loss in red, while the species that did not have a CO2 loss, 
but did have one of the other losses are shown in gray. Panels f-h show the same plots, 
only colored with oxygen number (r), DBE (s), and carbon number (t). All of these plots 
use the same data as Figure 4.28, but to avoid the overlapping that occurred in that plot, 
the data points have been jittered, which reveals the complexity within each point in 
Figure 4.28.
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4.2.10 Sulfur Containing Neutral Losses with C, H, O Neutral Losses 

However, there is still the question of how the SH2 containing molecular formulas were 

ionized, so the sulfur-based losses were added to the C, H, and O based losses and PCA 

was done again for the CHOS and CHNOS molecular formulas (Figure 4.30). In this case 

the functional group correlations were less clear, but the SH2 loss was most correlated 

with C2H4O, CO, CO2, and SO3 losses. Only one sulfur atom was allowed when the 

molecular formula assignment was done, so any overlap between an SO3 and SH2 loss 

would suggest isomerization. The correlation with C2H4O, CO, and CO2 suggests that 

SH2 is related to carbonyl and carboxyl groups to some extent, which may explain how 

they are ionized. The relative low number of detected sulfur-containing species and 

subsequently, their fragments is likely due to the low abundance of these molecular 

formulas relative to the CHO and CHNO molecular formulas obscures the conclusions. 
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Figure 4.30. PC1 vs. PC2 PCA biplot for only CHOS and CHNOS molecular species 
with a neutral loss of SO3, SO4, H2SO4, CSO5, SH2, CO2, C2O4, C3O6, H2O, H4O2, H6O3, 
CH2O3, CO, C2H4O, CH4O, C2H4O3, or CH6O2. 
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4.2.11 Van Krevelen Analysis of Species with Sulfur Containing Neutral Losses 

The VK plot of the sulfur losses (Figure 4.31) provides some additional information 

about the general composition of the molecular formulas with the sulfur containing 

losses. SO3 is common across the range of sulfur species, but SO4 is shifted down and to 

the right, as is CSO5 (SO3 + CO2). This suggests a preference for more oxygenated and 

aromatic molecules. H2SO4 (SO3 + H2O) shifts toward the upper right, suggesting a 

similar dependence on oxygenation, but also aliphatic species. In contrast, the molecular 

formulas with SH2 loss are shifted slightly to the left, indicating that it is more prevalent 

on less oxygenated species, consistent with previous observations. The comparison of the 

RA for the fragment ions for the SH2 and SO3 losses suggests that SH2 is more favored as 

the aromaticity increases. Since the molecular formulas are expected to be isomers of 

each other due to the sulfur limitation, this may suggest that the reduced thiol group 

becomes more common for more aromatic compounds. This could be a valuable piece of 

information for predictions involving sulfur containing species in aerosol because the 

hygroscopicity of the thiol group will be different than a sulfate group. 
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Figure 4.31. VK plots showing the molecular formulas that demonstrate each type of 
neutral loss (color) specified by the plot facet title (SO3, etc.)  and all formulas that show 
at least one of these loss types (gray), but not the one the plot is labeled for. The color is 
determined by the DBE value for the molecular formula. 
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4.2.12 Proposed Structures for Selected Molecular Formulas 

One of the major goals of MS/MS analysis is to determine the molecular structures for 

the species of interest. In this case, it is difficult to determine any unequivocal molecular 

structures because each mass is representative of multiple isomers. However, some 

potential structures can be suggested for molecules that have specific loss types, such as 

H6O3 and C3O6, because they require the loss of three individual H2O or CO2, making 

their structures somewhat easier to predict because more of the functional groups are 

constrained. To demonstrate some potential molecular structures and their general 

fragmentation pattern we have provided potential structures of two molecular formulas 

that show C3O6 loss are provided (Figure 4.32-4.33). C13H16O7, is one of the most 

abundant molecular formulas with 3 CO2 losses in it and it has a DBE value of 6. Due to 

the 3 DBE for the 3 carboxylic acids, an aromatic ring is unlikely because it would 

require 4 DBE. The hypothetical structure has 3 carboxylic acids that can be lost as 

shown in the series of structures (Figure 4.32). Another molecular formula with the 3 

CO2 losses is C23H14O11, with 17 DBE. This example has one of the highest DBE values. 

A proposed structure for this compound is presented in Figure 4.33. This structure has 

four conjugated benzene rings making it a condensed aromatic molecule. The conjugated 

rings are similar to what would be expected for soot, but the oxygenated functional 

groups allow the molecule to be water soluble and provide the polarity necessary to be 

ionized by negative mode electrospray ionization. This type of structure is consistent with 

what was theorized by Decesari et al. (2002) for the oxidation of soot via atmospheric 

processes until it was water soluble. This type of structure would contribute to brown 
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carbon (BrC) due to its probable light absorption. Since BrC is expected to be a major 

component of this sample due to its wildfire influence the presence of such a molecular 

structure seems reasonable. The aldehydes and carboxylic acids could also potentially 

contribute to charge transfer based absorbance as was described by Phillips and Smith 

(2014; 2015). 

 

Figure 4.32. Proposed structure and fragmentation of C
13

H
16

O
7
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5 MFAssignR 

5.1 Background 

The ultimate goal ultrahigh resolution mass spectrometry is to obtain exact mass 

measurements for accurate molecular formula assignment. This type of identification is 

very powerful for an improved understanding of the composition of natural organic 

matter. However, there are several factors that can make it difficult to obtain an accurate 

molecular formula assignment. One of the biggest factors is that multiple molecular 

formulas can be assigned to the same measured mass. This necessitates the use of quality 

assurance parameters that can choose the correct molecular formula out of many potential 

options. There are two main ways that molecular formulas can be assigned, database 

matching or calculation. Database matching is when a measured mass it matched against 

a database containing many molecular formulas, and whichever ones match the mass 

within an error tolerance are accepted pending additional QA. This method is generally 

fast, but is limited to only the molecular formulas in the database and no database can 

realistically be completely comprehensive. The calculation methods are based on using 

the exact masses of atoms to calculate a molecular formula that has a theoretical mass 

within the error tolerance for the measured mass. This brute force method is more 

flexible than database matching, but can be slower to run. There are several methods 

available to do molecular formula assignment, some of which are open source 

(UltraMassExplorer, Formularity) and others that are commercial (Composer, PetroOrg). 

Some of the programs assign molecular formulas using database searches (UME, 

Formularity), while others calculate the molecular formulas and use formula extension to 
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assign other molecular formulas (Composer). In general, most of the methods have a lack 

of transparency as to how they assign molecular formulas, and what parameters are taken 

into consideration when determining whether the molecular formulas are correct. This 

uncertainty in how molecular formula assignment methods handle ambiguous 

assignments, led us to develop our own method with more transparency as to how this is 

handled. MFAssignR, written in the R programming language can be used on any 

computer. This ensured easy access to the code because R is free to download through the 

R website (www.r-project.org). The preeminent function in MFAssignR is the function 

for molecular formula assignment, MFAssign(). The core of this function is the CHOFIT 

algorithm which was developed by Green and Perdue (2015) in the Pascal programming 

language. We adapted the CHOFIT algorithm to do molecular formula assignment and 

added many additional parameters to improve its ability to assign a variety of 

heteroatoms and quality assurance for the molecular formulas that get assigned. While 

developing the MFAssign functions to assign molecular formulas, we decided to expand 

the R package so that it also included noise estimation, isotope filtering, and 

recalibration. These are all very important components of getting the best data possible 

from ultrahigh resolution mass spectrometry. This means the final package contains a 

complete pipeline for the assignment and analysis of ultrahigh resolution mass 

spectrometry data, which is something that until recently was only available in 

commercial software (Leefmann et al., 2018). As such, this software package represents 

an important contribution to studies of natural organic matter (NOM) such as aerosol, 

soil, and aquatic organic species using ultrahigh resolution mass spectrometry. The 

following chapter describes each of the functions and includes some background 
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information regarding other methods that have been developed to do the same thing, or 

that our functions were based on. 

5.2 Molecular Formula Assignment 

5.2.1 Methods of Formula Assignment 

MFAssignR has two functions (MFAssign() and MFAssignCHO()) for molecular 

formula assignment which are used for different aspects of formula assignment. 

MFAssign() is a multi-element function that includes non-oxygen heteroatoms and 

provides low ambiguity in the assignments. MFAssignCHO() is identical to MFAssign(), 

except that it only can assign molecular formulas with C, H, and O. Thus, it run faster, 

and is more useful for preliminary molecular formula assignment used to determine 

possible recalibrant ions. At the core of each function is the CHOFIT algorithm 

developed by Perdue and Green (2015). CHOFIT makes use of low mass moieties to 

assign C, H, and O containing molecular formulas and is faster relative to the traditional 

methods of using brute force looping and Diophantine equations to assign all of the 

molecular formulas (Meija, 2006; Kunenekov et al., 2009). CHOFIT was originally 

written in Pascal, so we adapted it to the R programming language. MFAssign() is meant 

to provide users with a more transparent method for formula assignment, especially for 

possible ambiguous molecular formula assignments compared to previous methods that 

have been developed. Ambiguity of molecular formula assignment increases with 

increasing molecular weight or the number of possible heteroatoms because the number 

of mathematically possible molecular formulas increases exponentially (Koch et al., 

2007; Kind and Fiehn, 2007). Even when chemical feasibility is used to constrain the 
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assignments, there are many ambiguous molecular formulas. Ambiguity is often removed 

with other software tools using pre-defined rules and it is possible that one of the 

removed ambiguous formulas is actually the correct formula. Many molecular formula 

assignment software tools have quality assurance (QA) parameters and rules to reduce 

ambiguous assignments to only one molecular formula per mass (Stranz et al., 2015; 

Tolic et al., 2017). These restrictions lead to incorrect assignments, especially when 

sample types are inconsistent with those used to design the software (e.g. DOM for 

Formularity and petroleum extracts for Composer. A recent software package, called 

UltraMassExplorer (UME) provides ambiguous assignments without QA parameters 

(Leefman et al., 2018). While this is very useful for evaluating the molecular formula 

assignment options for a particular mass, UME is limited to the m/z range of 100-700, 

assigns molecular formulas using a database matching approach, and is restricted to C, H, 

O, N, P, S, 13C, 34S, 15N (Leefman et al., 2018).  

5.2.2 Methods to Limit Ambiguity 

When it comes to data analysis it is often helpful to have as few ambiguous assignments 

as possible because they make it difficult to know exactly the composition of a sample. 

For this reason, MFAssignR has options to limit the ambiguous molecular formula 

assignments to those that are the most likely. To do this, we incorporated many tools for 

QA remove less probable molecular formula assignments. We first review the QA tools 

and a priori assumptions used in existing formula assignment software. Formularity 

(Tolic et al., 2017), applies the assumption that the molecular formula with the fewest 

number of non-oxygen heteroatoms is the best molecular formula. This assumption has 
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been made in several NOM studies (Kujawinski and Behn, 2006; Ohno and Ohno, 2013; 

Tolic et al., 2017) and it is a fair assumption to make in general. However, since more 

heteroatoms are expected for molecular formula assignment (e.g. soil or wastewater 

NOM), it becomes possible that a formula with more heteroatoms is more probable. An 

example of this is the comparison of C17H8O5 and C9H12N2O7S which were both assigned 

for m/z 293.0436. If the formula with the maximum number of heteroatoms is removed, 

the N2S formula will not be assigned which may not always be the correct option. To 

separate the two formulas into separate peaks would require a resolving power > 600,000 

at m/z 400 (Table 5.1).  

Table 5.1. Mass differences and required resolving power for selected formula transitions. 

Formula Difference Δmass Resolving Power at m/z 400 

CxHyN3OzS vs. Cx1Hy1Oz1 w/ 13C  0.63 mDa    635K 

CxHyN3Oz vs. Cx1Hy1Oz1S w/ 13C  0.244 mDa  1.64M 

CH4 vs. O  3.639 mDa 110K 

C4 vs. O3  1.525 mDa 262K 

CxHyN2OzS vs. Cx1Hy1Oz1  0.652 mDa 613K 

SH4 vs. C3  3.372 mDa 119K 

 

In contrast, Composer makes the assumption that the more hydrocarbon-like molecular 

formula is the correct one (Stranz, 2015). Although it is reasonable to make this a priori 

decision for petroleum extracts, it may not be correct for more oxidized samples, such 

atmospheric organic aerosol. To avoid making a priori assumptions about the molecular 

formula composition, we developed a data dependent method to decrease a majority of 

the ambiguity using molecular formula extensions. Earlier versions of molecular formula 
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extensions were used in molecular formula assignment (Kujawinksi and Behn, 2006; 

Kunenkov et al., 2009; Stranz, 2015; Tolic et al., 2017). The molecular formula 

extensions provide confidence in the assignments at higher masses, but have not 

previously been used to decrease their ambiguity. Another algorithm that has been 

reported is the CHOFIT algorithm from Green and Perdue (2015) which was used as the 

core of our molecular formula assignment code. A description of the core CHOFIT 

algorithm, and the methods employed to limit ambiguity is below. 

5.2.3 Theory of CHOFIT Algorithm 

The core of the formula assignment functions in MFAssignR is the CHOFIT algorithm, 

which was developed by Green and Perdue (2015). The CHOFIT algorithm itself only 

assigns CH or CHO containing molecular formulas, but with the addition of some nested 

loops it is possible to include any heteroatom that is desired. The CHOFIT algorithm 

assigns molecular formulas using a low mass moieties (LMM) approach with CH4O-1 and 

C4O-3 which represent elemental exchanges. These LMMs form non-parallel lines within 

a single nominal mass window in van Krevelen (VK) space. Each line represents a 

different homologous series where the difference is CH4O-1 (blue lines) or C4O-3 (gold 

lines). Each series represents a common exchange series that is present within each 

nominal mass window. The lines for each moiety intercept at a location in the negative 

quadrants of the VK plot, thus the formulas that are within a straight line are related to 

each other by one of the LMMs. To use this method for formula assignment, the exact 

mass (EM) of an unidentified molecule is converted to its nominal mass (NM) and then 

the hydrocarbon that contains the highest possible carbon number is calculated. Then the 
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molecular formula is checked to see if it is on the CH4O-1 “mixing line”. The mixing line 

is the line of molecular formulas that differ in formula by the low mass moiety within a 

single nominal mass. It is analogous to a CH2 series across a spectrum. A representation 

of these mixing lines can be seen in Figure 5.1. If the difference between the measured 

EM and the EM of the initial formula is an integer value, then the same number of CH4O-

1 LMMs are added to the initial formula to get the final formula. If the difference it is not 

an integer, then the LMM C4O-3 is subtracted from the initial formula to move the 

formula to the next mixing line, where the CH4O-1 test is performed again. This is done 

until a final formula is assigned, or the valid compositional space is used up. The VK plot 

for the CHO formulas within a single nominal mass is shown in Figure 5.1. This figure, 

which is adapted from Perdue and Green (2015), helps to highlight the mixing lines. This 

method greatly increases the speed of the function relative to other molecular formula 

calculators by decreasing the number of loops required to assign valid molecular 

formulas. An example of the calculations that contribute to assigning a molecular formula 

with the CHOFIT algorithm can be seen in Table 5.2. 
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Table 5.2. General steps of molecular formula assignment using the CHOFIT algorithm. 
First, the maximum number of carbon for the nominal mass (NM) of the neutral 
molecular mass is calculated and, the remaining mass is made up with hydrogen. Then, 
the mass difference between the measured mass (143.0349 Da in this case) and the exact 
mass (EM) of the trial formula is calculated and divided by the exact mass of CH4O-1 
(0.03639 Da). If this value is not an integer, the LMM C4O-3 is subtracted from the first 
trial formula and the process repeats. This continues until an integer value is found. At 
this point, the requisite number of CH4O-1 LMM are added/subtracted from the trial 
formula in order to determine the final molecular formula. In this case 2 CH4O-1 LMM 
are added to the 3rd trial formula to obtain the final formula of C6H8O4. 

Step NM Carbon Hydrogen Oxygen EM # of CH4O-1 
moieties 

First trial 
formula 

144 12 0 0 144 1.16 

2nd after 
subtracting 
C4O-3 

144 8 0 3 143.9847 1.58 

3rd after 
subtracting 
C4O-3 again 

144 4 0 6 143.9695 1.99 

Final 
Formula, 
after 
adding 2 
CH4O-1 

144 6 8 4 144.0423 
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While the CHOFIT core is unable to directly assign heteroatoms, combinatorial formulas 

and nested loops can be used to assign heteroatoms. The mass of a heteroatom 

combination is removed from the overall measured EM to obtain the CHO core. The core 

is then be assigned using the CHOFIT algorithm and then the heteroatom combination is 

added back to the final formula. This method generates all possible molecular formulas 

within the error tolerance, leading to a large number of ambiguous assignments. While 

generation of the maximum number of formulae affords ultimate method transparency, it 

can add additional complexity for the analysis and interpretation of the data. To address 

this, we introduced a number of optional QA steps and parameters to reduce the 

ambiguity in a data-dependent way.
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Figure 5.1. Adaptation of figure from Perdue and Green to help explain how molecular 
formulas are assigned in CHOFIT. Blue color is related to the CH4O-1 low mass moiety, 
meaning that the dots connected by blue lines vary by CH4O-1, while the gold color 
corresponds to the C4O-3 low mass moiety, dots connected by gold lines vary by C4O-3. 
The green points represent molecular formulas assigned at nominal mass m/z 543 in 
PMO-2. The unshaded quadrant represents the positive space where real molecular 
formulas exist, the shaded regions represent the negative space of a van Krevelen plot.
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5.2.4 Formula Extension Background and as Way to Limit Ambiguity 

The most significant method for reducing the ambiguity in MFAssignR comes from the 

use of formula extensions. A building block approach using formula extensions has been 

used to assign molecular formulas in several software packages (Kujawinski and Behn, 

2006; Kunenkov et al., 2009; Tziotis et al., 2011; Tolic et al., 2017;). The Compound 

Identification Algorithm (CIA) described by Kujawinski and Behn, (2006) used a 

molecular formulas seed approach where all of the masses related to the seed by CH2, H2, 

or O mass differences are assigned by adding or subtracting the requisite number of those 

building blocks. Formularity extended this approach with the addition of CH4O-1, CO2, 

C2H4O, and C2H2O as possible building blocks. The molecular formula extension 

relationships of measured masses are determined using their KMD values. When the 

KMD values are the same, the masses are considered to be in the same homologous 

series. Thus, the molecular formulas are assigned by adding or subtracting the appropriate 

number of building blocks equal to the mass difference. The formula extensions provide 

confidence in the molecular formula assignments, especially at higher masses because 

they are related to peaks at lower masses within the mass spectrum, providing an overall 

lower number of molecular formulas. If the molecular formulas are calculated for higher 

mass peaks without restricting them to lower masses, the number of possible molecular 

formulas increases exponentially (Kind and Fiehn, 2007; Koch et al., 2007). In 

MFAssignR, the formula extension is used to improve formula assignment, and decrease 

the ambiguity of formula assignments without making a priori decisions about the 

composition of the sample, as described previously (Ohno and Ohno, 2013; Kujawiniski 
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and Behn, 2006; Stranz, 2015). Five formula extensions are used in MFAssign() and 

MFAssignCHO(). The extensions used are CH2, H2O, O, H2, and CH2O. Some of these 

can be redundant (H2 and O vs. H2O for example), but the redundancy provides increased 

confidence because if a particular molecular formula has multiple relationships it is more 

likely to be a correct assignment. This assumption is the basis of the approach used in 

MFAssign and MFAssignCHO to decrease the molecular formula ambiguity with 

formula extensions. Formula extensions, require a good “seed” formula (Kujawinski and 

Behn, 2006; Koch et al., 2007). In MFAssign and MFAssignCHO, the preliminary seed 

formulas are generated by the CHOFIT algorithm where only the unambiguous molecular 

formula assignments are used as seed formulas. The remaining monoisotopic masses are 

added to the unassigned mass list which are assigned using the formula extension 

approach. In MFAssignR, a combination of the Kendrick mass defect, and the z* (Hsu et 

al., 1994; Stenson et al., 2003) for each of the bases is used. The masses are then matched 

using KMD and z* in several steps as shown in Figure 5.2. The molecular formula 

extension process begins with masses below the user defined de novo threshold. It then 

performs a user defined number of loops to assign molecular formulas using the 5 

extensions. At the end of each loop, the molecular formulas that are unambiguously 

assigned act as seeds for the next loop. To determine the unambiguous assignments, at 

this point, a basic elemental ratio test is applied to the assigned molecular formulas to 

remove those that have an O/C or H/C ratio that exceeds the user defined limits. After 

this step, the function determines how many seed formulas are related to the newly 

assigned formulas, if there are two assignments for the same mass, the function chooses 

the formula that has more “paths” to it. The paths indicate the number of seed formulas 
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related to the new assignment. The selected formula is then treated as an unambiguous 

assignment for the next loop. After the series of loops are finished for the first segment of 

the mass spectrum, formula extensions are performed on the next segment, which uses 

seeds up to the de novo threshold + 200. This process is repeated until the entire mass 

spectrum has been covered. Formula extensions significantly reduce the number of 

ambiguous assignments, but some ambiguous assignments still make it through. These 

ambiguous molecular formulas are identified in the output.
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Figure 5.2. Schematic for formula extension. Panel a shows an example mass spectrum, 
Panel b in conjunction with the mass range in Panel a demonstrates the how the segments 
of formula extension cover the full mass range over several steps, Panel c shows how a 
single “seed” formula can be used to assign many molecular formulas with the 5 formula 
extension bases. 
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5.2.5 Isotope Molecular Formula Correction 

Part of the molecular formula assignment is matching the masses flagged as potential 

polyisotopic molecular formulas to the assigned monoisotopic masses. The initial 

separation of monoisotopic and polyisotopic is done with the IsoFiltR function which is 

described more thoroughly in Section 5.4. IsoFiltR does a good job of identifying 

monoisotopic and polyisotopic masses, but some are still incorrectly identified as 

polyisotopic. To address this issue, a second round of formula extensions is done for the 

polyisotope masses that were not, or were incorrectly, matched to a monoisotopic mass. 

The masses that are incorrectly matched to a monoisotopic mass are typically those that 

IsoFiltR flags as a 34S mass, but shouldn’t be flagged as such. These masses can be 

matched to a sulfur containing molecular formula, but if the sulfur containing formula 

doesn’t have a corresponding 13C mass it is not likely correct. The logic is that if the 

sulfur containing formula can have a matching 34S mass, it should also have a matching 

13C mass because the 13C mass should be more abundant and easier to detect. So, if a 

sulfur containing molecular formula has a 34S isotope, but no 13C isotope, then it is 

considered to be incorrect for the purposes of this test, and the “34S” mass is added to the 

list for secondary assignment via formula extension. This secondary step ensures that all 

isotopic peaks are given the opportunity to be assigned a molecular formula. Formula 

extensions are always used to assign molecular formulas in MFAssign and 

MFAssignCHO, but if the user wants to have more ambiguous assignments the path 

counting aspect of formula extension can be turned off. This allows all ambiguous 

assignments that fulfill the other QA parameters to be reported in the output. The 
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effectiveness of the formula extensions is shown in Figure 5.3, which shows the number 

of paths that are used to select molecular formulas. This figure illustrates how the 

formula extensions are used to decide between “correct” and “incorrect” assignments 

without additional a priori decisions such as choosing the formula with the lowest 

number of heteroatoms.  

 

Figure 5.3. Demonstrating the number of paths for each formula assignment. This is how 
the formula extension decides on the correct formula, whichever one has the higher 
number of paths (O16 in this case) is chosen as the correct molecular formula. The 
molecular classes being compared here are N2O18S (red) and O16 (blue). Each set of 
points represents an ion mass that has two molecular formulas preliminarily assigned.
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5.2.6 Quality Assurance Parameters 

5.2.6.1 Sulfur Isotope Check 

In addition to the formula extensions, there are several other QA parameters that can help 

decrease ambiguity and improve the quality of formula assignments. One of the methods 

is the sulfur isotope check, which checks all sulfur containing assignments that come out 

of the CHOFIT core to see if they have a matching sulfur isotope mass. If they do, the 

assignment can be used as a seed to assign other molecular formulas, if not, the 

assignment is discarded and the mass will be assigned during formula extension. This 

ensures that all sulfur containing molecular formulas are related in some way to a 

molecular formula with a sulfur isotope to help confirm its identity. 

5.2.6.2 Nominal Mass Series Check 

Additionally, a nominal mass series check, ensures that molecular formulas within a 

nominal mass window with 36.4 mDa mass differences all vary by the exchange of O 

with CH4 (Koch et al. 2007). If a molecular formula within the series doesn’t have 

enough oxygen to account for the rest of the masses in the series, it would be deemed 

incorrect. For example, if a molecular formula with one oxygen is assigned, but is also 

related to 3 higher masses in series, it is likely incorrect because the subsequent 

molecular formula would have a negative number of oxygen to follow the trend (Koch et 

al., 2007). The concept of CH4 vs. O is implicit in the CHOFIT core algorithm (Perdue 

and Green, 2015; Green and Perdue, 2015), but this additional step can decrease 

ambiguity in the formulas that are assigned via formula extensions. 
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5.2.6.3 High Heteroatom Check 

The final optional QA parameter is the high heteroatom check. This check chooses the 

molecular formula with the least number of non-oxygen heteroatoms consistent with 

previous studies (Kujawinski and Behn, et al., 2006; Ohno and Ohno, 2013; Tolic et al., 

2017). This parameter is generally applicable to NOM, but because it has the potential to 

limit atmospherically relevant assignments, we developed the other QA parameters to 

reduce ambiguity, as described previously. 

5.2.6.4 User Controlled QA Parameters 

In addition to the optional QA parameters, several others can be set by the user, 

including: the min/max oxygen-to-carbon ratio (O/C), hydrogen-to-carbon ratio (H/C), 

and double-bond-equivalent minus oxygen (DBE-O) parameters. The O/C and H/C 

parameters can be set according to the expected composition of the sample; typical 

boundaries are 0.1 to 2 for O/C and 0.3 to 2.5 for H/C. The DBE-O parameter was 

developed by Herzsprung et al. (2014) as a way to remove unlikely molecular formula, 

and the default boundaries are -13 to 13. The minimum number of allowed oxygen can 

also be set by the user. 

5.2.6.5 Default QA Parameters 

Several QA parameters are not subject to user inputs because they are related to basic 

chemical formula feasibility instead of the more qualitative assessment parameters 

discussed previously. These include the Senior rules (Senior, 1952; Kind and Fiehn, 

2007; Green and Perdue, 2015), nitrogen rule, large atom rule, maximum hydrogen rule, 
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and maximum double bond equivalent rule (Lobodin et al., 2012). The Senior rules were 

developed by Senior (1952) and can be used to limit molecular formulas to only those 

that are chemically feasible with regard to bonding and valence levels. The valence level 

of the atoms represents the number of open spots in their outer electron shell. For 

example, carbon typically has a valence level of 4 because that is the number of open 

spots in the outer octect of electrons. Rule 1 states that the sum of valences or the total 

number of atoms having odd valences is even (Kind and Fiehn, 2007). Rule 2 states that 

the sum of valences is greater than or equal to twice the maximum valence (Kind and 

Fiehn, 2007). Rule 3 states the sum of valences is greater than or equal to 2n-1, where n 

is the number of atoms (Kind and Fiehn, 2007). These rules are used in several molecular 

formula assignment software tools including: Seven Golden Rules by Kind and Fiehn, 

(2007) and the original CHOFIT (Green and Perdue, 2015). While the Senior rules 

themselves cannot be changed, the valence level of S, N, and P can be set by the user, 

which can be useful if oxidized sulfur with a valence level of 6 is expected. The nitrogen 

rule states that a molecular formula with an odd number of nitrogen must have an odd 

neutral mass. The maximum hydrogen rule states that the number of hydrogen cannot 

exceed 2 * #carbon + 2. The maximum DBE rule as described by Lobodin et al. (2012) 

states that the DBE cannot exceed 90% of the total number of carbon and nitrogen atoms 

in a molecular formula. The large atom rule states that the number of atoms with a mass 

greater than 12C must be less than the value of the exact mass of the molecular formula 

divided by 13. 
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5.2.7 Advantages of MFAssignR for Heteroatoms 

Most molecular formula assignment software tools assign molecular formulas containing 

C, H, N, O, S, and P, potentially with the isotope masses of 13C and 34S (Kujawinski and 

Behn, 2006, Green and Perdue, 2015, Leefmann et al., 2018, Stranz, 2015). Recently, 

Tolic et al. (2017) developed a method that can also include select halogens, but it is 

based on a database search, and thus is less flexible than methods that can directly 

calculate molecular formulas. Using the CHOFIT algorithm, it is theoretically possible to 

add as many heteroatoms as desired. Therefore, in addition to 12C, 1H, 14N, 16O, 32S, and 

31P, we added 2H, 15N, 35Cl, 37Cl, and 19F.  The addition of these heteroatoms is very 

helpful in performing experiments with isotopically labeled species (Leverton, 2019), and 

in investigating halogenated wastewater species, which may be found, for example, in 

outflow from wastewater treatment facilities. Following this overview of MFAssign, we 

now turn to the functions that are necessary to ensuring that the results from MFAssign 

are as robust as possible. 

5.3 Noise Estimation 

5.3.1 Importance of Noise Estimation and Methods for its Estimation 

First, we discuss the instrument noise estimation function in MFAssignR, KMDNoise, 

and why noise estimation is important to ensure good data quality (Riedel and Dittmar, 

2014, Kilgour et al., 2017). The noise that is being considered here is thermal and 

electrical noise from the instrument itself. This noise is inherent in any measurement due 

to the movements of electrons and imperfections in the instrumentation. Many methods 

exist for estimating the noise level. The most simple approach evaluates the peak 



 

194 

intensity in regions without analytes (Kew et al., 2017). However, the noise level is not 

necessarily consistent throughout the spectrum, especially for FT-ICR MS (Hawkes et al., 

2016), so these small regions may not provide the most accurate assessment of the noise 

level. Slightly more advanced methods rely on the assumption that all peaks with a mass 

defect of 0.3 to 0.9 are noise peaks (Riedel and Dittmar, 2014). This assumption ignores 

the possibility of higher intensity multiply charged peaks or harmonic signals in this 

range for NOM. This assumption may lead to higher estimations of noise than is 

appropriate due to the inclusion of the higher intensity multiply charged or harmonic 

peaks. Harmonic signals can be produced by a variety of factors such as signal saturation 

of the detector, the inherent finiteness of an ICR cell, or issues with the Fourier transform 

of the data (Mathur et al., 2009). They can also be produced by physical problems with 

the instrument itself such as bad connections in the wires (Mathur et al., 2009). In the 

Orbitrap, harmonics are also possible, but are more limited relative to ICR instruments 

(Makarov, 2000; Zubarev and Makarov, 2013). More advanced noise estimation methods 

such as those described by Zhurov et al. (2014); Zielinski et al. (2018), Kilgour et al. 

(2017), and Riedel and Dittmar (2014) can be effective, but are often more difficult to 

implement. For example, the main method described in Riedel and Dittmar (2014) 

requires the use of multiple blanks to estimate the noise for samples that are run using the 

same parameters. AutoPiquer (Kilgour et al., 2017) uses isotopic fine structures to pull 

out peaks from the noise thereby separating the analyte signal from surrounding noise 

peaks. The methods described by Zhurov et al. (2014) and Zielinski et al. (2018) are very 

similar to each other, both use a histogram distribution of the peak intensities in the raw 

spectrum to separate the noise peaks from the analyte signal, the only difference is that 
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the Zhurov et al. (2014) method uses the log10 of intensity, while Zielinski et al. (2018) 

uses the native intensity. These methods can work well when the noise and intensity are 

well separated (Figure 5.4a), but oftentimes they are not (Figure 5.4b).
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Figure 5.4. Histograms demonstrating the distributions of raw intensity values in two 
different aerosol samples used for the Zhurov et al., (2014) intensity histogram noise 
estimation method. Panel a is an example of the method working well, while Panel b is an 
example of it not working well. 
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5.3.2 Theory of KMDNoise 

Due to the limitations described above, we developed a new method for estimating the 

noise in a mass spectrum, using the Kendrick mass defect (KMD) values from a raw mass 

spectrum called the KMD slice method. Traditionally, a KMD is calculated using a CH2 

base, where masses that differ by the exact mass of CH2 have the same KMD. This 

improves the identification of molecular formulas because in theory, if you know the 

identity of one of the peaks in a CH2 homologous series you can identify the rest by 

adding or subtracting the requisite number of CH2 groups. Typically, KMD analysis is 

performed on data that has already had the noise removed, but an interesting pattern of 

analyte and noise peaks can be observed from the raw mass spectral peaks. Since the 

mass of noise peaks is random, the KMD values for the noise peaks are also random. This 

leads to “islands” of analyte peaks surrounded by a “sea” of low intensity noise peaks. 

This is shown in Figure 5.5. Some of the high intensity peaks form smaller “islands” 

above and below the largest “island”; these peaks represent either ions that are multiply 

charged or harmonics. It is very difficult to tell whether the peaks are multiply charged or 

harmonic, but the intensity of these peaks would bias the estimated noise level when 

using a noise estimation based on normal mass defect (Riedel and Dittmar, 2014). This 

highlights the improved flexibility of the KMD slice method because it can avoid those 

regions more easily. The inclusion of the noise peaks also causes the entire theoretical 

range of the KMD plot to be filled, which allows the identification of the overall slope of 

a KMD plot. The overall equation for a KMD plot is y = 0.1132x + b, with y being the 

KMD value, x being the measured ion mass, and b being the y-intercept. Changing b 
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allows different segments of the spectrum to be isolated, in most mass spectra, good 

values for b are 0.2 and 0.05 to select a region of the plot with as few high intensity peaks 

as possible (Figure 5.5b). The peaks within this “slice” are then averaged with that value 

representing the average noise level for the overall spectrum. This value can used in 

conjunction with a user-defined signal to noise ratio (typically 3 – 10) to remove peaks 

that have an intensity that is too low.
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Figure 5.5. Showing the KMD plot for the raw mass spectrum of PMO-2. Panel a 
contains the plot without additional information. Note the light blue “island” near the top 
of the plot; these represent doubly charged or harmonic plots with a mass defect of ~0.5. 
Panel b shows the same plot, but with the KMDNoise function boundaries indicating 
where the noise is estimated with the default settings of that function. 
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5.3.3 Noise Estimation Method Comparison 

A comparison of some of the noise estimation methods described above is shown in 

Figure 5.6. Here the noise estimations obtained from the “simple”, Riedel and Dittmar 

(2014) mass defect, Zhurov et al. (2013) histogram, and the KMD slice estimation 

methods for the raw mass spectrum of PMO-2 collected with an FT-ICR MS with 400K 

resolving power at m/z 400 are presented. The “simple” method uses an analyte free 

region of the spectrum to estimate the noise. The results of this comparison (Figure 5.6) 

show that the estimation with KMDNoise produces the lowest signal-to-noise threshold, 

while still being comfortably above the noise level. The Riedel and Dittmar (2014) 

method has a noticeably higher signal-to-noise relative to the KMD slice method. This is 

likely due to the inclusion of more intense peaks in the mass defect ~0.5 range (Figure 

5.5). The “simple” method produced the highest signal to noise ratio, which is likely due 

to the increased noise in the range of m/z 950-1000 where it was estimated. This is a 

limitation of the “simple” method as the noise increases with increasing mass and has 

been described elsewhere (Hawkes et al. 2016). The Zhurov et al. (2013) method had the 

second lowest estimated noise, but it did not work correctly because the intensity 

histogram was unable to separate the analyte and noise peaks (Figure 5.4b). In this case, 

the estimated noise was based on the mode of the distribution, which is mentioned as a 

secondary option as described in Zhurov et al. (2013). So, although the estimated noise 

with this method is similar to what we see for the KMD slice method, the KMD slice 

method is much easier to use, and provides more reproducible results.
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Figure 5.6. Showing the noise levels estimated by 4 different methods of noise 
estimation. The noise estimation with the Riedel and Dittmar method (Riedel) is in gold, 
the “Simple” method estimate is in red, the estimation based on the mode of the 
histogram distribution (HistMode) is in cyan, and the noise estimation from the KMD 
Slice method (KMD) is in green. Each panel represents a different mass range in the 
spectrum of PMO-2. 
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5.3.4 Similarities and Differences to Other Methods of Noise Estimation 

This method is quite simple, but has not been reported previously. It uses the idea of 

estimating the noise based on the intensity of peaks in a region without analytes, 

consistent with the less advanced of the two methods described by Riedel and Dittmar 

(2014). Essentially what the KMD slice method does is pull out the noise peaks from 

regions that do not have analyte peaks, but instead of needing a range over several 

consecutive m/z as with the original, it can get them from every range that has noise in it 

across the spectrum, as opposed to a relatively small region at the high end of the mass 

range. It is somewhat similar to the mass defect method described by Riedel and Dittmar 

(2014) in that it uses assumptions about mass defects to estimate the noise over the entire 

spectrum. The primary advantage of this new method though is that it is more precise 

about which peaks are used for the noise estimation. The most obvious advantage is due 

to the observation of doubly charged or harmonic signals that are sometimes present in 

mass spectra. These peaks have a natural mass defect of ~0.5, placing them in the range 

of mass defects used to estimate the noise with the method described by Riedel and 

Dittmar (2014). Their inclusion may lead to an over estimation of the noise, which in turn 

may cause low intensity analyte peaks to be removed from the mass spectrum. In the 

KMD slice method however, these doubly charged or harmonic peaks form a visible 

secondary cluster above the cluster of singly charged peaks. This cluster can then be 

avoided by using the appropriate boundaries, providing a more accurate assessment of the 

actual noise level. 
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5.4 Isotope Filtering 

5.4.1 Importance of Identifying Polyisotope Masses 

A function to identify likely polyisotopic masses was developed for MFAssignR called 

IsoFiltR(). Polyisotopic masses are masses where the molecular formula responsible for 

them contain more than one type of isotope for one of the types of atoms in the molecule. 

For example, a molecular formula with a 13C atom present would be responsible for a 

polyisotopic mass. Identification of polyisotopic masses before or during formula 

assignment is key to ensuring good quality data. If these masses are not correctly 

identified, they can be incorrectly assigned as monoisotopic masses, and lead to an 

incorrect interpretation of the molecular composition. An example of a common incorrect 

formula assignment is when a mass that is representative of a molecular formula that 

contains a 13C is assigned a monoisotopic molecular formula of the basic form 

CxHyN3OzS. This elemental exchange has a mass difference of Δmass = 0.63 mDa, which 

makes it difficult to resolve for many ultrahigh resolution mass spectrometers (Table 5.1). 

An example of the formulas that result from such an exchange is for m/z 350.0816 where 

the correct molecular formula is C12
13C1H18O11, but a molecular formula of C15H17N3O5S 

can also be assigned. The mass measurement error cannot even be used to differentiate 

these assignments because the error was lower for the incorrect assignment. This can be 

seen visually in Figure 5.7. The resolving power needed to separate these peaks and 

others at m/z 400 can be seen in Table 5.1. A van Krevelen (VK) plot with the ambiguous 

MFs is shown in Figure 5.8. In this case it would be relatively easy to recognize that the 

N3OxS assignments are less likely because they have a large number of heteroatoms for 
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natural organic matter (NOM) (Kujawinski and Behn, 2006; Ohno and Ohno, 2013). The 

distribution of the species in a triangular shape at low O/C ratios may also raise concern 

for someone analyzing the data. In other cases, it is not always possible to know whether 

an assignment should be a monoisotopic or polyisotopic molecular formula assignment, 

especially when additional heteroatoms are expected. For this reason, many formula 

assignment software packages offer some sort of polyisotope identification during 

formula assignment (Tolic et al., 2017; Leefmann et al., 2018; Stranz, 2015), which are 

either based on mass differences or database matching. In NOM the most important 

isotopes that are 13C and 34S, so they are most often considered.  
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Figure 5.7. Reconstructed mass spectra showing how a mass can be incorrectly assigned 
as a monoisotopic mass. The figure includes the corresponding monoisotopic mass and 
formula, along with the mass measurement error for all the assigned molecular formulas.
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Figure 5.8. 13C isotopic CHO formulas assigned with 13C and when 13C is not allowed. 
Each ion mass is assigned both a 13C CHO formula (green) and a CHNOS (purple) 
formula.  
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5.4.2 Considerations for Polyisotope Identification 

Every isotope has a specific abundance in nature. 13C has a natural abundance of 1.10 % 

meaning that any particular carbon atom has a 1.10 % chance of being 13C (de Hoffmann 

and Stroobant, 2007). Therefore, the abundance of the single 13C mass peak in the mass 

spectra scales with the number of carbon atoms. The theoretical intensity of a 13C isotope 

peak is calculated using Equation 5.1:   

𝐼𝑛𝑡. 𝑅𝑎𝑡𝑖𝑜 #𝑐𝑎𝑟𝑏𝑜𝑛 0.9890# 0.011              Eq. 5.1 

where Int.Ratio is equal to the ratio of the mono/poly intensities, 0.9890 is equal to the 

natural abundance of the 12C atom, 0.011 is equal to the natural abundance of the 13C 

atom, and #carbon is equal to the number of carbon atoms in the molecular formula. A 

molecule with 20 carbon for example, would have an associated 13C peak intensity that is 

22.2% of the intensity of the monoisotopic peak. Due to the large numbers of carbon 

present in most organic matter, 13C is an important isotope for identification and 

confirmation of molecular species. The theoretical intensity of the 34S peak is calculate 

using Equation 5.2: 

𝐼𝑛𝑡. 𝑅𝑎𝑡𝑖𝑜 #𝑠𝑢𝑙𝑓𝑢𝑟 0.958# 0.042            Eq. 5.2 

where Int. Ratio is equal to the ratio of the mono/poly intensities, 0.958 is the natural 

abundance of the 32S atoms, 0.042 is the natural abundance of the 34S atom, and #sulfur is 

equal to the number of sulfur atoms in the molecular formula. Due to the limitations of 

ultrahigh resolution MS, the theoretical abundance of isotopes is not as reliable as it is 
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with other types of mass spectrometry such as isotope ratio mass spectrometry (Muccio 

and Jackson, 2008; Weber et al., 2011). For analytes with a monoisotopic peak intensity 

only slightly above the noise level, the associated polyisotopic peak can fall below the 

S/N threshold. Furthermore, low abundances deviate from the expected isotope 

abundances according to the effect of isotope dilution (Weber et al., 2011). Figure 5.9 

provides a demonstration of isotope dilution using the abundances of the polyisotopic 

masses with 34S peaks. The principle is the same for 13C (not shown). In Figure 5.9, one 

sees that when a set of peaks is well above the S/N level, the isotopic ratio is nearly 

equivalent to the theoretical value, but as the monoisotopic peak gets closer to the signal 

to noise ratio, the isotopic ratio deviates significantly. Due to this deviation from the 

theoretical values, it is difficult to identify all of the potential polyisotope peaks using 

isotope. Many formula assignment software tools that consider polyisotopic masses such 

as 13C, use expected isotopic patterns and check them against a database containing those 

patterns or by simple mass difference (Stranz, 2015; Tolic et al., 2017; Leefmann et al., 

2018). MFAssignR does not use a database to assignment molecular formula, and a 

simple mass difference is not solely sufficient for identifying polyisotopic masses.
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Figure 5.9. Demonstration of 34S isotope dilution for sulfur species in in PMO-1 (top) 
and PMO-2 (bottom). Lower Average Monoisotopic Abundance (AMA) indicates that the 
molecular formula lower intensity and is approaching the noise. The larger AMA indicate 
that the formula is getting further above the noise level.  As the AMA increases, the 
points plateau at around 5%, which is what would be expected for the natural abundance 
of 34S (4.2%). 
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5.4.3 Theory of IsoFiltR Function 

The IsoFiltR function in MFAssignR identifies probable polyisotopic masses containing 

1 or 2 13C or 1 34S before molecular formula assignment by using four quality assurance 

(QA) steps. This represents a unique attempt to identify polyisotopic masses prior to 

formula assignment for UHR MS data, as previous literature methods were either based 

on database patterns (Yang et al., 2015; Tolic et al., 2017), mass differences after 

assignment (Leefman et al., 2018), or were made for lower resolution instruments (Zheng 

et al., 2018). The steps for identifying polyisotopic masses are described below. 

5.4.3.1 Step One: Mass Matching 

IsoFiltR first matches every mass in the spectrum with every other mass, making a data 

frame with NN observations, where N is the number of observed peaks in the mass 

spectrum. This can become unmanageable for a standard computer, so the mass list is 

broken into 10 overlapping sections and the difference in mass between the matched 

observations is calculated. The observation pairs that match within ± 5 ppm of the 

theoretical mass difference of the isotope of interest (1.003355 Da for 13C and 1.995797 

Da for 34S) are retained and all other pairs are removed from further consideration. After 

this is done for each of the sections, they are re-combined into a single dataset and all 

duplicate mass pairs are removed before the next step of filtering. 
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5.4.3.2 Step Two: Isotopic KMD Series 

IsoFiltR then makes use of the mass difference between 12C and 13C (or 32S and 34S) with 

a KMD. The equation to calculate KMD requires the calculation of the Kendrick mass 

(KM) the equation for KM and KMD are below (Equations 5.3 and 5.4): 

KM  = mass * 14.01565/14       Eq. 5.3 

KMD = KM – NM                  Eq. 5.4 

Typically, KMD is used with a CH2 base, such that the masses are re-normalized by the 

exact mass of CH2 (14.01565 Da) instead of carbon. This causes the masses that differ by 

the exact mass difference of 14.01565 to have the same KMD value. Since the CH2 based 

KMD is not helpful for identifying isotope pairs, the mass difference for 12C and 13C 

(1.003355 Da) or 32S and 34S (1.995797 Da) is used instead. Similar to the CH2 KMD, if 

the mass difference of 12C and 13C is used as the KMD base, all of the masses that differ 

by that mass will have the same KMD value, making them easier to identify. After the 

13C or 34S KMD values are calculated for the preliminary monoisotopic and polyisotopic 

masses, those values are subtracted from one another. Theoretically, the number should 

be exactly 0, but because there is some inaccuracy in the measurements, some degree of 

error is allowed. The remaining quality assurance (QA) steps will be enough to limit the 

number of false positives in the identification of polyisotopic masses. Thus, if the 

absolute value of the subtracted number is < 0.00149 the pair of peaks are considered to 

be in a series and are moved to the next step.  



 

212 

5.4.3.3 Step Three: Resolution Enhanced Kendrick Mass Defect 

IsoFiltR then uses the so-called resolution enhanced KMD (Zheng et al., 2018; Fouquet 

et al., 2017). Essentially, the resolution enhanced KMD (KMDr) divides a repeating mass 

unit (for example 14.0565 for CH2) by an experimentally derived integer. This separates 

the isotope mass pairs by a consistent value. To obtain the separation desired, we used the 

CH2 base (14.01565 Da) and two integers for dividing it. For 34S the integer is 12 and for 

13C the integer is 21. The integer for 13C was obtained from Zheng et al. (2018), while the 

integer for 34S was determined by trial and error. Using the calculation and the integers 

mentioned previously we observed a consistent difference in the KMDr values for 13C 

and 34S peaks relative to their 12C and 32S counterparts. For the separation of 12C and 13C, 

the KMDr difference was either -0.496 or 0.503, and for the separation of 32S and 34S the 

difference was either -0.291 or 0.709. A visual representation of this can be seen in 

Figure 5.10. The difference was calculated by subtracting the KMDr value for the 

suspected polyisotopic mass from the monoisotopic mass. As in the second step, there is 

some allowance of measurement error in these values to account for potential 

inaccuracies in the measurements. For the purpose of filtering the isotope pairs, the limits 

are -0.4975 < KMDrDiff < -0.494501 and 0.501501 < KMDrDiff < 0.5045 for 13C, and -

0.29349 < KMDrDiff < -0.29051 and 0.7075 < KMDrDiff < 0.70949 for 34S. Only the 

mass pairs that differed by the allowed KMDr difference are passed on to the fourth step 

of the isotope filtering. 
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Figure 5.10. Demonstration of the effect of the resolution enhance KMD analysis used 
for identifying polyisotopic pairs. The top panel shows 12C/13C, while the bottom panel 
shows 32S/34S. The brackets represent one of the ΔKMDr between a matched pair of 
isotopic masses. The other ΔKMDr comes from the wrap-around of the points in the plot 
when the absolute value of KMDr exceeds 0.5. This wrapping is best visualized for the 
blue species in the 12C/13C panel.
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5.4.3.4 Step Four: Natural Isotopic Abundances 

For the reasons noted previously, the isotopic abundances are not always completely 

accurate for FT MS data so the ratio limits are somewhat relaxed. The theoretical 34S/32S 

intensity ratio is 4.2%, this ratio is kept the same across the entire spectrum because it is 

unlikely that there are > 1 sulfur atom present in the molecular formulas. However, since 

the abundance of sulfur containing molecular formulas is low, the sulfur ratio is set to 

30% in IsoFiltR by default.  Therefore, the 34S peak abundance must not exceed 30% of 

the potential 32S peak that it is matched to by default. It is set to this level because of the 

isotope dilution as shown in Figure 5.8, although the value can be changed by the user. 

13C on the other hand, cannot be set to a single ratio across the entire spectrum because 

the number of expected carbon atoms is too variable. Since the number is expected to 

increase with mass, the minimum and maximum 13C/12C ratio increases with mass. 

Specifically, a theoretical upper and lower limit of the 13C/12C ratio was calculated for 

100 Da bins across the entire spectrum (100-200 Da, 200-300 Da, etc.). The upper limit 

was estimated by taking the mass at the upper edge of the bin and determining the 

maximum number of carbon atoms, without consideration to chemical feasibility. The 

isotopic ratio was determined using the sisweb.com isotope pattern generator. The 

abundance of the single and double 13C peaks were used to set the limit on isotope ratio. 

The same concept was applied for the lower limit, using the maximum number of CH4O 

units at the lower limit of each mass bin. To further increase the flexibility of the 

abundance ranges, another parameter was included in the IsoFiltR function to loosen 

(lower value) or tighten (larger value) the carbon abundance windows; the default value 
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is 0.1. The pairs of masses that make it through this step of the QA are then finalized as 

monoisotopic and polyisotopic masses and are exported from the function as two separate 

lists. The monoisotopic masses are directly assigned molecular formulas using either 

MFAssign or MFAssignCHO and the polyisotopic masses are assigned molecular 

formulas by default when they are matched to the assigned monoisotopic formula. 

Occasionally, the IsoFiltR function incorrectly defines peaks as polyisotopic. For this 

reason, there is a secondary step within the MFAssign and MFAssignCHO functions to 

assign molecular formulas to the incorrect polyisotopic masses whenever possible.  

5.4.4 IsoFiltR Test 

To test the capability of IsoFiltR to accurately separate polyisotopic peaks and 

monoisotopic peaks the masses that had been defined as polyisotopic were assigned 

molecular formulas with MFAssign. Of the 1576 peaks flagged as potential 13C masses, 

1269 were assigned a molecular formula, of which 1259 were assigned a 13C containing 

molecular formula. This suggests that the method does a reasonable job of isolating 13C 

polyisotopic peaks. Similarly, of the 549 masses that are flagged as 34S peaks, 459 are 

assigned a molecular formula, with only 11 being assigned as 34S molecular formulas. 

The reason why so few peaks are identified as 34S is that there is a relatively limited 

number of sulfur-containing species in the studied sample (PMO-2) and most of the 

sulfur peaks were present with low intensities, meaning that the isotope masses may be 

below the signal-to-noise threshold. The most abundant sulfur containing peaks from the 

molecular formulas C16H26O3S and C17H28O3S both have 34S peaks assigned, suggesting 

that the primary limitation is the low abundance of sulfur containing peaks. The peaks 
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that were assigned as 34S incorrectly can still be assigned a monoisotopic molecular 

formula due to a secondary formula extension in the MFAssign function which was 

described in Section 5.2.  

5.5 Recalibration 

5.5.1 Reason for Recalibration 

In MFAssignR two functions were developed to do mass recalibration Recal() and 

Recal_2(). The goal of FT-MS is to obtain exact mass measurements. Despite the 

ultrahigh resolving power of the Orbitrap and FT-ICR mass spectrometers, the mass 

measurements can have mass shifts which can cause increased mass error when formula 

assignment is done. Some causes of this are random error from thermal and instrument 

noise (Kozhinov et al., 2013), space charge effects (Easterling et al., 1999; Wenger et al., 

2011; Kozhinov et al., 2013), imperfections in the instrument hardware and electronics 

(Mathur et al., 2009), and issues with data conversion from the time to frequency domain 

(Gross et al., 2017). To address this issue the instrument and data must be calibrated. The 

first step is calibrating the instrument itself. This is done using a solution of compounds 

that are distinct from the analytes and is called external calibration. There are calibration 

solutions that can be purchased from the instrument manufacturers or other calibrant 

solutions such as arginine clusters can be used (Schmitt-Kopplin et al., 2010).  External 

calibration of the instrument before analysis is important to decreasing the mass error, but 

it is not always sufficient to mass error in the sub 1 ppm range, which is necessary for 

complex mixtures such as aerosol or (Schmitt-Kopplin et al., 2010; Wenger et al., 2011; 

Smith et al., 2018). To further improve the measurement accuracy an internal calibration 
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is performed on the acquired data after it has been collected. Classically, internal 

calibration involves spiking a sample with a known quantity of a known compound and 

then correcting the rest of the data based on the instrument response (Zhang et al., 2011). 

This is not always practical when analyzing complex mixtures such as environmental 

NOM due to possible interferences between the sample and the spiked calibrant (Zhang 

et al., 2011, Wenger et al., 2011). Spiking a solution can work, but it assumes that the 

mass error of the spiked calibrant is representative of the rest of the mass spectrum, 

which may not always be appropriate.  

5.5.2 Methods for Mass Recalibration from Literature  

Recently an iterative method was developed (Kozhinov et al., 2013) using a binomial 

coefficient weighted average to estimate the mass error correction term first across the 

whole spectrum. The coefficient is based on relatively few peaks and then within many 

small segments of the scan range as peaks are assigned molecular formulas in parallel. 

This eventually leads to a majority of the measured masses serving as recalibrants and 

eliminates the systematic error, leaving only the random error which cannot be corrected 

for. The systematic error comes from the instrument itself and is related to the electrical 

connections, physical imperfections in the instrument itself, and space charge effects. 

Since the recalibration uses the measured masses it is independent of the instrument 

platform (Kozhinov et al., 2013). This provides a good basis for the recalibration method 

in MFAssignR package. The Kozhinov method uses the concept of segmented 

recalibration previously described by Savory et al. (2011) and by Wong et al. (2006). 

This segmented recalibration approach works well because the measurement error with 



 

218 

respect to mass can change over the mass spectrum. This means that within relatively 

small windows the mass errors are more similar than the errors in other parts of the mass 

spectrum.  

5.5.3 MFAssignR Mass Recalibration 

In MFAssignR, we have implemented a recalibration function that is based on the 

methods described by Kozhinov et al. (2013) and Savory et al. (2011). The Kozhinov 

method is used to calculate the mass error function, which is used to correct the masses, 

and also the concept of segmented recalibration from Savory et al. (2011) is used to 

remove systematic bias. There are two versions of the recalibration function with a slight 

difference in how the recalibrants are chosen. In the first version, Recal(), users select an 

initial series of recalibrants series that are extended using molecular formula extensions 

based on the H2 and O homologous. A user defined number of recalibrant peaks are 

selected based on relative abundance or intensity within the user defined mass range bins. 

Only the tallest peaks within each mass bin are used and then checked to see if there are 

any 13C isotope peaks matched to them. If so, those 13C peaks are also added to the 

recalibrants list. In the second version, Recal_2(), only the user defined recalibrants are 

used for the recalibration of the mass spectrum. 

5.5.3.1 Recalibration Equations 

The following equations represent our implementation of the recalibration equation 

described in Kozhinov et al. (2013). The full recalibration method included more 

iterations of recalibration, and a secondary abundance-based term, which are not used in 
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MFAssignR. The following steps are required to calculate the mass error function. First, 

the binomial coefficient average is calculated to weight the mass error function. It is 

determined using the standard equation for a binomial coefficient (Kozhinov et al., 2013), 

shown in Equation 5.4: 

𝐶 !

! !
       Eq. 5.4 

 where 𝐶  is the binomial coefficient, k is n minus 1, and j is the row number from 0 to k, 

n is the total number of recalibrants. After the weights have been calculated for each of 

the recalibrants, the weighted mass error function is determined for each recalibrant using 

Equation 5.5: 

𝜀  𝐶 , ,

,
       Eq. 5.5 

where εj is the error for a mass j, Emass,j is the experimental mass j, Thmass,j, is the 

theoretical mass corresponding to the formula assigned to Emass,j, and 𝐶  is the weight 

calculated in Equation 2. To determine the mass error function for the segment of the 

mass spectrum, use Equation 5.6: 

ε  
∑

             Eq. 5.6 

where ε is the mass error function used to recalibrate the spectrum. Mass recalibration of 

the measured masses is done using Equation 5.7:  

𝑚𝑎𝑠𝑠
 

      Eq. 5.7 



 

220 

where mass is the original measured mass, massrecal is the recalibrated mass, and ε is the 

mass error function.  

5.5.3.2 Implementation of Recalibration 

As opposed to recalibrating the entire spectrum at one time using a single mass error 

function a segmented approach is used adapted from Savory et al. (2011). To do this, the 

mass spectrum is divided into user defined segments and the mass error functions for 

each segment are calculated as described above and used to recalibrate the masses within 

the segment. This greatly increases the mass accuracy of the assignments by removing 

systematic bias. The recalibration requires at least three recalibrants in each segment, so 

any segment that does not have three recalibrants is recalibrated using the mass error 

function from the prior segment with three recalibrants. This commonly occurs at the 

high mass range as recalibrant peaks are more difficult to identify. This can lead to an 

increase in the recalibrated mass error because the systematic bias is not fully removed.  

5.5.4 Recalibration Test 

The overall effectiveness of this recalibration procedure is demonstrated by Figure 5.11, 

which compares the error plots for masses before and after recalibration. The error 

without recalibration follows trends that increase and decrease systematically. In the 

recalibrated plot, most of the points are in a flat line near 0-1 ppm mass error. While 

additional improvements are planned for this, it currently provides a noticeable 

improvement in the overall mass accuracy.
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Figure 5.11. Showing the mass error for a sample of biomass burning aerosol before 
(Panel a) and after (Panel b) recalibration with the Recal() function.
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5.6 Comparison of MFAssignR to Other Molecular Formula 
Assignment Methods 

To demonstrate the effectiveness of MFAssignR as a method for molecular formula 

assignment relative to other available opensource (Formularity, UME) and commercial 

(Composer) software tools, the four methods were used to assign molecular formulas to 

an identical mass list. The mass list was the raw mass spectrum for the PMO-2 aerosol 

sample, which was discussed in previous chapters. Prior to molecular formula assignment 

with any of the methods, the noise level and mass recalibration were done using functions 

in the MFAssignR package. This ensured that all of the available masses for assignment 

were identical. It was necessary to use the functions from MFAssignR, because the other 

software packages do not have the capability to do noise estimation and mass 

recalibration conveniently. This is one of the major advantages of the MFAssignR 

package relative to the other available molecular formula assignment software packages. 

In each methods the assignments were limited to 3 nitrogen and 1 sulfur with a maximum 

absolute error of 1 ppm. The de novo cutoff was set to m/z 300 when possible (i.e. 

MFAssignR, Formularity, Composer).  In UME the data were assigned molecular 

formulas using the NOM 4 CHNOSP database. The mass range limit of UME was m/z 

100-700 (the entire range available), while the other methods had a range of m/z 100-

1000.  

The results of this comparison are in Table 5.3 and Figure 5.12. In general, the majority 

of masses assigned by MFAssignR and another method are assigned to the same 

molecular formula (Common). Only in a few cases are the molecular formulas different 
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between the methods (Different). MFAssignR generally assigns more molecular formulas 

to the spectrum than the other methods, meaning it can provide a more comprehensive 

picture of the molecular formula composition. UME is comparable within the available 

mass range, but because it is limited to m/z ≤ 700, MFAssignR assigns many more 

molecular formulas (n = 698 for this sample). Of particular interest is the much larger 

number of assignments from MFAssignR relative to Composer. Composer was used to 

do the molecular formula assignment for the samples discussed in the previous chapters, 

and after conservative QA steps, there were 2121 monoisotopic molecular formula 

assignments for PMO-2. In this case, with relatively limited QA, Composer was able to 

assign 4904 monoisotopic molecular formulas, which is still markedly fewer than that of 

MFAssignR (6489 assignments). MFAssignR does a better job of assigning molecular 

formulas to mass with low abundance, relative to the other methods, which accounts for 

most of the difference, as shown in Figure 5.12. Figure 5.13 shows the same type of plot 

as in Figure 5.12, but for the PMO-1 sample instead, demonstrating that this result is 

consistent. 

The results highlight the reasons for developing our own method for formula assignment, 

because without MFAssignR we could not have known about the many additional 

molecular formulas that could be assigned. Overall, it seems that MFAssignR is very 

comparable to other established methods of formula assignment. This in itself is a 

valuable contribution, but when the other functions regarding noise estimation, isotope 

filtering, recalibration, and ability to assign a variety of heteroatoms and isotopes are 

considered, this package represents a uniquely powerful opensource tool for the data 
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preparation and molecular formula assignment for ultrahigh resolution mass spectrometry 

data. 

Table 5.3. Number of formulas identified with each molecular formula assignment 
method (Total Assigned), number common with MFAssignR (Common), number of 
peaks that were assigned different molecular formula than MFAssignR (Different), 
number of masses that were only assigned with each non-MFAssignR method relative to 
MFAssignR (Unique), and the number of formulas assigned only by MFAssignR relative 
to the non-MFAssignR methods (Unique MFAssignR).  

 UME Formularity Composer MFAssignR 

Total Assigned 8955* 5510 4904 6974 

Common 5522 5247 4804 X 

Different 187 137 19 X 

Unique 538 70 81 X 

Unique MFAssignR 1272 1590 2151 X 

 

* The number of formulas assigned by UME includes masses that were assigned multiple 
molecular formulas.
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Figure 5.12. Comparison of the number of molecular formulas assigned based on the 
abundance of the peak using sample PMO-2. Panel a shows the comparison between 
UME and MFAssignR, Panel b shows the comparison between Formularity and 
MFAssignR, and Panel c shows the comparison between Composer and MFAssignR. 
Abundance Percentile breaks the abundance into a series of bins, the top 10% most 
abundant peaks are in Pecentile 10, the next 10% are Percentile 20, etc. If the assignment 
ratio is near 100 that means that the non-MFAssignR method assigned the same number 
of molecular formulas as MFAssignR within that abundance percentile. For example, in 
Class 1 all three methods are essentially equivalent to MFAssignR, however, for the least 
abundant peaks (Pecentile 100) Composer only assigns about 30% as many molecular 
formulas. This figure does not compare the molecular formula assignments to see if they 
are the same between each method, it only compares the number of assignments that are 
made within each abundance class.  
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Figure 5.13. Comparison of the number of molecular formulas assigned based on the 
abundance of the peak using sample PMO-1. Panel a shows the comparison between 
UME and MFAssignR, Panel b shows the comparison between Formularity and 
MFAssignR, and Panel c shows the comparison between Composer and MFAssignR. 
Abundance Percentile breaks the abundance into a series of bins, the top 10% most 
abundant peaks are in Pecentile 10, the next 10% are Percentile 20, etc. If the assignment 
ratio is near 100 that means that the non-MFAssignR method assigned the same number 
of molecular formulas as MFAssignR within that abundance percentile. For example, in 
Class 1 all three methods are essentially equivalent to MFAssignR, however, for the least 
abundant peaks (Pecentile 100) Composer only assigns about 50% as many molecular 
formulas. This figure does not compare the molecular formula assignments to see if they 
are the same between each method, it only compares the number of assignments that are 
made within each abundance class. 
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6 Conclusion 

6.1 Overview 

The major focus of this dissertation was to provide a deeper understanding of the 

molecular formula composition of free tropospheric long range transported organic 

aerosol. This aerosol is of interest because it can provide insight into the multiphase 

processes that aerosol undergoes while in the atmosphere, especially with regards to the 

extent of oxidation that occurs in the atmosphere. The molecular formula composition 

aids physical property predictions including: viscosity, volatility, hygroscopicity, and 

light absorption. Each of these are important factors pertaining to the effect of aerosol on 

the climate system. In particular, we focused on samples that were influenced by wildfire 

events, which are a significant contributor to global aerosol loading. These large -scale 

biomass burning events also produce aerosol that is light absorbing. Thus, information 

about the aging of light absorbing species is important for improving predictions of their 

aerosol radiative effect on the climate.  

Samples of organic aerosol were collected at the Pico Mountain Observatory in the 

Azores archipelago during the summers of 2013, 2014, and 2015. OC/EC and IC analyses 

were conducted to determine the bulk organic carbon and ion concentrations and 

ultrahigh resolution analysis FT-ICR MS was done to determine the molecular level 

composition of the samples. Two of the three samples were likely influenced by biomass 

burning, while one was likely anthropogenic in origin. The molecular formula analysis of 

these samples provided unique insight into their potential viscosity during transport. 

Highly viscous or solid aerosol transported in the free troposphere would likely have a 



 

228 

slower rate of oxidation and consequently more persistent light absorbing brown carbon 

species from large-scale biomass burning aerosol. One of these samples was further 

analyzed using tandem ultrahigh resolution FT-ICR MS/MS, which provided a more 

detailed look at the molecular complexity of the aerosol. In addition; information about 

the prevalence of specific functional groups for the molecular species was obtained. The 

detailed analysis of functional groups is valuable for better model predictions of the 

viscosity, volatility, hygroscopicity, and light absorption of organic aerosol.  

Another focus of this dissertation was the development of software tools to streamline 

and improve molecular formula assignment for ultrahigh resolution MS data collected 

using either Orbitrap MS or FT-ICR MS. The software package containing these tools is 

called MFAssignR. The code was written in the R programming language and was 

released on GitHub. The functions apply methods drawn from the literature regarding the 

best strategies for data preparation and molecular formula assignment. The goal of this 

project was to produce a method for molecular formula assignment that was operationally 

transparent and flexible with regard to multielement molecular formula assignments. As 

the project progressed, it shifted towards a developing a full pipeline of functions for data 

preparation and molecular formula assignment.  

6.2 Long-Range Transported Aerosol Collected at the Pico Mountain 
Observatory 

Aerosol samples collected on 27-28 June 2013 (PMO-1), 5-6 July 2014 (PMO-2), and 

20-21 June 2015 (PMO-3) at the Pico Mountain Observatory were analyzed using 

ultrahigh resolution FT-ICR mass spectrometry for molecular formula composition 
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determination. FLEXPART retroplumes for the sampled air masses indicated that: (a) 

PMO-1 and PMO-3 aerosol were transported predominantly through the free troposphere 

and were primarily influenced by wildfire emissions; and (b) PMO-2 aerosol were 

transported primarily through the boundary layer over the Northeast continental U.S. and 

the North Atlantic Ocean and was largely influenced by anthropogenic and biogenic 

sources. Although elevated levels of organic carbon, sulfate, and oxalate were found in 

all three samples, PMO-2 had the overall highest mass fractions of oxalate and sulfate 

indicating a clear influence of aqueous phase processing. The molecular formula 

assignments indicated differences in the aerosol oxidation rates between aerosol 

transported in the free troposphere (PMO-1 and PMO-3) and the boundary layer 

transported aerosol (PMO-2). These observations suggest that the transport pathways, in 

addition to the emission sources, contributed to the observed differences in the organic 

aerosol oxidation. The ambient temperature and RH at upwind times were extracted from 

the GFS analysis in FLEXPART and were used to estimate the glass transition 

temperatures of the aerosol species during transport. The results suggest that the organic 

aerosol components extracted from PMO-1 and PMO-3 were considerably more viscous 

due to lower RH than those from PMO-2 and thus were less susceptible to oxidation. The 

relationship between aerosol viscosity and its susceptibility to oxidation in the free 

troposphere is well supported (e.g., Koop et al., 2011; Berkemeier et al., 2014; Lignell et 

al., 2014; Shiraiwa et al., 2017a). These results suggest that biomass burning emissions 

and brown carbon injected into the free troposphere are more resistant to removal than 

aerosol transported in the boundary layer, due largely to the ambient temperature and 

relative humidity in the free troposphere. Although more work is needed to better 



 

230 

constrain the molecular composition of long-range transported aerosol and the processes 

that affect it during transport, the presented results have broader implications for the 

aging of long-range transported aerosol that is rapidly convected to the free troposphere. 

6.3 Ultrahigh Resolution FT-ICR MS/MS Analysis of Free 
Tropospheric Organic Aerosol 

The ultrahigh resolution FT-ICR MS/MS analysis of PMO-1 has provided novel 

functional group information using exact mass pairing of ions for free tropospheric 

organic aerosol. The most common losses were CO2, C2H4O, and H2O. The prevalence of 

CO2 and H2O losses are consistent with a similar study of atmospheric organic matter in 

fog previously reported by LeClair et al. (2012). However, the loss of C2H4O was not 

previously reported and likely represents a methyl carbonyl from a ketone near the end of 

a carbon chain. Ketones have been reported to be significant components of biomass 

burning aerosol according to the results of bulk methods (Hawkins and Russel, 2010), 

although they decrease with increased aging. Considering the transport time of PMO-1, 

the fraction of ketone functional groups are somewhat high, suggesting that the aging of 

aerosol proceeded more slowly than expected, potentially due to free tropospheric 

transport as hypothesized in Schum et al. (2018). The analysis of these functional groups 

is particularly important for modeling studies because different functional groups have 

different interactions with the environment (Clegg et al., 2019 in review). For example, 

hydroxyl and carboxyl groups are known to greatly increase the hygroscopicity of 

organic aerosol (Petters et al., 2017; Reid et al., 2018; Clegg et al., 2019 in review), 

which plays a significant role in the ability of an aerosol particle to act as a cloud 
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condensation nucleus (Massoli et al., 2010). Being able to constrain the fractions of these 

functional groups present in aerosol is important for better predictions of aerosol-water 

interactions in the atmosphere (Clegg et al., 2019, in review). The viscosity of organic 

aerosol can also be affected by the functional groups present in its component species. 

For example, carboxylic acids can lead to increased viscosity (Rothfuss and Petters, 

2016; Song et al., 2016; Grayson et al., 2017; Reid et al., 2018). This makes the aerosol 

particles more solid and thus more resistant to oxidative processes in the atmosphere 

(Lignell et al., 2014; Hinks et al., 2016; Shrivastava et al., 2017; Schum et al., 2018). The 

carboxyl, hydroxyl, and ketone groups may also increase molecular absorption 

characteristics via change transfer reactions (Phillips and Smith, 2014; 2015). A 

comparison to aerosol collected at the Storm Peak Lab showed less correlation between 

the molecular formulas showing H2O and CO2 losses than is observed in PMO-1. This 

suggests that the structural characteristics of those molecules are different. More 

hydroxyl groups are likely present in the regional biogenic SOA compared to PMO-1 

where H2O losses were strongly correlated to the carboxyl losses. The investigation of 

nitrogen-containing neutral losses demonstrated the prevalence of nitro, nitrate, and 

amine groups in the aerosol molecular formulas. The amine groups were almost always 

observed in conjunction with a more polar/acidic functional group, highlighting their 

multifunctional nature. The nitro groups are consistent with the influence of biomass 

burning aerosol and particularly nitroaromatic compounds. Due to the ability of nitro 

groups to participate in charge transfer, it was hypothesized that these groups could 

contribute to longer wavelength light absorption of the aerosol analogous to the carboxyl, 

hydroxyl, and ketone groups. The neutral losses with sulfur demonstrated a surprising 



 

232 

prevalence of thiol groups in addition to the expected sulfate groups. The thiol groups 

were found to correlate well with more polar/acidic functional groups, which would 

allow them to be observed in negative ESI. The thiol groups were found to be more 

prevalent on aromatic molecules, suggesting that aromatic compounds with sulfur may be 

more likely reduced than oxidized. These results highlight the complexity of organic 

aerosol and the functional groups that are present in it. These results can be used to 

improve model predictions of aerosol and its interactions in the atmosphere.  

6.4 MFAssignR 

We decided to develop and in-house method for molecular formula assignment, called 

MFAssignR due to a lack of transparency and flexibility in the assignment of molecular 

formulas using a commercial software package. The core of the molecular formula 

assignment uses the CHOFIT algorithm developed by Green and Perdue (2015). The 

code was rewritten and expanded in the R programming language for our purposes. In 

order to improve its functionality, we added many quality assurance (QA) parameters to 

remove formulas that are likely incorrect and to decrease the ambiguity of formula 

assignments for a single mass. This is accomplished using formula extensions in a data 

dependent way to decrease the ambiguity without making a priori decisions about which 

molecular formulas be assigned. Despite adding parameters to decrease ambiguity in a 

data dependent way, we also leave the ambiguity that cannot be resolved by our methods 

so that the user can make the decision instead of the program, thereby providing more 

transparency. The ability to assign a variety of heteroatoms was incorporated, allowing 

novel analysis of isotopically labeled samples and chlorinated wastewater. In addition to 
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the molecular formula assignment, new methods for the estimation of the noise level in 

ultrahigh resolution MS and identification of isotope masses prior to molecular formula 

assignment were developed. The noise estimation method simplifies the estimation of 

noise, providing an improvement in accuracy over other noise estimation methods. This 

makes it a valuable contribution to the analysis of ultrahigh resolution MS data. An 

isotope identification function can be used to identify 13C and 34S isotopes and is 

important for decreasing the number of incorrect formula assignments. It was developed 

using well known mass relationships in a unique way providing a reasonably robust 

method to identify isotopic masses not based on molecular formula assignment, which is 

necessary for identification in other molecular formula assignment methods. The final 

component of MFAssignR is the mass recalibration functions. They were developed by 

expanding on previously reported methods (Savory et al., 2011; Kozhinov et al., 2014). 

The recalibration functions remove systematic bias to improve the mass accuracy to < 1 

ppm. A comparison of the new MFAssignR package to pre-existing methods of 

molecular formula assignment found that for samples PMO-1 and PMO-2 MFAssignR 

generally assigns molecular formulas to ~1000 masses that are not assigned a molecular 

formula by the methods we compared it to (Formularity, UME, Composer). This is likely 

due to the extensive formula extension in MFAssignR, and the fact that two of the three 

methods tested used database searches, which limits the potential formulas to be assigned 

to some extent. In contrast, the other methods generally only assigned molecular formulas 

to ~100 masses that were not also assigned by MFAssignR. The exception was UME 

which had ~500 such assignments. Also, relatively few masses assigned a molecular 

formula by MFAssignR and one of the other methods were assigned different molecular 
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formulas. These numbers were presented in Table 5.3. Of particular interest is the 

comparison between MFAssignR and Composer, because the previous work (including 

Chapter 3 and 4 of this dissertation) was done with Composer. This indicates more 

information may be present in the mass spectra. Furthermore, the ability of MFAssignR 

functions to do noise estimation and recalibration is not available in UME and limited in 

Formularity (only recalibration) demonstrating improved functionality of MFAssignR. 

The transparency and comparability of MFAssignR to these other recently established 

methods of molecular formula assignment suggests that MFAssignR will be a valuable 

contribution to the field of ultrahigh resolution MS analysis.  

6.5 Future Work 

The work presented in this dissertation represents an important first step in providing 

information about the molecular formula composition of long range transported organic 

aerosol and molecular formula assignment methods. There are a few topics that deserve 

further study. 

1. Further analysis of organic aerosol transported with the boundary layer and free 

troposphere is needed to investigate the oxidation and potential phase state of 

those samples. This would provide additional support for the hypothesis that free 

tropospheric transport can lead to lower oxidation due to the increased potential 

for solid state aerosol. Further analysis could confirm that aerosol transported in 

the free troposphere is markedly different than boundary layer aerosol, which is 

important for understanding the effect of aerosol on the climate. 
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2. More ultrahigh resolution MS/MS of organic aerosol is another important avenue 

of future research. As highlighted by comparison to biogenic SOA, further 

analysis of a variety of samples may provide valuable information regarding the 

molecular properties of organic aerosol. The use of PCA to do this analysis was 

valuable in highlighting the correlations, and should be used for future analysis as 

well. This information has implications for the aging, volatility, viscosity, and 

hygroscopicity of aerosol from different sources.  

3. Further study regarding the potential for the nitro groups to contribute to light 

absorption via charge transfer is recommended. Few studies have directly studied 

the contribution of the nitro group to light absorption, so additional research, 

including computational predictions would be valuable to see how charge transfer 

works between the nitro, other functional groups, and the aromatic ring and if it 

could be related to increased light absorption. This would have an impact on 

radiative forcing predictions for biomass burning aerosol. 

4. One additional avenue of work highlighted by this dissertation is continued 

improvements to the MFAssignR molecular formula assignment package. Further 

improvements for the isotope filtering and recalibration functions are 

recommended, in addition to continued improvements to the formula assignment 

itself, including the addition of more allowed elements for formula assignment.  
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