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Abstract

Organic aerosol affects human health and climate. These effects are largely determined
by the composition of the organic aerosol, which is a complex mixture of species.
Understanding the complexity of organic aerosol is critical to determining its effect on
human health and climate. In this study, long range transported organic aerosol collected
at the Pico Mountain Observatory was analyzed using ultrahigh resolution mass
spectrometry. Organic aerosol transported in the free troposphere had an overall lower
extent of oxidation than aerosol transported in the boundary layer. It was hypothesized
that the lower oxidation was related to a more viscous phase state of the aerosol during
transport. The results suggest that biomass burning organic aerosol injected into the free
troposphere are more persistent than organic aerosol in the boundary layer. A sample was
also analyzed using tandem FT-ICR MS/MS fragmentation, providing information about
the functional group composition in the aerosol sample. This was done using a segmented
scan approach, which revealed an unprecedented molecular complexity of unfragmented
precursor ions. In addition to the expected CO2 and H20 neutral losses, neutral losses
corresponding to carbonyl functional groups (C2H4O, CO) were observed. The abundance
of carbonyl functional groups suggests a slower rate of aging in the atmosphere. Analysis
of nitrogen and sulfur containing neutral losses highlighted a surprising abundance of
reduced nitrogen and sulfur loss (NH3s and SH>). This further supports the hypothesis of
slower aging in the free troposphere. Additional research was done to develop an R
software package (MFAssignR) to perform molecular formula assignment with improved

decision-making transparency, noise estimation, isotope identification, and mass



recalibration. MFAssignR was found to assign the same molecular formula as other
molecular formula assignment methods for the majority (97-99%) of mass peaks that
were assigned a molecular formula by the compared methods. Additionally, MFAssignR
was more effective at assigning molecular formulas to low intensity peaks relative to the
other methods tested, leading to more overall molecular formula assignments.
MFAssignR is available via GitHub and is the first open source package to contain a full
pipeline of functions for data preparation and analysis for ultrahigh resolution mass

spectrometry.

xi



1 Introduction

1.1 Overview of Aerosol

Atmospheric aerosol are condensed particles suspended in a gas (Poschl, 2005). These
particles range from liquid to solid, meaning that anything from inorganic dust to a cloud
droplet can technically be considered an aerosol particle, although traditionally cloud
droplets are not considered to be aerosol particles (Poschl, 2005). The diameter of aerosol
particles is typically in the range of 10 m to 10* m (Poschl, 2005). In many cases,
aerosol is categorized by its aerodynamic diameter as PMi, PMz.s, or PMio (Shiraiwa et
al., 2017b). PM1 has an aerodynamic diameter of < 1 pm and is classified as ultrafine
aerosol, PMz:s is classified as fine aerosol with an aerodynamic diameter < 2.5 um, while
PMio includes particles with an aerodynamic diameter < 10 pm and is considered to be

coarse aerosol (Shiraiwa et al., 2017b).

Atmospheric aerosol are complex mixtures with inorganic or organic contributions.
Typical sources of inorganic aerosol are both natural and anthropogenic, such as wind-
blown crustal materials (sand and soil) (D’ Almeida and Schutz, 1983;Wetzel et al., 2003;
Englebrecht et al., 2016), ash emissions from volcanic eruption (Schumann et al., 2013),
sea spray (O’Dowd et al., 2004; Prather et al., 2013), road dust from roadways and
vehicle wear (Chiou et al., 2007; Cote et al., 2018), concrete production (Chiou et al.,
2007), and gas emissions from industrial and volcanic sources such as SO2 (Schumann et
al., 2011). Organic aerosol can come from biological sources (pollen, spores) (Burge,
2002; Taylor et al., 2002), biomass burning (wildfire) (Capes et al., 2008; Bougiatioti et

al., 2014), biogenic emissions (Virtanen et al., 2010), sea spray (O’Dowd et al., 2004;



Prather et al., 2013), and anthropogenic sources such as fossil fuel combustion, cooking,
heating, and crop burning (Fine et al., 2004; Volkamer et al., 2006; Buonanno et al.,
2009; Lin et al., 2010). A schematic of the selected emission sources that most relevant
for the production of organic aerosol is shown in Figure 1.1. We will focus on organic
aerosol for the remainder of this introduction because it is the focus of the studies

presented in this dissertation.

[ ] ° )
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Figure 1.1. Schematic of selected emission sources of organic aerosol. The green and red
dots represent fresh (green), and aged (red) aerosol particles. The yellow dots represent
pollen or fungal spores. The black dots represent soot particles. The molecular structures
represent potential gas phase pollutants being emitted from the various sources.

&

1.2 Gas Phase SOA Production

Organic aerosol is a complex mixture made up of thousands of different molecules and
isomers (Walser et al., 2007; Mazzoleni et al., 2012; O’Brien et al., 2013; Wozniak et al.,
2014; Dzepina et al., 2015). There are two major types of organic aerosol, primary and
secondary. Primary organic aerosol (POA) is condensed material directly emitted to the
atmosphere as a condensed particle (Poschl, 2005). Examples include fungal spores or
smoke from wildfires. Secondary organic aerosol (SOA) is formed through chemical

reactions in the atmosphere that produce condensed species (Poschl, 2005; Volkamer et

2



al., 2006). SOA production can occur in the gas phase through processes referred to as
auto-oxidation (Kundu et al., 2012; Ehn et al., 2012; Jokinen et al., 2014; Mutzel et al.,
2015), via condensed phase pathways within aerosol water or droplets (Ervens et al.,
2008; Lim et al., 2010; Ervens et al., 2011), or through heterogeneous pathways (Jang et
al., 2002). Biogenic SOA is often formed from trace gases released from trees such as
terpenes (Ferman et al., 1981; Griffin et al., 1999). Precursors of SOA from
anthropogenic sources are typically aromatic or aliphatic hydrocarbons such as toluene,
benzene, heptanal, and 1-decene (Gelenscer et al., 2004). Once emitted, these gases can
be oxidized in the atmosphere by oxidants such as OH radicals, O3, and NOx (Kanakidou
et al., 2005). Oxidation of the trace gases eventually leads to gas-to-particle partitioning
into a liquid or solid state as the volatility of the compound decreases and other
molecules bind and coagulate together (Kroll and Seinfeld, 2008). This oxidation can
proceed very rapidly leading to highly oxidized molecular species within a few hours
downwind of their emission source (Jimenez et al., 2009; Vakkari et al., 2014). Oxidation
of biogenic terpene precursor molecules can also result in new particle formation as
observed in forested environments such as Hyytiala (Virtanen et al., 2010). Emissions
from biogenic SOA can contribute 12-70 Tg/yr of organic aerosol to the atmosphere
(Hallquist et al., 2009). In contrast, the production of SOA from anthropogenic precursors

is on the order of 2-12 Tg/yr (Hallquist et al., 2009).

1.3 Aqueous Phase SOA Production

SOA can also be produced by aqueous phase processes within cloud or fog droplets

(Blando and Turpin, 2000; Lim et al. 2010; Ervens et al., 2011). Oxidized species are



produced in the aqueous phase become aerosol particles when the water evaporates
(Carlton et al., 2007). Aqueous phase processing has been shown to lead to an overall
higher extent of oxidation than is typically observed from in gas phase experiments (Lim
et al., 2010; Ervens et al., 2011). Although, some recent studies have suggested that the
oxidation from both methods can be comparable (Ehn et al., 2012; Jokinen et al., 2014).
Laboratory studies have shown rapid processing of glyoxal in aqueous solutions produces
organic material that is similar to organic aerosol present in the atmosphere (McNeil,
2015; Hawkins et al., 2016). Predicted pathways for the production of SOA from aqueous
processing include Maillard reactions (Hawkins et al., 2016), Fenton reactions
(Moonshine et al., 2008), radical reactions, non-radical reactions and oligomerization
reactions (McNeil, 2015). Common species that undergo these reactions are water soluble
aldehydes, epoxides, glyoxal, organic acids, amines, and phenols (McNeil, 2015). Some
studies have shown that aqueous processing of glyoxal and pinene SOA together closely
match observations of aged aerosol in the atmosphere, especially with respect to the
production of low volatility oxygenated organic aerosol (LV-OOA) (Lee et al., 2012).
Aqueous processing of methylglyoxal has been found to lead to the production of brown
carbon (BrC), which has an uncertain effect on radiative forcing (De Haan et al., 2017).
The primary source of BrC is biomass burning, which is discussed in Section 1.4. The
heterogeneous pathway for SOA production occurs as an interaction between typically
gas phase compounds and solid phase particles, where the solid phase particles provide a
surface for the reaction to take place (Jang et al., 2002), or directly reacting with the
gases. Heterogeneous reactions are often acid-catalyzed (Jang et al., 2002) and have been

shown to increase organic aerosol formation by a factor of 5 (Jang et al., 2002). The

4



HNO3 and H2SO4 produced from anthropogenic emissions of SO2 and NOx are
significant contributors to the acid-catalyzed reactions common in heterogeneous

pathways.

1.4 Biomass Burning Aerosol

Biomass burning contributes to both POA and SOA (Simoneit, 2002). Biomass burning
emissions undergoes atmospheric processing according to all of the pathways described
above. Biomass burning aerosol is generally less oxidized than aerosol from biogenic or
anthropogenic sources (Aiken et al., 2008; Bougiatioti et al., 2014). Biomass burning
produces black and brown carbon which contributes to its ability to directly absorb light,
and affect the Earth’s radiative balance (Desyaterik et al., 2013; Lin et al., 2015). The
production of light absorbing aerosol from biomass burning depends on the intensity of
the fire. Fires that burn vigorously lead to more complete combustion which typically
produce more black carbon (Hopkins et al., 2007), while a smoldering fire tends to
produce a larger amount of light-absorbing brown carbon (BrC) and tar balls
(Chakrabarty et al., 2010). The fuel type also plays a significant role in the composition
and absorption of the biomass burning aerosol (Levin et al., 2010). Some of the aromatic
compounds that are produced via incomplete combustion are polycyclic aromatic
hydrocarbons (PAH), many of which are known to be carcinogenic and mutagenic
(Perraudin et al., 2006; Bignal et al., 2008). Biomass burning aerosol contributes a large
fraction of the total organic aerosol loading in the atmosphere (Pratt et al., 2010) and as
the frequency and size of wildfires increases (Turetsky et al., 2011), the amount of

aerosol due to biomass burning is expected to increase (Spracklen et al., 2009). Recently,



the absorbance of BrC aerosol produced from biomass burning has been gaining attention
because it has less constrained absorbance characteristics relative to black carbon
(Andrae and Gelencser, 2006; Chakrabarty et al., 2010; Desyaterik et al., 2013; Lin et al.,

2015).

BrC is organic aerosol that absorbs light with a wavelength dependence. BrC does not
absorb light at all wavelengths as efficiently as black carbon, but it does have increased
absorption in the visible wavelengths relative to typical SOA (Andrae and Gelencser,
2006; Chakrabarty et al., 2010). Thus, BrC has an influence on the radiative forcing of
the planet, and this means that biomass burning aerosol has a more complicated effect
than was previously considered (Andrae and Gelencser, 2006). Studies of BrC during
transport have suggested that the light-absorbing BrC components are mostly removed
within ~1 day in the boundary layer (Forrister et al., 2015; Laing et al., 2016), which
would limit its long-range effects. However, based on studies of PAH transport in the free
troposphere (Shrivastava et al., 2017), there is precedence for longer lifetime of aerosol
species transported in the free troposphere, which may also be applicable to BrC. This
could imply greater long-range effects of BrC if it can be transported to the free

troposphere.

1.5 Aerosol Lifetime and Transport

The lifetime of aerosol in the atmosphere can extend from hours to weeks (Poschl, 2005)
and is dependent on the composition of the aerosol and the meteorological conditions it

encounters (Poschl, 2005; Schum et al., 2018). The typical removal mechanisms for



organic aerosol are wet deposition, dry deposition, and oxidative degradation in the
atmosphere (Poschl, 2005). Wet deposition can occur when an aerosol particle acts as a
cloud condensation nucleus (CCN), forming a cloud or rain droplet or when an aerosol
particle is scavenged by a falling water droplet (Poschl, 2005). Dry deposition occurs
either when a particle is too heavy and falls from the sky due to gravity or when it
impacts a surface while aloft, such as a building. (Stefanis et al., 2009). Oxidation of
aerosol through interactions with gas phase oxidants such as (OH, NOx, O3) and aqueous
phase processing can also lead to the removal of aerosol from the atmosphere. Eventually
as the aerosol components are oxidized, they become fragmented into lower molecular
weight volatile compounds, which can evaporate from the aerosol particle or be dissolved
in a water droplet (Kessler et al., 2010; Kroll et al., 2011) and are removed from the
aerosol particle. The lifetime of aerosol in the atmosphere also impacts how far it can be
transported from its source. Several studies have shown transport of several thousand km
from the source region (Damoah et al., 2004; Dirksen et al., 2009). Biomass burning
events are a common source of these long range transported aerosol. This is largely due
to the pyro-convection that can occur over fires, causing aerosol to be injected directly
into the free troposphere (Val Martin et al., 2008a, Kahn et al., 2008). Aerosol in the free
troposphere typically have a longer lifetime than aerosol in the boundary layer due to
fewer oxidants and the cool, dry conditions can cause the aerosol to be in a solid state,
increasing its resistance to oxidative processes (Koop et al., 2011; Lignell et al., 2014;
Hinks et al., 2016). This may also extend to the BrC species, which typically have
lifetimes on the order of 1 day when in the boundary layer (Laing et al., 2015; Forrister et
al. 2016). The transport of these aerosol particles can cause problems downwind of the
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emission sources due to the effect aecrosol has on climate and human health (Shiraiwa et
al., 2017b). A schematic of aerosol production, pyro-convection and transport of aerosol

can be seen in Figure 1.2.
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Figure 1.2. Schematic depicting wildfire pyro-convection of aerosol to the free
troposphere. Green dots indicate fresh aerosol, while red dots indicate increased
oxidation of the aerosol particles. This is done to suggest the difference in rate of
oxidation in the free troposphere relative to the boundary layer. Fire image source:
www.kisspng.com/png-cartoon-fire-flame-clip-art-bbg-fire-cliparts-183620/download-
png.html

1.6 Climate and Health Effects of Aerosol

Relative to atmospheric gases such as CO2 and CHa, the effect of aerosol on the climate
is much less certain (IPCC 2013). Depending on its source and composition aerosol can
have either a warming or cooling effect. This effect can be direct or indirect, which
makes it more difficult to constrain than if aerosol could only affect the climate in one
way. The direct effect of aerosol on the climate is through scattering or absorption of

incoming radiation. Most SOA and sulfate aerosol are considered to be dominated by



scattering (Lin et al., 2014), which has a cooling effect on the atmosphere. In contrast,
soot and BrC species that are emitted from biomass burning strongly absorb light and can
contribute to warming (Lin et al., 2014). Since biomass burning is a significant
contributor to the global aerosol loading (Spracklen et al., 2009; Pratt et al., 2010), its
light absorbing components may have a significant impact on global radiative forcing.
Aerosol also has an indirect effect on the climate through its ability to act as a cloud
condensation nuclei (CCN). Clouds also have a scattering effect on incoming radiation,
which leads to a cooling effect. If aerosol is not hygroscopic, it is less likely to act as a

CCN (Massoli et al., 2010).

The hygroscopicity and number of aerosol also have an effect on visibility in urban and
rural environments (Cheng and Tsai, 2000). Visibility reduction from aerosol happens in
several national parks, such as the Blue Ridge Mountains, where the decrease in visibility
is due to biogenic emissions that readily form aerosol, which can directly or indirectly
obscure views (Ferman et al., 1981). It can also happen in urban environments, where the
aerosol fog can be more hazardous because it contains products from fossil fuel

combustion, which may be toxic.

More importantly urban aerosol and subsequent smog can contain toxic chemicals that
are hazardous for human, animal, and plant health (Shiraiwa et al., 2017b). Urban aerosol
has been shown to contain PAH and other toxic molecules (Ollivon et al., 2002) that are
known to be carcinogenic. The size of aerosol allows them to be directly inhaled, where
some are even small enough (< 0.1 um) to enter the bloodstream, allowing them to be

transported to other organs in the body (Shiraiwa et al., 2017b). In general aerosol have
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been linked to an average decrease in life expectancy of 1.2 years across the globe, with
certain regions, such as Eastern Europe (Russia) having a decrease of 2.5 years (Shiraiwa
et al., 2017b). Pulmonary, cardiovascular, and asthma problems have been linked to
aerosol exposure in several studies (Dockery et al., 1996; Taylor et al., 2002; Franck et
al., 2011). Aerosol particles can have many detrimental health and climate effects and the
major drivers of those impacts are the physical and chemical characteristics of the aerosol

particles.

1.7 Oxidation, Hygroscopicity, Volatility, and Viscosity of Aerosol

1.7.1 Accretion and Oxidation of Aerosol

The major methods of aerosol transformation in the atmosphere are accretion and
oxidation. Accretion can lead to larger molecules as multiple smaller molecules bind
together through hemiacetal formation, aldol condensation, ester formation, organosulfate
formation, and Criegee reactions with alcohol, water, or acids (Kroll and Seinfeld, 2008).
These accretion reactions occur in the particle phase and do not increase the oxidation of
the aerosol species (Kroll and Seinfeld, 2008). The interaction with gaseous and particle
phase species with reactive species such as O3 and OH radicals leads to oxidative
transformations of the molecules (Rudich et al., 2007). The reaction pathways are similar
to those that lead to the production of aerosol described previously (Rudich et al., 2007;
Kroll and Seinfeld, 2008). Rapid atmospheric oxidation has been observed in the
boundary layer for aerosol from anthropogenic (Jimenez et al., 2009), biogenic (Corrigan
et al., 2013; Ehn et al., 2014; Jokinen et al., 2014), and biomass burning emission sources

(Capes et al., 2008; Bougiatioti et al., 2014; Vakkari et al., 2015). In contrast, some
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studies have reported lower relative oxidation for aerosol that was transported in the free
troposphere (DZepina et al., 2015; Schum et al., 2018). Increased oxidation leads to
increased water solubility and hygroscopicity (Rudich et al., 2007; Kroll and Seinfeld,
2008; Massoli et al., 2010), and decreased volatility (Jimenez et al., 2009; Li et al., 2016)
in condensed molecules. Continued oxidation can also lead to fragmentation and re-

volatilization of the small fragments (Kroll et al., 2011).

1.7.2 Aerosol Hygroscopicity

Hygroscopicity refers to the ability of aerosol to take up water from its surroundings.
Some types of inorganic aerosol are very hygroscopic, such as sulfate and nitrate aerosol
(Cruz and Pandis, 2000; Lightstone et al., 2000). For this reason, these types of inorganic
aerosol have been included in models in order to predict the hygroscopicity of aerosol
(Petters and Kreidenweis, 2007) and to predict the aerosol water content (Nenes et al.,
1998). Inorganic components of aerosol are a significant portion of the overall aerosol
mass, so considering them is a good way to predict hygroscopicty and aerosol water
content. However, organic material typically makes up 20-90 % of the total aerosol mass
fraction (Jimenez et al., 2009), so understanding its contribution to the aerosol
hygroscopicity is very important. Hygroscopicity of an aerosol particle relates to its
ability to act as a cloud condensation or ice nuclei (CCN and IN respectively) (Massoli et
al., 2010; China et al., 2017). As the hygroscopicity increases it becomes a better nucleus
(Massoli et al., 2010). The formation of these cloud droplets leads to wet deposition or

additional oxidation through aqueous oxidation pathways (McNeil et al., 2015).
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1.7.3 Aerosol Volatility

In addition to the hygroscopicity, the oxidation of organic species affects the volatility of
the molecules in organic aerosol. Volatility determines the equilibrium of molecules
between the gas and condensed phases. Five categories of volatility are defined for
atmospherically relevant species; volatile organic compounds (VOC), semi-volatile
organic compounds (SVOC), intermediate volatility organic compounds (IVOC), low
volatility organic compounds (LVOC), and extremely low oxidation organic compounds
(ELVOC). The volatility of a compound affects its ability to nucleate new aerosol
particles (Kanakidou et al., 2005) and its transformation in the atmosphere. Several
methods have been developed to predict the volatility of organic molecules in aerosol
(Donahue et al., 2011; Li et al., 2016). These methods rely on the molecular composition
of the species present in the organic aerosol to do these predictions. The method
described in Donahue et al., (2011) was designed for compounds that contain carbon,
hydrogen, and oxygen, while the method from Li et al. (2016) can be applied to
molecular formulas with sulfur and nitrogen. These methods make assumptions about the
functional groups that are present in the species because the functional groups have an
impact on the volatility of the molecule (Kanakidou et al., 2005). For example, a carboxyl
group causes a greater decrease in the volatility than a hydroxyl group (Kanakidou et al.,
2005; Rothfuss and Petters, 2016). In general, the more oxygen functional groups that are
present on a molecule, the less volatile it is (Kanakidou et al., 2005). The volatility is also
related to the viscosity and phase state of aerosol particles (Li et al., 2016; Rothfuss and

Petters, 2016).
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1.7.4 Aerosol Viscosity

Viscosity is the measure of the flow rate of a substance. As viscosity increases aerosol
particles are considered to become marble-like amorphous spheres. Until recently it was
expected that the majority of organic aerosol was liquid or perhaps semi-solid, but in a
study of newly formed particles over Hyytiala Finland (Virtanen et al., 2010) showed that
some particles “bounced” when drawn into a multi-stage aerosol impactor designed to
collect particles with different aerodynamic diameters. The “bouncing” suggested that the
aerosol was in a solid state. This study provided field confirmation for some laboratory
studies that had suggested aerosol could exist in a highly viscous solid-state (Zobrist et
al., 2008; Koop et al., 2011). The viscosity of aerosol is very important because it can
affect the degree of aerosol oxidation, potentially contributing to greater transport
distances for molecular species than are predicted with the assumption of liquid aerosol
(Shrivastava et al., 2017). Aerosol in the liquid state is more susceptible to chemical and
photo oxidation because the oxidants can more easily mix with the organic species within
an aerosol particle (Berkemeier et al., 2014; Lignell et al., 2014; Hinks et al., 2016).
When aerosol is in the solid phase it can have a greater resistance to these environmental
conditions, which may lead to lower oxidation than would be observed for a similar
particle in the liquid state (Berkemeier et al., 2014; Lignell et al., 2014; Hinks et al.,
2016). Contributing factors to the phase state of organic aerosol can be its composition
(Rothfuss and Petters, 2016; Zelenyuk et al., 2017) and its environmental conditions
(Koop et al., 2011; Shiraiwa et al., 2017a; DeRieux et al., 2018). A recent study by
Zelenyuk et al. (2017) has shown that the addition of PAH to pinene SOA can lead to the
formation of a highly viscous “shell” that greatly decreases the diffusivity of oxidants
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through the particle. Since PAH are a known product of incomplete combustion from
both wildfires and anthropogenic sources, this may suggest a greater propensity for these
aerosol to be viscous in the atmosphere. However, the biggest driver of viscosity, is the
meteorological conditions around the aerosol, particularly the ambient temperature and
relative humidity (Schum et al., 2018). In cold, dry conditions the aerosol are much more
likely to be in a solid state than if it is warm and wet (Koop et al., 2011; Shiraiwa et al.,
2017a). The major reason for this is that water is an excellent plasticizer for typical
aerosol species (Koop et al., 2011; Shiraiwa et al., 2017a). A plasticizer is a compound
that can cause a compound to soften. A plasticizer works by lowering the overall glass
transition temperature (Tg) of the mixture (Koop et al., 2011) and since the Tg of water is
136 K compared to a typical aerosol compound with Tg of ~300 K (Schum et al., 2018), it
is a very effective plasticizer. Tg is not the same as the melting temperature (Tm), but is
related. The relationship between Tg and the melting temperature has been determined to
be Tg = 0.6 * Tm (Koop et al., 2011; Rothfuss and Petters, 2016). Tg is appropriate for
determining the phase state of aerosol particles because it is an un-ordered mixture of
many different organic and inorganic molecules, which makes it more glass-like than
crystalline. The glass transition temperature can be related to viscosity by considering the
ambient temperature and relative humidity. If the ambient temperature is higher than Tg,
then the compound will be either liquid or semi-solid, and if Ty is greater than the
ambient temperature, the compound will be solid (Shiraiwa et al., 2017a). The relative
humidity plays a significant role because it can lower the T of a compound based on the
plasticizing effect of water (Koop et al., 2011; Shiraiwa et al., 2017a). For example, if a
compound has a dry Tg well above the ambient temperature, it can still be liquid or semi-
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solid after the relative humidity adjustment to a wet Tg value. This effect can be estimated
using the Gordon-Taylor equation, which was developed for polymers, but works for
organic aerosol as well (Gordon and Taylor, 1952; Koop et al., 2011; Shiraiwa et al.,
2017a). The potential importance of viscosity on aerosol lifetime and transport was
highlighted in several recent studies (Shiraiwa et al., 2017a; Shrivastava et al., 2017),
where it was suggested that the solid phase state of aerosol could lead to an increased
lifetime and transport distance of aerosol species expected to have much shorter lifetimes.
The study by Shrivastava et al. (2017) found that by considering phase state in their
modeled transport of PAH they better reproduced field observations of PAH
concentrations in regions far from their sources. The transport of carcinogenic PAH has a
potential important impact on human health. Our recent study of organic aerosol
collected at the Pico Mountain Observatory (PMO) observed a lower than expected
oxidation of aerosol species after long range transport, which was attributed, in part, to

the aerosol phase state during transport (Schum et al., 2018; see also Section 3.6).

1.7.5 Predicting Aerosol Viscosity

Recent studies by Shiraiwa et al. (2017a) and DeRieux et al. (2018) presented methods to
estimate the Tg of molecular compounds with masses from 100 -1000 Da that contained
carbon, hydrogen, and oxygen. In Shiraiwa et al. (2017a) the estimation covered masses
from 100-400 Da and was used to model the phase state of SOA at different levels of the
atmosphere, finding that at higher altitudes SOA was predicted to be more solid. This
observation is consistent with the expectation of cold, dry conditions leading to solid

aerosol particles. The equation from DeRieux et al. (2018) was optimized for masses
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from 100-1000 Da and was used in a recent study by Schum et al. (2018; see also Section
3.6) to predict the glass transition temperature of organic aerosol collected at PMO, more
discussion about this is in Chapter 3. The viscosity, volatility, and hygroscopicity of
aerosol are all affected by the functional groups that are present on the molecules
(Rothfuss and Petters, 2016), a discussion of functional groups and their effect on these

characteristics is provided in the following paragraph.

1.8 Functional Groups

1.8.1 Functional Group Overview

The functional groups of organic aerosol species are important to their chemical,
physical, and optical properties (Kanakidou et al., 2005; Rothfuss and Petters, 2016).
This has motivated multiple studies to determine which functional groups are present in
aerosol. Most studies focused on the bulk composition of functional groups by FT-IR or
NMR analysis (Decesari et al., 2000; 2007; Hawkins and Russell, 2010; Takahama et al.,
2013). These studies have reported that oxidized functional groups such as carboxylic
acids, alcohols, and ketones are common components of aerosol species, in addition to
the carbon backbone functional groups such as alkanes, alkenes, and aromatics. The
prevalence of certain functional groups has been shown to increase or decrease with
atmospheric aging of the aerosol. For example, a study by Hawkins and Russell (2010)
showed that fresh biomass burning aerosol had a large fraction of carbonyl groups, but as
the sample aged, the fraction of carboxyl increased as carbonyl groups decreased. The
increase in carboxyl functional groups with aging has been demonstrated in several

studies (Hawkins and Russell, 2010; Takahama et al., 2013). Functional group analysis
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has also shown the presence of sulfur and nitrogen containing functional groups such as

sulfate, nitrate, and nitro groups (Clegg et al., 2008).

1.8.2 Effects of Functional Groups

The presence of the above-mentioned functional groups can affect the hygroscopicity,
volatility, viscosity, and light absorption of the aerosol species in the atmosphere
(Kanakidou et al., 2005; Rothfuss and Petters, 2016; Li et al., 2016). In recent studies the
effect of multiple hydroxyl groups on viscosity was investigated (Rothfuss and Petters,
2016). They found that with each additional hydroxyl group that was added, the viscosity
of the particles increased by approximately 0.8 orders of magnitude. They observed a
similar trend for the addition of carboxyl and nitrate groups (Rothfuss and Petters, 2016).
Other functional groups such as carbonyls and esters did not have an impact as significant
(Rothfuss and Petters, 2016). Similar studies have been performed with regard to the
hygroscopicity of species with additional oxygenated functional groups which were
found to lead to increased hygroscopicity (Massoli et al., 2010). It has also been reported
in the literature that the addition of oxygen to a molecule can lead to a decrease in the
volatility (Li et al., 2016). Functional groups on the molecular species have also been
suggested to have some influence on the light absorbing ability of organic aerosol
particles (Gelenscer et al., 2003; Kanakidou et al., 2005; Phillips and Smith, 2014; 2015).
The studies by Phillips and Smith (2014; 2015) suggested that some of the absorbance
observed for aerosol species, especially at higher wavelengths, was due to charge transfer
between adjacent functional groups such as carboxylic acids and alcohols. Measured and

predicted functional groups are often used in modeling studies in order to predict the
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interactions of aerosol in the atmosphere (Kanakidou et al., 2005; Petters and
Kreidenweis, 2007; Rothfuss and Petters, 2016; Clegg et al., 2019 in review) therefore
more information is valuable to better constrain these models. Bulk functional groups do
not provide mass information, or any specifics about molecular structure. A study of
select species in atmospheric organic matter by LeClair et al. (2012), investigated
functional groups using tandem ultrahigh resolution MS/MS analysis (LeClair et al.,
2012). Lower resolution tandem MS/MS has been used to investigate select species in
dissolved organic matter (Leenheer et al., 2001). Such studies have seen limited use in
analyzing complex mixtures. A major reason for this is the mass spectral complexity
makes it difficult to perform comprehensive analysis due to the large number of peaks to
be interpreted. Chapter 4 of this dissertation provides a discussion of the composition and
functional groups identified through MS/MS for a long range transported organic aerosol

sample.

1.9 Instrumentation

1.9.1 Example of Ultrahigh Resolution MS Applications

Organic aerosol is analyzed using many offline analytical methods such as NMR, FT-IR,
UV-Vis spectroscopy, fluorescence spectroscopy, ion chromatography, and mass
spectrometry (Duarte et al., 2005; Decessari et al., 2007; Agarwal et al., 2010; Hawkins
and Russell et al., 2010). Here we focus on ultrahigh resolution mass spectrometry.
Ultrahigh resolution MS has been used to analyze a variety of natural organic matter such
as rain water (Altieri et al., 2009), fog water (Mazzoleni et al., 2010), cloud water (Zhao

et al., 2013; Cook et al., 2017), aerosol (Schmitt-Kopplin et al., 2010; Wozniak et al.,
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2014; Willoughby et al., 2016; Brege et al., 2018), dissolved organic matter (Hertkorn et
al., 2008; Kujawinski et al., 2009; Hawkes et al., 2016), and even the organic matter in a
meteorite (Schmitt-Kopplin et al., 2010). There are two instruments capable of ultrahigh
resolving power, one is the Fourier transform ion cyclotron resonance mass spectrometer
(FT-ICR MS), and the other is the compact high field Orbitrap Elite MS
(ThermoScientific). The FT-ICR MS is the first instrument capable of ultrahigh
resolution and was developed by Comissarow and Marshall (1974). Certain versions of
this instrument are capable of having a resolving power greater than 2,700,000 at mass to
charge (m/z) of 400 (Smith et al., 2018), which is superior to the Orbitrap. The Orbitrap
was developed by Makarov (2000). The compact high field Orbitrap can reach a
resolving power of 240,000 at m/z 400, and with a developer add-on it can reach a
resolving power of 480,000 at m/z 400. This resolution is sufficient to separate peaks that
differ by mDa mass differences such as SHa4 vs. C3, which has a mass difference of 3.4
mDa. Separation of these peaks is necessary to identify sulfur containing compounds,
which are an important component of many aerosol samples (Schmitt-Kopplin et al.,
2010). The ultrahigh resolution offered by these instruments is critical to obtaining the
molecular level composition of complex mixtures such as organic aerosol (Schmitt-

Kopplin et al., 2010).

1.9.2 Brief Theory of FT-ICR MS

FT-ICR instruments use a super conducting magnet to obtain extreme mass resolving
(Marshall and Hendrickson, 2008). Generated ions are transported through ion focusing

and mass filtering components and then accumulated using an ion trap, before ICR
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analysis. When the ions enter the ICR cell they encounter a magnetic field which bends
the ions path into a circle by the Lorentz force. This path is the cyclotron resonance
motion of the ion. The initial cyclotron radii are small and unable to be measured, so the
ions are excited by an RF electric field pulse which excites the ions and causes their
cyclotron radii to expand to move according to their cyclotron frequency while
continuing their original circular orbit (Marshall and Hendrickson, 2008). Ions with the
same mass form coherent packages, which induce an image current on the detector plates.
This time-domain signal is then converted to frequency-domain spectrum via Fourier
transformation which can be converted to mass measurements (Marshall and
Hendrickson, 2008). A schematic of an ICR cell, the movement of ions within it, and the

transformation of the signal to a mass spectra can be seen in Figure 1.3.
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Figure 1.3. Schematic of an ICR cell with an illustration of the ion movement. Image
source: https://commons.wikimedia.org/wiki/File:FTICR cell.png
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1.9.3 Brief Theory of Orbitrap MS

For the Orbitrap MS the initial stages are similar to the FT-ICR, but before the Orbitrap is
a bent ion trap called a C-trap. The C-trap is used to compact the ion beam so that they
can be injected simultaneously into the Orbitrap at the correct velocity and angle. The
velocity and angle are very important to ensure that the ions properly orbit the inner
spindle. The inner spindle is electrically charged to attract the ions, but when the ions are
injected at the proper velocity and angle, they start to orbit the spindle instead of crashing
into it (Makarov, 2000). The voltage on the inner spindle electrode creates an electric
potential with the virtual ground outer electrode (Michalski et al., 2012). This potential
increases at the end of the spindle and pushes the ions back toward the center of the trap.
This back and forth movement, while orbiting the center spindle is the cause of the
increased resolving power because it separates the ions by mass (Makarov, 2000). Then
the ion image current is detected and Fourier transformed into mass measurements, like
with the FT-ICR MS (Makarov, 2000). A schematic of an Orbitrap can be seen in Figure

1.4.
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Figure 1.4. Schematic of an Orbitrap analyzer demonstrating the spindle shape and ion
injection from the C-trap. Image source: https://en.wikipedia.org/wiki/Orbitrap.

1.10 Methods of Ionization

Typically, ultrahigh resolution MS is coupled with a soft ionization technique, to allow
for the detection and measurement of molecular ions. The most common method of soft
ionization is electrospray ionization (ESI). ESI works by applying a high voltage to a
stream of liquid coming from a small inner diameter capillary, this field causes excess
charge accumulation leading to the formation of a Taylor cone (Cech and Enke, 2001).
When the Rayleigh limit is reached, a spray of charged droplets are released (Cech and
Enke, 2001). These charged droplets then travel towards the inlet of the instrument,
during which time the solvent evaporates, causing the most surface-active ions to be
enhanced (Cech and Enke, 2001; de Hoffman and Stroobant, 2007). This ionization

process can be used to produce negative or positive ions depending on the voltage
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polarity. Negative mode ESI ionizes polar, acidic molecules most efficiently (Cech and
Enke, 2001) and so it is commonly used as the main ionization source for organic
aerosol, since the species are expected to be relatively polar and acidic (Bougiatioti et al.,
2016). Positive ESI is more effective for relatively reduced and basic molecules (Cech
and Enke, 2001). It has begun to be used more commonly in recent studies of natural
organic matter as analysts attempt to get a more comprehensive view of the molecular
composition of their samples (Hertkorn et al., 2008). Other ionization methods that are
becoming more common are atmospheric pressure chemical ionization (APCI) and
atmospheric pressure photoionization (APPI). Compared to ESI these methods are more
efficient in ionizing less polar, and higher aromaticity compounds. APPI, in particular, is
better for aromatic species (Hertkorn et al., 2008). APPI works by vaporizing a sample
stream using a heated chamber to rapidly dry the droplets. Photons from a lamp (typically
krypton) are used to ionize molecules, which then are transported into the instrument (de
Hoffmann and Stroobant, 2007). Sometimes a dopant such as toluene is added to the
solvent to facilitate ionization of the analyte through the transfer of a proton, or electron.
(de Hoffmann and Stroobant, 2007). Similar to APPI, APCI occurs in the gas phase, so
after vaporization molecules are ionized using a corona discharge needle (de Hoffmann
and Stroobant, 2007), which causes proton transfer (positive mode), abstraction (negative
mode), or adduct formation (both), causing the ionization of the molecules (de Hoffman
and Stroobant, 2007). For the studies presented in this dissertation, negative ESI was

primarily used.
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1.11 Competitive Ionization and Segmented Scanning

ESI is a competitive process, meaning that if a particular molecule is very easily ionized
it will be detected more easily than other ions in the mixture. This means that the
observed ion intensity is not directly related to the analytes concentration in the sample
(Cech and Enke, 2001) thus the ion intensity is not quantitative. Additionally, most ion
trap type instruments have a maximum limit on the number of ions. This is done to avoid
space-charge effects, which can significantly impact the mass measurement accuracy of
the measurements (Belov et al., 2003; Kozhinov et al., 2013). The combination of the ESI
competitive process and the limited number of ions can lead to suppression of the lower
abundance or lower ionization efficiency species in a sample. This happens because the
species that are easily ionized/more abundant will fill up the ion trap quickly, making it
much more difficult to detect the low efficiency/abundance ions. A schematic of this
process is given in Figure 1.5. One way to increase the overall sensitivity to less
efficient/abundant ions is to use a segmented scanning technique (Southam et al., 2007).
Using shorter ion segments, there is a smaller mass range of ions attempting to enter the
trap, so the detection of less abundant ions is improved. This method has been used
previously for crude oil samples (Gaspar and Schrader, 2012), but has not been reported

for organic aerosol prior to this dissertation (Chapter 4).
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Figure 1.5. Schematic of full scan analysis vs. small window analysis. Red circles
represent high concentration/ionization efficiency species, blue represent low
concentration/ionization efficiency species.

1.12 MS/MS Fragmentation

1.12.1 Fragmentation Methods

While the ability to detect unfragmented molecular ions is very helpful for determining
the molecular mass and formula for molecules it provides very little information about
the structure of the molecule that was detected. To get structural information requires the
use of tandem MS/MS to fragment the ions and provide functional group and other
structural information (Gross, 2017). There are a variety of fragmentation methods that
are used in ultrahigh resolution MS instrumentation such as collision induced dissociation
(CID), infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD),
and electron transfer dissociation (ETD). ECD and ETD are methods that are well suited

for the fragmentation of large multiply charged ions such as proteins (Gross, 2017). They
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work by sending a beam of low energy electrons at the ion (ECD) or transferring an
electron from a singly charged anthracene or fluoranthene ion to the multiply charged ion
(ETD) (de Hoffman and Stroobant, 2007). IRMPD fragments ions by directing IR laser
pulses at the ions, this increases the energy in the bonds until they fragment (de Hoffman
and Stroobant, 2007; Gross, 2017). The most commonly used fragmentation method is
CID, which fragments ions by having them collide with non-reactive gas molecules such
as He or N2 (de Hoffmann and Stroobant, 2007; Gross, 2017). This fragmentation takes

place in the linear ion trap (Michalski et al., 2012).

1.12.2 Fragmentation Mechanism Overview

The following is a brief overview of some of the more common and well-described
fragmentation mechanisms in MS/MS. Simple cleavages are either radical site initiated
(a-cleavage) or charge site initiated (inductive cleavage) (McLafferty & Turecek, 1993;
Gross, 2017; de Hoffman and Stroobant, 2007). Radical site-initiated fragmentation
occurs in odd electron (OE) ions, where an electron is either removed (positive mode) or
added (negative mode) to ionize the molecule. In an alpha cleavage, the odd electron is
donated to form a new bond with an adjacent atom. This causes the cleavage of the other
bond to this atom, leading to a neutral loss. Inductive cleavage happens at the site of the
charge and can apply to even electron ions. Unlike the alpha cleavage, inductive cleavage
attracts an electron pair from a bond to the charge site, leading to the cleavage of that
bond. The ability of a charge site to do this is influenced by the electronegativity of the
atom, halogens have the strongest tendency to do this, followed by oxygen and sulfur,

with nitrogen and carbon being the least likely (McLafferty & Turecek, 1993). There are
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also rearrangement fragmentation pathways such as the McLafferty rearrangement where
an unpaired electron can be donated through space, forming a new bond on an adjacent
atom. The McLafferty rearrangement is a radical site-initiated process, although there are

similar processes for charge site-initiated rearrangements.

Negative ions are often even electron ions and contain less energy than positive ions,
causing them to produce fewer fragments. A review by Bowie et al. (1990) highlighted
four major fragmentation pathways for even electron negative ions. One was a simple
homolytic cleavage with the loss of a radical causing the formation of a stable radical
anion. The second was the formation of an anion complex, which can undergo several
reactions such as elimination processes and direct displacement of the anion. The third
was a reaction where the initial deprotonated ion doesn’t really fragment, but after a
proton transfer a new anion is formed that can fragment. There is also the possibility of
rearrangement reactions. Other identified pathways for negative ions are charge site
driven fragmentation and charge remote fragmentation (Stroobant et al., 1995). The
charge site driven fragmentation is analogous to the charge site driven fragmentation of a
positive ion and the charge remote fragmentation (CRF) occurs when the charge is unable
to migrate to the point of fragmentation, which is more prevalent when an ion has
increased unsaturation (Stroobant et al., 1995). CRF can also occur for positive ions (de

Hoffman and Stroobant, 2007).

1.12.3 Interpretation of MS/MS Fragmentation

The fragments generated by these mechanisms can then be used to interpret the original

structure. For complex mixtures such as organic aerosol, it is difficult to isolate peaks for
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fragmentation. So, many peaks are fragmented simultaneously. To complicate matters
even further, each measured precursor mass is likely a mixture of isomers (Zark et al.,
2017). So, the fragment ions may originate from many different structures. Nonetheless,
analysis of the neutral losses can be useful because it can provide information about the
functional groups. Some neutral losses, such as H20, can be lost from either a hydroxyl
or carboxyl group, which makes it harder to determine a particular structure (Kerwin et
al., 1996; Leenheer et al., 2001). The water loss from a carboxylic acid can occur by
removal of the hydroxyl group (Jensen et al., 1985; Bowie et al., 1990; Kerwin et al.,
1996) or by having two carboxyl groups interact with one another to form a five or six
membered ring that leads to the elimination of H2O (Leenheer et al., 2001; Witt et al.,
2009). For both pathways, the loss of H20 from a carboxylic acid is expected to be
favored for aliphatic molecules relative to more olefinic or aromatic molecules (Kerwin
et al., 1996; Leenheer et al., 2001). The loss of COz2 is more specific to carboxylic acids
(Leenheer et al., 2001; LeClair et al., 2012). Other commonly observed neutral losses are
C2H40, CO, CH40, C204, and H402. The C2H4O neutral loss is likely related to a ketone
carbonyl functional group, CH4O is likely a methoxy group, while C204 and H4O2
represent double losses of CO2 and H20 respectively. While the CO loss is often related
to carbonyl functional groups, it can also be produced from phenols via multistep
rearrangements (Gross, 2017). The large number of ways that CO can be produced makes
it difficult to use for structure identification (Gross, 2017). These functional groups can
be used to improve model estimates of aerosol hygroscopicity (Clegg et al., 2019 in

review).
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1.13 Data Analysis, Preparation, and Molecular Formula Assignment

1.13.1 Mass Calibration

Before the raw data can be used to draw conclusions, it must be analyzed. The most
powerful aspect of ultrahigh resolution MS is that it can obtain exact mass measurements
that allow the analyst to determine molecular formulas. There are many considerations
that must be taken before assigning a molecular formula to a mass. One of the key
considerations is the mass accuracy of the measurement. While ultrahigh resolution MS
instruments are capable of measuring exact masses, if they are not carefully calibrated the
masses may not be within the error tolerance of the theoretical mass of the compounds.
The first step of ensuring mass accuracy is performing an external calibration of the
instrument measurements prior to analysis. This is typically done with a mix of
compounds from the instrument manufacturer or a custom calibration solution, such as
arginine clusters (Schmitt-Kopplin et al., 2010). The initial external calibration is critical
to obtaining good mass accuracy in measurements, but it is not typically sufficient to get
mass accuracy down to the parts-per-billion level, which is preferred for highly complex
mixtures such as petroleum and aerosol. Mass error is typically reported in ppm for

measurements with ultrahigh resolution MS and is calculated using Equation 1:

Th_mass—Exp_mass

ppm error = * 100 Eq.1

Th_mass

where ppm error is the mass error, Th_mass is the theoretical exact mass of the molecular
formula, and Exp_mass is the experimentally measured mass of the peak assigned with

the formula. In order to get the required mass accuracy additional internal recalibration
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techniques must be applied. One method uses an added compound of a known mass and
identity and then is used to correct the mass spectrum based on the mass shift observed
for that peak. This method is not the best option for complex mixtures because the spiked
compound may distort the abundances of the analyte peaks due to ionization competition
(Zhang et al., 2011) and also because the mass shifts are not the same across the entire
spectrum (Savory et al., 2011), which makes it unlikely that a range of masses will be
recalibrated correctly. A common method of doing recalibration in complex mixtures is
to choose a series of peaks that are commonly present in a sample and use those to
recalibrate the spectrum (Savory et al., 2011). These recalibrant peaks can be
contaminants in the sample or any other known series that can easily be identified. There
are a variety of methods that have been developed to recalibrate mass spectral data from
ultrahigh resolution MS instrumentation. Many of these methods were developed for FT-
ICR MS (Wong et al., 2006; Savory et al., 2011) largely because it has been around
longer than the Orbitrap, but some more recent studies have developed recalibration
methods that were specifically designed for Orbitrap (Gorshkov et al., 2010), while

others are applicable to both Orbitrap and FT-ICR (Kozhinov et al., 2013).

1.13.2 Noise Estimation

Another key aspect of data preparation for analysis is to determine the noise level of the
signal. If the noise is over or underestimated there is the potential for analyte peaks to be
removed (over estimation) or for noise peaks to be included as analytes (underestimation)
(Riedel and Dittmar, 2014). There have been many methods reported for evaluating the

noise level of a sample (Riedel and Dittmar, 2014; Zhurov et al., 2014; Kilgour et al.,
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2017; Zielinski et al., 2018). Some simple methods to estimate the noise involve finding
an extended range of the mass spectrum that does not show any analyte signal and then
using that range to calculate the average noise (Kew et al., 2017). This method is easy to
implement, but it can lead to incorrect assessments of the noise level because the noise is
not necessarily the same across the entire spectrum (Hawkes et al., 2016), in fact a study
has found that the region that is most often free of analytes also has the highest noise
level for FT-ICR (Hawkes et al., 2016). Some other methods use histograms of the
intensity values of the raw mass spectrum, which can show a clear separation between the
low intensity “noise” peaks and the high intensity analyte peaks (Zhurov et al., 2014;
Zielinski et al., 2017). Another reported method uses the average of the noise for multiple
blank samples run under the same conditions as the test sample to estimate the noise level
(Riedel and Dittmar, 2014). Another method for noise estimation uses isotopic patterns to
identify the noise level in a segmented way across the entire mass spectrum (Kilgour et
al., 2017). Still other methods use the mass defect of the masses in order to pull out the
peaks that are most likely to be noise peaks and then averages them in order to provide an
estimate of the noise (Riedel and Dittmar, 2014; see also Section 5.3). All of these
methods have advantages and disadvantages in terms of implication and effectiveness,
but one of them should be used to remove the noise in a mass spectrum before attempting
to assign molecular formulas. More discussion of these noise estimation methods is in

Chapter 5 of this dissertation.
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1.13.3 Molecular Formula Assignment

After the noise estimation and recalibration of the mass spectrum has been performed
molecular formulas can be more confidently assigned to the measured masses. There are
a multitude of commercial, open source, and other reported methods for molecular
formula assignment (Kujawinski and Behn, 2006; Tolic et al., 2017; Leefmann et al.,
2019; Green and Perdue, 2015; Stranz, 2015; Kunenkov et al., 2009; Tziotis et al., 2011;
PetroOrg, 2014; Schum et al., 2019). The most simple method of molecular formula
assignment is to take the experimental mass and try every combination of atoms within
limits set by the user to determine a molecular formula that matches the mass. This brute
force method will eventually get the correct answer, but it will also generate a large

number of molecular formulas that do not make any chemical sense.

1.13.3.1 Quality Assurance Parameters

The most egregious incorrect formulas can be removed by a variety of tests and rules
such as the Senior valence rules (Senior, 1951; Kind and Fichn, 2007; Green and Perdue,
2015), the nitrogen rule (Kind and Fiehn, 2007), the DBE-oxygen rule (Herzsprung et al.,
2014), and atomic ratios (oxygen-to-carbon, hydrogen-to-carbon, etc.). Three Senior rules
are used for determining chemical feasibility of a molecular formula, one is that the sum
of valences or total number of odd valence atoms is even, the second is that the sum of
valences must be greater than or equal to the maximum valence times two, and the third
is that the sum of valences is greater than or equal to the number of atoms times 2 minus

1 (Kind and Fiehn, 2007). The valences refer to the number of open holes in the

outermost layer of electrons, so for example carbon typically has a valence value of 4.
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Some atoms such as sulfur can often have valences anywhere from 2 to 6 depending on
the oxidation of the sulfur atom, so previous studies have used the largest valence values
to try to avoid removing formulas that are otherwise chemically feasible (Kind and Fiehn,
2007). The nitrogen rule states that any molecule with an odd number of nitrogen atoms
must have an odd neutral mass (Kind and Fiehn, 2007). The DBE minus oxygen rule
(DBE-O) was used to separate formulas for data collected in the negative mode into
possible, unlikely, and unthinkable molecular formulas (Herzsprung et al., 2014). The
typical range of possible molecular formulas was from -10 < DBE-O < 13. Using these
rules and others a large portion of the chemically non-feasible assignments can be

removed. More description of these rules and others is provided in Chapter 5.

1.13.3.2 Formula Extension

Mathematical calculations are at the core of all the methods that are used to assignment
molecular formulas, but many use formula extensions in order to lessen the
computational burden and to lower the chances of incorrect assignments. A Formula
extension uses a seed formula with a known molecular formula to assign other masses
that are related to it through chemical series. These chemical series can be identified by
using a Kendrick mass defect (KMD) analysis with a specific base unit. A common base
unit is CH2, the exact mass of which can be used to renormalize the measured masses so
that when masses vary only by the number of CHz (14.01565 Da) they have the same
KMD This is analogous to how masses are typically normalized to '2C having the exact
mass of 12. To support the KMD value, a z* value can be calculated (Hsu et al., 1994;

Stenson et al., 2003). This value is the nominal mass series value for the mass. If z* and
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KMD are used in conjunction with each other, any masses that vary by CH2 must have
the same value of both. This relationship means that if any mass within the series is
assigned a molecular formula, the other masses can be assigned a molecular formula by
adding or subtracting CHz units from the assigned formula. Any repeating mass unit can
be used as a formula extension, some that have been used in molecular formula
assignment packages include O, CH20, Ha2, H20, and COz (Stranz, 2015; Tolic et al.,
2017; Schum et al., 2019) Typically, the masses at the low end of the series are directly
assigned molecular formulas and then the assignment is extended to the rest of the masses
in the series. The primary reason for assigning the low masses is that as the mass
increases, the number of possible molecular formula assignments increases exponentially,
even when chemical feasibility tests are applied (Kind and Fiehn, 2007, Koch et al.,

2007).

1.13.3.3 Formula Assignment Methods

While many formula assignment methods use a mathematical calculation to get
preliminary assignments, some also use database matching as a method to assign
molecular formulas (Kujawinski and Behn, 2006; Tolic et al., 2017; Leefmann et al.,
2018). Database matching means that the assignment method has a list of exact masses
with their formulas and it will check the experimental masses against the masses within
its database and if there is a match, it will assign that as the molecular formula for the
mass. This can be useful for increasing the speed of assignment because it negates a large
portion of the time-consuming calculation, but it is limited to molecular formulas in the

database. Large databases can limit the impact of this, because as more atoms and larger
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masses are put into a database, it can become unmanageably large and impractical to use
(Leefmann et al., 2018). Instead of brute force methods, some studies have developed
algorithms that perform calculations, but are able to avoid the majority of the loops
required to try all the difference combinations of molecules by assigning the formulas
using low mass moieties such as CH4O-1 and C40-3 (Green and Perdue, 2015; Perdue and

Green, 2015). A detailed discussion of this method is provided in Chapter 5.

1.14 Organization of the Dissertation

The first chapter of this dissertation is the introduction. The second chapter contains the
instrumental methods, parameters, and equations used for Chapters 3 and 4. Chapters 3-5
describes the results of three projects that comprised the majority of my doctoral work
which was focused on the analyzing the molecular composition of aerosol samples
collected at the Pico Mountain Observatory, and the development of software tools for
data preparation and molecular formula assignment for ultrahigh resolution mass

spectrometry data.

The first project (described in Chapter 3) is the analysis of three organic aerosol samples
(PMO-1, PMO-2, PMO-3) that were collected at the Pico Mountain Observatory, this
study has already been published (Schum et al., 2018). The samples in this study were
analyzed using FT-ICR MS, ion chromatography (IC), and an organic carbon/elemental
carbon analyzer (OC/EC). FT-ICR MS was used to determine the molecular composition
of the samples, while IC and OC/EC were used to determine bulk anion/cation and

organic carbon concentrations respectively. The key observation obtained from FT-ICR
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MS analysis was that the overall extent of oxidation of PMO-1 and PMO-3 aerosol was
lower than expected based on their atmospheric transport time. The study hypothesized
that the transport of the sample through the free troposphere, which is generally cool and
dry, contributed to an increased viscosity of the organic aerosol and subsequently
increased its resistance to oxidation, as has been suggested by other studies (Koop et al.,
2011; Lignell et al., 2014; Hinks et al., 2016). In contrast, PMO-2 was transported
through the boundary layer and was evaluated to determine if aqueous processing was a
contributing factor to its higher observed oxidation despite its shorter transport time. The
ion concentrations obtained from ion chromatography were used as supplemental data for
identifying the sources of the samples and markers of potential aqueous processing.
Additionally, FLEXible PARTicle (FLEXPART) model analysis was performed by a
collaborator for these samples. The model provided the transport times, possible emission
sources, and the ambient temperature and RH, which was used to predict the glass

transition temperature using the equations from DeRieux et al., (2018).

The second project (described in Chapter 4) is a deeper analysis of PMO-1 using a
segmented scanning approach with tandem MS/MS using an FT-ICR MS. The segmented
scanning approach was used to improve the instrument sensitivity and provide functional
group information molecular species present in organic aerosol. This study highlights an
unprecedented mass spectral complexity resulting from the segmented scanning
technique. Some implications about the composition of biomass burning organic aerosol
are presented in this work, including the importance of non-oxygen heteroatoms and

highly aromatic molecular species. The other major aspect of this chapter is the
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identification of functional groups using MS/MS fragmentation. The type and number of
functional groups is discussed, but the main focus is relating the observations of
functional groups to the molecular aspects of the base molecule (e.g. aromaticity,
oxidation, size). This analysis was largely done using principle components analysis
(PCA) with the functional group loss types as the variables. The observations from this
analysis were used to interpret relationships between certain types of neutral losses and

also some potential environmental interactions.

The third project (described in Chapter 5) is the development of a software package for
ultrahigh resolution MS data preparation and molecular formula assignment. The package
is called MFAssignR and is written in R and has been released on GitHub (Schum et al.,
2019). The package contains functions for noise estimation, isotope identification,
recalibration, and molecular formula assignment. This package represents one of a few
open source packages that contain all these functions necessary for the analysis of
ultrahigh resolution MS data, typically this pipeline is only available in commercial
software (Leefmann et al., 2018). Chapter 5 will discuss the theory behind the functions,
how they work, and the literature that led to their development, along with
demonstrations of the function outputs. Chapter 6 provides the main conclusions and

implications for the studies aerosol and ultrahigh resolution MS data analysis.
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2 Methods

2.1 Pico Mountain Observatory

The Pico Mountain Observatory (PMO) (also denoted as PICO-NARE, OMP, and PIC in
various studies) is located on Pico Island in the Azores archipelago. The observatory
itself is in the summit caldera of Pico Mountain 2225 m above sea level and was
established by the late Dr. Richard Honrath and colleagues in 2001. The boundary layer
height in this region is typically 500-2000m during the summer (Kleissl et al., 2007,
Rémillard et al., 2012; Zhang et al., 2017) which places the observatory within the free
troposphere for the majority of the summer (Zhang et al., 2017). The ability to do long
term sampling within the free troposphere is nearly unique to this site, in fact a recent
study suggested that PMO is one of the best free tropospheric sampling mountain sites in
the world (Collaud Coen et al., 2018). The ability to collect aerosol in the free
troposphere is important because the characteristics of the free troposphere are different
than the boundary layer in terms of temperature, relative humidity, and oxidant
concentrations, which all have an impact on aerosol aging and transport. The Azores-
Bermuda anticyclone causes persistent downward mixing from the upper free troposphere
and stratosphere, which allows the collection of aerosol at those levels of the atmosphere
on occasion (Zhang et al., 2017). A study using the FLEXible PARTicle dispersion
model (FLEXPART) by Zhang et al., (2017) has shown that this site is most often
influenced by North American outflow (30-40%). More specifically, in the summer
months 15% of the air masses that intercept PMO are North American anthropogenic

outflows, while 7.3% are influenced by wildfires (Zhang et al., 2017). The relative
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prevalence of these types of outflows make PMO an excellent site to study the effects of
long-range transport on North American gas and aerosol emissions (Val Martin et al.,
2008a). Several studies at PMO have investigate outflows of NOx, NOy, CH4, non-
methane hydrocarbons, and O3 gases (Val Martin et al., 2006; Pfister et al., 2006; Val
Martin et al., 2008a; Val Martin et al., 2008b; Helmig et al., 2015). Fewer have
investigated aerosol at the site (Fialho et al., 2005; China et al., 2015; Dzepina et al.,
2015; China et al., 2017), with only one (DZepina et al., 2015) looking into the molecular
and chemical composition of aerosol, prior to the study described here (Schum et al.,

2018). An image of the mountain and the station itself can be seen in Figure 2.1.
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Figure 2.1. Photos of the research station on the summit caldera of Pico Mountain (a)
and Pico Mountain from neighboring Faial Island with the mountain summit above the
cloud layer (b).

2.2 Sample Collection

PM:.5 samples were collected at PMO on 8.5 x 10 in. quartz fiber filter using high volume
air samplers (EcoTech HiVol 3000, Warren, RI, USA) operated at an average volumetric

flow rate of 84 m> hr'! for 24 h. Prior to sampling, the filters were wrapped in clean,
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heavy-duty aluminum foil and baked at 500 °C for ~ 8 hours to remove organic artifacts
associated with the filters. Afterward, they were placed in antistatic sealable bags until
deployment. We deployed four air samplers at the site, each was set up with a filter
simultaneously and programmed to start one day after another, allowing for continuous
sample collection for up to four consecutive days. This procedure was used to maximize
the number of filters collected. Daily visits and maintenance were prohibited by the time
consuming and strenuous hike necessary to reach the site. The sampled filters were
removed and returned to the same aluminum wrapper and bag. The samples were then
brought down the mountain and stored in a freezer until cold transport back to Michigan
Tech where they were stored in a freezer until analysis. Three samples, collected in
consecutive years at PMO, on 27-28 June 2013, 5-6 July 2014, and 20-21 June 2015 were
analyzed in this study. The sampling time for all samples was 24 hours; on 27-28 June
the sampling began at 19:00, on 5-6 July and on 20-21 June the sampling began at 15:00,

all local times.

2.3 Sample Preparation

2.3.1 FT-ICRMS

The samples for FT-ICR-MS analysis were selected based on the organic carbon
concentration. Selected samples typically had more than 1000 pg of organic carbon per
quartz filter. Sample preparation was described in detail in previous studies from our
group (Mazzoleni et al., 2010, 2012; Zhao et al., 2013; Dzepina et al., 2015). Briefly, one
quarter of the quartz filter was cut into strips, placed in a pre-washed and baked 40 mL

glass vial, and then extracted using ultrasonic agitation in Optima LC/MS grade
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deionized water (Fisher Scientific, Waltham, MA, USA) for 30 minutes. The extract was
then filtered using a pre-baked quartz filter syringe to remove undissolved material and
quartz filter fragments. The sample filter was then sonicated again in 10 mL of Optima
LC/MS grade deionized water for 30 minutes, filtered, and then added to the original 30
mL of filtrate yielding a total of 40 mL. Ice packs were used during the sonication to
ensure the water temperature stayed below 25 °C. The water-soluble organic carbon
(WSOC) compounds were then isolated using Strata-X (Phenomenex, Torrance, CA,
USA) reversed phase solid phase extraction (SPE) cartridges to remove inorganic salts
that can adduct with organic compounds during electrospray ionization. During the
reversed phase SPE, losses of highly water soluble, low molecular weight (MW) and
hydrophobic, high MW organic compounds are expected. Thus, the resulting WSOC is
the SPE-recovered fraction. The cartridges were pre-conditioned with acetonitrile and
LC/MS grade water before the 40 mL filtrate was applied to the cartridges at a rate of ~ 1
mL/min. The cartridges were eluted with 2 mL of an aqueous acetonitrile solution (90/10
acetonitrile/water by volume) and stored in the freezer until analysis. The procedural loss
of ionic low MW compounds such as oxalate can lead to an underprediction of the
organic aerosol O/C and overprediction of the average glass transition temperatures (Tg).
To investigate this, we used the concentrations of the prominent organic anions measured
with ion chromatography to estimate the abundance of these compound relative to the
compounds detected by FT-ICR MS. The low MW organic anion corrected average O/C
values correlated with the trends of the original O/C values, however the significance of
impacts varies with the measured analyte concentrations and the assumptions associated

with the uncertain mass fraction of the molecular formula composition (Table SM4).
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When low MW organic anions were included in the estimated average dry Tg values, they
dropped by < 2.5 %, which was deemed relatively insignificant. More discussion of this

can be seen in section 2.7

23.2 OC/EC

Sample preparation consisted of taking 16 mm diameter circular punches from the sample
filters and putting them in the OC/EC instrument. This was done at least three times for

each sample.

2.3.3 Ion Chromatography

The samples were prepared using the California Air Resource Board method (California
Environmental Protection Agency, 2011). Briefly, five square punches of 3.98 cm? each
were taken from each filter and placed into a pre-cleaned 15 mL disposable centrifuge
tube, to which 100 pL of isopropanol was added to help dissolve the less soluble organic
species. Finally, 12 mL of 18.2 MOhm deionized water from an Easy Pure water system
(Barnstead, ThermoFisher Waltham, MA, USA) were added to each centrifuge tube.
These samples were then sonicated for 60 minutes with blue ice added to the sonication
bath to keep the temperature below 25 °C. Once sonicated, the samples were stored in
the refrigerator overnight and transferred with 0.45 um nylon syringe filters (Fisher
Brand, Waltham, MA, USA) and sterile 3 mL syringes (BD, Franklin Lakes, NJ, USA) to
5 mL IC vials (Thermo Scientific, Waltham, MA, USA) the following day. The samples

were then run on the IC system.
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2.4 Instrument and Quality Assurance Parameters

2.4.1 FT-ICR General Parameters and Quality Assurance

Ultrahigh resolution mass spectrometric analysis was done using FT-ICR MS with ESI at
the Woods Hole Oceanographic Institution (Thermo Scientific LTQ Ultra). The samples
were analyzed using direct infusion ESI in the negative ion mode. Negative polarity is
effective for the deprotonation of polar organic molecules (Mazzoleni et al., 2010), which
are expected to dominate the organic aerosol mass fraction and were the focus of this
study. The spray voltage ranged from 3.15 to 3.40 kV depending on the ionization
stability with a sample flow rate of 4 to 5 pL/min. We used a scan range of m/z 100 —
1000 with a mass resolving power of 400,000 (defined at m/z 400) for all samples. The
samples were run in duplicate and 200 transient scans were collected. The transients were
co-added for each replicate run using the Midas Co-Add tool and molecular formula
assignments were made using Composer software (Stranz, 2015), as described in

previous studies (Mazzoleni et al., 2012; DZepina et al., 2015).

The resulting molecular formula assignments underwent additional quality assurance
(QA) data filtering to remove chemically unreasonable formulas with respect to O/C,
hydrogen to carbon ratio (H/C), double bond equivalent (DBE), and absolute PPM error
as described in the Supplemental Information of Putman et al. (2012). Molecular
formulas in common with the instrument blanks with signal intensity ratios < 3 were
removed; meanwhile analytes in common with the field blanks with signal intensity ratios
< 3 were flagged. Specifically, two formulas (Ci17H3404 and C19H3304) observed in PMO-

1 could not be classified as pertaining only to the field blank and so they were not
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removed. The quality assurance (QA) was performed to eliminate improbable molecular
formulas and possible contaminants for each of the ultrahigh resolution FT-ICR mass
spectra consistent with previous studies from our group (Putman et al. 2012; Mazzoleni et
al. 2012; Dzepina et al. 2015). First, molecular formulas with extremely high or low O/C
(>2,<0.1), H/C (>2.2, <0.3), and DBE (>20) are removed. All of the known solvent
contaminant peaks and isolated assignments that are not associated with a CHz
homologous series are removed. Blank subtraction was done by finding the ratio of
intensities between a sample and a blank and then formulas with intensities < 3x larger
than in the blank are removed or flagged. After this is done, replicate analyses of the
samples are evaluated and only the formulas that are present in both replicates are
retained. To produce the final data set for each sample, the replicates were aligned and

only the molecular formulas found in both replicates after QA were retained.

2.4.2 FT-ICR Tandem MS/MS

Scan windows were set every 5 m/z from m/z 165 to 465, and m/z 520 with a width of 6
m/z, allowing 0.5 m/z overlap between each scan to ensure complete coverage and
address edge effect to some extent as describe in Kiddo-Soule et al. (2010). Overall, a
total range of ~300 m/z was collected. Scan windows in different mass ranges were
collected using different resolving powers, m/z 165 to 295 was collected in 100K (@ m/z
400) resolving power, m/z 300 to 415 was collected in 200K, and m/z 420 to 465 (and
520) was collected in 400K. This was done to increase the scan rate at the lower mass
ranges where fewer masses were expected, and then to have higher resolving power at the

higher mass ranges where the complexity of the unfragmented and fragmented scans was
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expected to increase. The fragmentation method used was collision induced dissociation
(CID) with fragmentation energies of 25-35 depending on how the scan range
fragmented. For each mass window, 55 scans were collected and then co-added using the
MIDAS Co-Add tool before being assigned formulas using Composer. The assignment
parameters were 1-100 carbon, 4-200 hydrogen, 1-60 oxygen, 0-3 nitrogen, and 0-1
sulfur. The abundance cut off was set at 10 times the signal to noise. After formula
assignment quality assurance steps to remove the unlikely formulas were done according
to the parameters previously used in other studies (Putman et al., 2012; DzZepina et al.,
2015). Additionally, the DBE minus oxygen cut, described by Herzsprung et al. (2014)

was employed to remove as many questionable formulas as possible.

2.4.3 Organic and Elemental Carbon Analysis

For each sample collected, a minimum of three circular 16 mm diameter filter punches
were analyzed. If all three punches had consistent organic carbon concentrations (relative
standard deviation, RSD < 15 %), the average value was used to determine the total
loading of OC on the filter and in the air during the sampling period. If the replicates
were inconsistent, more replicates were analyzed until at least three were consistent.
Elemental carbon measurements were also obtained with this instrument, but in nearly all
cases they were below the detection limit (~0.1 pgC/filter punch), so those values are not

reported.
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2.4.4 TIon Chromatography

PMO samples were also analyzed for major anions and cations using ion chromatography
(IC). Anion analysis was performed using a Dionex ICS-2100 instrument (Thermo
Scientific) with an AS-17-C analytical and guard column set (Thermo Scientific) using a
KOH generator for gradient elution. The gradient elution had the following steps: -5 -0
min., Equilibrate, 1 mM KOH, 0 — 15 min., Isocratic, ] mM KOH, 15 — 20 min., Ramp, 1
— 10 mM KOH, 20 — 30 min., Isocratic, 10 mM KOH, 30 — 40 min., Ramp, 10 - 20 mM
KOH, 40 — 45 min., Isocratic, 20 mM KOH, 45 — 55 min., and Ramp, 20 — 40 mM KOH.
Cation analysis was performed using a Dionex ICS-1100 instrument with CS-12A
analytical and guard column set (Thermo Scientific) and an isocratic 20 mM
methanesulfonic acid eluent. The instruments were operated in parallel using split flow
from autosampler. After the ion concentrations were determined, they were background

subtracted using field blanks from PMO.

2.5 Data Analysis

All analysis of data was done using custom scripts written in the R programming
language (R Core Team, 2017). Packages used to perform data analysis and visualization
are dplyr, (Wickam et al., 2018), ggplot2 (Wickam, 2016), tidyr (Wickam and Henry,
2018), colorRamps (Keitt, 2012), lemon (Edwards, 2018), cowplot (Wilke, 2017)
ggbiplot (Vu, 2011), and base R functions. The PCA analysis described in Chapter 4 was
done with the base R function prcomp() and the visualization was done with the ggbiplot

and ggplot2 packages.
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2.5.1 PCA Analysis

A long-standing method for investigating the correlation between different data sets is
principal components analysis (PCA), which has been used in the past for looking into
the correlation between different samples (Zhao, 2014, Wozniak et al., 2014). PCA
reduces the dimensions in a multivariate data using a linear combination of variables to
create new variables, called principal components (PC). These PC each represent a
certain amount of the variance in the sample with PC1 accounting for the most variance,
PC2 for the second most, etc. There are the same number of PC as there are variables in
the data set, but typically the first 2 or 3 PC are enough to account for the vast majority of
the variance in the data set can be accounted for. The amount of variance each PC
accounts for is related to their eigenvalue which is determined based on the sum of
squared distance from the origin for each of the observations on the line of best fit for the
data set. The eigenvalues for each of the PC (which are eigenvectors) are added up and
the percentage of the total each eigenvalue makes up determines the percentage of
variance each PC accounts for. A visualization of the variance from each PC is the Scree
plot, which shows the amount of variance each PC makes up, an example Scree plot can
be seen in Figure 2.2. Determining how many PC are important for representing the
sample as accurately as possible is facilitated with this plot because the decrease in
variance is observed visually. In general, “elbow” of the plot is where the number of
important PC values can be determined. With the PC determined, the point can be plotted
in a 2-D plot with PC1 and PC2 (PC3, PC4, etc.) on each axis and the correlations
between the different data points can become apparent. The loadings of each variable can
be added to this plot to make a so-called PCA biplot. The loadings represent the
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importance of each variable in the variance accounted for by each PC, the greater the
distance for the origin the greater the effect. An example biplot can be seen in Figure 2.3,
for this plot the loadings are represented by arrows, so the longer the arrow, the more
effect on variance. The angle between points is also important, if two arrows are in the
same direction that means that they are correlated, if the arrows are at 90° from each

other, they are not correlated, and if the arrows are at 180° they are negatively correlated.

Loss.pca
o
v —
o O
(0]
o
c
S
©
> N~
o]
\o
—— o
\0
— 5 o . .
-0
| T T T T T T l | |
1 2 3 4 5 6 7 8 9 10

Figure 2.2. Example Scree plot for 10 PC values. The “elbow” of this plot can be
observed at PC2.
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Figure 2.3. Example PCA biplot using PC1 and PC2.

2.6 FLEXPART Numerical Simulations

Retroplume analysis was conducted using the Lagrangian particle dispersion model
FLEXPART. (Seibert and Frank, 2004; Stohl et al., 2005; Owen and Honrath, 2009). In
this study we report three specific events, one that took place on June 27 (19:00) -28
(19:00), 2013 (PMO-1), one on July 05 (15:00) - 06 (15:00), 2014 (PMO-2), and one on
June 20 (15:00) - 21 (15:00), 2015 (PMO-3). FLEXPART was used to determine the
sources, ages, and transport pathways of the aerosol samples collected at PMO.
FLEXPART backward simulations (also called retroplumes) were driven by meteorology

fields from the Global Forecast System (GFS) and its Final Analysis with 3-hour
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temporal resolution, 1° horizontal resolution, and 26 vertical levels. The output was saved
in a grid with a horizontal resolution of 1° latitude by 1° longitude, and eleven vertical
levels from the surface to 15,000 m a.s.l. For each simulation, 80 thousand air parcels
were released from the receptor and transported backwards for 20 days to calculate a
source-receptor relationship (in units of s kg-1, Seibert and Frank, 2004). FLEXPART
retroplumes were then multiplied with CO emission inventories (kg s-1) from the
Emissions Database for Global Atmospheric Research (EDGAR version 3.2 (Olivier and
Berdowski, 2001)) and the Global Fire Assimilation System (Kaiser et al., 2012) to
estimate the influence from anthropogenic and wildfire sources, respectively. The
FLEXPART CO tracer calculated with this approach indicates the relative contributions
from anthropogenic and biomass burning emissions. Since CO chemistry and dry
deposition are not considered in the FLEXPART setup, the absolute FLEXPART CO
value does not reproduce the actual CO concentrations at Pico. FLEXPART does not
consider the background CO accumulated in the atmosphere. The difference between
FLEXPART CO and the actual CO largely depends on these factors. In previous
applications of this approach, FLEXPART CO was able to estimate the episodes of CO
enhancement due to transport of emissions (e.g., Brown et al., 2009; Stohl et al., 2007,
Warneke et al., 2009). This approach has been used in several PMO studies and
successfully captured elevated CO periods (e.g., DZepina et al., 2015; Zhang et al., 2014;
2017) and it is used here to assist in the interpretation of the chemical composition in this
work. In addition to the typical FLEXPART simulations done for the site (e.g.,
retroplume, CO source apportionment), we extracted the ambient temperature and
relative humidity (RH) from the GFS analysis data for model grids along the FLEXPART
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simulated transport pathways. These parameters were then used to estimate the glass
transition temperatures (Tg) of the organic aerosol components during transport, based on
its molecular composition from ultrahigh resolution MS, using estimation methods
recently developed by Shiraiwa et al. (2017a) and extended to higher masses by DeRieux

etal. (2018).

2.7 Error Sensitivity Tests

2.7.1 Estimation of the SPE Sample Preparation Effect on the Total WSOC
Properties

As mentioned in the main paper, the solid phase extraction of WSOC results in the loss of
some low molecular weight (MW) polar organic species and some high MW nonpolar
species. Since the low molecular weight species are studied using ion chromatography,
the major ions and their concentrations are known. Specifically, oxalate, formate, and
acetate which are the most abundant can cause an underprediction of the average O/C
value and an overprediction of average Tg values for a sample. In an effort to constrain
the potential impact of this effect on our results, we used the concentrations of 5 organic
acids detected by ion chromatography, along with their O/C values, and Boyer-Kauzmann
rule (Tg = g*Tm, g =0.7) (Shiraiwa et al., 2017a; DeRieux et al., 2018) estimated Tg
values to estimate the weighted and unweighted average O/C and T values for the three

samples if the organic acids were included.

To estimate the contribution of each organic anion to the overall organic mass, the mass
concentrations were normalized by the organic mass (OM) concentration. The organic

mass concentration was estimated by multiplying the measured OC concentration by 2,
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consistent with El-Zanan et al. (2005). The mass fractions were then multiplied by the
sum of the total ion abundance in the mass spectrometry data (using assumption that they
made up 50, 70, or 100% of organic mass) in order to roughly determine the potential ion
abundances relative to those that were studied after SPE. While the results of the negative
mode ESI do not likely represent the entirety of all organic species in the aerosol extracts,
the polar compounds expected in water extracts are best ionized by this method and are
expected to make up the majority of species (< 70%; Samburova et al., 2013). The
estimated relative abundance of the low MW anions was used in conjunction with their
O/C and Tg values to calculate a new weighted average for all of the compounds available
for each sample. Using this approximation, we found that the addition of these small
compounds had a very minor impact on the T values because they decreased by < 2.5 %
at most. The percentage increase of the O/C values for the three samples varied from 20
% for PMO-1 to 42% for PMO-2. The ion weighted O/C value for PMO-1 is 0.58, for
PMO-2, 0.81, and for PMO-3 is 0.57. The results confirm our observation that PMO-2
has much higher average O/C than PMO-1 or PMO-3, and that PMO-1 and PMO-3 have
low O/C, considering their transport time in comparison to other studies (Bougiatioti et
al., 2014). Based on these results, we conclude that although the loss of some low MW
compounds using SPE can cause an under or an over prediction of some values, the effect
in the case of the samples in this study is minimal and does not change the implications

of our observations. Tables 2.1-2.5 contain the values described in this discussion.
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Table 2.1. The concentrations of the ions used for the estimation and the organic mass
(OM) concentration. The values are in pg/m?® air.

Ion PMO-1 PMO-2 PMO-3
Formate 0.0289 £ 0.0003  0.00438 = 0.00007 0.0119+0.0001
Acetate 0.0519 £0.0001  0.004587 +0.000005  0.0071 + 0.0002

Oxalate 0.0938 £0.00070 0.0897 +0.00181 0.0522 £+ 0.00002
Malonate  0.00605 £+ 0.0003  0.00548 += 0.0007 0.0045+ 0.0003
Lactate 0.0292 £0.0004  0.0019 +0.0001 0.00467 = 0.0001
OM 4.14 +£0.04 0.956 + 0.052 1.74 £ 0.20

Table 2.2. The percent mass fraction of each ion.

Ion PMO-1 PMO-2 PMO-3
Formate 0.698 0.458 0.684
Acetate 1.25 0.479 0.409
Oxalate 2.27 9.38 3.00

Malonate 0.146 0.573 0.259
Lactate 0.705 0.199 0.268

Table 2.3. The estimated Tg values for the acid form of each ion as estimated using their
melting points and the Boyer-Kauzmann rule with g = 0.7.

Ton T,
Formate 197.1
Acetate 202.83
Oxalate 324.21
Malonate 285.6
Lactate 202.79
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Table 2.4. Estimated average O/C values when the ions are considered. The table
contains the results for 3 assumptions of the organic mass fraction represented by the FT-
ICR MS identified species (100%, 70%, 50%). The numbers in parentheses show the
percent change in average O/C from the O/C without ions considered.

RA

Weighted Ions and RA  Ions and RA Ions and RA

O/C without Weighted Weighted O/C  Weighted
Sample Ions (100%) O/C (100%) (70%) O/C (50%)
PMO-1 0.48 0.53 (10.42%) 0.55 (14.58%) 0.58 (20.83%)
PMO-2 0.57 0.70 (22.81%) 0.75 (31.58%) 0.81 (42.11%)
PMO-3 0.45 0.52 (15.56%) 0.54 (20.00%) 0.57 (26.67%)

Table 2.5. Estimated average Tg values when the ions are considered. The table contains
the results for 3 assumptions of the organic mass fraction represented by the FT-ICR MS
identified species (100%, 70%, 50%). The numbers in parentheses show the percent
change in average Tg from the T without ions considered. All Tg values are in K.

RA Weighted Ions and RA Ions and RA Ions and RA
T, without Weighted T, Weighted T, Weighted T,
Sample Ions (100%) (100%) (70%) (50%)
PMO-1 328.75 32438 (1.33%)  322.67 (1.85%)  320.51 (2.51%)
PMO-2 32645 324.43 (0.619%) 323.71 (0.839%) 322.85 (1.10%)
PMO-3 326.88 324.41 (0.756%) 323.44 (1.05%)  322.22 (1.43%)
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2.8 Equations

Equation 2. 1. The average oxidation state of carbon (OS.) from Kroll et al. (2011).

Sulfur and nitrogen can change the oxidation of the molecular species, which varies
based on their oxidation state. In this case, sulfur and nitrogen are assumed to be fully
oxidized.

Eq. 2.1 #0 #H #N #S
OSe~2* 4=~ 3¢ ~°*%#c °*ucC

Equation 2. 2. The aromaticity index (Al) from Koch and Dittmar (2006; 2016). This is
the most conservative method for calculating aromaticity as it assumes that all oxygen is
in carbonyl groups. The threshold for olefinic species is 0 <Al < 0.5, for aromatic it is
0.5 <AI <£0.67, and for condensed aromatic it is 0.67 < Al = 1. All other species are
defined as AI = 0 making them aliphatic.

1+4C—-0—-S5S-05H —05 %N
C—0—-S—-N

Eq. 2.2 Al =

Equation 2.3. The modified aromaticity index (Almod) from Koch and Dittmar (2006;
2016). Here it is assumed that half of the oxygen is in carbonyl groups. The threshold for
olefinic species is 0 < Almod < 0.5, for aromatic it is 0.5 < Almod < 0.67, and for condensed
aromatic it is 0.67 < Almod = 1. All other species are defined as Almod = 0 making them
aliphatic.

1+C—-05%x0-S5—-05xH—-05%xN
C—-05*x0—-S—-N

Eq. 2.3 AlLyoq =

Equation 2. 4. The number of double bond (and rings) equivalents (DBE). C represents
carbon, H represents hydrogen, X represents halogens, and N represents nitrogen.
Elements with 2 covalent bonds (oxygen and sulfur) are cancelled out in this equation.

Eq. 2.4 DBE=#C+1—#7H_#_X+#_N

2 2
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Equation 2. 5. Estimation of the glass transition temperature from DeRieux et al., 2018.
ng is the carbon reference number (12.13 £ 2.66), b, by, and b, are the contributions of
each atom to T, and b, and b, represent the contribution of carbon-hydrogen and

carbon-oxygen bonds respectively. For CHO molecular formulas the values for these
terms are as follows: bc = 10.95 + 13.60, bu = -41.82 + 14.78, bcu = 21.61 £ 5.30, bo =
118.96 +9.72, and bco = -24.38 + 4.21. This equation determines the dry glass transition
temperature. The Gordon-Taylor Equation (Eq. 2-6) is required to convert the glass
transition temperature for non-dry conditions.

Eq.2.5

T,= (nd + In(n.)) b + In(ny) by + In(ny) In(ny) byt In(ng) by + In(ne) In(ng) beg

Equation 2. 6. Gordon-Taylor Equation from DeRieux et al. (2018). This is used to
calculate the glass transition temperature in humid conditions. w,,.; is the mass fraction
of organics, Ty, is the glass transition temperature for water (136 K), kg is the Gordan-

Taylor constant (assumed to be 2.5, consistent with DeRieux et al., 2018 and Shiraiwa et
al., 2017a), and T 4.4 is the dry glass transition temperature calculated by Eq. S5. For
more detail see DeRieux et al., 2018 and Shiraiwa et al., 2017a.

Eq.2.6

1
(1 - Worg)Tg,w + k_Worng,org
GT

Tg (Worg) = 1

(1 - Worg) + k_GTWorg
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Equation 2.7. Adapted Gordon-Taylor equation with inputs for relative humidity (RH),
dry glass transition temperature, and ambient temperature. This generates the phase state
ratio (PSR), which predicts the phase the molecular species is likely in, PSR >=1 is solid,
PSR >=0.8 & PSR <1 is semi-solid, and PSR < 0.8 is liquid. This equation converts w,,,

to a relative humidity dependent term as described in DeRieux et al. (2018) and Shiraiwa
et al. (2017a), and converts 1/k; to 0.4, which is its value using the assumption of k ;.

equals 2.5. Tamb is the ambient temperature. The relative humidity dependent Tg is
calculated using the calculation in the numerator.

Eq. 2.7

1.4« RH 1.4 x RH
oM T 00 ), sass0as 2T 100 ),
1.28 * RH : 1.28 * RH g org
14 - 100

100
14 - LA RH 14 - LA-KH
1- - + 04 + .
128 «RH T 128 +RH
14 - =56 14 - =S5
Phase State Ratio =
Tamb
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3 Physical and Molecular Composition of Long-Range
Transported Free Tropospheric Organic Aerosol

3.1 Brief Introduction to Study

The first study to be described in this dissertation is the analysis and interpretation of 3
long range transported organic aerosol samples that were collected at the Pico Mountain
Observatory (PMO) in the summers of 2013, 2014, and 2015. This study was published

as Schum et al., (2018) and this chapter borrows heavily from that paper.

For a brief overview for the following chapter, three organic aerosol samples were
collected at the Pico Mountain Observatory (PMO) in the summers of 2013, 2014, and
2015. The samples were collected on quartz filter paper for 24 hours each on June 27-28,
2013 (PMO-1), July 5-6, 2014 (PMO-2), and June 20-21, 2015 (PMO-3). The sampling
time began at 19:00 for PMO-1, and 15:00 for PMO-2 and PMO-3, all times local. The
samples were then stored in a freezer before being transported back to Michigan Tech,
where they were again stored in a freezer until analysis. For this study the samples were
analyzed with three different instruments, OC/EC analyzer (Model 4, Sunset Laboratory
Inc. Tigard, OR, USA) for bulk organic carbon concentration, ion chromatography (IC)
for bulk anion and cations concentration, and Fourier transform ion cyclotron resonance
mass spectrometry (FT-ICR MS) to investigate the molecular composition of the
samples. The sample preparation and parameters used for these instruments can be seen
in Chapter 2. To get back trajectory and source region information we used FLEXPART

modeling, which was performed by our collaborator Dr. Bo Zhang.
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3.2 FLEXPART Retroplume Simulation Results

Representative FLEXPART retroplumes for the three samples are shown in Figures 3.1-
3.3. PMO-1 (Figure 1) was largely influenced by North American outflow transported
relatively high (> 5 km) in the free troposphere. Based on the FLEXPART carbon
monoxide (CO) modeling (Figure 3.4), PMO-1 was impacted by wildfire emissions from
Canada. The transport time for PMO-1 air masses from North America to PMO was
about 7 days. The free tropospheric transport is likely due to the high injection heights
(Val Martin et al., 2008a; 2010) of organic aerosol from wildfire events in northwestern
Quebec (See Figures 3.4, 3.5). Similar events at PMO have been identified previously by
(Val Martin et al., 2006; 2008a). The air masses intercepted during PMO-3 were North
American outflows that traveled in the lower free troposphere across the Northern
Atlantic Ocean to Western Europe before circling back to PMO. The transport time for
the PMO-3 air masses from North America to PMO was roughly 10 days (Figure 3.2).
After a northward transport to Western Europe in the jet stream during the first 4-5 days,
the simulated plume turned to the south and west, arriving at PMO from Europe in about
2-4 days. This air mass was most likely influenced by wildfire emissions in western and
central Canada (U.S. Air Quality, Smog Blog. alg.umbc.edu). Similar to PMO-1,
FLEXPART CO source apportionment (Figure 3.4) suggests this sample was influenced
by fire, although considering the OC concentration and transport time, it was much more
diluted than what was observed in PMO-1. In contrast, the PMO-2 air masses traveled
relatively low (< 2 km) over the “Rust Belt” (Illinois, Indiana, Michigan, Ohio,
Pennsylvania, and New York) of the United States and stayed at approximately the same

altitude until it reached the observatory 2-4 days later (Figure 3.3). This transport pattern
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suggests that the aerosol was predominantly transported in the boundary layer on its way
to the PMO and was primarily influenced by a mixture of continental U.S. anthropogenic
and biogenic emissions. This was supported by the FLEXPART CO simulations as well
(Figure 3.4). The height of the boundary layer over the continent generally ranges from
500-2500 m and is strongly affected by diurnal cycles, seasonal effects, and topography
(Liu and Liang, 2010); overall, the continental boundary layer height generally increasing
during the day and during the summer months. This suggests that PMO-2 was within the

boundary layer over the United States.
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Figure 3.4. FLEXPART carbon monoxide source apportionment plot. PMO-1 (a), PMO-
2 (b), PMO-3 (c). The red rectangle highlights the sampling period for each sample.
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(a) GFAS Wildfire CO emission g/m2/day
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Figure 3.5. Wildfire emissions from GFAS dataset for the week corresponding to the
PMO-1 event (a) and the PMO-3 event (b). Note the strong fire in western Quebec, which
spatially coincides with the most likely path in the PMO-1 retroplume. Multiple fires in
central and western Canada may have impacted PMO-3, although they are not spatially

proximate to the most likely path in the PMO-3 retroplume.
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3.3 Overview of the Aerosol Chemistry: OC/EC and IC

In this study, we present the detailed composition of three individual samples collected
for 24 hours on 27-28 June 2013, 5-6 July 2014, and 20-21 June 2015 at the PMO. These
samples, referred to as PMO-1, PMO-2 and PMO-3 hereafter, were selected after analysis
of organic and elemental carbon (OC/EC) were performed for all 127 aerosol samples
collected in this study. The three selected samples all had elevated organic carbon (OC)
concentrations (Table 3.1) representing the capture of a pollution plume. After blank
subtraction, the median OC of the samples collected over the summers of 2013-2015 was
0.16 £ 0.018 pg/m?. The minimum OC level measured was lower than the average blank
concentration and the maximum was 2.07 + 0.017 pg/m? (PMO-1). The most abundant
anions and cations in these samples are also shown in Table 3.1. The presence of these
ions is consistent with the results of other studies (Yu et al., 2005; Aggarwal and

Kawamura, 2009).

The concentrations of common anions and cations can offer important insight regarding
cloud processing and emission sources (Table 3.1). Specifically, the elevated level of
sulfate observed in the PMO-2 sample can be an indicator of anthropogenic influence,
cloud processing, or marine influence (Yu et al., 2005). We also observed elevated
oxalate concentrations in PMO-1 and PMO-2. Oxalate is known to co-vary with sulfate
concentrations in the atmosphere when they are formed by aerosol-cloud processing (Yu
et al., 2005; Sorooshian et al., 2007). Thus, the oxalate to sulfate ratio can be an
indication of cloud processing (Sorooshian et al., 2007); in general, a higher ratio is the

result of increased cloud processing. As described in Sorooshian et al. (2007), the oxalate
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concentrations increase with cloud processing because there is more time for it to be
produced, leading to an increased ratio. PMO-1 had the highest oxalate to sulfate ratio
(0.278), followed by PMO-3 (0.124), and PMO-2 (0.084). The observed oxalate to sulfate
ratios for these samples are all much higher than what was reported in Sorooshian et al.
(2007) suggesting other factors may have impacted the ion concentrations. Specifically,
an enrichment of oxalate from biomass combustion plumes (Cao et al., 2017) likely
contributed to the observed concentrations of these ions in PMO-1 and PMO-3. The bulk
concentration of oxalate in PMO-2 is similar to PMO-1, but the sulfate in PMO-2 is much
higher, leading to a low oxalate to sulfate ratio. Based on FLEXPART simulations it is
likely that PMO-2 underwent aqueous phase processing (see Sect. 3.5), but the high
concentration of sulfate from possible anthropogenic and marine sources appears to have

obscured the oxalate-sulfate relationship (Yu et al., 2005; Sorooshian et al., 2007).

Despite inconsistencies in the replicate potassium measurements for PMO-1, elevated
potassium levels were observed, indicating contributions from biomass combustion
(Duan et al., 2004). PMO-3 had slightly elevated potassium relative to PMO-2, but not as
high as PMO-1. Chloride was also present in PMO-1 and PMO-3, which has been shown
in some studies to be a minor product of biomass burning, depending on the fuel burned

(Levin et al., 2010; Liu et al., 2017).

The nitrate levels in PMO-2 were significantly lower than what was observed in PMO-1
and PMO-3, which is consistent with the observation that the marine boundary layer
promotes the rapid removal of HNO3 (Val Martin et al., 2008b). This is also consistent

with removal due to cloud scavenging (Dunlea et al., 2009). The elevated nitrate in PMO-
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1 and PMO-3 is consistent with the observation of elevated NOy and NOx in the plumes
of wildfire emissions made in previous studies at PMO (Val Martin et al., 2008a) and a

lack of recent cloud scavenging (Dunlea et al., 2009).

Despite the low altitude transport, the major ion concentrations in PMO-2 do not strongly
support a major influence from marine sources (Quinn et al., 2015; Kirpes et al., 2017).
However, the increased concentration of methane sulfonic acid (MSA) in PMO-2 relative
to PMO-1 and PMO-3 suggests some degree of marine influence. To estimate this, we
used the non-background subtracted sodium concentration as an upper limit to estimate
sea salt sulfate according the method described in Chow et al. (2015), this led to a
maximum sea salt sulfate contribution of 25 %. The equation for this estimation can be

seen in Equation 1:

nssS0Z~ = [SOZ7] — 0.252 * [Na*] Eq. 1

where nssS02~ is the estimated non-sea salt sulfate, SO2~ is the measured sulfate
concentration, and Na™ is the measured sodium concentration. The influence of marine
sources supports boundary layer transport. However, the results indicate that marine
aerosol is not likely a major component of PMO-2, perhaps because the rate of PMO-2

transport was very fast.
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3.4 Molecular Formula Oxidation Metrics: O/C and OSc

In this section, we describe the detailed molecular formula composition of the three
individual samples PMO-1, PMO-2, and PMO-3. Overall, nearly 80% of the observed
mass spectral peaks in the ultrahigh resolution mass spectra were assigned molecular
formulas, which is comparable to previous studies (Zhao et al., 2013; Dzepina et al.,
2015). After removing the duplicate molecular formulas containing '*C or 3*S, a total of
3168 (PMO-1), 2121 (PMO-2), and 1820 (PMO-3) monoisotopic molecular formulas
remained. Groups of molecular formulas were assigned based on their elemental
composition CcHnNnOoSs, including: carbon, hydrogen, and oxygen (CHO); carbon,
hydrogen, nitrogen, and oxygen (CHNO); and carbon, hydrogen, oxygen, and sulfur
(CHOS). The most frequently observed compositions were CHO and CHNO. The
reconstructed negative ion mass spectra of the monoisotopic molecular formulas for each
of the samples are provided in Figure 3.6. Visual comparisons of the mass spectra
indicate that PMO-2, which was likely transported through the North American
continental and North Atlantic marine boundary layer, has an increased prevalence of
higher O/C ratio formulas compared to the two samples transported through the free
troposphere. Considering the ion distribution and normalized relative abundances, PMO-
1 and PMO-3 mass spectra look quite similar with a high frequency of individual O/C
values < 0.5. This may suggest similar emission sources or aerosol processing. In
contrast, PMO-2 has a stronger relative influence of molecular compositions with higher
O/C ratios. The O/C histogram plots in Figure 3.6 provide additional evidence for the

O/C differences between the two types of samples (free troposphere and boundary layer)
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due to the difference in the O/C distribution. A version of the mass spectrum with the full

y axis can be seen in Figure 3.7.
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Figure 3.6. Reconstructed negative ion mass spectra (a-c) and O/C histograms (d-f) for

the three PMO samples. The color in the mass spectra indicates the O/C value for the

molecular formula it represents. The tallest peaks in the mass spectra exceed the range,

this was done to improve the visibility of the lower abundance species (see also Figure

3.7).
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The North American boundary layer outflow of organic aerosol captured in PMO-2 was
likely influenced by SOA (Zhang et al., 2007) and thus is expected to have a higher initial
O/C value compared to pyro-convected wildfire emissions of organic aerosol (e.g., Aiken
et al., 2008; Jimenez et al., 2009; Bougiatioti et al., 2014). Although the initial
compositions are unknown, we anticipated that the samples with longer transport times (~
1 week for PMO-1 and PMO-3) would be at least similar or perhaps more oxidized than
PMO-2 which had a much shorter transport time (~ 3 days). This expectation was based
on literature describing secondary organic aerosol formation and aging (Volkamer et al.,
2006; Jimenez et al., 2009) and the reported molecular composition of continental
boundary layer aerosol (Mazzoleni et al., 2012; Huang et al., 2014). The lower oxidation
observed in the free tropospheric samples transported for 7-10 days is consistent with our
previous study at this site reported in Dzepina et al. (2015). In fact, when we compared
the molecular formula composition of the free tropospheric aerosol sample “9/24” from
Dzepina et al. (2015) to the free tropospheric samples in this study (PMO-1 and PMO-3),
we observed that 86% and 91% of the molecular formulas are in common. FLEXPART
simulations from both studies indicated these samples were all affected by wildfire
emissions, contributing to their similarity. In contrast, only 75% of the formulas found in
the boundary layer sample (PMO-2) were common with those in DZepina et al. (2015).

These comparisons are provided in Table 3.2.
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Table 3.2. Number of common species between this study and previous studies at PMO
(DzZepina et al., 2015) and SPL (Mazzoleni et al., 2012). The percentages indicate the
percent of common species for the sample indicated by the row names.

PMO-1 PMO-2 PMO-3 Dzepina 2015 Mazzoleni 2012
PMO-1 X 1697 (53.6%) 1633 (51.5%) 2730 (86.2%) 1951 (61.6%)
PMO-2 1697 (80.0%) X 1253 (59.1%) 1585 (74.7%) 1661 (78.3%)
PMO-3 1633 (89.7%) 1253 (68.8%) X 1704 (90.6%) 1429 (76.0%)

As observed in the mass spectra and histograms presented in Figure 3.6, the samples have
noticeable differences in the distribution of O/C values. This is also reflected in the
abundance weighted mean O/C values for the samples: 0.48 £ 0.13 (PMO-1), 0.57 + 0.17
(PMO-2), and 0.45 + 0.11 (PMO-3). Note that these O/C values are averages of
thousands of individual measurements, as such the standard deviation represents the
range of values and not uncertainties. A visual representation of the distribution of the
O/C and OSc values is presented in Figures 3.8 and 3.9. These plots show the box plot
distribution for each oxidation metric with a white box, the external “violin” component
show the number density of formulas with those O/C or OSc values. The box plots show
the median value with a horizontal black line within the “box” portion of the plot, the top
of the box represents the 1 quartile, and the bottom of the box represents the 3™ quartile.
The solid vertical line “whisker” represents Q3-1.5*interquartile range (IQR, Q3-Ql1,
maximum), and Q1-1.5*(IQR, minimum). We note that the relative abundance of
compounds in ESI mass spectra is not directly proportional to their solution
concentration, other factors including surface activity and polarity impact the ionization

efficiency (Cech & Enke, 2001). Nonetheless, the abundance does differentiate trends
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between the samples and the assigned molecular formulas represent a collection of

multifunctional isomers (e.g., LeClair et al., 2012). For completeness, both the abundance

weighted average values for various metrics of aerosol oxidation and saturation (Table

3.3) and the unweighted average values (Table 3.4) are reported.
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Figure 3.8. Violin plots showing the number distribution of species according to their
O/C values, separated by molecular groups.
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Figure 3.9. Violin plots showing the number distribution of species according to their
OSc values, separated by molecular groups.
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Another way to compare the oxidation differences between the samples is with a
difference mass spectrum (Figure 3.10). A difference mass spectrum compares two
samples by subtracting the abundance of a molecular formula in one sample from the
abundance in another, if a particular formula is more abundant in one sample versus the
other the peak will show up in that half of the plot. Figure 3.10 shows that even if some
of the higher O/C molecular formulas are found in PMO-1 and PMO-3, they are all more
abundant in PMO-2, supporting the conclusion that PMO-2 is likely more oxidized than
the other samples. Additionally, the difference mass spectrum demonstrates that PMO-1
and PMO-3 have a lot of similarity, with PMO-1 having slightly more of the high O/C

species.
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Figure 3.10. Difference mass spectra comparing the three PMO samples. The species
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of the plot. PMO-1 vs. PMO-2 (a), PMO-1 vs. PMO-3 (b), and PMO-2 vs. PMO-3 (c).
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Additional O/C distribution insight was derived from separating the species into CHO,
CHNO, CHOS elemental groups. For example, the comparison of the species with CHO
formulas in each sample indicates a smaller relative difference between PMO-2 aerosol
compared to PMO-1 and PMO-3, with the PMO-2 aerosol having a higher average O/C
value (0.55 £ 0.17 (PMO-2) compared to 0.47 = 0.14 (PMO-1) and 0.44 + 0.14 (PMO-
3)). Meanwhile 85 - 98% of the CHO species in each sample are present in at least one
other sample, with 848 (42 - 78%) of the formulas being found in all three samples, as
shown in Figure 3.11. Panel a shows the number of molecular formulas that are common
and unique between the various samples and Panel b shows the same data, normalized to
100% to make some of the groups more clear than they are in Panel a. These results
suggest that the CHO composition may be fairly uniform throughout the atmosphere,
without a significant abundance of clear marker species after long-range transport,
regardless of the source region and transport time. This observation is consistent with
other studies which have observed the decay of marker species after ~ 24 hours

(Bougiatioti et al., 2014; Forrister et al., 2015).
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82




In contrast, the CHNO molecular formulas demonstrate stronger differences that correlate
with the overall O/C ratio. The average O/C value for the CHNO formulas in PMO-2 was
0.59 = 0.14 compared to 0.49 + 0.15 in PMO-1 and 0.49 £+ 0.14 PMO-3 (Table 3.3).
Differences in the elemental ratios are often visualized using the van Krevelen plot,
which shows the correlation of H/C vs. O/C. The van Krevelen plots for the three samples
with the unique CHNO formulas present in each sample are shown in Figure 3.12. Most
of the unique CHNO species in PMO-2 (68%) fall in the more oxidized region of the plot
(Tu et al., 2016) with high overall O/C values. This differs from the PMO-1 unique
species that are predominantly on the less oxidized, low O/C side of the plot, or the
oxidized aromatic region. Another observation from the CHNO species is more identified
species in both PMO-1 (1120) and PMO-3 (608) than in PMO-2 (561), despite the higher
total number of molecular species in PMO-2 compared to PMO-3. This is potentially due
to the enrichment of NOx and NOy species as previously observed in wildfire pollution
events (Val Martin et al., 2008a), which may in turn lead to an increased nitrogen content
in the organic aerosol species. The nitrogen containing species show a distinct difference
in terms of the total oxidation between the two sets of samples, more so than the CHO
compounds. This implies that much of the distinction between aerosol sources may come

from heteroatom containing species.
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The difference in O/C is even more evident in the sulfur containing formulas (CHOS).
The PMO-2 CHOS species have a much higher average O/C ratio (0.74 £+ 0.34) than what
is observed in PMO-1 (0.48 + 0.14). Consistent with the CHNO formulas, the PMO-2
unique CHOS formulas (55% of unique formulas) are present in the oxidized region of
the plot, whereas those in PMO-1 are nearly completely in the less oxidized region of the
van Krevelen plot (Figure 3.13). The Kendrick mass defect plot (Figure 3.13c) also
demonstrates a clear difference between the two samples. Most of the unique CHOS
compounds in PMO-2 are located on the lower mass, higher defect side of the plot, while
the PMO-1 formulas are on the higher mass, lower defect side. This difference is due to
the larger amount of oxygen present in the PMO-2 formulas, which would lead to a
greater Kendrick mass defect (KMD) than the more reduced CHOS formulas present in
PMO-1. The higher oxygen content of PMO-2 aerosol is supported by its higher O/C
ratio when compared to PMO-1 as shown in box plots (Figure 3.13d). Very few CHOS
molecular formulas (N = 29) were identified in PMO-3 and most of them (N = 26 of 29
total) were also present in PMO-1. Due to the small number of identified CHOS formulas
in PMO-3, we did not consider it in the comparison between CHOS formulas in the
samples. The increased number of sulfur species observed in PMO-2 are likely associated
with the anthropogenic emission sources in the North American boundary layer. Overall,
the observed differences in the O/C ratios between the boundary layer transported aerosol
(PMO-2) compared to the free troposphere transported aerosol (PMO-1 and PMO-3)
highlight differences in the aging and lifetime of aerosol relative to its transport pathway

and emission source.
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Another commonly used metric of aerosol oxidation is the average oxidation state of
carbon (OSc) described by Kroll et al. (2011). The average OSc includes both hydrogen
and oxygen for the average oxidation of carbon in each molecular formula. Additionally,
we assumed all nitrogen and sulfur were present as nitrate and sulfate functional groups
and calculated the OSc with the appropriate corrections (Chapter 2, Equation S1). The
average OSc values (Table 3.3) for the three samples show again that PMO-2 is more
oxidized than the other two samples. The average OSc values for the CHO formulas in
PMO-1 and PMO-2 are very similar (Table 3.3), but as shown in the histograms in Figure
3.14, their relative abundance distributions are quite different. The OSc vs. carbon
number plots in Figure 3.14 show slight differences between PMO-1 and PMO-2, mostly
in the distribution of the sulfur containing formulas. However, the similarity of the PMO-
1 and PMO-3 samples and their difference from the PMO-2 sample is quite clear in the
visual comparisons of the histograms of the OSc values with their normalized relative
abundances. The observation of an overall lower oxidation in PMO-1 and PMO-3 may
support the findings of Aiken et al. (2008) and Bougiatioti et al. (2014) who reported that
biomass burning aerosol are less oxidized than other types of aerosol, even after some
aging. Conversely, the overall higher oxidation of PMO-2 implies that the sampled
aerosol was likely more hygroscopic, included more efficient cloud condensation nuclei
(Massoli et al., 2010), or had components of a less volatile nature (Ng et al., 2011) than

PMO-1 and PMO-3.
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3.5 Molecular Formula Aromaticity and Brown Carbon

The aromaticity of the samples is also different between the two groups of aerosol
samples. Based on the aromaticity index (Al, Eq. 2.2; Almod, Eq. 2.3; Koch and Dittmar,
2006; 2016, Chapter 2), the free tropospheric aerosol samples (PMO-1 and PMO-3) are
more aromatic than the convected boundary layer aerosol (PMO-2; Figure 3.15). The
presence of more aromatic species in the long-range transported wildfire-influenced
aerosol may lead to increased light absorption (Bao et al., 2017) and perhaps an increased
resistance to oxidation (Perraudin et al., 2006). Aromatic species can also be associated
with the presence of brown carbon (BrC; Desyaterik et al., 2013). Aromaticity is heavily
dependent on the H/C ratio and the DBE (Chapter 2, Eq. 2.4), where low H/C and high

DBE indicate aromatic structure.

CHO CHNO CHOS
100% . :

[72)
)
g 75%
) Aromaticity
- Aliphatic
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0% ] |

PMO-1 PMO-2 PMO-3 PMO-1 PMO-2 PMO-3  PMO-1 PMO-2 PMO-3
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Figure 3.15. Normalized bar charts for the aromaticity of the three PMO samples,
calculated using the Koch and Dittmar (2006; 2016) modified aromaticity index (Almod).
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Histograms depicting the distribution of H/C and DBE values for the three samples are
shown in Figure 3.16. As observed previously, PMO-1 and PMO-3 are more similar to
each other than compared to PMO-2. Likewise, PMO-1 and PMO-3 exhibit an increase in
the number frequency of higher DBE species, which is not observed in PMO-2,
supporting the observation of an increased overall aromaticity for these free tropospheric
aerosol samples. The difference is also demonstrated by the H/C histograms because
PMO-1 has a higher proportion of its formulas below H/C = 1 relative to PMO-2, which
indicates the potential for higher aromaticity. Many aromatic compounds, such as PAH
are known to be carcinogens, and are a product of incomplete combustion biomass

burning and anthropogenic emissions (Perraudin et al., 2006; Bignal et al., 2008).
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Generally, BrC is considered to be aromatic or olefinic in nature (Bao et al., 2017). In our
observations, the two samples influenced by wildfire show the greatest amount of olefinic
and aromatic species, which is likely associated with the presence of BrC compounds.
Additional evidence for the presence of BrC in PMO-1 comes from acthalometer
measurements using the 7 wavelength aethalometer (Magee Scientific Company,
Berkeley, California, USA) located at the site, which detected a wavelength-dependent
peak with an Angstrém exponent of 1.3 during the sampling period. Angstrdm exponents
above 1 suggest the presence of BrC or iron oxides. Based on the retroplume analysis,
Angstrém exponent, wavelength dependent absorbance, and comparison to similar
samples (Dzepina et al., 2015), the detected peak is most likely the result of BrC. Figure
3.17 contains the aethalometer observations for this event and for PMO-2. In contrast
with PMO-1, the results for PMO-2 show very little increase in absorbance and no
wavelength dependence during the sampling period. This means the aerosol in this period
was not strongly absorbing, which is consistent with the hypothesis that it is
anthropogenic SOA, which is not generally strongly absorbing in visible wavelengths.
Difficulties with the instrument prevented similar data from being collected for PMO-3,
although based on the retroplumes, ambient conditions, and molecular characteristics
similar results seem likely. In addition to the aecthalometer response, PMO-1 contained
species that were related to BrC in studies by linuma et al. (2010) and Lin et al. (2016)
(Table 3.5). This observation provides evidence for the persistence of BrC species, which
is contrary to the observations by Forrister et al. (2015) who concluded that BrC is mostly

removed within 24 hours. Additionally, the high concentration of OC for this sample
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makes it seem unlikely that we observed just a minor residual fraction. Perhaps, the
lifetime of BrC is dependent on additional ambient conditions that influence aerosol
oxidation and phase state.

Table 3.5. Molecular formulas identified in brown carbon by linuma et al. (2010) and

Lin et al. (2016), where “Yes” means the formula was observed in our sample and, “No”
means it was not.

Formula Observed Citation

Iinuma et al. 2010;
Lin et al. 2016

C7H7NO4 Yes

CeHsNO3  Yes Lin et al. 2016
CsHsNOs4  Yes Lin et al. 2016
CsHeN20s  No Lin et al. 2016
CsHaNOs  No Lin et al. 2016
CioHoNO3  No Lin et al. 2016
CsH7NOs  Yes Lin et al. 2016
CsH7NO3  Yes Lin et al. 2016
CoH7NOs  Yes Lin et al. 2016
CioH/NO4  Yes Lin et al. 2016
CsHsOs Yes Lin et al. 2016
CoHeO3 Yes Lin et al. 2016
Ci10HsO4 Yes Lin et al. 2016
Ci3HsOs Yes Lin et al. 2016
Ci13HsOg¢ Yes Lin et al. 2016
CisH100s  Yes Lin et al. 2016
CicH1206  Yes Lin et al. 2016
CicH1207  Yes Lin et al. 2016
Ci7H140s8  Yes Lin et al. 2016
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3.6 Phase State, Volatility, and Cloud Processing: Implications for the
Observed Aerosol Oxidation

Atmospheric aging processes are influenced by ambient conditions, such as temperature
and water vapor, and the concentrations of reactive species. Recently, Shrivastava et al.
(2017) reported observations of long-range transported PAH from Asia to North America
and suggested an enhanced lifetime due to a probable glassy aerosol phase state during
transport. Additionally, model simulations reported by Shiraiwa et al. (2017a) indicated
that model SOA is predicted to be semi-solid or glassy at altitudes above 2000 m in the
northern hemisphere. Since the PMO aerosol was sampled at 2225 m above sea level, we
examined the estimated glass transition temperature (Tg) of the studied WSOC species in
addition to the markers of aqueous phase processing for the three PMO samples.
Increased aerosol viscosity has been shown to decrease the rate of photodegradation
(Lignell et al., 2014; Hinks et al., 2016) and water diffusivity (Berkemeier et al., 2014).
Both photodegradation and water diffusion are expected to strongly affect the oxidation

and aging of aerosol species during transport.

In general, lower volatility typically inversely correlates with T (Shiraiwa et al., 2017a)
and viscosity. As such, a better understanding of the potential volatility can be important
for evaluating the viscosity of the PMO aerosol. Using the parameters reported by
Donahue et al. (2011) and Li et al. (2016), we estimated the volatility of the FT-ICR MS
identified organic aerosol molecular compositions (Figs. 3.18 and 3.19, respectively).
These parameters are based on the molecular formulae of the aerosol species present in

the samples. The Donahue et al. method is only applicable to CH and CHO formulas,
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while the Li et al. method is also applicable to CHNO, CHNOS, and CHOS molecular
formulas. In both cases compounds with known volatilities were used to generate a plot
that could be used to find a relationship between the volatility and the molecular
composition. The volatilities calculated by these methods are not equivalent, in general,
the volatility calculated with the Li method is equal to the Donahue volatility multiplied
by ~2. Figure 3.20 demonstrates this comparison. As expected, based on the length of
transport for the samples, the majority of formulas show extremely low volatility.
Interestingly, PMO-2 has a larger number of higher abundance molecular formulas with
extremely low volatility and elevated oxidation relative to PMO-1 and PMO-3 (Figure
3.21). This highlights the relationship between O/C and volatility, where volatility is
expected to decrease as O/C increases when the mass range is constant (Ng et al., 2011);
the relationship between oxygen and carbon and its effect on volatility is used by both
Donahue et al. (2011) and Li et al. (2016) to estimate volatility. Similarly, lower volatility
is expected to lead to lower diffusivity in aerosol even at elevated RH as demonstrated by

Ye et al. (2016).

PMO-1 PMO-2 PMO-3
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Figure 3.18. OSc vs. volatility plots for the three samples. Volatility estimates were made
using the Donahue et al. (2011) method. Only volatility for CHO species can be
estimated with this method. Color is the logarithm of the normalized relative abundance
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multiplied by 1000. Of interest is the increased abundance of low volatility, higher
oxidation species in PMO-2 relative to PMO-1 and PMO-3, indicating the importance of
these species to this sample and highlighting a difference between these samples.

PMO-2, CHO PMO-3, CHO

Norm. RA
®0.3
©0.6
®09

logo(1000*Norm. RA)
3.0
25
2.0

2] 1 1 1.5

PMO-1, CHOS PMO-2, CHOS PMO-3, CHOS 0

Average Oxidation State of Carbon

-5 -10 -5 0 5 -15 -10 -5 0 5 -15 -10 -5 0 5
Estimated Saturation Mass Concentration log4o (Co / p.gm’3)

Figure 3.19. Group separated OSc vs. volatility plots for the three samples. Volatility
estimated using the Li et al. (2016) method. Color is the logarithm of the normalized RA
multiplied by 1000. The same increase in abundance for low volatility, higher oxidation
species is observed in this figure as in Figure 3.18.
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Figure 3.20. Correlation plot of volatility calculated by the Li et al. (2016) method and
the Donahue et al. (2011) method. The relation is linear although the slope of the line is

nearly two, indicating that the Donahue method predicts values that are roughly two
times what the Li method predicts, at least for the low and extremely low volatility
species presented here.
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Figure 3.21. OSc vs. volatility estimated using the Li et al. (2016) method for the CHO
species in the three samples. The size is determined by the normalized relative abundance

and the color is determined by the logarithm of the normalized relative abundance
multiplied by 1000.
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As predicted in earlier studies (Shrivastava et al., 2017; Shiraiwa et al., 2017a), particles
transported in the free troposphere are likely semi-solid to solid, where the actual particle
viscosity depends on the ambient conditions and the composition of the particles. Thus,
to better understand the potential phase state associated with the PMO organic aerosol,
we first estimated the dry Ty for the identified CHO molecular formulas in each of the
PMO aerosol using the estimation method by DeRieux et al. (2018; Chapter 2, Eq. 2.5).
We then converted the dry Tg to the RH dependent Tg (below). Currently T can only be
estimated for CHO species, however the CHO species were the most frequently observed
and constituted a major fraction of the total relative abundance in the PMO negative ion
mass spectra. Assuming the identified CHO compositions are fairly representative of the
total organic aerosol composition, a comparison of the Tg values to the ambient
temperature (Tamb) provides an indication of the likely phase state of the organic aerosol
particles. Generally, if Tg exceeds Tamb, a glassy solid state is predicted, likewise, if Tg is
less than Tamb then either a semi-solid or liquid state is predicted depending on the ratio
magnitude (Shiraiwa et al., 2017a; DeRieux et al., 2018). Although the exact composition
of the total organic aerosol is yet unknown, the identified water-soluble organic
compounds provide a reasonable upper limit for the estimated Tg values. Under this
assumption, the CHO molecular formulas in PMO-1 and PMO-3 had higher average dry
Tg values than PMO-2 (Table 3.6, Figure 3.22), which implies that they would be more

viscous than PMO-2, given similar atmospheric conditions.
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Table 3.6. Estimated average dry Tg for the three samples. All values are in K.

PMO-1 PMO-2 PMO-3
Unweighted 333.76 328.94 333.56
CHO
400
350
2 Sample
o 300 [l PMO-1
> EPmoO-2
5 EPMO-3
250
200
PMO-1 PMO-2 PMO-3
Sample

Figure 3.22. Violin plots showing the distribution of dry Tg values for each sample.
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Water is known to be a strong plasticizer relative to typical aerosol species (Koop et al.,
2011; Shiraiwa et al., 2017a; Reid et al., 2018), thus it can decrease Tg and the overall
aerosol viscosity. Therefore, it’s important to consider the ambient relative humidity
when estimating the Tg. Using the extracted ambient temperature and RH from the GFS
along the FLEXPART retroplumes and the Gordon-Taylor equation (Chapter 2, Egs. 2.6
—2.7), the calculated dry Tg were modified to RH-dependent T, for the CHO molecular
species. The distributions of the Tg values for the three PMO samples based on one
standard deviation of the ambient conditions are shown as boxplots in Figure 3.23. The
range of ambient temperature and RH extracted from the GFS along the FLEXPART
simulated path yields a wide range of Tg values (Figs. 3.23). The estimates were taken
back only 5 days due to the increasing range of possible meteorological conditions
associated with the spread in the air masses as shown in Figures 3.1-3.3. Overall, the
distributions of Tg values in PMO-1 and PMO-3 generally exceed the ambient
temperature (Figure 3.23), implying that particles mostly containing these compounds
would likely be solid. To account for the low molecular weight organic anions not
observed in the FT-ICR mass spectra, their mass concentrations and Tg values (estimated
using the Boyer-Kauzmann rule (Koop et al., 2011; Shiraiwa et al., 2017a; DeRieux et
al., 2018)) are also shown in Figure 3.23. The three most prevalent low molecular weight
organic acids indicate the potential impact of those compounds on the overall Tg value of
a particle that contains them. Oxalic acid was estimated to have a similar Tg value to a

majority of the higher MW species identified in PMO-2, but it is slightly lower than the
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majority of species in PMO-1 and PMO-3. However, the mass fraction of oxalate is 3

times lower in PMO-1 and PMO-3 (2.3 and 3.0 %) compared to PMO-2 (9.4 %)).

The results suggest that aerosol in PMO-1 and PMO-3 was overall less susceptible to
atmospheric oxidation due to the aerosol phase state during free tropospheric long-range
transport than it may have been in the boundary layer with higher ambient RH and
temperature. A more viscous phase state during transport may also explain the presence
of persistent BrC species in PMO-1, where the BrC species are protected from oxidation
similarly to the long-lived PAHs observed by Shrivastava et al. (2017). In contrast to the
observations from PMO-1 and PMO-3, much of the PMO-2 T; distribution falls below
the ambient temperature implying a semi-solid or liquid state during the final 5 days of
transport. This indicates an increased susceptibility to oxidation processes in the
atmosphere (Shiraiwa et al., 2011), such as aqueous phase processing. The possibility of
aqueous phase processing is also supported by the extracted GFS RH in Figure 3.23,
which is above 50% for the last 5 days of PMO-2 transport. The potential for liquid/semi-
solid aerosol in the boundary layer is consistent with other studies (Shiraiwa et al., 2017a;
Maclean et al., 2017) due to the increased RH in the boundary layer and the plasticizing
effect of water. Although, we note the PMO-2 average dry Tg values were 4-5° lower
than those of PMO-1 and PMO-3. Overall, the estimates of dry Ty and RH-dependent Ty
provide an otherwise unattainable upper limit estimate of the aerosol phase state of the

sampled free tropospheric aerosol in this study.
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Figure 3.23. Panels a-c contain the ambient conditions extracted from the GFS analysis
along the FLEXPART modeled path weighted by the residence time for PMO-1, PMO-2,
and PMO-3, respectively. The line represents the mean value and the shading represents
one standard deviation of values. Panels d-f contain the boxplot distributions of the
relative humidity dependent Tg values for molecular formulas using the maximum, mean,
and minimum RH for PMO-1, PMO-2, and PMO-3, respectively. The Tg values for the
full composition of each sample were calculated using the maximum, mean, and
minimum RH and then all three sets of data are combined and plotted as a single
distribution for each time period. The open circles represent the abundance and Boyer-
Kauzmann estimated Ty for the acid forms of the three most abundant low MW organic
ions, the bars around the circles represent the range of possible Tg values for those
compounds when the range of RH is considered. The red line demonstrates the ambient
temperature at each time point, as extracted from GFS. The centerline of the boxplot
represents the median, the top and bottom of the “box’ represent the third and first
quartiles, respectively. The “whiskers” represent Q3 + 1.5* interquartile range (IQR, Q3-
Q1) (maximum), and Q1 — 1.5*(IQR) (minimum).
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As described above, the most obvious difference in the molecular composition of PMO-2
vs. PMO-1 and PMO-3 is the increased extent of oxidation. In fact, most of the unique
species observed in PMO-2 are in the highly oxidized region of the van Krevelen plot
(Figure 3.24). However, the exact oxidation pathways that led to the increased oxidation
observed for PMO-2 and its initial composition are unclear. Both gas phase and aqueous
phase reactions lead to SOA, where aqueous SOA components can have higher O/C
values than gas phase SOA components (Lim et al., 2010; Ervens et al., 2011). The high
numbers of CHNO and CHOS molecular formulas observed here are consistent with
secondary components associated with an emission plume likely enriched in SO2, NOx,
and O3 pertaining to its expected anthropogenic influence. All three of these reactive
species have been shown to lead to production and oxidation of SOA in the atmosphere

(Hoyle et al., 2016; Bertrand et al., 2018).
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Figure 3.25. Van Krevelen plot showing the molecular formulas that are common to only

Group
* PMO-1, SPL CW
* PMO-2, SPL CW
PMO-3, SPL CW

Norm. RA
@ 0.05
@ 0.10
@®o0.15

one PMO sample and the cloud water samples from SPL (Zhao et al., 2013). PMO-2

(red) molecular formulas located nearly exclusively in highly oxidized region of plot,
may indicate cloud processing. Common molecular formulas from either PMO-1 (blue)
and PMO-3 (gold) may be related to the biomass combustion that influenced the

supercooled cloud water collected in the winter at SPL. Formulas that are common to two

or more PMO samples and CW are in grey.
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Table 3.7. Number of molecular formulas and their average O/C values (unweighted O/C
and RA weighted O/C (O/Cw)) uniquely common between this study and ambient
aqueous organic matter (Mazzoleni et al., 2010; Zhao et al., 2013; Cook et al., 2017).
Uniquely common means that the formula is common between only one of the PMO
samples and the aqueous organic matter sample. CW indicates cloud water, the numbers
in parentheses are the percentage of total formulas.

Sample # Common Formula O/C O/Cw
PMO and Fog (Mazzoleni et al., 2010)

PMO-1 202 (6.4%) 0.38 0.39
PMO-2 48 (2.3%) 0.5 0.55
PMO-3 11 (0.60%) 0.29 0.29
PMO and CW (Cook et al., 2017)

PMO-1 2 (0.063%) 0.82 0.82
PMO-2 23 (1.1%) 0.8 0.81
PMO-3 1 (0.055%) 0.36 0.36
PMO and CW (Zhao et al., 2013)

PMO-1 197 (6.2%) 0.42 0.42
PMO-2 70 (3.3%) 0.76 0.8
PMO-3 42 (2.3%) 0.38 0.38
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Cloud and aqueous processing have also been shown to increase the oxidation of
atmospheric organic matter (e.g., Ervens et al., 2008; Zhao et al., 2013; Cook et al., 2017,
Brege et al., 2018). Comparisons of the detailed molecular composition of the PMO
samples with studies of cloud (Zhao et al., 2013; Cook et al., 2017) and fog (Mazzoleni et
al., 2010) organic matter indicate that the formulas uniquely common to only PMO-2
have higher O/C, which supports aqueous phase processing during transport. These
results are provided in Figure 3.25 and Table 3.7. Studies have shown that the reactive
species emitted from anthropogenic plumes (SO2, NOx, O3) can play a role in the
oxidation of the organic species that are dissolved in water (Blando and Turpin, 2000;
Chen et al., 2008; Ervens et al., 2011); furthermore, studies have shown aerosol liquid
water content contributes to aqueous production of SOA (Volkamer et al., 2006; Lim et
al., 2010). The elevated RH extracted from the GFS for this plume (Figure 3.23) indicates
the presence of aerosol liquid water and is consistent with its ubiquitous nature (Nguyen
et al., 2016). Additionally, PMO-2 had a strongly elevated non-sea salt sulfate
concentration relative to PMO-1 and PMO-3, which also indicates aqueous phase
processing (Crahan et al., 2004; Yu et al., 2005; Sorooshian et al., 2007; Hoyle et al.,
2016). Oxalate, another well-known marker of potential aqueous phase processing
(Warneck 2003; Crahan et al., 2004; Yu et al., 2005; Sorooshian et al., 2007; Carlton et
al., 2007), was also elevated in PMO-2. The organic mass fraction of oxalate was 9.4 %
in PMO-2 compared to 2.3 % and 3.0 % in PMO-1 and PMO-3. The nitrate concentration
in PMO-2 was very low compared to PMO-1 or PMO-3 (Table 3.1), supporting aqueous

phase processed aerosol in PMO-2. While clearly gas phase SOA cannot be excluded,
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several lines of evidence suggest that aqueous phase oxidation likely influenced the
chemical and physical characteristics of the PMO-2 aerosol to a larger extent than those
of PMO-1 and PMO-3 based on the observed molecular characteristics, major ion

concentrations (Figure 3.26), and the model simulated transport pathways and GFS

meteorology.
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Figure 3.26. Organic mass concentrations (a) and sulfate, nitrate and oxalate
concentrations (b).
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4 Tandem MS/MS Fragmentation of PMO-1

4.1 Precursor Molecular Complexity and Composition

4.1.1 Sample Overview

The sample described here is a long range transported biomass combustion aerosol
sample from North America collected at the PMO on June 27, 2013. The air mass history
was determined using the FLEXPART model as described in Schum et al. (2018).
FLEXPART is a Lagrangian model that releases thousands of massless particles and
follows their path back in time using information from the Global Forecast Service
(GFS). This modeling provides information about the transport path, time, and emission
sources, all of which are important when interpreting the results from an analysis of

organic aerosol. More detailed discussion of FLEXPART can be seen in Chapter 2.

4.1.2 Full Scan vs. Segmented Scanning

When analyzed using full scan (m/z 100-1000), 3168 identified monoisotopic masses
were identified (Schum et al. 2018). In this work a segmented scanning method was
applied to the range of m/z 162-468 and m/z 518-523, using 6 m/z segments centered
every 5 m/z units. Doing this over 9000 monoisotopic molecular formulas were assigned.
In contrast, only 2051 monoisotopic molecular formulas were assigned in the same range
for the full scan sample. Segmented scanning has been shown to increase the sensitivity
of FT-ICR MS measurements (Southam et al., 2007), allowing better detection of low
concentration or low ionization efficiency molecular species, though it has not been used

previously for atmospheric aerosol samples. The reasons for this were discussed in
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Chapter 2. This increase in the number of identified molecular formulas demonstrates and
increased molecular complexity that has been overlooked in typical ultrahigh resolution

MS analyses of organic aerosol.

Over 90% of the molecular formulas from the full scan within the same mass range were
also identified using the segmented scanning approach. An example of the increased
mass spectral complexity is shown in Figure 4.1 using the reconstructed mass spectra for
each sample at nominal m/z 445. Over 50 molecular formulas were assigned to the
isobaric peaks at this nominal mass with the spectral stitching approach, while only 11
CHO molecular formulas were assigned using the full scan approach. In addition to an
increase in the absolute number of identified molecular formulas this figure highlights an
increase in the detection of heteroatom containing molecular formulas. The heteroatom
containing molecular formulas are a significant component of most environmental
(Willoughby et al., 2016, Wozniak et al., 2014), but the frequently do not ionize

efficiently. The lower intensity peaks can be overlooked in full scan analyses.
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The elemental group analysis provides an interesting comparison of the two scan
methods. In the full scan, CHO molecular formulas make up roughly 60% of the total
number of molecular formulas, followed by 30% CHNO, and 10% CHOS. In contrast,
the window scan, the CHNO molecular formulas make up 42 %, followed by 26%, then
CHOS and CHNOS with 16% and 15.6% respectively. This shift in the elemental groups
suggests that CHNO molecular formulas may be more prevalent in organic aerosols than
previously reported a full scan of the sample. There is also an increase in the number of
observed CHOS and CHNOS molecular formulas in the results from the spectral stitching
approach compared to full scan analysis. Combined these sulfur containing classes make
up roughly 30% of the identified molecular formulas. Similarly, the nitrogen containing
formulas make up 57% of the total formulas. Overall the N or S containing molecular

formulas represent a greater fraction than the CHO formulas.

4.1.3 Heteroatoms

The reason for the increase in the N and S containing molecular formulas is due to their
low intensity, compared to CHO. Perhaps the CHO molecular formulas ionize more
efficiently with negative ESI than the CHNO, CHNOS, and CHOS molecular formulas.
Since the instrument limits the total number of ions, those with a higher efficiency may
out compete those with a lower efficiency even if they have the same mass concentration.
Many studies have shown the importance of nitrogen containing species in biomass
combustion organic aerosol (Willoughby et al., 2016, Desyaterik et al., 2013; Lin et al.,
2015), so the presence of a large number of such species in this sample is consistent with

those observations. In fact, when compared to the elemental group breakdown reported
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by Willoughby et al. (2016) the results here closely match, despite the difference in the
age of the ambient biomass combustion. Since the spectral stitching method was required
to observe these nitrogen containing compounds, it may also suggest that they are less
abundant. Many of the observed nitrogen species are defined as aromatic based on the
modified aromaticity index (Almod) (Koch and Dittmar, 2006;2015). Multiple studies
have suggested that aromatic nitrogen species are an important component of brown
carbon (BrC) (Desyaterik et al., 2013; Lin et al., 2015). The presence of these compounds
in long-range transported aerosol suggests a longer lifetime than previously estimated
(Forrister et al., 2015). The presence of absorbing aerosol species further downwind than
expected based on the typical degradation rates may be due to the aerosol phase state
during transport (Shrivastava et al., 2017; Chapter 3). Viscous aerosol has an increased
resistance to chemical degradation via oxidative processes (Koop et al., 2011; Hinks et
al., 2016; Lignell et al., 2014; Shiraiwa et al., 2017a), and an aerosol solid phase is more

likely in cold, dry atmospheres, such as that of the free troposphere.

4.1.4 Aromaticity

One of the most interesting differences between the two versions of this sample is the
increase in the number of detected aromatic compounds. Combustion is known to have
more aromatic compounds than other types of organic aerosol (Willoughby et al., 2016),
in part due to the presence of lignin pyrolysis products (Simoneit et al., 1993), so the
presence of aromatic species is not a surprise. In fact, in previous full scan analysis this
sample was found to be the most aromatic of the three samples analyzed (Schum et al.,

2018). The increase of aromatic species can be seen in the van Krevelen plot in Figure
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4.2 which shows the identified molecular species separated by elemental groups. The
molecular formulas in the low H/C and low O/C region of the plot are considered to be
aromatic and a large number of these aromatic species contain nitrogen. This suggests an
importance of aromatic nitrogen in biomass combustion aerosol consistent with
observations from other studies (Willoughby et al., 2016, Desyaterik et al., 2013; Lin et
al., 2015). Using the:Almod calculation developed by Koch and Dittmar (2006; 2015) the
extent of unsaturations can be estimated. The results are shown using a histogram
containing the molecular formulas classified by Almod and by elemental group (Figure
4.3). While overall the aromatic and condensed aromatic molecular formulas are still the
least common groups, they represent a much larger fraction of the total than was
previously reported in Schum et al. (2018). The improved observation of aromatic
compounds is important because they may have absorbing characteristics, in turn leading
to increased aerosol absorption (Chakrabarti et al., 2010; Desyaterik et al., 2013).
Aromatic compounds are also a significant component of brown carbon (BrC), which is a
topic of great interest (Chakrabarti et al., 2010; Desyaterik et al., 2013) due to its

absorption.
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Figure 4.2. VK and KMD plots for the Precursor data (Left) and the full scan data
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scan VK indicates an increased number of aromatic compounds. Color is determined by
the double bond equivalents (DBE).
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Almod Aromaticity Classification Histogram
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Figure 4.3. Histogram for number of detected formulas separated by aromaticity and
group. Aromaticity was calculated using the Al , calculation. Note the large number of

condensed aromatic and aromatic species present.
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4.1.5 Oxidation

Another interesting property of the aromatic species is their molecular average oxidation
state of carbon as estimated by the OSc equation in Kroll et al. (2011) (Eq. 4.1).

b5~ gy O HH __ #N _ #S
=~ ¥ — - —— — ¥ — — ) —
¢ #C  #C #C #c Eq. 41

When the OSc is plotted as shown in Figure 4.4, it is clear that on average the aromatic
and condensed aromatic species in CHO and CHNO species are more oxidized than the
olefinic or aliphatic species. This level of oxidation may be an example of water-soluble
soot. Decessari et al. (2002) studied soot oxidation using ozone and found that it became
water soluble with multiple acidic functional groups (carboxylic acids). The MS/MS
analysis performed on this sample provides some additional insight into the applicability

of this concept to this atmospheric aerosol sample.
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4.2 MS/MS Fragmentation Results

4.2.1 Background and Reasons for Functional Group Analysis

MS/MS analysis provides functional group information for common neutral losses.
Structural information is important for model predictions of organic aerosol chemistry
and their physico-chemical properties, such as the hygroscopicity (Clegg et al., 2019 in
review; Reid et al., 2018; Petters et al., 2017), viscosity (Rothfuss and Petters, 2016; Reid
et al., 2018; Song et al., 2016; Grayson et al., 2017), and light absorbance (Phillips and
Smith, 2014; 2015). Despite the value of this information, relatively few studies have
done detailed MS/MS analysis of the functional groups present in atmospheric organic
matter (LeClair et al., 2012). Most studies focused on functional group information use
bulk analytical methods such as FT-IR or NMR spectroscopy (Takahama et al., 2013,
Hawkins and Russell, 2010, Decesari et al., 2000; 2007). Analysis of these complex
natural mixtures with MS/MS fragmentation is challenging because of the spectral
complexity at each nominal mass. Thus, it is impossible to get a clean fragmentation
pattern of any single ion of interest. Additionally, each ion likely represents a mixture of
several different isomers (Zark et al., 2017). This means that each molecular formula can
show the loss of more functional groups than are chemically feasible for a given
structure, thus it is difficult to determine a structure for the exact masses. However, the
predictive power associated with functional groups led us to analyze PMO-1 using
collision induced dissociation (CID) for the same windows described in Section 4.1. To
find matching precursor and fragment ions the precursor formulas were used to create the

expected fragment ion formula and then this expected formula was checked against the
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assigned fragment ion formulas. If there was a match, then the precursor formula was

considered to have demonstrated that loss.

4.2.2 Observed Neutral Losses and Corresponding Functional Groups

There are many pathways that lead to neutral losses during ion fragmentation. Most of
the described pathways are for positive ions (de Hoffman and Stroobant, 2007). While
these paths may not be directly applicable to negative ions, the general principles are

similar (Gross, 2017).

Of the over 9000 molecular formulas identified for PMO-1 using this segmented scan
method, 7181 distinct molecular formulas were identified with at least one detectable
neutral loss. The majority of the formulas that did not have a neutral loss had low relative
abundances. Therefore, the fragment ions were likely below the signal-to-noise threshold.
For reference, the average intensity of a precursor mass with at least one neutral loss is
158,660, while the average intensity for a precursor mass without any neutral losses is
41,945. A histogram showing the studied neutral losses is shown in Figure 4.5. The color
represents the elemental group (Panel a) and aromaticity (Panel b). The most common
neutral losses were CO2, C2H40O, and H20. The loss of CO2 and H2O is consistent with a
previous study of atmospheric organic matter by LeClair et al. (2012), but the C2H40O is
different. The identity and reason for the loss of C2H4O will be discussed in Section
4.2.3. The loss of COz2 represents of a carboxyl group, and the loss of H20 represents
either a hydroxyl (-OH) group, or a carboxyl group (-COOH) that loses its hydroxyl
group. The water loss from a carboxylic acid can either occur by simple cleavage of the

hydroxyl group on the carboxyl group (Jensen et al., 1985; Bowie et al., 1990; Kerwin et
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al., 1996) or by rearrangement involving two carboxyl groups. In the formation of a five
or six membered ring H20 is eliminated (Leenheer et al., 2001; Witt et al., 2009). In both
cases, the neutral loss of H20 is expected to be favored for more aliphatic molecules
(Kerwin et al., 1996; Leenheer et al., 2001). C2H4O is likely a neutral loss of -C(O)CHs.
Other commonly observed neutral losses were CO, CH40, C204, and H4O2. The CO
neutral loss is often related to the carbonyl functional group (C=0), CH4O is likely a
methoxy group (-OCH3), while C204 and H4Oz2 represent double losses of CO2 and H20
respectively. While CO loss is often related to carbonyl functional groups, it can also be
eliminated from phenols via multistep rearrangements (Gross, 2017). The large number
of ways that CO can be eliminated makes it difficult to interpret the molecular structure

(Gross, 2017).
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4.2.3 Carbonyl Functional Groups and Relationship to Aging

The carbonyl groups are of particular interest because they are known to be a major
functional group in fresh biomass burning aerosol (Hawkins et al., 2010; Takahama et al.,
2013). The abundance of carbonyl neutral losses provides additional confidence in our
assessment of PMO-1 as a biomass burning sample, and may relate to the lower than
expected extent of oxidative aging that was the focal point of Chapter 3. As the aerosol
ages, according to Hawkins and Russell (2010), the number of ketone groups decreases
and the number of carboxyl groups increases. In their study of biomass burning aerosol
the carboxylic acid to ketone ratio increased from 0.35 to 1.3 over 4 days of transport
(Hawkins and Russell, 2010), Similarly, another study was unable to detect ketone
groups after 5 days of transport (Shaw et al., 2010). In this study, a rough comparison
based on the number of molecular formulas with a COz loss or a C2H4O loss yields a ratio
of approximately 1. This falls within the reported range for 4 days of transport (Hawkins
and Russell, 2010), but this sample was transported for approximately 7 days from its
major emission source before collection at the PMO, potentially indicating decreased rate
of aerosol aging. This estimation may be limited because only carbonyls that are
adjacent to the terminal carbon are considered and the CO2 losses may not represent all
carboxyl groups present in the structures. However, the observed decreased extent of
aerosol aging may support the hypothesis presented in Schum et al. (2018) and Chapter 3
that the samples had lower oxidation which was attributed to a solid-state during

transport in the free troposphere.
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4.2.4 Functional Group Analysis

4.2.4.1 Data Visualization with Principal Components Analysis

Due to the extent of available data from the large range of precursor and fragment ions
that were analyzed for this sample it became necessary to use different data visualization
methods than typically used. A major goal of this analysis was to provide insight on the
general molecular characteristics (oxidation and aromaticity) of the molecular formulas
that have certain neutral losses. Also of interest are the relationships between different
functional groups. A long-standing statistical method for investigating the correlations
between different variables is principal components analysis (PCA). It has been used in
the past to investigate the correlation between different ambient samples (Zhao, 2014;
Wozniak et al., 2014). Due to the large number of data points available within this data
set we chose to use PCA to find correlations between the different types of neutral losses

observed for the molecular formulas.

4.2.4.2 Carbon, Hydrogen, and Oxygen Containing Neutral Losses

4.2.42.1 PCl1 vs.PC2

The first set of neutral losses investigated were the C, H, and O based neutral losses,
including; COz, C204, C30¢, H20, H402, HsO3, CH203, CO, C2H40, CH4O, C2H403, and
CHeOsz. These losses represent several of the most commonly observed neutral losses.
The scree plot shows the amount of variance explained by each principal component (PC)
and is shown in Figure 4.6. PC1 always accounts for the most variance, followed by PC2,
etc. This plot indicates how many of the PCs are necessary to account for a majority of

the variance in a sample. In this case, PC1 and PC2 would be enough to account for
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49.7% of the variance, although the inclusion of PC3 and PC4 provides an additional 9.6

and 8.7%, respectively.
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Figure 4.6. Scree plot demonstrating the variances accounted for by each PC for the PCA
analysis of molecular species showing neutral losses of CO2, C204, C30¢, H20, H4O2,
HeO3, CH203, CO, C2H40, CH40, C2H40s3, or CH6O2. The x axis is the PC number (PCl1,
PC2, etc.).
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First, we look at the PCA biplot for PC1 and PC2 (Figure 4.7). The points on the plot
represent a scatter plot of the PC values for the different molecular formulas in the
sample, some are darker than others because there are many overlapped data points in the
exact same location of the plot. The arrows coming from the center of the plot show the
specific loadings of the variables used for the PCA analysis, in this case they are the
observations of neutral losses. In general, the longer an arrow is, the greater its
contribution to the variance of the sample. The direction of the arrow indicates which PC
the variable is most correlated with. The angle between points is also important, if two
arrows are in the same direction that means that they are correlated, if the arrows are at
90° from each other, they are not correlated, and if the arrows are at 180° they are
negatively correlated. The arrows in Figure 4.7 indicate that CO, CO2, and H20 are
correlated with each other, but they are not correlated with CHsO2 using PC1 and PC2. A
general correlation also exists between C30¢, H402, C2H403, and HeO3. In general, most
of the losses are somewhat correlated using these two PCs, with the exception of the
CHeO:2 loss and the losses 90° from that loss. To interpret and provide molecular
composition context to these results, the scatter plots of the PC values are shown with an
indication of whether a molecular formula showed a particular neutral loss. In addition,
some metrics of the chemical compositions, including: DBE, the number of oxygen
atoms, and the number of carbon atoms are shown (Figure 4.8). The scatter plot points

are jittered to avoid the over-plotting that was observed in Figure 4.7.
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Figure 4.7. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of COz,
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correlated somewhat, except CHe¢O2 with the neutral losses of CO, CO2, H20, and
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Figure 4.8. Colored PC plots PC1 vs. PC2. Panels a-1 show the molecular species with
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the
molecular species with a COz loss in red, while the species that did not have a COz loss,
but did have one of the other losses are shown in gray. Panels m-o show the same plots,
only colored with oxygen number (m), DBE (n), and carbon number (0). All of these
plots use the same data as Figure 4.7, but to avoid the overlapping that occurred in that
plot, the data points have been jittered, which allows the points that were overlapped to

be seen.
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Thus, the variation within a point can be observed. From the composition focused plots
on the right side, a separation between the species with high and low oxygen, DBE, and
carbon is observed. Matching these points to the regions where a specific type of loss is
observed (red color on the plots) allows us to get a general idea of the characteristics
associated with these neutral losses. The upper edge of the PC scatter plot contains the
highest DBE values, only the molecular formulas with CO2, H20, CO, and C2H4O losses
are present on this lower edge, suggesting these functional groups are more prevalent on
aromatic formulas. The loss of CO is particularly frequent in the low oxygen and high
DBE region of the plot. This suggests that the carbonyl losses are more prevalent from
more aromatic and less oxidized species. Additionally, the similarity in PCA distribution
between the CO and C2H4O losses suggests that they are both representative of a similar
functional group, likely containing a carbonyl. The distribution of CO losses differs from
the CH4O (methoxy) based losses. The losses of CH4O are shifted to the lower DBE and
higher oxygen regions of the plot. This is especially true when the CH4O loss happens in
conjunction with a COz or H20 neutral loss (C2H403 and CHe¢Ox2 respectively). This
suggests that the methoxy groups are more likely to occur from species that are more
aliphatic and oxidized, relative to those showing a CO loss. This information is valuable
because it provides a basis for assumptions about the most likely functional groups in an
organic aerosol sample. For example, a highly oxidized and somewhat aliphatic sample,
could be assumed to contain a higher number of methoxy functional groups rather than

carbonyl functional groups. There are some additional observed differences for the CO2
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and H20 based losses, but they are more clear in the plots with PC1 and PC3, which are

described in the following paragraph.

42422 PClvs. PC3

The PCA biplot with PC1 and PC3 is shown in Figure 4.9. It does not show much
separation between the majority of the loss types, but the multiple CO2 and H20 losses do
get separated to some extent. The multiple CO2 losses are on the top half of the plot space
while the multiple H20 losses are on the bottom. As in the previous biplot, the molecular
formula with single CO:z and single H20 losses are well correlated with each other, which
indicates the molecular formulas with these losses are similar. This supports the idea that
most of the H20 losses observed here are likely due to losses from carboxylic acids. This
is consistent with the increased presences of carboxyl groups with increasing oxidation
during transport (Hawkins and Russell et al., 2010). Even though this sample was not as
strongly oxidized as may be expected based on its transport time (Schum et al., 2018;
Chapter 3), it is likely that some aging took place. To get a better idea of the differences
between the molecular formulas showing multiple COz2 vs. multiple H2O we can look at
Figure 4.10, which applies the same concept as described for Figure 4.8 with PC1 and
PC3. Here a much clearer distinction between molecular formulas with higher DBE and
oxygen is shown. Additionally, some separation between molecular formulas with higher
and lower carbon numbers are observed. The lower half of the plot contains the
molecular formulas with the highest oxygen, DBE, and carbon (Panels m-o0). This is the
same region where the COz losses are most common, indicating that COz losses are

favorable for molecular formulas with an increased aromaticity and extent of oxidation.
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In contrast, most of the H20 losses are in the lower half of the plot, indicating the
molecular formulas with lower DBE and oxidation. These observations are consistent
with the two different ways that H2O can be eliminated from a carboxylic acid, and
suggest that a more aliphatic molecule can more easily lose the hydroxyl from a
carboxylic acid. The loss of COz is preferential as the molecule becomes more aromatic.
The likely reason for this is that the bond from an aromatic ring to the carboxyl group is

somewhat easy to break.
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Figure 4.9. PC1 vs. PC3 PCA biplot for molecular species with a neutral loss of CO2,
C204, C306, H20, H402, HsO3, CH203, CO, C2H40, CH40, C2H403, or CHsOx.
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Figure 4.10. Colored PC plots PC1 vs. PC3. Panels a-1 show the molecular species with
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the
molecular species with a CO2 loss in red, while the species that did not have a COz loss,
but did have one of the other losses are shown in gray. Panels m-o show the same plots,
only colored with oxygen number (m), DBE (n), and carbon number (o). All of these
plots use the same data as Figure 4.9, but to avoid the overlapping that occurred in that
plot, the data points have been jittered, which allows the points that were overlapped to
be seen.
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4.2.4.2.3 Average Relative Abundance of Fragment Ion Comparison

This trend is illustrated in Figure 4.11 with a comparison of the relative abundance (RA)
of the fragment ions that are due to the H2O and CO: losses. Only the precursor ions with
both losses were considered in this comparison. It should be noted that the results from
this figure are not quantitative as there are many aspects that govern the RA, such as the
number of molecular formulas containing the functional group, the strength of the bond
that was broken, and the stability of the fragment ion (McLafferty and Turecek, 1993).
So, this comparison of RA is only intended to provide general themes about the
conditions leading to a preference for a certain kind of loss. In the top panel, the average
RA for the fragment ions for precursor molecular formulas within each of the aromaticity
classification are shown. As described above, in aliphatic species the H20 loss fragment
ion has a higher RA than the COz loss fragment ion, but as the aromaticity increase, the
CO2 loss fragment ion become more abundant. This increasing importance of the CO2
loss is shown more clearly using the ratio of the H20 loss fragment ion RA divided by the
COz loss fragment ion RA (bottom panel). While it is likely that when multiple H20
losses were observed (H402, H3O¢), some of them are from actual alcohols, the similarity
between the precursor peaks showing single H20 and COz loss suggests that the majority
of the H20 losses observed in this sample were due to a loss of a hydroxyl from a

carboxyl group.
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Figure 4.11. Comparing average RA trends for molecular species of different aromaticity
with COz or H20 losses. The top panel shows the average RA of the CO2 or H20 loss
fragment ion for precursor ions within each aromaticity classification. The bottom panel
shows the ratio of the average RA shown in the top panel. The ratio is calculated by
dividing the RA of the CO2 fragment by the RA of the H2O fragment. The tallest bar in
the bottom panel demonstrates that the CO2 fragment ion is on average ~ 520% larger
than the H20 fragment ion.
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4.2.5 Comparison to Storm Peak Lab Aerosol

The results for PMO-1 were then compared to the MS/MS results for a sample collected
at the Storm Peak Lab (SPL). In this case there was much less correlation between the
molecular formulas that show CO2 and H20 losses (Figure 4.12). This suggests that the
molecules with these losses were somewhat different from each other, which may be due
to the SPL aerosol having more hydroxyl functional groups. The aerosol collected at SPL
likely had very little aging and different sources, and transport conditions. The SPL
aerosol represents a relatively typical boundary layer aerosol with an influence of
biogenic SOA collected at a rural site (Mazzoleni et al., 2012) and thus it doesn’t have
much influence from biomass burning. The observed differences between these two
samples suggests that different ratios of functional groups may be present in different
types of aerosol, highlighting the need for detailed molecular characterization of

representative aerosol from many locations and transport paths.

138



PC1 vs. PC2 PC1 vs. PC2
(a) " (b) .
2 & a 2 3 e
% e % G o
% LS " ® - v “”
- . - Y . » o 4 . N 0 % &>
',' - g : ¥ % CO2_loss /R = CF ¥ - s H20_loss
0 » & , (< t L 2 ;‘;’ . 1.00 0 - %, ?‘ * i . 1.00
g ; . s s N M - 0.75
§ . - & ?ﬁ :r’ ‘S ﬂ 0.50 g i ' ' \ ) d 3 0.50
- "W 4 U T 3 B n e s P > > ¢ ® -
N LR T Bt ¢ 025 % & . - 0.25
K . & “ . { A
24 ¢ - D = 0.00 2 : P (3 0.00
“ 3 -
& & e
-4 4]
2 0 2 2 0 2
PC1 PC1
PC1 vs. PC2
(© “ (d)>
2 & @
s - 3 -
3 - =
% 4 LR g
5 ¥ 3¢ e E
L] L . FY DBE £0 :
0 » = " 15 2 .
13} b 'S I 10 g oo
= . E :
S5 %) .
2
-29 » - 8
a

S

0
PC1

-2 0 2
PC1 (35.3% explained var.)

Figure 4.12. PC1 vs. PC2 PCA plots for molecular species showing the neutral losses of
CO2, C204, C30¢, H20, H402, HsO3, CH203, CO, C2H40O, CH40, C2H403, or CHsO2 in an
aerosol sample collected at the Storm Peak Laboratory. Panels a and b show the
molecular species with a CO2 (a) or H20 (b) loss in red, while molecular species that
don’t show that loss are in blue. Panel ¢ shows the plot colored by DBE. Panel d shows
the PCA biplot for the species showing the selected losses in the sample. Panels a-c are
jittered to better demonstrate the complexity within each point in Panel d.
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4.2.6 Analysis of Species with Multiple CO2 and H20 Neutral Losses

4.2.6.1 PClvs. PC2

To do some additional analysis of the CO2 and H20 losses, another PCA analysis was
done with only the single, double, and triple CO2 and H20 losses. The PCA biplot with
PC1 and PC2 is shown in Figure 4.13. All three of the CO2 losses are well correlated with
each other, but the H20 losses are somewhat less correlated. The single H20 loss is
correlated with the COz losses, while the HsO3 loss is well separated from the other losses
and it is only somewhat correlated with the H4O: loss. This suggests that the molecular
formulas with multiple H20 losses are not very similar to the molecular formulas with
COz losses. This may imply that the molecular formulas with multiple H20 losses are
alcohols. The loss type PCA plots for these six loses are shown in Figure 4.14. As
observed in Figure 4.13, the H6O3 losses are separated from the other observed losses,
although there are a few molecular formulas that show other losses in addition to the
triple water loss. For this PCA plot, the COz2 class losses are generally shifted towards the
left side of the plot, while the H20 class losses tended to shift down, especially as more
H20 losses are observed. The observed shift towards the left for the CO2 class losses
correlates with an increase in the number of oxygen and DBE, which is consistent with
the previous observations. Meanwhile, the H20 class losses correlate with a decreased

DBE and number of oxygen atoms.
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Figure 4.13. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of COz,
C204, C306, H20, H40O2, or HsOs.
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One key point of interest in these plots is the properties of the molecular formulas with
multiple COz2 losses and triple H20 loss. These losses from the same molecular formula
provide evidence for an isomeric mixture as suggested by Zark et al. (2017). They may
also highlight the ability of aliphatic molecular formulas to lose H20 via the cleavage of
the hydroxyl group from a carboxyl group (Jensen et al., 1985; Bowie et al., 1990;
Kerwin et al., 1996). These observations may suggest a direct bond cleavage (Jensen et
al., 1985; Bowie et al., 1990; Kerwin et al., 1996) instead of the indirect ring forming
bond cleavage (Leenheer et al., 2001; Witt et al., 2009). This is further supported by the
fact that the amount of oxygen present on these molecular formulas is on average
insufficient to contain the six carboxyl groups required for the ring forming pathway. To
further investigate the compositional properties of those molecular formulas with both a
triple H20 loss and one of the COz2 based losses, a van Krevelen (VK) plot showing was
made to show the common molecular formulas (Figure 4.15a). The average O/C and H/C
values are represented by triangles in the plot (Figure 4.15a). Interestingly, the shift in
composition between molecular formulas with a single COz loss vs. those that showed
three CO2 losses was almost entirely dependent on the H/C value, with little influence
from the O/C value. For comparison, the same type of VK plot with the molecular
formulas with COz losses without a loss of HéO3 is shown in Figure 4.15b. There a strong
dependence on both H/C and O/C for the molecular formulas with multiple CO2 losses.
The observations from these plots suggest that as the molecular formula composition
shifts toward the more oxidized and aromatic species, the likelihood of observing

multiple COz losses increases.
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Figure 4.15. VK plots demonstrating formulas that exhibit H¢O3 loss and one of the CO2
based loses (a), and all other CO: based losses (b). The large triangles represent the
average H/C and O/C ratios for the molecular formulas demonstrating COz2 (cyan), C204
(gold), or C30¢ (blue) neutral losses.
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This is highlighted in Figure 4.16 which shows the comparison of CO2 and C3Os loss
fragment peak intensities analogous to Figure 4.11. The CO2 losses are always the more
abundant fragment ion but the relative importance of the C3Og loss begins to increase as
the aromaticity increases. This supports the observations from the VK plots in Figure
4.15. A similar plot, with CO2 and C204 is shown in Figure 4.17. Interestingly, the
pattern of an increasing RA with increasing aromaticity is not observed, the reason for

this is unclear at this time.
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Figure 4.16. Comparing average RA trends for molecular species of different aromaticity
with COz or C30¢ losses. The top panel shows the average RA of the CO2 (red) or C30¢
(blue) loss fragment ion for precursor ions within each aromaticity classification. The
bottom panel shows the ratio of the average RA shown in the top panel. The ratio is
calculated by dividing the RA of the CO2 fragment by the RA of the C30¢ fragment. The
taller the bar, the larger the RA of CO2 fragment ion is relative to the C30s fragment ion.
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Figure 4.17. Comparing average RA trends for molecular species of different aromaticity
with COz or C204 losses. The top panel shows the average RA of the CO2 (red) or C204
(blue) loss fragment ion for precursor ions within each aromaticity classification. The
bottom panel shows the ratio of the average RA shown in the top panel. The ratio is
calculated by dividing the RA of the CO: fragment by the RA of the C204 fragment. The
taller the bar, the larger the RA of CO2 fragment ion is relative to the C204 fragment ion.
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4.2.6.2 Van Krevelen Analysis of Species with CO:z and H20 Loss

A VK plot for all of the molecular formulas with at least one of the six CO2 or H20 based
losses are shown in Figure 4.18. Since the plots show all of the molecular formulas with
each of the losses, many of the molecular formulas show up in several of the plots (e.g.
H20 and CO2). The molecular formulas with the loss are in color (scaled by DBE) and
the other molecular formulas with at least one of the other losses are in gray. Here a clear
difference between the molecular formulas with multiple CO: losses and those with
multiple H20 losses is observed. As more CO: losses are observed, the molecular
formulas shift down and to the right, indicating an increased aromaticity and oxidation. In
contrast, the H20 losses shift up and to the right, indicating a similar increase in
oxidation, but a decrease in the aromaticity. These observations are consistent with what

has been previously described in Section 4.2.4.2.3.
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4.2.7 Nitrogen Containing Neutral Losses

In addition to the C, H, and O based losses, the neutral losses with nitrogen and sulfur
were also investigated. Since the majority of the identified molecular formulas in this
sample are nitrogen containing, it is expected that many of the observed nitrogen species
contain oxygenated functional groups such as nitrate or nitro. Furthermore, oxygenated
nitrogen groups are expected because negative ESI ionizes acidic compounds more
efficiently (Cech and Enke, 2001). The nitrogen containing neutral losses investigated
were: HNOz2 (nitro functional group), HNOs3 (nitrate functional group), CH2NO4 (nitro +
H20), CHNO:s (nitro + CO2), and NH3 (amine). Despite the expectation of low NH3, it
was the second most common nitrogen-based loss (Figure 4.5), the reason for this is

explored in the following paragraphs.

4.2.7.1 PClvs. PC2
To interpret the observations PCA was performed on the molecular formulas with one of

the five nitrogen containing neutral losses (Figure 4.19). From this plot of PC1 and PC2 it

is clear that the molecular formulas with an NH3 losses are not correlated with any of the
nitrate losses and are almost negatively correlated with the loss of HNO2. The loss and

composition colored plot of PC1 and PC2 (Figure 4.20) does not provide much additional

information about the characteristics of the molecular formulas with the loss of NH3
relative to the nitrate losses. No clear trend or difference in the number of oxygen,

carbon, or DBE was observed between the molecular formulas with the different losses.
Molecular formulas with amine groups should not ionize well in the negative ion mode,

so it is expected that some other acidic functional group is also present for ionization.
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Figure 4.19. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of HNOx,
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Figure 4.20. Colored PC plots PC1 vs. PC2. Panels a-e show the molecular species with
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the
molecular species with a CO2 loss in red, while the species that did not have a COz loss,
but did have one of the other losses are shown in gray. Panels f-h show the same plots,
only colored with oxygen number (g), DBE (h), and carbon number (i). All of these plots
use the same data as Figure 4.19, but to avoid the overlapping that occurred in that plot,
the data points have been jittered, which reveals the complexity within each point in

Figure 4.19.
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4.2.8 Nitrogen Containing Neutral Losses with C, H, O Neutral Losses

4.2.8.1 PCI vs. PC2: Amine Investigation

To investigate this, another PCA with the nitrogen losses was performed including the

losses described in Section 4.2.4.2. The analysis was restricted to the CHNO group of

molecular formulas because if all groups are included, the major separation is due to the

heteroatoms and not the neutral losses (Figure 4.21). This is also why CHNOS was not

included in this portion of the analysis, because as shown in Figure 4.21, they correlate

much more strongly with the CHOS group than with the CHNO group.
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Figure 4.21. Jittered PCA plot for PC1 vs. PC2 for molecular species with a neutral loss
of HNO2, HNO3, CHNOs, H3NO4, NH3, CO2, C204, C306, H20, H402, HsO3, CH203,
CO, C2H40, CH40, C2H403, or CHsO2. Color is set by elemental group CHO (green),

CHNO (blue), CHOS (red), and CHNOS (purple).
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The PCA biplot for the CHNO nitrogen-containing losses is given in Figure 4.22. The
plot indicates that although the loss of NH3 is not tightly correlated with other nitrogen
losses, it is somewhat correlated with H2O, CO2, CO, and C2H4O losses. This suggests
that if a molecular formula has amine group, it likely also has a carboxyl, hydroxyl, or
carbonyl group if it is detected as a negative ion. This likely counteracts the basicity of

the amine group and allows the molecule to be ionized.
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Figure 4.22. PC1 vs. PC2 PCA biplot for only CHNO molecular species with a neutral
loss of HNO2, HNO3, CHNOs, H3NO4, NH3, CO2, C204, C30¢, H20, H4O2, HeO3,
CH20:3, CO, C2H40, CH40, C2H403, or CHsOx.
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Of the 2136 molecular formulas that show a loss of NH3, 1948 of them have at least one
additional loss, with CO2, H20, CO, and C2H4O making up 1805 of these. There are 187
molecular formulas with only a loss of NH3, but they are all low intensity peaks,
suggesting that the fragments for the other losses were likely below the detection limit.
The favorability of fragmentation at a primary amine (Gross, 2017) may lead to the NH3
fragment ion being above the detection limit. The common combination of NH3 and CO2
losses suggests the presence of amino acids in the organic aerosol which is consistent
with previous studies (Ge et al., 2011) including aerosol from biomass burning (Mace et
al., 2003; Ge et al., 2011). This PCA does an improved job of showing the types of
molecular formulas with the loss of NH3 relative to those with an oxygenated nitrogen
loss (Figure 4.23). The molecular formulas with an NH3 loss are shifted toward the upper
edge of the plot area, where the H20, CO2, CO, and C2H4O losses are predominately
observed. This provides more support for the correlations indicated in Figure 4.22. This
upper edge tends to have lower oxygen and higher DBE than the regions below it, which
suggests the molecular formulas that are characteristic of NH3 losses are more aromatic

and less oxidized than molecular formulas with the loss of a nitro or nitrate group.

155



PC1 vs. PC2 PC1 vs. PC2

Co2 25 (1)
2.5-(3) » ..‘g - ,
0.0- ‘@ . >0 *‘
.:o!* S ‘,‘.'.o- | B9 & oxygen
2.5+ n.{r“.}'ﬂ A ek 0.0 . . y2gl)
s’ ‘(P 2% ~ ]
5.0 E 4 . 1
H603 s - I 5
28 © Lapeises | 2 ! " 0
. ® -
0.0 c{‘ R )
251 2 el
" T80 25 0.0 255
>0 PC1 vs. PC2
2.54 CZH“O:. 2.5-(5)
..:. - ".
0.0+ Y- . St
SEL
2.51 o8 1o gPun o 0.0 DBE
et : 20
e o
~-50 3] 15
g C2H40 ~ L 20
2.54 e 1 a = | “ S
PR % M ":_iﬁ. 25 0
0.0 S¥a5s | ] "1& 2%
A . > : . " ,,.o ;:). .“”{’ ".'.f.'
251" L L R RO DRt
" . . o' ‘e .. ¢ -5.0~ N
-5.0+ 1 1 -5.0 -2.5 0.0 2.5
HNO2 HNO3 CHNOS5 PC1 vs. PC2
2.54 o : : — |
(m) e {0\:-'. (ll) :’o‘ "'. (0) PO RS 25 (1) ) ®
0.0 ;’m‘ 1 - 1°% DA R AL
‘:5- o t*g.o" '0‘ = 'g” -~ 5 S ., Rt o
25 R 'A v 4":.9'.-‘11‘ o j 4 e
1onl st 00 o € o N ~e b 7" 0.0- R ST carbon
I P 7 " 2] o . e Vol 30
5.0+ : & N LB
H3NO4 NE3 50 25 0.0 25 o ¥ %g
23(p) et [T@  as%ste : ' e
edasiiN, Q“’ 0 2.5+ % 10
Laddstsnett, | ap8esal 2.3 . 5
0.0 ",ih.&. .:;-A:.". .::'ﬁ’:k;a:\\:‘ - )
25| T | LA
51 '._..,‘ Ao ¥
5.0 k- -5.0,
50 25 00 25 -50 -25 00 25 -5.0 25 0.0 25
PC1 PC1

Figure 4.23. Colored PC plots PC1 vs. PC2. Panels a-q show the molecular species with
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the
molecular species with a COz loss in red, while the species that did not have a COxz loss,
but did have one of the other losses are shown in gray. Panels r-t show the same plots,
only colored with oxygen number (r), DBE (s), and carbon number (t). All of these plots
use the same data as Figure 4.22, but to avoid the overlapping that occurred in that plot,
the data points have been jittered, which reveals the complexity within each point in
Figure 4.22.
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4.2.8.2 PCI vs. PC2 Oxygenated Nitrogen Losses

The oxygenated nitrogen losses tended to shift towards the bottom left of the plot which
generally contains molecular formulas with higher oxygen and lower DBE. When the RA
of the NH3 fragment ions is compared to the RA of the HNO: fragment ions (Figure
4.24), the NH3 losses are more abundant in formulas that are more aliphatic. This
suggests that for more aliphatic molecules the presence of an amine group is preferable to
a nitro group, but as the aromaticity increases, the presence of a nitro group becomes
more favorable. Nitro groups are known to be present in aromatic aerosol produced in the
presence of NOx so this relationship is not unexpected (Grosjean, 1992). Furthermore,
studies of the bond between aromatic ring and the nitro group have suggested it is

relatively weak, making it a likely fragmentation point (Rice et al., 2002).

157



"uor Juowdesy (ONH a3

01 9AIIR[AI ST UOI Judwel} SHN JO V' 2u} 1931e[ oy ‘Teq ay) I9[[e3 oy I, Judwdelr) (ONH U1 JO VY au3 £q judwidely SN o3 Jo VY
oy SuIpIAIp Aq paje[nofed st onel ay ], ‘[oued doy ay3 ur umoys vy 28eI9AR ) JO 013l AU} SMmoys [dued wopoq Y], "UONBIIJISSL[D
A1o178WOTR B UIYIIM Suol J0sInddxd 103 uor judwdely ssof (dn]q) CONH 10 (Pa1) EHN Ul JO VY 23e1dA. o) smoys [oued

doy oy, "sasso[ CONH 10 EHN Y3m AII01ewoIe JUAIIHIP JO sa109ds Je[nodjow 10§ spuat) vy d3esdae Suuredwo)) g 3131

LAypeuarory Lnyeuwoay

T
=

>
“
e
]
Los & E
= lg ©
s g
o

= ZONH .
= =X
FO0L S enN - e
w $SO'] .c~am
o~ B
FOSTR 2
)
Ls1 g
=

00T
Vv qedd ymdwige.ay jo uosriedwo) Vi qedd ymwgeayq jo uostiedwo)

158



The PCA plots in Figure 4.23 do not show much of a difference between the molecular
formulas with an HNO2 or HNOs3 loss. However, the RA trends plot (Figure 4.25)
indicates that the loss of HNO2 becomes more important as the aromaticity of the base
molecule increases. The results suggest that either a nitro group is more common in more
aromatic molecular formulas, or that a nitro group is preferentially cleaved relative to a
nitrate group in more aromatic molecular formulas. The first option is more likely
because nitroaromatic molecules are well known components of biomass burning (Iinuma
et al., 2010; Kahnt et al., 2013). Additionally, nitrate groups are expected to be present in

aliphatic compounds, while nitro groups are present in aromatic groups.
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The prevalence of the nitro groups supports a biomass burning influenced aerosol
(Iinuma et al. 2010; Kahnt et al., 2013). The losses of HsiNO4 (HNO3 + H20) and CHNOs
(HNOs3 + CO2) highlight the previously observed difference between molecular formulas
with a CO2 loss and an H20 loss. The VK plot with these two types of losses (Figure
4.26) demonstrates that molecular formulas showing the loss of CHNOs are distributed in
the high O/C and lower H/C region of the plot, whereas the H3NO4 losses are
concentrated in the high O/C and higher H/C region. The difference between these
regions can be characterized as more aromatic for the CHNOs losses and less aromatic
for the H3NOs4 losses, which is consistent with what was previously observed from
comparing the multi-H20 losses to multi-COz2 losses. This suggests that muli-functional
compounds showing concurrent functional group losses are more aromatic when COz is

involved and more aliphatic when H2O is.
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Figure 4.26. VK plots showing the molecular formulas that demonstrate each type of
neutral loss (color) specified by the plot facet title (HNO?2, etc.) and all formulas that
show at least one of these loss types (gray), but not the one the plot is labeled for. The
color is determined by the DBE value for the molecular formula.
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4.2.8.3 Interpretation of Nitro Groups

Overall, the nitro functional groups are the most abundant type of nitrogen containing
loss. This is consistent with the composition of biomass burning aerosol (Iinuma et al.,
2010; Kahnt et al., 2013). Many of the nitro containing molecular formulas are aromatic,
indicating that they are likely light absorbing (Desyaterik et al., 2013; Lin et al., 2015).
Some of the possible structures of the selected set of molecular formulas with nitro losses
are shown in Figure 4.27. The molecular formulas are C;H7NO4, CéHsNOs, and
C7HeN204. The predicted structures are supported by the secondary losses observed in
addition to the nitro loss. For example, C7H7NO4 has a methoxy group in its proposed
structure and in addition a methoxy loss is observed for that molecular formula. In
contrast, the proposed structure of CéHsNOs does not contain a methoxy group, and no
methoxy group is observed, supporting this hypothesized structure. Meanwhile, the
proposed structure for C7HsN204 does not include any OH groups, which is consistent
with the lack of an observed water loss for this molecular formula. All of these structures
contain aromatic rings, making it likely that they are absorbing species (Desyaterik et al.,
2013; Lin et al., 2015). It is possible that the nitro groups are also contributing to the
absorbance of these species as well. Recent studies have also suggested that charge
transfer may be responsible for some of the absorbance observed in brown carbon aerosol
(Philips and Smith, 2014; 2015), due to the ability of aldehyde, ketone, alcohol, and
carboxylic acid groups to undergo charge transfer interactions, increasing the absorbance
at higher wavelengths in particular. While those studies do not mention nitro groups, a

study by Nagakura (1955) demonstrated intramural charge transfer in molecules with
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nitro groups, and suggested that it may be possible for intermural molecular interactions
as well. Other studies have highlighted that nitro-phenols in particular are important for
the observed absorbance in brown carbon aerosol (Desyaterik et al., 2013; Lin et al.,
2015), but the impact of the nitro group itself was not discussed. While this idea is
speculative at this point, an increased absorbance due to the nitro groups in organic
aerosol components could be an important factor to consider when evaluating the
absorption potential of brown carbon. The results from this MS/MS work indicate a high
frequency of nitro groups which may contribute to an enhanced absorption which
warrants further investigation, including theoretical studies focused on their specific

impact.
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Figure 4.27. Proposed structures for some nitro aromatic formulas observed in PMO-1.
Panel a shows C7H7NOs, Panel b shows CsHsNOs, and Panel ¢ shows C7HsN204

164



4.2.9 Sulfur Containing Neutral Losses

Neutral losses of SO3, SO4, H2SO4, CSOs, and SH2 were also examined. The loss of SO3
was the most commonly observed, followed by SO4 and SHa. Similar to the NH3 loss, the
observation of a reduced sulfur functional group is somewhat surprising. When the
molecular formulas with sulfur losses were compared using PCA, the sulfate neutral
losses were all somewhat correlated, but the SH2 loss was not in the PC1 and PC2 biplot
(Figure 4.28). The PCA plots provide some insight into the general characteristics of the
specific molecular formulas with the loss of SHz relative to the ones with sulfate losses.
Specifically, the SH2 loses are all located in the lower half of the PCA plots, which is a
region that contains relatively low numbers of oxygen and an increased DBE value
(Figure 4.29), suggesting that thiol groups are more likely to be present on less
oxygenated and aromatic molecules.
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Figure 4.28. PC1 vs. PC2 PCA biplot for molecular species with a neutral loss of SO3,
SOa4, H2SO4, CSOs, or SHo.
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Figure 4.29. Colored PC plots PC1 vs. PC2. Panels a-e show the molecular species with
the neutral loss (red) and without the neutral loss (gray). For example, Panel a shows the
molecular species with a CO2 loss in red, while the species that did not have a COz loss,
but did have one of the other losses are shown in gray. Panels f-h show the same plots,
only colored with oxygen number (r), DBE (s), and carbon number (t). All of these plots
use the same data as Figure 4.28, but to avoid the overlapping that occurred in that plot,
the data points have been jittered, which reveals the complexity within each point in

Figure 4.28.
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4.2.10 Sulfur Containing Neutral Losses with C, H, O Neutral Losses

However, there is still the question of how the SH2 containing molecular formulas were
ionized, so the sulfur-based losses were added to the C, H, and O based losses and PCA
was done again for the CHOS and CHNOS molecular formulas (Figure 4.30). In this case
the functional group correlations were less clear, but the SH2 loss was most correlated
with C2H4O, CO, COz2, and SOs3 losses. Only one sulfur atom was allowed when the
molecular formula assignment was done, so any overlap between an SO3 and SH2 loss
would suggest isomerization. The correlation with C:H4O, CO, and COz suggests that
SH: is related to carbonyl and carboxyl groups to some extent, which may explain how
they are ionized. The relative low number of detected sulfur-containing species and
subsequently, their fragments is likely due to the low abundance of these molecular

formulas relative to the CHO and CHNO molecular formulas obscures the conclusions.
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Figure 4.30. PC1 vs. PC2 PCA biplot for only CHOS and CHNOS molecular species
with a neutral loss of SO3, SO4, H2SO4, CSOs, SH2, CO2, C204, C306, H20, H4O2, HeO3,
CH20:3, CO, C2H40, CH40, C2H403, or CHsOx.
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4.2.11 Van Krevelen Analysis of Species with Sulfur Containing Neutral Losses

The VK plot of the sulfur losses (Figure 4.31) provides some additional information
about the general composition of the molecular formulas with the sulfur containing
losses. SO3 is common across the range of sulfur species, but SOu4 is shifted down and to
the right, as is CSOs (SOs3 + CO2). This suggests a preference for more oxygenated and
aromatic molecules. H2SO4 (SO3 + H20) shifts toward the upper right, suggesting a
similar dependence on oxygenation, but also aliphatic species. In contrast, the molecular
formulas with SH2 loss are shifted slightly to the left, indicating that it is more prevalent
on less oxygenated species, consistent with previous observations. The comparison of the
RA for the fragment ions for the SH2 and SO3 losses suggests that SH2 is more favored as
the aromaticity increases. Since the molecular formulas are expected to be isomers of
each other due to the sulfur limitation, this may suggest that the reduced thiol group
becomes more common for more aromatic compounds. This could be a valuable piece of
information for predictions involving sulfur containing species in aerosol because the

hygroscopicity of the thiol group will be different than a sulfate group.
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Figure 4.31. VK plots showing the molecular formulas that demonstrate each type of
neutral loss (color) specified by the plot facet title (SO3, etc.) and all formulas that show
at least one of these loss types (gray), but not the one the plot is labeled for. The color is

determined by the DBE value for the molecular formula.

170




4.2.12 Proposed Structures for Selected Molecular Formulas

One of the major goals of MS/MS analysis is to determine the molecular structures for
the species of interest. In this case, it is difficult to determine any unequivocal molecular
structures because each mass is representative of multiple isomers. However, some
potential structures can be suggested for molecules that have specific loss types, such as
HeO3 and C30s, because they require the loss of three individual H20 or CO2, making
their structures somewhat easier to predict because more of the functional groups are
constrained. To demonstrate some potential molecular structures and their general
fragmentation pattern we have provided potential structures of two molecular formulas
that show C3Og loss are provided (Figure 4.32-4.33). Ci13H1607, is one of the most
abundant molecular formulas with 3 CO: losses in it and it has a DBE value of 6. Due to
the 3 DBE for the 3 carboxylic acids, an aromatic ring is unlikely because it would
require 4 DBE. The hypothetical structure has 3 carboxylic acids that can be lost as
shown in the series of structures (Figure 4.32). Another molecular formula with the 3
COz losses 1s C23H14011, with 17 DBE. This example has one of the highest DBE values.
A proposed structure for this compound is presented in Figure 4.33. This structure has
four conjugated benzene rings making it a condensed aromatic molecule. The conjugated
rings are similar to what would be expected for soot, but the oxygenated functional
groups allow the molecule to be water soluble and provide the polarity necessary to be
ionized by negative mode electrospray ionization. This type of structure is consistent with
what was theorized by Decesari et al. (2002) for the oxidation of soot via atmospheric

processes until it was water soluble. This type of structure would contribute to brown
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carbon (BrC) due to its probable light absorption. Since BrC is expected to be a major
component of this sample due to its wildfire influence the presence of such a molecular
structure seems reasonable. The aldehydes and carboxylic acids could also potentially
contribute to charge transfer based absorbance as was described by Phillips and Smith

(2014; 2015).
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Figure 4.32. Proposed structure and fragmentation of C .H, O,
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5 MFAssignR

5.1 Background

The ultimate goal ultrahigh resolution mass spectrometry is to obtain exact mass
measurements for accurate molecular formula assignment. This type of identification is
very powerful for an improved understanding of the composition of natural organic
matter. However, there are several factors that can make it difficult to obtain an accurate
molecular formula assignment. One of the biggest factors is that multiple molecular
formulas can be assigned to the same measured mass. This necessitates the use of quality
assurance parameters that can choose the correct molecular formula out of many potential
options. There are two main ways that molecular formulas can be assigned, database
matching or calculation. Database matching is when a measured mass it matched against
a database containing many molecular formulas, and whichever ones match the mass
within an error tolerance are accepted pending additional QA. This method is generally
fast, but is limited to only the molecular formulas in the database and no database can
realistically be completely comprehensive. The calculation methods are based on using
the exact masses of atoms to calculate a molecular formula that has a theoretical mass
within the error tolerance for the measured mass. This brute force method is more
flexible than database matching, but can be slower to run. There are several methods
available to do molecular formula assignment, some of which are open source
(UltraMassExplorer, Formularity) and others that are commercial (Composer, PetroOrg).
Some of the programs assign molecular formulas using database searches (UME,

Formularity), while others calculate the molecular formulas and use formula extension to
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assign other molecular formulas (Composer). In general, most of the methods have a lack
of transparency as to how they assign molecular formulas, and what parameters are taken
into consideration when determining whether the molecular formulas are correct. This
uncertainty in how molecular formula assignment methods handle ambiguous
assignments, led us to develop our own method with more transparency as to how this is
handled. MFAssignR, written in the R programming language can be used on any
computer. This ensured easy access to the code because R is free to download through the
R website (www.r-project.org). The preeminent function in MFAssignR is the function
for molecular formula assignment, MFAssign(). The core of this function is the CHOFIT
algorithm which was developed by Green and Perdue (2015) in the Pascal programming
language. We adapted the CHOFIT algorithm to do molecular formula assignment and
added many additional parameters to improve its ability to assign a variety of
heteroatoms and quality assurance for the molecular formulas that get assigned. While
developing the MFAssign functions to assign molecular formulas, we decided to expand
the R package so that it also included noise estimation, isotope filtering, and
recalibration. These are all very important components of getting the best data possible
from ultrahigh resolution mass spectrometry. This means the final package contains a
complete pipeline for the assignment and analysis of ultrahigh resolution mass
spectrometry data, which is something that until recently was only available in
commercial software (Leefmann et al., 2018). As such, this software package represents
an important contribution to studies of natural organic matter (NOM) such as aerosol,
soil, and aquatic organic species using ultrahigh resolution mass spectrometry. The
following chapter describes each of the functions and includes some background
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information regarding other methods that have been developed to do the same thing, or

that our functions were based on.

5.2 Molecular Formula Assignment

5.2.1 Methods of Formula Assignment

MFAssignR has two functions (MFAssign() and MFAssignCHO()) for molecular
formula assignment which are used for different aspects of formula assignment.

MF Assign() is a multi-element function that includes non-oxygen heteroatoms and
provides low ambiguity in the assignments. MFAssignCHO() is identical to MFAssign(),
except that it only can assign molecular formulas with C, H, and O. Thus, it run faster,
and is more useful for preliminary molecular formula assignment used to determine
possible recalibrant ions. At the core of each function is the CHOFIT algorithm
developed by Perdue and Green (2015). CHOFIT makes use of low mass moieties to
assign C, H, and O containing molecular formulas and is faster relative to the traditional
methods of using brute force looping and Diophantine equations to assign all of the
molecular formulas (Meija, 2006; Kunenekov et al., 2009). CHOFIT was originally
written in Pascal, so we adapted it to the R programming language. MFAssign() is meant
to provide users with a more transparent method for formula assignment, especially for
possible ambiguous molecular formula assignments compared to previous methods that
have been developed. Ambiguity of molecular formula assignment increases with
increasing molecular weight or the number of possible heteroatoms because the number
of mathematically possible molecular formulas increases exponentially (Koch et al.,

2007; Kind and Fiehn, 2007). Even when chemical feasibility is used to constrain the
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assignments, there are many ambiguous molecular formulas. Ambiguity is often removed
with other software tools using pre-defined rules and it is possible that one of the
removed ambiguous formulas is actually the correct formula. Many molecular formula
assignment software tools have quality assurance (QA) parameters and rules to reduce
ambiguous assignments to only one molecular formula per mass (Stranz et al., 2015;
Tolic et al., 2017). These restrictions lead to incorrect assignments, especially when
sample types are inconsistent with those used to design the software (e.g. DOM for
Formularity and petroleum extracts for Composer. A recent software package, called
UltraMassExplorer (UME) provides ambiguous assignments without QA parameters
(Leefman et al., 2018). While this is very useful for evaluating the molecular formula
assignment options for a particular mass, UME is limited to the m/z range of 100-700,
assigns molecular formulas using a database matching approach, and is restricted to C, H,

O, N, P, S, 13C, 3*S, >N (Leefman et al., 2018).

5.2.2 Methods to Limit Ambiguity

When it comes to data analysis it is often helpful to have as few ambiguous assignments
as possible because they make it difficult to know exactly the composition of a sample.
For this reason, MFAssignR has options to limit the ambiguous molecular formula
assignments to those that are the most likely. To do this, we incorporated many tools for
QA remove less probable molecular formula assignments. We first review the QA tools
and a priori assumptions used in existing formula assignment software. Formularity
(Tolic et al., 2017), applies the assumption that the molecular formula with the fewest

number of non-oxygen heteroatoms is the best molecular formula. This assumption has

177



been made in several NOM studies (Kujawinski and Behn, 2006; Ohno and Ohno, 2013;
Tolic et al., 2017) and it is a fair assumption to make in general. However, since more
heteroatoms are expected for molecular formula assignment (e.g. soil or wastewater
NOM), it becomes possible that a formula with more heteroatoms is more probable. An
example of this is the comparison of C17HsOs and CoH12N207S which were both assigned
for m/z 293.0436. If the formula with the maximum number of heteroatoms is removed,
the N2S formula will not be assigned which may not always be the correct option. To
separate the two formulas into separate peaks would require a resolving power > 600,000

at m/z 400 (Table 5.1).

Table 5.1. Mass differences and required resolving power for selected formula transitions.

Formula Difference Amass Resolving Power at m/z 400
CxHyN30O,S vs. Cx1Hy1021 w/ 1°C 0.63 mDa 635K
CxHyN30; vs. CxiHy10418S w/ 1°C 0.244 mDa 1.64M

CHsvs. O 3.639 mDa 110K
Csvs. O3 1.525 mDa 262K
CxHyN20:S vs. Cx1Hy1021 0.652 mDa 613K
SH4 vs. C3 3.372 mDa 119K

In contrast, Composer makes the assumption that the more hydrocarbon-like molecular
formula is the correct one (Stranz, 2015). Although it is reasonable to make this a priori
decision for petroleum extracts, it may not be correct for more oxidized samples, such
atmospheric organic aerosol. To avoid making a priori assumptions about the molecular
formula composition, we developed a data dependent method to decrease a majority of

the ambiguity using molecular formula extensions. Earlier versions of molecular formula
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extensions were used in molecular formula assignment (Kujawinksi and Behn, 2006;
Kunenkov et al., 2009; Stranz, 2015; Tolic et al., 2017). The molecular formula
extensions provide confidence in the assignments at higher masses, but have not
previously been used to decrease their ambiguity. Another algorithm that has been
reported is the CHOFIT algorithm from Green and Perdue (2015) which was used as the
core of our molecular formula assignment code. A description of the core CHOFIT

algorithm, and the methods employed to limit ambiguity is below.

5.2.3 Theory of CHOFIT Algorithm

The core of the formula assignment functions in MFAssignR is the CHOFIT algorithm,
which was developed by Green and Perdue (2015). The CHOFIT algorithm itself only
assigns CH or CHO containing molecular formulas, but with the addition of some nested
loops it is possible to include any heteroatom that is desired. The CHOFIT algorithm
assigns molecular formulas using a low mass moieties (LMM) approach with CH4O-; and
C40-3 which represent elemental exchanges. These LMMs form non-parallel lines within
a single nominal mass window in van Krevelen (VK) space. Each line represents a
different homologous series where the difference is CH40-1 (blue lines) or C40-3 (gold
lines). Each series represents a common exchange series that is present within each
nominal mass window. The lines for each moiety intercept at a location in the negative
quadrants of the VK plot, thus the formulas that are within a straight line are related to
each other by one of the LMMSs. To use this method for formula assignment, the exact
mass (EM) of an unidentified molecule is converted to its nominal mass (NM) and then

the hydrocarbon that contains the highest possible carbon number is calculated. Then the
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molecular formula is checked to see if it is on the CH40O-1 “mixing line”. The mixing line
is the line of molecular formulas that differ in formula by the low mass moiety within a
single nominal mass. It is analogous to a CHz series across a spectrum. A representation
of these mixing lines can be seen in Figure 5.1. If the difference between the measured
EM and the EM of the initial formula is an integer value, then the same number of CH4O-
1 LMMs are added to the initial formula to get the final formula. If the difference it is not
an integer, then the LMM C40.3 is subtracted from the initial formula to move the
formula to the next mixing line, where the CH4O.; test is performed again. This is done
until a final formula is assigned, or the valid compositional space is used up. The VK plot
for the CHO formulas within a single nominal mass is shown in Figure 5.1. This figure,
which is adapted from Perdue and Green (2015), helps to highlight the mixing lines. This
method greatly increases the speed of the function relative to other molecular formula
calculators by decreasing the number of loops required to assign valid molecular
formulas. An example of the calculations that contribute to assigning a molecular formula

with the CHOFIT algorithm can be seen in Table 5.2.
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Table 5.2. General steps of molecular formula assignment using the CHOFIT algorithm.
First, the maximum number of carbon for the nominal mass (NM) of the neutral
molecular mass is calculated and, the remaining mass is made up with hydrogen. Then,
the mass difference between the measured mass (143.0349 Da in this case) and the exact
mass (EM) of the trial formula is calculated and divided by the exact mass of CH4O-1
(0.03639 Da). If this value is not an integer, the LMM C40-3 is subtracted from the first
trial formula and the process repeats. This continues until an integer value is found. At
this point, the requisite number of CH40.1 LMM are added/subtracted from the trial
formula in order to determine the final molecular formula. In this case 2 CH40-1 LMM
are added to the 3™ trial formula to obtain the final formula of CsHgOsa.

Step NM Carbon Hydrogen Oxygen EM # of CH40.
moieties

First trial 144 12 0 0 144 1.16
formula

2nd after 144 8 0 3 143.9847 1.58
subtracting
C403

3rd after 144 4 0 6 143.9695 1.99
subtracting
C402; again

Final 144 6 8 4 144.0423
Formula,

after

adding 2

CH40.;
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While the CHOFIT core is unable to directly assign heteroatoms, combinatorial formulas
and nested loops can be used to assign heteroatoms. The mass of a heteroatom
combination is removed from the overall measured EM to obtain the CHO core. The core
is then be assigned using the CHOFIT algorithm and then the heteroatom combination is
added back to the final formula. This method generates all possible molecular formulas
within the error tolerance, leading to a large number of ambiguous assignments. While
generation of the maximum number of formulae affords ultimate method transparency, it
can add additional complexity for the analysis and interpretation of the data. To address
this, we introduced a number of optional QA steps and parameters to reduce the

ambiguity in a data-dependent way.
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Figure 5.1. Adaptation of figure from Perdue and Green to help explain how molecular
formulas are assigned in CHOFIT. Blue color is related to the CH4O-1 low mass moiety,
meaning that the dots connected by blue lines vary by CH40O.1, while the gold color
corresponds to the C40-3 low mass moiety, dots connected by gold lines vary by C4O.3.
The green points represent molecular formulas assigned at nominal mass m/z 543 in
PMO-2. The unshaded quadrant represents the positive space where real molecular
formulas exist, the shaded regions represent the negative space of a van Krevelen plot.
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5.2.4 Formula Extension Background and as Way to Limit Ambiguity

The most significant method for reducing the ambiguity in MFAssignR comes from the
use of formula extensions. A building block approach using formula extensions has been
used to assign molecular formulas in several software packages (Kujawinski and Behn,
2006; Kunenkov et al., 2009; Tziotis et al., 2011; Tolic et al., 2017;). The Compound
Identification Algorithm (CIA) described by Kujawinski and Behn, (2006) used a
molecular formulas seed approach where all of the masses related to the seed by CHz, Ha,
or O mass differences are assigned by adding or subtracting the requisite number of those
building blocks. Formularity extended this approach with the addition of CH4O-1, CO2,
C2H40, and C2H20 as possible building blocks. The molecular formula extension
relationships of measured masses are determined using their KMD values. When the
KMD values are the same, the masses are considered to be in the same homologous
series. Thus, the molecular formulas are assigned by adding or subtracting the appropriate
number of building blocks equal to the mass difference. The formula extensions provide
confidence in the molecular formula assignments, especially at higher masses because
they are related to peaks at lower masses within the mass spectrum, providing an overall
lower number of molecular formulas. If the molecular formulas are calculated for higher
mass peaks without restricting them to lower masses, the number of possible molecular
formulas increases exponentially (Kind and Fiehn, 2007; Koch et al., 2007). In
MFAssignR, the formula extension is used to improve formula assignment, and decrease
the ambiguity of formula assignments without making a priori decisions about the

composition of the sample, as described previously (Ohno and Ohno, 2013; Kujawiniski
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and Behn, 2006; Stranz, 2015). Five formula extensions are used in MFAssign() and
MFAssignCHO(). The extensions used are CHz, H20, O, Hz, and CH20. Some of these
can be redundant (H2 and O vs. H20 for example), but the redundancy provides increased
confidence because if a particular molecular formula has multiple relationships it is more
likely to be a correct assignment. This assumption is the basis of the approach used in
MFAssign and MFAssignCHO to decrease the molecular formula ambiguity with
formula extensions. Formula extensions, require a good “seed” formula (Kujawinski and
Behn, 2006; Koch et al., 2007). In MFAssign and MFAssignCHO, the preliminary seed
formulas are generated by the CHOFIT algorithm where only the unambiguous molecular
formula assignments are used as seed formulas. The remaining monoisotopic masses are
added to the unassigned mass list which are assigned using the formula extension
approach. In MFAssignR, a combination of the Kendrick mass defect, and the z* (Hsu et
al., 1994; Stenson et al., 2003) for each of the bases is used. The masses are then matched
using KMD and z* in several steps as shown in Figure 5.2. The molecular formula
extension process begins with masses below the user defined de novo threshold. It then
performs a user defined number of loops to assign molecular formulas using the 5
extensions. At the end of each loop, the molecular formulas that are unambiguously
assigned act as seeds for the next loop. To determine the unambiguous assignments, at
this point, a basic elemental ratio test is applied to the assigned molecular formulas to
remove those that have an O/C or H/C ratio that exceeds the user defined limits. After
this step, the function determines how many seed formulas are related to the newly
assigned formulas, if there are two assignments for the same mass, the function chooses

the formula that has more “paths” to it. The paths indicate the number of seed formulas
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related to the new assignment. The selected formula is then treated as an unambiguous
assignment for the next loop. After the series of loops are finished for the first segment of
the mass spectrum, formula extensions are performed on the next segment, which uses
seeds up to the de novo threshold + 200. This process is repeated until the entire mass
spectrum has been covered. Formula extensions significantly reduce the number of
ambiguous assignments, but some ambiguous assignments still make it through. These

ambiguous molecular formulas are identified in the output.
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Figure 5.2. Schematic for formula extension. Panel a shows an example mass spectrum,
Panel b in conjunction with the mass range in Panel a demonstrates the how the segments
of formula extension cover the full mass range over several steps, Panel ¢ shows how a

single “seed” formula can be used to assign many molecular formulas with the 5 formula
extension bases.
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5.2.5 Isotope Molecular Formula Correction

Part of the molecular formula assignment is matching the masses flagged as potential
polyisotopic molecular formulas to the assigned monoisotopic masses. The initial
separation of monoisotopic and polyisotopic is done with the IsoFiltR function which is
described more thoroughly in Section 5.4. IsoFiltR does a good job of identifying
monoisotopic and polyisotopic masses, but some are still incorrectly identified as
polyisotopic. To address this issue, a second round of formula extensions is done for the
polyisotope masses that were not, or were incorrectly, matched to a monoisotopic mass.
The masses that are incorrectly matched to a monoisotopic mass are typically those that
IsoFiltR flags as a **S mass, but shouldn’t be flagged as such. These masses can be
matched to a sulfur containing molecular formula, but if the sulfur containing formula
doesn’t have a corresponding '*C mass it is not likely correct. The logic is that if the
sulfur containing formula can have a matching **S mass, it should also have a matching
13C mass because the '3C mass should be more abundant and easier to detect. So, if a
sulfur containing molecular formula has a 3*S isotope, but no '*C isotope, then it is
considered to be incorrect for the purposes of this test, and the “**S” mass is added to the
list for secondary assignment via formula extension. This secondary step ensures that all
isotopic peaks are given the opportunity to be assigned a molecular formula. Formula
extensions are always used to assign molecular formulas in MFAssign and

MF AssignCHO, but if the user wants to have more ambiguous assignments the path
counting aspect of formula extension can be turned off. This allows all ambiguous

assignments that fulfill the other QA parameters to be reported in the output. The
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effectiveness of the formula extensions is shown in Figure 5.3, which shows the number
of paths that are used to select molecular formulas. This figure illustrates how the
formula extensions are used to decide between “correct” and “incorrect’” assignments
without additional a priori decisions such as choosing the formula with the lowest

number of heteroatoms.
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Figure 5.3. Demonstrating the number of paths for each formula assignment. This is how
the formula extension decides on the correct formula, whichever one has the higher
number of paths (Ois in this case) is chosen as the correct molecular formula. The
molecular classes being compared here are N201sS (red) and Oi6 (blue). Each set of
points represents an ion mass that has two molecular formulas preliminarily assigned.
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5.2.6 Quality Assurance Parameters

5.2.6.1 Sulfur Isotope Check

In addition to the formula extensions, there are several other QA parameters that can help
decrease ambiguity and improve the quality of formula assignments. One of the methods
is the sulfur isotope check, which checks all sulfur containing assignments that come out
of the CHOFIT core to see if they have a matching sulfur isotope mass. If they do, the
assignment can be used as a seed to assign other molecular formulas, if not, the
assignment is discarded and the mass will be assigned during formula extension. This
ensures that all sulfur containing molecular formulas are related in some way to a

molecular formula with a sulfur isotope to help confirm its identity.

5.2.6.2 Nominal Mass Series Check

Additionally, a nominal mass series check, ensures that molecular formulas within a
nominal mass window with 36.4 mDa mass differences all vary by the exchange of O
with CHa (Koch et al. 2007). If a molecular formula within the series doesn’t have
enough oxygen to account for the rest of the masses in the series, it would be deemed
incorrect. For example, if a molecular formula with one oxygen is assigned, but is also
related to 3 higher masses in series, it is likely incorrect because the subsequent
molecular formula would have a negative number of oxygen to follow the trend (Koch et
al., 2007). The concept of CHa vs. O is implicit in the CHOFIT core algorithm (Perdue
and Green, 2015; Green and Perdue, 2015), but this additional step can decrease

ambiguity in the formulas that are assigned via formula extensions.
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5.2.6.3 High Heteroatom Check

The final optional QA parameter is the high heteroatom check. This check chooses the
molecular formula with the least number of non-oxygen heteroatoms consistent with
previous studies (Kujawinski and Behn, et al., 2006; Ohno and Ohno, 2013; Tolic et al.,
2017). This parameter is generally applicable to NOM, but because it has the potential to
limit atmospherically relevant assignments, we developed the other QA parameters to

reduce ambiguity, as described previously.

5.2.6.4 User Controlled QA Parameters

In addition to the optional QA parameters, several others can be set by the user,
including: the min/max oxygen-to-carbon ratio (O/C), hydrogen-to-carbon ratio (H/C),
and double-bond-equivalent minus oxygen (DBE-O) parameters. The O/C and H/C
parameters can be set according to the expected composition of the sample; typical
boundaries are 0.1 to 2 for O/C and 0.3 to 2.5 for H/C. The DBE-O parameter was
developed by Herzsprung et al. (2014) as a way to remove unlikely molecular formula,
and the default boundaries are -13 to 13. The minimum number of allowed oxygen can

also be set by the user.

5.2.6.5 Default QA Parameters

Several QA parameters are not subject to user inputs because they are related to basic
chemical formula feasibility instead of the more qualitative assessment parameters
discussed previously. These include the Senior rules (Senior, 1952; Kind and Fiehn,

2007; Green and Perdue, 2015), nitrogen rule, large atom rule, maximum hydrogen rule,
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and maximum double bond equivalent rule (Lobodin et al., 2012). The Senior rules were
developed by Senior (1952) and can be used to limit molecular formulas to only those
that are chemically feasible with regard to bonding and valence levels. The valence level
of the atoms represents the number of open spots in their outer electron shell. For
example, carbon typically has a valence level of 4 because that is the number of open
spots in the outer octect of electrons. Rule 1 states that the sum of valences or the total
number of atoms having odd valences is even (Kind and Fiehn, 2007). Rule 2 states that
the sum of valences is greater than or equal to twice the maximum valence (Kind and
Fiehn, 2007). Rule 3 states the sum of valences is greater than or equal to 2n-1, where n
is the number of atoms (Kind and Fiehn, 2007). These rules are used in several molecular
formula assignment software tools including: Seven Golden Rules by Kind and Fiehn,
(2007) and the original CHOFIT (Green and Perdue, 2015). While the Senior rules
themselves cannot be changed, the valence level of S, N, and P can be set by the user,
which can be useful if oxidized sulfur with a valence level of 6 is expected. The nitrogen
rule states that a molecular formula with an odd number of nitrogen must have an odd
neutral mass. The maximum hydrogen rule states that the number of hydrogen cannot
exceed 2 * #carbon + 2. The maximum DBE rule as described by Lobodin et al. (2012)
states that the DBE cannot exceed 90% of the total number of carbon and nitrogen atoms
in a molecular formula. The large atom rule states that the number of atoms with a mass
greater than '2C must be less than the value of the exact mass of the molecular formula

divided by 13.
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5.2.7 Advantages of MFAssignR for Heteroatoms

Most molecular formula assignment software tools assign molecular formulas containing
C,H, N, O, S, and P, potentially with the isotope masses of '*C and **S (Kujawinski and
Behn, 2006, Green and Perdue, 2015, Leefmann et al., 2018, Stranz, 2015). Recently,
Tolic et al. (2017) developed a method that can also include select halogens, but it is
based on a database search, and thus is less flexible than methods that can directly
calculate molecular formulas. Using the CHOFIT algorithm, it is theoretically possible to
add as many heteroatoms as desired. Therefore, in addition to '2C, 'H, N, '°0, *2S, and
3P, we added 2H, N, 3°Cl, ¥’Cl, and '°F. The addition of these heteroatoms is very
helpful in performing experiments with isotopically labeled species (Leverton, 2019), and
in investigating halogenated wastewater species, which may be found, for example, in
outflow from wastewater treatment facilities. Following this overview of MFAssign, we
now turn to the functions that are necessary to ensuring that the results from MFAssign

are as robust as possible.

5.3 Noise Estimation

5.3.1 Importance of Noise Estimation and Methods for its Estimation

First, we discuss the instrument noise estimation function in MFAssignR, KMDNoise,
and why noise estimation is important to ensure good data quality (Riedel and Dittmar,
2014, Kilgour et al., 2017). The noise that is being considered here is thermal and
electrical noise from the instrument itself. This noise is inherent in any measurement due
to the movements of electrons and imperfections in the instrumentation. Many methods

exist for estimating the noise level. The most simple approach evaluates the peak
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intensity in regions without analytes (Kew et al., 2017). However, the noise level is not
necessarily consistent throughout the spectrum, especially for FT-ICR MS (Hawkes et al.,
2016), so these small regions may not provide the most accurate assessment of the noise
level. Slightly more advanced methods rely on the assumption that all peaks with a mass
defect of 0.3 to 0.9 are noise peaks (Riedel and Dittmar, 2014). This assumption ignores
the possibility of higher intensity multiply charged peaks or harmonic signals in this
range for NOM. This assumption may lead to higher estimations of noise than is
appropriate due to the inclusion of the higher intensity multiply charged or harmonic
peaks. Harmonic signals can be produced by a variety of factors such as signal saturation
of the detector, the inherent finiteness of an ICR cell, or issues with the Fourier transform
of the data (Mathur et al., 2009). They can also be produced by physical problems with
the instrument itself such as bad connections in the wires (Mathur et al., 2009). In the
Orbitrap, harmonics are also possible, but are more limited relative to ICR instruments
(Makarov, 2000; Zubarev and Makarov, 2013). More advanced noise estimation methods
such as those described by Zhurov et al. (2014); Zielinski et al. (2018), Kilgour et al.
(2017), and Riedel and Dittmar (2014) can be effective, but are often more difficult to
implement. For example, the main method described in Riedel and Dittmar (2014)
requires the use of multiple blanks to estimate the noise for samples that are run using the
same parameters. AutoPiquer (Kilgour et al., 2017) uses isotopic fine structures to pull
out peaks from the noise thereby separating the analyte signal from surrounding noise
peaks. The methods described by Zhurov et al. (2014) and Zielinski et al. (2018) are very
similar to each other, both use a histogram distribution of the peak intensities in the raw

spectrum to separate the noise peaks from the analyte signal, the only difference is that
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the Zhurov et al. (2014) method uses the log10 of intensity, while Zielinski et al. (2018)
uses the native intensity. These methods can work well when the noise and intensity are

well separated (Figure 5.4a), but oftentimes they are not (Figure 5.4b).
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Figure 5.4. Histograms demonstrating the distributions of raw intensity values in two
different aerosol samples used for the Zhurov et al., (2014) intensity histogram noise

estimation method. Panel a is an example of the method working well, while Panel b is an
example of it not working well.
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5.3.2 Theory of KMDNoise

Due to the limitations described above, we developed a new method for estimating the
noise in a mass spectrum, using the Kendrick mass defect (KMD) values from a raw mass
spectrum called the KMD slice method. Traditionally, a KMD is calculated using a CHz
base, where masses that differ by the exact mass of CHz have the same KMD. This
improves the identification of molecular formulas because in theory, if you know the
identity of one of the peaks in a CH2 homologous series you can identify the rest by
adding or subtracting the requisite number of CH2 groups. Typically, KMD analysis is
performed on data that has already had the noise removed, but an interesting pattern of
analyte and noise peaks can be observed from the raw mass spectral peaks. Since the
mass of noise peaks is random, the KMD values for the noise peaks are also random. This
leads to “islands” of analyte peaks surrounded by a “sea” of low intensity noise peaks.
This is shown in Figure 5.5. Some of the high intensity peaks form smaller “islands”
above and below the largest “island”; these peaks represent either ions that are multiply
charged or harmonics. It is very difficult to tell whether the peaks are multiply charged or
harmonic, but the intensity of these peaks would bias the estimated noise level when
using a noise estimation based on normal mass defect (Riedel and Dittmar, 2014). This
highlights the improved flexibility of the KMD slice method because it can avoid those
regions more easily. The inclusion of the noise peaks also causes the entire theoretical
range of the KMD plot to be filled, which allows the identification of the overall slope of
a KMD plot. The overall equation for a KMD plot is y = 0.1132x + b, with y being the

KMD value, x being the measured ion mass, and b being the y-intercept. Changing b
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allows different segments of the spectrum to be isolated, in most mass spectra, good
values for b are 0.2 and 0.05 to select a region of the plot with as few high intensity peaks
as possible (Figure 5.5b). The peaks within this “slice” are then averaged with that value
representing the average noise level for the overall spectrum. This value can used in
conjunction with a user-defined signal to noise ratio (typically 3 — 10) to remove peaks

that have an intensity that is too low.
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Figure 5.5. Showing the KMD plot for the raw mass spectrum of PMO-2. Panel a
contains the plot without additional information. Note the light blue “island” near the top
of the plot; these represent doubly charged or harmonic plots with a mass defect of ~0.5.
Panel b shows the same plot, but with the KMDNoise function boundaries indicating
where the noise is estimated with the default settings of that function.
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5.3.3 Noise Estimation Method Comparison

A comparison of some of the noise estimation methods described above is shown in
Figure 5.6. Here the noise estimations obtained from the “simple”, Riedel and Dittmar
(2014) mass defect, Zhurov et al. (2013) histogram, and the KMD slice estimation
methods for the raw mass spectrum of PMO-2 collected with an FT-ICR MS with 400K
resolving power at m/z 400 are presented. The “simple” method uses an analyte free
region of the spectrum to estimate the noise. The results of this comparison (Figure 5.6)
show that the estimation with KMDNoise produces the lowest signal-to-noise threshold,
while still being comfortably above the noise level. The Riedel and Dittmar (2014)
method has a noticeably higher signal-to-noise relative to the KMD slice method. This is
likely due to the inclusion of more intense peaks in the mass defect ~0.5 range (Figure
5.5). The “simple” method produced the highest signal to noise ratio, which is likely due
to the increased noise in the range of m/z 950-1000 where it was estimated. This is a
limitation of the “simple” method as the noise increases with increasing mass and has
been described elsewhere (Hawkes et al. 2016). The Zhurov et al. (2013) method had the
second lowest estimated noise, but it did not work correctly because the intensity
histogram was unable to separate the analyte and noise peaks (Figure 5.4b). In this case,
the estimated noise was based on the mode of the distribution, which is mentioned as a
secondary option as described in Zhurov et al. (2013). So, although the estimated noise
with this method is similar to what we see for the KMD slice method, the KMD slice

method is much easier to use, and provides more reproducible results.
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Figure 5.6. Showing the noise levels estimated by 4 different methods of noise
estimation. The noise estimation with the Riedel and Dittmar method (Riedel) is in gold,
the “Simple” method estimate is in red, the estimation based on the mode of the
histogram distribution (HistMode) is in cyan, and the noise estimation from the KMD
Slice method (KMD) is in green. Each panel represents a different mass range in the

spectrum of PMO-2.
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5.3.4 Similarities and Differences to Other Methods of Noise Estimation

This method is quite simple, but has not been reported previously. It uses the idea of
estimating the noise based on the intensity of peaks in a region without analytes,
consistent with the less advanced of the two methods described by Riedel and Dittmar
(2014). Essentially what the KMD slice method does is pull out the noise peaks from
regions that do not have analyte peaks, but instead of needing a range over several
consecutive m/z as with the original, it can get them from every range that has noise in it
across the spectrum, as opposed to a relatively small region at the high end of the mass
range. It is somewhat similar to the mass defect method described by Riedel and Dittmar
(2014) in that it uses assumptions about mass defects to estimate the noise over the entire
spectrum. The primary advantage of this new method though is that it is more precise
about which peaks are used for the noise estimation. The most obvious advantage is due
to the observation of doubly charged or harmonic signals that are sometimes present in
mass spectra. These peaks have a natural mass defect of ~0.5, placing them in the range
of mass defects used to estimate the noise with the method described by Riedel and
Dittmar (2014). Their inclusion may lead to an over estimation of the noise, which in turn
may cause low intensity analyte peaks to be removed from the mass spectrum. In the
KMD slice method however, these doubly charged or harmonic peaks form a visible
secondary cluster above the cluster of singly charged peaks. This cluster can then be
avoided by using the appropriate boundaries, providing a more accurate assessment of the

actual noise level.
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5.4 Isotope Filtering

5.4.1 Importance of Identifying Polyisotope Masses

A function to identify likely polyisotopic masses was developed for MFAssignR called
IsoFiltR(). Polyisotopic masses are masses where the molecular formula responsible for
them contain more than one type of isotope for one of the types of atoms in the molecule.
For example, a molecular formula with a '*C atom present would be responsible for a
polyisotopic mass. Identification of polyisotopic masses before or during formula
assignment is key to ensuring good quality data. If these masses are not correctly
identified, they can be incorrectly assigned as monoisotopic masses, and lead to an
incorrect interpretation of the molecular composition. An example of a common incorrect
formula assignment is when a mass that is representative of a molecular formula that
contains a '*C is assigned a monoisotopic molecular formula of the basic form
CxHyN30O:S. This elemental exchange has a mass difference of Amass = 0.63 mDa, which
makes it difficult to resolve for many ultrahigh resolution mass spectrometers (Table 5.1).
An example of the formulas that result from such an exchange is for m/z 350.0816 where
the correct molecular formula is C12'*Ci1HisO11, but a molecular formula of CisH17N30sS
can also be assigned. The mass measurement error cannot even be used to differentiate
these assignments because the error was lower for the incorrect assignment. This can be
seen visually in Figure 5.7. The resolving power needed to separate these peaks and
others at m/z 400 can be seen in Table 5.1. A van Krevelen (VK) plot with the ambiguous
MFs is shown in Figure 5.8. In this case it would be relatively easy to recognize that the

N3OxS assignments are less likely because they have a large number of heteroatoms for
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natural organic matter (NOM) (Kujawinski and Behn, 2006; Ohno and Ohno, 2013). The
distribution of the species in a triangular shape at low O/C ratios may also raise concern
for someone analyzing the data. In other cases, it is not always possible to know whether
an assignment should be a monoisotopic or polyisotopic molecular formula assignment,
especially when additional heteroatoms are expected. For this reason, many formula
assignment software packages offer some sort of polyisotope identification during
formula assignment (Tolic et al., 2017; Leefmann et al., 2018; Stranz, 2015), which are
either based on mass differences or database matching. In NOM the most important

isotopes that are '*C and **S, so they are most often considered.
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Figure 5.7. Reconstructed mass spectra showing how a mass can be incorrectly assigned
as a monoisotopic mass. The figure includes the corresponding monoisotopic mass and
formula, along with the mass measurement error for all the assigned molecular formulas.
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5.4.2 Considerations for Polyisotope Identification

Every isotope has a specific abundance in nature. '*C has a natural abundance of 1.10 %
meaning that any particular carbon atom has a 1.10 % chance of being *C (de Hoffmann
and Stroobant, 2007). Therefore, the abundance of the single '*C mass peak in the mass
spectra scales with the number of carbon atoms. The theoretical intensity of a 1*C isotope

peak is calculated using Equation 5.1:

Int. Ratio = #carbon x 0.9890%carbon=1 x 0,011 Eq. 5.1

where Int.Ratio is equal to the ratio of the mono/poly intensities, 0.9890 is equal to the
natural abundance of the '>C atom, 0.011 is equal to the natural abundance of the *C
atom, and #carbon is equal to the number of carbon atoms in the molecular formula. A
molecule with 20 carbon for example, would have an associated *C peak intensity that is
22.2% of the intensity of the monoisotopic peak. Due to the large numbers of carbon
present in most organic matter, 1*C is an important isotope for identification and
confirmation of molecular species. The theoretical intensity of the **S peak is calculate

using Equation 5.2:

Int. Ratio = #sulfur X 0.958%4¥/ur-1 % 0.042 Eq.5.2

where Int. Ratio is equal to the ratio of the mono/poly intensities, 0.958 is the natural
abundance of the **S atoms, 0.042 is the natural abundance of the **S atom, and #sulfur is
equal to the number of sulfur atoms in the molecular formula. Due to the limitations of

ultrahigh resolution MS, the theoretical abundance of isotopes is not as reliable as it is
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with other types of mass spectrometry such as isotope ratio mass spectrometry (Muccio
and Jackson, 2008; Weber et al., 2011). For analytes with a monoisotopic peak intensity
only slightly above the noise level, the associated polyisotopic peak can fall below the
S/N threshold. Furthermore, low abundances deviate from the expected isotope
abundances according to the effect of isotope dilution (Weber et al., 2011). Figure 5.9
provides a demonstration of isotope dilution using the abundances of the polyisotopic
masses with *S peaks. The principle is the same for 1*C (not shown). In Figure 5.9, one
sees that when a set of peaks is well above the S/N level, the isotopic ratio is nearly
equivalent to the theoretical value, but as the monoisotopic peak gets closer to the signal
to noise ratio, the isotopic ratio deviates significantly. Due to this deviation from the
theoretical values, it is difficult to identify all of the potential polyisotope peaks using
isotope. Many formula assignment software tools that consider polyisotopic masses such
as °C, use expected isotopic patterns and check them against a database containing those
patterns or by simple mass difference (Stranz, 2015; Tolic et al., 2017; Leefmann et al.,
2018). MFAssignR does not use a database to assignment molecular formula, and a

simple mass difference is not solely sufficient for identifying polyisotopic masses.
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Figure 5.9. Demonstration of **S isotope dilution for sulfur species in in PMO-1 (top)
and PMO-2 (bottom). Lower Average Monoisotopic Abundance (AMA) indicates that the
molecular formula lower intensity and is approaching the noise. The larger AMA indicate
that the formula is getting further above the noise level. As the AMA increases, the
points plateau at around 5%, which is what would be expected for the natural abundance
of S (4.2%).
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5.4.3 Theory of IsoFiltR Function

The IsoFiltR function in MFAssignR identifies probable polyisotopic masses containing
1 or 2 13C or 1 **S before molecular formula assignment by using four quality assurance
(QA) steps. This represents a unique attempt to identify polyisotopic masses prior to
formula assignment for UHR MS data, as previous literature methods were either based
on database patterns (Yang et al., 2015; Tolic et al., 2017), mass differences after
assignment (Leefman et al., 2018), or were made for lower resolution instruments (Zheng

et al., 2018). The steps for identifying polyisotopic masses are described below.

5.4.3.1 Step One: Mass Matching

IsoFiltR first matches every mass in the spectrum with every other mass, making a data
frame with N™ observations, where N is the number of observed peaks in the mass
spectrum. This can become unmanageable for a standard computer, so the mass list is
broken into 10 overlapping sections and the difference in mass between the matched
observations is calculated. The observation pairs that match within + 5 ppm of the
theoretical mass difference of the isotope of interest (1.003355 Da for 1*C and 1.995797
Da for **S) are retained and all other pairs are removed from further consideration. After
this is done for each of the sections, they are re-combined into a single dataset and all

duplicate mass pairs are removed before the next step of filtering.
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5.4.3.2 Step Two: Isotopic KMD Series

IsoFiltR then makes use of the mass difference between '2C and '3C (or *2S and **S) with
a KMD. The equation to calculate KMD requires the calculation of the Kendrick mass

(KM) the equation for KM and KMD are below (Equations 5.3 and 5.4):
KM =mass * 14.01565/14  Eq.5.3
KMD =KM - NM Eq. 5.4

Typically, KMD is used with a CHz base, such that the masses are re-normalized by the
exact mass of CHz (14.01565 Da) instead of carbon. This causes the masses that differ by
the exact mass difference of 14.01565 to have the same KMD value. Since the CH2 based
KMD is not helpful for identifying isotope pairs, the mass difference for '2C and '*C
(1.003355 Da) or S and *S (1.995797 Da) is used instead. Similar to the CH2 KMD, if
the mass difference of '>C and '*C is used as the KMD base, all of the masses that differ
by that mass will have the same KMD value, making them easier to identify. After the
13C or **S KMD values are calculated for the preliminary monoisotopic and polyisotopic
masses, those values are subtracted from one another. Theoretically, the number should
be exactly 0, but because there is some inaccuracy in the measurements, some degree of
error is allowed. The remaining quality assurance (QA) steps will be enough to limit the
number of false positives in the identification of polyisotopic masses. Thus, if the
absolute value of the subtracted number is < 0.00149 the pair of peaks are considered to

be in a series and are moved to the next step.
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5.4.3.3 Step Three: Resolution Enhanced Kendrick Mass Defect

IsoFiltR then uses the so-called resolution enhanced KMD (Zheng et al., 2018; Fouquet
et al., 2017). Essentially, the resolution enhanced KMD (KMDr) divides a repeating mass
unit (for example 14.0565 for CH2) by an experimentally derived integer. This separates
the isotope mass pairs by a consistent value. To obtain the separation desired, we used the
CH: base (14.01565 Da) and two integers for dividing it. For **S the integer is 12 and for
13C the integer is 21. The integer for '*C was obtained from Zheng et al. (2018), while the
integer for **S was determined by trial and error. Using the calculation and the integers
mentioned previously we observed a consistent difference in the KMDr values for '3C
and **S peaks relative to their ?C and *S counterparts. For the separation of '>C and '*C,
the KMDr difference was either -0.496 or 0.503, and for the separation of **S and **S the
difference was either -0.291 or 0.709. A visual representation of this can be seen in
Figure 5.10. The difference was calculated by subtracting the KMDr value for the
suspected polyisotopic mass from the monoisotopic mass. As in the second step, there is
some allowance of measurement error in these values to account for potential
inaccuracies in the measurements. For the purpose of filtering the isotope pairs, the limits
are -0.4975 < KMDrDiff < -0.494501 and 0.501501 < KMDrDiff < 0.5045 for '*C, and -
0.29349 < KMDrDiff < -0.29051 and 0.7075 < KMDrDiff < 0.70949 for **S. Only the
mass pairs that differed by the allowed KMDr difference are passed on to the fourth step

of the isotope filtering.

212



KMDr

KMDr

Carbon KMDr Separation Plot

Ion Mass

0.50
— PR
0.251 oo 3 sot?e
IERHCE
=— -0.496 AKMDr- - -
¢ Tag
0.00- 12C
13C
D
0.25 s e
<
-0.50 s dhatiareees
100 200 300 400 500 600
Ion Mass
Sulfur KMDr Separation Plot
0.50
als
— > 9 9
4
0.25- IS EEE R R $3
223 Tag
g 863 3 8
0.00+ =— 0.709 AKMDr: 328
2§88 4 348
0.25-
5 e
e
. §38883° esdl
0.50-
100 200 300 400 500 600 700

Figure 5.10. Demonstration of the effect of the resolution enhance KMD analysis used
for identifying polyisotopic pairs. The top panel shows '2C/!*C, while the bottom panel
shows ¥2S/34S. The brackets represent one of the AKMDr between a matched pair of
isotopic masses. The other AKMDr comes from the wrap-around of the points in the plot
when the absolute value of KMDr exceeds 0.5. This wrapping is best visualized for the
blue species in the '2C/!*C panel.
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5.4.3.4 Step Four: Natural Isotopic Abundances

For the reasons noted previously, the isotopic abundances are not always completely
accurate for FT MS data so the ratio limits are somewhat relaxed. The theoretical *S/*2S
intensity ratio is 4.2%, this ratio is kept the same across the entire spectrum because it is
unlikely that there are > 1 sulfur atom present in the molecular formulas. However, since
the abundance of sulfur containing molecular formulas is low, the sulfur ratio is set to
30% in IsoFiltR by default. Therefore, the *S peak abundance must not exceed 30% of
the potential **S peak that it is matched to by default. It is set to this level because of the
isotope dilution as shown in Figure 5.8, although the value can be changed by the user.
13C on the other hand, cannot be set to a single ratio across the entire spectrum because
the number of expected carbon atoms is too variable. Since the number is expected to
increase with mass, the minimum and maximum '*C/'?C ratio increases with mass.
Specifically, a theoretical upper and lower limit of the '3C/!2C ratio was calculated for
100 Da bins across the entire spectrum (100-200 Da, 200-300 Da, etc.). The upper limit
was estimated by taking the mass at the upper edge of the bin and determining the
maximum number of carbon atoms, without consideration to chemical feasibility. The
isotopic ratio was determined using the sisweb.com isotope pattern generator. The
abundance of the single and double *C peaks were used to set the limit on isotope ratio.
The same concept was applied for the lower limit, using the maximum number of CH+O
units at the lower limit of each mass bin. To further increase the flexibility of the
abundance ranges, another parameter was included in the IsoFiltR function to loosen

(lower value) or tighten (larger value) the carbon abundance windows; the default value
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is 0.1. The pairs of masses that make it through this step of the QA are then finalized as
monoisotopic and polyisotopic masses and are exported from the function as two separate
lists. The monoisotopic masses are directly assigned molecular formulas using either

MF Assign or MFAssignCHO and the polyisotopic masses are assigned molecular
formulas by default when they are matched to the assigned monoisotopic formula.
Occasionally, the IsoFiltR function incorrectly defines peaks as polyisotopic. For this
reason, there is a secondary step within the MFAssign and MFAssignCHO functions to

assign molecular formulas to the incorrect polyisotopic masses whenever possible.

5.4.4 IsoFiltR Test

To test the capability of IsoFiltR to accurately separate polyisotopic peaks and
monoisotopic peaks the masses that had been defined as polyisotopic were assigned
molecular formulas with MFAssign. Of the 1576 peaks flagged as potential '*C masses,
1269 were assigned a molecular formula, of which 1259 were assigned a *C containing
molecular formula. This suggests that the method does a reasonable job of isolating *C
polyisotopic peaks. Similarly, of the 549 masses that are flagged as **S peaks, 459 are
assigned a molecular formula, with only 11 being assigned as **S molecular formulas.
The reason why so few peaks are identified as >*S is that there is a relatively limited
number of sulfur-containing species in the studied sample (PMO-2) and most of the
sulfur peaks were present with low intensities, meaning that the isotope masses may be
below the signal-to-noise threshold. The most abundant sulfur containing peaks from the
molecular formulas C16H2603S and C17H2803S both have 3*S peaks assigned, suggesting

that the primary limitation is the low abundance of sulfur containing peaks. The peaks
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that were assigned as **S incorrectly can still be assigned a monoisotopic molecular
formula due to a secondary formula extension in the MFAssign function which was

described in Section 5.2.

5.5 Recalibration

5.5.1 Reason for Recalibration

In MFAssignR two functions were developed to do mass recalibration Recal() and

Recal 2(). The goal of FT-MS is to obtain exact mass measurements. Despite the
ultrahigh resolving power of the Orbitrap and FT-ICR mass spectrometers, the mass
measurements can have mass shifts which can cause increased mass error when formula
assignment is done. Some causes of this are random error from thermal and instrument
noise (Kozhinov et al., 2013), space charge effects (Easterling et al., 1999; Wenger et al.,
2011; Kozhinov et al., 2013), imperfections in the instrument hardware and electronics
(Mathur et al., 2009), and issues with data conversion from the time to frequency domain
(Gross et al., 2017). To address this issue the instrument and data must be calibrated. The
first step is calibrating the instrument itself. This is done using a solution of compounds
that are distinct from the analytes and is called external calibration. There are calibration
solutions that can be purchased from the instrument manufacturers or other calibrant
solutions such as arginine clusters can be used (Schmitt-Kopplin et al., 2010). External
calibration of the instrument before analysis is important to decreasing the mass error, but
it is not always sufficient to mass error in the sub 1 ppm range, which is necessary for
complex mixtures such as aerosol or (Schmitt-Kopplin et al., 2010; Wenger et al., 2011;

Smith et al., 2018). To further improve the measurement accuracy an internal calibration
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is performed on the acquired data after it has been collected. Classically, internal
calibration involves spiking a sample with a known quantity of a known compound and
then correcting the rest of the data based on the instrument response (Zhang et al., 2011).
This is not always practical when analyzing complex mixtures such as environmental
NOM due to possible interferences between the sample and the spiked calibrant (Zhang
et al., 2011, Wenger et al., 2011). Spiking a solution can work, but it assumes that the
mass error of the spiked calibrant is representative of the rest of the mass spectrum,

which may not always be appropriate.

5.5.2 Methods for Mass Recalibration from Literature

Recently an iterative method was developed (Kozhinov et al., 2013) using a binomial
coefficient weighted average to estimate the mass error correction term first across the
whole spectrum. The coefficient is based on relatively few peaks and then within many
small segments of the scan range as peaks are assigned molecular formulas in parallel.
This eventually leads to a majority of the measured masses serving as recalibrants and
eliminates the systematic error, leaving only the random error which cannot be corrected
for. The systematic error comes from the instrument itself and is related to the electrical
connections, physical imperfections in the instrument itself, and space charge effects.
Since the recalibration uses the measured masses it is independent of the instrument
platform (Kozhinov et al., 2013). This provides a good basis for the recalibration method
in MFAssignR package. The Kozhinov method uses the concept of segmented
recalibration previously described by Savory et al. (2011) and by Wong et al. (2006).

This segmented recalibration approach works well because the measurement error with
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respect to mass can change over the mass spectrum. This means that within relatively
small windows the mass errors are more similar than the errors in other parts of the mass

spectrum.

5.5.3 MFAssignR Mass Recalibration

In MFAssignR, we have implemented a recalibration function that is based on the
methods described by Kozhinov et al. (2013) and Savory et al. (2011). The Kozhinov
method is used to calculate the mass error function, which is used to correct the masses,
and also the concept of segmented recalibration from Savory et al. (2011) is used to
remove systematic bias. There are two versions of the recalibration function with a slight
difference in how the recalibrants are chosen. In the first version, Recal(), users select an
initial series of recalibrants series that are extended using molecular formula extensions
based on the H2 and O homologous. A user defined number of recalibrant peaks are
selected based on relative abundance or intensity within the user defined mass range bins.
Only the tallest peaks within each mass bin are used and then checked to see if there are
any '°C isotope peaks matched to them. If so, those '*C peaks are also added to the
recalibrants list. In the second version, Recal 2(), only the user defined recalibrants are

used for the recalibration of the mass spectrum.

5.5.3.1 Recalibration Equations

The following equations represent our implementation of the recalibration equation
described in Kozhinov et al. (2013). The full recalibration method included more

iterations of recalibration, and a secondary abundance-based term, which are not used in
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MFAssignR. The following steps are required to calculate the mass error function. First,
the binomial coefficient average is calculated to weight the mass error function. It is
determined using the standard equation for a binomial coefficient (Kozhinov et al., 2013),

shown in Equation 5.4:

k _ (K)!
Cj = i<t Eq.54

where Cjk is the binomial coefficient, £ is n minus 1, and j is the row number from 0 to £,

n is the total number of recalibrants. After the weights have been calculated for each of
the recalibrants, the weighted mass error function is determined for each recalibrant using

Equation 5.5:

g = CF ximassiThmassj g 55
7 J Th ;
mass,j

where ¢&; is the error for a mass j, Emass, 1s the experimental mass j, Thmass,, s the
theoretical mass corresponding to the formula assigned to Emass,, and Cjk is the weight

calculated in Equation 2. To determine the mass error function for the segment of the

mass spectrum, use Equation 5.6:

= Z—EJ
2k

Eq. 5.6

where ¢ is the mass error function used to recalibrate the spectrum. Mass recalibration of

the measured masses is done using Equation 5.7:

Eq.5.7



where mass is the original measured mass, massrecal 1s the recalibrated mass, and ¢ is the

mass error function.

5.5.3.2 Implementation of Recalibration

As opposed to recalibrating the entire spectrum at one time using a single mass error
function a segmented approach is used adapted from Savory et al. (2011). To do this, the
mass spectrum is divided into user defined segments and the mass error functions for
each segment are calculated as described above and used to recalibrate the masses within
the segment. This greatly increases the mass accuracy of the assignments by removing
systematic bias. The recalibration requires at least three recalibrants in each segment, so
any segment that does not have three recalibrants is recalibrated using the mass error
function from the prior segment with three recalibrants. This commonly occurs at the
high mass range as recalibrant peaks are more difficult to identify. This can lead to an

increase in the recalibrated mass error because the systematic bias is not fully removed.

5.5.4 Recalibration Test

The overall effectiveness of this recalibration procedure is demonstrated by Figure 5.11,
which compares the error plots for masses before and after recalibration. The error
without recalibration follows trends that increase and decrease systematically. In the
recalibrated plot, most of the points are in a flat line near 0-1 ppm mass error. While
additional improvements are planned for this, it currently provides a noticeable

improvement in the overall mass accuracy.
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Figure 5.11. Showing the mass error for a sample of biomass burning aerosol before
(Panel a) and after (Panel b) recalibration with the Recal() function.
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5.6 Comparison of MFAssignR to Other Molecular Formula
Assignment Methods

To demonstrate the effectiveness of MFAssignR as a method for molecular formula
assignment relative to other available opensource (Formularity, UME) and commercial
(Composer) software tools, the four methods were used to assign molecular formulas to
an identical mass list. The mass list was the raw mass spectrum for the PMO-2 aerosol
sample, which was discussed in previous chapters. Prior to molecular formula assignment
with any of the methods, the noise level and mass recalibration were done using functions
in the MFAssignR package. This ensured that all of the available masses for assignment
were identical. It was necessary to use the functions from MFAssignR, because the other
software packages do not have the capability to do noise estimation and mass
recalibration conveniently. This is one of the major advantages of the MFAssignR
package relative to the other available molecular formula assignment software packages.
In each methods the assignments were limited to 3 nitrogen and 1 sulfur with a maximum
absolute error of 1 ppm. The de novo cutoff was set to m/z 300 when possible (i.e.
MFAssignR, Formularity, Composer). In UME the data were assigned molecular
formulas using the NOM 4 CHNOSP database. The mass range limit of UME was m/z
100-700 (the entire range available), while the other methods had a range of m/z 100-

1000.

The results of this comparison are in Table 5.3 and Figure 5.12. In general, the majority
of masses assigned by MFAssignR and another method are assigned to the same

molecular formula (Common). Only in a few cases are the molecular formulas different
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between the methods (Different). MFAssignR generally assigns more molecular formulas
to the spectrum than the other methods, meaning it can provide a more comprehensive
picture of the molecular formula composition. UME is comparable within the available
mass range, but because it is limited to m/z < 700, MFAssignR assigns many more
molecular formulas (n = 698 for this sample). Of particular interest is the much larger
number of assignments from MFAssignR relative to Composer. Composer was used to
do the molecular formula assignment for the samples discussed in the previous chapters,
and after conservative QA steps, there were 2121 monoisotopic molecular formula
assignments for PMO-2. In this case, with relatively limited QA, Composer was able to
assign 4904 monoisotopic molecular formulas, which is still markedly fewer than that of
MFAssignR (6489 assignments). MFAssignR does a better job of assigning molecular
formulas to mass with low abundance, relative to the other methods, which accounts for
most of the difference, as shown in Figure 5.12. Figure 5.13 shows the same type of plot
as in Figure 5.12, but for the PMO-1 sample instead, demonstrating that this result is

consistent.

The results highlight the reasons for developing our own method for formula assignment,
because without MFAssignR we could not have known about the many additional
molecular formulas that could be assigned. Overall, it seems that MFAssignR is very
comparable to other established methods of formula assignment. This in itself is a
valuable contribution, but when the other functions regarding noise estimation, isotope
filtering, recalibration, and ability to assign a variety of heteroatoms and isotopes are

considered, this package represents a uniquely powerful opensource tool for the data
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preparation and molecular formula assignment for ultrahigh resolution mass spectrometry

data.

Table 5.3. Number of formulas identified with each molecular formula assignment
method (Total Assigned), number common with MFAssignR (Common), number of
peaks that were assigned different molecular formula than MFAssignR (Different),
number of masses that were only assigned with each non-MFAssignR method relative to
MFAssignR (Unique), and the number of formulas assigned only by MFAssignR relative
to the non-MFAssignR methods (Unique MFAssignR).

UME Formularity = Composer = MFAssignR

Total Assigned 8955* 5510 4904 6974
Common 5522 5247 4804 X
Different 187 137 19 X

Unique 538 70 81 X
Unique MFAssignR 1272 1590 2151 X

* The number of formulas assigned by UME includes masses that were assigned multiple
molecular formulas.
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Figure 5.12. Comparison of the number of molecular formulas assigned based on the
abundance of the peak using sample PMO-2. Panel a shows the comparison between
UME and MFAssignR, Panel b shows the comparison between Formularity and
MFAssignR, and Panel ¢ shows the comparison between Composer and MFAssignR.
Abundance Percentile breaks the abundance into a series of bins, the top 10% most
abundant peaks are in Pecentile 10, the next 10% are Percentile 20, etc. If the assignment
ratio is near 100 that means that the non-MFAssignR method assigned the same number
of molecular formulas as MFAssignR within that abundance percentile. For example, in
Class 1 all three methods are essentially equivalent to MFAssignR, however, for the least
abundant peaks (Pecentile 100) Composer only assigns about 30% as many molecular
formulas. This figure does not compare the molecular formula assignments to see if they

are the same between each method, it only compares the number of assignments that are
made within each abundance class.

225



(a) UME vs. MFAssignR, PMO-1 (b) Formularity vs. MFAssignR, PMO-1
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Figure 5.13. Comparison of the number of molecular formulas assigned based on the
abundance of the peak using sample PMO-1. Panel a shows the comparison between
UME and MFAssignR, Panel b shows the comparison between Formularity and
MFAssignR, and Panel ¢ shows the comparison between Composer and MFAssignR.
Abundance Percentile breaks the abundance into a series of bins, the top 10% most
abundant peaks are in Pecentile 10, the next 10% are Percentile 20, etc. If the assignment
ratio is near 100 that means that the non-MFAssignR method assigned the same number
of molecular formulas as MFAssignR within that abundance percentile. For example, in
Class 1 all three methods are essentially equivalent to MFAssignR, however, for the least
abundant peaks (Pecentile 100) Composer only assigns about 50% as many molecular
formulas. This figure does not compare the molecular formula assignments to see if they
are the same between each method, it only compares the number of assignments that are
made within each abundance class.
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6 Conclusion

6.1 Overview

The major focus of this dissertation was to provide a deeper understanding of the
molecular formula composition of free tropospheric long range transported organic
aerosol. This aerosol is of interest because it can provide insight into the multiphase
processes that aerosol undergoes while in the atmosphere, especially with regards to the
extent of oxidation that occurs in the atmosphere. The molecular formula composition
aids physical property predictions including: viscosity, volatility, hygroscopicity, and
light absorption. Each of these are important factors pertaining to the effect of aerosol on
the climate system. In particular, we focused on samples that were influenced by wildfire
events, which are a significant contributor to global aerosol loading. These large -scale
biomass burning events also produce aerosol that is light absorbing. Thus, information
about the aging of light absorbing species is important for improving predictions of their

aerosol radiative effect on the climate.

Samples of organic aerosol were collected at the Pico Mountain Observatory in the
Azores archipelago during the summers of 2013, 2014, and 2015. OC/EC and IC analyses
were conducted to determine the bulk organic carbon and ion concentrations and
ultrahigh resolution analysis FT-ICR MS was done to determine the molecular level
composition of the samples. Two of the three samples were likely influenced by biomass
burning, while one was likely anthropogenic in origin. The molecular formula analysis of
these samples provided unique insight into their potential viscosity during transport.

Highly viscous or solid aerosol transported in the free troposphere would likely have a
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slower rate of oxidation and consequently more persistent light absorbing brown carbon
species from large-scale biomass burning aerosol. One of these samples was further
analyzed using tandem ultrahigh resolution FT-ICR MS/MS, which provided a more
detailed look at the molecular complexity of the aerosol. In addition; information about
the prevalence of specific functional groups for the molecular species was obtained. The
detailed analysis of functional groups is valuable for better model predictions of the

viscosity, volatility, hygroscopicity, and light absorption of organic aerosol.

Another focus of this dissertation was the development of software tools to streamline
and improve molecular formula assignment for ultrahigh resolution MS data collected
using either Orbitrap MS or FT-ICR MS. The software package containing these tools is
called MFAssignR. The code was written in the R programming language and was
released on GitHub. The functions apply methods drawn from the literature regarding the
best strategies for data preparation and molecular formula assignment. The goal of this
project was to produce a method for molecular formula assignment that was operationally
transparent and flexible with regard to multielement molecular formula assignments. As
the project progressed, it shifted towards a developing a full pipeline of functions for data

preparation and molecular formula assignment.

6.2 Long-Range Transported Aerosol Collected at the Pico Mountain
Observatory

Aerosol samples collected on 27-28 June 2013 (PMO-1), 5-6 July 2014 (PMO-2), and
20-21 June 2015 (PMO-3) at the Pico Mountain Observatory were analyzed using

ultrahigh resolution FT-ICR mass spectrometry for molecular formula composition
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determination. FLEXPART retroplumes for the sampled air masses indicated that: (a)
PMO-1 and PMO-3 aerosol were transported predominantly through the free troposphere
and were primarily influenced by wildfire emissions; and (b) PMO-2 aerosol were
transported primarily through the boundary layer over the Northeast continental U.S. and
the North Atlantic Ocean and was largely influenced by anthropogenic and biogenic
sources. Although elevated levels of organic carbon, sulfate, and oxalate were found in
all three samples, PMO-2 had the overall highest mass fractions of oxalate and sulfate
indicating a clear influence of aqueous phase processing. The molecular formula
assignments indicated differences in the aerosol oxidation rates between aerosol
transported in the free troposphere (PMO-1 and PMO-3) and the boundary layer
transported aerosol (PMO-2). These observations suggest that the transport pathways, in
addition to the emission sources, contributed to the observed differences in the organic
aerosol oxidation. The ambient temperature and RH at upwind times were extracted from
the GFS analysis in FLEXPART and were used to estimate the glass transition
temperatures of the aerosol species during transport. The results suggest that the organic
aerosol components extracted from PMO-1 and PMO-3 were considerably more viscous
due to lower RH than those from PMO-2 and thus were less susceptible to oxidation. The
relationship between aerosol viscosity and its susceptibility to oxidation in the free
troposphere is well supported (e.g., Koop et al., 2011; Berkemeier et al., 2014; Lignell et
al., 2014; Shiraiwa et al., 2017a). These results suggest that biomass burning emissions
and brown carbon injected into the free troposphere are more resistant to removal than
aerosol transported in the boundary layer, due largely to the ambient temperature and

relative humidity in the free troposphere. Although more work is needed to better
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constrain the molecular composition of long-range transported aerosol and the processes
that affect it during transport, the presented results have broader implications for the

aging of long-range transported aerosol that is rapidly convected to the free troposphere.

6.3 Ultrahigh Resolution FT-ICR MS/MS Analysis of Free
Tropospheric Organic Aerosol

The ultrahigh resolution FT-ICR MS/MS analysis of PMO-1 has provided novel
functional group information using exact mass pairing of ions for free tropospheric
organic aerosol. The most common losses were CO2, C2H40, and H20. The prevalence of
CO2 and H20 losses are consistent with a similar study of atmospheric organic matter in
fog previously reported by LeClair et al. (2012). However, the loss of C2H4O was not
previously reported and likely represents a methyl carbonyl from a ketone near the end of
a carbon chain. Ketones have been reported to be significant components of biomass
burning aerosol according to the results of bulk methods (Hawkins and Russel, 2010),
although they decrease with increased aging. Considering the transport time of PMO-1,
the fraction of ketone functional groups are somewhat high, suggesting that the aging of
aerosol proceeded more slowly than expected, potentially due to free tropospheric
transport as hypothesized in Schum et al. (2018). The analysis of these functional groups
is particularly important for modeling studies because different functional groups have
different interactions with the environment (Clegg et al., 2019 in review). For example,
hydroxyl and carboxyl groups are known to greatly increase the hygroscopicity of
organic aerosol (Petters et al., 2017; Reid et al., 2018; Clegg et al., 2019 in review),

which plays a significant role in the ability of an aerosol particle to act as a cloud
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condensation nucleus (Massoli et al., 2010). Being able to constrain the fractions of these
functional groups present in aerosol is important for better predictions of acrosol-water
interactions in the atmosphere (Clegg et al., 2019, in review). The viscosity of organic
aerosol can also be affected by the functional groups present in its component species.
For example, carboxylic acids can lead to increased viscosity (Rothfuss and Petters,
2016; Song et al., 2016; Grayson et al., 2017; Reid et al., 2018). This makes the aerosol
particles more solid and thus more resistant to oxidative processes in the atmosphere
(Lignell et al., 2014; Hinks et al., 2016; Shrivastava et al., 2017; Schum et al., 2018). The
carboxyl, hydroxyl, and ketone groups may also increase molecular absorption
characteristics via change transfer reactions (Phillips and Smith, 2014; 2015). A
comparison to aerosol collected at the Storm Peak Lab showed less correlation between
the molecular formulas showing H20 and CO: losses than is observed in PMO-1. This
suggests that the structural characteristics of those molecules are different. More
hydroxyl groups are likely present in the regional biogenic SOA compared to PMO-1
where H20 losses were strongly correlated to the carboxyl losses. The investigation of
nitrogen-containing neutral losses demonstrated the prevalence of nitro, nitrate, and
amine groups in the aerosol molecular formulas. The amine groups were almost always
observed in conjunction with a more polar/acidic functional group, highlighting their
multifunctional nature. The nitro groups are consistent with the influence of biomass
burning aerosol and particularly nitroaromatic compounds. Due to the ability of nitro
groups to participate in charge transfer, it was hypothesized that these groups could
contribute to longer wavelength light absorption of the aerosol analogous to the carboxyl,

hydroxyl, and ketone groups. The neutral losses with sulfur demonstrated a surprising
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prevalence of thiol groups in addition to the expected sulfate groups. The thiol groups
were found to correlate well with more polar/acidic functional groups, which would
allow them to be observed in negative ESI. The thiol groups were found to be more
prevalent on aromatic molecules, suggesting that aromatic compounds with sulfur may be
more likely reduced than oxidized. These results highlight the complexity of organic
aerosol and the functional groups that are present in it. These results can be used to

improve model predictions of aerosol and its interactions in the atmosphere.

6.4 MFAssignR

We decided to develop and in-house method for molecular formula assignment, called
MFAssignR due to a lack of transparency and flexibility in the assignment of molecular
formulas using a commercial software package. The core of the molecular formula
assignment uses the CHOFIT algorithm developed by Green and Perdue (2015). The
code was rewritten and expanded in the R programming language for our purposes. In
order to improve its functionality, we added many quality assurance (QA) parameters to
remove formulas that are likely incorrect and to decrease the ambiguity of formula
assignments for a single mass. This is accomplished using formula extensions in a data
dependent way to decrease the ambiguity without making a priori decisions about which
molecular formulas be assigned. Despite adding parameters to decrease ambiguity in a
data dependent way, we also leave the ambiguity that cannot be resolved by our methods
so that the user can make the decision instead of the program, thereby providing more
transparency. The ability to assign a variety of heteroatoms was incorporated, allowing

novel analysis of isotopically labeled samples and chlorinated wastewater. In addition to
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the molecular formula assignment, new methods for the estimation of the noise level in
ultrahigh resolution MS and identification of isotope masses prior to molecular formula
assignment were developed. The noise estimation method simplifies the estimation of
noise, providing an improvement in accuracy over other noise estimation methods. This
makes it a valuable contribution to the analysis of ultrahigh resolution MS data. An
isotope identification function can be used to identify *C and 3*S isotopes and is
important for decreasing the number of incorrect formula assignments. It was developed
using well known mass relationships in a unique way providing a reasonably robust
method to identify isotopic masses not based on molecular formula assignment, which is
necessary for identification in other molecular formula assignment methods. The final
component of MFAssignR is the mass recalibration functions. They were developed by
expanding on previously reported methods (Savory et al., 2011; Kozhinov et al., 2014).
The recalibration functions remove systematic bias to improve the mass accuracy to < 1
ppm. A comparison of the new MFAssignR package to pre-existing methods of
molecular formula assignment found that for samples PMO-1 and PMO-2 MFAssignR
generally assigns molecular formulas to ~1000 masses that are not assigned a molecular
formula by the methods we compared it to (Formularity, UME, Composer). This is likely
due to the extensive formula extension in MFAssignR, and the fact that two of the three
methods tested used database searches, which limits the potential formulas to be assigned
to some extent. In contrast, the other methods generally only assigned molecular formulas
to ~100 masses that were not also assigned by MFAssignR. The exception was UME
which had ~500 such assignments. Also, relatively few masses assigned a molecular

formula by MFAssignR and one of the other methods were assigned different molecular
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formulas. These numbers were presented in Table 5.3. Of particular interest is the
comparison between MFAssignR and Composer, because the previous work (including
Chapter 3 and 4 of this dissertation) was done with Composer. This indicates more
information may be present in the mass spectra. Furthermore, the ability of MFAssignR
functions to do noise estimation and recalibration is not available in UME and limited in
Formularity (only recalibration) demonstrating improved functionality of MFAssignR.
The transparency and comparability of MFAssignR to these other recently established
methods of molecular formula assignment suggests that MFAssignR will be a valuable

contribution to the field of ultrahigh resolution MS analysis.

6.5 Future Work

The work presented in this dissertation represents an important first step in providing
information about the molecular formula composition of long range transported organic
aerosol and molecular formula assignment methods. There are a few topics that deserve

further study.

1. Further analysis of organic aerosol transported with the boundary layer and free
troposphere is needed to investigate the oxidation and potential phase state of
those samples. This would provide additional support for the hypothesis that free
tropospheric transport can lead to lower oxidation due to the increased potential
for solid state aerosol. Further analysis could confirm that aerosol transported in
the free troposphere is markedly different than boundary layer aerosol, which is

important for understanding the effect of aerosol on the climate.
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More ultrahigh resolution MS/MS of organic aerosol is another important avenue
of future research. As highlighted by comparison to biogenic SOA, further
analysis of a variety of samples may provide valuable information regarding the
molecular properties of organic aerosol. The use of PCA to do this analysis was
valuable in highlighting the correlations, and should be used for future analysis as
well. This information has implications for the aging, volatility, viscosity, and
hygroscopicity of aerosol from different sources.

Further study regarding the potential for the nitro groups to contribute to light
absorption via charge transfer is recommended. Few studies have directly studied
the contribution of the nitro group to light absorption, so additional research,
including computational predictions would be valuable to see how charge transfer
works between the nitro, other functional groups, and the aromatic ring and if it
could be related to increased light absorption. This would have an impact on
radiative forcing predictions for biomass burning aerosol.

One additional avenue of work highlighted by this dissertation is continued
improvements to the MFAssignR molecular formula assignment package. Further
improvements for the isotope filtering and recalibration functions are
recommended, in addition to continued improvements to the formula assignment

itself, including the addition of more allowed elements for formula assignment.
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