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Abstract 

Orexin is a neuropeptide with a large range of functions, with a recently 

discovered role in blood pressure (BP) regulation. Although the role of brain orexin 

system in hypertension has been investigated in several hypertensive animals, it 

remains unclear whether activation of the orexin system contributes to the 

development of Deoxycorticosterone-acetate (DOCA) hypertension, an animal 

model of human salt sensitive hypertension. In this study, we investigated the 

hypothesis that Orexin-1 receptor (OX1R) expression is increased in the 

paraventricular nucleus (PVN), a critical brain area controlling cardiovascular 

function, which subsequently increases vasopressin (AVP) expression and 

peripheral secretion, resulting in hypertension development in this model. Seven 

to eight-week-old male Sprague Dawley (SD) rats were split into three groups 

including DOCA-salt, untreated controls, and OX1RshRNA-DOCA rats. Following 

knockdown of OX1R in the PVN via viral infection in the OX1RshRNA-DOCA rats, 

they, as well as the DOCA-salt group, were implanted with a 75mg DOCA pellet 

and treated with 1%NaCl/0.2%KCl drinking water, while the control group 

remained untreated. Blood pressure of each rat was measured using tail-cuff 

plethysmography. Three weeks following DOCA-salt or sham treatment, all rats 

were sacrificed, and brains were subjected to either real-time PCR or 

immunostaining to assay mRNA level and protein expression of Orexin A, OX1R, 

and AVP in the PVN. Their blood was collected for plasma AVP measurement, 

and their hearts were weighed for measurement of their heart weight/body weight 

(BW/HW) ratio. Our results showed that chronic knockdown of the PVN OX1R 

effectively attenuated hypertension induced by DOCA-salt treatment (control: 

107.91±5.99 vs. DOCA-salt: 142.43±7.73 vs. DOCA+OX1RshRNA: 115.69±8.23 

mmHg; P<0.01)   PCR data showed the mRNA levels of OX1R was increased by 

23%, while vasopressin showed more than a 2-fold increase in the PVN of DOCA-

salt rats compared to controls. Immunostaining data showed a dramatic increase 

in OX1R as well as vasopressin expression within the PVN following DOCA-salt 
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treatment, and both increases were attenuated following PVN OX1R knockdown. 

Plasma AVP levels also showed a significant increase following DOCA-salt 

treatment (control: 9.04±2.57 vs. DOCA-salt: 37.94±8.66 pg/ml; P<0.05), and 

PVN OX1R significantly attenuated this (DOCA-OX1RshRNA: 0.644±0.281, 

P<0.05). The heart weight to body weight ratio was also measured to be larger in 

the DOCA-salt group when compared to the control group (Control: 0.31±0.011%, 

vs DOCA-salt: 0.40±0.017%, P<0.005), while the OX1RshRNA injection 

appeared to mitigate this increase (OX1RshRNA: 0.35±0.019%, vs DOCA-salt: 

DOCA-salt: 0.40±0.017%). The combination of this data shows a potential role for 

orexin in the pathology of salt-sensitive hypertension development. 
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1 Introduction 

1.1 Overview 

Hypertension is a major pathological condition that affects millions of 

individuals, and approximately one-third of adults in the United States alone 

(Centers for Disease and Prevention 2011). Along with the various 

pathophysiological traits that accompany the onset of hypertension, individuals 

who are affected are also at an increased risk for devastating cardiovascular 

diseases, such as cardiac ischemia, hearty failure, and stroke (Klungel, Kaplan et 

al. 2000, Drazner 2011, Turin, Okamura et al. 2016), both of which raise the 

likelihood of death due to cardiovascular complications. A plethora of studies have 

found that the majority of individuals who are diagnosed with primary hypertension 

are often known as salt-sensitive, meaning that sodium handling and pressor 

responses following a salt challenge are faulty, leading to an increase and 

maintenance of an abnormally high blood pressure  (Weinberger 1996, Whelton, 

Appel et al. 2012, O'Donnell, Mente et al. 2015). Although it is estimated that 

slightly more than half of individuals diagnosed with high blood pressure are 

considered salt-sensitive (Weinberger, Miller et al. 1986), very little is known about 

the molecular mechanism underlying the abnormal response to sodium intake. 

Because of this, it is important to produce new knowledge and deeper insight into 

the mechanism underlying Salt-Sensitive Hypertension (SSH) to decrease its 

prevalence in the general population, thus decreasing cardiovascular disorders, 

as well as the associated mortality rate. 

1.2 Blood Pressure Regulation 

Current American Heart Association guidelines for hypertension state that a 

blood pressure of 120/80 mmHg is classified as normotensive (Whelton, Carey et 

al. 2018). To maintain a relatively constant blood pressure, the body has 

employed various means of regulating this stable environment. Mean arterial 
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pressure (MAP) is defined as the average blood pressure experienced by an 

individual over one cardiac cycle. MAP is the product of both cardiac output (CO) 

and total peripheral resistance (TPR). This offers two variables that must be in 

working condition to efficiently regulate blood pressure. However, there are 

numerous ways in which the body can modify CO as well as TPR, specifically 

through autonomic and neural-hormonal signaling, which act as short-term and 

long-term means of blood pressure management. 

1.2.1 Short Term Blood Pressure Regulation: Autonomic Influences 

As the heart pumps blood throughout the body, the cardiovascular system 

is notified on a beat-by-beat basis of any abnormalities in blood flow, primarily by 

the action of the two branches of the autonomic nervous system (ANS): the 

parasympathetic nervous system (PNS) and the sympathetic nervous system 

(SNS). The PNS and SNS have antagonistic actions in relation to one another, 

although both are intrinsically active (Swenne 2013). The PNS serves as the 

mediator of action during resting phases, while the SNS elicits excitation and 

increased activity. In blood pressure regulation, the SNS innervates the sinoatrial 

(SA) node, also known as the pacemaker, in the right atrium of the heart, as well 

as the myocardium. Because of this, when activated, the SNS can increase heart 

rate, as well as cardiac contractility, thus effecting stroke volume. The PNS 

opposes this action, and innervates the SA node through the vagus nerve, which, 

when activated, causes a decrease in heart rate. Along with this, innervation of 

blood vessels by the SNS results in vasoconstriction, which can also increase 

TPR.  

 The PNS and SNS are activated and regulated through the actions of 

baroreceptors. Baroreceptors function as mechanoreceptors, and are primarily 

located in both the carotid sinus and the aortic arch. These mechanoreceptors 

respond to any changes in the pressure against blood vessel walls that may 

indicate a dysfunction in the regular flow of blood through the cardiovasculature 
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(Charkoudian and Rabbitts 2009). When a change is observed by the 

mechanoreceptors, they activate the body’s intrinsic baroreflex mechanism 

(Charkoudian and Rabbitts 2009). When the mean arterial pressure is increased, 

the increase in blood volume stretches vessel walls and is sensed in both the 

aortic arch, as well as the carotid sinus, which are innervated by the vagus nerve 

and the glossopharyngeal nerve (Benarroch 2008), respectively. This immediately 

increases afferent signal firing frequency from the baroreceptors to the 

cardiovascular control center located within the medulla oblongata of the 

brainstem, specifically the nucleus tractus solitarius (NTS) (Guyenet 2006, 

Dampney 2016). The NTS acts as a key cardiovascular integration center, and 

functions to activate inhibitory interneurons through glutamate release within the 

caudal ventrolateral medulla (CVLM). The CVLM elicits an inhibitory effect 

through release of the neurotransmitter Gamma-Aminobutyric Acid (GABA) on the 

rostral ventrolateral medulla (RVLM) (Kumagai, Oshima et al. 2012), the location 

of many pre-sympathetic neurons and a key center for sympathetic output 

(Pilowsky and Goodchild 2002). This pathway causes a cessation of sympathetic 

efferent output, and an increase in PNS activity. This effectively decreases both 

heart rate and stroke volume, decreasing cardiac output, and causes vasodilation 

of the vasculature, reducing the total peripheral resistance, allowing the blood 

pressure to fall back to its normotensive state. If an individual becomes 

hypotensive, the opposite occurs, and sympathetic nerve activity is increased 

through a reduced inhibition of the RVLM, resulting in subsequent glutamatergic 

activation of sympathetic preganglionic neurons within the intermediolateral cell 

column (IML) (Guyenet 2006, Kumagai, Oshima et al. 2012), resulting in an 

increase in cardiac output as well as vasoconstriction, effectively raising blood 

pressure. Although this mechanism allows an efficient means of monitoring blood 

pressure on a short-term basis, it is not meant to be a long-term solution to blood 

pressure dysregulation. 



4 

1.2.2 Long Term Blood Pressure Regulation: Neural-Hormonal Influences 

To compensate for long term adaptations to blood pressure changes, the 

human body produces multiple hormones in response to changes in blood 

pressure, which can carry out their function over a much longer period of time. 

The Renin-Angiotensin-Aldosterone-System (RAAS) is the predominant controller 

of this hormonal response, and acts as the primary controller of long-term blood 

pressure regulation through modulation of both natriuresis and diuresis within the 

kidney tubules. When blood pressure lowers to a level that is classified as 

hypotensive, or the osmolality of the blood reaches a lower level than the norm, 

the kidneys will release renin, an important catalytic enzyme that facilitates the 

transformation of circulating Angiotensinogen to Angiotensin I (ANGI). 

Angiotensin Converting Enzyme (ACE) then turns Angiotensin I into Angiotensin 

II (ANGII). ANGII is arguably one of the most important, and potent hormones 

involved in blood pressure regulation. ANGII carries out its primary activity through 

two receptors, AT1 and AT2 receptors. Although the actions of ligand binding to 

AT2 receptors are not as well understood, binding of ANGII to its AT1 receptor 

facilitates an increase in sympathetic tone as well as vasoconstriction.  ANGII also 

heavily influences the synthesis and subsequent release of two major hormones, 

aldosterone and vasopressin (AVP) (Fig. 1.1).  

Further research has observed that ANGII may also have influences on brain 

function and subsequent synaptic activity through interaction with the central 

nervous system. All RAAS components have been found within the brain 

(McKinley, Allen et al. 2001, McKinley, Albiston et al. 2003, Pan 2004), indicating 

an intrinsic central mechanism for RAAS functioning. It is also worth mentioning 

that the bulk concentration of AT1 receptors, are found in major cardiovascular 

areas such as the PVN and Supraoptic Nucleus (SON) (Pan 2004). Studies have 

shown that an ANGII brain injection, whether it be intracerebroventricular (ICV) or 

through direct microinjection into the PVN, elicits an increase in blood pressure, 



5 

and antagonism of the AT1 receptor within the brain causes a dampening of the 

blood pressure increase (Jensen, Harding et al. 1992, Bahner, Geiger et al. 1995). 

Interestingly, it has also been observed that subcutaneous and peripheral 

injections of ANGII have shown an increase in AT1 receptors within the PVN, 

despite the presence of the blood brain barrier, which ANGII cannot readily cross 

(Wei, Yu et al. 2009). Although it cannot directly elicit a response on major brain 

areas, ANGII acts on AT1 receptors within Circumventricular Organs (CVO) such 

as the vascular organ of lamina terminalis (OVLT), subfornical organ (SFO), the 

median eminence, and the area postrema, all of which lack a blood brain barrier 

(Sunn, McKinley et al. 2003, Pan 2004). These brain regions have high 

concentrations of AT1 receptors (Pan 2004), as well as multiple projections to 

other brain areas, namely, projections from the SFO to the PVN (Kawano and 

Masuko 2010). This offers an explanation as to why peripheral actions of ANGII 

in response to lowered blood pressure, or changes in blood osmolality, can elicit 

a centrally mediated response in cardiovascular control centers, such as the PVN. 

Angiotensinogen ANGI ANGII

SNA +

Adrenal Gland

Posterior 
Pituitary

Vasoconstriction

Aldosterone

AVP

Na+ and H2O 
Reabsorption, 
K+ Secretion, 

↑BP

Decrease BP

Renin ACE

+

-
 

Figure 1.1: Diagram representing function of the Renin-Angiotensin-Aldosterone 
system (RAAS) in blood pressure regulation. Angiotensin I (ANGI), Angiotensin-
Converting Enzyme (ACE), Angiotensin II (ANGII), Sympathetic Nerve Activity (SNA), 
Arginine Vasopressin (AVP), Blood Pressure (BP). 
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1.2.2.1 Aldosterone and Arginine Vasopressin in Blood Pressure Regulation 

Aldosterone was first discovered in 1953, and since that time, it has been 

recognized as a major regulator of fluid and electrolyte balance within the kidney 

natriuresis/diuresis system. Aldosterone is a mineralocorticoid that is produced by 

the adrenal cortex upon stimulation from various factors, such as circulating 

ANGII, increased serum potassium levels, among others (Briet and Schiffrin 

2010). Upon activation and subsequent release from the adrenal glomerulosa, 

aldosterone acts on both glucocorticoid as well as mineralocorticoid receptors 

within the cytoplasm of target tissues, with a higher affinity for the latter (Muto 

1995). After binding to its receptor, the hormone-receptor complex will relocate to 

the nucleus of the cell, and mediate regulation of gene transcription (Muto 1995). 

These genes will then lead to the production of proteins that work to preserve fluid 

homeostasis within the body, specifically through regulation of electrolyte (sodium 

and potassium) levels within the bloodstream (Muto 1995, Summa, Mordasini et 

al. 2001). One of the downstream transcription regulation pathways occurs in cells 

of the distal convoluted tubule of the kidney, where binding of aldosterone causes 

downstream activation of epithelial sodium channels (ENaC) on the apical 

membrane of the epithelial cells, as well as Na+/K+ ATPase on the basolateral 

side, resulting in a net sodium, and subsequent water reabsorption, as well as 

potassium excretion into the urine (Summa, Mordasini et al. 2001, Briet and 

Schiffrin 2010). This process effectively increases blood osmolality as well as 

volume, making it essential to proper functioning of the complete RAAS system 

(Fig. 1.2). 
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Collecting 
Tubule CellUrine Blood

Aldosterone

MR

ATPaseENaCNa+ Na+

K+

K+

+ +

 

Figure 1.2: Representation of aldosterone action on cells of the distal collecting 
tubule of the kidney. Mineralocorticoid receptor (MR), Sodium/Potassium ATPase 
(ATPase), endothelial sodium channel (ENaC), sodium (Na+), potassium (K+). 

Another key hormone in cardiovascular and fluid homeostasis is Arginine 

Vasopressin (AVP). AVP is produced in both magnocellular as well as 

parvocellular neurons located in both the (PVN) of the Hypothalamus as well as 

the SON (Treschan and Peters 2006). It is primarily activated by an increase in 

plasma osmolality, decreased blood volume, as well as decreased arterial 

pressure (Treschan and Peters 2006). Through its action on its three receptor 

types (V1, V2, V3), AVP can elicit multiple physiological responses. Worth noting, 

AVP specifically causes vasoconstriction through its interaction with V1 receptors 

on smooth muscle cells, and causes water reabsorption through relocation of 

aquaporins on the collecting ducts of the kidney through its interaction with V2 

receptors (Thibonnier, Berti-Mattera et al. 1998, Bankir, Fernandes et al. 2005, 

Treschan and Peters 2006). The V1 and V2 receptors are two different types of 

G-protein Coupled Receptors (GPCRs), with differing downstream signaling 

cascades. The V1 cascade involves interaction with phospholipase C (PLC) 

following conformational change of the GPCR upon substrate binding. PLC then 



8 

acts to facilitate the cleavage of inositol 4,5 – bisphosphate (PIP2) into inositol 

1,4,5 – trisphosphate (IP3) and diacyglycerol (DAG) (Thibonnier, Berti-Mattera et 

al. 1998, Treschan and Peters 2006). IP3 is a secondary messenger that, upon 

diffusion through the cell, binds to a calcium channel located within the 

endoplasmic reticulum (ER). Upon binding, calcium is released into the cytosol, 

which mediates activation of various further calcium regulated intracellular 

signals. These secondary messengers then act on other enzymes, resulting in 

vasoconstriction (Thibonnier, Berti-Mattera et al. 1998, Treschan and Peters 

2006). V2 receptors act through a slightly different mechanism, stimulating the 

adenylate cyclase pathway, resulting in activation of various protein kinases via 

activation by the secondary messenger cAMP, eventually resulting in aquaporin-

2 transcription and protein formation followed by relocation into the membrane of 

the collecting ducts of the kidneys, allowing water reabsorption (Treschan and 

Peters 2006). This process effectively decreases blood osmolality, while 

increasing plasma volume (Fig.1.3). 
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Figure 1.3: The mechanism of AVP on its two receptors, V1 (Vasopressin 1 
Receptor) and V2 (Vasopressin 2 Receptor) in vascular smooth muscle cells and 
the collecting duct of the kidney. Arginine Vasopressin (AVP), Guanosine 
triphosphate (GTP), phospholipase-C (PLC), inositol 4,5 – bisphosphate (PIP2), 
diacyglycerol (DAG), inositol 1,4,5 – trisphosphate (IP3), endoplasmic reticulum 
(ER), adenylate cyclase (AC), cyclic-AMP (cAMP), phosphokinase A (PKA), 
aquaporin-2 (AQ-2), blood pressure (BP). 

Although the implementation of these two blood pressure regulatory systems 

is essential in maintaining proper blood volume, osmolality, and therefore 

consistent pressure, any over-activation of either sympathetic activity or the RAS 

can result in detrimental cardiovascular complications, of which, the mechanism 

underlying the pathology is still poorly understood. 

1.3 Hypertension 

Hypertension is defined as an abnormally high blood pressure. When this 

abnormality becomes a chronic condition, the individual is exposed to a higher 

risk of further cardiovascular dysfunction, and serious disease that can result in 
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premature death. Not only this, hypertension also incurs a large healthcare 

financial burden of approximately $131 billion per year (Kirkland, Heincelman et 

al. 2018). The AHA’s recent guidelines go further in outlining three different levels 

of hypertension: Elevated (120-129/80 mmHg), stage 1 (systolic anywhere 

between130-139 mmHg or diastolic between 80-89 mmHg), and stage 2 (systolic 

at least 140 mmHg or diastolic at least 90 mmHg) (Whelton, Carey et al. 2018). 

These modifications to the former hypertension guidelines mean that an even 

greater portion of the general population can be diagnosed with some variation or 

differing level of hypertension, and thus require health intervention. Unfortunately, 

there is no one known mechanism underlying hypertensive tendencies. In 

addition, despite the numerous means of treatment currently available, 

hypertension and cardiovascular disease (CVD) remain a major global issue. 

Depending on the cause, hypertension has been split into two subtypes: primary 

(essential) and secondary hypertension. 

Primary hypertension is labelled such when the given hypertension has no 

known cause. Approximately 90% of individuals who are currently diagnosed with 

hypertension have primary hypertension (Carretero and Oparil 2000, Beevers, Lip 

et al. 2001). There is currently no known cause for primary hypertension, given 

the complex etiology of the disease and the differing symptoms and causative 

factors among those afflicted by the condition. However, it is well established that 

many lifestyle factors and behaviors may have a causative relation with 

hypertension and CVD. Some of these factors include smoking, alcohol 

consumption, high salt intake, sedentary lifestyle, and many more generally 

correctable behaviors (Carretero and Oparil 2000, Bolivar 2013). In addition to the 

multitude of environmental and behavioral factors associated with the 

pathogenesis of primary hypertension, many researchers are also searching for a 

common genetic abnormality among individuals with hypertension. 
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The remaining approximately 10% of individuals with hypertension are 

classified under secondary hypertension. Although the prevalence of secondary 

hypertension is much smaller in proportion to the number of primary hypertensive 

individuals, the effects of secondary hypertension are still a major health concern 

worldwide. Secondary hypertension is named so because the hypertension is 

secondary to some other abnormality, such as kidney disease, 

hyperaldosteronism (Douma, Petidis et al. 2008, Puar, Mok et al. 2016), 

obstructive sleep apnea (Pedrosa, Drager et al. 2011), obesity, and many others. 

Although secondary hypertension is generally curable, the underlying 

mechanisms are not always well defined. However, it is important to investigate 

the causes in order to prevent the development of resistant hypertension and 

further cardiac complications, which becomes a risk for individuals who are left 

undiagnosed. 

1.4 Salt Sensitive Hypertension (SSH) 

Over the years, the amount of salt used in meal preparation has drastically 

increased. The Center for Disease Control has established guidelines outlining 

how much salt should be ingested daily. Despite these guidelines, the average 

amount of daily salt intake continues to increase, with average daily intake in the 

United States alone reaching levels greater than 3200 mg/day (Bernstein and 

Willett 2010), which is much more than the amount necessary for normal 

physiological functioning. A correlation between excessive intake of dietary salt 

and an increase in the risk of hypertension has been well established in literature 

from animal and clinical studies (Whelton, Appel et al. 2012, O'Donnell, Mente et 

al. 2015). This susceptibility of certain individuals to an abnormal increase in blood 

pressure following salt intake has been termed “Salt Sensitive Hypertension” 

(SSH). SSH is possibly one of the most prevalent types of hypertension, and 

occurs when an individual’s blood pressure is abnormally increased following salt 

intake. It has been suggested that approximately 51% of hypertensive individuals 
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can be classified as salt-sensitive, while approximately 26% of normotensive 

individuals are also salt-sensitive (Weinberger, Miller et al. 1986, Choi, Park et al. 

2015). Despite the prevalence of this disorder, the pathology and mechanism are 

still poorly understood, despite advancements in hypertension research.  

Numerous reports have focused primarily on the effects of kidney 

dysfunction as a primary cause of SSH. A previously outlined mechanism of 

kidney control of blood pressure regulation was developed by Guyton (Coleman, 

Granger et al. 1971, Guyton 1991), in which it is hypothesized that an increase in 

salt intake, and resultant fluid ingestion, causes an increase in fluid volume within 

the body. This will eventually lead to pressure natriuresis within the kidneys, 

leading to excretion of both salt and water to enable the blood pressure to return 

back to equilibrium (Guyton 1991). This model has been a classic representation 

of what many researchers consider the primary controller of blood pressure 

regulation via the kidneys. Any sort of dysfunction in this system would likely lead 

to chronic hypertension. In a classic experiment performed by Lewis Dahl, salt-

sensitive and salt-resistant rats were subjected to a bilateral nephrectomy 

followed by kidney transplant from either the same, or opposite strain. They were 

then given a normal salt diet. They found that in rats receiving a kidney from a 

salt-sensitive strain, the blood pressure increase was approximately 30 mmHg 

greater than those rats that received a kidney from the salt resistant strain (Dahl, 

Heine et al. 1974). This finding points to a key role of local genetics within the 

kidneys in blood pressure changes in response to salt loading. This finding was 

repeated, and a greater increase in blood pressure in resistant rats receiving 

kidneys from sensitive rats when compared to those who received kidneys from 

other resistant rats was observed (Morgan, DiBona et al. 1990). However, in the 

same study, when given a high salt diet (8%Nacl) as opposed to a normal salt diet 

(0.4%NaCl), salt sensitive rats who received kidney transplants from resistant rats 

as well as fellow salt sensitive rats alike responded with similar increases in blood 
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pressure after the salt loading, indicating that the kidneys alone may not be the 

only regulators of blood pressure. 

Because of this discrepancy, others have argued the potential for the brain 

and the central nervous system as the primary source of dysfunction in SSH. 

Multiple studies have shown that sympathetic outflow is increased following salt 

intake (Leenen, Ruzicka et al. 2002, Fujita and Fujita 2013). As previously 

mentioned, there is also evidence for central action of the RAAS following high 

salt intake, which is specifically mediated through peripheral interactions with 

CVO, and subsequent synaptic transmission to areas such as the PVN, which are 

important in regulation of cardiovascular function (Pan 2004, Wei, Yu et al. 2009, 

Kawano and Masuko 2010).  

Clearly, the etiology and pathogenesis is a rather complex system that 

requires a large deal of attention. Because there is no one clear mechanism 

underlying SSH as of right now, multiple animal models have been utilized to 

mimic SSH in humans, in order to find the molecular connections to SSH. Due to 

various reasons, the primary animal model used in current hypertension research 

is the rat (Pinto, Paul et al. 1998). Two of the most commonly used strains of rats 

used specifically for SSH research are the Dahl Salt-Sensitive (Dahl S) and 

Deoxycorticosterone Acetate (DOCA)-Salt rats, both of which will be the primary 

focus for the remainder of this study.  

1.4.1 Dahl Salt-Sensitive Rat Model 

The Dahl S rat model was developed by researcher Lewis K. Dahl, who has 

come to be known as a significant influence on salt-sensitivity research. During 

his research on the effects of salt ingestion, he noticed that some of the Sprague 

Dawley rats acquired hypertension, while some remained unaffected by the salt 

treatment. He began to selectively inbreed those whose blood pressures 

increased following salt intake with one another, as well as those who did not 
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respond to the salt treatment. Following a few years of breeding, Dahl found that 

he had successfully bred two strains of rats with statistically different reactions in 

blood pressure to a high salt intake, and labelled them sensitive and resistant to 

a high salt intake (Dahl, Heine et al. 1962). This salt sensitive strain eventually 

became known as the Dahl Salt Sensitive rat model, and has since been a major 

model used in salt sensitive hypertension research. The Dahl S rat model is 

generally used as a model for genetic primary hypertension, as this model can 

acquire hypertension even with normal salt intake (Pinto, Paul et al. 1998). Salt 

sensitivity is an additive factor in the adequacy of this model. It is an effective 

model because there is potential for genetic predisposition to salt-sensitivity in the 

90% of individuals who can be classified under primary hypertension. 

1.4.2 DOCA-salt Rat Model 

The DOCA-salt rat model was originally developed in the 1970s. In this 

SSH model, the combination of both DOCA pellet implantation and administration 

of a salt drink solution (~1% NaCl) results in impaired renal handling of sodium, 

eventually leading to hypertension development (Basting and Lazartigues 2017). 

Often, this model is paired with uninephrectomy, which exaggerates the onset of 

hypertension (Basting and Lazartigues 2017). This rat model offers a model for 

primary aldosteronism, a term coined by Jerome Conn to describe excessive 

production of aldosterone from the adrenal glands (Conn 1955). The development 

of hypertension in this model is dependent on the excessive amounts of DOCA, a 

mineralocorticoid and precursor to aldosterone, which results in excessive sodium 

and water reabsorption, as well as potassium excretion in the kidneys (Yemane, 

Busauskas et al. 2010, Basting and Lazartigues 2017). Because increased 

aldosterone levels have been gaining more interest as a primary cause for 

hypertension (Kaplan 2004, Tomaschitz, Pilz et al. 2010), the DOCA model offers 

an adequate model of this pathology. The onset of hypertension with this specific 

model is often observed to occur in stages, with an initial spike in blood pressure 
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within the first couple of days, followed by a more gradual increase and 

maintenance of an elevated blood pressure in the weeks following administration 

(Yemane, Busauskas et al. 2010). This model’s etiology varies greatly from the 

Dahl S rat model, in that it acts as a hypertensive model caused by excessive 

adrenal steroid release and subsequent endocrine dysfunction, as opposed to the 

primary genetic model observed in the Dahl S rat.  

1.5 Neuro-hormonal Mechanisms in Dahl and DOCA-salt Models 

Both rat models offer insight into two differing types of salt sensitive 

hypertension, but both have been observed to show patterns of neural as well as 

central hormonal mechanisms in response to a high salt intake. In the Dahl S 

model, dysfunctional nervous system activity as well as baroreflex dysfunction is 

commonly observed. Studies done on aortic nerve activation, which is part of the 

afferent response to baroreflex activation, and regulation of baroreflex response 

in prehypertensive Dahl S rats fed a low salt diet compared to Dahl Resistant 

(Dahl R) rats found that prehypertensive Dahl S rats showed a significantly lower 

baroreceptor discharge following phenylephrine infusion when compared to 

resistant rats (Gordon and Mark 1984). The same group also found impaired SNA 

activation and subsequent vascular responsiveness increase, resulting in a higher 

TPR in prehypertensive Dahl S rats when compared to Dahl R rats (Gordon and 

Mark 1983).  This relationship indicates that Dahl S rats have a genetic 

predisposition leading to impaired baroreflex sensitivity even before hypertension 

is fully developed. Further evidence showed that, following artificial volume 

expansion of veins through the use of dextran, a high salt diet increased the neural 

inhibitory response and potentiated the dampening of SNA in Dahl R rats, while 

in Dahl S rats fed a high salt diet, cardiopulmonary baroreflex inhibition of SNA 

was decreased, leading to an increase in SNA outflow to the splanchnic nerve 

(Victor, Morgan et al. 1986). The combination of these studies shows that Dahl S 
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rats have a compromised baroreflex and subsequent SNA response to arterial 

pressure changes, most likely due to genetic predispositions. 

Baroreflex dysfunction and excessive SNA have also been observed in the 

DOCA rat model. However, because DOCA hypertension is generally 

characterized by a sharp increase in blood pressure in the first few days, followed 

by a more gradual increase in the following weeks (Yemane, Busauskas et al. 

2010), there is some discrepancy on the magnitude of SNA input on the 

development of hypertension as opposed to the input of hormonal signaling as 

the primary cause of hypertension. In a few studies performed by deChamplain 

(de Champlain, Krakoff et al. 1968, Bouvier and de Champlain 1986) it was 

discovered that DOCA rats, when given 1% NaCl for an extended period of time, 

are found to have reduced norepinephrine binding and storage in the heart, 

meaning that there is more NE in the bloodstream. This was one of the first pieces 

of evidence showing that sympathetic over activity played a role in DOCA-salt 

hypertension during the fully developed phase of hypertension. However, others 

have found that there was no increase in SNA during the early phases of 

hypertension development (Yemane, Busauskas et al. 2010). This is important in 

distinguishing the role that SNA plays in certain portions of hypertension 

development in the DOCA rat. Further research has shown, similar to Dahl S rats, 

that the baroreflex following aortic nerve stimulation is dampened in DOCA rats 

compared to their controls (Takeda, Nakamura et al. 1988, Schenk and McNeill 

1992). 

Along with increased SNA following a HS intake, central RAAS function has 

been extensively observed and studied. The Hypothalamus is an important center 

for RAAS function (McKinley, Allen et al. 2001, Pan 2004), and as previously 

stated, cardiovascular relevant areas such as the PVN have been found to hold a 

large concentration of AT1 receptors, as well as AVP producing neurons (Pan 

2004). Because of this, the brain RAAS has become a major focus in the 
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pathology of Dahl S hypertension. Development of hypertension following a high 

salt diet in Dahl S rats has repeatedly shown evidence of mediation through the 

RAAS within the brain (Teruya, Muratani et al. 1995, Kubo and Hagiwara 2006). 

Further studies have shown that ICV of hypertonic saline elicited a greater 

increase in the blood pressure of Dahl S rats when compared to Dahl R or 

normotensive rats (Huang, Wang et al. 2001, Kubo and Hagiwara 2006). This 

response is thought to be mediated by an increase in cerebrospinal fluid sodium 

concentration, which is sensed by the CVOs and transmitted to cardiovascular 

relevant areas of the brain such as the PVN, activating the RAAS (Yang, Jin et al. 

1992, Huang, Van Vliet et al. 2004). Inhibition of AT1 receptors has also been 

shown to decrease the hypertension normally observed in Dahl S rats (Yang, Jin 

et al. 1992, Gabor and Leenen 2012). A similar role for central RAAS activation 

has also been observed in the DOCA rat model. Following DOCA pellet 

implantation and high salt diet treatment, central RAAS has been shown to be a 

common regulator of the hypertension development seen in this rat model (Basso, 

Ruiz et al. 1981, Itaya, Suzuki et al. 1986, Gutkind, Kurihara et al. 1988). Also, 

similar to the Dahl S model, knockdown of ANGII function following ICV injection 

of captopril, an ACE inhibitor, has been shown to alleviate the elevated blood 

pressure found in DOCA-salt rats, with no effect on normotensive rats (Itaya, 

Suzuki et al. 1986). The combination of these studies in both rat models shows 

the importance of SNA outflow and more importantly, RAAS activity, in the 

pathogenesis of both forms of SSH.  

1.5.1 AVP in Dahl and DOCA Models of Hypertension 

Because of the importance of the RAAS in the development and 

maintenance of elevated blood pressure in both primary and secondary SSH, as 

well as the downstream effects of elevated RAAS activity on SNA outflow, it is 

important to produce new knowledge concerning the dysregulation of central 

hormonal responses following a high salt intake. One of the most important 
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hormones and regulatory factors of blood pressure is AVP. It has become well 

known that an increase in salt intake causes activation of osmoreceptors found in 

the circumventricular organs due to the increased blood osmolarity and mineral 

imbalances. The CVOs then send excitatory projections to the PVN, resulting in 

an increased AVP synthesis within magnocellular neurons of the PVN. This AVP 

is then stored within vesicles at the axon terminals that project from the PVN to 

the neurohypophysis of the pituitary gland. Upon further stimulation, the PVN 

neurons will release AVP directly from these terminals into systemic circulation. 

As previously stated, this increase in AVP within the bloodstream results in 

activation of V1 and V2 receptors, resulting in both vasoconstriction as well as 

water reabsorption in the kidneys. Also, the significance of AVP upregulation in 

both Dahl S and DOCA rats following a high salt challenge has been well 

documented and extensively reviewed (Berecek, Barron et al. 1982, Berecek, 

Murray et al. 1982, Schenk and McNeill 1992, Huber, Fan et al. 2017). Along with 

these studies, microinjection of AVP has been shown to elicit an increase in SNA 

outflow, and antagonism of the V1 receptor within the PVN reduced the SNA 

outflow and blood pressure in salt-loaded rats (Ribeiro, Panizza Hdo et al. 2015). 

Given the increased presence of AVP following salt loading in both neurogenic 

and secondary forms of SSH, the potent regulatory effects of AVP on long term 

blood pressure, the presence of elevated plasma AVP in human hypertension 

patients (Os, Kjeldsen et al. 1986), and the regulatory effect of AVP on SNA 

outflow (Ribeiro, Panizza Hdo et al. 2015), it is logical to assume that AVP over-

activation within the PVN and SON and subsequent elevations in systemic 

circulation following release from the neurohypophysis is critical to the 

development and maintenance of hypertension.  

1.6 Pharmaceutical Interventions 

Because of the importance of RAAS activation and subsequent AVP 

release, many pharmaceuticals used to treat hypertension are aimed towards 



19 

decreasing RAAS function. Two of the most commonly used pharmaceutical 

interventions are ACE Inhibitors and Angiotensin II Receptor Blockers (Jarari, Rao 

et al. 2015). One study reported that over a five year period, ACE Inhibitors and 

ANGII Receptor Blockers represented approximately 13.3 and 28.3% of 

prescribed anti-hypertensive medications, respectively (Xu, He et al. 2015). In 

practice, these drugs are used to diminish RAAS activity. Although the use of 

these pharmaceutical interventions generally has a positive impact on improper 

blood pressure regulation, studies have shown that an increase in salt intake has 

an opposing action to hypertensive medications (Weinberger, Cohen et al. 1988, 

Calhoun, Jones et al. 2008). In addition, excessive salt intake is believed to have 

a direct impact on the development of resistant hypertension (Calhoun, Jones et 

al. 2008), which is characterized as persistent hypertension despite the use of 3 

or more anti-hypertensive prescription drugs. The prevalence of resistant 

hypertension has been a point of contention, although studies generally observe 

a prevalence in approximately 10-30% of hypertensive individuals (Calhoun, 

Jones et al. 2008, Sim, Bhandari et al. 2013). Although the prevalence among the 

general population is under dispute, primarily due to discrepancy in measurement 

technique and diagnosis, it is generally shown that approximately 5-15% of the 

population exhibit signs of primary aldosteronism (Douma, Petidis et al. 2008), the 

same pathology modelled in the DOCA rat. However, in those individuals with 

resistant hypertension, approximately 20% can also be diagnosed with primary 

aldosteronism (Calhoun, Nishizaka et al. 2002, Eide, Torjesen et al. 2004). In 

order to combat the decreased efficacy of traditional anti-hypertensive 

interventions in resistant individuals, testing and use of anti-aldosterone, 

aldosterone synthase inhibitors, as well as mineralocorticoid receptor antagonists 

has gained recent attention as a possible addition to classic antihypertension drug 

regiments (Oparil and Schmieder 2015), although there is still uncertainty in the 

efficacy of these drugs. Despite new knowledge concerning regulation of blood 

pressure in these hypertensive individuals, an exact mechanism underlying the 

development of salt sensitive hypertension as well as drug resistance has not yet 
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been discovered, nor have the central pathways that regulate RAAS and 

subsequent AVP release following salt intake. 

1.7 Orexin System 

Orexin is a small neuropeptide that was discovered in 1998 by two different 

labs concurrently (de Lecea, Kilduff et al. 1998, Sakurai, Amemiya et al. 1998). 

De Lecea and his colleagues reported that following tag PCR identification of 

multiple mRNA sequences, one was specifically located within the lateral 

hypothalamus (LH). Following cDNA isolation, they found that this prepro-peptide 

encodes the mRNA sequence necessary for the production of two similar proteins, 

specifically in the LH. Following western blot analysis as well as 

immunohistochemistry, they discovered that the protein was indeed localized 

within the LH. De Lecea named these neuropeptides hypocretins, due to their 

position in the Hypothalamus, as well as their similarity to secretin (de Lecea, 

Kilduff et al. 1998). Simultaneous research performed by Sakurai, who was 

searching for potential ligands for receptors whose ligand specificity was still 

unknown, found similar results and named the same proteins Orexin A (OXA) and 

Orexin B (OXB), while their mRNA precursor was named prepro-orexin (Sakurai, 

Amemiya et al. 1998). It was then discovered that the orexins carry out their 

function through interaction with two GPCRs: Orexin Receptor 1 (OX1R) and 

Orexin Receptor 2 (OX2R) (de Lecea, Kilduff et al. 1998, Sakurai, Amemiya et al. 

1998). Despite similar properties, the two receptor types exhibit differing affinities. 

While OX2R can bind with either OXA or OXB with nearly equal affinity between 

subtypes, OX1R has a much higher affinity for OXA (Sakurai, Amemiya et al. 

1998). Sakurai also found that, following ICV injection of OXA or OXB, food intake 

increases in a dose dependent manner, and in a fasted state, prepro-orexin is 

elevated in the LH, indicating an initial role for orexin in appetite (Sakurai, 

Amemiya et al. 1998). 
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Despite the initial idea that orexin primarily controls appetite regulation, it 

was discovered that although orexin is only produced in the LH, its projections 

reach multiple parts of the brain. Axonal projections from LH orexin neurons 

reached important areas such as the hypothalamus, brain stem, limbic system, as 

well as the circumventricular organs (Peyron, Tighe et al. 1998, Nambu, Sakurai 

et al. 1999, Kilduff and Peyron 2000). Because of its extensive projections 

throughout the brain, orexin has been implicated in multiple physiological 

processes such as sleep (Kilduff and Peyron 2000), arousal, appetite (Sakurai, 

Amemiya et al. 1998), and in recent years, regulation of blood pressure and 

sympathetic outflow (Li, Hindmarch et al. 2013, Li and Nattie 2014) (Fig. 1.4). 

 
Figure 1.4: Although orexin production only occurs within neurons located in the 
Lateral Hypothalamus, vast axonal projections to other brain areas allow orexin to 
carry out functions in multiple physiological processes. 

1.7.1 Orexin Effect on Blood Pressure 

Many orexin projections from the LH reach important cardiovascular 

regulatory areas, indicating the potential for orexin action on cardiovascular 

function. Along with the localized orexin neurons far reaching axonal projections, 

many of the areas of innervation coincide with concentration of both OX1R and 

OX2R in these cardiorespiratory areas. Similar to the OX projections, OX1R and 

OX2R mRNA, the precursor to protein formation, are present in areas of the 
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hypothalamus such as the PVN, in Sprague Dawley rats (Trivedi, Yu et al. 1998, 

Li and Nattie 2014), as well as areas of SNA control such as the NTS (Marcus, 

Aschkenasi et al. 2001, Li and Nattie 2014). OX1R and OX2R containing cell 

bodies were also found to be localized in similar areas (Li and Nattie 2014). 

Because of the co-localization of both orexin hypothalamic neuron 

projections and their receptors in major cardiovascular areas of the brain, 

researchers began to study the potential effect of orexin on cardiovascular 

regulation. Samson et al. found that upon ICV administration of OXA and OXB in 

doses of 1 and 5 nmol in normal conscious SD rats, mean arterial pressure 

significantly increased in a dose dependent manner (Samson, Gosnell et al. 

1999). Interestingly, these reported increases in MAP were similar to those elicited 

by ICV injection of 0.1 nmol ANGII under the same conditions (Samson, Gosnell 

et al. 1999). Following the established role of orexin in blood pressure regulation, 

electrophysiological recording showed that administration of OXA and OXB to 

primary neuron cultures of the PVN and RVLM elicited dose dependent 

depolarization of the neurons, a response that was effectively mitigated following 

administration of both OX1R and OX2R antagonists together (Shirasaka, 

Miyahara et al. 2001, Huang, Dai et al. 2010). 

Further studies in rats showed that lack of orexin function following genetic 

prepro-orexin knockout showed that normal rats lacking the prepro-orexin gene 

exhibited a significantly lower resting blood pressure when compared to their 

normotensive wild-type littermates (Schwimmer, Stauss et al. 2010). Similar to 

Samson et al., others found that central administration of both orexins via ICV in 

rats elicited a dose dependent response in not only MAP, but also SNA outflow in 

conscious and anaesthetized animals alike (Shirasaka, Nakazato et al. 1999, Li 

and Nattie 2014). However, since the lateral ventricles allow the orexin to diffuse 

to various brain areas, it makes it hard to pinpoint an exact area of orexin influence 

on SNA outflow and cardiovascular influence. More localized microinjections of 
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OXA in varying doses into the RVLM of SD rats showed a significant increase in 

both SNA as well as MAP (Shahid, Rahman et al. 2012), and this response was 

attenuated following prior administration of an OX1R antagonist (Shahid, Rahman 

et al. 2012). The combination of these studies outlines the extensive role that 

orexin plays, when administered exogenously, in various parts of the brain, 

leading many researchers to believe that orexin system dysfunction may play a 

role in the development and maintenance of hypertension. 

In  BPH/2J mice, a model for essential hypertension, Marques et al. 

(Marques, Campain et al. 2011) found that there is an increase in the gene that 

encodes for orexin within the hypothalamus of these mice when compared to 

controls in both early and established hypertension (Marques, Campain et al. 

2011, Marques, Campain et al. 2011), indicating an intrinsically higher orexin 

activity in the hypothalamus of rat models of primary hypertension. Similar studies 

were then carried out in Spontaneously Hypertensive Rats (SHR), a commonly 

used rat model of primary/neurogenic hypertension that mimics age related 

progression of hypertension development often observed in humans. Li et al. 

found that decreasing orexin activity through oral administration of almorexant, a 

dual orexin receptor antagonist, resulted in a decrease in blood pressure of 

approximately 30mmHg in SHR (Li, Hindmarch et al. 2013). The same study 

showed a large increase in RVLM orexin mRNA expression, although this finding 

did not reach statistical significance (Li, Hindmarch et al. 2013). A subsequent 

study concerned with the specific effects of OX2R found that upon central 

blockade of OX2R function via ICV of an OX2R antagonist as well as 

microinjection into the RVLM of SHR caused a significant decrease in blood 

pressure as well as HR (Lee, Dai et al. 2013), but found a decrease in RVLM 

OX2R expression, in opposition to previous studies. A follow-up study performed 

by the same group showed an increase in hypothalamic OXA and OXB as well as 

RVLM OXA in SHR compared to WKY rats (Lee, Tsai et al. 2015), and also used 

retrograde labelling to discover that SHR have more orexin projections to the 
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RVLM than do WKY rats (Lee, Tsai et al. 2015). Further immunohistochemical 

studies in SHR and normal Wistar Kyoto (WKY) rats showed that SHR showed a 

greater number of orexin expressing neurons in the medial hypothalamus 

compared to WKY rats (Clifford, Dampney et al. 2015), indicating that central 

orexin system overactivation may exacerbate or potentially be a cause for 

neurogenic hypertension observed in the SHR. 

1.7.2 Orexin in Salt Sensitive Hypertension 

Despite the importance of orexin function in the regulation of blood pressure 

as well as in the pathology of hypertensive animal strains such as the BPH/2J 

mouse and SHR, little is known about the implications of orexin in SSH. However, 

there is evidence that the orexin system directly impacts the pathogenesis of SSH. 

It has been extensively reviewed and established that increased SNA as well as 

RAAS activity and subsequent AVP release are essential to the development of 

SSH in both DOCA and Dahl S rats, two models of SSH (de Champlain, Krakoff 

et al. 1968, Berecek, Barron et al. 1982, Gordon and Mark 1983, Gordon and 

Mark 1984, Victor, Morgan et al. 1986, Gutkind, Kurihara et al. 1988, Yang, Jin et 

al. 1992). Exogenous orexin administration in normotensive rats has also been 

shown to cause a drastic increase in blood pressure (Shirasaka, Nakazato et al. 

1999, Li and Nattie 2014), while orexin knockdown via differing mechanisms such 

as oral or central receptor blockade  as well as genetic manipulations of prepro-

orexin activity mitigate the increase in blood pressure  (Schwimmer, Stauss et al. 

2010, Lee, Dai et al. 2013, Li, Hindmarch et al. 2013). In addition, orexin has been 

shown to play a role in the SHR and the development of hypertension.  

Implications for mediation of SSH through the PVN specifically through AVP 

production and secretion have been developed. AVP within the PVN following salt 

loading has been shown to increase blood pressure as well as SNA in SSH 

(Ribeiro, Panizza Hdo et al. 2015). Recent research done on Dahl-S rats fed a HS 

diet has shown that PVN orexin signaling effects the development of hypertension 
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in this salt sensitive model (Huber, Fan et al. 2017). Polymerase Chain Reaction 

(PCR) studies conducted on the PVN of Dahl S rats following a HS diet show that 

mRNA levels of OX1R, OX2R, as well as AVP are all significantly increased in 

Dahl S rats fed a HS diet when compared to their normal salt counterparts (Huber, 

Fan et al. 2017), while immunostaining showed a greater concentration of OX1R 

overexpression in the PVN following HS intake. The same study shows that, in 

primary hypothalamic cultures, AVP mRNA is increased in a dose dependent 

manner following incubation in OXA, and this effect is diminished following 

application of an OX1R antagonist (Huber, Fan et al. 2017). Furthermore, PVN 

OX1R blockade following microinjection decreased the elevated BP normally 

observed in this model (Huber, Fan et al. 2017). This data indicates the essential 

role that orexin, specifically OXA and its interaction with OX1R, plays in the 

maintenance of SSH in the Dahl S rat through modulation of AVP release and 

SNA outflow. 

Despite the implications for orexin system over-activation in the 

pathogenesis of Dahl Salt Sensitive SSH, there is no data addressing its potential 

role for it in other SSH models, specifically the DOCA rat. To date, only one paper 

has been published concerning orexin activity in the DOCA model. However, this 

paper was primarily concerned with diurnal influences on orexin function in DOCA-

salt hypertension (Hernandez, Watkins et al. 2018). In this study, they found that 

OX1R, OX2R, and OXA are increased within the hypothalamus following DOCA 

Salt treatment (Hernandez, Watkins et al. 2018). However, many questions 

remain concerning the role of the orexin system in the DOCA rat model, and other 

salt sensitive models of hypertension. 

1.8 Hypothesis 

In both Dahl S and DOCA rats, AVP is a primary influence on the development 

and maintenance of hypertension (Berecek, Barron et al. 1982, Berecek, Murray 

et al. 1982, Schenk and McNeill 1992, Huber, Fan et al. 2017) . AVP is primarily 
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produced within the PVN and SON (Treschan and Peters 2006). The PVN is also 

an area of integration of blood osmolality signals through projections stemming 

from the CVOs (Sunn, McKinley et al. 2003, Pan 2004). Upon HS intake, AVP is 

upregulated in the PVN, an area of major cardiovascular integration within the 

brain. Orexin system over activation has been implicated in primary hypertension 

development in both BPH/2J mice (Marques, Campain et al. 2011) as well as SHR 

(Li, Hindmarch et al. 2013). Ablation of orexin function both centrally and through 

peripheral means has been shown to cause a decrease in the normal elevation of 

BP (Schwimmer, Stauss et al. 2010, Lee, Dai et al. 2013, Li, Hindmarch et al. 

2013). Furthermore, OXA has been shown to directly affect SSH in the Dahl S rat 

model following HS intake, specifically through interaction with the OX1R within 

the PVN, and subsequent release of AVP to the periphery (Huber, Fan et al. 

2017). Lastly, the only study concerned with orexin function in the DOCA rat model 

shows an increase in OXA as well as OX2R within the hypothalamus following 

DOCA-HS treatment. However, this study does not observe the PVN specifically, 

nor does it directly address the effects that the orexin system may play on the 

development of hypertension (Hernandez, Watkins et al. 2018). 

Due to this evidence for orexin function in SSH development, we hypothesize 

that, following DOCA-HS treatment in SD rats, the DOCA pellet induced renal 

sodium and water reabsorption, as well as HS intake will cause PVN OX1R 

signaling to be upregulated via projections of osmoreceptors detecting blood 

osmolality from the CVOs. We also hypothesize that OXA projections to the PVN, 

as well as cell body concentration within the LH will be increased in the DOCA 

rats. Following the interaction between OXA and OX1R in the PVN, we believe an 

increased AVP production and subsequent secretion into peripheral circulation 

will cause an increase in both vasoconstriction as well as water reabsorption 

within the kidneys, resulting in an increased blood volume, and resultant 

hypertension. Furthermore, we hypothesize that PVN microinjection of AAV2-

OX1R-shRNA, a virus causing downregulation of OX1R, will result in a decrease 
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in OX1R activation and AVP release from the PVN, as well as decreased plasma 

AVP and levels. We believe that reducing OX1R function within the PVN of DOCA 

rats will alleviate, at least in part, the development of hypertension in this model. 

A visual representation of our hypothesis can be observed in figure 1.5. The 

results of this study may offer insight into the role of orexin in SSH, and may 

produce evidence offering a new potential pharmaceutical target for hypertension 

treatment. 

 

Figure 1.5: Representative model of the hypothesized mechanism underlying 
orexin control of blood pressure in the DOCA-rat model. Circumventricular organs 
(CVO), lateral hypothalamus (LH), paraventricular nucleus (PVN), orexin A (OXA), 
orexin-1 receptor (OX1R), arginine vasopressin (AVP), adeno-associated virus – 
OX1RshRNA (AAV2-OX1R-shRNA). 
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2 Methods 

2.1 Animals 

All animal breeding was performed and overseen by our lab with the help of 

the Animal Care Facility (ACF). Adult male rats (200-350g) were placed into three 

groups: DOCA-Salt, DOCA-Salt + OX1RshRNA, or untreated control. The DOCA-

Salt group received implantation of a 21-day release DOCA pellet (75mg, 

Innovative Research of America, FL, USA), and saline drinking solution (1% NaCl 

and 0.2% KCl) with normal chow for 21 days. DOCA-Salt + OX1RshRNA rats 

received a PVN microinjection of AAV2-OX1R-shRNA (University of Florida) two 

weeks prior to DOCA and high salt diet administration, identical to the DOCA-Salt 

group. The untreated controls were given sham surgeries, and normal water and 

chow. During the 3 weeks, blood pressure measurements were taken on DOCA-

Salt, DOCA-Salt + OX1RshRNA, and control rats. At the end of the three-week 

DOCA release, rats were placed in metabolic cages for 3 consecutive days. 

Following this, rats were euthanized and used for PCR, immunostaining, plasma, 

and heart weight measurements. The time of euthanization was confined to early 

afternoon, between approximately 2:00-5:00pm, in order to mitigate the chance of 

any variability in measured physiological parameters due to the natural 

fluctuations of orexin activity throughout the day.  All rats were housed at a 

constant temperature and a 12:12 hour light dark cycle, and given their respective 

diets ad libitum. All animal experiments were performed in adherence to protocols 

approved by the Michigan Technological University Institutional Animal Care and 

Use Committee (IACUC). 

2.2 Hypothalamic Paraventricular Nucleus Microinjections 

Prior to any diet or DOCA treatment, DOCA-Salt + OX1RshRNA rats were 

subjected to bilateral PVN microinjection of AAV2-OX1R-shRNA, a viral vector 

that carries a small hairpin RNA that specifically targets the gene encoding for 
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OX1R, effectively knocking down OX1R function. Rats were anaesthetized using 

5% isoflurane for induction, and 2-3% isoflurane exposure for maintenance of 

anesthesia. Following complete anesthesia, rat heads were fixed in a stereotaxic 

frame, so that bregma and lambda were level with one another. Two holes were 

drilled through the skull at coordinates of the PVN so that a single glass 

microinjector pipette could be lowered into the PVN area. The coordinates for the 

PVN (in mm) were as follows: -1.6 caudal to bregma, 0.5-0.7 lateral to the midline, 

and 7.2 deep. Once the microinjector was in place, 200 nl of AAV2-OX1R-shRNA 

was injected bilaterally into the PVN. Approximately 10-12 minutes was taken 

between injections to allow for diffusion of the viral vector. Following injection, the 

wound was sutured, and rats were given a subcutaneous injection of a cocktail 

solution of meloxicam, penicillin, and sterile 0.9% saline the day of injection, as 

well as two days after in accordance with IACUC and ACF standards. DOCA-Salt 

OX1RshRNA rats were given 2 weeks to recover as well as to allow full viral 

expression, before any other procedures were performed. 

2.3 DOCA Pellet Implantation  

DOCA-Salt and DOCA-Salt + OX1RshRNA groups were subjected to 

subcutaneous implantation of a DOCA pellet (75mg, 21-day release, Innovative 

Research of America, FL, USA) prior to beginning the high salt drink treatment. 

Rats were given 5% isoflurane for anesthesia induction followed by 2-3% 

isoflurane to maintain adequate anesthesia during the procedure. A subcutaneous 

incision was made in the retro-scapular region, and the DOCA pellet was placed 

under this layer. The wound was sutured, and rats were given the same post-

operative care as above. However, directly following the procedure, all rats’ 

drinking water was switched to a saline solution (1%NaCl and 0.2%KCl) for the 

remainder of the 21 days. As previously mentioned, DOCA treatment is usually 

paired with uninephrectomy to exacerbate the development of hypertension. 

However, we decided to exclude the kidney removal following a previously 
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established model (Kandlikar and Fink 2011) to obtain a more gradual progression 

of hypertension development that more closely mimics that seen in a humans, as 

well as to eliminate many of the adverse effects that kidney removal has, and their 

causative effects on hypertension (Kandlikar and Fink 2011). This allows us to 

more confidently assume that any results from this study occur because of the 

DOCA pellet and high salt administration and its interaction with the orexin 

system. 

2.4 Blood Pressure Measurement 

A subset of each group was subjected to blood pressure measurement 

during their treatment period using tail plethysmography (Kent Scientific, CT, 

USA). DOCA-Salt, DOCA-Salt +OX1R-shRNA, and control rats were all 

acclimated to the procedure for a week before measurements began through 

everyday blood pressure measurements. Briefly, rats were placed in a plastic 

cylinder with a dark nose-cone, to reduce vision and anxiety. After 10 minutes 

acclimation, the tail cuff apparatus including the occlusion cuff and volume 

pressure recording cuff were placed on the animal for an additional 5-10 minutes. 

Artificial heating was also applied to maintain adequate blood flow to the tail. 

Following this, blood pressure recording began, and 10 acclimation cycles 

followed by 20 measurement cycles were conducted. Following blood pressure 

recording, averages of the 20 measurement cycles were taken and paired with 

their group to obtain a group mean, which was reported. Rats maintained 

acclimation during the 18-day treatment by daily 20-minute sessions in the rat 

holder/tail cuff apparatus for every rat, to reduce variability and anxiety among the 

rats.  

Tail-cuff plethysmography can be attributed to stress-related fluctuations in 

blood pressure, due to confinement in a small cylinder for extended periods of 

time, which may lead to variability of results. However, all necessary precautions 

were taken to mitigate this effect. Namely, acclimation to the cylinders as well as 
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the occlusion/volume pressure recording apparatus began two weeks prior to any 

actual blood pressure recording was performed. Following one week of 

acclimation, blood pressure measurements were taken to identify when the blood 

pressure reached a normotensive level in all treatment groups. Once the blood 

pressure appeared to maintain a consistent, normotensive pressure, the 

experiment was initiated. In addition, blood pressure recording sessions were 

done during the same time every day (12:00-4:00pm), to mitigate circadian 

influences on orexin system function, and thus to alleviate any fluctuations in 

blood pressure that may naturally occur with differential orexin system activity 

throughout the day. Furthermore, during the three weeks of blood pressure 

recording, acclimation was maintained on days when blood pressure 

measurements were not taken by daily exposure to both confinement in the 

cylinder as well as attachment of the occlusion/volume pressure recording 

apparatus for 20 minutes. A diagrammatic representation of this process can be 

observed below (Fig. 2.1): 

 
Figure 2.1: Representation of Tail-Cuff Plethysmography procedural acclimation 
and subsequent BP measurements. Two weeks of acclimation were performed 
before BP measurements were measured, mitigating any stress-induced 
variability caused by the recording. 

2.5 Metabolic Measurements 

During the last 3 days of treatment, DOCA-Salt, DOCA-Salt + OX1RshRNA, 

and control rats were placed in metabolic cages, where food and water intake, as 
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well as urine and fecal output were measured. The first day in the metabolic cages 

was discarded as the results were likely to be affected by the new change of 

environment for the rats. Body weights were also taken weekly for all rats. 

Following euthanization, hearts were removed and weighed, and presented as a 

heart weight to body weight ratio (HW:BW). 

2.6 Real Time PCR and Immunostaining 

Following three weeks of treatment, rats were euthanized and subjected to 

either real time polymerase chain reaction (PCR) analysis to observe mRNA 

levels or immunostaining to visualize protein levels. For PCR, brains were 

removed and immediately flash frozen in liquid nitrogen to mitigate RNAse activity. 

Following flash freezing, all brains were placed into a -80 degrees Celsius freezer, 

where they would remain until needed for mRNA analysis. Upon removal from the 

freezer, the PVN area was punched. RNA isolation was performed using RNeasy 

plus Mini kits (Qiagen, CA, USA) following packaged instructions. Following 

isolation, the RNA was converted to complementary DNA (cDNA) using iScript 

cDNA synthesis kits (Bio-Rad), and cDNA was used as a template for real time 

PCR, which was performed to analyze mRNA levels of OXA, OX1R, and AVP 

using gene specific Taqman primers and probes. The results were normalized to 

mRNA expression of the housekeeping gene, GAPDH. 

Immunostaining was used to analyze OX1R, OXA, and AVP protein 

expression within the PVN, as well as OXA within the lateral hypothalamus. 20-

μm coronal brain sections containing the PVN or LH using the following 

procedure. Rats were anesthetized under heavy isoflurane. Once under deep 

anesthesia, cold phosphate buffer saline (1xPBS) followed by 4% 

paraformaldehyde (PFA) in 1xPBS was used to transcardially perfuse the animal. 

Following perfusion, the brain was removed and kept in 4% PFA overnight in 4°C. 

The next day, the brains were transferred and kept at 4°C in 30% sucrose until 

they sank to the bottom. They were then cut in 20-μm coronal sections using a 
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cryostat. Areas containing the PVN area as well as the LH were then subjected to 

immunostaining. Following wash in 1xPBS 3 times for 10 minutes each, brain 

sections were incubated with either rabbit anti-OX1R antibody (Alomon 

Laboratories, Jerusalem, Israel, 1:300 dilution), rabbit anti-AVP antibody (1:400 

dilution), or mouse anti-OXA antibody (1:300 dilution) in PBS containing 0.5% 

Triton X-100 and 5% horse serum for 4 days at 4°C. Following this incubation and 

1xPBS washing, they were incubated overnight in secondary antibodies Alexa 

fluor 488 goat anti rabbit IgG (1:500), Alexa fluor 594 goat anti rabbit IgG (1:500), 

or Alexa fluor 594 donkey anti mouse IgG (1:500). Images representing 

immunofluorescence were taken with a Leica DMIL microscope. 

2.7 Plasma AVP and CSF Orexin A ELISA Testing 

Rats were placed under heavy anesthesia using 5% isoflurane. They were 

then decapitated, and blood was collected in tubes coated with 5.4mg EDTA (BD 

Vacutainer, NJ, USA) to collect plasma for measurement. These tubes were then 

centrifuged at 4°C using an Eppendorf 5804 R Centrifuge at 1300 RPM for 35 

minutes. The supernatant was extracted, and stored in -80ºC until use. ELISA 

testing was used to analyze both plasma concentration of AVP (Arg8-Vasopressin 

Kit, Enzo Life Sciences, NY, USA) as well as cerebrospinal fluid Orexin A 

concentrations (Orexin-A ELISA, Fujuifilm, Tokyo, Japan) using the 

manufacturer’s provided instructions. 

2.8 Intracerebroventricular Injections 

Male adult SD rats were subjected to ICV injections of either saline control 

or OXA (Sigma Aldrich, MO, USA). Rats were anesthetized under 5% isoflurane, 

and maintained at 2-3% isoflurane. Rats were set up in a stereotaxic frame as in 

PVN injections. A hole was made in the skull to allow penetration of a Hamilton 

syringe into the left lateral ventricle. The coordinates for injection were as follows: 

-0.8 mm caudal to bregma, 1.6 mm lateral to the midline, and 3.6 mm deep. For 
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the ICV injection, saline (0.9%) control was injected at a volume of 4μl over the 

course of 4 minutes on only one side. Rats that received OXA (2nmol) also 

received 4μl over the course of 4 minutes. Approximately 10 minutes following 

injection brain and plasma were collected and used for PCR as well as ELISA 

testing. 

2.9 Data Collection and Analysis 

All rats subjected to PFA perfusion and subsequent immunostaining were 

unable to be used for any physiological analysis other than protein 

immunofluorescence staining. However, all other animals subjected to brain, 

blood, and CSF collection were utilized for multiple tests, including PCR and 

ELISA. Because of the overlap, and the multiple utilizations of one sample for 

various tests, some discrepancies in sample size may be present. In general, an 

arbitrary sample size of 4-5, which is normally observed in other experiments 

performed in rodent models, was chosen as a goal for each treatment group, 

although this was not always the case due to the additional accumulation of new 

results on the same physiological parameters tested throughout the progression 

of the project. Furthermore, results from multiple experiments (Fig. 2.2) were 

combined over the course of the project when the same parameters were 

measured. However, to simplify the number of rats subjected to immunostaining 

as well PCR and ELISA, Fig. 2.2 shows a representation of the number of rats 

subjected to each treatment, and what physiological parameters were eventually 

measured, excluding the six rats used during the ICV injection. In addition, all 

animals that were lost during surgery, before any measurements were taken, were 

not recorded, and were simply replaced, eliminating any effect on sample size.  
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Figure 2.2: Representative diagram showing the number of rats from each 
experiment (Exp. 1-5) during the project and what physiological analysis was 
performed on each. Note: Only rats during experiment 5 were subjected to blood 
pressure measurements over the course of the three-week treatment. 

All data is expressed as Mean ± SEM unless otherwise noted. Individual blood 

pressure means were observed, and then combined with other subjects within 

their given treatment group to find a group mean and SEM. To test significance 

unpaired one-tailed and two-tailed T-tests, as well as One-way ANOVA testing 

was performed using Graphpad Prism-6 software. If significance was found using 

the ANOVA, a Tukey HSD test was performed. For blood pressure and heart rate 

data, a two-way ordinary ANOVA was performed, and if significance was found, 

a Tukey multiple comparison test was performed between time points. All values 

with a P<0.05 were considered significant. 
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3 Results 

The classic model for DOCA-salt hypertension generally utilizes kidney 

removal (uninephrectomy) to exacerbate the development and severity of 

hypertension in the animal. However, for our model, we chose to omit the kidney 

removal, allowing a more gradual and moderate increase in blood pressure, which 

more closely mimics hypertension development observed in humans. However, 

kidney removal affects renin levels, and thus AVP secretion and RAAS activity. It 

has been extensively shown that AVP secretion is essential to hypertension 

development in the classical DOCA-salt model, so we first assessed whether our 

model would produce adequate central AVP production, as well as parallel 

increases in OX1R levels. Furthermore, we wished to observe whether central 

AVP increases correlated with peripheral secretion in the plasma, using this as 

evidence of downstream AVP activity on vasoconstriction and renal water 

reabsorption. Lastly, we assessed metabolic measurements due to AVP and 

orexin regulation of metabolic activity. 

3.1 DOCA-salt Treatment Increases PVN AVP and OX1R 
Expression 

The efficacy of our modified DOCA-salt model in producing a similar 

increase in central AVP production as the classical uninephrectomized DOCA-salt 

rats was tested following 3-weeks of DOCA-salt treatment. Following treatment, 

real time PCR was used to analyze PVN AVP mRNA expression, and 

immunostaining was used to visualize AVP protein expression within the PVN. 
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Figure 3.1: PVN AVP mRNA expression following 3-weeks of DOCA-salt 
treatment. DOCA-salt (n=9) treatment significantly increased PVN AVP mRNA 
expression compared to control rats (n=8). *P<0.05 using an unpaired two-tailed 
T-test.

A significant increase in PVN AVP mRNA expression was observed in 

DOCA-salt rats (n=9) when compared to control rats (n=8) (control: 1±0.319 vs. 

DOCA-salt: 3.142±0.7914, P<0.05), which was to be expected, as it is generally 

observed in the classic DOCA-salt model (Fig. 3.1). Further immunostaining 

assessment also showed a large increase in PVN AVP protein expression when 

compared to control rats (Fig. 3.2). The combination of these results shows that 

DOCA-salt treatment results in significantly increased AVP production within the 

PVN, inferring that overproduction of AVP is still present in our modified DOCA-

salt model. 
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Figure 3.2: Representative immunostaining images of AVP protein expression in 
control (left) and DOCA-salt (right) rats. 

After observing an increase in central AVP production within the PVN of 

DOCA-salt rats, we then analyzed whether an increase in OX1R receptor 

expression occurs in parallel with PVN AVP increases following DOCA-salt 

treatment. To assess this, PCR and immunostaining were once again utilized to 

assess PVN mRNA and protein expression. PCR results indicated a significant 

increase of approximately 23% in PVN OX1R mRNA levels following DOCA-salt 

treatment (n=4) compared to control (n=3) (control: 1.00±0.049 vs. DOCA-salt: 

1.231±0.08; P<0.05) (Fig. 3.3). 
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Figure 3.3: PVN OX1R mRNA expression following 3-weeks of DOCA-salt 
treatment. DOCA-salt (n=4) treatment significantly increased PVN OX1R mRNA 
expression compared to control rats (n=3). *P<0.05 using an unpaired one-tail T-
test. 
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To affirm whether increased OX1R mRNA levels resulted in increased OX1R 

protein expression, immunostaining was performed. Immunostaining images 

show a large increase in OX1R expression and concentration in the PVN area 

(Fig. 3.4). The significant increase in both AVP as well as PVN OX1R expression 

is indicative of a relationship between the parallel increase observed and DOCA-

salt treatment. 

Figure 3.4: Representative immunostaining images showing expression of the 
orexin-1 receptor (OX1R) in the PVN in both control (left) and DOCA-salt (right) 
rats. Third ventricle (3V). 

3.2 DOCA-salt Treatment Increases Plasma AVP Concentration 

The DOCA-salt model is generally characterized by elevated plasma AVP 

concentrations. Since an increase in PVN AVP expression was expressed, we 

used ELISA to test plasma AVP concentrations in control rats as well as DOCA-

salt treated rats, to observe whether the central increase in AVP production results 

in an increase in peripheral circulation. Following 3 weeks of treatment, DOCA-
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salt treated rats (n=8) showed a significantly higher plasma AVP concentration 

when compared to control rats (n=4) (control: 9.04±2.57 vs. DOCA-salt: 

37.94±8.66 pg/ml; P<0.05) (Fig. 3.5). This result agrees with previous 

observations showing similar increases in peripheral AVP levels (Lariviere, St-

Louis et al. 1988, Saravia, Grillo et al. 1999).  
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Figure 3.5: Plasma AVP concentrations (pg/ml) in control (n=4) and DOCA-HS 
(n=8) treatment groups. DOCA-salt treatment resulted in a significant increase in 
plasma AVP concentration. *P<0.05 vs. control using an unpaired two-tail T-test. 

3.3 DOCA-salt Treatment Effects on Metabolism 

Following 3 weeks of treatment, all rats were placed in metabolic cages for 

72 hours to assess urine and fecal output, food and water intake, and body weight. 

Following 24-48 hours of acclimation to the environment, food intake (g), fecal 

output (g), water intake (mL), as well as urine output (mL) were measured over a 

24-hour period to analyze the effects that our modified DOCA-salt model elicited

on metabolism.
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Figure 3.6: 24-hour metabolic data of control (n=4) and DOCA-salt (n=3) treated 
rats following 3-weeks of treatment. DOCA-salt treatment significantly reduced 
food intake when compared to control rats, but significantly increased water 
intake, fecal output, and urine output when compared to control rats. *P<0.05, 
**P<0.01, ****P<0.0001 vs. control using an unpaired two-tailed T-test. 

Following 3-weeks of treatment, DOCA-salt rats (n=3) showed significant 

differences in metabolism when compared to controls (n=4). DOCA-salt treatment 

resulted in a significant decrease in food intake (control: 26.39±1.45 vs. DOCA-

salt: 18.91±2.42 g, P<0.05), as well as a significant increase in fecal output 

(control: 4.26±1.15 vs. DOCA-salt: 1.41±0.38 g, P<0.05) when compared to 

control rats (n=4) (Fig. 3.6). Also, DOCA-salt treatment resulted in a significant 

increase in water intake (control: 22.72±2.719 vs. DOCA-salt: 176.7±29.24 ml, 

P<0.01) and urine output (control: 6.8±0.578 vs. DOCA-salt: 126.1±5.346 ml, 

P<0.0001) compared to controls (Fig. 3.6). A decrease in weight gain was also 

observed following DOCA-salt (n=7) treatment when compared to control rats 

(n=6) (control: 129±6.429 vs. DOCA-salt: 81.71±8.626 g, P<0.01) (Fig. 3.7). 
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Figure 3.7: Difference in body weight from beginning and end of treatment. 
DOCA-salt (n=7) treatment results in a significant attenuation of weight gain 
compared to control rats (n=6). **P<0.01 using an unpaired two-tailed T-test. 

3.4 Central Orexin-A Administration Increases Plasma AVP 
Concentration in Normal SD rats 

Following affirmation that plasma AVP levels are indeed increased 

following DOCA-salt treatment, we then wished to find out whether orexin system 

activity was a primary regulator of AVP release peripherally. Previous research 

done in our lab showed a significant increase in PVN AVP protein expression 

following acute OXA ICV injection in normal rats (Huber, Fan et al. 2017). Because 

centrally administered OXA results in increased PVN production of AVP, we then 

tested whether central administration of OXA causes a parallel increase in AVP 

secretion into peripheral circulation. To test this, six rats were given ICV injections 

of either 0.9% saline (n=3) or OXA (2nmol) (n=3). Ten minutes following injection, 

animals were sacrificed and plasma was collected for AVP ELISA measurement. 
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Figure 3.8: Plasma AVP concentrations (pg/ml) following ICV injection of saline 
(0.9%) (n=3) or OXA (2nmol) (n=3). OXA ICV elicited a noticeable increase in 
AVP plasma levels, although this did not reach significance (P=0.08) when using 
an unpaired one-tailed T-test. 

Although significance was not reached (P=0.08), an obvious trend towards 

significance was observed as OXA ICV (n=3) elicited an increase in plasma AVP 

levels when compared to saline controls (n=3) (saline: 46.86±8.73 vs. OXA: 

82.69±19.23 pg/ml) (Fig. 3.8). This relationship indicates that acute central 

injection of the OX1R agonist, OXA, results in an increase in peripheral AVP 

circulation, leading us to believe that long-term orexin system over-activation may 

lead to a chronic increase in plasma AVP often observed in the DOCA-salt model. 

All data collected has shown that DOCA-salt treatment increases not only 

central and peripheral AVP expression, but also increases PVN OX1R 

expression. Furthermore, acute injection of the OX1R agonist, OXA, results in a 

near significant increase in peripheral AVP in the plasma. However, these results 

do not prove an interaction between orexin system activation and regulation of 

AVP release in the DOCA-salt model, nor do they give any insight into long-term 

orexin mediated AVP release. To analyze the chronic impact of the orexin system 
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on DOCA-salt hypertension, rats were given bilateral PVN injections of AAV2-

OX1R-shRNA, a viral vector carrying a short hairpin RNA that specifically targets 

and knocks down the gene that encodes for OX1R, two-weeks prior to DOCA-salt 

treatment. 

3.5 Lateral Hypothalamic OXA Neuron Expression Remains 
Elevated Following Chronic PVN OX1R Knockdown 

To investigate the relative concentration of protein expression of orexin 

related proteins, immunostaining was performed, which allows visualization of 

target protein expression within the relevant brain regions. 

We first chose to investigate whether orexin producing neuron expression 

within the LH, as well as axonal projection density in the PVN is increased 

following DOCA-salt treatment. To test this, following three weeks of DOCA-salt 

treatment, animals were transcardially perfused with cold 4% PFA, and brains 

were removed. Coronal sections of the brain were then taken in areas that 

corresponded to positions of the LH and PVN. These sections were subjected to 

immunostaining, specifically targeting OXA. Following DOCA-salt treatment, it 

appears that OXA expressing cell bodies within the LH were increased when 

compared to SD untreated control rats (Fig. 3.9A). Interestingly, there did not 

appear to be any major differences between PVN axonal projections in the DOCA-

salt rats when compared to the controls (Fig. 3.9B). 
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Figure 3.9: Representative immunostaining images showing expression of 
orexin-A (OXA) within (A) the lateral hypothalamus (LH) as well as (B) the 
Paraventricular Nucleus of the Hypothalamus. The first column shows untreated 
control rats. The second column shows DOCA pellet (75mg, 21-day release) and 
high salt (1%NaCl/0.2%KCl) treated rats (DOCA-HS). The third column shows 
rats that received prior orexin-1 receptor viral antagonist bilateral microinjection 
into the PVN two weeks prior to the DOCA-salt treatment (OX1RshRNA). 

A similar increase in OXA cell body expression within the LH can be 

observed in rats that received AAV2-OX1R-shRNA (OX1R antagonist) prior to 

DOCA-salt treatment (Fig. 3.9A) when compared to untreated controls. However, 

in contrast to the DOCA-salt rats, PVN OXA axonal projections from the LH 

appear to have a greater expression and density in rats who received bilateral 

PVN OX1R antagonist injections (Fig. 3.9B). 
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3.6 Chronic PVN OX1R Knockdown Decreases OX1R 
Expression 

The above results show that DOCA-HS treatment increases OXA neuron 

cell body immunoreactivity, indicating an intrinsic increase in LH orexin production 

and activity. However, we also wanted to see how the treatment would affect PVN 

OX1R, the receptor for OXA, expression and immunoreactivity.  

PCR analysis of the PVN area showed that OX1R mRNA expression is 

increased by approximately 35% following DOCA-salt treatment (1.348±0.109; 

n=10) when compared to control rats (1±0.087; n=7) (Fig. 3.10). However, PVN 

OX1R knockdown significantly decreases OX1R mRNA expression 

(0.8537±0.072; n=5) when compared to DOCA-salt treated rats (P<0.05) (Fig. 
3.10), indicating that viral vector application to the PVN effectively reduces OX1R 

function within the PVN to normal levels. 
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Figure 3.10: PVN OX1R mRNA levels of expression normalized to GAPDH 
expression. DOCA-salt treated rats (n=10) show an increase of approximately 
34% PVN OX1R expression compared to control rats (n=7), and this increase is 
significantly reduced following OX1R knockdown (n=5) (P<0.05) using a one-way 
ANOVA and Tukey post-hoc analysis.  
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Immunostaining analysis showed an increase in OX1R expression within 

the PVN of DOCA-salt rats when compared to control rats (Fig. 3.11), in 

agreement with our previous results (Fig. 3.4). We then wished to test whether 

bilateral injection of AAV2-OX1R-shRNA into the PVN of DOCA-salt rats reduces 

the density of OX1R within the PVN. As shown above, OX1R expression is 

increased in the DOCA-salt rats when compared to the controls (Fig 3.4). 

However, following injection of AAV2-OX1R-shRNA prior to DOCA-salt treatment, 

OX1R expression is successfully knocked down in the PVN (Fig 3.11), as 

evidenced by the lack of co-localization of OX1R and GFP expressing neurons. 

Figure 3.11: Representative immunostaining images showing orexin-1 receptor 
(OX1R) expression within the PVN of control (far left), DOCA-salt (middle left), 
and DOCA-salt rats injected with AAV2-OX1R-shRNA into the PVN (middle right). 
The farthest image on the right shows co-immunostaining of both OX1R as well 
as green fluorescence protein (GFP) that is intrinsically present in the viral vector 
used for OX1R knockdown. The lack of OX1R expression in areas of high GFP 
expression is indicative of successful OX1R knockdown following viral vector 
injection. 

3.7 Chronic PVN OX1R Knockdown Reduces Central AVP 
Production 

The above combination of results showing an increase in PVN OX1R mRNA 

and protein levels, as well as an increase in LH OXA protein expression indicate 

over activation of the orexin system as a key component in the development of 
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DOCA-salt hypertension. To test whether the decrease in OX1R function following 

viral injection resulted in a parallel decrease in central AVP mRNA expression, 

PVN tissue was punched and subjected to PCR assessment. PVN AVP mRNA 

levels were significantly increased following DOCA-salt treatment when compared 

to controls (control: 1±0.319 vs. DOCA-salt: 3.142±0.791, P<0.05) (Fig. 3.12). 
However, following chronic knockdown of PVN OX1R, AVP mRNA levels were 

significantly decreased when compared to DOCA-salt (DOCA-salt: 3.142±0.791 

vs. DOCA-OX1RshRNA: 0.644±0.281, P<0.05) (Fig. 3.12). There was no 

significant difference observed between control and DOCA-OX1RshRNA groups. 
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Figure 3.12: PVN AVP mRNA levels of expression normalized to GAPDH 
expression. DOCA-salt treated rats (n=10) have a significant increase in PVN AVP 
expression when compared to control (n=7) (*P<0.05) as well as when compared 
to DOCA-HS/OX1RshRNA (n=5) (*P<0.05) rats using a one-way ANOVA and 
Tukey post-hoc analysis. 

Knockdown of OX1R results in a decrease in mRNA levels of OX1R as well 

as AVP within the PVN, along with subsequent OX1R protein 

immunofluorescence, indicating that the orexin system over activation can be 

corrected via bilateral microinjection of an OX1R antagonist into the PVN of 

DOCA-salt rats. We then wished to elucidate whether chronic OX1R knockdown 

would result in a subsequent decrease in AVP protein expression within the PVN. 
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Figure 3.13: Representative immunostaining images showing arginine 
vasopressin (AVP) expression within the PVN of control (far left), DOCA-salt 
(middle left), and DOCA-salt rats injected with AAV2-OX1R-shRNA into the PVN 
(middle right). The farthest image on the right shows co-immunostaining of both 
AVP as well as green fluorescence protein (GFP) that is present in the viral vector 
used for OX1R knockdown. The lack of AVP expression in areas where GFP is 
high is indicative of successful decrease in AVP expression following OX1R 
knockdown. 

AVP expression within the PVN was greatly increased in DOCA-salt rats 

compared to control rats, as can be observed by increased density and brightness 

of AVP expression following immunostaining (Fig. 3.13). However, prior 

microinjection of an OX1R antagonist (AAV2-OX1R-shRNA) reduces the 

increased AVP expression that is normally seen in DOCA-salt rats (Fig. 3.13). 

This indicates strong evidence for orexin system modulation of AVP production 

and subsequent release following a DOCA-salt treatment. 

3.8 Chronic PVN OX1R Knockdown Decreases Plasma AVP 
Concentration 

After observing increases in mRNA and protein expression of both OX1R as 

well as AVP within the PVN of DOCA-salt rats, and the attenuation of this following 

chronic OX1R knockdown, we began to investigate peripheral circulation of AVP. 

We wished to observe whether central OX1R knockdown results in lowered 

plasma AVP levels. We hypothesized that OX1R PVN knockdown would 
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significantly decrease plasma AVP concentrations when compared to DOCA-salt 

treated rats. 

To test the chronic effects of orexin system modulation of peripheral AVP 

secretion, following three weeks of DOCA-salt treatment, plasma as well as CSF 

were collected as previously outlined, and subjected to AVP and OXA ELISA 

testing. 

Figure 3.14: (A) Cerebrospinal fluid OXA concentration in control (n=5), DOCA-
HS (n=3), and DOCA HS-OX1RshRNA rats (n=3). DOCA-salt treatment reduced 
circulating CSF OXA, and this is mitigated by PVN OX1R knockdown, although 
this relationship did not reach significance (P=0.37). (B) Plasma AVP 
concentration (pg/ml) in control (n=3), DOCA-salt (n=6), and DOCA HS-
OX1RshRNA (n=3) rats. DOCA-salt treated rats show an increased AVP plasma 
concentration, but this did not reach significance (P=0.09). However, following 
two-tailed t-test evaluation, we observed a significant decrease in plasma AVP 
following chronic OX1R knockdown (*P<0.05) when compared to DOCA-salt 
treatment using a one-way ANOVA and Tukey post-hoc analysis. 

Interestingly, we observed an apparent decrease in CSF OXA 

concentration in DOCA-salt treated rats (47.04±12.5 pg/ml; n=3) when compared 

to both control (93.62±20.25 pg/ml; n=5) and DOCA-salt/OX1RshRNA 

(104.6±44.34 pg/ml; n=3) rats (Fig. 3.14A). Although this observation did not 

reach significance (P=0.37), further explanation of this result can be found in the 
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discussion. Furthermore, there is a strong trend towards significance (P=0.09) in 

the long-term increase of plasma AVP in DOCA-salt (258.9±19.5 pg/ml; n=5) 

when compared to control (181.7±43.6 pg/ml; n=3) and DOCA-salt/OX1RshRNA 

(167.2±29.8 pg/ml; n=3) (Fig. 3.14B). However, because the trend was very 

strong, we decided to determine whether OX1R PVN knockdown significantly 

effects plasma AVP levels when compared only to DOCA-salt treated rats. 

Following two-tailed t-test evaluation of DOCA-salt and DOCA-HS/OX1RshRNA 

rats, we found that the OX1RshRNA treatment significantly decreased plasma 

AVP when compared solely to DOCA-salt treatment (P=0.035) (Fig. 3.14B). This 

trend is indicative of long-term modulation of plasma AVP secretion by central 

orexin system functioning. 
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3.9 Chronic PVN OX1R Knockdown Effects on Metabolism 

Figure 3.15: 24-hour metabolic analysis of food and water intake as well as urine 
and fecal output in all rats at the end of their respective treatments. DOCA-salt 
treatment results in a significant increase in both water intake and urine output 
when compared to control rats, and chronic knockdown of OX1R does not appear 
to alleviate this effect. Control (n=4), DOCA-salt (n=5), DOCA+OX1RshRNA 
(n=6). *P<0.05 vs. control, **P<0.01 vs. control using a one-way ANOVA and 
Tukey post-hoc analysis. 

Metabolic measurements were taken following 3-weeks of DOCA-salt 

treatment. Over the course of 24-hours at the end of the treatment, DOCA-salt 

rats (n=5) experienced a significant increase in water intake when compared to 

control rats (n=4) (DOCA-salt: 141.3±28.89 vs. control: 22.72±2.72mL, P<0.05), 

as well as increased urine output (DOCA-salt: 101±17.81 vs. control: 

6.8±0.578mL, P<0.01) (Fig. 3.15). This significant increase was also observed in 

DOCA-OX1RshRNA rat (n=6) water intake (DOCA-OX1RshRNA: 122.1±24.43 vs 
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control: 22.72±2.72mL, P<0.05) and urine output (DOCA-OX1RshRNA: 

79.58±11.3 vs. control: 6.8±0.578mL, P<0.01) when compared to control rats 

(Fig. 3.15). There was no observed statistical difference between DOCA-salt and 

DOCA-OX1RshRNA water intake and urine output. Similarly, no significant 

differences were observed in food intake (control: 26.39±1.455 vs. DOCA-salt: 

21.62±2.129 vs. DOCA-OX1RshRNA: 24.32±0.699g, P=0.1) or fecal output 

(control: 1.41±0.378 vs. DOCA-salt: 3.48±0.813 vs. DOCA-OX1RshRNA: 

2.76±0.295g, P=0.07) between any of the groups (Fig. 3.15). 

During the three-week treatment, body weight was taken once per week in 

control (n=10), DOCA-salt (n=17), as well as DOCA+OX1RshRNA (n=5) groups. 

We then assessed the difference in body weight from the beginning of treatment 

and the day of euthanization. This allowed us to assess the affect that DOCA-salt 

as well as DOCA-salt + OX1RshRNA may have on weight gain. 
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Figure 3.16: Graph of the difference in weight between the beginning and end of 
treatment in all groups. A significant dampening of weight gain is observed in both 
DOCA-salt (n=17) as well as DOCA+OX1RshRNA (n=5) rats compared to 
untreated controls (n=10). *P<0.05, and **P<0.01 vs. control using a one-way 
ANOVA and Tukey post-hoc analysis. 
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DOCA-Salt treatment caused a significantly lower weight gain over the 

course of three weeks when compared to the control rats (control: 86±16.34 vs. 

DOCA-salt: 53.06±7.54 g, P<0.01) (Fig. 3.16). DOCA-OX1RshRNA rats also had 

a significantly lower weight gain than control rats (control: 86±16.34 vs. DOCA-

OX1RshRNA: 37.1±5.26 g, P<0.05) (Fig. 3.16). Although there was no significant 

difference between DOCA-salt and DOCA+OX1RshRNA rats, there appears to 

be a slight trend towards a greater attenuation of weight gain in OX1R knockdown 

rats (Fig. 3.16). 

3.10  Cardiac Hypertrophy is Partially Attenuated by PVN OX1R 
Knockdown 

Cardiac hypertrophy is often associated with hypertension development, and 

may cause further cardiovascular dysfunction. To test cardiac hypertrophy, rat 

hearts were removed and weighed following animal euthanization. Cardiac 

hypertrophy was quantified by measuring the heart weight to body weight ratio 

(HW:BW), which allows assessment of the percentage of the animal body weight 

that is accounted for by the heart. 
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Figure 3.17: Quantification of cardiac hypertrophy through measurement of heart 
weight to body weight ratio (HW:BW). DOCA-salt (n=13) showed a significantly 
increased heart size when compared to control rats (n=8). DOCA-OX1RshRNA 
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(n=5) showed a slight decrease in HW:BW compared to DOCA-salt rats, but this 
trend did not reach significance using a one-way ANOVA and Tukey post-hoc 
analysis. *P<0.01 vs. control. 

DOCA-salt rats (n=13) had a significantly higher HW:BW when compared 

to control rats (n=8) (control: 0.311±0.011 vs. DOCA-salt: 0.402±0.017%, 

P<0.01). DOCA-OX1RshRNA rats (DOCA-OX1RshRNA: 0.352±0.019%) showed 

no significant differences when compared to either control or DOCA-salt rats, 

although there is a slight decrease when compared to DOCA-Salt rats (DOCA-

OX1RshRNA: 0.352±0.019 vs. DOCA-salt: 0.402±0.017%, P>0.05) (Fig. 3.17), 

indicating that OX1R knockdown may slightly alleviate the cardiac hypertrophy 

observed in DOCA-salt hypertension, even though significance was not reached. 

3.11  PVN OX1R Knockdown Attenuates Elevation of Blood 
Pressure in DOCA-salt Rats 

Because over activation of the orexin system in the PVN is observed in the 

DOCA-salt model, and largely attenuated following PVN OX1R knockdown, as 

well as AVP, we decided to analyze whether OX1R PVN knockdown alleviated 

DOCA-salt hypertension development. Using tail-cuff plethysmography, rats were 

acclimated to blood pressure measurement for one week prior to the start of the 

study. Control (n=5), DOCA-salt (n=4), and DOCA-OX1RshRNA (n=4) were all 

from the same litter and measurements were performed during the same time. 

The last day of the acclimation period was used as the baseline blood pressure 

measurement. Following acclimation, blood pressure and heart rate were taken 

over the course of 18 days. We did not perform BP measurements the last 3 days 

of treatment because the rats were in metabolic cages at this time, and transport 

to and from the cages to take BP measurements may have skewed the 

recordings. Also, to keep the rats acclimated, they were placed in the holders 

every day for 20 minutes on days when recordings were not measured. This was 

done to lower anxiety, and keep results consistent. Two rats, one from the DOCA-

salt and one from the DOCA-OX1RshRNA, were removed from blood pressure 
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and heart rate measurements due to illness resulting in lack of food and water 

intake, as well as physical deformity and body weight loss, all of which are factors 

that may affect AVP, orexin activity, among other physiological parameters. 

Because of these physiological implications, they were excluded from 

measurement. 
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Figure 3.18: Mean arterial pressure (MAP) measurements over the course of 18 
days as measured by tail-cuff plethysmography comparing control (n=5), DOCA-
salt (n=4), and DOCA+OX1RshRNA (n=4) rats. Results are reported as group 
averages during each measurement day. Dotted line indicates when DOCA-pellet 
and HS diet were administered. *P<0.05, **P<0.001 vs. control. #P<0.05, 
##P<0.01 vs. DOCA-salt using a two-way ANOVA and Tukey post-hoc analysis. 

Approximately one week following DOCA implantation, the DOCA-salt 

group MAP raised to a point significantly greater than the control group (P<0.05) 

(Fig. 3.18). This significant increase was maintained throughout treatment for the 

most part. Interestingly, PVN OX1R knockdown resulted in a significant, and 

sustained decrease in MAP when compared to the DOCA-salt rats (Fig. 3.18). 
There was no significant difference between control and DOCA+OX1RshRNA 
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groups at any point during the treatment (Fig. 3.18). At the end of the treatment, 

the final blood pressure measurements were as follows: control: 107.91±5.99 vs. 

DOCA-salt: 142.43±7.73 vs. DOCA+OX1RshRNA: 115.69±8.23 mmHg. Although 

there was a slight increase in DOCA-OX1RshRNA MAP, this was never a 

significant increase compared to control rats, but was significantly lower than the 

DOCA-salt group (P<0.01), indicating that OX1R knockdown within the PVN 

alleviates, at least in part, DOCA-salt induced hypertension, effectively reducing 

the normal MAP that is observed in DOCA-salt hypertension. 
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Figure 3.19: Heart rate recordings taken in the same rats that received BP 
measurements over the course of 18 days. The dotted line indicates beginning of 
DOCA-pellet and HS administration. There were no significant differences in heart 
rate between groups using a two-way ANOVA and Tukey post-hoc analysis. 

Despite the change in blood pressure between groups, there were no 

significant differences in heart rate (HR) between groups at any point during the 

treatment (Fig. 3.19). At the end of the 18-day measurements, measured heart 

rates were recorded as follows: controls (HR of 309.44±39.14 BPM), DOCA-salt 

(350.44±16.76 BPM), and DOCA-OX1RshRNA (324.82±34.59 BPM). 
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4 Discussion 

Approximately one-third of adults in the United States have hypertension, 

which puts them at a much higher risk for further cardiovascular events (Centers 

for Disease and Prevention 2011), effectively increasing the likelihood of 

premature death. Of that one-third of the population affected by hypertension, it is 

estimated that slightly more than half of those individuals also have salt sensitive 

hypertension (SSH) (Weinberger, Miller et al. 1986). However, despite 

advancements in hypertension research, the exact mechanism underlying its 

pathology has yet to be fully understood. Recently, the impact that central orexin 

function has on blood pressure regulation in various hypertensive rat models has 

been gaining attention (Schwimmer, Stauss et al. 2010, Lee, Dai et al. 2013, Li, 

Hindmarch et al. 2013, Lee, Tsai et al. 2015), with even more recent research 

observing the potential role of orexin signaling in SSH (Huber, Fan et al. 2017). 

However, the potential role of orexin in the DOCA-salt rat, a model for salt-

sensitive hypertension and hyperaldosteronism, has not yet been studied. To our 

knowledge, this is the first study conducted focused solely on the effect of orexin 

system function on the development and maintenance of hypertension in this 

model. Our study reports five major findings: I.) Expression of AVP and OX1R are 

increased in the PVN of DOCA-salt rats, and these increases are attenuated 

following prior PVN OX1R knockdown; II.) OXA expressing cells within the LH are 

increased in both DOCA-salt and DOCA-OX1RshRNA rats, and their axonal 

projections to the PVN are increased in the DOCA-OX1RshRNA rats; III.) Plasma 

AVP is increased following DOCA-salt treatment as well as OXA ICV, but is 

markedly decreased following PVN OX1R knockdown; IV.) Cardiac hypertrophy 

is present in DOCA-salt rats, and is at least partially attenuated following OX1R 

PVN knockdown; and lastly V.) The development of hypertension in DOCA-salt 

rats can be significantly attenuated following PVN OX1R knockdown. The 

combination of these results indicates a potential crucial role for central orexin 

system functioning in salt sensitive hypertension models. 
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 The PVN is a major area of cardiovascular integration, making it critical to 

proper blood pressure regulation (Pan 2004, Wei, Yu et al. 2009, Ribeiro, Panizza 

Hdo et al. 2015). One of the primary mechanisms underlying PVN regulation of 

blood pressure is the production and release of AVP from magnocellular neurons. 

Upon stimulation from peripheral osmolality and pressure changes, the CVOs, 

which lack a blood brain barrier, send afferent signals to the PVN, causing the 

production and subsequent release of AVP to the posterior pituitary, which 

releases it to peripheral circulation allowing it to cause both water reabsorption as 

well as vasoconstriction (Sunn, McKinley et al. 2003, Pan 2004, Kawano and 

Masuko 2010). Due to AVP’s established role in long term blood pressure 

regulation, as well as the presence of elevated AVP in many human hypertensive 

patients (Cowley, Cushman et al. 1981), RAAS activity, which can trigger AVP 

release, has become a major target for pharmaceutical intervention (Jarari, Rao 

et al. 2015). However, these pharmaceutical aids are not always effective, which 

can lead to the development of further complications such as resistant 

hypertension, making it important to find other forms of antihypertensive 

treatment. Previous work within our lab has found that PVN orexin functioning 

greatly influences both AVP release and subsequent sympathetic outflow in Dahl-

S rats, a genetic model of primary hypertension (Huber, Fan et al. 2017). Because 

AVP is essential to the development of DOCA-salt hypertension, we hypothesized 

that central orexin system functioning may play a role in DOCA hypertension. In 

agreement with numerous other studies (Grillo, Saravia et al. 1998, Pietranera, 

Saravia et al. 2004), we found that mRNA and protein expression of AVP are 

elevated within the brain of DOCA-salt rats, specifically in the PVN (Fig. 3.1 & 
3.2). We also observed an increase in plasma AVP (Fig. 3.5), similar to other 

studies (Saravia, Grillo et al. 1999). However, our study is novel in that it is the 

first to report elevated OX1R within the PVN (Fig. 3.3 & 3.4), as well as OXA in 

the LH (Fig. 3.9) following DOCA-salt treatment. This, combined with the 

implications of orexin function in blood pressure regulation led us to believe that 



60 

the over active orexin system in the DOCA model may contribute to the 

development of hypertension in this model.  

We then found that acute central administration of OXA resulted in a drastic 

increase in plasma AVP (Fig. 3.8), showing central OXA action elicits a substantial 

effect on AVP release from the neurohypophysis. We chose to determine the 

effects that chronic knockdown of PVN OX1R may have on the development of 

hypertension in SSH models, to discover the long-term impact orexin played on 

both central as well as peripheral AVP circulation. To do this, we used an adeno-

associated recombinant virus that specifically inhibits function of OX1R. Following 

previous models in which central knockdown of orexin receptor function resulted 

in attenuation of blood pressure increases (Shahid, Rahman et al. 2012, Lee, Dai 

et al. 2013), we performed bilateral microinjections of AAV2-OX1R-shRNA into 

the PVN of rats prior to DOCA pellet implantation. In agreement with our 

hypothesis, we found that OX1R PVN knockdown significantly reduced PVN 

OX1R and AVP mRNA (Fig. 3.10 & 3.12), as well as PVN OX1R and AVP protein 

expression (Fig. 3.11 & 3.13). In addition, chronic OX1R knockdown blocked the 

increase in plasma AVP induced by DOCA-salt treatment (Fig. 3.14B). 
Furthermore, significant decreases in blood pressure were observed in both the 

development and maintenance phases of DOCA-salt hypertension development 

(Fig. 3.18).  

Our results largely affirm our hypothesis that DOCA-pellet implantation 

causes increased orexin release from the LH which causes excitation of PVN 

magnocellular neurons through interaction with OX1R, which causes release of 

AVP into the peripheral circulation, resulting in vasoconstriction and increased 

blood volume, eventually leading to the development of hypertension. However, 

one discrepancy was that OXA axonal projections appeared to be more dense 

and over-active in the DOCA-OX1RshRNA rats, as opposed to the DOCA-salt 

rats, who did not appear to have much difference compared to the control. In 
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addition, although it was not significant, DOCA-salt rats also appeared to have a 

lower CSF OXA concentration (Fig. 3.14A), which we did not expect. However, 

this can be reasonably attributed to action of a feedback loop initiated through 

OX1R knockdown. The lack of OXA binding to OX1R in the PVN would be sensed 

and cause a greater input of axonal OXA to the PVN to try to elicit a response. 

Since the OX1R receptors were increased and abundant in the DOCA-salt rats, 

this same feedback loop may not have been initiated, although further studies 

must be conducted to adequately explain this discrepancy. Another possible 

explanation, more so for the decreased CSF OXA, is that the decrease of CSF 

OXA is indicative of a greater number of bound OXA molecules, meaning a 

greater increase of central orexin system function. Since the DOCA-

HS/OX1RshRNA rats had fewer active binding sites on OX1R, more OXA was left 

unbound, unable to elicit its actions through binding with its receptor. It is important 

to note that OXA immunoreactivity was however increased in both DOCA-salt as 

well as DOCA-OX1RshRNA rats within the LH, meaning that despite OX1R 

knockdown in the PVN, OXA production remained elevated due to the DOCA-salt 

treatment. This potentially strengthens the argument that OXA production is 

increased in SSH, and that the increase in PVN OXA axonal projections in the 

DOCA-OX1RshRNA rats compared to the DOCA-salt can be contributed to 

receptor availability. It also offers evidence that a potential method of hypertension 

treatment to be explored is through modulation of central orexin receptor activity, 

as opposed to the receptor ligands. 

There are a few reasons why we chose to use a DOCA model for salt-

sensitive hypertension. Approximately 10-30% of individuals are resistant to 

hypertensive drug treatment, such as ACE inhibitors and ANGII receptor 

blockade, and are diagnosed with resistant hypertension (Calhoun, Jones et al. 

2008, Lee, Dai et al. 2013, Sim, Bhandari et al. 2013). The DOCA model serves 

the dual purpose of allowing us to observe how orexin functions in another salt 

sensitive model, and more specifically allows us to accurately model 



62 

hyperaldosteronism, which is the primary cause of resistant hypertension 

(Mulatero, Rabbia et al. 2002, Eide, Torjesen et al. 2004, Viera and Neutze 2010). 

Our findings show that there is potential for orexin involvement in DOCA-salt 

hypertension development and maintenance due to increased presence and 

heightened functioning of the central orexin system, specifically through 

modulation of AVP production and release. We also chose to use a modified 

model of DOCA-salt rats to undertake this project. Namely, we omitted 

uninephrectomy from the protocol. We did this following a similar procedure that 

had been previously done (Kandlikar and Fink 2011). Excluding the 

uninephrectomy allows us to more accurately observe the direct effect that 

manipulations to orexin system function within the PVN has on hypertension 

development, without any adverse cardiovascular implications that kidney 

removal incurs (Kandlikar and Fink 2011). We believe that this model allows us to 

more closely mimic the development of human hypertension, which tends to occur 

more gradually, as opposed to the drastic, immediate spike that occurs in 

uninephrectomized rats. Lastly, since orexin function has been observed in 

primary hypertensive models such as the SHR and Dahl-S rat strains, and now 

has possible implications in the DOCA-salt model, this may point to an important 

underlying role for orexin in numerous different types of hypertension, making it 

more practical for human application. 

4.1 Implications 

Even with current hypertensive medications in use, the prevalence of 

hypertension and cardiovascular disease remains high. Research has been 

conducted that has evaluated the implications of orexin system function on blood 

pressure regulation, as well as SSH. The present research project offers the only 

look into the potential role for the orexin system in development and maintenance 

of DOCA-salt hypertension, primarily aldosteronism, the primary cause of 

resistant hypertension. This helps strengthen the notion that orexin is a major 
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regulator of cardiovascular function, and may help lead to future, more efficient 

pharmaceutical interventions targeting orexin function. 

4.2 Limitations 

A few limitations are present in this study. First, the use of tail-cuff 

plethysmography instead of blood pressure radio telemetry transducer 

implantation may have added more variability to the blood pressure recordings. 

Stress induced blood pressure changes may occur due to confinement in the 

plethysmography holder. However, careful consideration was taken when animals 

were introduced and acclimated to the procedure. This included a week of 

acclimation before even beginning the study, as well as daily acclimation to 

maintain proper comfort in the tubes. Furthermore, the efficacy of tail-cuff 

plethysmography has been adequately reviewed (Feng, Whitesall et al. 2008), 

and the blood pressure measured by tail cuff plethysmography has been shown 

to resemble that measured by the radio-telemetry transducer in undisturbed 

animals (Wilde, Aubdool et al. 2017). With all of this in mind, we do recognize the 

variability associated with tail-cuff plethysmography, but feel we have adequately 

reduced stress-induced blood pressure changes through our meticulous 

acclimation protocol.  

We further recognize that, during PVN mRNA testing, punching of the PVN 

is not exact. This means that some of the brain area surrounding the PVN area 

may be subjected to mRNA assessment as well, which may dilute our results. It 

is difficult to punch the PVN alone since it is such a small area, and for this reason, 

some variability in mRNA levels may be present. However, when paired with the 

use of protein immunostaining, the mRNA results become more reliable, since 

parallel increases in gene expression as well as the proteins they encode for are 

observed. 
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Lastly, our project only used male rats, without any female groups. It has 

been observed that testosterone plays a large role in the development of 

hypertension, and that males are more likely to have elevated blood pressure in 

both animals and humans alike. The findings of this research may not encompass 

the effects of DOCA-salt or PVN OX1R knockdown on females. Similar studies 

conducted using female rats will be the goal of future studies, as will the 

differences in orexin system function and subsequent hypertensive tendencies 

between male and female animals.  

Future directions to build from this study may include more chronic 

responses to OX1R knockdown in DOCA-salt rats, since most studies are only 

conducted over the course of three weeks using this model. Also, we would like 

to further study the peripheral effects of PVN OX1R knockdown in DOCA-salt rats, 

namely on kidney and heart function. Lastly, we would like to provide evidence of 

potential implications of orexin on adrenal gland dysfunction, which is essential to 

the pathogenesis of DOCA-salt development. 

4.3 Conclusion 

In conclusion, the present study has shown that there is potential of DOCA-

salt hypertension mediation through central orexin system functioning within the 

PVN. DOCA-salt treatment caused a significant increase in mRNA levels of AVP 

and OX1R within the PVN when compared to controls, and this increase was 

reduced following OX1R PVN knockdown. Protein expression of AVP and OX1R 

showed a similar pattern of increased expression in the PVN of DOCA-salt rats, 

and attenuation in DOCA-OX1RshRNA rat. Plasma AVP was also significantly 

increased following DOCA-salt treatment. In addition, central administration of 

OXA via ICV injection caused a notable increase in plasma AVP. Chronic OX1R 

PVN knockdown resulted in a large decrease in plasma AVP concentration 

compared to DOCA-salt treated rats. Furthermore, DOCA-salt as well as DOCA-

OX1RshRNA had increased OXA production in the LH. Also, DOCA-salt rats 
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showed increased cardiac hypertrophy, and this was partially attenuated by PVN 

OX1R knockdown. Lastly, chronic OX1R knockdown within the PVN significantly 

decreased the elevation in blood pressure that is commonly observed in DOCA-

salt hypertension. The results of this study show evidence of orexin system 

regulation of AVP production and release in the DOCA-rat model, and show that 

knockdown of OX1R function within the PVN significantly reduces hypertension in 

this rat model, offering a new potential mechanism underlying the development of 

salt-sensitive hypertension. 
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A Raw Data 

Table A.1: Raw data for 24-hr fecal output (g) following 3 weeks of treatment 

in each group. Bolded values utilized in control vs. DOCA-salt analysis. 

24-hr Fecal Output (grams)
Control DOCA-salt DOCA+OX1RshRNA 

1.34 2.9 3.64 

2.5 1.7 2.56 

0.95 4.69 2.3 

0.85 2.1 1.72 

- 6 2.84 

- - 3.47 

Table A.2: Raw data for 24-hr food intake (g) following 3 weeks of treatment 

in each group. Bolded values utilized in control vs. DOCA-salt analysis. 
24-hr Food Intake (grams)

Control DOCA-salt DOCA+OX1RshRNA 
22.7 25.3 25.5 

29.5 26.1 24.33 

27.67 19.77 25.9 

25.7 14.36 24.6 

- 22.59 21.06 

- - 24.54 

Table A.3: Raw data for 24-hr water intake (mL) following 3 weeks of 

treatment in each group. Bolded values utilized in control vs. DOCA-salt 

analysis. 
24-hr Water Intake (mL)

Control DOCA-salt DOCA+OX1RshRNA 
17.06 232.69 93.9 

29.4 163.31 177.1 

19.8 134.08 98.8 
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24.6 56 55.1 

- 120.54 94.58 

- - 213.15 

Table A.4: Raw data for 24-hr urine output (mL) following 3 weeks of treatment 

in each group. Bolded values utilized in control vs. DOCA-salt analysis. 

24-hr Urine Output (mL)
Control DOCA-salt DOCA+OX1RshRNA 

7.15 36.35 75.82 

7.85 90.45 91.65 

7.05 136.69 72.85 

5.15 121.77 32.25 

- 119.73 89.44 

- - 115.45 

Table A.5: Raw data for body weight increase (g) over the course of 3 weeks 

of treatment. Bolded values utilized in control vs. DOCA-salt analysis. 
3-Week Change in Weight (g)

Control DOCA-salt DOCA-OX1RshRNA 
116 59 57 

141 74 36.5 

148 74 27 

140 52 30 

111 98 35 

118 110 - 

62 105 - 

47 36 - 

50 27 - 

29 39 - 

- 58 - 

- 63 -
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- 22 - 

- 33 - 

- 24 - 

- 10 - 

- 18 - 

Table A.6: Raw data for mRNA levels of AVP and OX1R normalized to 

GAPDH expression in the PVN. 

PVN AVP mRNA/GAPDH 
Control DOCA-Salt DOCA-OX1RshRNA 
0.29861 4.075012 0.116243 

0.274243 1.604951 0.182224 

2.985346 3.499776 0.559579 

0.441796 4.777558 0.678754 

0.984581 0.469435 1.682963 

0.753647 0.392013 - 

0.735716 5.654253 - 

1.526056 6.808918 - 

- 0.999359 - 

PVN OX1R mRNA/GAPDH 
Control DOCA-Salt 

0.963092 1.318004 

0.939703 1.140277 

1.096772 1.407982 

- 1.056115 
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PVN OX1R mRNA/GAPDH 
Control DOCA-Salt DOCA-OX1RshRNA 

1.265941 1.927575 0.946485 

1.021909 1.18423 0.960295 

0.703364 1.087205 0.574349 

1.32161 1.474146 0.93185 

0.948758 1.04782 0.855416 

0.961832 1.088295 - 

0.776586 1.172714 - 

- 1.593106 - 

- 1.875779 - 

- 1.025059 - 

Table A.7: Raw Data for plasma AVP concentration (pg/ml) using ELISA. 
Plasma ELISA AVP Concentration (pg/ml) 

Control DOCA-salt 
14.74292 4.202917 

2.488958 7.873542 

8.144792 32.37125 

10.78833 30.225 

- 46.2918 

- 50.14979 

- 54.72375 

- 77.54875 

Table A.8: Raw Data for plasma AVP concentration (pg/ml) following OXA 

ICV using ELISA. 
Plasma ELISA AVP Concentration (pg/ml) 
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Saline (0.9%) ICV OXA (2nmol) ICV 

45.68792 106.2921 

62.52958 44.58083 

32.36083 97.18917 

Table A.9: Raw data for CSF OXA concentration (pg/ml) using ELISA. 

CSF ELISA OXA Concentration (pg/ml) 
Control DOCA-salt DOCA HS/ 

OX1RshRNA 
19.023 37.929 142.571 

111.537 71.762 154.929 

113.859 31.428 16.163 

86.943 - - 

136.727 - - 

Table A.10: Raw data for Plasma AVP concentration (pg/ml) using 

ELISA following chronic OX1R knockdown. 

Plasma ELISA AVP Concentration (pg/ml) 
Control DOCA-salt DOCA HS/ 

OX1RshRNA 
104.6883 254.7879 137.4867 

255.6463 253.6813 226.8013 

184.8092 193.9575 137.1929 

- 278.8671 - 

- 313.2242 - 

- 254.7879 -
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Table A.11: Raw data for heart weight to body weight ratio presented as 

a percentage of body weight following 3 weeks of treatment in each group. 

HW:BW (%) 
Control DOCA-salt DOCA-OX1RshRNA 
0.334 0.518 0.390331 

0.349 0.498 0.406241 

0.325 0.406 0.321127 

0.337 0.438 0.320442 

0.266055 0.394 0.321429 

0.317073 0.460252 - 

0.283333 0.402793 - 

0.272959 0.362155 - 

- 0.359694 - 

- 0.35533 - 

- 0.34359 - 

- 0.344262 - 

- 0.346405 - 

Table A.12: Raw data for MAP (mmHg) for 3 weeks of treatment in each group. 
MAP (mmHg) 

Week Measurement 
Point 

Control DOCA-salt DOCA-
OX1RshRNA 

Week 0 Baseline 120.5 111.1818 116.6 

105.4286 116.4545 101.7 

125.5 120.8571 117.8276 

112.8182 113.7778 111.8889 

125.3571 - - 

Week 1 T1 121.375 125.3636 112.6 

119.6154 132.875 105.6154 
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115.6667 127.3636 118 

119.375 126.625 113 

100.5333 - - 

T2 134.375 127.5 101.6667 

107.333 158.75 94.58824 

108.8571 138.111 117.25 

127.375 116.1 122.25 

106.9091 - - 

Week 2 T3 116.5556 136.1429 119.7778 

115.6111 129.5 112.75 

114.75 141.75 128.4286 

118.5 127.5 122.75 

118.9231 - - 

T4 107.875 127.2 114.125 

91.6 156.6154 120.1538 

127.75 153 138.1 

127.6364 134 112.3636 

115.1667 - - 

Week 3 T5 100.25 141.5 96.625 

90.14286 164.5 116.6154 

112.2308 133.625 136.6667 

125.6 130.0909 112.8889 

111.333 - - 

Table A.13: Raw data for HR (BPM) for three weeks during treatment in 

each group. 
Heart Rate (BPM) 

Week Measurement 
Point 

Control DOCA-salt DOCA-
OX1RshRNA 
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Week 0 Baseline 204 333 264 

327.5714 180.5455 346.5 

309.1875 418.5714 323.8966 

314.7273 431.8889 176.222 

372.6429 - - 

Week 1 T1 292.375 280.3636 221.5 

414.9231 379.375 329.5769 

193 399.4545 295.7143 

447.75 360.375 195.75 

418.6667 - - 

T2 313.75 484.5 231.25 

395.9524 402.625 290.7059 

475.4286 308.444 339.4167 

431.625 237.2 353.4167 

353 - - 

Week 2 T3 402 385.2857 325.5556 

370.5 355.0833 188.3333 

193 379.25 397.0714 

347.375 391.375 323 

333.3846 - - 

T4 248.875 378.1 352.125 

277.2 327.8462 255.8462 

352.58333 238.4 321.6 

400.1818 323.4615 318.5455 

121.8333 - - 

Week 3 T5 439.75 310.9286 227.75 

217.4286 347.5 323.3077 

279.6154 392.875 367.8889 

351.4 350.4545 380.3333 

259 - - 
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B Statistical Analysis 

Table B.1: Mean 24-hr fecal output in control and DOCA-salt groups. 

Fecal Output (g) 

Control DOCA-salt 

N 4 3 

Mean 1.41 4.263 

SD 0.7568 1.985 

SEM 0.3784 1.146 

Lower 95% CI 0.2058 -0.6669

Upper 95% CI 2.614 9.194 

Table B.2: Mean 24-hr fecal output in control, DOCA-salt, and 

DOCA-OX1RshRNA groups. 

Fecal Output (g) 
Control DOCA-salt OX1RshRNA 

N 4 5 6 

Mean 1.41 3.478 2.755 

SD 0.7568 1.818 0.7236 

SEM 0.3784 0.8131 0.2954 

Lower 95% CI 0.2058 1.22 1.996 

Upper 95% CI 2.614 5.736 3.514 
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Table B.3: Mean 24-hr urine output in control and DOCA-salt treatment groups. 

Urine Output (mL) 
Control DOCA-salt 

N 4 3 

Mean 6.8 126.1 

SD 1.156 9.259 

SEM 0.5781 5.346 

Lower 95% CI 4.96 103.1 

Upper 95% CI 8.64 149.1 

Table B.4: Mean 24-hr urine output in control, DOCA-salt, and 

DOCA-OX1RshRNA groups. 

Urine Output (mL) 
Control DOCA-salt OX1RshRNA 

N 4 5 6 

Mean 6.8 101 79.58 

SD 1.156 39.83 27.67 

SEM 0.5781 17.81 11.3 

Lower 95% CI 4.96 51.54 50.54 

Upper 95% CI 8.64 150.5 108.6 

Table B.5: Mean 24-hr water intake in control and DOCA-salt treatment groups 

Water Intake (mL) 
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Control DOCA-salt 

N 4 3 

Mean 22.72 176.7 

SD 5.438 50.65 

SEM 2.719 29.24 

Lower 95% CI 14.06 50.87 

Upper 95% CI 31.37 302.5 

Table B.6: Mean 24-hr water intake in control, DOCA-salt, and 

DOCA-OX1RshRNA groups. 

Water Intake (mL) 
Control DOCA-salt OX1RshRNA 

N 4 5 6 

Mean 22.72 141.3 122.1 

SD 5.438 64.41 59.83 

SEM 2.719 28.81 24.43 

Lower 95% CI 14.06 61.35 59.31 

Upper 95% CI 31.37 221.3 184.9 

Table B.7: Mean 24-hr food intake in control and DOCA-salt treatment groups. 

Food Intake (g) 
Control DOCA-salt 

N 4 3 
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Mean 26.39 18.91 

SD 2.91 4.182 

SEM 1.455 2.415 

Lower 95% CI 21.76 8.517 

Upper 95% CI 31.02 29.3 

Table B.8: Mean 24-hr food intake in control, DOCA-salt, and 

DOCA-OX1RshRNA groups. 

Food Intake (g) 
Control DOCA-salt OX1RshRNA 

N 4 5 6 

Mean 26.39 21.62 24.32 

SD 2.91 4.761 1.711 

SEM 1.455 2.129 0.6986 

Lower 95% CI 21.76 15.71 22.53 

Upper 95% CI 31.02 27.54 26.12 

Table B.9: Mean 3-week body weight increases in control and DOCA-

salt treatment groups. 

Body Weight Change (g) 

Control DOCA-salt 

N 6 7 

Mean 129 81.71 

SD 15.75 22.82 
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SEM 6.429 8.626 

Lower 95% CI 112.5 60.61 

Upper 95% CI 145.5 102.8 

Table B.10: Mean 3-week body weight increases in control, DOCA-salt, 

and DOCA-OX1RshRNA groups. 

Body Weight Change (g) 
Control DOCA-salt OX1RshRNA 

N 10 17 5 

Mean 86 53.06 37.1 

SD 54.2 31.08 11.76 

SEM 16.34 7.539 5.259 

Lower 95% CI 49.59 37.08 22.5 

Upper 95% CI 122.4 69.04 51.7 

Table B.11: Mean PVN AVP and OX1R mRNA expression normalized to 
GAPDH. 

PVN AVP mRNA/GAPDH 
Control DOCA-salt OX1RshRNA 

N 8 9 5 

Mean 1 3.142 0.644 

SD 0.9007 2.374 0.6284 

SEM 0.3185 0.7914 0.281 



Lower 95% CI 0.247 1.317 -0.1363

Upper 95% CI 1.753 4.967 1.424 

PVN OX1R mRNA/GAPDH 
Control DOCA-salt 

N 3 4 

Mean 0.9999 1.231 

SD 0.08474 0.1609 

SEM 0.04893 0.08047 

Lower 95% CI 0.7893 0.9745 

Upper 95% CI 1.21 1.487 

PVN OX1R mRNA/GAPDH 
Control DOCA-salt OX1RshRNA 

N 7 10 5 

Mean 1 1.348 0.8537 

SD 0.2297 0.3461 0.1613 

SEM 0.08683 0.1094 0.07215 

Lower 95% CI 0.7875 1.1 0.6534 

Upper 95% CI 1.212 1.595 1.054 

Table B.12: Mean plasma AVP Concentration (pg/ml) in control and DOCA-

salt groups. 

89 
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Plasma ELISA AVP Concentration (pg/ml) 
Control DOCA-salt 

N 4 8 

Mean 9.041 37.94 

SD 5.141 24.5 

SEM 2.571 8.661 

Lower 95% CI 0.8603 17.46 

Upper 95% CI 17.22 58.42 

Table B.13: Mean plasma AVP Concentration (pg/ml) following saline or 

OXA ICV. 

Plasma ELISA AVP Concentration (pg/ml) 
Saline (0.9%) ICV OXA (2nmol) ICV 

N 3 3 

Mean 46.86 82.69 

SD 15.12 33.31 

SEM 8.729 19.23 

Lower 95% CI 9.303 -0.0679

Upper 95% CI 84.42 165.4 

Table B.14: Mean CSF OXA concentration (pg/ml) in all groups. 

CSF OXA Concentration (pg/ml) 
Control DOCA-salt OX1RshRNA 

N 5 3 3 

Mean 93.62 47.04 104.6 

SD 45.27 21.66 76.8 
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SEM 20.25 12.5 44.34 

Lower 95% CI 37.41 -6.755 -86.22

Upper 95% CI 149.8 100.8 295.3 

Table B.15: Mean Plasma AVP concentration (pg/ml) in all treatment groups. 

Plasma AVP Concentration (pg/ml) 
Control DOCA-salt OX1RshRNA 

N 3 5 3 

Mean 181.7 258.9 167.2 

SD 75.53 43.62 51.65 

SEM 43.61 19.51 29.82 

Lower 95% CI -5.903 204.7 38.85 

Upper 95% CI 369.3 313.1 295.5 

Table B.16: Mean heart weight to body weight ratio presented as percent 

body weight in control, DOCA-salt, and DOCA-OX1RshRNA groups. 

HW:BW (%) 
Control DOCA-salt OX1RshRNA 

N 4 5 6 

Mean 0.3106 0.4022 0.3519 

SD 0.03188 0.05974 0.04271 

SEM 0.01127 0.01657 0.0191 

Lower 95% CI 0.2839 0.3661 0.2989 
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Upper 95% CI 0.3372 0.4383 0.4049 

Table B.17: Mean MAP over the course of 3 weeks in control, DOCA-salt, 

and OX1RshRNA rats. 

MAP (mmHg) 

Base T1 T2 T3 T4 T5 

C
on

tr
ol

 

N 5 5 5 5 5 5 

Mean 117.92

1 

115.31

3 

116.97 116.868 114.006 107.911 

SD 8.682 8.519 12.953 1.806 15.130 13.395 

SEM 3.883 3.810 5.793 0.808 6.766 5.990 

D
O

C
A

-s
al

t 

N 4 4 4 4 4 4 

Mean 115.56

7 

128.05

7 

135.115 133.723 142.704 142.429 

SD 4.131 3.317 18.140 6.503 14.326 15.468 

SEM 2.066 1.658 9.070 3.251 7.163 7.734 

D
O

C
A

-O
X1

R
sh

R
N

A
 N 4 4 4 4 4 4 

Mean 112.00

4 

112.30

4 

108.939 120.927 121.186 115.699 

SD 7.331 5.091 12.975 6.526 11.759 16.454 

SEM 3.665 2.545 6.488 3.263 5.880 8.227 
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Table B.18: Mean heart rate over the course of 3 weeks in control, DOCA-

salt, DOCA-OX1RshRNA rat groups. 

HR (BPM) 

Base T1 T2 T3 T4 T5 

C
on

tr
ol

 

N 5 5 5 5 5 5 

Mean 305.626 353.34

3 

393.951 329.252 280.135 309.439 

SD 62.041 107.70

2 

63.583 80.473 106.894 87.523 

SEM 27.745 48.166 28.435 35.989 47.804 39.141 

D
O

C
A

-s
al

t 

N 4 4 4 4 4 4 

Mean 341.001 354.89

2 

358.192 377.749 316.952 350.440 

SD 115.597 52.185 108.077 15.900 57.938 33.519 

SEM 57.798 26.092 54.039 7.950 28.969 16.759 

D
O

C
A

-O
X1

R
sh

R
N

A
 N 4 4 4 4 4 4 

Mean 277.655 260.63

5 

303.697 308.490 312.029 324.820 

SD 76.055 62.517 55.273 87.151 40.407 69.189 

SEM 38.027 31.259 27.636 43.576 20.204 34.594 
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Table B.19: Unpaired two-tail t-test analysis of 24-hr fecal output between 

control and DOCA-salt treatment groups. 

Unpaired Two-Tail T-test – Fecal Output 
P value 0.043 

P value summary * 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=2.697 df=5 

Table B.20: One-way ANOVA analysis of 24-hr fecal output between all 

treatment groups. 

Fecal Output 

ANOVA Summary 

F 3.295 

P-value 0.0724 

R-square 0.3545 

ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

9.642 2 4.821 

Residual (Within 
Columns) 

17.56 12 1.463 
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Total 27.2 14 

Table B.21: Unpaired two-tail analysis of 24-hr food intake between control 

and DOCA-salt treatment groups. 

Unpaired Two-Tail T-test – Food Intake 
P value 0.0371 

P value summary * 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=2.820 df=5 

Table B.22: One-way ANOVA analysis of 24-hr food intake between all groups. 

Food Intake 

ANOVA Summary 

F 2.374 

P-value 0.1353 

R-square 0.2835 

ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

51.73 2 25.87 
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Residual (Within 
Columns) 

130.7 12 10.89 

Total 182.5 14 

Table B.23: Unpaired two-tailed t-test analysis of 24-hr water intake 

between control and DOCA 

Unpaired Two-Tail T-test – Water Intake 
P value 0.0015 

P value summary ** 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=6.240 df=5 

Table B.24: One-way ANOVA analysis of 24-hr water intake between groups, 

as well as Tukey post-hoc analysis 

Water Intake 

ANOVA Summary 

F 6.124 

P-value 0.0147 

R-square 0.5051 

ANOVA Table SS DF MS 
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Treatment 
(Between 
Columns) 

35302 2 17651 

Residual (Within 
Columns) 

34584 12 2882 

Total 69886 14 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

-118.6 -214.7 to -

22.53

Yes * 

Control vs. 
OX1RshRNA 

-99.39 -191.8 to -

6.940

Yes * 

DOCA-salt vs. 
OX1RshRNA 

19.22 -67.51 to

105.9

No ns 

Table B.25: Unpaired two-tail t-test analysis of 24-hr urine output between 

control and DOCA-salt groups. 

Unpaired Two-Tail T-test – Urine Output 
P value < 0.0001 

P value summary **** 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
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t, df t=26.36 df=5 

Table B.26: One-way ANOVA analysis of 24-hr urine output between groups, 

as well as Tukey post-hoc analysis. 

Urine Output 

ANOVA Summary 

F 12.51 

P-value 0.0012 

R-square 0.6758 

ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

21223 2 10612 

Residual (Within 
Columns) 

10180 12 848.3 

Total 31403 14 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

-94.2 -146.3 to -

42.07

Yes ** 
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Control vs. 
OX1RshRNA 

-72.78 -122.9 to -

22.62

Yes ** 

DOCA-salt vs. 
OX1RshRNA 

21.42 -25.63 to

68.47

No ns 

Table B.27: Unpaired two-tail t-test analysis of 3-week weight gain 

between control and DOCA-salt groups. 

Unpaired Two-Tail T-test – Change in Body Weight 
P value 0.0013 

P value summary ** 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=4.266 df=11 

Table B.28: One-way ANOVA analysis of 3-week weight gain as well as 

HW:BW between groups, as well as Tukey post-hoc analysis. 

Weight Gain 

ANOVA Summary 

F 6.843 

P-value 0.0037 

R-square 0.3206 

ANOVA Table SS DF MS 
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Treatment 
(Between 
Columns) 

16021 2 8011 

Residual (Within 
Columns) 

33948 29 1171 

Total 49969 31 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

43.14 9.467 to 

76.82 

Yes ** 

Control vs. 
OX1RshRNA 

59.1 12.82 to 

105.4 

Yes * 

DOCA-salt vs. 
OX1RshRNA 

15.96 -27.03 to

58.95

No ns 

HW:BW 

ANOVA Summary 

F 8.547 

P-value 0.0017 

R-square 0.4263 
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ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

0.04254 2 0.02127 

Residual (Within 
Columns) 

0.05724 23 0.002489 

Total 0.09978 25 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

-0.09164 -0.1478 to -

0.03550

Yes ** 

Control vs. 
OX1RshRNA 

-0.04136 -0.1126 to

0.02986

No ns 

DOCA-salt 
vs. 

OX1RshRNA 

0.05028 -0.01547 to

0.1160

No ns 

Table B.29: Unpaired two-tail, and one-tail t-test analysis of PVN AVP and 

OX1R mRNA/GAPDG between groups. 

Unpaired Two-Tail T-test – PVN AVP mRNA/GAPDH 
P value 0.03 
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P value summary * 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=2.397 df=15 

Unpaired One-Tail T-test – PVN OX1R mRNA/GAPDH 
P value 0.0383 

P value summary * 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? One-tailed 
t, df t=2.226 df=5 

Table B.30: One-way ANOVA analysis of PVN AVP mRNA/GAPDG 

between groups, as well as Tukey post-hoc analysis. 

PVN AVP mRNA/GAPDH 

ANOVA Summary 

F 5.085 

P value 0.017 

R-square 0.3486 

ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

28.02 2 14.01 
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Residual (Within 
Columns) 

52.35 19 2.755 

Total 80.37 21 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

-2.142 -4.191 to -

0.09335

Yes * 

Control vs. 
OX1RshRNA 

0.356 -2.048 to 2.760 No ns 

DOCA-salt 
vs. 

OX1RshRNA 

2.498 0.1464 to 4.850 Yes * 

Table B.31: One-way ANOVA analysis of PVN OX1R mRNA/GAPDH 

between groups, as well as Tukey post-hoc analysis. 

PVN OX1R mRNA/GAPDH 

ANOVA Summary 

F 6.168 

P value 0.0086 

R-square 0.3937 
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ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

0.9729 2 0.4865 

Residual (Within 
Columns) 

1.499 19 0.07887 

Total 2.472 21 

Tukey Mean Diff. 95% CI Significant? Summary 

Control vs. 
DOCA-salt 

-0.3476 -0.6992 to

0.004009

No ns 

Control vs. 
OX1RshRNA 

0.1463 -0.2714 to

0.5641

No ns 

DOCA-salt 
vs. 

OX1RshRNA 

0.4939 0.1031 to 

0.8847 

Yes * 

Table B.32: Unpaired T-test of plasma AVP concentration between saline 

and OXA ICV rats. 

Unpaired One-Tail T-test – Saline ICV vs. OXA ICV Plasma AVP 
P value 0.0825 
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P value summary ns 
Significantly different? (P < 0.05) No 

One- or two-tailed P value? One-tailed 
t, df t=1.696 df=4 

P value 0.0825 

Table B.33: Unpaired T-test of plasma AVP concentration between control 

and DOCA-salt rats. 

Unpaired Two-Tailed T-test – Control vs. DOCA-salt Plasma AVP 
P value 0.0457 

P value summary * 
Significantly different? (P < 0.05) Yes 

One- or two-tailed P value? Two-tailed 
t, df t=2.281 df=10 

P value 0.0457 

Table B.34: One-way ANOVA analysis of CSF OXA concentration (pg/ml). 

CSF OXA Concentration 

ANOVA Summary 

F 1.114 

P-value 0.3744 

R-square 0.2178 

ANOVA Table SS DF MS 
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Treatment 
(Between 
Columns) 

5828 2 2914 

Residual (Within 
Columns) 

20932 8 2616 

Total 26760 10 

Table B.35: One-way ANOVA analysis of plasma AVP concentration (pg/

ml) following chronic OX1R knockdown 

Plasma AVP Concentration (pg/ml) 

ANOVA Summary 

F 3.248 

P-value 0.0928 

R-square 0.4481 

ANOVA Table SS DF MS 

Treatment 
(Between 
Columns) 

19776 2 9888 

Residual (Within 
Columns) 

24356 8 3044 
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Total 44131 10 

Table B.36: Unpaired two-tail t-test of plasma AVP concentration between 

DOCA-salt and DOCA-HS/OX1RshRNA rats. 

Unpaired Two-Tailed T-test – DOCA-salt vs. DOCA-HS/OX1RshRNA 
Plasma AVP 

P value 0.0354 
P value summary * 

Significantly different? (P < 0.05) Yes 
One- or two-tailed P value? Two-tailed 

t, df t=2.704 df=6 
P value 0.0354 

Table B.37: Two-way ANOVA analysis of 3 week MAP between groups, as 

well as Tukey post-hoc analysis. 

MAP 

ANOVA 
Summary 

%Total 
Variation 

P Value P Value 
Summary 

Significant? 

Interaction 12.98 0.1111 ns No 

Row Factor 5.927 0.1977 ns No 

Column Factor 34.25 < 0.0001 **** Yes 

ANOVA Table SS DF MS P value 

Interaction 2089 10 208.9 P = 0.1111 



108 

Row Factor 953.9 5 190.8 P = 0.1977 

Column Factor 5512 2 2756 P < 0.0001 

Residual 7540 60 125.7 

Total 16094.9 77 

MAP 

Time 
Point 

Tukey Mean 
Diff 

95% CI Significant? Summary 

Base Control vs. DOCA-

HS 

2.353 -15.72 to

20.42

No ns 

Control vs. 

DOCA+OX1RshRNA 

5.917 -12.16 to

23.99

No ns 

DOCA-HS vs. 

DOCA+OX1RshRNA 

3.564 -15.49 to

22.61

No ns 

T1 Control vs. DOCA-

HS 

-12.74 -30.82 to

5.328

No ns 

Control vs. 

DOCA+OX1RshRNA 

3.009 -15.06 to

21.08

No ns 
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DOCA-HS vs. 

DOCA+OX1RshRNA 

15.75 -3.297 to

34.80

No ns 

T2 Control vs. DOCA-

HS 

-18.15 -36.22 to

-0.07364

Yes * 

Control vs. 

DOCA+OX1RshRNA 

8.031 -10.04 to

26.10

No ns 

DOCA-HS vs. 

DOCA+OX1RshRNA 

26.18 7.127 to 

45.23 

Yes ** 

T3 Control vs. DOCA-

HS 

-16.86 -34.93 to

1.217

No ns 

Control vs. 

DOCA+OX1RshRNA 

-4.059 -22.13 to

14.01

No ns 

DOCA-HS vs. 

DOCA+OX1RshRNA 

12.8 -6.253 to

31.85

No ns 

T4 Control vs. DOCA-

HS 

-28.7 -46.77 to

-10.63

Yes *** 

Control vs. 

DOCA+OX1RshRNA 

-7.18 -25.25 to

10.89

No ns 
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DOCA-HS vs. 

DOCA+OX1RshRNA 

21.52 2.469 to 

40.57 

Yes * 

T5 Control vs. DOCA-

HS 

-34.52 -52.59 to

-16.45

Yes **** 

Control vs. 

DOCA+OX1RshRNA 

-7.788 -25.86 to

10.28

No ns 

DOCA-HS vs. 

DOCA+OX1RshRNA 

26.73 7.681 to 

45.78 

Yes ** 

Table B.38: Two-way ANOVA analysis of 3-week HR between groups. 

Heart Rate 

ANOVA 
Summary 

%Total 
Variation 

P Value P Value 
Summary 

Significant? 

Interaction 7.599 0.8304 ns No 

Row Factor 4.839 0.605 ns No 

Column Factor 7.824 0.0603 ns No 

ANOVA Table SS DF MS P value 
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Interaction 34118 10 3412 P = 0.8304 

Row Factor 21726 5 4345 P = 0.6050 

Column Factor 35129 2 17565 P = 0.0603 

Residual 358005 60 5967 

Total 448978 77 
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	1.1 Overview
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	1.2 Blood Pressure Regulation
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	1.2.2.1 Aldosterone and Arginine Vasopressin in Blood Pressure Regulation
	Aldosterone was first discovered in 1953, and since that time, it has been recognized as a major regulator of fluid and electrolyte balance within the kidney natriuresis/diuresis system. Aldosterone is a mineralocorticoid that is produced by the adren...
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	1.3 Hypertension
	Hypertension is defined as an abnormally high blood pressure. When this abnormality becomes a chronic condition, the individual is exposed to a higher risk of further cardiovascular dysfunction, and serious disease that can result in premature death. ...
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	1.4.2 DOCA-salt Rat Model
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	1.5 Neuro-hormonal Mechanisms in Dahl and DOCA-salt Models
	Both rat models offer insight into two differing types of salt sensitive hypertension, but both have been observed to show patterns of neural as well as central hormonal mechanisms in response to a high salt intake. In the Dahl S model, dysfunctional ...
	Baroreflex dysfunction and excessive SNA have also been observed in the DOCA rat model. However, because DOCA hypertension is generally characterized by a sharp increase in blood pressure in the first few days, followed by a more gradual increase in t...
	Along with increased SNA following a HS intake, central RAAS function has been extensively observed and studied. The Hypothalamus is an important center for RAAS function (McKinley, Allen et al. 2001, Pan 2004), and as previously stated, cardiovascula...
	1.5.1 AVP in Dahl and DOCA Models of Hypertension
	Because of the importance of the RAAS in the development and maintenance of elevated blood pressure in both primary and secondary SSH, as well as the downstream effects of elevated RAAS activity on SNA outflow, it is important to produce new knowledge...


	1.6 Pharmaceutical Interventions
	Because of the importance of RAAS activation and subsequent AVP release, many pharmaceuticals used to treat hypertension are aimed towards decreasing RAAS function. Two of the most commonly used pharmaceutical interventions are ACE Inhibitors and Angi...

	1.7 Orexin System
	Orexin is a small neuropeptide that was discovered in 1998 by two different labs concurrently (de Lecea, Kilduff et al. 1998, Sakurai, Amemiya et al. 1998). De Lecea and his colleagues reported that following tag PCR identification of multiple mRNA se...
	Despite the initial idea that orexin primarily controls appetite regulation, it was discovered that although orexin is only produced in the LH, its projections reach multiple parts of the brain. Axonal projections from LH orexin neurons reached import...
	Figure 1.4: Although orexin production only occurs within neurons located in the Lateral Hypothalamus, vast axonal projections to other brain areas allow orexin to carry out functions in multiple physiological processes.
	1.7.1 Orexin Effect on Blood Pressure
	Many orexin projections from the LH reach important cardiovascular regulatory areas, indicating the potential for orexin action on cardiovascular function. Along with the localized orexin neurons far reaching axonal projections, many of the areas of i...
	Because of the co-localization of both orexin hypothalamic neuron projections and their receptors in major cardiovascular areas of the brain, researchers began to study the potential effect of orexin on cardiovascular regulation. Samson et al. found t...
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	1.7.2 Orexin in Salt Sensitive Hypertension
	Despite the importance of orexin function in the regulation of blood pressure as well as in the pathology of hypertensive animal strains such as the BPH/2J mouse and SHR, little is known about the implications of orexin in SSH. However, there is evide...
	Implications for mediation of SSH through the PVN specifically through AVP production and secretion have been developed. AVP within the PVN following salt loading has been shown to increase blood pressure as well as SNA in SSH (Ribeiro, Panizza Hdo et...
	Despite the implications for orexin system over-activation in the pathogenesis of Dahl Salt Sensitive SSH, there is no data addressing its potential role for it in other SSH models, specifically the DOCA rat. To date, only one paper has been published...


	1.8 Hypothesis
	In both Dahl S and DOCA rats, AVP is a primary influence on the development and maintenance of hypertension (Berecek, Barron et al. 1982, Berecek, Murray et al. 1982, Schenk and McNeill 1992, Huber, Fan et al. 2017) . AVP is primarily produced within ...
	Due to this evidence for orexin function in SSH development, we hypothesize that, following DOCA-HS treatment in SD rats, the DOCA pellet induced renal sodium and water reabsorption, as well as HS intake will cause PVN OX1R signaling to be upregulated...
	Figure 1.5: Representative model of the hypothesized mechanism underlying orexin control of blood pressure in the DOCA-rat model. Circumventricular organs (CVO), lateral hypothalamus (LH), paraventricular nucleus (PVN), orexin A (OXA), orexin-1 recept...


	2 Methods
	2.1 Animals
	All animal breeding was performed and overseen by our lab with the help of the Animal Care Facility (ACF). Adult male rats (200-350g) were placed into three groups: DOCA-Salt, DOCA-Salt + OX1RshRNA, or untreated control. The DOCA-Salt group received i...

	2.2 Hypothalamic Paraventricular Nucleus Microinjections
	Prior to any diet or DOCA treatment, DOCA-Salt + OX1RshRNA rats were subjected to bilateral PVN microinjection of AAV2-OX1R-shRNA, a viral vector that carries a small hairpin RNA that specifically targets the gene encoding for OX1R, effectively knocki...

	2.3 DOCA Pellet Implantation
	DOCA-Salt and DOCA-Salt + OX1RshRNA groups were subjected to subcutaneous implantation of a DOCA pellet (75mg, 21-day release, Innovative Research of America, FL, USA) prior to beginning the high salt drink treatment. Rats were given 5% isoflurane for...

	2.4 Blood Pressure Measurement
	A subset of each group was subjected to blood pressure measurement during their treatment period using tail plethysmography (Kent Scientific, CT, USA). DOCA-Salt, DOCA-Salt +OX1R-shRNA, and control rats were all acclimated to the procedure for a week ...
	Tail-cuff plethysmography can be attributed to stress-related fluctuations in blood pressure, due to confinement in a small cylinder for extended periods of time, which may lead to variability of results. However, all necessary precautions were taken ...
	Figure 2.1: Representation of Tail-Cuff Plethysmography procedural acclimation and subsequent BP measurements. Two weeks of acclimation were performed before BP measurements were measured, mitigating any stress-induced variability caused by the record...

	2.5 Metabolic Measurements
	During the last 3 days of treatment, DOCA-Salt, DOCA-Salt + OX1RshRNA, and control rats were placed in metabolic cages, where food and water intake, as well as urine and fecal output were measured. The first day in the metabolic cages was discarded as...

	2.6 Real Time PCR and Immunostaining
	Following three weeks of treatment, rats were euthanized and subjected to either real time polymerase chain reaction (PCR) analysis to observe mRNA levels or immunostaining to visualize protein levels. For PCR, brains were removed and immediately flas...
	Immunostaining was used to analyze OX1R, OXA, and AVP protein expression within the PVN, as well as OXA within the lateral hypothalamus. 20-μm coronal brain sections containing the PVN or LH using the following procedure. Rats were anesthetized under ...

	2.7 Plasma AVP and CSF Orexin A ELISA Testing
	Rats were placed under heavy anesthesia using 5% isoflurane. They were then decapitated, and blood was collected in tubes coated with 5.4mg EDTA (BD Vacutainer, NJ, USA) to collect plasma for measurement. These tubes were then centrifuged at 4 C using...

	2.8 Intracerebroventricular Injections
	Male adult SD rats were subjected to ICV injections of either saline control or OXA (Sigma Aldrich, MO, USA). Rats were anesthetized under 5% isoflurane, and maintained at 2-3% isoflurane. Rats were set up in a stereotaxic frame as in PVN injections. ...

	2.9 Data Collection and Analysis
	All rats subjected to PFA perfusion and subsequent immunostaining were unable to be used for any physiological analysis other than protein immunofluorescence staining. However, all other animals subjected to brain, blood, and CSF collection were utili...
	Figure 2.2: Representative diagram showing the number of rats from each experiment (Exp. 1-5) during the project and what physiological analysis was performed on each. Note: Only rats during experiment 5 were subjected to blood pressure measurements o...
	All data is expressed as Mean ± SEM unless otherwise noted. Individual blood pressure means were observed, and then combined with other subjects within their given treatment group to find a group mean and SEM. To test significance unpaired one-tailed ...


	3 Results
	The classic model for DOCA-salt hypertension generally utilizes kidney removal (uninephrectomy) to exacerbate the development and severity of hypertension in the animal. However, for our model, we chose to omit the kidney removal, allowing a more grad...
	3.1 DOCA-salt Treatment Increases PVN AVP and OX1R Expression
	The efficacy of our modified DOCA-salt model in producing a similar increase in central AVP production as the classical uninephrectomized DOCA-salt rats was tested following 3-weeks of DOCA-salt treatment. Following treatment, real time PCR was used t...
	Figure 3.1: PVN AVP mRNA expression following 3-weeks of DOCA-salt treatment. DOCA-salt (n=9) treatment significantly increased PVN AVP mRNA expression compared to control rats (n=8). *P<0.05 using an unpaired two-tailed T-test.
	A significant increase in PVN AVP mRNA expression was observed in DOCA-salt rats (n=9) when compared to control rats (n=8) (control: 1±0.319 vs. DOCA-salt: 3.142±0.7914, P<0.05), which was to be expected, as it is generally observed in the classic DO...
	Figure 3.2: Representative immunostaining images of AVP protein expression in control (left) and DOCA-salt (right) rats.
	After observing an increase in central AVP production within the PVN of DOCA-salt rats, we then analyzed whether an increase in OX1R receptor expression occurs in parallel with PVN AVP increases following DOCA-salt treatment. To assess this, PCR and i...
	Figure 3.3: PVN OX1R mRNA expression following 3-weeks of DOCA-salt treatment. DOCA-salt (n=4) treatment significantly increased PVN OX1R mRNA expression compared to control rats (n=3). *P<0.05 using an unpaired one-tail T-test.
	To affirm whether increased OX1R mRNA levels resulted in increased OX1R protein expression, immunostaining was performed. Immunostaining images show a large increase in OX1R expression and concentration in the PVN area (Fig. 3.4). The significant incr...
	Figure 3.4: Representative immunostaining images showing expression of the orexin-1 receptor (OX1R) in the PVN in both control (left) and DOCA-salt (right) rats. Third ventricle (3V).

	3.2 DOCA-salt Treatment Increases Plasma AVP Concentration
	The DOCA-salt model is generally characterized by elevated plasma AVP concentrations. Since an increase in PVN AVP expression was expressed, we used ELISA to test plasma AVP concentrations in control rats as well as DOCA-salt treated rats, to observe ...
	Figure 3.5: Plasma AVP concentrations (pg/ml) in control (n=4) and DOCA-HS (n=8) treatment groups. DOCA-salt treatment resulted in a significant increase in plasma AVP concentration. *P<0.05 vs. control using an unpaired two-tail T-test.

	3.3 DOCA-salt Treatment Effects on Metabolism
	Following 3 weeks of treatment, all rats were placed in metabolic cages for 72 hours to assess urine and fecal output, food and water intake, and body weight. Following 24-48 hours of acclimation to the environment, food intake (g), fecal output (g), ...
	Figure 3.6: 24-hour metabolic data of control (n=4) and DOCA-salt (n=3) treated rats following 3-weeks of treatment. DOCA-salt treatment significantly reduced food intake when compared to control rats, but significantly increased water intake, fecal o...
	Following 3-weeks of treatment, DOCA-salt rats (n=3) showed significant differences in metabolism when compared to controls (n=4). DOCA-salt treatment resulted in a significant decrease in food intake (control: 26.39±1.45 vs. DOCA-salt: 18.91±2.42 g,...
	Figure 3.7: Difference in body weight from beginning and end of treatment. DOCA-salt (n=7) treatment results in a significant attenuation of weight gain compared to control rats (n=6). **P<0.01 using an unpaired two-tailed T-test.

	3.4 Central Orexin-A Administration Increases Plasma AVP Concentration in Normal SD rats
	Following affirmation that plasma AVP levels are indeed increased following DOCA-salt treatment, we then wished to find out whether orexin system activity was a primary regulator of AVP release peripherally. Previous research done in our lab showed a ...
	Figure 3.8: Plasma AVP concentrations (pg/ml) following ICV injection of saline (0.9%) (n=3) or OXA (2nmol) (n=3). OXA ICV elicited a noticeable increase in AVP plasma levels, although this did not reach significance (P=0.08) when using an unpaired on...
	Although significance was not reached (P=0.08), an obvious trend towards significance was observed as OXA ICV (n=3) elicited an increase in plasma AVP levels when compared to saline controls (n=3) (saline: 46.86±8.73 vs. OXA: 82.69±19.23 pg/ml) (Fig. ...
	All data collected has shown that DOCA-salt treatment increases not only central and peripheral AVP expression, but also increases PVN OX1R expression. Furthermore, acute injection of the OX1R agonist, OXA, results in a near significant increase in pe...

	3.5 Lateral Hypothalamic OXA Neuron Expression Remains Elevated Following Chronic PVN OX1R Knockdown
	To investigate the relative concentration of protein expression of orexin related proteins, immunostaining was performed, which allows visualization of target protein expression within the relevant brain regions.
	We first chose to investigate whether orexin producing neuron expression within the LH, as well as axonal projection density in the PVN is increased following DOCA-salt treatment. To test this, following three weeks of DOCA-salt treatment, animals wer...
	Figure 3.9: Representative immunostaining images showing expression of orexin-A (OXA) within (A) the lateral hypothalamus (LH) as well as (B) the Paraventricular Nucleus of the Hypothalamus. The first column shows untreated control rats. The second co...
	A similar increase in OXA cell body expression within the LH can be observed in rats that received AAV2-OX1R-shRNA (OX1R antagonist) prior to DOCA-salt treatment (Fig. 3.9A) when compared to untreated controls. However, in contrast to the DOCA-salt r...

	3.6 Chronic PVN OX1R Knockdown Decreases OX1R Expression
	The above results show that DOCA-HS treatment increases OXA neuron cell body immunoreactivity, indicating an intrinsic increase in LH orexin production and activity. However, we also wanted to see how the treatment would affect PVN OX1R, the receptor ...
	PCR analysis of the PVN area showed that OX1R mRNA expression is increased by approximately 35% following DOCA-salt treatment (1.348±0.109; n=10) when compared to control rats (1±0.087; n=7) (Fig. 3.10). However, PVN OX1R knockdown significantly decre...
	Figure 3.10: PVN OX1R mRNA levels of expression normalized to GAPDH expression. DOCA-salt treated rats (n=10) show an increase of approximately 34% PVN OX1R expression compared to control rats (n=7), and this increase is significantly reduced followin...
	Immunostaining analysis showed an increase in OX1R expression within the PVN of DOCA-salt rats when compared to control rats (Fig. 3.11), in agreement with our previous results (Fig. 3.4). We then wished to test whether bilateral injection of AAV2-OX...
	Figure 3.11: Representative immunostaining images showing orexin-1 receptor (OX1R) expression within the PVN of control (far left), DOCA-salt (middle left), and DOCA-salt rats injected with AAV2-OX1R-shRNA into the PVN (middle right). The farthest ima...

	3.7 Chronic PVN OX1R Knockdown Reduces Central AVP Production
	The above combination of results showing an increase in PVN OX1R mRNA and protein levels, as well as an increase in LH OXA protein expression indicate over activation of the orexin system as a key component in the development of DOCA-salt hypertension...
	Figure 3.12: PVN AVP mRNA levels of expression normalized to GAPDH expression. DOCA-salt treated rats (n=10) have a significant increase in PVN AVP expression when compared to control (n=7) (*P<0.05) as well as when compared to DOCA-HS/OX1RshRNA (n=5)...
	Knockdown of OX1R results in a decrease in mRNA levels of OX1R as well as AVP within the PVN, along with subsequent OX1R protein immunofluorescence, indicating that the orexin system over activation can be corrected via bilateral microinjection of an ...
	Figure 3.13: Representative immunostaining images showing arginine vasopressin (AVP) expression within the PVN of control (far left), DOCA-salt (middle left), and DOCA-salt rats injected with AAV2-OX1R-shRNA into the PVN (middle right). The farthest i...
	AVP expression within the PVN was greatly increased in DOCA-salt rats compared to control rats, as can be observed by increased density and brightness of AVP expression following immunostaining (Fig. 3.13). However, prior microinjection of an OX1R an...

	3.8 Chronic PVN OX1R Knockdown Decreases Plasma AVP Concentration
	After observing increases in mRNA and protein expression of both OX1R as well as AVP within the PVN of DOCA-salt rats, and the attenuation of this following chronic OX1R knockdown, we began to investigate peripheral circulation of AVP. We wished to ob...
	To test the chronic effects of orexin system modulation of peripheral AVP secretion, following three weeks of DOCA-salt treatment, plasma as well as CSF were collected as previously outlined, and subjected to AVP and OXA ELISA testing.
	Figure 3.14: (A) Cerebrospinal fluid OXA concentration in control (n=5), DOCA-HS (n=3), and DOCA HS-OX1RshRNA rats (n=3). DOCA-salt treatment reduced circulating CSF OXA, and this is mitigated by PVN OX1R knockdown, although this relationship did not ...
	Interestingly, we observed an apparent decrease in CSF OXA concentration in DOCA-salt treated rats (47.04±12.5 pg/ml; n=3) when compared to both control (93.62±20.25 pg/ml; n=5) and DOCA-salt/OX1RshRNA (104.6±44.34 pg/ml; n=3) rats (Fig. 3.14A). Alth...

	3.9 Chronic PVN OX1R Knockdown Effects on Metabolism
	Figure 3.15: 24-hour metabolic analysis of food and water intake as well as urine and fecal output in all rats at the end of their respective treatments. DOCA-salt treatment results in a significant increase in both water intake and urine output when ...
	Metabolic measurements were taken following 3-weeks of DOCA-salt treatment. Over the course of 24-hours at the end of the treatment, DOCA-salt rats (n=5) experienced a significant increase in water intake when compared to control rats (n=4) (DOCA-sal...
	During the three-week treatment, body weight was taken once per week in control (n=10), DOCA-salt (n=17), as well as DOCA+OX1RshRNA (n=5) groups. We then assessed the difference in body weight from the beginning of treatment and the day of euthanizat...
	Figure 3.16: Graph of the difference in weight between the beginning and end of treatment in all groups. A significant dampening of weight gain is observed in both DOCA-salt (n=17) as well as DOCA+OX1RshRNA (n=5) rats compared to untreated controls (n...
	DOCA-Salt treatment caused a significantly lower weight gain over the course of three weeks when compared to the control rats (control: 86±16.34 vs. DOCA-salt: 53.06±7.54 g, P<0.01) (Fig. 3.16). DOCA-OX1RshRNA rats also had a significantly lower weig...

	3.10  Cardiac Hypertrophy is Partially Attenuated by PVN OX1R Knockdown
	Cardiac hypertrophy is often associated with hypertension development, and may cause further cardiovascular dysfunction. To test cardiac hypertrophy, rat hearts were removed and weighed following animal euthanization. Cardiac hypertrophy was quantifie...
	Figure 3.17: Quantification of cardiac hypertrophy through measurement of heart weight to body weight ratio (HW:BW). DOCA-salt (n=13) showed a significantly increased heart size when compared to control rats (n=8). DOCA-OX1RshRNA (n=5) showed a slight...
	DOCA-salt rats (n=13) had a significantly higher HW:BW when compared to control rats (n=8) (control: 0.311±0.011 vs. DOCA-salt: 0.402±0.017%, P<0.01). DOCA-OX1RshRNA rats (DOCA-OX1RshRNA: 0.352±0.019%) showed no significant differences when compared ...

	3.11  PVN OX1R Knockdown Attenuates Elevation of Blood Pressure in DOCA-salt Rats
	Because over activation of the orexin system in the PVN is observed in the DOCA-salt model, and largely attenuated following PVN OX1R knockdown, as well as AVP, we decided to analyze whether OX1R PVN knockdown alleviated DOCA-salt hypertension develop...
	Figure 3.18: Mean arterial pressure (MAP) measurements over the course of 18 days as measured by tail-cuff plethysmography comparing control (n=5), DOCA-salt (n=4), and DOCA+OX1RshRNA (n=4) rats. Results are reported as group averages during each meas...
	Approximately one week following DOCA implantation, the DOCA-salt group MAP raised to a point significantly greater than the control group (P<0.05) (Fig. 3.18). This significant increase was maintained throughout treatment for the most part. Interest...
	Figure 3.19: Heart rate recordings taken in the same rats that received BP measurements over the course of 18 days. The dotted line indicates beginning of DOCA-pellet and HS administration. There were no significant differences in heart rate between g...
	Despite the change in blood pressure between groups, there were no significant differences in heart rate (HR) between groups at any point during the treatment (Fig. 3.19). At the end of the 18-day measurements, measured heart rates were recorded as f...


	4 Discussion
	Approximately one-third of adults in the United States have hypertension, which puts them at a much higher risk for further cardiovascular events (Centers for Disease and Prevention 2011), effectively increasing the likelihood of premature death. Of t...
	The PVN is a major area of cardiovascular integration, making it critical to proper blood pressure regulation (Pan 2004, Wei, Yu et al. 2009, Ribeiro, Panizza Hdo et al. 2015). One of the primary mechanisms underlying PVN regulation of blood pressure...
	We then found that acute central administration of OXA resulted in a drastic increase in plasma AVP (Fig. 3.8), showing central OXA action elicits a substantial effect on AVP release from the neurohypophysis. We chose to determine the effects that chr...
	Our results largely affirm our hypothesis that DOCA-pellet implantation causes increased orexin release from the LH which causes excitation of PVN magnocellular neurons through interaction with OX1R, which causes release of AVP into the peripheral cir...
	There are a few reasons why we chose to use a DOCA model for salt-sensitive hypertension. Approximately 10-30% of individuals are resistant to hypertensive drug treatment, such as ACE inhibitors and ANGII receptor blockade, and are diagnosed with resi...
	4.1 Implications
	Even with current hypertensive medications in use, the prevalence of hypertension and cardiovascular disease remains high. Research has been conducted that has evaluated the implications of orexin system function on blood pressure regulation, as well ...

	4.2 Limitations
	A few limitations are present in this study. First, the use of tail-cuff plethysmography instead of blood pressure radio telemetry transducer implantation may have added more variability to the blood pressure recordings. Stress induced blood pressure ...
	We further recognize that, during PVN mRNA testing, punching of the PVN is not exact. This means that some of the brain area surrounding the PVN area may be subjected to mRNA assessment as well, which may dilute our results. It is difficult to punch t...
	Lastly, our project only used male rats, without any female groups. It has been observed that testosterone plays a large role in the development of hypertension, and that males are more likely to have elevated blood pressure in both animals and humans...
	Future directions to build from this study may include more chronic responses to OX1R knockdown in DOCA-salt rats, since most studies are only conducted over the course of three weeks using this model. Also, we would like to further study the peripher...

	4.3 Conclusion
	In conclusion, the present study has shown that there is potential of DOCA-salt hypertension mediation through central orexin system functioning within the PVN. DOCA-salt treatment caused a significant increase in mRNA levels of AVP and OX1R within th...
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