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Abstract 

 Obesity prevalence has more than doubled since the 1980s. One possible consequence of 
obesity is insulin resistance (IR), a condition underlying type 2 diabetes mellitus (T2DM). So far, 
genome wide association studies (GWAS) have attributed 18% of heritable risk for T2DM to 
genetic variants, but one shortcoming of GWAS is knowing which genes are affected by 
identified variants. This study aimed to confront this weakness and investigate how epigenetic 
regulation affects metabolic phenotype. Three histone marks (H3K27ac, H3K4me1, H3K4me3) 
were targeted by chromatin immunoprecipitation for in vivo samples collected from human 
subcutaneous adipocytes and metabolically-relevant tissue samples curated from the ENCODE 
database. We developed the Extremity analysis method to identify enhancers and promoters 
enriched in histone ChIP-Seq data. Additionally, a full suite of well-established bioinformatics 
methods were employed, including differential enrichment analysis (DEA) and motif enrichment 
analysis (MEA), and existing obesity related GWAS were incorporated. Close correlation was 
found between Extremity and DEA, MEA provided enriched motifs that bind known adipogenic 
TFs, and the GWAS showed variants in T2DM and WHRadjBMI overlapping H3K4me3 have 
less heritability in adipocytes than the other two marks. This study provides a new method and 
potential targets for further understanding epigenetic variation and its effect on metabolic 
phenotype.  
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Introduction 
 

The prevalence of obesity has increased dramatically within the last three decades. 

Roughly 39.8% of adults over 20 in the U.S. are estimated to be obese1, up from about 15% in 

1980 (Figure 1)2. Obesity is linked to the development of ailments including metabolic 

syndromes, coronary artery disease, impotency and infertility, and cancers3-4. Type 2 diabetes 

mellitus (T2DM) is often discussed alongside obesity because 87.5% of new diabetics are 

overweight or obese5. T2DM is the seventh leading cause of death in the United States, and 1.6 

million new patients are diagnosed each year5. Thus, the need to understand the underlying 

mechanisms of obesity and its associated conditions is increasingly pertinent. 

 

Figure 1: Prevalence of obesity and diabetes in the U.S. from 1995 to 20156. Diabetes 
prevalence has increased with the rise in obesity. 
 

Overnutrition and increasingly sedentary lifestyles are largely blamed for the rise in 

global rates of obesity. The first line of treatment for obesity is diet and exercise in order to lose 

weight. It is clear, however, that an overwhelming majority of diets and weight loss programs 
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fail to promote sustainable weight loss. Diet failure along with stigma and pressure from society 

and medical professionals can lead to psychological trauma and eating disorders in patients, 

exacerbating the associated health risks of obesity7-9.  

Identifying other possible causes for the severe increase in obesity rates has been a focus 

of many studies. While much of the blame is attributed to high-calorie Western diets and inactive 

lifestyles, it is well known that obesity and metabolic disease are heritable10-12. With great 

advancements in the field of genetics, researchers have investigated genetic variants in obese and 

diabetic patients. A study of genetic variants between T2DM patients and a non-diabetic control 

group found that 243 regions of the genome were associated with T2DM risk13. Yet, these 

variants account for only 18% of heritable T2DM risk, so this increase in obesity and T2DM 

cannot be explained by genetics alone13. Since the current rising trend in obesity and T2DM has 

been observed within the last four decades, there has been hardly enough time for 

microevolution, or changes in allele frequency within a species, which can take approximately 2-

100 generations to occur14. Genetic studies thus suggest a potential epigenetic regulatory factor 

contributing to the heritability of metabolic disease. 

 

Insulin Function and Insulin Resistance 

Insulin is a peptide hormone that is responsible for the regulation of carbohydrate and 

lipid metabolism, and protein synthesis (Figure 2)15. This study will focus on the role of glucose 

uptake and the control of circulating free fatty acid (FFA) concentrations. Insulin is vital for the 

regulation of blood glucose levels. Blood glucose concentration increases after meals, leading to 

the secretion of insulin into the blood by pancreatic beta-cells. Insulin then binds to the insulin 

receptor and signals adipocytes and skeletal muscle cells to take up glucose and store it as 
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intracellular triglycerides and glycogen16. Additionally, insulin can signal the liver to promote 

gluconeogenesis and glycogenolysis (the production and release of glucose, respectively) to 

increase blood glucose levels16. Excess calories are stored as lipid droplets in adipocytes. When 

needed, adipocytes release these calories as FFAs via lipolysis to be used by tissues for energy17. 

Insulin regulates the concentration of circulating FFAs by slowing down lipolysis in adipocytes.  

 

Figure 2: Insulin is a peptide hormone that consists of two heterodimers. The structure of a 
single insulin molecule is shown in panel A (PDB: 2HIU18). Insulin binding to the insulin 
receptor (grey), a receptor tyrosine kinase, is shown in panel B (PDB: 6HN519). Individual 
dimers shown in blue and green. Structures were visualized using PyMol20.  
 

There can be severe health consequences when insulin fails to produce the appropriate 

response in a target tissue. This is known as insulin resistance (IR). IR is central to the 

development of metabolic disease because it is the cause of the elevated concentrations of 

circulating lipids (hyperlipidemia) and glucose (hyperglycemia) observed in T2DM. 

Understanding of IR, however, remains limited despite its importance in metabolic disease. It has 

been shown that IR can develop without changes in insulin signaling21-22. This lack of 

understanding is further highlighted by the available treatments for IR. Most treatments to 
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improve insulin sensitivity either lower carbohydrate absorption or affect insulin secretion in 

beta-cells. There have also been concerns about toxicity directed toward the two classes of drugs 

available to improve insulin sensitivity, biguanide metformin and thiazolidinediones (TZDs). 

Furthermore, many of these treatments promote weight gain and thereby worsen IR23.  

 

Overview of Adipocyte Biology and the Pathogenesis of Insulin Resistance  

Adipose was classified as connective tissue until the 1940s17. It has become apparent that 

adipose is an incredibly complex organ that plays an important role in many physiological 

functions including energy homeostasis, reproduction, immune response, and blood pressure 

control (Figure 3)17, 24-25.  As with most organs, there are many cell types in adipose. This study 

will focus on the adipocytes, which can be predominantly placed in two categories: white or 

brown. Brown adipocytes are highly specialized, thermogenic cells that are unique to eutherian 

(placental) mammals26. When people think of fat, they are often thinking about white adipocytes. 

The primary function of white adipocytes is to store lipids in a single-chambered droplet, but 

their physiological functions can be grouped into three categories: lipid metabolism, glucose 

metabolism, and endocrine function27-28. Consequently, adipocyte function, and therefore 

adipose function, is closely tied to the development of IR. 
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Figure 3: Adipocytes have a wide range of endocrine function. Insulin regulates glucose 
uptake and controls the release of free fatty acids from the lipid droplet via inhibition of 
lipolysis. Adapted from Morrison et. al, 200028. 
 
 

As adipocytes take in more lipid, their size expands. Simultaneously, adipocytes secrete 

matrix proteins to maintain the broader structure of the fat depot. In turn, this matrix limits the 

adipocytes’ capacity to expand. Overexpansion leads to hyperlipidemia (excess circulating lipid 

concentration) because the adipocytes can no longer take in more FFAs. FFAs are then taken up 

by other tissues, such as skeletal muscle, where their metabolites inhibit insulin signaling29. 

Overexpansion of adipocytes can also lead to hypoxia and inflammation of the tissue, a common 

characteristic of obesity17. This chronic, low-grade inflammation leads to a release of 

inflammatory cytokines that inhibits insulin signaling downstream of the insulin receptor30. 

Obesity-induced inflammation thus leads to IR and T2DM (Figure 4).  
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Figure 4: Obesity pathology.  Adipocytes secrete matrix proteins to maintain the structure of 
the tissue. Expansion of the adipocyte is limited by the matrix. Over-nutrition leads to fibrotic 
changes in the matrix and hypoxia, inflammation, and cell death that contributes to insulin 
resistance. Adapted from Rosen and Spiegelman, 201417.  
 
 

Adipose Distribution and Metabolic Risk 

Adipose tissue can be further classified as subcutaneous, under the skin, or visceral, 

surrounding organs in the abdominal cavity. Adipocyte function is depot, or location, dependent. 

These differences have significant implications for patient health. While there is evidence to 

suggest that subcutaneous fat may be inversely correlated with disease risk, visceral fat has a 

well-studied association with metabolic disease17, 31.  

Multiple methods are available to measure an individual’s body fat. One of the most 

commonly used measures is body mass index (BMI). BMI is calculated by dividing weight (kg) 

by height (m) squared, making BMI a quick and non-invasive way to identify if a person is 

overweight. However, BMI is limited because it can only measure excess weight, not excess fat, 
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and it fails to account for fat distribution. Waist-to-hip ratio (WHR) provides a better measure for 

abdominal fat distribution. Individuals with a higher WHR have an increased predisposition to 

T2DM and coronary heart disease32.  BMI alone is less associated with mortality than WHR, 

adjusted for BMI (WHRadjBMI)33. Loci identified in WHRadjBMI genome wide association 

studies are enriched for adipose-specific genes and regulatory elements, and are involved in 

adipogenesis (differentiation of pre-adipocytes to adipocytes) and fat distribution among 

others34. Several adipogenic signaling pathways, and important proadipogenic transcription 

factors such as PPAR-γ, are very well studied. Thus, the in vitro differentiation of preadipocytes 

to mature adipocytes is the most common mechanism for studying adipogenesis and adipocyte 

biology. As a result, our understanding of in vivo adipogenesis is limited17.  

 

Genome Wide Association Studies (GWAS) 

High-throughput genotyping technologies have become invaluable to understanding 

complex diseases like IR. One such example is Genome Wide Association Studies (GWAS) 

(Figure 5). GWAS genotype thousands of genomes using single-nucleotide polymorphism (SNP) 

microarrays. The individual genomes used in GWAS vary for a particular trait such as insulin 

sensitivity or height, and the allele frequencies at each SNP are calculated to see if any SNPs are 

over-represented in the phenotype of interest.  
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GWAS would hopefully allow researchers to identify the genomic regions, or loci, that 

cause disease. Unfortunately, this is hardly ever the case since GWAS, though valuable, are 

limited in their scope. One limit is their inability to identify in which tissue a given loci is acting 

to affect the phenotype. Additionally, over 90% of the loci identified in GWAS are found in non-

coding regions of the genome, which makes it difficult to know what genes are being affected 

and causing the phenotypic change35. Enhancers, DNA regions involved in transcriptional 

regulation, can be right next or thousands of base pairs away from promoter regions and the 

Figure 5: Genome Wide Association 
Studies analyze SNP frequencies 
between disease and control groups. 
Samples are genotyped using SNP 
microarrays. SNP frequencies and 
associations are calculated. Each point 
in a Manhattan Plot is the -Log(P-
value) of each SNP plotted against the 
genomic position of the SNP. The 
dotted line is the threshold for 
significance at 5x10-8. 
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transcription start site. So a SNP in an enhancer region could be affecting genes anywhere on the 

chromosome. Furthermore, it is difficult to tease apart which SNPs are causal variants of a 

disease and which are simply neutral markers due to linkage disequilibrium (LD). LD occurs 

when the alleles at two or more loci in a population are associated and are more or less likely to 

be inherited together. These limitations to GWAS have led researchers to search for new 

methods to advance the interpretation and understanding of GWAS identified variants. 

 

Identifying Genetic Regulatory Elements using Histone Modification ChIP-Seq 

Chromatin immunoprecipitation-sequencing (ChIP-Seq) is a valuable tool used to study 

DNA-protein interactions (Figure 6). Proteins are cross-linked to the DNA, and the chromatin is 

sheared. Then, antibodies targeting specific transcription factors or chromatin histone 

modifications are incubated with the chromatin and pulled down, allowing isolation of the 

targeted DNA-protein complexes. The DNA fragments are reverse crosslinked and sequenced 

and aligned to the hg38 (human genome build 38) reference genome36-37. This study uses ChIP-

Seq data sets for the chromatin histone modifications H3K27ac, H3K4me1, and H3K4me3. 

H3K4me1 is found on most enhancer sites, H3K27ac marks active enhancers and promoters, and 

H3K4me3 is a marker for active promoters38-39.  

ChIP-Seq data is analyzed by “peak calling” (Figure 6). Each individual segment of DNA 

that is sequenced and aligned is called a read. Some regions of the genome have more reads 

aligned to it than others. A region is called a peak if a greater number of reads align to it than the 

regions surrounding it. In our ChIP-Seq data for the previously described histone marks, a region 

with a peak is likely an enhancer region in the case of H3K4me1, an active promoter region for 

H3K4me3, or an active enhancer or promoter region as in H3K27ac.  



 14 

 

Figure 6: Using ChIP-Seq to identify regulatory 
elements in adipocytes. ChIP-Seq method for 
identifying regulatory elements. Antibodies are 
specific to the enhancer marks H3K27ac and 
H3K4me1, and promoter mark H3K4me3. ChIP-Seq 
data for adipocytes and ENCODE tissues were peak-
called using existing peak calling pipeline. 
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Experimental Aims 

Investigative methods such as GWAS have identified vast datasets of genomic loci that 

are associated with phenotypes like BMI, height, and Alzheimer’s. One of the biggest challenges 

in interpreting GWAS is that a majority of identified loci are in non-coding regions of the DNA, 

suggesting an epigenetic factor to phenotype development. Epigenetics is central to cell 

differentiation and development. Differences in gene expression allow stem cells to go from 

pluripotent to say a liver or muscle cell and affects cell function throughout its life. Epigenetic 

variation is thus implicated in the development of different disease states, including IR. For 

GWAS, the question that many researchers have been working to answer is how do we find 

which genes are being regulated by these loci? This study uses computational techniques to 

pursue an answer to this question. 

This analysis was conducted on ChIP-Seq data collected by the Rosen lab in 2015 and 

2016 with the goal of identifying regulatory elements that differ between insulin sensitive (IS) 

and IR populations. In vivo, abdominal subcutaneous adipocyte samples were collected from 

individual human patients (Figure 7).  In addition to the adipocyte samples from the Rosen lab, 

we curated ChIP-Seq data for ten other metabolically relevant tissue types—aorta, CD14+ 

monocytes, pancreatic islets, liver, lung, pancreas, peripheral blood mononuclear cell (PBMC), 

psoas muscle, and skeletal muscle—from the ENCODE genome database (Supplemental Table 

1)40-41. In order to identify genomic regions that regulate transcription, we target three histone 

marks with ChIP: H3K27ac (active enhancers and promoters), H3K4me1 (enhancers), and 

H3K4me3 (active promoters). 
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There are four major goals of this thesis. In order to begin teasing apart which genes are 

being regulated by a given enhancer or promoter in adipocytes, we first needed to identify a set 

of enhancers and promoters that were differentially enriched in adipocytes. To do this we used 

two methods, an Extremity analysis and differential enrichment analysis (DEA). The Extremity 

analysis was developed for this study to allow us to calculate relative enrichment of enhancers 

and promoters between individual samples, which allows for further analysis into which samples 

are potentially driving the enrichment of a given enhancer or promoter region. The Extremity 

analysis method was initially developed for, and applied to, adipocyte samples from around 30 

different patients, for each mark. From this we hoped to see if epigenetics varied within 

adipocytes. Extremity was then adapted and applied to identify enhancers and promoters that 

Figure 7: Adipocyte samples were isolated from human, abdominal whole-adipose 
samples. Adipocytes make up about half of the cells in adipose tissue and are separated from 
the tissue by low-speed centrifugation. Adipocytes are then lysed, and their nuclei are isolated 
for sequencing. 
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were enriched in adipocytes with respect to the non-adipocyte samples collected from ENCODE. 

Enriched enhancers and promoters were selected from the Extremity analysis for further 

analysis. 

In order to test the validity of the Extremity analysis and further examine how the 

methods differ, we conducted a DEA on adipocyte vs non-adipocyte samples. DEA is well 

established in the field of genomics. Unlike Extremity where all samples are considered, DEA 

compares relative enrichment of enhancers and promoters between exactly two groups using a 

negative binomial distribution. The DEA should provide a similar result of adipocyte enriched 

peaks for the adipocyte vs non-adipocyte comparison, but the differences in how enrichment is 

calculated could affect which peaks are called enriched. For that reason, we compared the 

Extremity analysis and DEA.  

A second aim of this study is to investigate if enhancers that are enriched in adipocyte 

samples are enriched or de-enriched in IR samples. This allowed us to begin to explore potential 

links between enhancer and promoter enrichment in adipocytes to enrichment and de-enrichment 

in IR patients. For this analysis, we ran a DEA on the adipocyte samples for every histone mark, 

and grouped samples by whether or not they were IR or insulin sensitive (IS) (Supplemental 

Table 2 and Supplemental Figure 1). This experiment allowed us to compare the peaks enriched 

in the adipocyte vs non-adipocyte DEA with those enriched or de-enriched in IR samples. We 

only compared between the two DE analyses rather than with Extremity to control for the 

inherent differences between the methods. 

 Once we established a set of adipocyte enriched enhancers and promoters from the 

Extremity analysis, we ran a motif enrichment analysis to see if these enhancers and promoters 

had enrichment of transcription factor (TF) binding sites. By seeing which TFs potentially 



 18 

interact to our enriched enhancers and promoters, we began the first step to identifying the genes 

or signaling pathways these regions regulate.  

Finally, we concluded our analysis by integrating peaks called in each tissue with existing 

GWAS data sets. We then partitioned the heritability the GWAS phenotypes across our 

adipocyte and non-adipocyte tissues. From this, we were able to compare the relative heritability 

of adipocytes against the non-adipocyte tissues for these phenotypes, with the aim of seeing if 

adipocytes have more of the explanatory power for the heritability of the GWAS traits. 

 

Methods 
 

Sample Collection and Selection  

Subcutaneous adipose tissue samples were collected in 2015 and 2016 from healthy male 

and female subjects, ages 18-64, receiving abdominal surgery under IRB 2011P000079 from the 

plastic surgeon operating room schedule at Beth Israel Deaconess Medical Center 

(supplementary table 2). Samples were excluded if the subjects had a diagnosis of diabetes or 

were on medications that are insulin-sensitizing (such as thiazolidinediones or metformin), 

chromatin-modifying (valproic acid), or known to induce insulin resistance (mTOR inhibitors or 

systemic steroid medications). Fasting serum was collected and tested for insulin, glucose, free 

fatty acids, and lipid panel in a CLIA-approved lab. Body mass index (BMI) measurements were 

derived from electronic medical records and confirmed by self-report. Two measures of insulin 

resistance—the homeostasis model assessment-estimated insulin resistance index (HOMA-IR) 

and revised quantitative insulin sensitivity check index (QUICKI)—were calculated42-43. Female 

subjects in the 1st and 4th quartiles for either HOMA-IR or QUICKI and matched for age and 

BMI were selected for computational analysis (supplementary Figure 1). 
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Human Adipocyte Sample Preparation  

Adipocytes were isolated from the whole tissue via enzymatic dissociation in an orbital 

shaker for 15 minutes, then centrifuged into a floating adipocyte supernatant. Isolated adipocytes 

were lysed to isolate nuclei and cross-linked in 1% formaldehyde for 3 minutes at 4ºC. 

Chromatin IP was performed as described in Mikkelsen et. al, 200744. Libraries were prepared 

from 1-5x106 nuclear equivalents and sequenced to a target depth of 20 M (million) reads using 

an Illumina NextSeq 500 sequencer. Output BCL files were converted to FASTQ reads using 

Illumina’s bcl2fastq2 conversion software (VN: 2.17.1.14). Reads were aligned by Bowtie2 

(VN: 2.2.9) to the hg38 human reference genome, and then filtered for duplicates by Picard36-37, 

45-46. 

 

ENCODE Samples 

Alignments and peak calls for histone mark ChIP-Seq data were downloaded from the 

ENCODE portal for whole adipose (H3K27ac only), aorta, CD14+ monocytes, pancreatic islets, 

liver, lung, pancreas, peripheral blood mononuclear cells (PBMC), psoas muscle, and skeletal 

muscle (Supplemental Table 1)40-41. These tissues, with the exception of lung, were selected 

because they are involved in glucose homeostasis. 

 

Adipocyte Peak Calling and Filtering 

MACS2 (VN: 2.1.1) was used to call peaks in adipocyte samples47. BEDTools2 (VN: 

2.27.1) was used to merge and calculate coverage of all tissues for adipocyte peaks48. Peaks were 
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finally filtered so that their length was between 100 and 10,000 base pairs and they had at least a 

4:1 ratio against the whole cell extract (WCE) background. Counts for these peaks were 

normalized and converted to counts per million (CPM) with the edgeR R package49-50.  

 

Differential Enrichment Analysis  

Differential enrichment analyses (DEA) were performed to identify peaks with 

significant differences in read CPM between adipocytes and non-adipocytes and between 

adipocytes with IR and adipocytes with IS. To compare adipocytes and non-adipocytes, the DEA 

compared all adipocyte samples against all samples of the ENCODE tissues. To compare IR and 

IS the DEA was done on the adipocyte samples, and a batch correction was done with the edgeR 

glmQLFTest function49-50. The edgeR exactTest function uses a negative binomial distribution to 

compare peak enrichment and calculate fold-change (FC), average CPM, and a p-value50. After 

adjusting the p-value into a false discovery rate (FDR), significant differentially enriched peaks 

in adipocytes were selected as those with an average log(CPM) > 1, a log(FC) > 1.0, and a FDR 

< 0.05. For IR, significant differentially enriched peaks were selected as those with an average 

log(CPM) > 2, a log(FC) > 0.5, and a FDR < 0.25. 

To calculate the significance of the overlap between the adipocyte vs non-adipocyte DEA 

and the IR vs IS DEA, we used a randomized distribution. The data was randomly sampled with 

as many replicates as there were peaks for each histone mark. The p-value was calculated by 

taking the sum of the number of times the overlap of the randomized samples exceeded the 

experimental overlap divided by the number of randomized sampling replicates.  

p-value = (∑ 𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑	𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥ 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙	𝑜𝑣𝑒𝑟𝑙𝑎𝑝) 	÷ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 
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Extremity Analysis 

Extremity was first calculated between adipocyte samples (independent of IR status) to 

identify peaks enriched within adipocytes. The percent contribution of every adipocyte sample to 

each peak was calculated. The average percentage of each peak—the percent value that each 

sample would contribute to a peak if each sample had an equal contribution—was calculated. For 

example, the average contribution for H3K27ac peaks was   

100%	 ÷ 38	 ≈ 2.6% 

To calculate Extremity, the average percentage was subtracted from the highest percent 

contribution of each peak. 

sample	x, peak	1: 

13% − 2.6% = 10.4% 

To analyze adipocyte enrichment of peaks between different tissue types, the CPM of 

samples for each tissue were averaged and the percent contribution of each tissue to each peak 

was calculated. To calculate adipocyte Extremity, the average percent contribution was 

subtracted from the adipocyte percent contribution.   

 

Motif Enrichment Analysis 

FIMO (Find Individual Motif Occurrences) was used to calculate motif occurrence with a 

maximum number of motif occurrences cutoff of 1,000,000 to ensure that all significant 

occurrences were kept51. AME (Analysis of Motif Enrichment) was used to calculate enrichment 

using a Mann-Whitney U test52. An E-value threshold of 1000 was used to ensure that a q-value 

was provided for each motif, we then performed our own filtering using a q-value < 0.05. Both 

programs are part of the MEME Suite53. 
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GWAS: Linkage Disequilibrium Score Regression and Partitioning Heritability 

This analysis uses the adipocyte samples, and non-adipocyte samples collected from 

ENCODE. ChIP-Seq peak sets used for this analysis were called in their respective tissues (I.E. 

adipocyte samples used adipocyte peak calls, etc.). The GWAS data sets being used are for this 

analysis are T2DM, WHRadjBMI, and Alzheimer’s Disease34, 54-55. Peak coordinates from hg38 

were lifted-over to the hg19 human reference genome such that they were on the same reference 

genome as all SNP data36-37. To find SNPs contained in the aligned sample peaks, peaks are 

overlapped with known SNPs. From each tissue type, two annotations were created. The first 

annotation for each tissue is simply the set of SNPs overlapping any peak called in that tissue. 

The second annotation for each tissue is the set of SNPs overlapping all peak coordinates plus 

500bp on either side. For adipocytes two additional annotations were created. These annotations 

represent SNPs that overlap the significantly enriched peaks from the Extremity analysis, and the 

significantly enriched peak coordinates plus 500bp on either side. By adding 500bp to either side 

of a peak, we attempt to catch SNPs that may be just beyond the bounds of a peak but are still in 

a GWAS locus with high heritability. We used the software program, LD Score Regression 

(LDSC), to calculate linkage disequilibrium (LD) scores per annotation and partition the 

heritability of each GWAS phenotype across these annotations56-57. LD score and partitioned 

heritability were calculated as described in Bulik-Sullivan et. al, 2015 and Finucane et. al, 2015, 

respectively. LD measures the likelihood that any given SNP appears in an annotation given the 

presence of all other SNPs. The LD score step calculates these LDs per annotation. These LD 

scores are then used to partition heritability.  
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Computational Analysis 

Extremity and differential enrichment analyses were done using R (VN: 3.5.3) in RStudio 

(VN: 1.1.463)58-59. Code available in supplemental data section. 

 

Results 
  

In this study we set out four experimental aims to understand how epigenetic regulation 

in adipocytes affects human metabolic phenotype. We did this by using ChIP-Seq data for three 

different enhancer and promoter marks—H3K27ac, H3K4me1, and H3K4me3—to identify and 

analyze adipocyte enriched enhancers and promoters. The first aim was to identify a set of 

enhancers and promoters that were enriched in adipocytes relative to non-adipocyte tissue 

samples. We developed a method to identify differential enrichment, the Extremity analysis, by 

seeing if enhancer and promoter enrichment varied between adipocyte samples taken from 

individual human subjects. The Extremity analysis was then adapted to compare enhancer and 

promoter enrichment between adipocytes and 10 other tissues types. We then compared the 

Extremity analysis with a well-established method comparing adipocytes vs non-adipocytes, 

differential enrichment analysis, to validate the Extremity method and evaluate how the two 

methods differ. For the second aim, we wanted to compare adipocyte enriched enhancers and 

promoters from the adipocyte vs non-adipocyte DEA with IR enriched and de-enriched 

enhancers and promoters in DEA that compared IR vs IS adipocyte samples. This allowed us to 

explore a potential link between enhancer and promoter enrichment and IR/IS status in 

adipocytes.  

Our third aim was to look for enrichment of TF binding sites in the adipocyte enriched 

peak sets from the Extremity analysis. We thus began the first step in identifying which genes or 
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pathways are being affected by the differential enrichment of enhancers and promoters in 

adipocytes. The Final aim of this project was to overlap the adipocyte and non-adipocyte 

samples with existing GWAS data sets in order to investigate the heritability of adipocytes for 

T2DM, WHRadjBMI, and Alzheimer’s Disease, and to compare the relative heritability of the 

tissues for each phenotype. 

 

Promoter and Enhancer Enrichment do not Vary Largely Between Adipocyte Samples  

Human abdominal, subcutaneous adipocyte samples were isolated from individual human 

subjects previously by the lab, and ChIP-Seq experiments were run for the target histone marks 

H3K27ac, H3K4me1, and H3K4me3. To investigate if there is differential active promoter 

(H3K4me3 and H3K27ac) or enhancer (H3K27ac and H3K4me1) enrichment within the 

adipocyte samples, we designed a method to calculate how extreme the enrichment of a given 

peak varied from the average enrichment provided by the combined set of equally contributing 

samples.  

In order to identify differential enrichment within the adipocyte samples, we explored 

three different cutoffs of percent contribution: if 2 samples contribute 90%, 3 samples 

contributed 75%, and if 4 samples contributed 50% or more of the total number of reads under a 

peak. No peaks were identified for the first cutoff of 2 samples contributing 90% or more for any 

of the histone marks, and only 6 peaks in H3K4me3 met the cutoff of 3 samples contributing 

75% or more. The 4 samples contributing 50% or more cutoff caught 14 peaks for H3K27ac, 221 

for H3K4me1, and 124 for H3K4me3 (Table 1).  

 

 



 25 

Percent Contribution Cutoff H3K27ac (%) H3K4me1 (%) H3K4me3 (%) 

2 Samples > 90% contribution 0 0 0 

3 Samples > 75% contribution 0 0 6 (7.8 x 10-3) 

4 Samples > 50% contribution 14 (1.3 x 10-2) 221 (0.13) 124 (0.16) 

Table 1: Number and percent of peaks that met enrichment percent contribution cutoffs 
for H3K27ac, H3K4me1, and H3K4me3 (n = 104,573; 164,608; and 77,107 respectively).  
 

When the Extremity of peaks meeting the least stringent cutoff of 50% were plotted by average 

CPM, it was clear that these had low CPM and Extremity (Figure 8). It was therefore determined 

that enrichment of enhancers and promoters was likely not differential between adipocyte 

samples. In contrast, we observed that higher adipocyte Extremity was related to higher 

adipocyte CPM when compared to non-adipocyte samples (Figure 9). 
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Figure 8: Enhancer (H3K27ac; 
H3K4me1) and promoter (H3K4me3) 
enrichment does not vary between 
individual adipocyte samples. 
Distribution of Extremity against the 
average CPM for each peak. Percent 
contribution and Extremity were 
calculated for adipocyte samples. Red 
points show peaks in which 4 samples 
contributed 50% or more of the reads 
under the peak. 
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.  

Figure 9: Adipocytes have 
higher representation as the 
top peak contributor as 
adipocyte Extremity 
increases. Distribution of 
average peak CPM by 
adipocyte Extremity. Points 
are colored by tissue with the 
highest percent contribution 
to the peak.  
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Differential Enrichment Analysis between Adipocytes and Non-adipocytes 

Differential enrichment analysis (DEA) was done to compare enrichment in the adipocyte 

samples against the non-adipocyte samples downloaded from ENCODE. The DEA method is 

well established in the field of genomics. We conducted our DEA using the R package edgeR to 

build negative binomial models of the two test groups before using the exactTest function to 

calculate differential enrichment.  

Peaks with a log(FC) >  ±1, FDR < 0.05, and log(average CPM) > 1 were selected as 

differentially enriched (Up) or de-enriched (Down) in adipocytes (Figure 10).   

 

 

Figure 10: Volcano plots for differential enrichment analysis (DEA) of adipocytes vs 
nonadipocytes. DEA compared enrichment of peaks called in adipocytes between adipocyte 
samples and non-adipocyte samples: whole adipose (H3K27ac only), aorta, CD14+ monocyte, 
pancreatic islets, liver, lung, pancreas, peripheral blood mononuclear cell (PBMC), psoas 
muscle, and skeletal muscle. Red peaks show significant enrichment or de-enrichment (log(FC) 
>  +1, FDR < 0.05, and log(average CPM) > 1).  
 

Since we wanted to identify promoters and enhancers that are enriched in adipocytes, we focused 

on the DEA Up peaks. In H3K27ac, 3,733 peaks were enriched in adipocytes while 1,526 and 

2,106 peaks were enriched for H3K4me1 and H3K4me3, respectively (Table 2). 
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H3K27ac (%) H3K4me1 (%) H3K4me3 (%) 

Down 10678 (10.2) 9595 (5.83) 8505 (11.0) 

Up 3733 (3.57) 1526 (0.93) 2106 (2.73) 

 

 

 

 

Adipocyte Extremity Shows Correlation with Fold-Change from DEA 

In order to compare between both Extremity and DEA methods for calculating adipocyte-

specific enrichment of enhancers and promoters, adipocyte Extremity was plotted against 

log(FC). A linear regression showed strong correlation between FC and adipocyte Extremity 

with R2 values of 0.82 for H3K27ac, 0.92 for H3K4me1, and 0.97 for H3K4me3 (Figure 11). 

This supports the validity of the Extremity analysis as a method to identify enhancer and prom 

Table 2: Number and percent of total peaks that are enriched (Up) 
and de-enriched (Down) in adipocytes for H3K27ac, H3K4me1, 
and H3K4me3 (n = 104,573, 164,608 and 77,107 respectively) 
(log(FC) >  +1, FDR < 0.05, and log(average CPM) > 1).  
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Figure 11: Comparison of adipocyte 
Extremity score and DEA fold change 
(FC). A linear regression is shown in black 
(R2 = 0.82, 0.92, and 0.97 respectively). 
Red points are significant DEA peaks 
(log(FC) >  +1, FDR < 0.05, and 
log(average CPM) > 1).  
 

H3K27ac 

H3K4me3 

H3K4me1 
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Comparison of Adipocyte vs Non-adipocyte DEA and IR vs IS DEA 

Obesity is known to increase risk of metabolic disorders, including IR. Thus, we 

investigated if there was overlap between enhancers and promoters that were enriched in 

adipocytes and those that are enriched or de-enriched in IR adipocyte samples. For the IR vs IS 

DEA, adipocyte samples were assigned IR or IS based on patient data (supplemental table 2 and 

supplemental figure 1). The DEA was then run on the adipocyte samples with IR and IS status as 

the groups to be compared. Significance for IR vs IS DEA peaks was determined by a log(FC) >  

±0.5, FDR < 0.25, and log(average CPM) > 2 (Table 3). 

 

 
H3K27ac (%) H3K4me1 (%) H3K4me3 (%) 

Down 3543 (3.39) 1721 (1.04) 5086 (6.60) 

Up 2567 (2.45) 5963 (3.62) 15080 (19.6) 

  

 

 

  

To compare overlap between the enriched sets of adipocyte DEA peaks with the enriched 

and de-enriched sets of IR peaks, a Venn diagram was used (Figure 12). Significance of overlap 

was calculated by randomized distribution and calculated a p-value using the function presented 

in the Methods. In each case, the number of replicates which resulted in an overlap greater than 

the experimental overlap was either 0 or equal to the number of replicates. Thus, each p-value 

was either 0 or 1. H3K4me1 showed significant overlap of adipocyte enriched peaks with both 

Table 3: Number and percent of total peaks that are enriched (Up) and de-
enriched (Down) in IR adipocyte samples against IS adipocyte samples for 
H3K27ac, H3K4me1, and H3K4me3. Significant Up and Down peaks have a 
log(FC) >  +0.5, FDR < 0.25, and log(average CPM) > 2 (n = 104,573; 164,608; 
and 77,107 respectively).   
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IR enriched and de-enriched peaks (p-value = 0). H3K27ac only showed significant overlap of 

adipocyte enrichment with IR de-enriched peaks (p-value = 0), and H3K4me3 only showed 

significant overlap of adipocyte enrichment with IR enriched peaks (p-value = 0). 

 
Figure 12: Comparison of significant peaks from IR vs IS DEA and adipocyte vs 
nonadipocyte DEA. Venn diagrams show the overlap of shared enriched peaks between 
adipocyte vs nonadipocyte DEA (log(FC) >  1, FDR < 0.05, and log(average CPM) > 1), and 
enriched (Up) and de-enriched (Down) peaks from the IR vs IS DEA  (log(FC) >  +0.5, FDR < 
0.25, and log(average CPM) > 2). Red asterisks show significant overlaps (p-value = 0 for 
significant overlaps). 
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Motif Enrichment Analysis of Peaks Selected from Adipocyte Extremity 

To begin investigating the functions of the enhancers and promoters identified in the 

adipocyte Extremity analysis, a motif analysis was conducted using AME from the MEME 

Suite52-53. The primary set of adipocyte enriched peaks was determined by taking the top three 

deciles of adipocyte Extremity and filtering to see the numbers of peaks with adipocytes as the 

highest contributor to the peak (Table 4). For H3K27ac and H3K4me1, the top decile had the 

highest percentage of peaks with adipocytes as the top contributor, so those peaks were selected. 

For H3K4me3, the top two deciles had a high percentage of peaks with adipocytes as top 

contributor, so the two deciles were pooled. The top deciles of H3K27ac and H3K4me1, and the 

pooled top two deciles of H3K4me3 were then quartiled. The top quartile—2.5% of peaks for 

H3K27ac and H3K4me1 and 5% of peaks for H3K4me3—was selected as the primary set for the 

motif enrichment analysis. Peaks in the bottom 30% of adipocyte Extremity for each histone 

mark were chosen as the background sets. Significant motif enrichment was determined to be q-

value < 0.05. 
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Motif occurrences were calculated using FIMO from the MEME Suite for each primary 

set of peaks. Motif enrichment was plotted against occurrences in Figure 1351, 53. 15 motifs were 

enriched in H3K27ac, 11 were enriched in H3K4me1, and 42 were enriched in H3K4me3. 

Additionally, significantly enriched motifs have high numbers of occurrences. 

To investigate which transcription factors (TFs) were the most enriched for each mark, 

the TF family and motif logo for the top 5 enriched motifs were found from the HOCOMOCO 

database (Table 5)60. PPAR-γ, a regulator of adipogenesis, and PPAR-α, a regulator of lipid 

metabolism, are highly enriched in H3K27ac61-62. At least 2 Krüppel-like zinc finger motifs are 

enriched in each mark. These are involved in cell differentiation and development in mammals 

and are known to induce one of the two PPAR-γ receptors63-64.   

Table 4: Selection of primary peaks for motif analysis for 
H3K27ac, H3K4me1, and H3K4me3. H3K4me3 peaks from the first 
and second deciles were pooled. Peak sets used circled in red.   
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Figure 13: Motif enrichment 
and occurrence for H3K27ac, 
H3K4me1, and H3K4me3. Red 
points show motifs that are 
significantly enriched. Dotted 
line shows cutoff of significance 
(-log2(q-value) > -log2(0.05)). 
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Table 5: Top five enriched motifs identified using adipocyte Extremity method for each 
histone mark: H3K27ac, H3K4me1, and H3K4me352-53, 60, 65.  
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Heritability for GWAS Traits 

We calculated LD scores and partitioned the heritability using LD score regression for 

tissues for existing GWAS data sets for T2DM, WHRadjBMI, and Alzheimer’s Disease34, 54-55. 

T2DM and WHRadjBMI were selected because they would likely show higher levels of 

heritability in adipocytes. The Alzheimer’s data set was used as negative control. Four 

annotations were created from the peaks per tissue: SNPs overlapping all peaks within that 

tissue, SNPs overlapping all peak coordinates plus 500bp on either side, significantly enriched 

peaks from the Extremity analysis (adipocytes only), and significantly enriched peak coordinates 

plus 500bp on either side (adipocytes only). 

In Figure 14, we plotted the z-scored coefficients of heritability for each annotation with 

respect to each GWAS data set in each of our three histone marks. For both T2DM and 

WHRadjBMI, adipocytes had high coefficient z-scores in H3K27ac and H3K4me1. 

Interestingly, H3K4me3 had low coefficient z-scores for adipocytes relative to the other tissue 

types. This means that the SNPs that overlap H3K27ac and H3K4me1 have high heritability for 

T2DM and WHRadjBMI, as expected. The SNPs overlapping the promoter mark H3K4me3 did 

not exhibit the same level of heritability. Additionally, relative heritability of significant 

adipocyte peaks to all adipocyte peaks was lower in T2DM and WHRadjBMI except H3K4me1 

and H3K4me3 in the T2DM comparison. As expected, adipocytes had low and even negative 

coefficient z-scores for Alzheimer’s disease.  
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Figure 14: Coefficient z-score for heritability of T2DM, WHRadjBMI, and Alzheimer’s 
Diseases among different tissue types. Coefficient z-score of adipocyte and non-adipocyte 
samples was calculated using LDSC for three GWAS analyses34, 54-55. Annotations include all 
peaks of a tissue, all peaks+500bp on either side, significantly enriched peaks (sig) from the 
Extremity analysis (adipocytes only), and significantly enriched peaks+500bp on either side.  
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Discussion 

Rates of obesity and diabetes have almost doubled since the 1980s. Type 2 diabetes 

mellitus (T2DM) is now the seventh leading cause of death in the United States. Though much of 

the blame for this rise is attributed to lifestyle changes and overnutrition, it is understood that 

metabolic disease risk is heritable. Advancements in genomics has allowed researchers to 

investigate genomic variants in obese and diabetic patients. GWAS-identified genetic variants 

for T2DM only explained 18% of heritable risk. Additionally, over 90% of all GWAS loci are 

found in non-coding regions of DNA. Strongly suggesting an epigenetic factor to inherited 

metabolic disease risk. This is not entirely surprising as regulation of gene expression is 

necessary for cell differentiation and function. Understanding how changes in gene expression 

has proven more difficult than expected. One of the biggest challenges faced by researchers is 

determining which GWAS loci are causing the disease, and which gene they are affecting to do 

so. This thesis is focuses on four experimental aims that are meant to begin to tackle this 

challenge. First, we identify sets of differentially enriched enhancer and promoter marks in 

adipocytes. We do this by developing an Extremity analysis, that we compare with a well-

established method, DEA. Adipocyte enriched enhancers and promoters identified in the 

Extremity analysis are selected for a motif enrichment analysis to identify TF binding site 

enrichment. Identified TFs provide information on the potential pathways and genes being 

affected by the regulatory variants in adipocytes. Next, we compare our DE analyses to begin to 

compare adipocyte enrichment of enhancers and promoters to those enriched in IR patients. 

Additionally, we calculate the heritability of our adipocyte and non-adipocyte samples with 

GWAS data sets for T2DM, WHRadjBMI, and Alzheimer’s Disease. 
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Promoter and enhancer enrichment in human abdominal, subcutaneous adipocyte samples 

was analyzed using ChIP-Seq. Data was collected for adipocytes from ChIP-Seq experiments in 

2015 and 2016, and from the ENCODE database for 10 additional tissue types. We targeted 3 

histone marks with ChIP: H3K27ac marks active promoters and enhancers, H3K4me1 marks 

enhancers, and H3K4me3 marks active promoters.  

To begin identifying adipocyte enriched enhancers and promoters, we first applied the 

Extremity analysis to compare enrichment between adipocyte samples. Epigenetic markers are 

not expected to vary widely for a single cell type. However, most studies of adipogenesis are 

conducted on cultured adipocytes while our study uses in vivo samples. Our study therefore takes 

into account potential epigenetic variation that results from patient medical conditions, life 

experiences, and environment. In order to identify differentially enriched peaks, we set three 

cutoffs for percent contribution: if at least 2 samples contributed > 90%, at least 3 samples 

contributed > 75%, or at least 4 samples contributed > 50% of reads to a peak. Less than 0.2% of 

the number of peaks in each mark reached the least stringent cutoff of 4 samples contributing > 

50% of reads. Additionally, peaks that did pass the threshold had lower counts per million 

(CPM) and Extremity values than the overall CPM and Extremity distribution for all peaks. 

Hence, we did not observe significant variation in enhancer and promoter enrichment between 

adipocyte samples. 

The Extremity analysis was then adapted and applied to adipocyte samples and 10 

metabolically relevant tissue types—whole adipose tissue (H3K27ac only), aorta, CD14+ 

monocytes, pancreas, pancreatic islets, liver, lung, PBMC, psoas muscle, and skeletal muscle—

to identify our sets of adipocyte enriched enhancers and promoters. We also used a differential 

enrichment analysis (DEA) to compare against the newly developed Extremity analysis. Though 
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their aims were the same, to identify adipocyte enriched enhancers and promoters, the Extremity 

analysis and DEA approaches were quite different. While the DEA compares the relative 

enrichment of each peak between two groups, in this case adipocytes vs non-adipocytes, 

Extremity allows for the comparison of the relative enrichment of each tissue to every peak. We 

show that the adipocyte vs non-adipocyte DEA and the Extremity analysis are closely correlated 

with each other. This validates the Extremity by showing that, despite their differences, both 

methods provide similar results. Furthermore, the Extremity method would allow us to pursue 

questions that the DEA would not. One future question we would like to pursue is to try and 

identify if the epigenetic regulation of any tissue type is similar to adipocytes, and whether IR/IS 

status affects this answer. The Extremity analysis provides us with a new method to identify the 

relative enrichment of regulatory regions between multiple samples rather than just two groups. 

That is not to say that the DEA is worth replacing. In order to examine whether enhancer 

or promoter enrichment in adipocytes was associated with enrichment or de-enrichment in IR 

samples, we overlapped the adipocyte-enriched peaks from the adipocyte vs non-adipocyte DEA 

with a DEA that compared IR vs IS adipocyte samples. A significant overlap was found in 

H3K27ac (promoters and enhancers) peaks de-enriched in IR samples, H3K4me1 (enhancers) 

peaks both enriched and de-enriched peaks in IR samples, and H3K4me3 (promoters) peaks 

enriched in IR samples. These significantly overlapping peaks would need additional research to 

elucidate their potential effects on obesity and IR risk. But we were able to begin analyzing the 

association between adipocyte epigenetics and development of IR. 

A motif enrichment analysis was done on adipocyte enriched enhancers and promoters 

from the Extremity analysis. We hoped to identify binding sites for TFs associated with genes or 

pathways that are known to be adipocyte enriched or could be future targets of study. We 
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selected the top five enriched motif binding sites, though there were more significantly enriched 

binding sites that were not analyzed in this study. Motifs recognized by PPAR-γ, an important 

regulator of adipogenesis, and PPAR-α, a known regulator of lipid metabolism, were highly 

enriched in H3K27ac61-62. These are known as peroxisome proliferator-activated receptors 

(PPARs) and are modulated by the common diabetic drug type, thiazolidinediones. Their 

enriched expression in adipocytes is expected, and further supports the validity of the Extremity 

analysis66. A number of motifs recognized by Krüppel-like zinc finger proteins were found in the 

top five for all three marks. Krüppel-like zinc fingers are involved in cell differentiation and 

development in mammals, and have been shown to induce one of the two PPAR-γ promoters63-64. 

Additionally, the NR2F2 gene appears in both H3K27ac and H3K4me3, and is known to be 

important for angiogenesis (formation of new blood vessels) and heart development67. Expansion 

of any tissue requires the formation of new blood vessels to supply it with oxygen. In the case of 

weight gain and adipogenesis, angiogenesis has been shown to be necessary for differentiation of 

pre-adipocytes to adipocytes in vivo68. Little is known about in vivo adipogenesis because most 

models use cultured preadipocytes and induce differentiation17. NR2F2 could be an interesting 

target for future study because rapidly expanding fat tissue, like rapidly dividing cancers, can 

outgrow its blood supply and therefore become hypoxic17. Hypoxia can then lead to metabolic 

disorder17. Further analysis should be conducted on the enriched TF binding sites that were not in 

the top five. Overall, we identified a number of potentially interesting enriched and highly 

occurring TF binding sites that can be further studied. 

To address the final aim of our analysis we incorporate GWAS data sets to show that 

adipocyte biology is important in obesity related phenotypes such as T2DM and WHRadjBMI. 

The purpose of this experiment was more exploratory, and we therefore did not come to a clear 
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conclusion or result from this section. Our preliminary results met expectations. Adipocytes 

showed relatively high heritability in T2DM and WHRadjBMI and did not show high heritability 

for the Alzheimer’s GWAS. The active promoter mark, H3K4me3, showed surprisingly low 

heritability for T2DM and WHRadjBMI. A more thorough analysis of this phenomenon is 

needed. 

This study still bridges the gap between epigenetics and GWAS interpretation. Shungin 

et. al, 2015 conducted a meta-analysis of WHRadjBMI GWAS where they identified loci 

associated with body fat distribution69. They determined that the identified loci were enriched in 

adipose tissue genes and adipocyte regulatory elements. Pathway analyses suggested these loci 

were involved in adipogenesis, angiogenesis, and transcriptional regulation. Shungin et. al, 2015 

used literature searches and computer modeling to identify gene sets. In this study, we used motif 

analysis to identify TF binding sites. A chromatin study by Mikkelsen et. al, 2010 generated the 

chromatin state maps of cultured mouse and human pre-adipocyte samples that were 

differentiated into adipocytes70. They identified distal regulatory regions in adipogenesis 

associated loci and used TF motif analysis to identify two regulators of adipogenesis. Our motif 

analysis identified binding sites for TFs associated with adipogenesis and angiogenesis like the 

two studies, validating our method. Furthermore, our use of in vivo samples is particularly 

important because understanding of in vivo adipogenesis is limited. In this study, we are thus 

able to present a novel and generalizable method to compare in vivo samples for any number of 

histone marks or tissue types.  
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Supplemental Data 
 

Tissue Control H3K27ac H3K4me1 H3K4me3 
Whole Adipose 

Tissue 
ENCSR163VJS ENCSR082SHT - - 

Aorta ENCSR116QUS, 
ENCSR201KGX 

ENCSR322TJD, 
ENCSR519CFV 

ENCSR325VOA, 
ENCSR848TLB 

ENCSR957BPJ, 
ENCSR960EVO 

CD14+ Monocyte ENCSR000AUU, 
ENCSR000DWK, 
ENCSR444GJM 

ENCSR000ASJ, 
ENCSR012PII 

ENCSR000ASM, 
ENCSR400VWA 

ENCSR000ASN, 
ENCSR000DWL, 
ENCSR796FCS 

Endocrine Pancreas 
(Pancreatic Islets) 

ENCSR770VVH, 
ENCSR928GAG 

ENCSR324JDC, 
ENCSR492PXH 

ENCSR292WQY, 
ENCSR817QHX 

ENCSR438NCW, 
ENCSR884EVT, 
ENCSR957UQS 

Liver ENCSR059QYS, 
ENCSR236NLU, 
ENCSR687HYO, 
ENCSR942ZRO 

ENCSR230IMS, 
ENCSR678LND 

ENCSR111OHT, 
ENCSR203RKZ, 
ENCSR218ZMU, 
ENCSR642HII 

ENCSR458WIH, 
ENCSR520BUX, 
ENCSR795VEN, 
ENCSR803JYI 

Lung ENCSR061VJM, 
ENCSR494FGC, 
ENCSR577BCL, 
ENCSR724XIL 

ENCSR067BMB, 
ENCSR540ADS, 
ENCSR550WUX 
 

ENCSR356ANC, 
ENCSR575SWA, 
ENCSR953XVZ 

ENCSR466DZW, 
ENCSR500GXT 

Pancreas ENCSR480NNC, 
ENCSR503BIB 

ENCSR402HFW, 
ENCSR612BWE 

ENCSR449PYI, 
ENCSR984UHU 

ENCSR315LPR, 
ENCSR747VED 

Peripheral Blood 
Mononuclear Cell 

(PBMC) 

ENCSR585UEE, 
ENCSR837ART, 
ENCSR913DKN 

ENCSR105EMQ, 
ENCSR156XNC, 
ENCSR615HXA, 
ENCSR625BDY 

ENCSR336ZSZ, 
ENCSR420EWO, 
ENCSR482QXO 

ENCSR206JRX, 
ENCSR275EAG, 
ENCSR368YPC, 
ENCSR443SLY 

Psoas Muscle ENCSR139WMA, 
ENCSR163UEW, 
ENCSR688CIB 

ENCSR250NHD, 
ENCSR367WYJ, 
ENCSR791ISZ 

ENCSR410UUH, 
ENCSR700NGJ 

ENCSR245BEV, 
ENCSR949OYZ 

Skeletal Muscle ENCSR211LEQ, 
ENCSR268LIX, 
ENCSR835ARG 

ENCSR329FXI ENCSR146JFX, 
ENCSR668NXG, 
ENCSR823QYQ 

ENCSR238LEG, 
ENCSR346KKE, 
ENCSR767NIF 

Supplemental Table 1: Experiment identifiers for tissue samples downloaded from the ENCODE 
portal40-41.  
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Total Cohort IS Cohort 

(18) 
IR Cohort 

(27) 

Age 48 47.8 51 

% Female 95% 100% 100% 
BMI 

(Body Mass Index) 28.1 26.8 30.1* 

HOMA-IR 1.71 0.71 5.78* 

Total Cholesterol 181 184.5 175 
TG 

(triglycerides) 86 81 135* 

HDL 
(high-density lipoprotein) 61 73.7 54.1* 

LDL 
(low-density lipoprotein) 101 94.3 97.6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Table 2: Summary of cohort metadata. Red asterisks show values that differ 
significantly from the IS cohort values. (p values?) 
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  Supplemental Figure 1: Insulin resistance (IR) and insulin sensitivity (IS) 

cohort selection. Individuals in the top and bottom quartiles of HOMA-IR were 
selected for the IR and IS cohort respectively.  
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Individual peak contribution 

library(tibble) 
library(plyr) 
library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:plyr': 
##  
##     arrange, count, desc, failwith, id, mutate, rename, summarise, 
##     summarize 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(readr) 
library(ggplot2) 
library(VennDiagram) 

## Loading required package: grid 

## Loading required package: futile.logger 

knitr::opts_chunk$set(root.dir = "/Volumes/broad_rosenlab_archive/Projects/Linus-Human-Ad/Anal
ysis/Individual-Peak-Characterization-no-137/peaks_by_tissue/for_thesis/") 

#Load Files  
#Create/format dataframes 
countfile <- read_tsv("../../cpm.tsv") 
  count_table <- as.data.frame(countfile[,-c(1)]) 
  rownames(count_table) <- countfile$Name 
 
peakfile<- read_tsv("../../new_peaks_merged_filt_small.bed", col_types = 'ciicidciciic', col_n
ames = FALSE) 
  peak_table <- as.data.frame(peakfile[,-c(1:3,5:11)]) 
  rownames(peak_table)<-peak_table[,1] 
   
metadata<-read.csv("../../Copy of ChIP-Seq Library Set - Sheet1.csv") 
  metadata$Sample<-gsub("EPI","",metadata$Sample) 
  rownames(metadata)<-metadata$Sample 

unlog_counts<- 2^count_table 
  print(head(unlog_counts)) 

##                       X120_27ac X121_27ac X123_27ac  X124_27ac X129_27ac 
## 1|chr1:9857-10598     7.7812396 10.196485 13.177456  8.9382971  8.111676 
## 6|chr1:28574-29849    9.9176616  9.317869 10.056107 12.9062681  8.514961 
## 8|chr1:136444-137017  0.6643429  4.141060  1.474269  0.9794203  1.101905 
## 11|chr1:171222-173171 3.7580910 10.556063  7.727491  2.1584565  3.010493 
## 12|chr1:173263-174714 2.5140267  5.735821  6.588728  3.5553707  2.158456 
## 13|chr1:180603-181120 4.9933222  7.160201  7.727491  6.5887281  7.464264 
##                       X141_27ac X142_27ac X144_27ac X157_27ac X158_27ac 
## 1|chr1:9857-10598      9.382680  9.579830  6.147501  7.781240  9.126110 
## 6|chr1:28574-29849    14.025692 10.338823  9.513657 13.177456 12.466633 
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## 8|chr1:136444-137017   1.658639  1.802501  1.164734  1.802501  1.356604 
## 11|chr1:171222-173171  7.568461  6.680703  7.260153  7.210004  9.382680 
## 12|chr1:173263-174714  5.979397  3.271608  5.028053  2.969047  3.410540 
## 13|chr1:180603-181120  7.210004  7.412704  4.531536  4.287094  5.028053 
##                       X160_27ac X163_27ac  X168_27ac X170_27ac X172_27ac_1 
## 1|chr1:9857-10598      7.889862  5.169411  8.8152409 12.041974    9.317869 
## 6|chr1:28574-29849     7.361501  7.061624 10.7778686 18.252219    9.126110 
## 8|chr1:136444-137017   1.613284  1.945310  0.8888427  3.073750    1.526259 
## 11|chr1:171222-173171  6.821079  5.314743 16.4498212 16.564239    4.141060 
## 12|chr1:173263-174714  3.863745  4.141060 12.7285837  6.680703    2.281527 
## 13|chr1:180603-181120  5.098243  4.141060  4.5630549  6.498019    5.617780 
##                       X178_27ac X180_27ac X181_27ac X188_27ac X190_27ac 
## 1|chr1:9857-10598     17.267652 13.737047 13.454343 11.794154 12.640661 
## 6|chr1:28574-29849    30.484416 18.507011 10.196485 21.258973 16.449821 
## 8|chr1:136444-137017   4.823231  2.329467  2.657372  4.856780  2.770219 
## 11|chr1:171222-173171 21.406841  7.568461 13.177456  9.447941  5.856343 
## 12|chr1:173263-174714  8.693879  3.555371  7.310652  5.241574  3.138336 
## 13|chr1:180603-181120  8.456144  6.020987  8.456144  5.063026  5.979397 
##                       X193_27ac X195_27ac X199_27ac X202_27ac X203_27ac 
## 1|chr1:9857-10598     10.338823 11.631780 11.471642 13.086433 16.795467 
## 6|chr1:28574-29849    27.095850 23.102867 18.379174 26.908685 27.474094 
## 8|chr1:136444-137017   1.986185  1.705270  1.815038  2.694467  2.531513 
## 11|chr1:171222-173171 10.777869 10.126053  8.574188 11.876189  7.061624 
## 12|chr1:173263-174714  6.773962  5.028053  4.084049  4.723971  2.989698 
## 13|chr1:180603-181120  4.823231  4.890561  6.634556  7.621104  8.282119 
##                       X205_27ac X206_27ac X207_27ac X209_27ac X210_27ac 
## 1|chr1:9857-10598      9.849155  5.979397 11.392402  8.456144 10.056107 
## 6|chr1:28574-29849    23.752377 18.252219 26.354913 18.000936 23.917588 
## 8|chr1:136444-137017   1.248331  1.283426  1.729074  3.226567  1.347234 
## 11|chr1:171222-173171  6.680703 10.126053  8.693879 13.547925  7.674113 
## 12|chr1:173263-174714  3.863745  5.133704  3.630077  4.346939  3.944931 
## 13|chr1:180603-181120  5.278032  3.630077  6.364292  3.555371  6.147501 
##                       X211_27ac X212_27ac X213_27ac X214_27ac X216_27ac 
## 1|chr1:9857-10598      6.147501  8.876556 17.630482  7.061624 28.640802 
## 6|chr1:28574-29849    14.928528 20.677645 17.267652 13.928809 22.943284 
## 8|chr1:136444-137017   1.375542  2.584706  4.438278  1.717131  1.765406 
## 11|chr1:171222-173171  7.260153 18.000936 14.221483 16.111289  9.917662 
## 12|chr1:173263-174714  4.594793 11.235559  6.020987  8.168097  3.052518 
## 13|chr1:180603-181120  4.027822  6.020987  8.815241  3.837056 17.029923 
##                       X220_27ac X221_27ac X222_27ac 
## 1|chr1:9857-10598      8.339726 10.196485 13.454343 
## 6|chr1:28574-29849    26.354913 15.889480 18.000936 
## 8|chr1:136444-137017   1.006956  3.732132  1.569168 
## 11|chr1:171222-173171 12.041974 17.148375 12.817118 
## 12|chr1:173263-174714  5.314743  8.876556  5.502167 
## 13|chr1:180603-181120  3.732132  7.260153  7.061624 

Calculate the percent contribution of each sample to each peak 

col_sumd<- colSums(unlog_counts) 
 
rows_sumd<- rowSums(unlog_counts) 
   
perc_cont <- ( unlog_counts/ rows_sumd) * 100; 
  colnames(perc_cont)<-colnames(count_table) 
  rownames(perc_cont)<-rownames(count_table) 
  print(perc_cont[1,c(1,2)]) 

##                   X120_27ac X121_27ac 
## 1|chr1:9857-10598  1.889771  2.476344 
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Subsetting peaks by percent contribution 

Create a list of the peaks that whose top 2 contributors contribute over 90% of the counts for the peak, whose top 
3 contributors contribute over 75% of the counts, and whose top 4 contributors contribute over 50% of the counts. 

ninety_two<- c() 
seventyfive_three<- c() 
fifty_four<- c() 
 
for(p in rownames(perc_cont)) 
{ 
  sor_row <- sort(perc_cont[p,], decreasing=TRUE) 
   
  if(sum(sor_row[1:2]) >= 90) 
  { 
    ninety_two <- c(ninety_two, rownames(sor_row)) 
    next 
  } 
   
  if(sum(sor_row[1:3]) >= 75) 
  { 
    seventyfive_three <- c(seventyfive_three, rownames(sor_row)) 
    next 
  } 
   
  if(sum(sor_row[1:4]) >= 50) 
  { 
     fifty_four<- c(fifty_four, rownames(sor_row)) 
  } 
   
} 
 
seventyfive_three<- c(seventyfive_three,ninety_two) 
fifty_four<- c(fifty_four,seventyfive_three) 
 
print(length(ninety_two)) 

## [1] 0 

print(length(seventyfive_three)) 

## [1] 0 

print(length(fifty_four)) 

## [1] 14 

Extremity 

Average percent contribution 

avg_perc<- 100/ncol(perc_cont) 
  print(avg_perc) 

## [1] 2.631579 

Make a dataframe with the maximum percent contribution for each peak 

max_perc <- as.data.frame(apply(perc_cont,1,max)) 
  colnames(max_perc) <- c("Max") 
  rownames(max_perc) <- rownames(count_table) 
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print(head(max_perc)) 

##                            Max 
## 1|chr1:9857-10598     6.955777 
## 6|chr1:28574-29849    4.741401 
## 8|chr1:136444-137017  6.041754 
## 11|chr1:171222-173171 5.712784 
## 12|chr1:173263-174714 6.489837 
## 13|chr1:180603-181120 7.176264 

calculate the extremity of each peak maximum percent contribution - average percent contribution 

max_avg <- as.data.frame(apply(max_perc, 1, function(x){x - avg_perc})) 
  colnames(max_avg) <- c('Extremity') 
  print(head(max_avg)) 

##                       Extremity 
## 1|chr1:9857-10598      4.324198 
## 6|chr1:28574-29849     2.109822 
## 8|chr1:136444-137017   3.410175 
## 11|chr1:171222-173171  3.081205 
## 12|chr1:173263-174714  3.858258 
## 13|chr1:180603-181120  4.544685 

Calculate the average number of counts for each peak and add the column to the dataframe with extremity 

average_counts <- rowMeans(unlog_counts) 
 
max_avg <- cbind(average_counts,max_avg) 
  print(head(max_avg)) 

##                       average_counts Extremity 
## 1|chr1:9857-10598          10.835674  4.324198 
## 6|chr1:28574-29849         16.919503  2.109822 
## 8|chr1:136444-137017        2.115445  3.410175 
## 11|chr1:171222-173171       9.861004  3.081205 
## 12|chr1:173263-174714       5.161343  3.858258 
## 13|chr1:180603-181120       6.244975  4.544685 

Make a histogram of of extremity Peaks in the fifty_four list are highlighted in red 

hist<-ggplot(max_avg, aes(Extremity)) + 
    geom_histogram(binwidth = 0.5) +  
    scale_y_continuous(trans="log10") +  
    geom_histogram(data=max_avg[fifty_four,], color="Red", binwidth = 0.5) 
 
show(hist) 

## Warning: Transformation introduced infinite values in continuous y-axis 
 
## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 55 rows containing missing values (geom_bar). 
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Make a scatter plot of extremity by average counts 

sctrplot_nt<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
    geom_point() + 
    scale_x_continuous(trans="log10") + 
    geom_point(data=max_avg[ninety_two,], color="Red")+ 
  labs(x = "CPM") 
 
show(sctrplot_nt) 

 

sctrplot_st<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
    geom_point() + 
    scale_x_continuous(trans="log10") + 
    geom_point(data=max_avg[seventyfive_three,], color="Red")+ 
  labs(x = "CPM") 
 
show(sctrplot_st) 
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sctrplot_ff<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
    geom_point() + 
  theme_bw() + 
    scale_x_continuous(trans="log10") + 
    geom_point(data=max_avg[fifty_four,], color="Red")+ 
  labs(x = "Average CPM")+ 
  ylim(0,62) 
 
show(sctrplot_ff) 

 

absolute cutoffs 

Comparing extremity cutoff methods 

Set extremity and average count cutoffs print the number of peaks in each cutoff 
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ten_eight_peaks<-subset(max_avg, Extremity>= 10 & average_counts>=8, select=c("average_counts"
, "Extremity")) 
  print(nrow(ten_eight_peaks)) 

## [1] 26 

Create a histogram of the extremity ten_eight_peaks highlighted in red 

hist_ten_eight_peaks<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[rownames(ten_eight_peaks),], color="Red", binwidth = 0.5) 
 
show(hist_ten_eight_peaks) 

## Warning: Transformation introduced infinite values in continuous y-axis 
 
## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 54 rows containing missing values (geom_bar). 

 

Create a scatter plot of extremity by average counts ten_eight_peaks highlighted in red 

sctrplot_ten_eight_peaks<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
  geom_point() + 
  scale_x_continuous(trans="log10") + 
  geom_point(data=max_avg[rownames(ten_eight_peaks),], color="Red") 
 
show(sctrplot_ten_eight_peaks) 
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sort max_avg to subset for cutoffs 

maxavg_sorted<- max_avg[order(-max_avg$Extremity),] 
  print(head(maxavg_sorted)) 

##                                 average_counts Extremity 
## 215934|chrUn_KI270752v1:0-384        0.8372687  31.24382 
## 196483|chr7:155573467-155574124      2.1031557  18.97461 
## 55692|chr12:132155524-132157373      3.4994279  17.88630 
## 97850|chr18:78652742-78655392        4.9849780  17.73796 
## 184135|chr6:165618912-165619863      2.6357871  17.72883 
## 160791|chr5:414799-415907           13.9046234  17.04539 

Top n cutoffs 

Comparing extremity cutoff methods 

Set extremity cutoffs print the number of peaks in each cutoff 

Take the top n number of peaks of the max_avg dataframe sorted by extremity (dataframe = “maxavg_sorted”) 

top_100<-rownames(maxavg_sorted[c(1:100),]) 
 
top_500<-rownames(maxavg_sorted[c(1:500),]) 
 
top_1000<-rownames(maxavg_sorted[c(1:1000),]) 

Create histograms of extremity with top n cutoff peaks highlighted in red 

hist_top_100<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[top_100,], color="Red", binwidth = 0.5) 
 
show(hist_top_100) 
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## Warning: Transformation introduced infinite values in continuous y-axis 
 
## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 46 rows containing missing values (geom_bar). 

 

hist_top_500<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[top_500,], color="Red", binwidth = 0.5) 
 
show(hist_top_500) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 39 rows containing missing values (geom_bar). 
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hist_top_1000<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[top_1000,], color="Red", binwidth = 0.5) 
 
show(hist_top_1000) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 38 rows containing missing values (geom_bar). 

 

Create scatterplots of extremity by average counts 
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sctrplot_top_100<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
  geom_point() + 
  scale_x_continuous(trans="log10") + 
  geom_point(data=max_avg[top_100,], color="Red") 
 
show(sctrplot_top_100) 

 

sctrplot_top_500<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
  geom_point() + 
  scale_x_continuous(trans="log10") + 
  geom_point(data=max_avg[top_500,], color="Red") 
 
show(sctrplot_top_500) 
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sctrplot_top_1000<-ggplot(max_avg,aes(x=average_counts, y=Extremity)) + 
  geom_point() + 
  scale_x_continuous(trans="log10") + 
  geom_point(data=max_avg[top_1000,], color="Red") 
 
show(sctrplot_top_1000) 

 

percentile cutoffs 

Comparing extremity cutoff methods 

Set extremity cutoffs print the number of peaks in each cutoff 

Take the top x percent of peaks of the max_avg dataframe sorted by extremity (dataframe = “maxavg_sorted”) 

quarter_perc<-nrow(maxavg_sorted)*0.0025 
  quarter_perc_extr<-rownames(maxavg_sorted[c(1:quarter_perc),]) 
  print(length(quarter_perc_extr)) 

## [1] 186 

half_perc<-nrow(maxavg_sorted)*0.005 
  half_perc_extr<-rownames(maxavg_sorted[c(1:half_perc),]) 
  print(length(half_perc_extr)) 

## [1] 372 

one_perc<-nrow(maxavg_sorted)*0.01 
  one_perc_extr<-rownames(maxavg_sorted[c(1:one_perc),]) 
  print(length(one_perc_extr)) 

## [1] 744 

two_perc<-nrow(maxavg_sorted)*0.02 
  two_perc_extr<-rownames(maxavg_sorted[c(1:two_perc),]) 
  print(length(two_perc_extr)) 
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## [1] 1488 

three_perc<-nrow(maxavg_sorted)*0.03 
  three_perc_extr<-rownames(maxavg_sorted[c(1:three_perc),]) 
  print(length(three_perc_extr)) 

## [1] 2232 

Create histograms of extremity with percent cutoff peaks highlighted in red 

hist_quarter_perc<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[quarter_perc_extr,], color="Red", binwidth = 0.5) 
 
show(hist_quarter_perc) 

## Warning: Transformation introduced infinite values in continuous y-axis 
 
## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 43 rows containing missing values (geom_bar). 

 

hist_half_perc<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[half_perc_extr,], color="Red", binwidth = 0.5) 
 
show(hist_half_perc) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 40 rows containing missing values (geom_bar). 
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hist_one_perc<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[one_perc_extr,], color="Red", binwidth = 0.5) 
 
show(hist_one_perc) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 38 rows containing missing values (geom_bar). 

 

hist_two_perc<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
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  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[two_perc_extr,], color="Red", binwidth = 0.5) 
 
show(hist_two_perc) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 37 rows containing missing values (geom_bar). 

 

hist_three_perc<-ggplot(max_avg, aes(Extremity)) + 
  geom_histogram(binwidth = 0.5) +  
  scale_y_continuous(trans="log10") +  
  geom_histogram(data=max_avg[three_perc_extr,], color="Red", binwidth = 0.5) 
 
show(hist_three_perc) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 27 rows containing missing values (geom_bar). 

## Warning: Removed 36 rows containing missing values (geom_bar). 
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Venn Diagram: Absolute cutoffs v Top n Cutoffs 
Calculate the areas of each cutoff and the overlap between cutoffs 
print(nrow(ten_eight_peaks)) 

## [1] 26 

print(length(top_100)) 

## [1] 100 

print(length(top_500)) 

## [1] 500 

print(length(top_1000)) 

## [1] 1000 

print(length(intersect(rownames(ten_eight_peaks), top_100))) 

## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), top_500))) 

## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), top_1000))) 

## [1] 26 

Create Venn diagram of Absolute cutoffs to top n cutoffs 

grid.newpage() 
  draw.pairwise.venn(area1 = 26, area2 = 100, cross.area = 26, category = c("10Ex_8avgC", "Top
_100")) 
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## (polygon[GRID.polygon.763], polygon[GRID.polygon.764], polygon[GRID.polygon.765], polygon[G
RID.polygon.766], text[GRID.text.767], text[GRID.text.768], text[GRID.text.769], text[GRID.tex
t.770]) 

grid.newpage() 
  draw.pairwise.venn(area1 = 26, area2 = 500, cross.area = 26, category = c("10Ex_8avgC", "Top
_500")) 

 

## (polygon[GRID.polygon.771], polygon[GRID.polygon.772], polygon[GRID.polygon.773], polygon[G
RID.polygon.774], text[GRID.text.775], text[GRID.text.776], text[GRID.text.777], text[GRID.tex
t.778]) 

grid.newpage() 
  draw.pairwise.venn(area1 = 26, area2 = 1000, cross.area = 26, category = c("10Ex_8avgC", "To
p_1000")) 
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## (polygon[GRID.polygon.779], polygon[GRID.polygon.780], polygon[GRID.polygon.781], polygon[G
RID.polygon.782], text[GRID.text.783], text[GRID.text.784], text[GRID.text.785], text[GRID.tex
t.786]) 

Venn diagram: Absolute cutoffs v percent cutoffs 

calculate areas of the cutoffs and their intersects 

print(nrow(ten_eight_peaks)) 

## [1] 26 

print(length(quarter_perc_extr)) 

## [1] 186 

print(length(half_perc_extr)) 

## [1] 372 

print(length(one_perc_extr)) 

## [1] 744 

print(length(two_perc_extr)) 

## [1] 1488 

print(length(three_perc_extr)) 

## [1] 2232 

print(length(intersect(rownames(ten_eight_peaks), quarter_perc_extr))) 

## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), half_perc_extr))) 

## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), one_perc_extr))) 
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## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), two_perc_extr))) 

## [1] 26 

print(length(intersect(rownames(ten_eight_peaks), three_perc_extr))) 

## [1] 26 

NOTE:I think I should choose a avg count cutoff then do the overlap bc taking the top n of the sorted list gives a lot 
of overlap anyway. 

Cutoff by number of counts 

Decided I should cutoff by average counts before I decide which method to cutoff extremity by 

avgC_5<-subset(maxavg_sorted, maxavg_sorted$average_counts >= 5) 
 
print(nrow(avgC_5)) 

## [1] 40822 

Create a histogram of the peaks within the average count cutoffs 

hist_avg5<-ggplot(data = avgC_5, aes(Extremity))+ 
  geom_histogram(binwidth = 0.5)+ 
  scale_y_continuous(trans = "log10") 
 
show(hist_avg5) 

## Warning: Transformation introduced infinite values in continuous y-axis 

## Warning: Removed 6 rows containing missing values (geom_bar). 

 

Create a scatter plot of the extremity by the average counts of the average count cutoff 

sctrplot_avg5<-ggplot(data = avgC_5, aes(y=Extremity, x=average_counts))+ 
  geom_point()+ 
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  scale_x_continuous(trans = "log10") 
 
show(sctrplot_avg5) 

 

Finding an inflection point 

Want top plot the average extremity value for different intervals (0-1000, by 50) do this for all average counts, 
average counts >= 8, and average counts >= 5 

Subset data for the average counts cutoffs 

print(nrow(max_perc)) 

## [1] 74412 

print(nrow(avgC_5)) 

## [1] 40822 

avgC_8<-subset(maxavg_sorted, maxavg_sorted$average_counts >= 8) 
  print(nrow(avgC_8)) 

## [1] 28466 

Create dataframes of the extremity interval and the average extremity 

intervals<-seq(50, 1000, by = 50) 
 
avgC_all_ex<-data.frame(matrix(data = NA, nrow = length(intervals), ncol = 2 )) 
  colnames(avgC_all_ex)<-c("Interval", "Average_Extremity") 
  avgC_all_ex$Interval<-intervals 
   
avgC_8_ex<-data.frame(matrix(data = NA, nrow = length(intervals), ncol = 2 )) 
  colnames(avgC_8_ex)<-c("Interval", "Average_Extremity") 
  avgC_8_ex$Interval<-intervals 
   
avgC_5_ex<-data.frame(matrix(data = NA, nrow = length(intervals), ncol = 2 )) 
  colnames(avgC_5_ex)<-c("Interval", "Average_Extremity") 
  avgC_5_ex$Interval<-intervals 
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print(avgC_all_ex[c(1:3),]) 

##   Interval Average_Extremity 
## 1       50                NA 
## 2      100                NA 
## 3      150                NA 

Calculate the average extremity for each interval and populate the dataframes 

for(n in rownames(avgC_all_ex)) 
{ 
  int<-avgC_all_ex[n,]$Interval 
  avgC_all_ex[n,]$Average_Extremity<-mean(maxavg_sorted[c(1:n),]$Extremity) 
   
  avgC_8_ex[n,]$Average_Extremity<-mean(avgC_8[c(1:n),]$Extremity) 
   
  avgC_5_ex[n,]$Average_Extremity<-mean(avgC_5[c(1:n),]$Extremity) 
} 

Create plots of the average extremity intervals for each average count cutoff 

sctrplot_avgC_all<-ggplot(avgC_all_ex,aes(x= Interval, y=Average_Extremity)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "No Avg Count cutoff") 
 
show(sctrplot_avgC_all) 

 

sctrplot_8_all<-ggplot(avgC_8_ex,aes(x= Interval, y=Average_Extremity)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "Avg Count >= 8") 
 
show(sctrplot_8_all) 
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sctrplot_5_all<-ggplot(avgC_5_ex,aes(x= Interval, y=Average_Extremity)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "Avg Count >= 5") 
 
show(sctrplot_5_all) 

 

It looks like the plot of average extremity intervals for peaks with an avg count of >= 8 may have an inflection point 
at interval 200 

Re-do interval analysis for the same set of peaks with avg counts >= 8, but with intervals of (0-300, by 1) Create 
dataframes of the extremity interval and the average extremity 

intervals_2<-seq(1,300, by = 1) 
 
avgC_8_300<-data.frame(matrix(data = NA, nrow = length(intervals_2), ncol = 2 )) 
  colnames(avgC_8_300)<-c("Interval", "Average_Extremity") 
  avgC_8_300$Interval<-intervals_2 



 69 

   
print(avgC_8_300[c(1:3),]) 

##   Interval Average_Extremity 
## 1        1                NA 
## 2        2                NA 
## 3        3                NA 

Calculate the average extremity for each interval and populate the dataframes 

for(m in rownames(avgC_8_300)) 
{ 
   avgC_8_300[m,]$Average_Extremity<-mean(avgC_8[c(1:m),]$Extremity) 
} 

Create plot of the average extremity intervals of peaks with avg counts >= 8 plot all points plot only every 10th 
point 

sctrplot8_300_all<-ggplot(avgC_8_300,aes(x= Interval, y=Average_Extremity)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "Avg Count >= 8, all pts, top 300 peaks") 
 
show(sctrplot8_300_all) 

 

sctrplot8_300_10<-ggplot(avgC_8_300[seq(0, 300, by = 10),],aes(x= Interval, y=Average_Extremit
y)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "Avg Count >= 8, every 10th pt, top 300 peaks") 
 
show(sctrplot8_300_10) 
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Try to find the exact point where the curve above kinks to see which peak should be the cut off plot the average 
extremity for each interval for the top 50 peaks 

sctrplot8_300_50<-ggplot(avgC_8_300[c(1:50),],aes(x= Interval, y=Average_Extremity)) + 
    geom_point() + 
  geom_line() + 
  labs(title = "Avg Count >= 8, first 50 pts, top 300 peaks") 
 
show(sctrplot8_300_50) 

 

Try to find exact point where the curve kinks appears to be between 25 and 27 so will calculate the difference in y 

print(avgC_8_300[23,]$Average_Extremity - avgC_8_300[24,]$Average_Extremity) 

## [1] 0.07374189 

print(avgC_8_300[24,]$Average_Extremity - avgC_8_300[25,]$Average_Extremity) 
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## [1] 0.07491177 

print(avgC_8_300[25,]$Average_Extremity - avgC_8_300[26,]$Average_Extremity) 

## [1] 0.07041103 

print(avgC_8_300[26,]$Average_Extremity - avgC_8_300[27,]$Average_Extremity) 

## [1] 0.102377 

print(avgC_8_300[27,]$Average_Extremity - avgC_8_300[28,]$Average_Extremity) 

## [1] 0.1251902 

print(avgC_8_300[29,]$Average_Extremity - avgC_8_300[30,]$Average_Extremity) 

## [1] 0.1227083  
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Adipocyte extremity 

knitr::opts_chunk$set(root.dir = "/Volumes/broad_rosenlab_archive/Projects/Linus-Human-Ad/Anal
ysis/Individual-Peak-Characterization-no-137/peaks_by_tissue/for_thesis/") 
library(tibble) 
library(plyr) 
library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:plyr': 
##  
##     arrange, count, desc, failwith, id, mutate, rename, summarise, 
##     summarize 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(readr) 
library(tidyr) 
library(ggplot2) 
library(VennDiagram) 

## Loading required package: grid 

## Loading required package: futile.logger 

library(pheatmap) 
library(RColorBrewer) 
library(reshape2) 
##  
## Attaching package: 'reshape2' 

## The following object is masked from 'package:tidyr': 
##  
##     smiths 

adipocytes 
#load cmp files 
ac_countfile <- read_tsv("../H3K27ac/cpm-Linus.tsv") 
  ac_count_table <- as.data.frame(ac_countfile[,-c(61)]) 
  rownames(ac_count_table) <- ac_countfile$name 

#some of the tissues have multiple samples. The samples will be averaged for each tissue 
  #only have adipose tissue sample for H3K27ac 
ac_adipose_samples<-ac_count_table[,grepl("adipose", colnames(ac_count_table))] 
ac_scadip_rosen_samples<-ac_count_table[,grepl("Linus", colnames(ac_count_table))] 
ac_CD14_samples<-ac_count_table[,grepl("CD14", colnames(ac_count_table))] 
ac_aorta_samples<-ac_count_table[,grepl("aorta", colnames(ac_count_table))] 
ac_endo_samples<-ac_count_table[,grepl("endocrine", colnames(ac_count_table))] 
ac_liver_samples<-ac_count_table[,grepl("liver", colnames(ac_count_table))] 
ac_lung_samples<-ac_count_table[,grepl("lung", colnames(ac_count_table))] 
ac_panc_samples<-ac_count_table[,grepl("^pancreas_", colnames(ac_count_table))] 
ac_pbmc_samples<-ac_count_table[,grepl("peripheral", colnames(ac_count_table))] 
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ac_psoas_samples<-ac_count_table[,grepl("psoas", colnames(ac_count_table))] 
ac_skel_samples<-ac_count_table[,grepl("skeletal", colnames(ac_count_table))] 

#make dataframes for the sample averages 
ac_avg<-data.frame(matrix(data = NA, nrow = nrow(ac_count_table), ncol = 11 )) 
  rownames(ac_avg)<-rownames(ac_count_table) 
  colnames(ac_avg)<-c("ac_adipose_samples","ac_aorta_samples","ac_CD14_samples","ac_endo_sampl
es","ac_scadip_rosen_samples","ac_liver_samples","ac_lung_samples","ac_panc_samples","ac_pbmc_
samples","ac_psoas_samples" ,"ac_skel_samples" ) 

#Set colors for each tissue 
ac_tiss_colors<-c("green3","orange1","firebrick3", "coral","yellow1", "maroon2","slateblue1","
hotpink1", "purple","pink1","blue") 
names(ac_tiss_colors)<-c("ac_adipose_samples","ac_scadip_rosen_samples","ac_CD14_samples","ac_
aorta_samples","ac_endo_samples","ac_liver_samples","ac_lung_samples","ac_panc_samples","ac_pb
mc_samples","ac_psoas_samples" ,"ac_skel_samples" ) 

#take the average cpm for each peak of each tissue and put into dataframe 
ac_avg[,"ac_adipose_samples"]<-apply(ac_adipose_samples, 1, mean) 
  ac_avg[,"ac_aorta_samples"]<-apply(ac_aorta_samples, 1, mean) 
  ac_avg[,"ac_CD14_samples"]<-apply(ac_CD14_samples, 1, mean) 
  ac_avg[,"ac_endo_samples"]<-apply(ac_endo_samples, 1, mean) 
  ac_avg[,"ac_scadip_rosen_samples"]<-apply(ac_scadip_rosen_samples, 1, mean) 
  ac_avg[,"ac_liver_samples"]<-apply(ac_liver_samples, 1, mean) 
  ac_avg[,"ac_lung_samples"]<-apply(ac_lung_samples, 1, mean) 
  ac_avg[,"ac_panc_samples"]<-apply(ac_panc_samples, 1, mean) 
  ac_avg[,"ac_pbmc_samples"]<-apply(ac_pbmc_samples, 1, mean) 
  ac_avg[,"ac_psoas_samples"]<-apply(ac_psoas_samples, 1, mean) 
  ac_avg[,"ac_skel_samples"]<-ac_skel_samples 

#calculate percent contribution of each tissue to the peak 
ac_rows_sumd<- rowSums(ac_avg) 
ac_perc_cont <- ( ac_avg/ ac_rows_sumd) * 100; 
  colnames(ac_perc_cont)<-colnames(ac_avg) 
  rownames(ac_perc_cont)<-rownames(ac_avg) 
  head(ac_perc_cont) 

##                     ac_adipose_samples ac_aorta_samples ac_CD14_samples 
## 1|chr1:9607-10848             1.436791         1.201260        1.250284 
## 2|chr1:11688-12478            5.298489         4.429913        4.610702 
## 7|chr1:20370-20883            5.954186         4.978123        5.181285 
## 8|chr1:21105-22873            3.009118         2.515837        2.618510 
## 10|chr1:28463-30061           1.322220         1.105470        1.499070 
## 11|chr1:34505-34972           6.140357         5.133775        5.343289 
##                     ac_endo_samples ac_scadip_rosen_samples 
## 1|chr1:9607-10848          7.192398                54.51353 
## 2|chr1:11688-12478         8.136700                42.34462 
## 7|chr1:20370-20883         9.143631                35.20966 
## 8|chr1:21105-22873         4.620995                67.25635 
## 10|chr1:28463-30061        2.030487                85.26380 
## 11|chr1:34505-34972        9.429527                33.18384 
##                     ac_liver_samples ac_lung_samples ac_panc_samples 
## 1|chr1:9607-10848           1.250211        1.438300        2.118103 
## 2|chr1:11688-12478          4.610434        5.304052        7.810977 
## 7|chr1:20370-20883          5.180983        5.960438        8.777599 
## 8|chr1:21105-22873          2.618358        3.012278        4.436011 
## 10|chr1:28463-30061         1.150519        1.323609        1.949204 
## 11|chr1:34505-34972         5.342978        6.146805        9.052051 
##                     ac_pbmc_samples ac_psoas_samples ac_skel_samples 
## 1|chr1:9607-10848         26.072273         2.305883        1.220966 
## 2|chr1:11688-12478         4.448074         8.503459        4.502583 
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## 7|chr1:20370-20883         4.998532         9.555778        5.059786 
## 8|chr1:21105-22873         2.526151         4.829286        2.557107 
## 10|chr1:28463-30061        1.110002         2.122010        1.123605 
## 11|chr1:34505-34972        5.154822         9.854561        5.217991 

#calculate the average percent contribution 
ac_avg_perc<- 100/ncol(ac_perc_cont) 
print(ac_avg_perc) 

## [1] 9.090909 

#Make a dataframe with the adipocyte percent contribution for each peak 
ac_adip_perc <- as.data.frame(ac_perc_cont$ac_scadip_rosen_samples) 
  colnames(ac_adip_perc) <- c("adipocytes") 
  rownames(ac_adip_perc) <- rownames(ac_count_table) 
head(ac_adip_perc) 

##                     adipocytes 
## 1|chr1:9607-10848     54.51353 
## 2|chr1:11688-12478    42.34462 
## 7|chr1:20370-20883    35.20966 
## 8|chr1:21105-22873    67.25635 
## 10|chr1:28463-30061   85.26380 
## 11|chr1:34505-34972   33.18384 

#calculate the adipocyte extremity of each peak 
#adipocyte percent contribution - average percent contribution 
ac_adip_avg <- as.data.frame(apply(ac_adip_perc, 1, function(x){x - ac_avg_perc})) 
  colnames(ac_adip_avg) <- c('Extremity') 
  head(ac_adip_avg) 

##                     Extremity 
## 1|chr1:9607-10848    45.42262 
## 2|chr1:11688-12478   33.25371 
## 7|chr1:20370-20883   26.11875 
## 8|chr1:21105-22873   58.16544 
## 10|chr1:28463-30061  76.17290 
## 11|chr1:34505-34972  24.09293 

#Calculate the average number of counts for each peak and add the column to the dataframe with 
extremity 
ac_average_counts <- rowMeans(ac_count_table) 
ac_adip_avg <- cbind(ac_average_counts,ac_adip_avg) 
  head(ac_adip_avg) 

##                     ac_average_counts Extremity 
## 1|chr1:9607-10848           1.6769201  45.42262 
## 2|chr1:11688-12478          0.3606192  33.25371 
## 7|chr1:20370-20883          0.2737637  26.11875 
## 8|chr1:21105-22873          0.9606769  58.16544 
## 10|chr1:28463-30061         2.7223289  76.17290 
## 11|chr1:34505-34972         0.2524841  24.09293 

#Make a table to see which tissues are the top three contributors to each peak 
ac_conts<-data.frame(matrix(data = NA, nrow = length(rownames(ac_perc_cont)), ncol = 3)) 
  colnames(ac_conts)<- c("cont 1","cont 2","cont 3") 
  rownames(ac_conts)<-rownames(ac_perc_cont) 
 
for(o in rownames(ac_perc_cont)) 
{ 
  sor_row <- sort(ac_perc_cont[o,], decreasing=TRUE) 
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  ac_conts[o,1]<-colnames(sor_row[1]) 
  ac_conts[o,2]<-colnames(sor_row[2]) 
  ac_conts[o,3]<-colnames(sor_row[3]) 
} 
   
head(ac_conts) 

##                                      cont 1           cont 2 
## 1|chr1:9607-10848   ac_scadip_rosen_samples  ac_pbmc_samples 
## 2|chr1:11688-12478  ac_scadip_rosen_samples ac_psoas_samples 
## 7|chr1:20370-20883  ac_scadip_rosen_samples ac_psoas_samples 
## 8|chr1:21105-22873  ac_scadip_rosen_samples ac_psoas_samples 
## 10|chr1:28463-30061 ac_scadip_rosen_samples ac_psoas_samples 
## 11|chr1:34505-34972 ac_scadip_rosen_samples ac_psoas_samples 
##                              cont 3 
## 1|chr1:9607-10848   ac_endo_samples 
## 2|chr1:11688-12478  ac_endo_samples 
## 7|chr1:20370-20883  ac_endo_samples 
## 8|chr1:21105-22873  ac_endo_samples 
## 10|chr1:28463-30061 ac_endo_samples 
## 11|chr1:34505-34972 ac_endo_samples 

#Create name and group column for each peak in adip_avg table to top contributing tissue 
ac_adip_avg$name<-rownames(ac_adip_avg) 
 
ac_adip_avg$group<-ac_conts$`cont 1` 

#Add adipocyte counts to adip_avg data frames 
ac_adip_avg$adip_cpm<-ac_avg$ac_scadip_rosen_samples 

#Calculate absolute extremity 
##this is the extremity where the average percent contribution is subtracted from the highest 
percent contribution, regardless of which tissue is the top contributor 
ac_max_perc <- as.data.frame(apply(ac_perc_cont,1,max)) 
  colnames(ac_max_perc) <- c("Max") 
  rownames(ac_max_perc) <- rownames(ac_count_table) 
  head(ac_max_perc) 

##                          Max 
## 1|chr1:9607-10848   54.51353 
## 2|chr1:11688-12478  42.34462 
## 7|chr1:20370-20883  35.20966 
## 8|chr1:21105-22873  67.25635 
## 10|chr1:28463-30061 85.26380 
## 11|chr1:34505-34972 33.18384 

#setting cpm cutoff to the cpm cutoff used in DEA, 2 
ac_cpm_sctr<-ggplot(ac_adip_avg,aes(x=adip_cpm, y=Extremity)) + 
    geom_point() + 
    scale_x_continuous(trans="log10") + 
    geom_point(data= filter(ac_adip_avg, adip_cpm < 2), color="Grey")+ 
  labs(title = "27ac") 
show(ac_cpm_sctr) 
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#calculating quartiles after removing peaks with cpm less than 2 
ac_forqrts<-filter(ac_adip_avg,adip_cpm > 2) 
  rownames(ac_forqrts)<-ac_forqrts$name 
 
ac_quarts<-quantile(ac_forqrts[,"Extremity"], probs = c(0.25, 0.35, 0.5, 0.65, 0.75, 0.7, 0.8, 
0.9)) 
print(ac_quarts) 

##       25%       35%       50%       65%       75%       70%       80%  
## -3.759073 -2.840554 -1.046131  1.438466  3.699154  2.462913  5.189570  
##       90%  
##  9.920687 

#make boxplots for adipocyte extremity, color/tissue from tissue with the highest contribution 
to the peak 
ac_box<-ggplot(ac_adip_avg, aes(x= group, y = Extremity, color = group))+ 
  geom_boxplot(size = 0.25)+ 
  theme_bw()+ 
  labs(y = "Adipocyte Extremity", x = NULL , color=NULL)+ 
  scale_x_discrete(labels=c("ac_adipose_samples" = "Adipose Tissue", "ac_aorta_samples" = "Aor
ta", "ac_CD14_samples" = "CD14+ Monocyte",  "ac_endo_samples" = "Pancreatic Islets", "ac_liver
_samples" = "Liver", "ac_lung_samples" = "Lung",  "ac_panc_samples" = "Pancreas","ac_pbmc_samp
les" = "PBMC","ac_psoas_samples" = "Psoas Muscle", "ac_scadip_rosen_samples" = "Adipocytes", "
ac_skel_samples" = "Skeletal Muscle"))+ 
  scale_color_manual(values = c("ac_adipose_samples" = "#EF5350", "ac_aorta_samples" = "#EC407
A", "ac_CD14_samples" = "#AB47BC",  "ac_endo_samples" = "#7E57C2", "ac_liver_samples" = "#6666
FF", "ac_lung_samples" = "#42A5F5",  "ac_panc_samples" = "#33CCFF","ac_pbmc_samples" = "#76D7C
4","ac_psoas_samples" = "#117A65", "ac_scadip_rosen_samples" = "#00CC00", "ac_skel_samples" = 
"#D4E157"), 
                     labels = c( "Adipose Tissue", "Aorta", "CD14+ Monocyte", "Pancreatic Isle
ts", "Liver", "Lung",  "Pancreas", "PBMC", "Psoas Muscle", "Adipocytes", "Skeletal Muscle"))+ 
  theme(axis.text.x = element_text(angle = 60, hjust = 1)) 
show(ac_box) 
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#violin plot adipocyte extremity, by tissue 
ac_viol<-ggplot(ac_adip_avg,aes(x= group, y = Extremity, color = group))+ 
  geom_violin()+ 
  theme_bw()+ 
  labs(y = "Adipocyte Extremity", x = NULL , color=NULL)+ 
  scale_x_discrete(labels=c("ac_adipose_samples" = "Adipose Tissue", "ac_aorta_samples" = "Aor
ta", "ac_CD14_samples" = "CD14+ Monocyte",  "ac_endo_samples" = "Pancreatic Islets", "ac_liver
_samples" = "Liver", "ac_lung_samples" = "Lung",  "ac_panc_samples" = "Pancreas","ac_pbmc_samp
les" = "PBMC","ac_psoas_samples" = "Psoas Muscle", "ac_scadip_rosen_samples" = "Adipocytes", "
ac_skel_samples" = "Skeletal Muscle"))+ 
  scale_color_manual(values = c("ac_adipose_samples" = "#EF5350", "ac_aorta_samples" = "#EC407
A", "ac_CD14_samples" = "#AB47BC",  "ac_endo_samples" = "#7E57C2", "ac_liver_samples" = "#6666
FF", "ac_lung_samples" = "#42A5F5",  "ac_panc_samples" = "#33CCFF","ac_pbmc_samples" = "#76D7C
4","ac_psoas_samples" = "#117A65", "ac_scadip_rosen_samples" = "#00CC00", "ac_skel_samples" = 
"#D4E157"), 
                     labels = c( "Adipose Tissue", "Aorta", "CD14+ Monocyte", "Pancreatic Isle
ts", "Liver", "Lung",  "Pancreas", "PBMC", "Psoas Muscle", "Adipocytes", "Skeletal Muscle"))+ 
  theme(axis.text.x = element_text(angle = 60, hjust = 1)) 
show(ac_viol) 
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#boxplot adipocyte extremity, bin by count 
ac_c_box<-ggplot(ac_adip_avg, aes(x= ac_average_counts, y = Extremity))+ 
  geom_boxplot(size = 0.25,aes(cut_width(ac_average_counts, 9)))+ 
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 
show(ac_c_box) 

 

#boxplot adipocyte extremity, bin by count, adipocyte cpm 
ac_c_box<-ggplot(ac_adip_avg, aes(x= adip_cpm, y = Extremity))+ 
  geom_boxplot(size = 0.25,aes(cut_width(adip_cpm, 9)))+ 
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 
show(ac_c_box) 
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#make histogram of adipocyte extremity, colored by tissue with the top contribution to a peak  
ac_adip_hist<-ggplot(ac_adip_avg, aes(Extremity, fill = group))+ 
  geom_histogram(aes(y = ..ncount..),position = "identity", alpha = 0.6) 
show(ac_adip_hist) 

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. 

 

#Make a scatter plot of extremity by average counts 
 
ac_adip_sctr<-ggplot(ac_adip_avg,aes(x=adip_cpm, y=Extremity, color = group)) + 
    geom_point()+ 
  theme_bw()+ 
    scale_x_continuous(trans="log10") + 
  labs(title = "27ac", y = "Adipocyte Extremity", x = "Mean Adipocyte CPM", color = NULL)+ 
  scale_color_manual(values = c("ac_adipose_samples" = "#EF5350", "ac_aorta_samples" = "#EC407
A", "ac_CD14_samples" = "#AB47BC",  "ac_endo_samples" = "#7E57C2", "ac_liver_samples" = "#6666
FF", "ac_lung_samples" = "#42A5F5",  "ac_panc_samples" = "#33CCFF","ac_pbmc_samples" = "#76D7C
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4","ac_psoas_samples" = "#117A65", "ac_scadip_rosen_samples" = "#00CC00", "ac_skel_samples" = 
"#D4E157"), 
                     labels = c( "Adipose Tissue", "Aorta", "CD14+ Monocyte", "Pancreatic Isle
ts", "Liver", "Lung",  "Pancreas", "PBMC", "Psoas Muscle", "Adipocytes", "Skeletal Muscle"))+ 
  ylim(-12, 100) 
show(ac_adip_sctr) 

 

#plot top adipocyte extremity 
#1-0.9 
ac_q1<-ggplot(filter(ac_forqrts, Extremity > ac_quarts[[5]] ),aes(x=adip_cpm, y=Extremity, col
or = group)) + 
    geom_point() + 
theme_bw()+ 
    scale_x_continuous(trans="log10") + 
  labs(title = "27ac q1", y = "Adipocyte Extremity", x = "Mean Adipocyte CPM", color = NULL)+ 
  scale_color_manual(values = c("ac_adipose_samples" = "#EF5350", "ac_aorta_samples" = "#EC407
A", "ac_CD14_samples" = "#AB47BC",  "ac_endo_samples" = "#7E57C2", "ac_liver_samples" = "#6666
FF", "ac_lung_samples" = "#42A5F5",  "ac_panc_samples" = "#33CCFF","ac_pbmc_samples" = "#76D7C
4","ac_psoas_samples" = "#117A65", "ac_scadip_rosen_samples" = "#00CC00", "ac_skel_samples" = 
"#D4E157"), 
                     labels = c( "Adipose Tissue", "Aorta", "CD14+ Monocyte", "Pancreatic Isle
ts", "Liver", "Lung",  "Pancreas", "PBMC", "Psoas Muscle", "Adipocytes", "Skeletal Muscle"))+ 
  ylim(0, 100) 
show(ac_q1) 
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#number of peaks with adipocytes as contributor 1 at each quartile 
print(c("27ac", 
        length(rownames(filter(ac_forqrts, Extremity > ac_quarts[[3]] & (group == "ac_scadip_r
osen_samples" | group == "ac_adipose_samples")))), 
        length(rownames(filter(ac_forqrts, Extremity < ac_quarts[[3]] & Extremity > ac_quarts[
[2]] & group == "ac_scadip_rosen_samples"))), 
        length(rownames(filter(ac_forqrts, Extremity < ac_quarts[[2]] & Extremity > ac_quarts[
[1]] & group == "ac_scadip_rosen_samples"))), 
        length(rownames(filter(ac_forqrts, Extremity < ac_quarts[[1]] & group == "ac_scadip_ro
sen_samples"))), 
      length(rownames(filter(ac_forqrts, Extremity > ac_quarts[[4]] & (group == "ac_scadip_ros
en_samples" | group == "ac_adipose_samples")))))) 

## [1] "27ac" "7174" "0"    "0"    "0"    "6865" 

#total number of peaks in each top quartile 
show(length(rownames(filter(ac_forqrts, Extremity > ac_quarts[[4]] )))) 

## [1] 10759 

show(length(rownames(filter(ac_forqrts, Extremity > ac_quarts[[3]] )))) 

## [1] 15369 

show(length(rownames(filter(ac_forqrts, Extremity < ac_quarts[[1]] )))) 

## [1] 7685 

trying different ways to subset for primary and background peaks for FIMO and AME 
#take control peaks from middle 30% adipocyte extremity 
ac_30_ctr<-filter(ac_forqrts, Extremity > ac_quarts[[2]] & Extremity < ac_quarts[[4]]) 
  ac_30_ctr$adip_cpm<-round(ac_30_ctr$adip_cpm, 0) 
 
print(c("control, no cpm filter",length(rownames(ac_30_ctr)))) 

## [1] "control, no cpm filter" "9221" 

#get peaks in the top 10%, the next top 10%, and the following top 10% for the primary sets. W
ith no tissue filtering, with just adipocyte samples, or with adipcyte and adipose peaks 
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ac_91_prim<-filter(ac_forqrts, Extremity > ac_quarts[[8]]) 
  ac_91_prim$adip_cpm<-round(ac_91_prim$adip_cpm, 0) 
ac_91_a_prim<-filter(ac_forqrts, Extremity > ac_quarts[[8]] & group == "ac_scadip_rosen_sample
s") 
  ac_91_a_prim$adip_cpm<-round(ac_91_a_prim$adip_cpm, 0) 
ac_91_aa_prim<-filter(ac_forqrts, Extremity > ac_quarts[[8]] & (group == "ac_scadip_rosen_samp
les" | group == "ac_adipose_samples")) 
  ac_91_aa_prim$adip_cpm<-round(ac_91_aa_prim$adip_cpm, 0) 
ac_89_prim<-filter(ac_forqrts, Extremity > ac_quarts[[7]] & Extremity < ac_quarts[[8]]) 
  ac_89_prim$adip_cpm<-round(ac_89_prim$adip_cpm, 0) 
ac_89_a_prim<-filter(ac_forqrts, Extremity > ac_quarts[[7]] & Extremity < ac_quarts[[8]] & gro
up == "ac_scadip_rosen_samples") 
  ac_89_a_prim$adip_cpm<-round(ac_89_a_prim$adip_cpm, 0) 
ac_89_aa_prim<-filter(ac_forqrts, Extremity > ac_quarts[[7]] & Extremity < ac_quarts[[8]] & (g
roup == "ac_scadip_rosen_samples" | group == "ac_adipose_samples")) 
  ac_89_aa_prim$adip_cpm<-round(ac_89_aa_prim$adip_cpm, 0) 
ac_78_prim<-filter(ac_forqrts, Extremity > ac_quarts[[6]] & Extremity < ac_quarts[[7]]) 
  ac_78_prim$adip_cpm<-round(ac_78_prim$adip_cpm, 0) 
ac_78_a_prim<-filter(ac_forqrts, Extremity > ac_quarts[[6]] & Extremity < ac_quarts[[7]] & gro
up == "ac_scadip_rosen_samples") 
  ac_78_a_prim$adip_cpm<-round(ac_78_a_prim$adip_cpm, 0) 
ac_78_aa_prim<-filter(ac_forqrts, Extremity > ac_quarts[[6]] & Extremity < ac_quarts[[7]] & (g
roup == "ac_scadip_rosen_samples" | group == "ac_adipose_samples")) 
  ac_78_aa_prim$adip_cpm<-round(ac_78_aa_prim$adip_cpm, 0) 
 
print(c(length(rownames(ac_91_prim)), length(rownames(ac_91_a_prim)), length(rownames(ac_91_aa
_prim)), length(rownames(ac_89_prim)), length(rownames(ac_89_a_prim)), length(rownames(ac_89_a
a_prim)), length(rownames(ac_78_prim)), length(rownames(ac_78_a_prim)), length(rownames(ac_78_
aa_prim)))) 

## [1] 3074 2015 3012 3074  457 2335 3074   60 1194 

#Decided that the control (background) peaks would not be filtered by CPM or top contributor a
nd will be in the middle 30% of adipocyte extremity 
#create control peak .BED files for motif analysis 
 
ac_30ctr_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_30_ctr)), ncol = 4)) 
  rownames(ac_30ctr_bed)<-ac_30_ctr$name 
  colnames(ac_30ctr_bed)<-c("chr","start","stop","name") 
 
  ac_30ctr_bed$name<-paste0("27ac_",rownames(ac_30ctr_bed)) 
  ac_30ctr_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_30ctr_bed)) 
  ac_30ctr_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_30ctr_bed)) 
  ac_30ctr_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_30ctr_bed)) 
 
write_tsv(ac_30ctr_bed, "27ac_30ctr_adip_peaks.bed", col_names = F) 

#calculate new quantiles to decile peaks by adipocyte extremity 
ac_dec<-quantile(ac_forqrts[,"Extremity"], probs = c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0
.9)) 
print(ac_dec) 

##        10%        20%        30%        40%        50%        60%  
## -5.1058859 -4.2004137 -3.3145153 -2.2956129 -1.0461312  0.5170884  
##        70%        80%        90%  
##  2.4629130  5.1895705  9.9206867 

#Filter the peaks by decile 
ac_dec1_conts<-filter(ac_forqrts, Extremity > ac_dec[[9]])$name %>% ac_perc_cont[.,] 
ac_dec2_conts<-filter(ac_forqrts, Extremity < ac_dec[[9]] & Extremity > ac_dec[[8]])$name %>% 
ac_perc_cont[.,] 
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ac_dec3_conts<-filter(ac_forqrts, Extremity < ac_dec[[8]] & Extremity > ac_dec[[7]])$name %>% 
ac_perc_cont[.,] 
ac_dec4_conts<-filter(ac_forqrts, Extremity < ac_dec[[7]] & Extremity > ac_dec[[6]])$name %>% 
ac_perc_cont[.,] 
ac_dec5_conts<-filter(ac_forqrts, Extremity < ac_dec[[6]] & Extremity > ac_dec[[5]])$name %>% 
ac_perc_cont[.,] 
ac_dec6_conts<-filter(ac_forqrts, Extremity < ac_dec[[5]] & Extremity > ac_dec[[4]])$name %>% 
ac_perc_cont[.,] 
ac_dec7_conts<-filter(ac_forqrts, Extremity < ac_dec[[4]] & Extremity > ac_dec[[3]])$name %>% 
ac_perc_cont[.,] 
ac_dec8_conts<-filter(ac_forqrts, Extremity < ac_dec[[3]] & Extremity > ac_dec[[2]])$name %>% 
ac_perc_cont[.,] 
ac_dec9_conts<-filter(ac_forqrts, Extremity < ac_dec[[2]] & Extremity > ac_dec[[1]])$name %>% 
ac_perc_cont[.,] 
ac_dec10_conts<-filter(ac_forqrts, Extremity < ac_dec[[1]] )$name %>% ac_perc_cont[.,] 

#Calculate the mean percent contribution of each tissue 
ac_dec01_m<-apply(ac_dec1_conts, 2, mean) 
ac_dec02_m<-apply(ac_dec2_conts, 2, mean) 
ac_dec03_m<-apply(ac_dec3_conts, 2, mean) 
ac_dec04_m<-apply(ac_dec4_conts, 2, mean) 
ac_dec05_m<-apply(ac_dec5_conts, 2, mean) 
ac_dec06_m<-apply(ac_dec6_conts, 2, mean) 
ac_dec07_m<-apply(ac_dec7_conts, 2, mean) 
ac_dec08_m<-apply(ac_dec8_conts, 2, mean) 
ac_dec09_m<-apply(ac_dec9_conts, 2, mean) 
ac_dec10_m<-apply(ac_dec10_conts, 2, mean) 
 
ac_dec_m<-as.data.frame(rbind(ac_dec01_m, ac_dec02_m, ac_dec03_m, ac_dec04_m, ac_dec05_m, ac_d
ec06_m, ac_dec07_m, ac_dec08_m, ac_dec09_m, ac_dec10_m)) 
ac_dec_m$decile<-rownames(ac_dec_m) 
ac_dec_m<-gather(ac_dec_m, -decile, key = "variable", value = "value") 

#plot a line plot of the mean percent contribution of each tissue 
ac_decm_line<-ggplot(ac_dec_m, aes(x = decile,y = value, color = variable))+ 
  geom_point()+ 
  geom_line(aes(group = variable))+ 
 theme_bw()+ 
  labs(y = "Mean Percent Contribution", x = NULL , color=NULL)+ 
  scale_x_discrete(labels=c("ac_dec01_m" = "Decile 1", "ac_dec02_m" = "Decile 2",  "ac_dec03_m
" = "Decile 3", "ac_dec04_m" = "Decile 4", "ac_dec05_m" = "Decile 5",  "ac_dec06_m" = "Decile 
6","ac_dec07_m" = "Decile 7","ac_dec08_m" = "Decile 8", "ac_dec09_m" = "Decile 9", "ac_dec10_m
" = "Decile 10"))+ 
  scale_color_manual(values = c("ac_adipose_samples" = "#EF5350", "ac_aorta_samples" = "#EC407
A", "ac_CD14_samples" = "#AB47BC",  "ac_endo_samples" = "#7E57C2", "ac_liver_samples" = "#6666
FF", "ac_lung_samples" = "#42A5F5",  "ac_panc_samples" = "#33CCFF","ac_pbmc_samples" = "#76D7C
4","ac_psoas_samples" = "#117A65", "ac_scadip_rosen_samples" = "#00CC00", "ac_skel_samples" = 
"#D4E157"), 
                     labels = c( "Adipose Tissue", "Aorta", "CD14+ Monocyte", "Pancreatic Isle
ts", "Liver", "Lung",  "Pancreas", "PBMC", "Psoas Muscle", "Adipocytes", "Skeletal Muscle"))+ 
  theme(axis.text.x = element_text(angle = 60, hjust = 1)) 
show(ac_decm_line) 
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#combined decile contributions into one data frame 
  ac_dec1_conts$name<-rownames(ac_dec1_conts) 
  ac_dec2_conts$name<-rownames(ac_dec2_conts) 
  ac_dec3_conts$name<-rownames(ac_dec3_conts) 
  ac_dec4_conts$name<-rownames(ac_dec4_conts) 
  ac_dec5_conts$name<-rownames(ac_dec5_conts) 
  ac_dec6_conts$name<-rownames(ac_dec6_conts) 
  ac_dec7_conts$name<-rownames(ac_dec7_conts) 
  ac_dec8_conts$name<-rownames(ac_dec8_conts) 
  ac_dec9_conts$name<-rownames(ac_dec9_conts) 
  ac_dec10_conts$name<-rownames(ac_dec10_conts) 
   
ac_b30_ctr<-rbind(ac_dec8_conts,ac_dec9_conts,ac_dec10_conts) 
rownames(ac_b30_ctr)<-ac_b30_ctr$name 

#melt data frame 
ac_dec1_conts<-melt(ac_dec1_conts, id = "name") 
ac_dec2_conts<-melt(ac_dec2_conts, id = "name") 
ac_dec3_conts<-melt(ac_dec3_conts, id = "name") 
ac_dec4_conts<-melt(ac_dec4_conts, id = "name") 
ac_dec5_conts<-melt(ac_dec5_conts, id = "name") 
ac_dec6_conts<-melt(ac_dec6_conts, id = "name") 
ac_dec7_conts<-melt(ac_dec7_conts, id = "name") 
ac_dec8_conts<-melt(ac_dec8_conts, id = "name") 
ac_dec9_conts<-melt(ac_dec9_conts, id = "name") 
ac_dec10_conts<-melt(ac_dec10_conts, id = "name") 

#Plot distribution of mean average percent contribution on each tissue in each decile 
ac_dec1_hist<-ggplot(ac_dec1_conts, aes(x = value, color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.9-1") 
show(ac_dec1_hist) 
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ac_dec2_hist<-ggplot(ac_dec2_conts, aes(x = value, color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.8-0.9") 
show(ac_dec2_hist) 

 

ac_dec3_hist<-ggplot(ac_dec3_conts, aes(x = value, color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.7-0.8") 
show(ac_dec3_hist) 



 86 

 

ac_dec4_hist<-ggplot(ac_dec4_conts, aes(x = value, color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.6-0.7") 
show(ac_dec4_hist) 

 

ac_dec5_hist<-ggplot(ac_dec5_conts, aes(x = value,  color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.5-0.6") 
show(ac_dec5_hist) 
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ac_dec6_hist<-ggplot(ac_dec6_conts, aes(x = value,  color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.4-0.5") 
show(ac_dec6_hist) 

 

ac_dec7_hist<-ggplot(ac_dec7_conts, aes(x = value,  color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.3-0.4") 
show(ac_dec7_hist) 
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ac_dec8_hist<-ggplot(ac_dec8_conts, aes(x = value,  color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.2-0.3") 
show(ac_dec8_hist) 

 

ac_dec9_hist<-ggplot(ac_dec9_conts, aes(x = value,  color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0.1-0.2") 
show(ac_dec9_hist) 
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ac_dec10_hist<-ggplot(ac_dec10_conts, aes(x = value, color = variable))+ 
  geom_density(alpha = 0.5)+ 
  labs(title = "0-0.1") 
show(ac_dec10_hist) 

 

#filter peaks to get the top decile, 1-0.9 
ac_dec1_table<-filter(ac_forqrts, Extremity > ac_dec[[9]]) 
write_tsv(ac_dec1_table, "27ac_decile1.tsv") 
 
print(length(rownames(ac_dec1_table))) 

## [1] 3074 

#calculate quartiles of adipocyte extremity for the top decile, 1-0.9 
ac_dec1_quart<-quantile(ac_dec1_table[,"Extremity"], probs = c(0.25, 0.5, 0.75)) 
 
print(ac_dec1_quart) 
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##      25%      50%      75%  
## 12.19604 17.21423 67.57033 

#filter the top decile to make tables for each quartile 
ac_dec1_table1<-filter(ac_dec1_table, Extremity > ac_dec1_quart[[3]]) 
ac_dec1_table2<-filter(ac_dec1_table, Extremity > ac_dec1_quart[[2]] & Extremity < ac_dec1_qua
rt[[3]]) 
ac_dec1_table3<-filter(ac_dec1_table, Extremity > ac_dec1_quart[[1]] & Extremity < ac_dec1_qua
rt[[2]]) 
ac_dec1_table4<-filter(ac_dec1_table, Extremity < ac_dec1_quart[[1]]) 
 
print(c("27ac", 
        length(rownames(ac_dec1_table1)), 
        length(rownames(ac_dec1_table2)), 
        length(rownames(ac_dec1_table3)), 
        length(rownames(ac_dec1_table4))  
        )) 

## [1] "27ac" "769"  "768"  "768"  "769" 

#Make .BED files for each quartile of the top decile, and the full top decile 
ac_dec1_t1_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_dec1_table1)), ncol = 4
)) 
  rownames(ac_dec1_t1_bed)<-ac_dec1_table1$name 
  colnames(ac_dec1_t1_bed)<-c("chr","start","stop","name") 
 
  ac_dec1_t1_bed$name<-paste0("27ac_",rownames(ac_dec1_t1_bed)) 
  ac_dec1_t1_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_dec1_t1_bed)) 
  ac_dec1_t1_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_dec1_t1_bed)) 
  ac_dec1_t1_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_dec1_t1_bed)) 
   
ac_dec1_t2_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_dec1_table2)), ncol = 4
)) 
  rownames(ac_dec1_t2_bed)<-ac_dec1_table2$name 
  colnames(ac_dec1_t2_bed)<-c("chr","start","stop","name") 
 
  ac_dec1_t2_bed$name<-paste0("27ac_",rownames(ac_dec1_t2_bed)) 
  ac_dec1_t2_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_dec1_t2_bed)) 
  ac_dec1_t2_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_dec1_t2_bed)) 
  ac_dec1_t2_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_dec1_t2_bed)) 
   
ac_dec1_t3_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_dec1_table3)), ncol = 4
)) 
  rownames(ac_dec1_t3_bed)<-ac_dec1_table3$name 
  colnames(ac_dec1_t3_bed)<-c("chr","start","stop","name") 
 
  ac_dec1_t3_bed$name<-paste0("27ac_",rownames(ac_dec1_t3_bed)) 
  ac_dec1_t3_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_dec1_t3_bed)) 
  ac_dec1_t3_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_dec1_t3_bed)) 
  ac_dec1_t3_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_dec1_t3_bed)) 
   
ac_dec1_t4_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_dec1_table4)), ncol = 4
)) 
  rownames(ac_dec1_t4_bed)<-ac_dec1_table4$name 
  colnames(ac_dec1_t4_bed)<-c("chr","start","stop","name") 
 
  ac_dec1_t4_bed$name<-paste0("27ac_",rownames(ac_dec1_t4_bed)) 
  ac_dec1_t4_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_dec1_t4_bed)) 
  ac_dec1_t4_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_dec1_t4_bed)) 
  ac_dec1_t4_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_dec1_t4_bed)) 
 



 91 

write_tsv(ac_dec1_t1_bed, "27ac_dec1_t1_adip_peaks.bed", col_names = F) 
write_tsv(ac_dec1_t2_bed, "27ac_dec1_t2_adip_peaks.bed", col_names = F) 
write_tsv(ac_dec1_t3_bed, "27ac_dec1_t3_adip_peaks.bed", col_names = F) 
write_tsv(ac_dec1_t4_bed, "27ac_dec1_t4_adip_peaks.bed", col_names = F) 
write_tsv(rbind(ac_dec1_t1_bed, ac_dec1_t2_bed), "27ac_dec1_t12_adip_peaks.bed", col_names = F
) 
write_tsv(rbind(ac_dec1_t1_bed, ac_dec1_t2_bed, ac_dec1_t3_bed), "27ac_dec1_t123_adip_peaks.be
d", col_names = F) 
write_tsv(rbind(ac_dec1_t1_bed, ac_dec1_t2_bed, ac_dec1_t3_bed, ac_dec1_t4_bed), "27ac_dec1_t1
234_adip_peaks.bed", col_names = F) 

#DControl (background) peaks would not be filtered by CPM or top contributor and will be in th
e bottom 30% of adipocyte extremity 
#create control peak .BED files for motif analysis 
 
ac_b30ctr_bed<-data.frame(matrix(data = NA, nrow = length(rownames(ac_b30_ctr)), ncol = 4)) 
  rownames(ac_b30ctr_bed)<-ac_b30_ctr$name 
  colnames(ac_b30ctr_bed)<-c("chr","start","stop","name") 
 
  ac_b30ctr_bed$name<-paste0("27ac_",rownames(ac_b30ctr_bed)) 
  ac_b30ctr_bed$chr<-gsub("^.*\\|(chr.*):.*$","\\1", rownames(ac_b30ctr_bed)) 
  ac_b30ctr_bed$start<-gsub("^.*:(\\d+)-\\d+$","\\1", rownames(ac_b30ctr_bed)) 
  ac_b30ctr_bed$stop<-gsub("^.*:\\d+-(\\d+)$","\\1", rownames(ac_b30ctr_bed)) 
   
write_tsv(ac_b30ctr_bed, "27ac_b30ctr_adip_peaks.bed", col_names = F) 

#write files with all peaks 
write_tsv(ac_adip_avg,"27ac_full_extrem.tsv") 
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Comparisons between DEA and Extremity 

Comparison between DEAs and Adipocyte Extremity 

knitr::opts_chunk$set(root.dir = "/Volumes/broad_rosenlab_archive/Projects/Linus-Human-Ad/Anal
ysis/Individual-Peak-Characterization-no-137/peaks_by_tissue/for_thesis") 
 
dbl_min <- .Machine$double.xmin 
 
library(tibble) 
library(plyr) 
library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:plyr': 
##  
##     arrange, count, desc, failwith, id, mutate, rename, summarise, 
##     summarize 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(readr) 
library(tidyr) 
library(ggplot2) 
library(VennDiagram) 

## Loading required package: grid 

## Loading required package: futile.logger 

library(pheatmap) 
library(RColorBrewer) 
library(reshape2) 

##  
## Attaching package: 'reshape2' 

## The following object is masked from 'package:tidyr': 
##  
##     smiths 

library(eulerr) 

#load files from extermity analysis, IR/IS DEA, and Adipocyte/Nonadipocyte DEA 
ac_all_extrem<-read_tsv("../27ac_full_extrem.tsv")  
 
ac_iris_dea<-read.table("../H3K27ac/dea_iris_rt0/1_Init/IS_IR.txt", header = T) %>% 
  mutate(cpm1 = logCPM >= 1, cpm2 = logCPM >= 2) 
 
ac_rt0_dea<-read.table("../H3K27ac/dea_27ac/1_Init/nonadipocyte_adipocyte.txt", header = T) %>
% 
  inner_join(y = select(ac_iris_dea, genes, cpm1), by = "genes") 
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#get extremities for DEA peaks 
ac_extrem_iris<-inner_join(x = ac_all_extrem, y = ac_iris_dea, by = c("name" = "genes")) %>% 
  mutate(fc_1_05_color = logFC >= 1 & FDR <= 0.05, fc_5_25_color = logFC >= 0.5 & FDR <= 0.25)  
  
ac_extrem_rt0<-inner_join(x = ac_all_extrem, y = ac_rt0_dea, by = c("name" = "genes")) %>% 
  mutate(fc_1_05_color = logFC >= 1 & FDR <= 0.05 & cpm1, fc_5_25_color = logFC >= 0.5 & FDR <
= 0.25) 

#calculate linear regression for plots 
ac_extrem_iris_lm<-lm( logFC ~ Extremity, data = ac_extrem_iris) 
 
ac_extrem_rt0_lm<-lm( logFC ~ Extremity, data = ac_extrem_rt0) 

#plotting extremity against FC with linear regression 
ggplot(ac_extrem_iris_lm$model, aes_string(x = names(ac_extrem_iris_lm$model)[2], y = names(ac
_extrem_iris_lm$model)[1])) +  
  geom_point() + 
  stat_smooth(method = "lm", col = "red") + 
  labs(title = paste("27ac_irisDEA", 
                     "Adj R2 = ",signif(summary(ac_extrem_iris_lm)$adj.r.squared, 5), 
                     "Intercept =",signif(ac_extrem_iris_lm$coef[[1]],5 ), 
                     " Slope =",signif(ac_extrem_iris_lm$coef[[2]], 5), 
                     " P =",signif(summary(ac_extrem_iris_lm)$coef[2,4], 5))) 

 

ggplot(ac_extrem_rt0_lm$model, aes_string(x = names(ac_extrem_rt0_lm$model)[2], y = names(ac_e
xtrem_rt0_lm$model)[1])) +  
  geom_point() + 
  stat_smooth(method = "lm", col = "red") + 
  labs(title = paste("27ac_adipDEA", 
                     "Adj R2 = ",signif(summary(ac_extrem_rt0_lm)$adj.r.squared, 5), 
                     "Intercept =",signif(ac_extrem_rt0_lm$coef[[1]],5 ), 
                     " Slope =",signif(ac_extrem_rt0_lm$coef[[2]], 5), 
                     " P =",signif(summary(ac_extrem_rt0_lm)$coef[2,4], 5))) 
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#plot adipocyte extremity by FDR (< 0.05 or 0.25) fold change (FC) (> 1 or 0.5) 
ac_105_iris_sctr<-ggplot(ac_extrem_iris, aes(y = logFC, x = Extremity, color = fc_1_05_color))
+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & IR/IS DEA, FC >= 1, FDR <= 0.05 ")+ 
  geom_smooth(method = "lm", col = "black") 
show(ac_105_iris_sctr) 

 

ac_525_iris_sctr<-ggplot(ac_extrem_iris, aes(y = logFC, x = Extremity, color = fc_5_25_color))
+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & IR/IS DEA, FC >= 0.5, FDR <= 0.25 ")+ 



 95 

  geom_smooth(method = "lm", col = "black") 
show(ac_525_iris_sctr) 

 

#plot adipocyte extremity by IR v IS DEA FDR,  FDR (< 0.05 or 0.25) fold change (FC) (> 1 or 0
.5) 
ac_105_iris_sctr<-ggplot(ac_extrem_iris, aes(y = FDR+dbl_min, x = Extremity, color = fc_1_05_c
olor))+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & IR/IS DEA, FC >= 1, FDR <= 0.05 ", y = "FDR")+ 
  scale_y_continuous(trans = "log10") 
  #geom_smooth(method = "lm", col = "black") 
show(ac_105_iris_sctr) 

 

ac_525_iris_sctr<-ggplot(ac_extrem_iris, aes(y = FDR+dbl_min, x = Extremity, color = fc_5_25_c
olor))+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & IR/IS DEA, FC >= 0.5, FDR <= 0.25 ", y = "FDR")+ 
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  scale_y_continuous(trans = "log10") 
  #geom_smooth(method = "lm", col = "black") 
show(ac_525_iris_sctr) 

 

#plot adipocyte extremity by adipocyte v non-adipocyte DEA FDR, FDR (< 0.05) fold change (FC) 
(> 1) 
ac_105_rt0_sctr<-ggplot(ac_extrem_rt0, aes(y = logFC, x = Extremity, color = fc_1_05_color))+ 
  geom_point()+ 
  theme_bw()+ 
  labs( x = "Adipocyte Extremity", y = "log(Fold Change)", color = NULL)+ 
  geom_smooth(method = "lm", col = "#2E4053")+ 
  scale_color_manual(values = c("FALSE" = "grey", "TRUE" = "red"), name = "FC >= 1,\nFDR <= 0.
05")+ 
  ylim(-10, 11)+ 
  xlim(-10, 100) 
show(ac_105_rt0_sctr) 
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#plot adipocyte extremity by FDR 
ac_105_rt0_sctr<-ggplot(ac_extrem_rt0, aes(y = FDR+dbl_min, x = Extremity, color = fc_1_05_col
or))+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & rt0 DEA, FC >= 1, FDR <= 0.05", y = "FDR")+ 
  scale_y_continuous(trans = "log10") 
  # geom_smooth(method = "lm", col = "black") 
show(ac_105_rt0_sctr) 

 

ac_525_rt0_sctr<-ggplot(ac_extrem_rt0, aes(y = FDR+dbl_min, x = Extremity, color = fc_5_25_col
or))+ 
  geom_point()+ 
  labs(title = "27ac Adip Extrem & rt0 DEA, FC >= 0.5, FDR <= 0.25", y = "FDR")+ 
  scale_y_continuous(trans = "log10") 
  # geom_smooth(method = "lm", col = "black") 
show(ac_525_rt0_sctr) 
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#plot venn diagram of overlap between the adipocyte v non-adipocyte DEA and the IR v IS DEA 
ac_venn_105_list <- list( 
    "IR v IS \nUp" = filter(ac_iris_dea, logFC >= 0.5 & FDR <= 0.25 & cpm2)$genes, 
    "IR v IS \nDown" = filter(ac_iris_dea, logFC <= -0.5 & FDR <= 0.25 & cpm2)$genes, 
    "Adipocyte v Nonadipocyte \nUp" = filter(ac_rt0_dea, logFC >= 1 & FDR <= 0.05 & cpm1)$gene
s 
) 
 
ac_venn_105 <- venn.diagram(ac_venn_105_list, filename = NULL, cat.pos = c(-15, 0, 15), cat.di
st = c(0.11,0.11, 0.04)) 
grid.newpage() 
grid.draw(ac_venn_105) 
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Adipocyte Specific Motif Analysis 

Motif Enrichment Analysis #Ran FIMO on adipocyte peaks (peaks from extremity analysis where adipocytes were 
the top contributor, had a cpm greater than the mean of the average counts, and an adipocyte extremity in the top 
decile). Ran AME on the top decile for H3K27ac and H3K4me1, and the top two deciles for H3K4me3. Control 
peaks were selected as the peaks in the bottom 30% of adipocyte extremity. Reference: 
“tiss_spec_extremity.Rmd” 

knitr::opts_chunk$set(root.dir = "/Volumes/broad_rosenlab_archive/Projects/Linus-Human-Ad/Anal
ysis/Individual-Peak-Characterization-no-137/peaks_by_tissue/for_thesis") 
library(tibble) 
library(plyr) 
library(dplyr) 

##  
## Attaching package: 'dplyr' 

## The following objects are masked from 'package:plyr': 
##  
##     arrange, count, desc, failwith, id, mutate, rename, summarise, 
##     summarize 

## The following objects are masked from 'package:stats': 
##  
##     filter, lag 

## The following objects are masked from 'package:base': 
##  
##     intersect, setdiff, setequal, union 

library(readr) 
library(tidyr) 
library(ggplot2) 
library(VennDiagram) 

## Loading required package: grid 

## Loading required package: futile.logger 

library(pheatmap) 
library(RColorBrewer) 
library(reshape2) 

##  
## Attaching package: 'reshape2' 

## The following object is masked from 'package:tidyr': 
##  
##     smiths 

library(venn) 
library(ggrepel) 

#load bed files  
ac_d1_t1_bed <- read_tsv( "../27ac_dec1_t1_adip_peaks.bed", col_names = c("chr","start","stop"
,"peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
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##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t2_bed <- read_tsv("../27ac_dec1_t2_adip_peaks.bed", col_names =  c("chr","start","stop"
,"peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t3_bed <- read_tsv("../27ac_dec1_t3_adip_peaks.bed", col_names =  c("chr","start","stop"
,"peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t4_bed <- read_tsv("../27ac_dec1_t4_adip_peaks.bed", col_names =  c("chr","start","stop"
,"peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t1_t1_bed <- read_tsv("../27ac_dec1_t1_t1_adip_peaks.bed", col_names =  c("chr","start",
"stop","peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t1_t2_bed <- read_tsv("../27ac_dec1_t1_t2_adip_peaks.bed", col_names =  c("chr","start",
"stop","peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t1_t3_bed <- read_tsv("../27ac_dec1_t1_t3_adip_peaks.bed", col_names =  c("chr","start",
"stop","peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 



 101 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_d1_t1_t4_bed <- read_tsv("../27ac_dec1_t1_t4_adip_peaks.bed", col_names =  c("chr","start",
"stop","peak_name")) %>% separate(peak_name, c(NA,"name"), sep = "\\|") 

## Parsed with column specification: 
## cols( 
##   chr = col_character(), 
##   start = col_double(), 
##   stop = col_double(), 
##   peak_name = col_character() 
## ) 

ac_peaks <- unique(c(ac_d1_t1_t1_bed$name, ac_d1_t1_bed$name, ac_d1_t2_bed$name, ac_d1_t3_bed$
name, ac_d1_t4_bed$name)) 
print(head(ac_d1_t1_bed)) 

## # A tibble: 6 x 4 
##   chr      start     stop name                   
##   <chr>    <dbl>    <dbl> <chr>                  
## 1 chr1     28463    30061 chr1:28463-30061       
## 2 chr1    171022   174906 chr1:171022-174906     
## 3 chr1    198960   200610 chr1:198960-200610     
## 4 chr1    529027   533437 chr1:529027-533437     
## 5 chr1  16664042 16667941 chr1:16664042-16667941 
## 6 chr1  16739294 16744474 chr1:16739294-16744474 

#load FIMO tsv files 
#load FIMO table for each mark one at a time and filter one at a time because full fimo files 
too large to run locally, after filtering remove the full fimo table bellow 
ac_fimo <- read_tsv("../fimo-27ac/fimo.tsv", col_types = "c_c_______", comment = "#") %>% 
  separate(sequence_name,  c(NA, "name"), sep = "\\|") %>% 
  filter(name %in% ac_peaks) 

#create list of peaks and their sizes for GWAS 
ac_peaks<-as_tibble( x = ac_peaks) 

## Warning: Calling `as_tibble()` on a vector is discouraged, because the behavior is likely t
o change in the future. Use `tibble::enframe(name = NULL)` instead. 
## This warning is displayed once per session. 

ac_peaks$name<-ac_peaks$value 
ac_peaks<-separate(ac_peaks, value, c("chr", "coords"), sep = ":") %>%  
  separate(coords, c("start", "stop"), sep = "-") %>%  
  mutate_each( as.numeric, start, stop) %>% 
  mutate(length = stop - start) 
ac_peaks<-ac_peaks[,4:5] 
 
write_tsv(ac_peaks, "27ac_decile_peaks.tsv") 

#load AME tsv files 
ac_d1_t1_ame <- read_tsv("../ame-27ac_dec1_t1/ame.tsv", comment = "#") 
ac_d1_t2_ame <- read_tsv("../ame-27ac_dec1_t2/ame.tsv", comment = "#") 
ac_d1_t3_ame <- read_tsv("../ame-27ac_dec1_t3/ame.tsv", comment = "#") 
ac_d1_t4_ame <- read_tsv("../ame-27ac_dec1_t4/ame.tsv", comment = "#") 
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ac_d1_t12_ame <- read_tsv("../ame-27ac_dec1_t12/ame.tsv", comment = "#") 
ac_d1_t123_ame <- read_tsv("../ame-27ac_dec1_t123/ame.tsv", comment = "#") 
ac_d1_t1234_ame <- read_tsv("../ame-27ac_dec1_t1234/ame.tsv", comment = "#") 
ac_d1_t1_t1_ame <- read_tsv("../ame-27ac_dec1_t1_t1/ame.tsv", comment = "#") 
ac_d1_t1_t2_ame <- read_tsv("../ame-27ac_dec1_t1_t2/ame.tsv", comment = "#") 
ac_d1_t1_t3_ame <- read_tsv("../ame-27ac_dec1_t1_t3/ame.tsv", comment = "#") 
ac_d1_t1_t4_ame <- read_tsv("../ame-27ac_dec1_t1_t4/ame.tsv", comment = "#") 

#filter FIMO for peaks, then remove full fimo data frame 
ac_d1_t1_fimo <- filter(ac_fimo, name %in% ac_d1_t1_bed$name) 
ac_d1_t2_fimo <- filter(ac_fimo, name %in% ac_d1_t2_bed$name) 
ac_d1_t3_fimo <- filter(ac_fimo, name %in% ac_d1_t3_bed$name) 
ac_d1_t4_fimo <- filter(ac_fimo, name %in% ac_d1_t4_bed$name) 
ac_d1_t1_t1_fimo <- filter(ac_fimo, name %in% ac_d1_t1_t1_bed$name) 
ac_d1_t12_fimo <- rbind(ac_d1_t1_fimo, ac_d1_t2_fimo) 
ac_d1_t123_fimo <- rbind(ac_d1_t1_fimo, ac_d1_t2_fimo, ac_d1_t3_fimo) 
ac_d1_t1234_fimo <- rbind(ac_d1_t1_fimo, ac_d1_t2_fimo, ac_d1_t3_fimo, ac_d1_t4_fimo) 
ac_d1_t1_t2_fimo <- filter(ac_d1_t1_fimo, name %in% ac_d1_t1_t2_bed$name) 
ac_d1_t1_t3_fimo <- filter(ac_d1_t1_fimo, name %in% ac_d1_t1_t3_bed$name) 
ac_d1_t1_t4_fimo <- filter(ac_d1_t1_fimo, name %in% ac_d1_t1_t4_bed$name) 
rm(ac_fimo) 

#calculate the number of unique peaks a motif occurs in 
 
ac_d1_t1_occur <- ac_d1_t1_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif_id) 
%>% summarize(occurrences = n()) 
ac_d1_t2_occur <- ac_d1_t2_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif_id) 
%>% summarize(occurrences = n()) 
ac_d1_t3_occur <- ac_d1_t3_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif_id) 
%>% summarize(occurrences = n()) 
ac_d1_t4_occur <- ac_d1_t4_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif_id) 
%>% summarize(occurrences = n()) 
ac_d1_t12_occur <- ac_d1_t12_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif_i
d) %>% summarize(occurrences = n()) 
ac_d1_t123_occur <- ac_d1_t123_fimo %>% select(motif_id, name) %>% unique() %>% group_by(motif
_id) %>% summarize(occurrences = n()) 
ac_d1_t1234_occur <- ac_d1_t1234_fimo %>% select(motif_id, name) %>% unique() %>% group_by(mot
if_id) %>% summarize(occurrences = n()) 
ac_d1_t1_t1_occur <- ac_d1_t1_t1_fimo %>% select(motif_id, name) %>% unique() %>% group_by(mot
if_id) %>% summarize(occurrences = n()) 
ac_d1_t1_t2_occur <- ac_d1_t1_t2_fimo %>% select(motif_id, name) %>% unique() %>% group_by(mot
if_id) %>% summarize(occurrences = n()) 
ac_d1_t1_t3_occur <- ac_d1_t1_t3_fimo %>% select(motif_id, name) %>% unique() %>% group_by(mot
if_id) %>% summarize(occurrences = n()) 
ac_d1_t1_t4_occur <- ac_d1_t1_t4_fimo %>% select(motif_id, name) %>% unique() %>% group_by(mot
if_id) %>% summarize(occurrences = n()) 

#get q-values 
ac_d1_t1_evo <- ac_d1_t1_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(ac_d1
_t1_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t2_evo <- ac_d1_t2_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(ac_d1
_t2_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t3_evo <- ac_d1_t3_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(ac_d1
_t3_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t4_evo <- ac_d1_t4_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(ac_d1
_t4_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t12_evo <- ac_d1_t12_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(ac_
d1_t12_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t123_evo <- ac_d1_t123_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join(a
c_d1_t123_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t1234_evo <- ac_d1_t1234_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join
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(ac_d1_t1234_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t1_t1_evo <- ac_d1_t1_t1_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join
(ac_d1_t1_t1_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t1_t2_evo <- ac_d1_t1_t2_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join
(ac_d1_t1_t2_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t1_t3_evo <- ac_d1_t1_t3_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join
(ac_d1_t1_t3_occur, by = c("motif_ID" = "motif_id")) 
ac_d1_t1_t4_evo <- ac_d1_t1_t4_ame %>% select(motif_ID, qValue = `adj_p-value`) %>% inner_join
(ac_d1_t1_t4_occur, by = c("motif_ID" = "motif_id")) 

#take the -Log2 of the q-values 
ac_d1_t1_evo <- mutate(ac_d1_t1_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("motif_
ID"), sep = "\\.", extra = "drop") 
ac_d1_t2_evo <- mutate(ac_d1_t2_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("motif_
ID"), sep = "\\.", extra = "drop") 
ac_d1_t3_evo <- mutate(ac_d1_t3_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("motif_
ID"), sep = "\\.", extra = "drop") 
ac_d1_t4_evo <- mutate(ac_d1_t4_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("motif_
ID"), sep = "\\.", extra = "drop") 
ac_d1_t12_evo <- mutate(ac_d1_t12_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("moti
f_ID"), sep = "\\.", extra = "drop") 
ac_d1_t123_evo <- mutate(ac_d1_t123_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("mo
tif_ID"), sep = "\\.", extra = "drop") 
ac_d1_t1234_evo <- mutate(ac_d1_t1234_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("
motif_ID"), sep = "\\.", extra = "drop") 
ac_d1_t1_t1_evo <- mutate(ac_d1_t1_t1_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("
motif_ID"), sep = "\\.", extra = "drop") 
ac_d1_t1_t2_evo <- mutate(ac_d1_t1_t2_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("
motif_ID"), sep = "\\.", extra = "drop") 
ac_d1_t1_t3_evo <- mutate(ac_d1_t1_t3_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("
motif_ID"), sep = "\\.", extra = "drop") 
ac_d1_t1_t4_evo <- mutate(ac_d1_t1_t4_evo, loggedQ = -log2(qValue)) %>% separate(motif_ID, c("
motif_ID"), sep = "\\.", extra = "drop") 

#create color column by sig threshold -Log2(0.05) 
ac_d1_t1_evo <- mutate(ac_d1_t1_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t2_evo <- mutate(ac_d1_t2_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t3_evo <- mutate(ac_d1_t3_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t4_evo <- mutate(ac_d1_t4_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t12_evo <- mutate(ac_d1_t12_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t123_evo <- mutate(ac_d1_t123_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t1234_evo <- mutate(ac_d1_t1234_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t1_t1_evo <- mutate(ac_d1_t1_t1_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t1_t2_evo <- mutate(ac_d1_t1_t2_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t1_t3_evo <- mutate(ac_d1_t1_t3_evo, colors = loggedQ >= -log2(0.05)) 
ac_d1_t1_t4_evo <- mutate(ac_d1_t1_t4_evo, colors = loggedQ >= -log2(0.05)) 

#plot enrichment (q-value) vs occurrence 
ac_d1_t1_evo_sctr <- ggplot(data = ac_d1_t1_evo, aes( occurrences,loggedQ, color = colors)) + 
  theme_bw()+ 
  theme(legend.position = "none")+ 
  geom_hline(yintercept = -log2(0.05), color = "black", linetype = "dashed", size = 0.25, alph
a = 0.8) + 
  geom_point(size = 0.1) + 
  geom_text_repel(data = filter(ac_d1_t1_evo, colors == TRUE), aes(label = motif_ID), size = 2
) + 
  labs(title = "27ac_d1_t1", y = "Enrichment -log2(q-value)", x = "Occurrences")+ 
  scale_color_manual(values = c("FALSE" = "grey", "TRUE" = "red")) 
show(ac_d1_t1_evo_sctr) 
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